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Abstract

We deal with the concept of packings in graphs, which may be regarded as a
generalization of the theory of graph design. In particular we construct a vertex-
and edge-disjoint packing of K, (where § mod 4 equals 0 or 1) with edges of different
cyclic length. Moreover we consider edge-disjoint packings in complete graphs with
uniform linear forests (and the resulting packings have special additional properties).
Further we give a relationship between finite geometries and certain packings which
suggests interesting questions.

1 Introduction

In geometry the concept of packing may be described as follows: Given a closed set
A C R* and a family {B;};ca of closed subsets of A, e.g. A=R? and B, , = {y € R? :
lz —y| <7}, (z,7r) € R x Ry. A packing in A by the family {B;};ca is an almost
disjoint subset {B;}icx C {Bi}iea, i.e. B; N Bj is a zero-set in R” for i,j € A, i # j.
The density o) of a packing is defined by o) = ﬁ Y iea #(B;) if A has finite volume

p(A) and else oy = lim; ﬁAJ-) Yiea 4(B; N Aj), where the family {4;} en of subsets of
A of finite measure is exhausting A in a regular way. The typical question is to ask for
the densest packing under eventual some restrictions on the admissible subset {B;};cx:
e.g. the densest packing in the plane R? by circles of radius 1 (see [9]) or the densest

packing in the unit square by ten circles of equal radius (see [7]).

It is known, that the concept of geometric packing has discrete analogues (see [10]). Here
we deal with packings in (finite) graphs: Given a (finite) graph G = (V, E), V the set of
vertices and E the set of edges, and a family {B;};ca of partial subgraphs B; = (V;, E;)

of G. A packing in G by the family {B;};ca is a subset {B;}icx C {Bi}ica such that
either the condition

(C1) BiNnBjCVifori,jENi#]
or the condition

(C2) BiNB; =0 fori,j €N i#j



holds. If, in the (C1)-case, the packing {B;};c in (V, E) has the additional property that
there exists an m € N such that every pair z;, z; of distinct vertices of V occurs for m or
m+ 1 indices 7 € A in a connected component of B;, then we call it homogeneous (C1)*-
packing. So, homogeneous (C1)*-packings are particularly regular or “well-balanced”
(C1)-packings. This will become more clear in the examples we consider below. There
is always a good chance to find in the set of (C1)-packings of maximal cardinality a
(C1)*-representative. The number m is determined by a diophantic equation and also
the number of pairs of vertices occurring m + 1 times in a connected component of B;
(this number may happen to be zero).

card({U;exEi})

Now we may ask for the optimal packing in the sense that the density o) = —_.+ i)

is maximal under eventual some restrictions on the admissible subset {B;};cx.
In the words of graph design we have the following:

A (Cl)-packing of a complete graph with density oy = 1 such that all the B;’s are
isomorphic to a given graph G is a G-design. A (C1)-packing of a complete graph with
density o) = 1 such that all the B;’s are isomorphic to a complete graph may be regarded
as a balanced incomplete block design. Further a (C2)-packing with o) = 1 such that
all the B;’s are isomorphic to a complete graph on 2 vertices is a 1-factor. (For the
definitions see [6].) In this sense, our concept of packings is more general than graph
design.

2 Notations and Definitions

We use the standard notation of [1].

Let K, denote the complete, simple graph on n vertices.

A tree T is called a linear tree, if each vertex of T has degree 1 or 2.

The length of a linear tree T = (Vp, Er) is the cardinality of V.

A linear forest is a set of linear trees satisfying condition (C2).

A uniform forest F is a linear forest such that all linear trees of F' have the same length,
the height of the forest.

The size of a forest F' is the cardinality of F'.

Given a complete graph K, = (V;,, Ey,) and h > 1 a divisor of n. Let B, j denote the
family

By n == {B; = (Vi, E;) : B; a uniform forest of heigth h and size 3} (1)

of subgraphs of K;,. We are interested in packings A, C B, in K, by the family
By,», such that condition (C1) or (C1)* (as in Section 4) or condition (C2) and some



additional restrictions hold (as in Section 3). In the language of graph design, a (C1)-
packing A, C By in K, with density o) = 1 is a resolvable, balanced path design
(cf. [6]). In the (C1)-case it is easy to see that for a packing of K, by 7B, ; there holds

n(n—1)/2
card(A) < h—Dn/h

and because card(\) is an integer we get

card()) < L%J (2)

(where |z] is the nearest integer less or equal than z).

