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Abstract

In this article we give a forcing characterization for the Ramsey property of ¥1-sets
of reals. This research was motivated by the well-known forcing characterizations for
Lebesgue measurability and the Baire property of X1-sets of reals. Further we will
show the relationship between higher degrees of forcing absoluteness and the Ramsey
property of projective sets of reals.

1 Notations and Definitions

Most of our set-theoretical notations and notations of forcings are standard and can be
found in [Je 2] or [Ku]. An exception is, that we will write A® for the set of all functions
from B to A, instead of BA because we never use ordinal arithmetic. A<“ is the set of all
partial functions f from w to A, such that the cardinality of dom(f) is finite.

First we will give the definitions of the sets we will consider as the real numbers.

Let [z]" := {y C z : |y| = &} and [z]<" := {y C z : |y| < K}, where |y| denotes the
cardinality of y. For z € [w]¥, we will consider [z]<“ as the set of strictly increasing,
finite sequences in x and [z]“ as the set of strictly increasing, infinite sequences in z. For
z € [w]” and n € w let z(n) be such that z(n) € z and |z(n) Nz| = n.

w

We can consider [w]“ also as a set of infinite 0-1-sequences

w]Y — 2¢
x +— fsuchthat f(n)=1 iff n€ux,

or as the infinite sequences in w
W] — ¥
x > (a,:n € w) such that: ay:= z(0) and

apy1 = xz(n+1) —z(n) — L.

Note that these two mappings are bijective.
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The Baire space

The Baire space is the space w” of all infinite sequences of natural numbers, (a, : n € w),
with the following topology: For every finite sequence s = {(a;, : k < n), let

Usi={few :sCf}={(cr: k €w):Vk <n(c, =ay)}

The sets U, (s € w<¥) form a basis for the topology of w”. Note that each U; is also
closed. The Baire space is homeomorphic to the space of all irrational numbers in [0, 1]
with the topology of the real line (cf. [Je 2] p. 36).

Because the mapping given above between [w]* and w* is bijective, we can endow [w]”
with the induced topology and will not distinguish between the two spaces [w]“ and w*.
The same holds for the sets [w]* and 2¢.

Three properties of sets of reals

Let us work in the topological space [w].

A set R C [w]“ is rare (or nowhere dense) if the complement of R contains a dense open
set and a set M C [w]” is meager (or of first category) if M is the union of countably many
rare sets. A nonmeager set is also called a set of second category. A set A C [w]“ has
the Baire property if there exists an open set G C [w]* such that the symmetric difference
AAG = (A\ G)U (G \ A) is meager.

A set N C [w]” is null if N considered as a set of reals has Lebesgue measure zero. A
set A C [w]¥ is Lebesgue measurable if there is a Borel set B such that the symmetric
difference AAB is null.

A set A C [w]” has the Ramsey property (or is Ramsey) if 3z € [w]“([z]* C AV[z]*NA = 0).
If there exists an 2 such that [2]* N A = () we call A a Ramsey, set and if [z]* C A we call
A a co-Ramsey, set. Note that A can also be both. A set A C [w]“ is called uniformly
Ramsey, if, for each z € [w]“ there is a y € [z] such that [y]* N A = 0.

The hierarchy of projective sets

We always consider the boldface X} hierarchy (see [Je 2] p.510). A X1-set is the projection
of a closed set. The Y}-sets are also called analytic sets. The II;-sets are the complements
of the analytic sets. A X, -set is the projection of a IT}-set and the II}, ,-sets are the
complements of the ¥ -sets. A set is A} if it is ¥, and II),. For the normal form of the
formulas representing projective sets and relations cf. [Je 2] Section 40. Further we will

consider a X!-relation without free variables as a X! -sentence.

If all ! -sets with parameters in V N W are Ramsey, (are Lebesgue measurable, have the
Baire property, respectively), with respect to V, we will write V = 3L (R)w (V | 2L (L)w,
V E ZL(B)yw, respectively). If V=W, then we do not write the index W. The notations
AL (R)w, AL(L)w, AL(B)w, IL(R)w, II.(L)w and II.(B)w are similar. Note that
because of the three properties are closed under complements, the statements X! (R),
Y1 (L) and X (B) are equivalent to I} (R), II.(£) and II},(B), respectively.

Filters and Families on w

F C [w]¥ is a Ramsey family if for all = € 2“1 there is an h € F such that | ipp2 is
constant.

F C [w]¥ is a dominating family if for all x € [w]” there is a d € F and a natural number
n € w such that for all k£ > n: d(k) > z(k).



F C [w]“ is dominated by the real d if for all f € F there is a natural number n € w such
that for all & > n: d(k) > f(k). (In this case we call d a dominating real with respect to
F).

F C [w]=¥ is a filter (on w) if w € F and for all z,y € [w]s*: if z,y € F then z Ny € F
and ifx € F, x Cy then y € F.

A filter F is proper if () ¢ F.

A filter F is an ultrafilter if it is proper and for every z € [w]=¥, either z € F or w\z € F.
The filter F = {z € [w] : |w \ | < w} is called the Fréchet filter.

A Ramsey ultrafilter is a Ramsey family which is also an ultrafilter. We consider only
filters which are proper and contain the Fréchet filter.

Some notions of forcing

We recall the definition of the following seven notions of forcing.

(i) The Amoeba (measure) forcing A:

p € A & pC2¥is a perfect tree A p(p) > %,
P<qgspiq

(ii) The Random forcing B:

p € B < p C2¥is a perfect tree A u(p) > 0,
P<qgepCq

(iii) The Cohen forcing C:

peC&pe2<v,
p < q< pextends q.

(iv) The Hechler forcing D:

n,flreDenew A f EwY,
(n, f) <(m,g) & n=m A fln=gln N VE(f(k) > g(k)).

