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Abstract

Let F be a set of functions with common domain X and common range Y.
A set S C X is called a set of range uniqueness (SRU) for F, if for all
f,geF

fi8])=9lS1=f =g
Let Pn i be the set of all real polynomials in n variables of degree at most k
and let Lx(R™,R™) be the set of all linear functions f : R"™ — R™ with
rank k. We show that there are SRU’s for P, i of cardinality 2("zk) -1,

but there are no such SRU’s of size 2(":1“) — 2 or less. Moreover, we show

that there are SRU’s for Lx(R™,R"™) of size

2n — 1, if k=1,
2n—k+1, ifk>1,
but there are no such SRU’s of smaller size.
Key words: sets of range uniqueness, polynomials, magic sets, unique range, Vander-

monde
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1 Introduction

Let F be a set of functions with a common domain X and a common range Y.
A set S C X is called a set of range uniqueness (SRU) for F, if for all f,g € F,

fIS1=9lS] = f=g,

where f[S]:={f(s) €Y | s € S}. The set S C X is called a magic set for F if
for all f,g € F,
fIS1€glS] = f=g9

Clearly, if S is an SRU or a magic set for F, then S is also an SRU or a magic
set for any subset G C F.

*Partially supported by SNF grant 200021_-178851.



Burke and Ciesielski have shown in [2] that SRU’s always exist (i.e., provable in
ZFC) for the set of all Lebesgue-measurable real functions on R. In [4] Diamond,
Pomerance, and Rubel construct SRU’s for the set C“(C) of entire functions.
The continuum hypothesis implies the existence of an SRU for the class C™°(R)
of continuous nowhere constant functions from R to R. This has been shown
by Berarducci and Dikranjan in [I]. Halbeisen, Lischka and Schumacher have
replaced the continuum hypothesis by a weaker condition (see [7]). However, the
existence of such a set is not provable in ZFC as Ciesielski and Shelah showed
in [3].

At the other end of the regularity spectrum of functions lies the following result:
For every s > 2n + 1 there exist SRU’s of cardinality s for the set of all real
polynomials on R of degree n. But there is no SRU of cardinality 2n for this set
(see [3]). Magic sets for polynomials are constructed in [6]: For polynomials of
degree n there are magic sets of cardinality s > 2n + 1 and no SRU’s of smaller
size exist. And there are SRU’s for polynomials which are not magic.

In this paper we study SRU’s for the set of multivariate real polynomials in n
variables of degree at most k, for linear and affine functions from R™ to R™ and
for linear functions from R™ to R™ with given rank k.

2 Linear and affine functions

We will begin this section by introducing the following vector spaces

AR™R) :={f:R" >R, z+ (z,a) +b| a € R",b € R}
Prn :={p € Rlz] | deg(p) < n}
where (-, -) is the Euclidean inner product. Note that both A(R™ R) and P,

are n + 1 dimensional vector spaces.

Notice that
d: AR"R) = P,, [+ foh,

where h : R — R", x — (z,22,23,...,2"), is an isomorphism of vector spaces.
Then we have:

Theorem 1. If S is an SRU for P,, then S := h[S] C R" is an SRU for
AR™, R).

Proof. Let f,g € A(R™,R) be such that f[S] = g [S]. Then consider the
polynomials F := ®(f) and G = ®(g) in P,,. We have

F[S] = (f o h)[S] = f[h[S)) = f [S] = g [S] = g[hlS]] = (g h)[S] = GI[S]
and hence F' = G, since S is an SRU for P,. As ® is an isomorphism of the
vector spaces A(R™, R) and P, it follows f = g. |
We now conclude immediately by the main result in [B, Section 3]:

Corollary 2. For every s > 2n + 1 there exists an SRU of size s for the set
A(R™ R).



We transfer this finding to the n-dimensional vector space
LR"R):={f:R" >R,z (z,a) |a € R"}
of linear functionals on R™. Observe that
U: LR, R) = AR LR), fs fok,
where k : R"~! — R™ z + (z,1), is an isomorphism of vector spaces. We find:
Theore)m 3. If S is an SRU for A(R" 1 R), then S := k[S] is an SRU for
L(R™ R).

Proof. Let f,g € L(R™,R) be such that f @ =y @ Then consider F' := U(f)
and G = ¥(g) in A(R""1,R). We have

F[S) = (fok)[S] = f[k[S] = f [S] = g [S] = g[k[S]] = (g 0 k)[S] = G[S]

and hence F' = G, because S is an SRU for A(R"~! R). Since ¥ is an isomor-
phism of the vector spaces £(R",R) and A(R"!,R) it follows f = g. [ |

Thus, by Corollary [2] we obtain:

Corollary 4. For every s > 2n — 1 there exists an SRU of size s for the set
L(R™,R).

