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1. Introduction and Notations

In this article we consider powers and polynomials in the ring Zm, where m 2 IIN
is arbitrary, and ask for \reduction formulas". For example, for addition, multipli-
cation and exponentiation, we have the following well known reduction formulas:

a+ b � mod(a;m) + mod(b;m) mod m(1)

a � b � mod(a;m) �mod(b;m) mod m(2)

ab � mod(a;m)b mod m(3)

It is much more di�cult to �nd reduction formulas which allow to reduce the
exponent. Of course in general

ab 6� amod(b;m) mod m:(4)

In the second section we will investigate for which numbers m the reduction for-
mula (4) holds.

In the third and the two following sections we will consider generalizations of Fer-
mat's little theorem and Euler's Theorem which allow to replace (in Zm) certain
powers ab by a polynomial f(a) of degree deg(f) which is strictly less than b. Such
formulas can be useful for di�erent reasons: From an algorithmic point of view, it is
cheaper to compute the polynomial f(a) modulo m than the full power ab modulo
m. On the other hand one may wish for algebraic reasons to replace an arbitrary
polynomial g(a) by a polynomial of �xed (lower) degree (depending only on m but
not on g) which is, as a function in Zm, identical to g (see Section 6).

In the last section, we address the question of the minimal degree e(m) such that
every polynomial in Zm can be written as a polynomial of degree q < e(m). We
give a complete answer to this question by determining minimal (normed) null-
polynomials modulo m.

Throughout this paper, we use the customary shorthand notation a j b for a; b 2 Z
with b

a 2 Z. We write

a � b mod m

for numbers a; b 2 Z; m 2 IIN, if m j a � b and we adopt the notation (a; b) for
the greatest common divisor of a and b. Furthermore we denote by mod(a;m) the
uniquely determined number r 2 f0; 1; : : : ;m� 1g such that a = km+ r for some
k 2 Z and Mod(a; b) denotes the number r 2 f1; : : : ;mg such that a = km+ r for
some k 2 Z.
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We had been working on the present article for about two years, when the mournful
message of Hans L�auchli's death reached us. At that time, only the �rst part
(Section 2), which comprises a theorem resulting from joint work of Hans L�auchli
and Ernst Specker on exponential rings, and the second part (Sections 3{5) had
been �nished. The third part about minimal polynomials was not yet concluded,
and we would like to thank Prof. Ernst Specker for inspiring and helpful discussions
and for valuable suggestions concerning that last section.

2. Special values of m

In this section we investigate for which values of m the reduction formula (4) holds.
The answer is contained in the following theorem.

Theorem 1. Let G := f1; 2; 6; 42; 1806g, then the following statements are equiv-
alent:

(a) m 2 G.
(b) For all integers a; b there holds

ab � aMod(b;m) mod m:

(c) For all integers a there holds

am+1 � a mod m:

Remark: The equivalence of (b) and (c) is obvious: (c) follows from (b) by choosing
b = m+1. The opposite implication follows from (2) by an easy induction argument.
However, notice that in (b) we cannot replace \Mod" by \mod" in the exponent.
To make this point more precise we state without proof:

Theorem 2. Let m 2 G, then there holds am � 1 mod m (and hence (b) holds
with Mod replaced by mod) if and only if no prime factor of mod(a;m) belongs to
the set G+ 1 = f2; 3; 7; 43; 1807g.

The proof of the equivalence of (a) and (c) relies on an induction principle, which
we prove after the following lemma.

Lemma 1. Let E1 := 2 and En+1 := q+E1E2 � � �En for a �xed, odd q > 0. If A :=
E1 � � �Ek such that Ei is prime for i � k and x j A, then x + q 2 fE1; : : : ; Ek+1g
or x+ qs is not prime for an s with 1 � s < k.