(v) The Mathias forcing M:

(5,8 eM & s€[w™ A SEw” A max(range(s))<min(S),
(s,8) < (t,T) & sextendst A SCT A Vi€ dom(s)\ dom(t)(s(i) €T).

(vi) The forcing notion P(D) for an ultrafilter D:

ps € P(D) & p, C [w]™” is a tree and there is an s € p, such that
Vieps((sCtVtCs)A(sCt—{n:t"n€p} e D)),

Ps S gt < Ds g qt-
(vii) The forcing notion Pp for an ultrafilter D:

(s,a) EPp e s€w]™ A ac€lw” A a€D A max(range(s))<min(a),
(s,a) < (t,b) & sextendst A a Cb A Vie (dom(s)\ dom(¢))(s(i) €b).

In the forcing notions (v),(vi) and (vii) we call s the stem of the condition (s,S), p,
and (s,a), respectively. A generic object over one of these seven forcing notions can be
considered as a generic real and we will handle the generic reals like the corresponding



generic objects. For example if Gy is Mathias generic and p € G (for a Mathias condition
p), then we write p € m (for mn Mathias generic real) and if p has empty stem (p = (0, S)),
we also write m C p. Note that the conditions of these seven forcing notions can also be
considered as reals, (and the meaning of r; < r, is clear). Let p, g are Mathias conditions,
then we write p <% ¢ to say that p and ¢ have the same stem and p < q.

Names in the forcing language are denoted with a “~” over the letter. Canonical names

for generic objects are usually denoted by boldface letters and canonical names for objects

in the ground model we denote with a “.” over the letter.

Forcing-absoluteness
Let P be a notion of forcing. We define
VP E® <=V | “lI-p®”

where @ is a formula with parameters in V' and 1 is the weakest condition of P.
Now we say V is 3. -P-absolute if for all 3! -sentences ¢ with parameters in V,

VP iff Ve
Or equivalently, if for all P-generic objects G'p over V:

ViGel = iff V I=o.

2 Introduction

In this section we give a list of results. Some of them are well-known, others gave the
motivation to this work.

Characterizations with generic reals

Because the canonical well-ordering of constructible reals is A} (cf. [Je 2] Theorem 97),
Godel’s constructible universe L is neither a model for A}(B) nor A}(L) nor A}(R). Hence,
a model V of set theory in which one of these properties holds, has to be larger than L.
In fact, V has to contain even some reals which are generic over L.

THEOREM 2.1 (i) V = AL(B) if and only if for all reals r € V the set of reals in V
which are Cohen over L[r] is not empty.

(i) V = AL(L) if and only if for all reals v € V' the set of reals in V which are random
over L[r] is not empty.

(iii) V = AY(R) if and only if for all reals r € V' the set of reals in V which are Ramsey
over L[r] is not empty.

PROOF: All three results were proved in [JS 1]. n
A similar characterization we also have for X3-sets.

THEOREM 2.2 (1) V | X1(B) if and only if for all reals r € V' the set of reals in V' which

are Cohen over L[r] is co-meager.

(i) V |= 33(L) if and only if for all reals r € V the set of reals in V which are random
over L[r] has measure 1.

(iii) V = 33(R) if and only if for all reals r € V the set of reals in V which are Ramsey
over L[r] is co-Ramseys,.

PROOF: A proof can be found in [BJ]. For the third result see also [JS 1]. n



Characterizations with forcing absoluteness
For the X}-sets we also find a characterization with forcing absoluteness.

THEOREM 2.3 (i) V |= X3(B) if and only if V is ¥3-Hechler-absolute.
(i) V |E X5(L) if and only if V is ¥i-Amoeba-absolute.
(iii) V = X3(R) if and only if V is X3-Mathias-absolute.

PROOF: The first two results were proved in [Ju 1] and [Ju 2]. A proof of the last one
will be given in this work, Theorem 4.1. —

For higher levels in the projective hierarchy, we lose the forcing characterization with
Mathias forcing for the Ramsey property. We will show in Theorem 5.3 that

¥ -Mathias-absoluteness = Y3(R)

but (Theorem 5.2)
AL(R) =~ X)-Mathias-absoluteness.

The reason for this is, that if V' is ¥1-Mathias-absolute, then w) is inaccessible in L. On
the other hand we can build a model in which A}(R) holds without using inaccessible
cardinals.

We will show further (Corollary 6.1) that

Yi-Mathias-absoluteness = A}(R),
and moreover (Corollary 6.5)

Yg-Mathias-absoluteness = Al(R).

3 The Ramsey Property and Mathias Forcing

Basic facts about the Ramsey property

FACT 3.1 If A C [w]” is Ramsey and C C [w]|“ is uniformly Ramsey, (e.g. countable),
then both, AU C and A\ C are Ramsey.

PROOF: To see that AU C is Ramsey, first note that if there is an z € [w]* such that
[z]* C A, we are done. Otherwise, pick z such that [z]* N A = () and pick y € [2]“ such
that [y]* NC = 0. Now [y]* N (AUC) = 0.

To see that A\ C is Ramsey, again note that if there is an x such that [z]*NA = (), we are
done. Otherwise, pick z such that [z]* C A. Now there is a y € [z]* such that [y]*NC =0
and [y C (4\ O). 5

FACT 3.2 The axiom of choice implies that there are sets without the Ramsey property.
PROOF: Define on [w]“ an equivalence-relation as follows:

z~y ff |rAy]|is finite.
Now choose from each equivalence class ™~ an element c,. Further define:

() = 1 if |xAc,| is odd,
)= 0 otherwise.



Then the set {z : f(z) = 1} is evidently not Ramsey.

The first example of a set which does not have the Ramsey property is given in [ER]. A
lot of other examples can be found in [Bn] and [Co].

FACT 3.3 Analytic sets (these are the X1-sets) are Ramsey.

PROOF: A proof can be found in [El] and [Si]. 4

The forcing notions P(D), Pp and M

(Compare also with [Mal).