Now we show, that Corollary [4]is optimal.

Theorem 5. Let S = {z1,22,...,25} C R™ with k < 2n — 2. Then there are
two functionals f,g € LR™,R) with f[S] = g[S] but f # g. In other words:
There is no SRU for L(R™,R) of cardinality at most 2n — 2.

Proof. We are looking for functions f(z) = (a,z), g(z) = (b,x) with a,b € R™,
a#b. IfU :=span{zxy,...,zr} # R", we can choose f = 0 and extend g = 0
on U nontrivially to R™, and we are done with f[S] = ¢[S] = {0}. So, we may
assume without loss of generality that U = R™.

Consider the homogeneous linear system of equations
<a,,.137;> = <b7xi+1> for i = 1a27"'ak7 (1)

where we take indices cyclically; (a,b) € R?" are the unknowns. This system has
rank at most k < 2n —2 and therefore the null space is at least two-dimensional.
Hence there exist non-trivial solutions (a, b) € R?" of . Observe that solutions
for which @ = b span at most a one dimensional subspace, since a = b implies
(a,x;) = (b, x;) = c for all i for some constant c. [ |

It now follows from Theorem [3|and Theorem [5] that also Corollary [2]is optimal:

Corollary 6. There is no SRU for A(R™,R) of cardinality < 2n.

Remark 7. It is clear that S C R™ is an SRU for A(R™,R™) of vector valued
affine functions if and only if S is an SRU for A(R™,R). And the analogous
statement holds for vector valued linear maps £(R™,R™). Hence the results of
this section hold mutatis mutandis for A(R™, R™) and £(R™,R™), respectively.



3 Generalized Vandermonde matrices

Let n € N\ {0}, k € N be fixed, arbitrary natural numbers. Let us denote by
s € N, the number of all possible monomials in n variables of degree at most k,
and for 0 < p < s, we denote s, the number of monomials of degree exactly p.
The latter, sp, is a standard combinatorial result call “Stars and Bars” problem

with k stars and n — 1 bard] and hence,
-1
for all p with 0 < p <k, Sp:<n+p )

p

Using the combinatorial identity (’Zﬂ) = (bil) + (Z), we also see that

n+0-—1 n+1-—1 n+k—1 n+k
(o)) () ()
In other words, the identity s = Z];:o sp holds as a direct consequence. For all
1<i<s,let
ZT; = (xiyl,l'i’g, Ce ,xi,n) e R" and a; €R \ {0}

In short, the x; are real vectors and the «; are non-zero real scalars for all
1< <s.

For every 0 < ¢ < k, let ; be the following collection of n-tuples:

Vi = {(ml,---,mn) €N | imj :i}.
j=1

Intuitively, each n-tuple in 7; represents the exponents of a monomial of degree
exactly i. Note that the sets ~; are pairwise disjoint. Without loss of generality,
we will order the elements in ; lexicographically. For every 1 < j7 < k and
every 8= (f1,...,0n) € ;, we define

n
xf = H zgl,
=1
B

where z;; is the I*® component of ;. In particular, x; represents the monomial
whose exponents are given by /3, and the value of the I*" variable is determined
by the I*" component of ;. We will also adopt the following notation to simplify
writing: For all 1 <4, 7 < let

The generalized Vandermonde matrix A, x(x1,...,xs) is given by the following
§ X s-matrix:
ar ozt oz ]k
(e x;l x'zh $gk
An,k(fﬁl, . 7;{,'3) =
oas T ox ... xlk

1This is also the “Bins and Balls” problem with n bins and k balls, but they are equivalent.



Example 8. For n =k =2 and «; =i for all 0 < ¢ < 6 we have that

2 2
T11 Ti12 T T11x12 Tig

2 2
T21 T2 T5) T21T22 Too

2 2
r31 X32 T3 T31x32 T3g

A2,2($1,=’E2) = 2 2
T41 T42 Typ T41T42 Tyo

T W N =

2 2
Ts1 T52 Ty T51T52 Ty

2 2
6 Te1 Te2 TEH  Te1Te2 T

Lemma 9. For alln € N\ {0} and all k € N we have that det(A,, ) # 0.

Proof. We prove this Lemma by induction on k. If £ = 0, then s = (g) =1 and
det(Ap,0) = a1 #0.