Proof: If x = A, then x + q = Ek+1 and we are done. If x 6= A, then let l be
the smallest number such that El - x. If l = 1, then x + q1 is even, therefore
x + q = 2 2 fE1g or x + q is not prime. Hence, the claim is proved for l = 1 and
only the case l > 1 remains to be checked: Since E1; : : : ; El are prime, we have
E1 � � �El�1 j x. Notice that E1 � � �El�1 � �q mod El (for l > 1) and that Ej � q
mod El for j > l (by de�nition). Therefore we conclude x � �qs mod El, where s
is smaller than the number of prime factors of x, hence s < k. Therefore El j x+qs

and the proof is �nished. 2
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We will use the special case q = 1 in the proof of the following

Theorem 3 (Induction Principle). Let H � IIN be a set of natural numbers with
the following properties:

(i) 1 2 H,
(ii) if h 2 H and h+ 1 is prime, it follows that h(h+ 1) 2 H,
(iii) if p2 j x for p > 1, then x =2 H,
(iv) if h = Apa 2 H, p prime, such that all divisors of a are greater than p, then

p� 1 j A.

Then H = G.

Proof: By (i) and (ii), G � H . For the opposite inclusion we claim that 2 � h 2 H
implies h = E1 � El with l � 4: In fact, by (iii), we know that h = p1p2 � � � pn with
p1 < p2 < : : : < pn being prime numbers. Now we use (iv) with A = 1, p = p1
and a = r

p . Because p1 � 1 j 1 (by (iv)), we have p1 = 2 = E1. Now, by induction,

we assume that pj = Ej for all j � k � l. Applying (iv) again, this time with
A = E1E2 � � �Ek, p = pk+1 and a = r

Ap , we have pk+1 � 1 j A. Thus, by Lemma 1,

pk+1 2 fE1; : : : ; Ek+1g and since pk+1 > pj for j � k, we conclude pk+1 = Ek+1.
2

Proof of Theorem 1: Now, we use the induction principle to prove Theorem 1.
We have to check properties (i){(iv) for the set L of numbers h which satisfy (c):

(i) is trivial.

(ii) follows easily from Fermat's little theorem (see Section 3).

(iii): Let h = p1 � � � pn 2 L, pk prime. By (c), we know that ph+1k � pk mod h.

Thus, h j pk(p
h
k � 1) and hence we have phk � 1 mod r

pk
. For i 6= k it follows that

phk � 1 mod pi and therefore pi 6= pk.

(iv): By (c) we have for h = Apa 2 L that ch+1 � c mod h for all c . Thus
h j c(ch � 1) and

ch = (cAa)p � 1 mod p:(5)

Now, let c be such that (c; p) = 1, then (by Fermat's little theorem)

(cAa)p�1 � 1 mod p:(6)

Combination of (5) and (6) yields cAa � 1 mod p. Since p is prime and (c; p) = 1,
it follows that p� 1 j Aa and by de�nition of a we get p� 1 j A, which completes
the proof of Theorem 1. 2
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3. Generalization of Fermat's little theorem

Let us start with a de�nition. Let p1; : : : ; pk be distinct prime numbers and m =
p"11 � � � p"kk with "i 2 IIN be the factorization of a number m 2 IIN. Then we de�ne
the function 'm for integer numbers n by

'm(n) = nm �
X
i

n
m
pi +

X
i1<i2

n
m

pi1
pi2 � � � �+ (�1)kn

m
p1���pk

=
X

j2Mf1;::: ;kg

(�1)jjjn
m
pj :

Here,MA denotes the set of all ordered subsets of a set A and j = (j1; : : : ; ji) 2MA

is a multi-index with length jjj = i and with pj := pj1 � � � pji . It is convenient to
extend the de�nition of 'm by '1(n) := n.

Theorem 4. The function 'm(n) has the property

'm(n) � 0 mod m(7)

for all numbers n 2 IIN.