Let J = [w]<“ be the ideal of finite sets and let (P(w)/J,< ) =: U be the partial order
defined as follows:
pelU & pelw,

p<q © p\geJ (thisispC*q).
FACT 3.4 Let D be U-generic over V, then D is a Ramsey ultrafilter in V[D].

PROOF: First note that U is Ny-closed, hence adds no new reals to V, (cf.[Je 2] Lemma
19.6). Let w € 21“I’_ then by the Ramsey Theorem (cf.[Je 2] Lemma 29.1) for each p € [w]*
there exists a ¢ C* p such that 7 is constant on [g]?>. Therefore H, := {q € [w]* :
7|12 is constant} is dense in U, hence H, N D # (). 4

LEMMA 3.5 Let D be the canonical U-name for the U-generic object, then

U *PD ~M.
PROOF:

UxPp = {({p,(5,a)):p€UApl-y(sa) € Pp}
= {(p,(§,a)) :p € [w]* Apty(a € D A max(range(5)) < min(a))}.

Now the embedding
h: M — UxPp
(s,a) — (a,(3,0))

is a dense embedding (see [Go] Definition 0.8):

1. Tt is easy to see, that h preserves the order relation <.

2. Let (p,(5,a)) € UxPp. Because U is Ry-closed, there is a condition ¢ < p and s €
[w]<¥, a € [w]* such that gl-y3§ =§ A a = a. It is obvious that (g, (5,a)) € UxPp
is stronger than (p, (3,a)). Now let b := g Na, then h((s,b)) < (p,(§,a)). -

LEMMA 3.6 Pp = P(D) if and only if D is a Ramsey ultrafilter.
PROOF: See [JS 1] Theorem 1.20. -

LEMMA 3.7 The Mathias forcing M is flexible.



PROOF AND DEFINITION: For the notation see [Je 2] p. 153 and [Ku] p.224.

A set T C w<¥ is called a Laver-tree if
Tisatreeand 3Ir € TVo € T(c CT7V (1 Co A {n:0 neT} =w)).

(We call 7 the stem of T'. For o € T we let succr (o) := {n: 07 n € T}, (the successors of
cinT)and T,:={c€T:0Cp A pCo}.)
A Laver-tree T is uniform if there exists ur € [w]” such that Vo D stem(T)({n : 0" n €
T} = ur \ (max(o) + 1).
For a Laver-tree T', we say A C T'is a front if 0 # 7 in A implies 0 Z 7 and for all f € [T
there is an n € w such that f|, € A.
The meaning of p < [®] and p N [®] are U, C [®] and U, N [®], respectively.
1. We say a forcing notion P is Laver-like if there is a P-name 7 for a dominating real
such that
(i) the complete Boolean algebra generated by the family {[7(i) = n] : i,n € w}

equals r.o. (P), and
(ii) for each condition p € P there exists a Laver-tree 7' C w* so that

VoeT <p(Tg) = H Z {p N [Fligry = 7] : 1g(7) = n} €r0. (P)\ {0}> .
new rely,

We express this by saying p(T') # 0 where p(T) := p(Tstem(r))-

M is Laver-like:

Let m be the canonical M-name for the Mathias real, then m is dominating (cf.
[Je 1] Part I, Lemma 3.15) and further let p = (s,5) € M with lg(s) = n and

S ={a(j) : j € w}. Then U, = [ [m(k) = s(k)] - [T ¥ [m(+17) = a(j)], which
kEn I€w jEW

gives a proof of (i).

For (ii) consider T' C w<* defined as follows:

o €T iff o strictly increasing and
o C sV (s Co Arange(o) \ range(s) C 5).

This T has the desired property and is even a uniform Laver-tree.

2. If 7 is a P-name that witnesses that P is Laver-like, we say that P has strong fusion
if for countably many open dense sets D,, C P and for p € P, there is a Laver-tree
T such that p(T') # 0 and for each n:

{0 €T :p(T) N [Fligoe) = 0] € Dy}
contains a front.

M has strong fusion:

Let D C M be dense open and p = (s,S) an M-condition. For each o such that
ocgCsor(sCo A o\sCS) we define the rank of o, rkp (o) as follows:

tkp(o) =0 <« FJA€[5]“({0,A) € D),
tkp(o) =a & 3B < a(rtkp(o) =B) and
Hn:ne SArkp(c™n) < a}| =w.



If rkp (o) is undefined, we put rkp (o) = oc.

Note that if o € dom(rkp), then rkp(o) < co. Otherwise almost all successors (in
S) of o have rank = oo, hence the complement of Sy := {n : n € SArkp(c™n) = oo}
with respect to S is finite. Let s,, := min(S,,), then the complement of

Spi1i={n:ne€ S, Artkp(c™ 77 s, n) =00 for all 7 € [{s0,... ,5,_1}]""}

with respect to S, is finite. Let A := {s; : i € w} C S and take (p, A") < (0, A) such
that (p, A') € D. Then p=0"7"s, (for an n) and A’ € [A]“, hence rkp(p) = o0, a
contradiction.

For two uniform Laver-trees T and T, the expression T' <,, T" means that the first n
elements of ur and up are the same. Let T, be the uniform Laver-tree constructed
in the proof of part (ii) above.

Define a uniform Laver-tree T),,, and the corresponding set ur, , recursively such
that T),,1 <, T, and if 0 € T}, then one of the following is true:

max(o) <wur, (n) A o €T,

(rkp, (o) =0 A VEk <lg(o)(rkp, (o]x) > 0)) = (o, ur,

n

w1\ (max(o) +1)) € D,
tkp, (0) >0 A Vk € urg,,, \ (max(o) + 1)(rtkp, (o) > rkp, (07 k))

Now T4 is a uniform Laver-tree and T := (), 5 is also uniform, p(T') # ) and
{o €T :pNn[m|ye) =0o] € D,} contains a front, (consider rkp, ). 4

3. A Laver-like P is closed under finite changes if given a p € P and Laver trees T and
T" so that for all 0 € T" : |succy (o) \ sucer (0)| < w, if p(T) # 0, then p(T") # 0,
too.