Now let k > 1. Consider the Laplace expansion of A, ; along the first row. We
have that

det(An ) = (1) o™ det (A}, 4 (22, ..., 25)) + 01,

where Ai,k is the submatrix obtained by deleting the first row and the last
column from A, , and 0, is the remaining polynomial term due to the Laplace
expansion; note that no summand in ¢§; is divisible by x?kk If A}Lk #App—1
we do a Laplace expansion of A}h . along the first row and we get that

det(A, x) = (—1)2“13:’1%’5"" x;k’s“l det (A2,k($3, . ,a:s)) + 02,

n

As before Ai,k is the submatrix obtained by deleting the first row and the

last column from Avlu > and 02 represent the remaining polynomial in which no

. e Yk, Yk,sp,—1
summand is divisible by x; "Fxy" 7.

Inductively apply the Laplace expansion until we get Af%k = A, -1 for some
1 € N\ {0}. Thus we can write

det(An i) = edet (Ap k—1(@i41, Tit2, - .-, Ts)) + 0y

with a monomial € := (1, ..., 2;) that does not divide any summand in §;. By
the induction hypothesis det(A,, x—1) # 0, it follows that det(A, ;) Z 0. [ |

4 SRU’s for multivariate polynomials

Let n € N\ {0}, k € N and define
P i= {f € Rz, 22, ..., Ty] ‘ deg(f) < k:}

We will prove that for all [ > 2- (”zk) —1 there is an SRU of size [ for P,, ;. To do
this, it will be necessary to generalize the proof of [5, Theorem 8] considerably.
Let {z1,x9,...,2;} € R™. The following family G of directed graphs will play a
crucial role in the construction of SRU’s of size [ for the set P, x:



Definition 10. G is the family of all directed graphs G = (V, E) with vertex
set V.= {x1,22,...,2;} and a set E of directed edges (z;,z;) such that for each
x € V we have

indegrees(z) > 1 and outdegrees(z) > 1.

Definition 11. Let G = (V, E) be a directed graph.
e A cycle of G is asubgraph C = (V¢, E¢) of G with Vo = {cp,¢1,. .., Cm_1}
and Ec = {(¢i, ¢(i+1)modm) | © € N} for an m > 2.
e A loopisasubgraph L = (V1,, Er) of G with Vi, = {w} and Ef, = {(w,w)}.

e A path is a subgraph P = (Vp, Ep) of G with Vp = {po,p1,.-,Dm-1}
and Ec = {(pi,pi+1) | 0 <i < m —2} for an m > 2.

Definition 12. Let s € N. Cycles and loops C1 = (Vi,, Ecy),--.,Cs =
(Ve,, Ec,) are called obuviously different if for every 1 < i < s there is a x; € Vg,
with

S

x; € Vc,i \ U ch
Jj=1,5#i

Definition 13. A graph G = (V, E) is of type 1,, 1 iff there are at most ("',‘C'k) -1
obviously different cycles and loops in G. Otherwise G is of type 2, .

4.1 Graphs and matrices of type 1,

Definition 14. Let n € N\ {0}, £ € N and let G = (V, E) be a graph of type
1, with |V] > 2- ("Zk) —1. A nice sequence of length s is a sequence of graphs

Go=Vo,Ey) CGi=Vi,E1)C---CGy=(V,, Es) CG

with the following properties: For all 0 <17 < s

1. we have that |E;| € {2¢,2i + 1};
2. there are at most ¢ obviously different loops and cycles in G,
3. we have that E;;1 \ E; has one of the following forms:

o Ei1\E; = {(zj,2)), (xm,xp)} with degg, (z;) = 0, and detg, (zm) =
0 or degg, (z,) = 0;

o By \ By = {(zj,2m), (xp, x;)} with degg, (2;) = 0.

Theorem 15. Letn € N\ {0}, k € N and s := ("zk) Every graph G = (V, E)
of type 1, with |V|>2- ("Zk) — 1 has a nice sequence

GoCG1C---CGsg = (Vso1, Es—1)

with |Es_1| =2 ("F) — 1.



Proof. The proof is the analogue of the proofs of [5, Lemma 12] and [5, Corollary
15]. n

For all 0 < i <k let s; := ("}"). Define Mg, := (1). And for all 0 <i < k and
all 1 <1 < s;41 — s; we define

i I i l
UL:O Tp Uq:l Yi+1,q 7IU;:1 Tp 7$Uq:l Yi+1,q
jl jl l1 l]
i 1 i 1
(EU;:O Tp Uq:l Yi+1,q _xU;:l Tp _qu:l Yit1,q
J2 J2 la ly
Mg, ,, =
i i i 1
U;,=0 Yp Uq=1 Yitla UL=1 Tp _ Uq=1 Yit+1,q
J2(s;+0)+1 J2(s;+1)+1 la(s; +1)+1 lags; +1)+1

where for all 1 <m < s; +1 we have that (z;,,.,,) € Eq, |,

Lemma 16. For all 1 < i < s, we have that det(Mg,) # 0.