Remarks: (i) If n is a prime number, then (7) follows from Gauss' observation that
the number of irreducible polynomials of degree m over Zn is given by 'm(n)=m
(see [2]). Later Serret [8], Lucas [6] and Pellet [7] stated without proof that (7)
holds true for arbitrary integer n. Later on, several proofs have been given for (7):
S. Kantor presented in [3] and [4] geometric proofs and Weyr [9] used an involved
inductive method.

(ii) Theorem 4 allows now to determine mod(nm;m) by replacing the full power nm

by a polynomial in n of degree strictly less than m, which at least partially answers
the question posed in the introduction.

Here, we show that (7) follows very easily from a combinatorial fact. To demon-
strate the idea we consider the case of a prime number m = p. Consider the
set f(n1; : : : ; np) : ni 2 f1; : : : ; ngg of points in the discrete p-dimensional cube
Q = f1; : : : ; ngp. Let d be the diagonal of Q through the edges (0; : : : ; 0) and
(p; : : : ; p). The rotations with axes d which map Q to Q build the cyclic group Cp.
The action of Cp on a point (n1; : : : ; np) is generated by � = �p : (n1; : : : ; np) 7!
(n2; n3; : : : ; np; n1). According to Burnside's Lemma the total number of orbits in
Q generated by Cp is given by

number of orbits =
1

jCpj

X
g2Cp

�g(8)

where �g is the number of �x-points of Q under g 2 Cp. Since ��i = n for
i = 1; : : : ; p � 1 and ��p = �id = np (and of course jCpj = p) it follows from (8)
that np + (p� 1)n � 0 mod p and hence

np � n � 0 mod p;

which is Fermat's little theorem.
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For general m we proceed very similar, but instead of using Burnside's Lemma we
count directly the orbits of given length.

Proof of Theorem 4: Let Q and Cm be as above but now with general m =
p"11 � � � p"kk . We claim that there exist 1

m'm(n) orbits of length m and hence the
theorem follows. To prove this claim we proceed by induction on m:

1. step: '1(n) = n, hence the assertion is true for m = 1.

2. step: \m0 = p1 � � � pk�1 ! m = p1 � � � pk": Notice, that the number of orbits
generated by Cm in f1; : : : ; ngm of length m

m0 equals the number of orbits generated

by Cm=m0 in f1; : : : ; ngm=m0

of length m
m0 . So, by induction we have that

number of orbits of length
m

pi
=

'm
pi
(n)

m
pi

number of orbits of length
m

pipj
=

' m
pipj

(n)

m
pipj

: : :

Hence,

(9) number of orbits of length m =

=
1

m

�
nm �

X
i

'm
pi
(n)�

X
i<j

' m
pipj

(n)� � � � � 'i(n)
�

=
1

m

�
nm �

X
i2Mf1;::: ;kg

i not empty

X
j2Mf1;::: ;kgni

(�1)jjjn
m

pipj

�

=
1

m
'm(n):

3. step: \m0 = p"11 � � � p"k�1k ! p0 = p"11 � � � p"kk ": analogous to the second step.
2

4. Generalisation of Euler's Theorem

One disadvantage of (7) is that it reduces in Zm only the power m. Here, we
present a formula which reduces yet another power and which is slightly stronger
than Euler's Theorem. Let us recall the de�nition of Euler's ' function: For any
integer n, '(n) denotes the number of integers k 2 f1; : : : ; n�1gwhich are relatively
prime to n, i.e.

'(n) := jfk 2 f1; : : : ; n� 1g : (n; k) = 1gj:

Furthermore, let #(n) denote the highest power contained in n, i.e.

#(n) := maxfk : mk j n; m 2 IIN; m > 1g:

Theorem 5. There holds
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(a) n#(q)(n'(q) � 1) � 0 mod q for all integers n.
(b) #(q) + '(q) � q for all q with equality if and only if q is prime.