M is closed under finite changes:

Use a standard fusion argument. 4

4. We call P a flexible forcing notion iff P is Laver-like, has strong fusion and is closed
under finite changes.

Hence, the Mathias forcing M is flexible. —

Essential Theorems about Aj-sets of reals

Now we will give the relationship between the Ramsey property and Mathias forcing.
FACTS 3.8

1. [JS 1] Theorem 1.7:

For every P(D)-sentence ® and for all p € P(D) there exists a ¢ € P(D) such that
q < p, stem(p)=stem(q) and

q-pp)y® or ¢l—pp)~® (g decides ).

(This is known as pure decision.)



2. [JS 1] Theorem 1.14:

IfV C V' C V" are models of ZFC and D € V is an ultrafilter and z € V' is
P(D)-generic over V, then for every y € [z]* N V", y is P(D)-generic over V, too.

3. [JS 1] Theorem 1.15:
If D € V and g is P(D)-generic over V, then

Vigl E z3%(73)‘/-

4. [JS 1] Theorem 1.16:
If D eV, then

r € [w]” is P(D)-generic over V if and only if

Va € D(r C* a) and Vr € 2" NV : 3n € w such that T|[r\nj2 is constant.

5. [JS 1] Theorem 2.7:

V | AY(R) if and only if V | X3 (R).

6. [JS 1] Theorem 2.11:
For an s € [w]” define D := {a € [w]¥ : s C* a} (where s C* a means |s \ a| < w)
and D® := Dy N L[D;]. If D* is an ultrafilter in L[D®] and r C* s, then D" = D*
and we write P, for the forcing notion P(D?®) in L[D?®].

V EAJR)rp & Vr € L[u]3s € [r]Y NV (s is P;-generic over L{u][D?]).

Some properties of Mathias forcing

FACTS 3.9

1. Using the Fact 3.8 3. and the Lemmas 3.5 and 3.6 we see that if m is Mathias over
V, then V[m] E 23(R)y. Thus, (with [Ku] Lemma 5.14 on p.276) an w,-iteration
of Mathias forcing with countable support gives a model in which each Xi-set is
Ramsey.

2. We call r a Ramsey real over V if and only if there exists a D € V such that:
(i) D is an ultrafilter, Va € D(r C* a) and
(i) for all = € 2, 7 € V there is an n € w such that 7| (r\nj> i constant.
(See also [JS 1] Definition 1.17).
Now we see that if s is Ps-generic over L[u][D®], then (by 3.8 4.) it is Ramsey over
L[u][D?] and even a dominating real with respect to L[u][D?].

PROOF: To each real r € L[u][D?*] consider the function 7, € 2" (which also
belongs to L[u|[D?]) defined as follows:

7. ({i,j}) =0 <= TFk(r(2*) <i,j <r(2*1)).



Because s is P;-generic and by 3.8 4. we have
In € w(m|s\np> is constant).
Thus, because s \ n is infinite, 7|5\ ,2 = 1 and for k£ > 2n we get s(k) > r(k), hence
Vr € Llu][D®] N [w]“3l € wVk > I(s(k) > r(k))
which says, that the reals of L[u][D?] are dominated by s. |
We close this section by mentioning two useful corollaries.

COROLLARY 3.10 If p is an M-condition and Z is an M-name for a real, then there
exists an M-condition ¢ <° p and a real T € V' such that V = “ql—mz = 7.

PROOF: Let £ be an M-name for a real. Each real can be considered as an infinite
0-1-sequence, so z is such that for all natural numbers n:

#(n) =1 or &(n) =0.
Take p = (s,X). Because Mathias forcing has pure decision (by the Lemmas 3.5, 3.6
and Fact 3.8 1., or by [Ba] Theorem 9.3) in V there is a condition (s, X,) such that
Xy € X which decides :%(0) Let ao be the least member of X, then there are Y, X;
such that Xy \ {ao} 2 Y DO X; and (s7ao,Y), (s,X;) both decide #(1). Let now a; be
the least member of X;. There are Y;,Y5,Ys, X5 such that X; \{a;} DY, D ... D X,
and (s7ag ay, Y1), (s7a1,Ys), (s7ag, Ys), (s, X,) all decide #(2). Now let a, be the least
member of X, and so on. Define r := {a; : i € w}. We encode now z by 7 := {s"t:t €
[r]<“ A (s™t,r \ (max(t) + 1))-mZ(lg(t)") = 1}. Then Z is a real and if m is a Mathias
real over V' such that (s,r) € m then z[m| = Z[m], where Z[m](n) = 1 if and only if
ml|, € . —

COROLLARY 3.11 If p is an M-condition and V |= “pl—mIz®(z)”, then there is an
M-condition q <° p and an M-name & for a real such that V | “qi=m®(Z)”.

PROOF: We will follow the proofs of [Ba] Theorems 9.1 and 9.3.

Assume p = (s, A)-pM3z®(z). First we prove that there is a B C A such that if (¢,C) <
(s,B), £ an M-name and (t,C)I—nm®(Z), then we find an M-name g such that (¢, B \
(max(t) + 1))I=m® (7). For this we construct a sequence by < b; < ... of elements of A
and a sequence By O By D ... of subsets of A such that for all b € B, 1, b, < b. Let
By := A. Given B, let s1,8s,...,5; enumerate all the subsets of {b; : i < n}. Now
construct a sequence B? D Bl D ... D B! as follows. BY := B, and given B: ' let
B! C B! be such that for some M-name Z, (s U s;, B}y ®(Z), if it exists; otherwise
let B! := Bi~'. Finally let b, := N Bk, B, := B¥\{b,} and B := {b, : n € w}. Suppose
(t,C) < (s,B) and we find an M-name Z such that (¢, C)I-y®(Z). Because there is an
n € w such that s; := ¢\ s C {b; : ©+ < n} we must have chosen B! so that for some
M-name ¢, (sUs;, B )IF-u® (7). Now B\ (max(t) +1) C B!, hence (t, B\ (max(t) + 1)) <
(t, BL)I=M®(7) and we are done.