Proof. We prove this Lemma by induction over i. For i = 0 we have that
det(Mg,) =1#0.

Now let 0 < ¢ <k and 0 <[ < s;41 — s; such that s; +1 > 1. We want to show
that det(Mg, ,,) # 0. There are three cases:

Case 1: E5i+l \ESnLl*l = {(xjaxm)v (xpvxj)} with degG (x]) =0.

siHl—1

First of all we do a Laplace expansion along the row containing =; and z,,. We
get

det(Mg, ,,) = eox; """ det(Mg, _,) + do, (2)

si+l

where Mg, ,, is the matrix we obtain from Mg, ,, by deleting the row con-
;ﬁ+1,z
€0 € {—1,1} and that (x;i“")Q does not divide any summand in §y because
from degGSi+l71(xj) = 0 it follows that x; is only contained in two rows of
Mg,,,,- Now we do a second Laplace expansion along the row containing ;
and z,. We get that

taining x; and x,, and the column containing x . Moreover, we have that

det(Me,,,) = ez det(Mg, ) + 01, (3)

where €; € {—1,1} and z"""" does not divide any summand in ¢;. Combining

and (3)) we get that

det(MGsiﬂ) = €p€1 (SC;-YHI’Z)Q det(MG ‘inl) + onziJrl’l(Sl + 50,

s

where egx;i“’lél + Jp does not contain a summand that can be divided by

(x;iJrl’l)Q. Since by the induction hypothesis det(Mg, ,, ,) # 0 it follows that

det(MGsi-H,) 5_'5 0.



Case 2: Eg,11\ Es;1-1 = {(25,25), (Tm, 7p)} with dege, ,  (2m) = 0 and
degGsi+1,1(xj) = O

As in Case 1 we do two Laplace expansions. First we do one along the row
containing x; and then we do one along the row containing x,, and x,. We get
that

_ Vi1, Vi1, Yit1,1
det(MGSiH) = 6061.%]»1 T det(MGsiJrsz + onjl 51 —+ 50,

where €g, €1 € {—1,1} and m}"“”m%“‘l does not divide any summand in eox;.”“‘lél—i-
do. Since by the induction hypothesis det(Mq ) # 0 it follows that

s;Hl—1

det(MGsi-H,) ;7é 0.

Case 3: Es,41 \ Es;vi—1 = {(25,%5), (Tm,xp)} with deggsﬁkl(%) = 0 and
This case is similar to Case 2. |

4.2 Graphs and matrices of type 2,

Let G = (V,E) be a graph of type 2, 5. So G contains at least s = (”Zk)
obviously different loops and cycles

Cl = (VCI’Ecl)?OQ = (V027E02)a .. 'aCS = (VCS;ECS)'

Without loss of generality we can assume that for all 1 <14 < s we have that

S
vi= (T, i, win) €EVe N | | Ve,

j=1,j#i
Let t := ("H;*l) and define
Vol Yaeve, @™ Xoeve, ¥ o Ypeve, T
Veal Yoeve, @™ Paeve, T o Xaeve, @
Ng(z1, 2o, ... 2)):=
Ve, Zzevcsxw,l Zmevcf%’z ervcsm,t

Now we want to show that det(Ng(z1,...,2;)) # 0. It suffices to prove that
the determinant of

Vel it 2> ... a*

Voo 23" x5 3"
Ng(z1,...,25,0,...,0) =

Vel vz ... )

is not identically equal to zero. Since |Vg,| # 0 for all 1 < 4 < s this follows
from Lemma [0l



4.3 An SRU for P,
Lemma 17. For everyl > 2- ("Zk) — 1 there is an SRU of size | for Py, j.

Proof. This Lemma can be proven as in [B, Theorem 8§]. |

5 Minimal cardinality of SRU’s for P, ;

In this section we will prove that there are no SRU’s of size at most 2- ("Zk) -2
for P, k. To do this, we will generalize the proof of [8, Theorem 2.7].

In this section let n € N\ {0} and k¥ € N. For all 0 < p < k define s, := ("Jrﬁ*l).
Remark 18. For all 0 < p < k there are ("+5 _1) monomials of degree exactly p

n+:ﬂ)

in n variables and there are ( N monomials of degree at most p in n variables.

