A RESULT IN DUAL RAMSEY THEORY

Lorenz Halbeisen® and Pierre Matet

ABSTRACT

We present a result which is obtained by combining a result of Carlson
with the Finitary Dual Ramsey Theorem of Graham-Rothschild.

We start by introducing some notation.

We conform to the usual practice of identifying the least infinite ordinal w with the
set of non-negative integers.

Given «, f < w, a partition of a into 3 blocks is an onto function X : a — (3 such
that min (X ~'({n})) < min (X ~'({m})) whenever n < m < 3. Thus, the blocks of
X are ordered as their leaders (i.e., their least elements).

The leader function ¢ : ()? x  — « is defined by ¢(X,m) := min (X ({m})).
Hence, the function m — £(X,m) enumerates the leaders of X in increasing order.

Given X € ()’ and Y € (a)?, where a, 3,7 < w, we let Y < X if Y is coarser than
X, i.e., each block of Y is a union of blocks of X.

Given o, 3,7y <w and X € (a)?, (X)) :={Y € ()7 : Y < X}.

Given o, f < w and k < w, (a)? denotes the set of all X € (a)? such that
(a) X~ 1({n}) is finite if k < n < G, and
(b) max (X '({n})) <l(X,n+1)if k <nandn+1<pg.

Given «, 3,7 < w, X € (o) and k,m < w such that k <~ and m < 3, (k,m, X)" is
the set of all Y € (X)” such that

{ey,i) i<k} C{UX,j):5<m}.
Note that (0,m, X)? = (1,m, X)? = (X)" for all m < §.
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The amalgamation function A is defined as follows: Given X € (w)” and t € (p)™,
where 0 < m < p < w, A(t, X) is the partition of w whose blocks are

U X, U X, X b, X e+ 1),

iet—1({0}) ict=1({m—1})

For t € (p)™, where m <p < w, let O; :={X € (w)¥: X [ p=1t}.

We topologize (w)¥ by taking as basic open sets () and O; for t € |J (p)™.

m<p<w

A function F : (w)¥ — r, where 1 < r < w, is clopen if F~!({i}) is a clopen subset
of (w)* for each ¢ < 7.

Our starting point is the following immediate consequence of the Dual Ellentuck
Theorem (Theorem 4.1 in [1]) of Carlson-Simpson.

PROPOSITION 1. Given X € (w)“ and a clopen F' : (w)¥ — r, where 1 < r < w, there
is Y € (X)“ such that F' is constant on (Y)“.

Even if every block of X is finite, there may not be any homogeneous Y having
infinitely many finite blocks.

PROPOSITION 2. There is a clopen F' : (w)* — 2 with the property that there is no
Y € (w)® such that F'is constant on (Y)* and Y has infinitely many finite blocks.

Proof. Define F : (w)* — 2 by stipulating that F'(X) = 0 if and only if X~'({1}) N
0(X,3) C ¢(X,2). Obviously, F'is clopen. Now suppose that there is Y € (w)* such
that Y has infinitely many finite blocks and F' is constant on (Y)“. Pick Z € (w)¢
with Z < Y. Then F is constant on (Z)“, which is clearly impossible. =

Carlson established a “specialized” version (Theorem 6.9 of [1], which follows from
Theorem 2 of [2]) of the Dual Ellentuck Theorem that deals with partitions of w hav-
ing finitely many infinite blocks. Carlson’s result immediately implies the following.

PROPOSITION 3. Given k < w, X € (w){ and a clopen F': (w)* — r, where 1 <r <
w, there is Y € (w)¢ N (k, k, X)¥ such that F' is constant on (k, k,Y)*.

The purpose of this paper is to present the combinatorial result which is obtained
by combining Proposition 3 with the Finitary Dual Ramsey theorem of Graham-
Rothschild [3]. This last reads as follows.

PROPOSITION 4. Suppose that 1 <k <m < w and 1 <r < w. Then there is p < w
such that p > m and the following holds: Given f : (p)*¥ — 7, there is s € (p)™ such
that f is constant on (s)*.



