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Abstract

A topological space X is continuously Urysohn if for each pair of distinct points
x; y 2 X there is a continuous real-valued function fx;y 2 C(X) such that fx;y(x) 6=
fx;y(y) and the correspondence (x; y) ! fx;y is a continuous function from X2 n
� to C(X), where C(X) carries the topology of uniform convergence and � =
f(x; x) : x 2 Xg. Metric spaces are examples of continuously Urysohn spaces with
the additional property that the functions fx;y depend on just one parameter. We
show that spaces with this property are precisely the spaces that have a weaker
metric topology. However, to �nd an example of a continuously Urysohn space
where the functions fx;y cannot be chosen independently of one of their parameters,
it is easier to consider a much simpler property than \continuously Urysohn", given
by the following de�nition: A topological space X is strongly separating if for each
point x 2 X there is a continuous, real-valued function gx such that for any z 2 X ,
gx(x) = gx(z) implies x = z. We show that a continuously Urysohn space may fail to
be strongly separating. In particular, the example that we present is a continuously
Urysohn space, where the Urysohn functions fx;y cannot be chosen independently
of y. This answers a question raised by David Lutzer.
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1 Basics and Background

Most of our notations and notions are standard and can be found in books
like [3] and [4]. A notion which has a di�erent meaning depending on the
context is the notion of a P -space. According to [4] we de�ne a P -space (with
capital P ) as follows:

A P -space X is a space in which every point is a P -point, where a point
x 2 X is a P -point if the intersection of any family of countably many
neighborhoods of x is still a neighborhood of x. Note that every isolated point
x, i.e., every point x with the property that fxg is open, is a P -point.

Searching for generalized metric spaces, Alexander V. Arkhangel0ski�� intro-
duced in [1] a certain type of spaces, which he could characterize as the class of
preimages of metric spaces under perfect surjections and which, in his termi-
nology, are paracompact p-spaces. Following [4], we will refer to these spaces
as paracompact p-spaces (with a small p).

About 30 years after Arkhangel0ski��'s work, in the early 1990s, E.N. Ste-
panova introduced in [6] and [7] a property which is necessary and suÆcient
for a paracompact p-space to be metrizable, namely:

De�nition: A topological space X is called continuously Urysohn if:

(i) For each pair of distinct points x; y 2 X there is a function fx;y 2 C(X),
where C(X) is the set of all continuous real-valued functions on X, such
that fx;y(x) 6= fx;y(y).

(ii) The correspondence (x; y) ! fx;y is a continuous function from X2 n�
to C(X), where C(X) carries the topology of uniform convergence and
� = f(x; x) : x 2 Xg.

For paracompact p-spaces, Stepanova found the following characterization
(see [6, p. 314]): A paracompact p-space is continuously Urysohn if and only if

it is metrizable.

The following de�nition will be useful in the investigation of the notion of
continuously Urysohn:

De�nition: If X is a continuously Urysohn space, then we call the corre-
sponding family ffx;y : (x; y) 2 X2 n�g a continuous separating family

for X.

Remark: In any continuous separating family we may replace the functions
fx;y by hx;y(z) = fx;y(z)� fx;y(x) so that we may always assume fx;y(x) = 0.

Lemma 1.1 If X is metrizable, then X admits a continuous separating fam-
ily.

PROOF. Let d(x; y) be the metric on X. For x 6= y de�ne fx;y(z) := d(x; z).
Then fx;y 2 C(X) and since jfx;y(z)� fx0;y(z)j = jd(x; z)� d(x0; z)j � d(x; x0),
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we get that the correspondence (x; y) ! fx;y is a continuous function from
X2 n � to C(X). Hence, ffx;y : (x; y) 2 X2 n �g is a continuous separating
family. a

Notice that the continuous separating family in Lemma 1.1 really depends
on only one of its parameters, namely on x.

As mentioned above, Stepanova showed in [6] that a paracompact p-space
is metrizable if and only if it is continuously Urysohn. Since then, the concept
of continuously Urysohn spaces has been intensively studied. During his in-
vestigations of the matter, David Lutzer observed that he did not know of any
continuously Urysohn space X in which one could prove that both parameters
are required in describing a continuous separating family for X.

This leads to the following de�nition:

De�nition: If X is a continuously Urysohn space, where the corresponding
continuous separating family depends on only one of its parameters, say x,
then this family is called a one-parameter continuous separating family

for X.

We can characterize topological spaces that admit one-parameter continuous
separating families as follows:

Proposition 1.2 A space X admits a continuous separating family ffx;y :
(x; y) 2 X2 n�g that depends on just one parameter if and only if X has a
weaker metric topology.