Lemma 19. Let f,g € P, and let z;,z; be such that f(xz;) = g(x;) and
f(zj) = g(x;). Then we have that

k Sp
Z Z(apq — bpg) (™" + x;p’q) =0
p=0q=1
and
k Sp
Z Z(apq + bpg) (a7 — x;/p’q) =0,
p=1qg=1

where f(z) = ZI;:O 2217:1 apgx ™0 and g(x) = Z];:O 221):1 bpgr 7?2

Proof. Since f(x;) = g(x;) and f(z;) = g(x;) we have that

k  Sp

SO apg(@rt 4 a]r) = @) + flxy) = g(a:) + ()

p=0q=1
k Sp
= Z Z bpg (27" + x;p’q)
p=0qg=1
By rearranging this equation we get that

k Sp
Z Z(am — bpg) (" + x;p’q) =0.

p=0g=1



Moreover, we have that

k sp
Zzapq(ffzp’q_ ) Zzapq - ;/p’q):f(fi)_f(xj)

p=1q=1 p=0g¢q=1
k Sp
q Vp.a
= g( § § :bpq - )
p=0g¢=1
k Sp
_ E Yp.a Yp,q
- bP(I(‘T] - )
p=1g¢=1

By rearranging this equation we get that

3 g )@ — 757) =0, .

p=1g=1

Lemma 20. Let S = {z1,29,...,2,} CR™ with1 <r <2 (”:k) — 2. Choose
an l € N such that r = 21 if r is even and r = 2l + 1 if v is odd. Then there
exist cpq € R and dpqg € R with

k Sp

chpq wor® +xy) = 0= szp,q(mgf ) — xy0) (4)

p=0qg=1 p=0qg=1
for all 1 < i <1. Moreover, if r is odd,

k Sp
E , E  Cpg 7t =0

p=0g=1

Proof. First of all we assume that r = 2] < 2 - (”Zk) — 2 is even. We will look
at the other case later. For all 1 <14 <[ we want that

k Sp k Sp
Tp,q TYp,qa\ __ TYpia . Vpia)
E ,§ :Cpq (T97% +257*) =0 and E ,E :dpq (T97 " — @) = 0.

p=0g=1 p=0q=1

Define the following two [ x ("+k)-matrices X, and Xs:

k
| 2 O 1 1 z3t oz ... agt
Y1 Y2 ’Yxc 71 Y2 Yk
1 3 T R 24 1 =z x4 T
X1 = . . . . X2 =
Y1 Y2 Tk Y1 Y2 Yk
Lowg g w0 Xy Loxg gy o Ty

Since [ < (”+k) there are non-trivial vectors

(Cpq> =cc ker(Xl + XQ) \ {0} and (dpq) =de ker(X1 — X2) \ {O}

10



So in case r is even we are done. Assume now that r =2{+1<2- ("zk) —21is
odd. Consider the following two (I + 1) x (n+k)—matrices

k

1 ! e

1 23 oz o al
X3 =

L oxg g w0, Top 4

1 xg;+1 ngJrl x%ﬁl

and

1zt oz .. adt

1 x)? )"
X4 =

1 agy, ng-u c Ty

Thus X3+ X4 and X3 — X4 are matrices of dimension (I 4+ 1) x ("Zk) and since
I+1< ("+k) there are

(cpq) = c € ker(X3 + X4) \ {0} and (dpy) = d € ker(X5 — X4) \ {0}.

So in case r is odd the equations (4) hold. In case r is odd the (I + 1)-th row of
X3 + X4 ylelds

k sp kE  sp
g g 2epqr)re =0 = E g Cpgxymt = 0. |
p=0g¢=1 p=0g=1

Theorem 21. Any set S C R™ with |S| < 2- ("'};k) —24s not an SRU for Py, k.

Proof. Let 1 <r <2-. (”Zk) — 2 be arbitrary, let S = {z1,29,...,2,} CR" and
let the ¢,q and the dpq be as in Lemma [20} Let

Qpg = dpg + Cpq and bpg 1= dpg — Cpq

forall 0 < p < k and all 0 < ¢ < s,. Define f(z) = Zp 0 2oely Apgx77 and
g(z) = Zp OZ 1 bpg7Pe.
Claim 1: f#g
Since ¢ = (cpq) # 0 there are p, ¢ with ¢,, # 0. So
pq = dpg + Cpg 7 dpg — Cpq = bpq

and therefore, f # g.