We now state our result.

THEOREM. Given 1 < k < m < w, X € (w)¢ and a clopen F : (w)¥ — r, where
1 <r <w,thereis Y € (w)¥ N (X)“ such that F' is constant on (k,m,Y)*.

Proof. Using Proposition 4, select p > m so that every f : (p)¥ — r is constant on

(s)* for some s € (p)™. First we define g: J(k— 144! —rand Yy, Yi1,...,Y,
i<p—k
so that

(0) Yy € (w)¢N(k, k, X)* and F takes the constant value g(u) on (k, k, A(u, ¥5))”,
where u is the unique element of (k — 1)*=! (hence, A(u, Yy) = Yp).

(1) Y1 € (Wi N(k+1,k+ 1Y) and F takes the constant value g(t) on
(k,k, A(t,Y7))” for every t € (k)F1.

(2) Ys € (Wi N (k+ 2,k +2,Y7) and F takes the constant value g(t) on
(k,k, A(t,Ys))” for every t € (k+ 1)

(p— k) Ypoi € (W)¥N(p,p, Yp—i—1)* and F takes the constant value g(¢) on (k, k, A(t,Y,—

for every t € (p — 1)1,

For example, to define Y3 and g | (k + 2)*7!, proceed as follows. Let to,t1,... 1,
be an enumeration of the elements of (k + 2)*~1. Applying Proposition 3 repeatedly,
define T;, Z; and ¢; for j < g so that

() Tj € (w)i-
(i) Ifj =0,T; € (k,k A(tj,yg))“ and Z; € (k+ 3,k + 3,Y2)~.

(iii) If j > 0, Ty € (k,k, A(t;,Z;—1))" and Z; € (k+ 3,k +3,Z;_1)~.
(iv) F takes the constant Value cjon (k, k T)

(v) Ay, Z;) = Tj.

Then set Y3 = Z, and ¢(t;) = ¢; for every j < g.

Define f : (p)* — r by f(w) = g(w | l(w,k —1)). Set W = Y,_4. Obviously,
W e (w)2 N (X)“. Moreover, F takes the constant value f(w) on (k,k, A(w [

N
U(w,k—1),W))” for every w € (p)*. Let s € (p)™ be such that f is constant on (s)*.
Then Y = A(s, W) is as desired. =

The referee pointed out that the theorem and similar results can be derived from
Theorem 10 and Theorem 11 of [2].

The theorem is optimal in the following sense:
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PROPOSITION 5. Suppose that 1 < k < m < w. Then there is F' : (w)¥ — 2 such
that F~1({0}) is open and there is no Y € (w)“, with the property that F' is constant
on (k,m,Y)%.

Proof. Let F(Y) = 0 exactly when Y (m) € ((Y,m + 1). —

The theorem has the following finitary version, which is proved by arguing as for 3.2
in [1].

PROPOSITION 6. Suppose that n < ¢ <m<w, 1 <k<m,n<kand1<r <w.
Then there is p < w such that p > m and the following holds: Given f : (p)* — r,
there is s € (p)7" such that f is constant on (n,q,s)".

Proof. Assume that for every p > m there is f, : (p)* — r such that for every
s € (p)i, fp is not constant on (n,q,s)*. Define F : (w)¥ — r by stipulating that
F(T) = fyrwy(T | ¢(T,k)). Using the theorem (for 1 < n < g) or Proposition 3
(otherwise), we find Y € (w)¢ such that F' is constant on (n,q,Y)“. Set p = (Y, m)
and s =Y | m. Then p > m and s € (p)™. Moreover, f, is constant on (n, g, s)*.

q
Contradiction! -

When n € {0,1} and g € {m — 1,m}, Proposition 6 reduces to the Finitary Dual
Ramsey Theorem. When n = k and ¢ € {m — 1, m}, it reduces to the n-parameter
set theorem of Graham-Rothschild [3], which generalizes the Finitary Dual Ramsey
Theorem.
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