PROOF. IfX has a weaker topology induced by a metric onX, then the one-
parameter continuous separating family that works for the metric topology,
also works for the given space X. Conversely, suppose X has a continuous
separating family ffx;y : (x; y) 2 X2 n�g that does not depend on the second
parameter. Then, for any y; z 2 X n fxg, fx;y � fx;z. De�ne hx := fx;y (for
any y). Since the correspondence (x; y) ! fx;y is a continuous function from
X2 n� to C(X) (where C(X) carries the topology of uniform convergence),
the function x! hx from X to C(X) is continuous as well. As mentioned in
the remark above, we may assume without loss of generality that fx;y(x) = 0,
which implies hx(y) = 0 if and only if y = x. Thus, for any two distinct points
x; y 2 X we have 0 = hx(x) 6= hy(x). Hence, the correspondence x ! hx
is continuous, one-to-one, and since the topology on C(X) is metrizable, the
topology on X induced by the metric dX(x; y) := dC(X)(hx; hy) is a weaker
metric topology on X. a

In �nding examples of continuously Urysohn spaces that cannot admit one-
parameter continuous separating families, it is often easier to use a much more
simple topological property.
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De�nition: A topological space X is called strongly separating if for each
point x 2 X there is a gx 2 C(X), such that g�1

x [0] = fxg, where g�1
x [r] :=

fz 2 X : gx(z) = rg. In other words, a space is strongly separating if each
point is a zero-set of some continuous real-valued function.

The next result will be the key to showing that the space constructed in
Section 2 is not strongly separating.

Proposition 1.3 IfX contains a non-isolated P -point, thenX is not strongly
separating.

PROOF. Let x be a P -point of X which is not an isolated point and take
any continuous real-valued function gx with gx(x) = 0. For each n � 1, the set
On = g�1

x [(�1
n
; 1
n
)] is an open neighborhood of x. Hence, since x is a P -point,

g�1
x [0] =

T
fOn : n � 1g is a neighborhood of x, and thus, because x is not an

isolated point, g�1
x [0] 6= fxg. a

As an easy consequence we get the fact that a P -space, which does not
contain isolated points, cannot be strongly separating.

Remark: In Section 3 we will see that the converse of Proposition 1.3 does
not hold, even if we assume that the space is compact Hausdor�, i.e., we give
two examples of topological spaces which are compact Hausdor�, not strongly
separating and do not contain a P -point.

In the next section we construct an example of a continuously Urysohn space
which is not strongly separating. Moreover, the space is a paracompact P -
space which is not metrizable. Therefore, this is an example of a continuously
Urysohn space which does not allow to choose the Urysohn functions fx;y
independently from y. Hence, this answers Lutzer's question mentioned above.

2 The space S and its properties

For an ordinal number �, let �2 be the set of all functions � : � ! f0; 1g.
If � 2 �2, then dom(�) := �. Further, �2 denotes the set of all 0-1 sequences
of length �.

Let S := f� : � 2 �2 for some � < !1g and let �S := f�� : �� 2 !12g. For
� 2 S let O� := f�� 2 �S : � = �� � dom(�)g, where �� � � is the restriction of
the function �� to the set �. On the set S we de�ne a partial order as follows:
� 4 � if and only if dom(�) � dom(�) and � � dom(�) = �. We write � � �
for � 4 � and � 6= �. Further, use fO� : � 2 Sg as the base for a topology �
on the set �S and de�ne S := ( �S; � ). It is easy to see that S is a topological
space which does not contain isolated points.

The next few lemmata give some more properties of the space S.
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Lemma 2.1 S is paracompact.

PROOF. Clearly, S is Hausdor�. To see that S is paracompact we will show
that every open cover of �S has an open locally �nite re�nement. In fact we
show that for each open cover C of �S we �nd an open re�nement F of C such
that each �� 2 �S is in exactly one member of F .
Let C be an arbitrary open cover of �S. Let T := f� 2 S : 9O 2 C (O� � O)g.
Further, let minT := f� 2 S : � 2 T ^ 8� 2 S(� � � ! � =2 T )g. Now,
F := fO� : � 2 minTg is obviously an open re�nement of C and it is still
an open cover. To see this, take an arbitrary �� 2 �S. Because C is an open
cover, there is an O 2 C such that �� 2 O. Thus we �nd a �0 2 T such that
�� 2 O�0 and therefore also a � 4 �0 such that � 2 minT and �� 2 O�. Finally,
each �� 2 �S is in exactly one member of F : If O� \ O� 6= ; for two distinct
�; � 2 minT , then we have either � � � or � � �, but in both cases, either �
or � does not belong to minT . Thus, the open sets of F are pairwise disjoint,
which implies that each �� 2 �S is in exactly one member of F . a

Lemma 2.2 S is continuously Urysohn.