If p, g are two M-conditions, then pNq denotes the weakest M-condition which is stronger
than p and ¢, (if it exists). Let & be an M-name and p an M-condition, then Z(p) denotes
the following name. (&,q) € Z(p) if and only if there exists an M-condition ¢’ such that
(6,q') € T and ¢ =pNq'. For two M-names z,y let zUy := {(7,p) : (6,p) € TV (F,p) € ¥}.
Now we are prepared to prove the corollary. Given p = (s, A)l-y3x®(z). Let B C A be as
above. We construct a sequence by < b; < ... of elements of B and subsets By D B; D ...
of B by induction as follows. Let B, := B. Given B,, find B, C B, so that for all
s' C {b; : i < n} one of the following cases holds:

10



1. For all b € B), | we find an M-name # (depending on b) such that (sUs'U{b}, B/ \
(b4 1) I-pm®(2).

2. For no b € B, we find an M-name Z (which may depend on b) such that (sUs'U
{0}, Bpya \ (0 + 1) IEm®(2).

Because of the choice of B, for each n we find a B, ; C B, C B. Let b, := B, _,,
B,y == Bl \ {b,} and A’ := {b, : n € w}. Suppose for (t,C) < (s,A’) we find
an M-name Z, such that (¢,C)Fnv®(%). Let |t| be minimal. If |¢| = |s| then ¢ = s
and we find an M-name § such that (s, A")I-m®(g). If |[t| > |s| then max(t) = b, for
some n and at stage n, the first case held for some s’ = ¢\ (s U {b,}). Now for each
b; € A" (i > n) take an M-name Z; such that (s U s U {b;}, A"\ (b; + 1))I-m®P(Z;).
Further let g := U{Z:(p;) : i > nAp; = (sUs U{b}, A"\ (b; +1))}. Then we have
(sUs', A"\ (max(s') +1))IFm®(7), which is a contradiction to the minimality of |¢|. -
In the next section we start to show the relationship between Mathias-absoluteness and
the Ramsey property of projective sets of reals.

4 XYl-sets and the Ramsey Property

It is well-known that for X3 (B) and 33(L) there are characterizations with forcing abso-
luteness (cf. Theorem 2.3). Such a characterization exists also for X}(R). Although the
proofs for the Baire property and the Lebesgue measurability are similar, the proof for the
Ramsey property is different. This is because Mathias forcing does not have the countable
chain condition. (But fortunately it has a lot of combinatorial properties.)

THEOREM 4.1 V | X1(R) if and only if V is Xi-Mathias-absolute.

PROOF: First we prove that Xi-M-absoluteness implies X3(R). For this let ®(z) be a
Al-set:
O(z) < o(z) < Y(2),

where ¢(z) is a X-set and (z) is a [I3-set. Because Vz(p(z) <> 1(z)) is a II3-sentence,
by Xi-M-absoluteness we have

VM = Vi (p(2) < $(2))-

By Fact 3.9 1. we know that VM |= “each Al-set with parameters in V is Ramsey”.
Therefore

VM |= 35(Vio(Zo € [§]° — $(F0)) VVE (31 € [§]° — —p(51))).

But this is a Xi-sentence and because V = ¢(z) <> ¢(z), also V |= “® is Ramsey”. Now
because ®(z) was arbitrary and X3(R) is equivalent to Aj(R) (by Fact 3.8 5.), we have
V E 2i(R).

Now we prove that X3(R) implies 33-M-absoluteness. Let W = Jz1p(z) be a X}-sentence.
If V |= ¥, then by the Shoenfield absoluteness Lemma (see [Je 2] Theorem 98), the X}-
sentences are upwards absolute, hence VM |= W. For the other direction assume that
VM |= W. Then, because of VM is full (cf. [Je 2] Lemma 18.6), there is a name Z, such
that VM = ¢(z). By Corollary 3.10 there exist reals r,Z € V such that z C r and
V | “ri=m 7 = 7. Now, because V EX1(R), there is an s € [r]* such that s is P,-generic
over L[Z]|[r][D*]. Let m C s be a Mathias real over V, then m is also P,-generic over
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L[z][r][D?] (by 3.8 2.). VIm] = (Z[m]), hence L[Z][r][D*][m] E ¥(Z[m]) because 1) is
I3, m C s C r and T may be regarded also as a P,-name. So there must be a condition
p € L[Z][r][D?] such that L[z|[r][D*] = “plFpt(Z)”. Let k = max(range(stem(p))), then
s' 1= s\k is P;-generic over L[z|[r][D*] and there is an n € w such that s” := (s'\n)Ustem(p)
satisfies p, (by [JS 1] Definition 1.8 and Lemma 1.12). Hence (again by [JS 1] Lemma
1.12), s" is P,-generic over L[z][r][D?] and because of s" satisfies p and pl—p1)(z) we have
L[z][r][D?][s"] = ¥(Z[s"]) and finally V = Jz¢(z), (by Shoenfield). -
So, we have found a forcing characterization for 33(R). Such a characterization with
Mathias forcing does not exist for higher degrees of Mathias-absoluteness as we will show
in the next section.

5 Xl-M-absoluteness and the Ramsey Property

THEOREM 5.1 X}-Mathias-absoluteness implies A (R).

PROOF: Assume that V is Xj-M-absolute. Let ®(z) be a Aj-set in V' with parameters
in V: ®(z) & ¢(z) < (z) where p(x) is a Xi-set and 9(z) is a [i-set. So V |
Vaz(p(x) < (z)) and Vz((p(z) V —1p(z)) A (mp(z) V (z))) is a II}-sentence, hence M-
absolute. Therefore ®(x) is still a Al-set in VM.