Proof: (a) Let q = q"11 � � � q"kk be the prime factorization of q. If (n; qi) = 1 it follows

from Euler's Theorem (which asserts that n'(q) � 1 mod q provided (n; q) = 1)

that q"ii j n'(q
"i
i
) � 1. Hence, since ' is multiplicative, i.e. '(ab) = '(a)'(b) for

(a; b) = 1,

q"ii j n'(q) � 1 if (n; qi) = 1.(10)

Furthermore we have q"i�1i j q and hence q"i�1i j q � '(q) > 0. On the other hand,
it is clear that (n; qi) > 1 implies qi j n. Hence we have

q"ii j n#(q) if (n; qi) > 1.(11)

Now, combining the two cases (10) and (11) the assertion follows.

(b) 1. step: If q is prime then obviously #(q) + '(q) = 1 + (q � 1) = q.

2. step: We have to show that #(q) + '(q) < q if q is not prime. If q = pn for a
prime number p and n � 2, the assertion is equivalent to n+ (p� 1)n < pn, which
is easily established by induction on n � 2. If q = pnq0 with p prime, q0 > 1 and
n = #(q) � 1, then

#(q) + '(q) = n+ (p� 1)n'(q0)

� n+ (p� 1)n(q0 � 1)

and hence the assertion follows from the fact n + (p � 1)n(q0 � 1) < pnq0 which is
easily proved by induction on n. 2

Remarks: (i) Of course, Euler's Theorem follows from Theorem 5(a).

(ii) It is clear from the proof, that the exponent #(q) in (a) is optimal, i.e. it cannot
be replaced by a smaller integer.

(iii) Theorem 5 allows to replace n#(q)+'(q) in Zq by a polynomial in n of degree
strictly less than #(q) + '(q).

5. Another application of Burnside's Lemma

In this section, we consider a variant of the arguments of Section 3. There, we
considered the cyclic group Cm, i.e. the group with one generating element of
order m. Notice that the set of points of the cube Q = f1; : : : ; ngm (on which Cm

acts) may as well be considered as the set of colorings with n colors of the Cayley
graph of Cm generated by the generating element. (The Cayley graph G[A] of a
group G generated by a subset A = fa1; : : : ; akg � G has the elements fg1; : : : ; glg
of G as its vertex set and edges between gi and gj i� there exists an 2 A with
gi � an = gj .) By applying Burnside's Lemma to this situation, we obtained (7).
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A natural variant of this idea would be to look at the group G = Cp1 �� � ��Cpk of
k generating elements a1; : : : ; ak of orders p1; : : : ; pk, acting on the Cayley graph
G[a1; : : : ; ak] over the generating elements and colored with n colors. In fact, if
the pi are chosen to be prime (but not necessarily di�erent), we recover (7) by
applying Burnside's Lemma. But we do in fact obtain a new congruence if we
look at a \reduced Cayley graph" instead. More precisely we consider the graph
Cp1 [p1] � � � � � Cpk [pk] colored with n colors, and g"11 � � � g"kk 2 G acting on it by
application of gi on Cpi [pi]. Counting orbits in a similar way as in Section 3 we
�nd

Theorem 6. If m = p1 � � � pk (pi prime, but not necessarily distinct), then there
holds for all integers n X

j2Mf1;::: ;kg

(�n)jjjns(m)�s(pj) � 0 mod m

where we used the multi-index notation of Section 3 and s(m) := p1 + � � � + pk
denotes the sum of the primes in m (with multiplicity).

Remarks: (i) Theorem 6 now allows to reduce ns(m) by a polynomial of lower
degree in Zm.

(ii) If one does not insist on pi being prime, one ends up with a polynomial of
degree p1 + � � �+ pk � s(m) which vanishes in Zm.