On the other hand if we consider packings which respect (C2) we trivially have card(\) <
1: So here the question is whether a packing exists or not.

3 Packings in complete graphs by edges of different length

Let K, be the complete graph with vertices {z;}i1<i<n. We define the cyclic length of
an edge [z;,z;] joining z; and z; as

l([zi, 25]) == min{]i — j[,n — |i — j}

See also Figure 1 for the geometric meaning of the cyclic length. Then there holds

Theorem 1 Ifn is even then there ezxists a (C2)-packing in K, by the family By, o such
that only edges of different cyclic length occur, if and only if 5 mod4 equals 0 or 1.

Remark 1: If n is odd the corresponding problem is trivial.

Proof: (i) Consider a (C2)-packing in Ky, by Bom2 such that every cyclic length
1,2,... ,m occurs. Let P := {z; : i odd} C Vi, and Q := {z; : i even} C V. If an
edge of the packing has odd cyclic length it is joining the sets P and @), else it is joining
two vertices of P or of (). Hence the number of edges of the packing having even cyclic
length must be even. Now, if m is even the even cyclic lengths occurring in the packing
are {2,4,... ,m} and this set is even if and only if m = 0 (mod 4). If on the other hand
m is odd the even cyclic lengths occurring in the packing are {2,4,... ,mm — 1} and this
set is even if and only if m = 1 (mod 4).



Figure 1: (C2)-packing in Kg by Figure 2: (C2)-packing in K39 by
edges such that every cyclic length edges such that every cyclic length
occurs. occurs.

(ii) For the other direction we consider two cases.

Case 1. m =0 (mod 4):
If m = 4 then Ags := {[z1, 23], [r2, T5], [23,27], [T, x6]} is a packing in Ky, such that
every cyclic length 1,2,... ,m occurs (see Figure 1).

If m = 4k (k > 1) then it is easy to check that
Aom 2 i= {[371, Tokl, (T2, Takt1]; [Trh+2, Trrs1], {[Zis Torr1—i] Fro<ick,
{[s, T8kro—i bor<i<ar, {[Zi) $8k+3—i]}3gigk}

is a packing in Ko, with the desired properties. Figure 2 shows the resulting packing
for n = 32.

Case 2. m =1 (mod 4):
If m = 1 then A 5 := {[z1, 2]} is a packing in Ky, such that the cyclic length 1 occurs.

If m = 5 then Al()’g = {[.%‘1,.732], [.’Eg,xg], [564,.’57], [$5,$10], [ws,mg]} is a packing in Kgm
such that every cyclic length 1,2,... ,m occurs (see Figure 3).

If m =4k + 1 (k > 1) then it is easy to check that

Ao 2 = {[361, Tak11)s [Toky Tapr2)s [Trr12, Trre1)s {[T, Zakt2—i] Frro<i<ok,

{[zs, z8k+3—i] bor<i<ak, {[zi, $8k+4—z‘]}25i5k+1}
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is a packing in Ko, with the desired properties. Figure 4 shows the resulting packing
for n = 34.

Xs
Xs
Figure 3: (C2)-packing in Kjy by Figure 4: (C2)-packing in K34 by
edges such that every cyclic length edges such that every cyclic length
occurs. occurs.

Remark 2: Although it was quite hard to find a packing in a complete graph by edges
of different cyclic length, there exist in fact many solutions for large m:

Ky : 1 solution
Kg : 1 solution
Kip : 2 solutions

K6 : 128 solutions

Of course, congruent solutions are identified.

Remark 3: These packings are in fact very special 1-factorizations of Ks,,. Note that
in general 1-factorizations of Ko, always exist (cf. [4] p. 85).

4 High, large and balanced forests

In this section we will consider (C1) and (Cl)*-packings in K, by the family B, .
We are interested in the cases h = n (hence the corresponding forests are of maximal
possible height), 2h = n (the corresponding forests contain exactly two trees), h = 2 (the
corresponding forests are as large as possible) and h% = n (the corresponding forests are
as large as high). We show in most of the mentioned cases that estimate (2) is sharp.



Notation: If o is a permutation of the set {1,... ,n} and H = (Vg,Epy) a partial
subgraph of K, then o[H] = (V,(x), E;ig)) where Vg := {z54) @ zi € Vy} and
Esim) = {[Zsi), To(j)] : [TiyTj] € En} (see also Figure 5). Further let o° be the identity
and o"*!:= g(o™).