Assume V' |= “®(x) is not Ramsey”. Hence V' = Vz3y,y2(y1 C 2Ays C zAD(y1) AP (y2)).
Obviously we have ®(y;) iff ¢(y1) and =@ (y2) iff —1(y2) but p(x), —tp(z) are both X3-
sets. So V' |= “®(z) is not Ramsey” is equivalent to

VEVzIny(h Sz Ay Sz Ap(y) A9(y))  (=:0)
where O is a IIj-sentence. Thus by X;-M-absoluteness we have
VME®B. (%)

Let m be the canonical name for a Mathias real m over V. Then there is a condition p
with empty stem such that plymp(m) or plyv—@(m), (see Lemmas 3.5 and 3.6 and Fact
3.8 1.). Assume pl—yp(m), then pl—y3z@(Z) (otherwise pl—pr—1p(m) and —ip(m) is also
¥1). Because each y € [m]¥ is Mathias over V and stem(p) = () we have V[y] E ¢(y).
Because V]y] C V[m] and ¢ is 33, hence upwards absolute, V[m] is also a model of ¢(y).
So, we get
plEM3EVy(y € [2]7 — o(9)).
Now because VM | Vi(p(£) > 1(Z)) we finally have

plem3Evy(g € [2]Y — o(g) A9 (9)),

but this is a contradiction to (k). -

THEOREM 5.2 A}(R) does not imply X} -Mathias-absoluteness.

PROOF: For this it is enough to find a model V' in which all Al-sets are Ramsey, all
Al-sets have the property of Baire and w; in this model is the same as w?.

We have V' = A}(B) if and only if for all reals r in V' there is a real in V' which is Cohen over
L[r]. To say this is a II}-sentence: For s € 2<% consider 17 s as a binary code for a natural
number n (n > 0) and let §n := s, (§0 := §1 = ()). We write n < m if §m|iz ;) = fn. Note
that in C f#m is an arithmetical statement. The sentence Vr € [w]”3Ic € [w]*Vz € [w]”(c
is a branch A (z € L[r] A z encodes a dense set — =z Nc # 0)) is a composition of the
following sentences.
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¢ is a branch is Ynm((n € cAm € ¢) — (n = m Vm =< n)), which is an arithmetical
statement.

x € L[r] is a Xi-sentence with parameter r (cf. [Je 2] Theorem 97).

x encode a dense set is Vm3an(n € A m =< n), which is arithmetic.

Finally x Nc¢c # () is At(t € z At € ¢), which is arithmetic, too.

So, if V is a model with the desired properties and V is X}-M-absolute, for each real
r € V[m] there is (in V[m]) a Cohen real c over L[r|. If r € V[m] is a real and c is a Cohen
real over L[r|, then L[r]Nw* is a strong measure zero set in L[r|[c] (see [Co] Theorem 1.3)
and hence we find in V[m] a covering of L Nw* with respect to the real r. So L Nw" is a
strong measure zero set belonging to V.

Now if wX = w} then we get in V[m] a strong measure zero set of cardinality w; with
parameter in V', namely LNw*, but this is a contradiction, (cf. [Ba], proof of Theorem 9.7

or cf. [Je 1] Lemma 8.2 and recall that M =~ U« Py ~ U« P(D)).

It leaves to construct a model V' with the desired properties.

In [JS 2] §3 they show, that an w; iteration of Mathias forcing starting from L, yields a
model in which every Al-set is Ramsey and w; in this model is the same as wf. (By the
claim of Theorem 5.3 this is already enough).

Now in [Ju 3] Lemma 1.18 it is proved that if we make a suitable w; iteration starting from
L, and add alternately Kesef and Cohen reals, we get a model V' in which every Al-set is
Ramsey, every Al-set has the Baire property and w) is the same as wr. -

The next theorem is in fact a consequence of the following: If V' is X}-M-absolute, then
wy is inaccessible in L.

THEOREM 5.3 X}-Mathias-absoluteness implies X3(R).

PROOF: We first give the following

CLAIM: If V is S1-M-absolute, then for all reals r € V we have w" < wY, (hence w!
is inaccessible in L).

Now we show that this claim implies that V' = X3 (R).
LEMMA 5.4 If V is $-M-absolute and Vr € V(w0 < w¥) then V £ BL(R).

PROOF OF THE LEMMA: Let ®(z) = Jyi(z,y) be a Li-set with parameter a € V. If
V = 2V (z € [2]Y — —®(x)), then the set ®(x) is Ramsey in V. Therefore let us assume
that V |E Vz3z(z € [2]* A®(z)) (=: ©). Because O is a II}-sentence with parameter a and
by 3}-M-absoluteness we have VM = ©. Now there is a Mathias condition p with empty
stem, such that p decides ®(m). Because VM |= 0, VM is a model of 3z(z € [m]* A®(z)).
Further VM is full and ®(x) = Jy4p(z,y), hence we find Mathias names Z, 7 such that
VM= (& € [m]* A (2, §)).

Consider the statement V[m| = Jyy(z,y) < V[z] = Jz¢(z,z) and further assume that
V E “gbmy(z,9) A V][Z] FE 329(Z,2)” (for an M-condition ¢). First we have to define
the meaning of ¢l—n“V[Z] = ¥(Z)” where ¥ is an arbitrary formula with at most one
free variable: If Z is a variable in W for a real and 7 € Z is a subformula of ¥, then
@l-Mm“V[zZ] E 71 € 27 if and only if there exists a Mathias condition (u,U) such that

(u,U)lmr € 2 and qol-mVEk(kca —kei AN kei— (keUVEea)).