PROOF. First we de�ne for each ordered pair of distinct points ��; �� 2 �S an
element '(��; ��) 2 S as follows: '(��; ��) = � if and only if �� 2 O�, �� =2 O�

and for all �0 2 S with this property we have � 4 �0. In other words, let � be
the �rst ordinal such that ��(�) 6= ��(�) and let � := �� � � + 1. Now, for two
distinct points ��; �� 2 �S we de�ne f��;�� : �S ! f0; 1g as follows:

f��;��(��) =

8<
:
1 if �� 2 O'(��;��),

0 otherwise.

It remains to show that this function has the desired properties.

For �xed ��; �� 2 �S, the function f��;�� is a real-valued continuous function:
Obviously, f��;�� is real-valued, and because each set O� (for � in S) is both
open and closed, it is also continuous.

For each ��0 2 O'(��;��) and ��0 2 O'(��;��) we have '(��0; ��0) = '(��; ��), and hence
we get f��0;��0 � f��;��. Thus, the correspondence (��; ��) ! f��;�� is a continuous
function from �S2 n� to the space C( �S) of all continuous real-valued functions
on �S, where C( �S) carries the topology of uniform convergence. a

Combining the lemmata above we get the following:

Theorem 2.3 The space S is a continuously Urysohn space that is paracom-
pact, is a P -space, has no isolated points, and is not strongly separating. In
particular, S does not admit a one-parameter continuous separating family.
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PROOF. It remains to show that S is a P -space, has no isolated points, and
is not strongly separating.
Clearly, S has no isolated points. To see that each point �� 2 �S is a P -point,
let fUn : n 2 !g be an arbitrary set of neighborhoods of some �� 2 �S. For
n 2 ! let �n := minf� : �� 2 O� � Un ^ dom(�) = �g. Because !1 is regular
and uncountable, there is an � < !1 such that � > �n for all n 2 !. By
construction, O���� � Un, for all n 2 !, and we obviously have �� 2 O����,
hence, S is a P -space.
It now follows from Proposition 1.3 that S is not strongly separating, which
completes the proof of the theorem. a

3 Notes on strongly separating spaces

By de�nition we get that any completely regular space in which points
are GÆ-sets, must be strongly separating. Further, we get that continuously
Urysohn spaces, as well as strongly separating spaces, are always Hausdor�.
But a strongly separating space is not necessarily metrizable. To see this,
take any metric space which has a �ner, non-metrizable topology. Then the
space with respect to the �ner topology is still strongly separating, but by
construction not metrizable. As an example we like to mention the Baire space
of all functions from ! to !: With the usual topology, this space is a complete
separable metric space, and the �ner Ellentuck topology (introduced by Erik
Ellentuck in [2]) is not metrizable.

As noted in Proposition 1.3, the existence of non-isolated P -points is enough
to prevent a space from being strongly separating. But there are also spaces
without P -points that fail to be strongly separating (see examples below).

For an in�nite discrete set S, let the topological space �S be Stone-�Cech
compacti�cation of S, or in other words, the space of all ultra�lters over S.
The topology on �S is induced by the basic open sets A�, where A � S and A�

is the set of all ultra�lters containing A. Further, let �S nS be the remainder
of the Stone-�Cech compacti�cation of S, or in other words, the space of all
non-principal ultra�lters over S.

In the following two examples of compact Hausdor� spaces without P -points
that fail to be strongly separating, the spaces �!1 and �! n ! are involved.
These spaces are compact Hausdor� spaces which are not strongly separating.
To see the latter property, remember that if a space X is strongly separating,
then each point of X would be a zero-set of some continuous real-valued
function and hence, a GÆ-set, which would mean that the space X is �rst-
countable. But neither �!1 nor �! n ! is �rst-countable.

Let I denote the closed unit interval. Obviously, I has no isolated points
and does not contain P -points. So, with the facts concerning �!1 mentioned
above, we get:
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Example 3.1 The space �!1 � I is a compact Hausdor� space having no
P -points and no isolated points, and is not strongly separating.

Saharon Shelah has shown in [5, ChapterVI, x4] that it is consistent with the
usual axioms of set theory, denoted by ZFC, that �! n ! contains no P -point.
Since �! n ! has no isolated points, this leads to the following:

Example 3.2 It is consistent with ZFC that the compact Hausdor� space
�! n! has no P -points and no isolated points, and is not strongly separating.
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