4.1 High forests: h =n

For h = n > 1 we obtain by estimate (2) that a maximal packing is of cardinality less or
equal than |3 |. And indeed we find:

Theorem 2 In K, there exists a (C1)*-packing A, by Bnn of cardinality [5].

Proof: Let
A = {[z1, zn], [81, Tn—1], [32, Tn-1]; [T2, T2, - ., [@n ) 0 41}
1 2 3 ... 1 .. n
o= . .
(2 34 ... i+l ... 1)
Then A, ,, := {B; : B; = 0'[4], 1 <i < |2]} is a (C1)-packing of cardinality |2] (see

Figure 5). Because all pairs of vertices xy, z; belong to every B; €?A, , and since every
B; is connected, the packing is trivially (C1)*. o

and

In fact Theorem 2 follows also from [4] p. 89.

Remark 4: If n is even, the density of the packing constructed above is 1. Hence, it
can be regarded as a path design (in contrast to the case n odd).

At this stage we get, as a byproduct which will be useful afterwards, also an optimal
(C1)*-packing in K, 11 by cycles of length n + 1: Just introduce a new point z,; and
close every tree constructed above by joining both ends with z,1 (see Figure 6). The
cardinality of this packing is |%], thus it is optimal. If n is even its density is 1 and

hence we get a 2-factorization of K, ;1 (see [4] p. 89).



Figure 5: Generation of a maxi- Figure 6: Generation of a maxi-
mal (Cl)-packing in Kj3 by trees mal (Cl)-packing in K4 by cycles
of length 13. of length 14.

If n = 2k and if we consider each linear forest occurring in the packing A, ,, (constructed
in the proof of Theorem 2) as a row of a matrix, we get a k X n-matrix which yields in
an natural way a horizontally complete k x n latin rectangle (cf. [3]).

4.2 The case 2h =n

The second highest forests appear if 2h = n > 2. In this case estimate (2) says, that a

maximal packing is of cardinality less or equal than [h(;hh:;)J which is h (= §) for h > 2.
We find:

Theorem 3 In K,, (with n = 2h) there exists a (C1)-packing ?Asp p, by ?Bopp of car-
dinality L%J (and hence this packing is optimal), whereas a (C1)*-packing of this

cardinality only exist for h = 2.

Proof: The case h = 2 is trivial, so let us assume h > 2. By Section 4.1 we can find a
packing for b’ = n (= 2h) of cardinality & (= h). Canceling an edge of each linear tree
of this packing such that both parts are of length h we get a packing Ay, j, of cardinality
h. Thus (2) is sharp also in case 2h = n.

To see that for h > 2 no (C1)*-packing of the mentioned cardinality exists we proceed
by contradiction. Suppose there is such a packing Agp p = {B; €7Bopp : i =1,... ,h}.
Consider the sets S; = {j : z; and x9p, are in the same connected component of Bj} for



i=1,...,2h — 1. Since Ag} is a (Cl)*-packing the sets S; are all of “almost equal
size” or more precisely there exists m € N such that every set S; has cardinality m or

m+1, say |[S1| =...=|Sz| = m and |Sz4+1| = ... = |Sop—1| = m + 1. By counting edges
we obtain:
% —1 ifheven % if h even
m= T =
b=l if h odd 3h=1if h odd

To continue we have to distinguish the four cases h =+ mod 4, + = 0,1,2,3. We only
carry out + = 1 (the other cases are similar). For h = 4k + 1 we obtain that [S; N S;| =k
for j = 2,... ,z. It follows that z; and z;, j = 2,... ,z, are m + 1 times in the same
connected component of a V;. But since x — 1 = % -1> % = 2h — 1 — z this is
impossible. (If » = 3, consider S; and S; for j = = + 1,ldots,2h — 1.)

An alternative proof is based upon the observation that the (C1)*-packing considered

above would induce a partition of the set {1,... ,h} into = subsets S; of cardinality m
having the property that their intersection is of cardinality k. It is quite easy to see that
there is no such partition. -

4.3 Large forests: h = 2

If h = 2, then because h is a divisor of n, n has to be even and of the form n = 2m (for

an m > 0). Estimate (2) says, that in this case a maximal packing is of cardinality less

or equal than % =n — 1. In fact there holds:

Theorem 4 If n is even then there exists a (C1)*-packing A, 2 in K, of cardinality
n— 1.