Let x be the evaluation of Z by the Mathias real m. Now because VM = 7 Cm, =z is also
Mathias over V' and Vz] |= ¥(z) if and only if there exists a Mathias condition ¢y € V'
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such that ¢ € m and gl-mV[Z] = U(Z). Thus “gb-MV[z] E ¥(2)” is well defined.

Let r,z,y € V be such that r < gand V |= “ribyz =2 Ay =¢”. Furtherlet r € s €V
be Ramsey over L|[a][r][Z, 7], then there is a condition py€ L[a|[r][Z, §][D?], po<r such that
Lla][r][z,y][D°] = “pol—p%(Z,y)”. This is because if m’ < s is Mathias over V', then m/' is
P.-generic and L[a|[r][Z, §][D®][m'] |= ¢ (Z[m'], g[m']) (by Shoenfield). Let s’ be Ps-generic
such that po€s’, further let s'eém be Mathias over V' and z := z[m] (= Z[m]). We write P,
as a two step iteration Q; *Q» and choose g; such that g, is Q;-generic over L[a][r][Z, 7][D*]
(=:N) and N[g,] = N[z]. Because of N[z] C V[z], V]z]N[w]*NN[z] is a ¥}-set in V[z] and
Vz3IyVz(z € N[z] — In(y, = 2)) (this is: for all z, w;V[#! is countable) is a ITi-sentence.
Because of # C m is Mathias over V and V is B}-M-absolute, it follows that w,"[?! is
inaccessible in N[z]. Hence, there exists a set g, € V[z] which is Q,[z]-generic over N|z]
such that Nz][gs] = ¢(2,7[g1 * g2]). Now Niz]lgo] = Fyyp(w,y) and Nlz][g.] € V[z] and
because X3-formulas are upwards absolute, V[z] = Jyi)(z,y), which is a contradiction to
g-m“V[z] FE 329(2, 2)7.

(If n is Mathias over V and z € [m]¥ N V[m], then we say that V is X.-M-correct if for
every X! -set ®(z) with parameters in V: V[m] | ®(z) & V(z] E ®(z).)

Let p be a Mathias condition with empty stem which decides ®(m), where m is Mathias
over V. Thus
V = “pbm3zY (2, m)” or V |= “pby—P(m)”.

If the first case holds, let r,Z be such that: r C p and if m C r is Mathias over V, then
Vim] E ¢(2[m],m). In V there exists a Ramsey real s C r over L[a][r][z] and because
I13-sets are absolute (by Shoenfield) in L[a][r][Z] there exists a P,-condition ¢ with empty
stem (note that all ¢ € [s]* are also Ramsey over L[a|[r][z]) such that L[a][r][z][D®] =
“g=p1(z,g)” where g is the canonical name for the P,-generic real over La][r][Z][D?]. In
V there is a P,-generic real s’ such that s’ C ¢, hence for all t € [s']“ : Lla][r][2][D?][t] =
¥ (Z[t], t). Again by Shoenfield we get:

V = ¢(Z[t],t) and this implies V' |= JyVz € [y]“ P (z).

Therefore the set ®(xz) is Ramsey in V.
If the second case holds, we get

V E “pl-mVZ € [m]*~®(7)”

hence V' |= “pl-M3gViE € [9]“—®(Z)” which is a 3j-sentence (with parameters in V) and
says, that ®(z) is Ramsey. Therefore by X}-M-absoluteness the set ®(x) has to be Ramsey
in V. —

Now we have to show that the claim holds.

PROOF OF THE CLAIM: Assume V is Xj-M-absolute, then by Theorem 4.1 V |
Y2(R), and by the Facts 3.8 5., 3.8 6. and 3.9 2. the following is true in V:

Vu € [w]“Vr € L[u] N [w]“3s € [r]“(s is Ramsey over L[u][D®]).
To say this is a IT}-sentence:

Define b: [w]? — w
{n,m} +—  $(max({n,m})* — max({n,m})) + min({n,m}).
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Note that b is a bijection and arithmetic. With b we can consider each © € [w]” as a
function from [w]? to 2, namely by

7({n,m}) =0 < b{n,m} em.
The sentence
Vu € [w]“Vr € Lu] N [w]“3s € [r]“(s is P;-generic over L{u|[D*®])

is a composition of the following sentences.

r € L[u] is a ¥3-sentence with parameter .
s € [r]” is Vi(i € s — i € r), which is arithmetic.
s is Py-generic over L[u|[D?], which is again a composition of the following sentences.

x € L[u][D?] is a ¥3-sentence with parameters u and s.

T|(s\nj> is constant is an arithmetical sentence because of b is arithmetic.

D# is an ultrafilter in L[u][D®] is Vz € L{u][D*] N [w]*In(s\n Cx Vs \nNz = 0), which
is a II}-sentence with parameters u and s.

Vr € L[u][D®]3n(m|js\np2 is constant), which is also a II}-sentence with the parameters u
and s. 4

Therefore if V' is ¥1-M-absolute, in V™ for each real u there exists a real s which dominates
the reals of L[u] (cf. Fact 3.9 2.). Let m be Mathias over V. Because M is flexible (cf.

Lemma 3.7), M adds a dominating family of size w; (see [Br] Theorem 3.1). If there is
a real r € V such that w"' = w! and m is Mathias over V, then the reals of L[r][m]

dominates the reals of V[m]. (Note that the M-names f, (o < w;) which are constructed
in [Br] Theorem 3.1 can all be defined within L[r].) But this contradicts that in V[m] we
have a dominating real over L[r|[m]. 4

This concludes the proof of the Theorem. —

We can prove even more, as we will see in the next section.