11



Claim 2: f[S] = g[9]
By Lemma [20] we have that

ko sp ko sp
f(@2i-1) = Z Z(dpq + Cpg) Tty = Z Z(dpq — Cpg) )" = gl@2)

p=0g=1 p=0g=1
and
k Sp k Sp
f(@2) = Z Z(dpq + Cpg) o} = ZZ(dpq — Cpg)Tap "y = g(@2i-1)
p=0g=1 p=0g=1

for all ¢ with 2¢ < r. If r is odd we additionally have that

k  Sp k  sp
f(zr) = Z Z(dpq + Cpg) T} = Z Z dpqT Pt =

p=0g=1 p=0g=1
k  Sp
= Z Z(dpq = Cpg)a 7t = g(ar). u
p=0g¢q=1

Remark 22. In Lemma ﬁ we can choose d = (1,07 . ,O)T. Therefore, for

all sets S C R™ with |S] < 2- (":k) — 2 there are functions f,g € Py with
fIS]=glSland g=2—f.

Example 23. Let k =n =2 and
S :={(0,0),(0,4),(4,0),(4,4),(1,2),(2,1),(2,3),(4,1),(2,2),(4,2) }.
Then |S|=10=2"- (”:k) — 2. Indeed, for
flz,y) = =9+ 62 +y — 22* + 2y + o>

and
g(z,y) =2 f(z,y) =11 -6z —y+22* —zy — ¢°

which are both in P, ;, we have f[S] = g[S].
6 Linear maps with rank k

Let n,k € N\ {0}. In this section we are interested in the family of all linear
endomorphisms with rank k, i.e.,

Lr(R™,R") :={f(x) = Az | A is an n X n matrix with rank k} .

We will prove that the minimal size of an SRU for the family £ (R™ R") is
2n —1 k=1
2n—k+1 k>1

12



6.1 An SRU for £,(R",R)

For k = 1 we have already constructed an SRU of size 2n — 1 for the family of
all linear maps with rank at least k = 1, see Remark [7} So let n € N\ {0} and
k € N\ {0,1}. Now we want to construct an SRU for the family of all linear
maps with rank at least k of size 2n — k + 1.

Let S :={x1,22,...,Tan—k+1}. We look at the family F of all graphs on S in
which each vertex has indegree and outdegree at least one. Let U C R k+1
be a non-empty, open set. If a graph G € F has at least n obviously different

loops and cycles Cy,Cs, ..., C), we can find a matrix
2 n—1
|V01| Z:I;EVcl T Z-’»UEVCI Z e ZxEVCI z
2 n—1
|VC2| ZIGVCQ z ZIGVCQ z et ZIEV02 T
Mg (1, Ton—py1) =
2 n—1
|Vcn ZJL’GVC’n T ZJZGVCl x T ervcn T
and a non-empty open subset V' C U, such that Mg(z1,...,Zo,—k+1) has full
rank, i.e. non-zero determinant, for all (z1,...,Z2,—k+1) € V. This matrix can

be found as in [B, Section 3.3]. Now assume that G = (Vg, Eg) € F has less
than n obviously different loops and cycles. For all 1 < ¢ < 2n—k+ 1 we define
2 nfl).

iy

v; = (zg, @ ;

We will show later that we can find a matrix

1 Vi, -1 —Vj

1 Vi, -1 —Vj,
Ng(xy,. . Topn_p41) =

1 Vign_kt1 -1 “Vjon kit

such that (2;,,2;,) € Eg forall 1 <1 < 2n—k+1 and an open subset V' C U such
that Ng(x1,x2,...,T2n—k+1) has full rank for all (z1,za,...,Ton—k+1) € V.

Proposition 24. There is an SRU S = {s1,82,...,82n—k+1} C R™ for the
family of all linear maps with rank at least k.

Proof. Since the family F is finite, we can find an open set U C R?"~*+1 guch
that for all G € F, the matrix Mg (if G contains at least n cycles) or the matrix
Ng (if G contains less than n cycles) has full rank. Let T = {¢1,...,ton—g+1} C
R such that (t1,...,f2p—k41) € U. Forall 1 <i < 2n —k + 1 we define

S; i — (1,ti,t?, [N ,t?_l) and S := {81, ceey SQn_k+1}.

Assume that there are functions f(z) = Az and g(x) = Bz with rank(A4) =
rank(B) > k and f[S] = g[S]. Our goal is to show that f = g. We define a
graph G on S by drawing an edge pointing from s; to s; whenever f(s;) = g(s;).
There are two cases:

13



Case 1: G contains at least n cycles.
For all 1 < i < n let a; and b; be the i-th row of A or B respectively. In this
case we have that

Mc(a; —b;)) =0

for all 1 <4 < n. However, since dim(ker(M¢)) = 0, it follows that a; — b; =0
and therefore, A = B = 0 which is a contradiction.