Proof: Let n = 2m. We consider two cases.

Case 1. m is odd, hence of the form m = 2k + 1:

2 4 ... 21 .. 2m
Let Ay := {[z1, 22, [z3, T4, .- ,[Tn-1,2s]} and o1 := 46 9% 4 2 9 |
further A2 = {[xla .’L’n]}U{[.’L’Q, xn—?]a [$37 "En—l]’ [$4a :L'n—4]7 [$5a -Tn—3]7 ey ["Ema :L.m—|—2]} and
(12 ... i .. n-1mn
2=\3 4 ... i+2 ... 1 2
Then

Ano:={B;:B; =o' A] for 1 <i <2k and B; = o ?*71[Ay] for 2k < i < n}

is a (C1)-packing of cardinality n — 1.



Case 2. m is even, hence of the form m = 2k. Here we give the proof by induction on
k. Let P := {z; : i is odd} and Q := {z; : 7 is even}. By induction there are packings
.Agk,2 ={AF:1<i<m} and .Agk g = {AZQ :m <1 <n—1} in P (respectively Q)) both
of cardinality m — 1.

Then with A := {[z1, z2], [£3, Z4], .- , [Tn_1,2,]} and 0 := (
define

Agm,g:z{Bi:Bizai[A]f0r0§i<mandBi:AzPUAZQform§i<n—1}

2 4 ... 2 .. 2k
4 6 ... 29+2 ... 2

which is a (C1)-packing of cardinality n — 1.

In both cases, the packing is trivially (C1)* since every pair of vertices is exactly once
in the same connected component of a forest. -

Remark 5: In fact we proved that if n is even, then K, has a 1-factorization (cf. [4]
Theorem 9.1).

4.4 Balanced forests: h2 =n

For h? = n the estimate (2) says, that a maximal packing is of cardinality less or equal
than (hgl).

Lemma If h is odd and n = h?, then there is a (C1)-packing Ap.p in Ky, of cardinality
-1

Proof: Use the Remark 4 to construct in K, "T_l many pairwise edge disjoint cycles of

length n. By canceling suitable edges in each cycle, we get a set of uniform edge disjoint

forests of height h, thus a (C1)-packing of cardinality ”T_l =

Note that the difference between "+ (the upper bound for the cardinality of a (C1)-
packing which is given by estimate (2)) and 25 is only 2%, hence a (C1)-packing in K,
of cardinality ”Tfl looks almost optimal. However the next Theorem shows, that there
are always (C1)-packings, such that estimate (2) is sharp and that in some cases we can

even find a (C1)*-packing of density 1.

Theorem 5 For any h > 1 there exists a (C1)-packing App in Ky, of cardinality (h—;l)

and hence of density 1. Moreover, if h is of the form h = p™ (where p is a prime number
and m € N), there exists a (C1)*-packing Ay, j, in K,, of the same cardinality and density.

Proof: The first part of the theorem, namely that there exist (C1)-packings A, p in
K, of cardinality of density 1 follows quite easily from the results of [5], [6] and [2] (see



also the interpretation of the packing as solution of the well-known “handcuffed prisoner
problem”). Nevertheless, the packings constructed in the cited papers are not (C1)* as
one easily checks (two prisoners may walk quite often in the same row whereas others
only once). So, we have to show that for h being a power of a prime, a (C1)*-packing
(and hence a particularly regular solution of the problem) of density 1 exists.

For even h we can give a shorter construction of a (C1)-packing than in the mentioned
papers, so let us start with

Case 1. h is an even number, hence of the form h = 2k.

First we take the (C2)-packing A, , of cardinality %2 constructed in the proof of Theo-
rem 2. Now if we cancel in each linear tree all edges of cyclic length 0 (mod h), we get
a (C2)-packing A,, , of the same cardinality.

The canceled edges form h disjoint complete graphs {Kﬁ}lgigh- Again by Theorem 2
we find a (C2)-packing A’;L,h of cardinality k in each such graph. Choosing one linear
tree (of length h) in each Az,h we get a uniform forest of height h and size h. We repeat

h+1) .

this procedure k times and end up with the k missing uniform forests: ’12—2 + k= ( 9

Case 2. h is of the form h = p™, where p is a prime number and m € N. We will give
the proof of this case in three steps.