6 Higher Degrees of Mathias-absoluteness

COROLLARY 6.1 X1-Mathias-absoluteness implies A}(R).
PROOF: Let ®(z) be a Aj-set:
O(z) & p(z) & ~1(z)

where p(z) and 9(z) are Xj-sets. By Xi-M-absoluteness, ®(z) is still a Aj-set in VM.
Let p be an M-condition with empty stem such that

V = “pl-mp(m)”,

(if V E “pbyM—e(m)” then V = “plymtp(m)”), then there is an M-name gy and (by
Corollary 3.11) a p’ C p with empty stem, such that

V E “p'lFmepo(m, 9)”

(where ¢(z) = Jyp(z,y) and ¢, is a i-formula). Let m C p’ be Mathias over V', then
V[m] = @o(m, g[m]).
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Now in the proof of Lemma 5.4 in fact we showed, that if m is Mathias over V, m' €
[m]* NV[m], Vr € [w]* NV (w" < w!) and ®(z) is a Si-set (or a Mi-set) with parameters
in V, then

Vm'] E ®(m') & V[m] E ®(m').

Because of m' € [m]* NV [m], m' is also Mathias over V and the sentence Vz € [m]“ (o (z,
g[m])) holds in V[m]. Therefore 32Vz € [z]*—tp(z), which is a X}-sentence with parameters
in V, is true in V[m|. Hence, V = “®(z) is Ramsey” and because ®(z) was arbitrary we
get V = AL(R). —

To prove the last results, we need two slightly technical lemmas.

LEMMA 6.2 If Vr € [w]* N V(w" < wY) and ®(Z) is a Si-formula (where % is an
M-name in V for a real), then: for all M-conditions q in V there is a real a and an
M-condition [ in V such that (q is an M-condition in Lla] and | < q) and for all reals
m: if m is Mathias over V and | € m, then (m is Mathias over L[a] and Z[m] € L]a] and
(Llallm] |= ®(:lom]) if and only if Vim)] = (3[m)))).

PROOF: To simplify the notation we assume that the parameters of ® are in L.
Assume V = “qol-M¥(2,2)” where ¢o < ¢ and ®(z) = Jz¥(z,z). Let ro < qo and Z,Z
such that V | “rol-pm2z = ZAZ = 2”. Let a be a real which encode the reals 7y, 2,z
and ¢. In L[a] there must be an M-condition ¢; < 7 such that L[a] = “q;I-mV(Z,Z)”
(because of the absoluteness of II3-formulas). Let [ € V' be Mathias over L[a] such that
¢ € | and further let m be Mathias over V' such that I € m, then La|[m] |= U(Z[m], Z[m])
and Vla][m] = ¥ (z[m], Z[m]).

If V = “gol—m—®(2)” for all gy < g which decides ®(Z), there is an M-condition ¢; as in
the former case, (because IT3-formulas are downwards absolute). The rest of the proof in
this case is the same as above. —

We say L[a] computes well the X} formula ®(2) (the IT} formula —=®(2), respectively) with
respect to q;.

LEMMA 6.3 If V is X]-M-absolute, then V is 3}-M-correct.

PROOF: If not, then there is a Xj-formula ®(z) and an M-condition p € V such that
V = “pbmz € [m]Y A ®(2) AV[z] £ ©(2)”. Because V = “pl—m®(z)” there is an
M-name ¢ such that V | “plmU(Z,9)” where ®(z) = Jy¥(z,y) and V(z,y) is a 13-
formula.

Let r,z,7 be such that r <p and V |= “rl-qZ = Z Ay = §”. By Lemma 6.2 there is an
a € V and an M-condition ¢ < r such that L[a] computes well ¥(z,y) with respect to gq.
Let [ and m as in the Lemma 6.2 and further let = := Z[m]. Because m is Mathias over
Lla] and z € Lla][m] we can write the Mathias forcing as a two step iteration Q; * Q,
and choose (as in the proof of Lemma 5.4) g;,9> € V[z] such that g, is @;-generic over
Lla), g, is Qs[g1]-generic over Lla][g1], g1 * g» is M-generic over L[a] with respect to g
and Lla][g:] = L[a][z]. With the same arguments as in the proof of Lemma 5.4 we have
Lla][z][g2] & ¥(z,y[g1 * g2]). Now because L[a] computes well the II}-formula ¥ and
g2 € Vx|, we finally have V[z] = ®(x). -

THEOREM 6.4 X}-Mathias-absoluteness implies X3 (R).

PROOF: Let ®(z) be a X}-formula with parameters in V and further let p € V' be an
M-condition which decides ®(m).
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IfV = “pl=m®(m)” then by Lemma 6.3 V' = “plt—pTaVy € [2]9@(y)”.
IfV = “pl=pm—®(m)” then by Lemma 6.3 V = “pln3zVy € [2]Y=P(y)”.

In both cases (by X§-M-absoluteness) we get that ®(x) is Ramsey in V and because ®(x)
was arbitrary we have V |= X}(R). -

COROLLARY 6.5 Yj-Mathias-absoluteness implies AL(R).

PROOF: Let ®(z) be a A}-set:

O(z) & p(z) & ~1h(z)

where ¢p(z) and () are Xi-sets. By Xi-M-absoluteness, ®(z) is still a Al-set in VM. Let
p be an M-condition with empty stem such that V' = “pl—pme(m)”, (if V = “pl=y—p(m)”
then V' = “pl—ptp(m)”), then there is an M-name g and (by Corollary 3.11) a p’ C p
with empty stem, such that

V | “p'I-mepo(m, )"
where () = Jypy(z,y) and ¢, is a IIi-formula). Let m C p’ be Mathias over V, then
2 2 2 4
Vm] | @o(m, §[m]).

Because of Lemma 6.3 and because m' € [m]¥ N V[m] is Mathias over V, the sentence
Vm' € [m]“po(m’,g[m']) which is V[m] = J2Vz € [2]“¢p(z), holds in V[m]|. Therefore
J2Vz € [2]¥—p(x) which is a X}i-sentence with parameters in V' is true in V[m].

Hence, V = “®(z) is Ramsey” and because ®(z) was arbitrary we get

V = AL(R).
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