Case 2: (G contains less than n cycles.
In this case, Ng has full rank, namely, for all (x1,...,29,—k+1) € U we have
rank(Ng) = 2n — k + 1. So,

dim(ker(Ng)) = 2n —rank(Ng) =2n—2n+k—-1=%k — 1.

For all 1 <7 < nlet a; and b; be the i-th row of A or B respectively. Note that
since f[S] = g[S] we have that

al 0
Ne (b? —\o
for all 1 <4 < n. However, since A has rank at least k, there exists ig such that
1<ip<nand
al
b%’Q ¢ ker(Ng).
20
In other words, f[S] # ¢[S] which is a contradiction. [ |
Let G € F and assume that G contains less than n obviously different loops

and cycles. The matrix Ng can be found as follows: First choose a maximal
nice sequence

Go = Vg, Ec,) CG1= Vg, Ee,) €+ CGm = (Va,,, Ea,,) CG

as in [B Proof of Lemma 12]. If |Eg, | > 2n — 1, shorten the nice sequence as
in [B, Corollary 15] to a nice sequence with |Eg, | = 2n — 1. Now look at the

matrix Lg corresponding to Gy, = (Vg,,, Eg,,). For v; = (z;,22,...,27" ') and
— 2 n—1 o 2 n—1 2 n—1
vj—(xj,xj,...,xj ) let 1o, 05 == (1,25,27,..., 2] TG TGy, T ). So

1v;v; is a row in Lq iff (z;,2;) € Eg,,. If Lg is a quadratic matrix, we can
show as in [5, Proposition 20] that for every open set U C R2"~*+1 there is an
open subset V C U with

det(Lg(xh [N ,$2n7k+1)) 75 0

for all (x1,...,%2n—k+1) € V. So all rows of Lg(x1,...,Tan—k+1) are linearly
independent if (x1,...,2on—k+1) € V. If Lg is not quadratic, let yy, ..., y; with
an | € N be new variables in R and add rows 1_wsg;_w9;_1 to L¢g, where
w; = (yj,y?-,...,y;’:ll) forall 1 <j <l

until we get a quadratic matrix Lg. Also for this matrix we can show as in
[5, Proposition 20] that for every open set U C R27"~*+1+l there is an open
subset V' C U such that for all (z1,22,...,%n,%1,...4) € V, Lg has non-zero
determinant. In other words, all rows in Lg are linearly independent. There-
fore, all rows in Lg are linearly independent. This also shows that all rows in
Ng(z1,...,@an—_k+1) are linearly independent whenever (z1,...,29,—g+1) € V.

14



6.2 Minimal cardinality of SRU’s for £, (R",R")
Lemma 25. Any SRU S of Li(R™,R™) contains a basis of R™.

Proof. Suppose not, and let {z1,...,2;} € S be a maximum linearly inde-
pendent subset. Then there exists two distinct basis transformation matrix
T1,T5 € R™ (i.e. Ty # T3) such that Tya; = e; = Tox,; fori=1,...,1.

Let C € R™*™ be an arbitrary linear map of rank k. Define f(x) := CTix and
g(x) := CTyx. We have f[S] = g[S] but f # g. Moreover, CT; and CT; are
rank k matrices, hence f,g are rank-k linear maps, contradicting S is an SRU
of L (R™ R™). |

Lemma 26. Let n € N\ {0,1} and let k € {1,2,...,n}. We define

m—2 k=1,
mpg =
2n—k k>1

Then every set S C R™ containing at most my elements is not an SRU for the
family L (R™,R™).

Proof. For k = 1 we have already seen that 2n — 2 points are not enough to form
an SRU (see Remark . So let k > 2. Let S C R"™ be a set with cardinality at
most mg. If S does not contain a basis, then by Lemma [25] S is not an SRU of
Lr(R™,R™). So we may assume that S contains a basis of R™.

Consider the following system of linear equations:
(a, ;) = (byxiq) for i =1,2,...1,

where we take indices cyclically; (a,b) € R?" are the unknowns. This system
has rank at most r < myg. So the null-space is at least k-dimensional. So we
can find k linearly independent vectors in the null-space, namely

(al,bl)T, (ag, bg)T, ceey (a;“ bk)T S RQH.

Observe that solutions for which a = b span at most a one-dimensional subspace
since ¢ = b implies (a,z;) = (b,x;) = c for all i and some constant c. Let
1 <4y < k be such that a;, # b;,.

Claim: Both, {a; | 1 <i <k} CR™ and {b; | 1 <4 < k} C R", are sets of
linearly independent vectors.