1% step: We identify the vertices of K, with the points (4, ), 4, j € F, of the plane of the
coordinate geometry over a Galois field F' with h = p™ elements (as a general reference
for finite geometry see [8]). In this plane we are given h + 1 bundles of parallels, each
bundle consisting of h nonintersecting straight lines. One bundle is consisting of the
lines loo; = {(%,7) }jeF, the other bundles are ly; = {(j,sj + %) }jer (where s € F'). Each
bundle of parallels may be considered as a partition of V,,, the vertices of K,,.

2nd step: It is easy to see that for any two partitions P, = {v,i :1 <k < h} and
P, = {v? : 1 < k < h} constructed in step 1 there is a (h x h)-matrix A = a;; such that
{aij i =k} = ’U,% and {a;; : j =k} = v,%. With the h + 1 partitions constructed in step
1 we obtain in this way 28 many (h x h)-matrices.

374 step: Now we take a matrix A = a;; constructed in step 2 and show that it yields

a packing in K, of cardinality h. Combining the h packings given by each of the &+l

2
matrices we obtain a packing in K, of cardinality M = (hgl).

(a) First consider the h linear trees [a; i, @it1,i; @it1,i—1, Bit2,i—1, - - - Ny ;,_h=1], where
2 2

all indices are taken modulo h and ¢ = 1,... , h. Those trees form a uniform forest F' in

K, of height h and size h.

(b) According to Theorem 2 it is—after a suitable rearrangement of the vertices—possible

to construct % linear trees of length h in each row or column such that all these trees
are pairwise edge-disjoint and also edge-disjoint with each linear tree belonging to the
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forest F'. Therefore we get % uniform forests of height h and size h coming from

the rows of A and the same number coming from the columns. Altogether we obtain
1+ % + % = h uniform forests of height h and size h which are by construction
edge-disjoint.

Thus we get a (C1)-packing A, in K, of cardinality 22 — (+1) " which is by
construction even a (C1)*-packing. =

Example: To illustrate the construction above we consider the case h = 3.

15t step: Figure 7 shows the coordinateplane F x F for the finite field F = F3 = {0,1,2}
and the bundles of parallels. We identify z; =1 = (0,2), o = 2 = (1, 2) etc.

Figure 7

274 step: The partitions given by the bundles of parallels of step 1 give rise to the
following 2 matrices having the property that each bundle occurs in exactly one of the
matrices either in the rows or in the columns:

3 5 7
and 8 1 6

4 9 2
The first matrix is built of [ and [, the second of I; and I3 (other choices are also
possible).

37 step: By each of the two matrices of step 2 we construct packings in Ky of cardinality
3. The combination gives the packing of cardinality 6.

(a) By the construction given in the proof we first get the two uniform forests {[1, 4, 6],
[5,8,7], 9,3,2]} and {[3,8,6], [1,9,4], [2,7,5]}.

11



(b) At least we get the four uniform forests {[2, 1, 3], [4,5,6], [7,9,8]}, {[1,7,4], [5,2,8],
[3,6,9]}, {[5,3,7], [8,1,6], [4,2,9]} and {[3,4,8], [1,5,9], [7,6,2]} where the first two
come from the first matrix and the last two from the second matrix.

Remark 6: P. Hell and A. Rosa have shown in [5] that a (C1)-packing A2 of K2
with density o) = 1 always exists. The difference between our solution and the solution
given in [5] for h = p™ (where p is a prime number) is, that our solution is homogeneous,
i.e. if we take two arbitrary distinct vertices of K2, then they appear in the same tree
exactly ’% or E2EL times if p is odd and 1; times if p = 2. The solution given in [5]
is far away from being (C1)*. In the language of graph design we may summarize the

results as follows.

Summary: If n = h?, then there exists a resolvable balanced path design of type
(n,h,1). Furthermore, if h = 2*, then we can choose this resolvable balanced path design
such that it is at the same time a balanced incomplete block design (the blocks being
the vertices of the trees) with every pair of vertices occurring 2! times in a block. If
h = p™, p an odd prime number, then for diophantic reasons, there is no m such that
every pair of vertices occurs exactly m times in the same tree. Therefore, in this case,
the (C1)*-packing we constructed is the most balanced solution one can think of.

We close with the following question.

Does a (C1)*-packing of K3 by Bsg g with density oy = 1 exist?
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