6. Minimal null-polynomials

6.1. Normed null-polynomials. Usually one de�nes two polynomials f and g
to be congruent modulo m, written f � g mod m, if corresponding coe�cients are
congruent integers modulo m. This equivalence relation provides a nice structure
in particular if m is chosen to be prime. On the other hand we will say that two
polynomials (or, more general, two functions) f and g are graph-congruent modulo
m, written f � g graphmod p, if they have the same graph as functions from Zm

to Zm, i.e. if f(n) � g(n) mod m for all integers n. Of course, two congruent
polynomials are graph-congruent, but the converse implication does not hold in
general, e.g. x2 � x graphmod2, but x2 and x are not congruent modulo 2.
We say f is a normed null-polynomial modulo m, if f is graph-congruent to the
polynomial 0 and if f is normed (i.e. the leading coe�cient equals 1). Of course,
for all m there exist normed null-polynomials, e.g. f(x) = (x�1)(x�2) � � � (x�m),
and hence it makes sense to look for minimal normed null-polynomials modulo m,
i.e. normed null-polynomials of minimal degree e(m). It is easy to see, that if m = p
is prime, the polynomial

xp � x � (x� 1) � � � (x� p) mod p

is (up to congruence) the unique minimal normed null-polynomial, and hence e(p) =
p for p prime. Minimal normed null-polynomials are useful since they allow to
replace arbitrary polynomials by graph-congruent polynomials of degree less than
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or equal to e(m) � 1 modulo m. To �nd a minimal normed null-polynomial on a
computer by just checking polynomial after polynomial, would be extremely time
consuming. On the other hand from Theorem 5 and 6 we infer, that

e(q) � minfq; s(q); #(q) + '(q)g:

Example: Let m = 35 and f(n) =
P35

i=0 n
i. Find a polynomial g of lower degree

which is as a function in Zm identical to f .

Theorem 4 provides a normed null-polynomial of degree 35, which would allow to
�nd a polynomial g of degree 34. Theorem 5 gives a normed null-polynomial of
degree #(m) + '(m) = 25 which is better, but Theorem 6 gives a polynomial of
even lower degree, namely s(m) = 12, in fact

n12 � n(n5 + n7 � n) graphmod35:

Replacing in f successively all powers n12 by n(n5 + n7 � n) one �nds

35X
i=0

ni � 1 + n� 15(n2 + n3)� 13(n4 + n5) +

5(n6 + n7) + 21(n8 + n9) + 19(n10 + n11) graphmod35:

We include the following list, which decides for which m Theorem 5 or Theorem 6
yields a normed null-polynomial of lower degree:

(1) #(q) + '(q) = s(q) if and only if q is prime or q 2 f4; 18g
(2) #(q) + '(q) < s(q) if q = 2p, p prime, or q 2 f12; 30g
(3) for all other q there holds #(q) + '(q) > s(q)

Since for m = 18 both theorems give a polynomial of degree 8, we can look at the
di�erence which is the (normed) null-polynomial n7+2n6�2n5�n4+n3�n2. But
still, it is not minimal. In fact n6 + n4 � 2n2 is a minimal normed null-polynomial
modulo 18, i.e. e(18) = 6. The following theorem gives the general answer to the
problem:

Theorem 7. The polynomial g(x) =
Q

s(m)
i=1 (x + i) is a minimal normed null-

polynomial in Zm and hence e(m) = s(m). Here, s(m) denotes the Smarandache
function s(m) := minfk 2 IIN : m j k!g.

The function s(m) is named after the Rumanian Mathematician Florentin Smaran-
dache, but it has been introduced already in 1918 by Kempner in [5]. It has many
interesting properties and applications in number theory (see e.g. the Smarandache
Function Journal).

Proof: 1. step: g(x) is a normed null-polynomial in Zm: This follows immediately
from the fact that for all x 2 Z

g(x) =

�
x+ s(m)

s(m)

�
s(m)!
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Now, the �rst factor is an integer, and s(m)! � 0 mod m.

2. step: e(m) � s(m): Let us consider the normed polynomial f(x) := a1x+a2x
2+

: : :+ ar�1x
r�1 + xr with ai 2 Z and r > 1. We de�ne

M =

0
BBBBB@

1 1 � � � 1
2 22 � � � 2r�1

3 32 � � � 3r�1

...
...