Proof of the Claim. Assume towards a contradiction that {a; | 1 < i < k} or
{b; | 1 <i <k} is linearly dependent; without loss of generality we will assume

that {a; | 1 <i <k} is linearly dependent, and a; = ZLQ A;a; for some \; € R.
So for all 1 < j < (we take the indices cyclically) we have that

k
<b17.’17j+1> al,xj <Z/\ a“xj> = Z)\i(ai,xj>
k
=> Xilbi,xj41) = <ZA buxm>
=2

15



Since S = {x1,...,2;} contains a basis of R”, it follows that

k

br=Y \ibi

and hence (ay,b)? = Zf:z Ni(ai, b)), So {(a;,b)T | 1 < i < k} is not a
linearly independent set. This is a contradiction. Mciaim

Now define the following n x n-matrices

T T
ay b

T T
as by

A= |adF and B:= | b}

0 0

Note that A # B because a;, # b;, and that by the claim both matrices A and
B have rank k. Moreover, A and B map S to the same set. Therefore, S is not

an SRU for the family of all linear maps with rank exactly k. |
1 1 4
Example 27. Let n := 3, k := 2 and S := 01,({2],1(6 . Then
0 1 3
0],12 is a maximal linearly independent subfamily. There are two
0 1
1 1 1 0
different basis transformations that map [0 | to |0 ] and | 2| to | 1], e.g.
0 0 1 0
1 -1 0 10 -1
Ty:=|0 %4 0] and Tp:=|0 0 1
0 —3 1 01 -2
100
Let C:= 10 1 0]. Then
0 0 O
I -3 0 10 -1
A=CTy=(0 § 0] and B=CT=(0 0 1
0 0 O 0 0

both have rank k. For f(x) = Az and g(z) = Bz we have f[S] = g[S].

16



1 1 3
Example 28. Let n:=3, k:=2 and S := 0],12],16 . Note that
0 1 4

S forms a basis of R3. We consider the following system of linear equations:

a1 = by + 2by + b3
ay + 20,2 + as = 3b1 + 6b2 +4b3
3(11 + 6(12 + 4&3 = b17

where a1, as,as, by, b, by are the unknowns. The following vectors of the form
(a1, as,as,b1,be,b3)T are in the null-space:

(1,5,-8,1,0,0), (2,11, -18,0,1,0)" and (2,15, -24,0,0,2).

So let, for example,

1 5 =8 1 00
A=12 11 -18 and B:={0 1 0
0 0 0 0 0 O

Both matrices have rank k. For f(x) = Az and g(x) = Bz we have f[S] = g[95].

7 Invertible linear maps

In this section, we aim to provide a concrete SRU for the family of all invertible,
linear maps

L, (R R") = {f(z) = Az | A € R™™" is invertible}.
Theorem 29. Let n € N\ {0}. For every i € {1,2,...,n} let e; be the i-th
standard basis vector of R"™ and define
x;=e; fori e {1,2,....,n} and z,y1:= Zj-ej.
j=1

Then S :={z1,22,...,Znt1} s an SRU for the family L, (R™ R™).

Proof. Assume towards a contradiction that S is not an SRU for £, (R™, R™).
So, we can find f,g € L, (R",R™) with f[S] = g[S] but f # g. Let A, B € R"*"
be invertible matrices with

f(x) = Az and g(x) = Bz

for all z € R™. Notice that since f # g, we have A # B. There is a permutation
of the set {1,2,...,n + 1} such that

A(Ei = Bl'ﬂ.(i)
for all i € {1,...,n+ 1}. Define C := B~'A. Then we have that

Cxi =an¢ forallie {1,...,n+1}. ()
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Note that 7 # id because otherwise we would have that C' is the identity matrix
and therefore A = B.

Case 1: w(n+1)=n+1.
By we have that
Ce; = e

for alli e {1,2,...,n}. Therefore,

n n n
Cxpi1=C Zjej = ZjC’ej = Zje,r(j).
j=1 j=1 j=1
But since w(n + 1) = n + 1 we have that by
n n

Zjej =Ty = Crpyg = Zjeﬂ'(j)

j=1 j=1
and it follows that 7 is the identity. This is a contradiction.

Case 2: w(n+1) =iy #n+1.
Let jo := n'(n+1) € {1,2,...,n}. So, Cej, = Tr(jo) = Tnt1 and we have
that

n n n n
Canp1=C > jej | =D iCej=| D dexiy | +do | D Je
j=1 j=1 i=L.i#io j=1

In particular, all entries of the vector Cz, 41 are non-zero. But by assumption
m(n+1) =ig #n+ 1 and therefore,

anJrl = Tr(n+1) = €ig-

So, some entries of the vector C'z,,41 are equal to zero. This is a contradiction.
[ |
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