. . .
...

r � 1 (r � 1)2 � � � (r � 1)r�1

1
CCCCCA

and the vectors

a =

0
BBB@

a1
a2
...

ar�1

1
CCCA ; h =

0
BBB@

f(1)
f(2)
...

f(r � 1)

1
CCCA ; � =

0
BBB@

1r

2r

...
(r � 1)r

1
CCCA :

In this notation, we have

Ma = h� �:

Now, suppose that

f(x) � 0 mod m for all x = 1; 2; : : : ; r � 1,

i.e. h = mq for some q 2 Zr�1. Notice that M is a Vandermonde matrix and that
in particular det(M) 6= 0. Hence, the equation Ma = mq � � determins for any
given right hand side a unique solution a. From Lemma 2 below we infer

f(r) = rr +

r�1X
i=1

air
i

= rr +

r�1X
i=1

(�1)i+r
�
r

i

�
(ir �mqi)

�

rX
i=1

(�1)i+r
�
r

i

�
ir mod m:

Lemma 3 below now gives that f(r) � r! � 0 mod m implies r � s(m). This
completes the proof. 2

Lemma 2. Let M be the Vandermonde matrix (ij)i;j=1;::: ;r�1 as above. Then, for

a 2 IRr�1 and b =Ma there holds

r�1X
i=1

air
i = �

r�1X
i=1

(�1)i+r
�
r

i

�
bi:(12)
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Proof: By linearity, it su�ces to show (12) for ai = �i;j , j = 1; 2; : : : ; r � 1. That
is, we have to show that for 1 � j � r � 1

rj = �

r�1X
i=1

(�1)i+r
�
r

i

�
ij :

This follows also from Lemma 3. 2

Lemma 3. For r 2 IIN0 and j 2 IIN0, there holds

rX
i=0

(�1)r�i
�
r

i

�
ij = r!S2(j; r);

where S2 is the Stirling number of the second kind.

Proof: A proof of this well-known lemma can be found e.g. in [1]. But for the
sake of completeness, we like to give a proof by combinatorial arguments which are
similar to those in the proof of Burnside's Lemma. Moreover, we shall give a special
proof for the case j = r and will consider the general case afterwards in a slightly
di�erent way.

First notice, that from the binomial expansion of (1 + x)r with x = �1, we get

rX
i=0

(�1)r�i
�
r

i

�
= 0r;(�)

which is (for r > 0) obviously equivalent to

r�1X
i=0

(�1)i+1
�

r

r � i

�
= (�1)r:(�)

Let A := fa0; : : : ; ar�1g be an alphabet of r > 0 symbols and let wr(k) denote
the set of words of length r, such that every word in wr(k) consists of exactly k
di�erent letters. Further, let Wr(k) denote the cardinality of wr(k). Obviously we
have Wr(0) =Wr(r + i) = 0 (for i � 1) and Wr(r) = r!. And in general we have

(��)Wr(k) =

�
r

k

�
kr � binomr � k + 11Wr(k � 1)�

�
r � k + 2

2

�
Wr(k� 2)� : : :

: : :�

�
r � 1

k � 1

�
Wr(1)�

�
r

k

�
Wr(0):

To see this, remember that with k di�erent letters we can form kr words for length
r, but of course, not all of them contain k di�erent letters. So, to compute Wr(k),
we have to exclude the words which contain less than k di�erent letters.

Combining (�) and (��) we get

Wr(r) =

�
r

r

�
rr �

�
r

r � 1

�
(r � 1)r +

�
r

r � 2

�
(r � 2)r � : : : (�1)r

�
r

0

�
0r = r! :
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Because S2(n; n) = 1 (for all n 2 IIN0), this proves the Lemma for r = j even in the
case when r = j = 0 (because W0(0) =

�
0
0

�
0! = 0!).

Now we consider the general case. Again, wj(k) denotes the set of all words of
length j, such that every word in wj(k) consists of exactly k di�erent letters. For
an arbitrary word u (of length j) let �u be the set of all letters occurring in u
and j�uj be its cardinality. So, if u 2 wj(k), then j�uj = k. For a set of letters
I � A let vj(I) be the set of all indexed I-words uI of length j, such that �uI � I .
To each indexed word uI there corresponds in a natural way the (non-indexed)
word u. For two di�erent I and I 0 such that jI j = jI 0j we call two indexed I-
words uI and uI0 equivalent (uI � uI0) if the (non-indexed) words are equal. Let
[u]i := fvI : vI � uI0 ^ jI j = jI 0j = ig. Finally let

Vj(i) :=
X
I�A
jIj=i

jvj(I)j :

Evidentially we have Vj(i) =
�
r
i

�
ij . For an arbitrary word u of length j with

�u � I � A with jI j = i we get

j[u]ij =

�
r � j�uj

r � i

�
:

For a word u with �u < r, we have by (�) that
rX

i=j�uj

(�1)r�ij[u]ij = 0 :

Therefore,
Pr�1

i=0 (�1)
r�i
�
r
i

�
ij = 0 = r!S2(j; r). Now, with the alphabet A we can

form r!S2(j; r) words u of length j, such that �u = A, which completes the proof.
2

Remark: As a corollary of the previous lemma, we obtain Wilson's Theorem:
(p � 1)! � �1 mod p if and only if p is prime. To see this, notice �rst that if
p = ab, where a; b both bigger than 1 and (a; b) = 1, then a j (p�1)! and b j (p�1)!,
therefore (p � 1)! � 0 mod p. For p prime, set r = j = p � 1 and use Fermat's
little theorem in the Lemma 3 (for the only even prime number p = 2, notice that
�1 � 1 mod 2).

6.2. General null-polynomials. Except in the case when m is prime, the min-
imal normed null-polynomials are far from unique. For example, given a normed
null-polynomial, one can add a general (not normed) null-polynomial of lower de-
gree. So, let us look now for non-trivial minimal null-polynomials (which need not
be normed). Let ~e(m) denote the degree of a general non-trivial minimal null-
polynomial modulo m. Then there holds:

Theorem 8. ~e(m) equals the smallest prime factor in m.

Proof: Let m = p"11 � � � p"kk with pi prime and p1 � pj for all j > 1.
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1. step: If p1 > 2, then the polynomial

f(x) =
m

p1
x

p1�1

2Y
i=1

(x2 � i2)

is a null-polynomial. For p1 = 2 the polynomial f(x) = m
2 x(1 + x) is a null-

polynomial. Thus we have ~e(m) � p1.

2. step: Let f(x) be a non-trivial null-polynomial in Zm. Without loss of generality,

we may assume that the coe�cients of f do not contain a common divisor p�ii with

�i > "i (otherwise, one can divide f by p�i�"ii which would still be a non-trivial

null-polynomial in Zm, but with the desired property). Let
Qk

i=1 p

i
i be the largest

common divisor (of this form) of the coe�cients of f . In particular, we have that

0 � 
i � "i for all i. Thus, we have f(x) =
Qk

i=1 p

i
i g(x) for a polynomial g(x)

with integer coe�cients and for all x 2 Z there exists an integer hx such that

f(x) = mhx. Hence, we conclude for g(x) that g(x) = hx
Qk

i=1 p
"i�
i
i . This means

that g is a null-polynomial in Zm0 with m0 =
Qk

i=1 p
"i�
i
i > 1. Furthermore, g is

non-trivial in Zm0 since the greatest common divisor of the coe�cients of g does
not contain a factor pi. Now, let j denote the smallest index with the property
that "j � 
j > 0. Then, g is a non-trivial null-polynomial in the �eld Zpj. Since a
non-trivial polynomial has in a �eld at most as many zeros as the degree indicates,
we conclude deg(f) = deg(g) � pj � p1. 2
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