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1. INTRODUCTION

Microlocal analysis is a paradigm for the study of distributions and their singularities.
Interesting distributions mostly arise in two ways:
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(1) as solutions of partial differential equations (PDE), and
(2) as integral kernels of operators used to localize, transform, or otherwise ‘test’ a
partial differential operator.

In these notes, we explicitly mostly focus on the first kind, and prove very general results
about solutions of linear PDE. The second kind will be present throughout, starting in §4,
though mostly not explicitly so.

Following a quick reminder on Schwartz functions and tempered distributions in §2, the
notes can be roughly divided into two parts. The first part (§§3—4) introduces pseudodif-
ferential operators (ps.d.o.s) on R™ and their basic properties. Consider for example the
Laplacian

. 1
2 —
A=Y "DI, D, = O (1.1)
j=1
which is a differential operator of order 2:
A € Diff?>(R"). (1.2)
Consider the operator L € Diff?(R") defined by
L:=A+1. (1.3)

Then L: .7(R") — .#(R") is invertible (see Exercise 2.1); what kind of object is its inverse
L~1? Morally, it should be an operator of order —2, since composing it with L gives the
identity operator, which has order 0. And indeed, L' is a pseudodifferential operator of
order —2,

L7t e U2(RM). (1.4)

By means of the Fourier transform and its inverse (see §2.1), we can write
@ tu)w) = 2m " [ [ R ) dy g (1.5

More generally, we shall define spaces of operators
UT(R"™), meR, (1.6)

acting on Schwartz functions (and much larger function spaces too, such as tempered dis-
tributions), with Diff™(R"™) C ¥™(R") for m = 0,1, 2, ..., and forming a graded algebra:

T(R™) o U (R™) € W (RM). (1.7)

Roughly speaking, a typical element A € ¥ (R") is defined similarly to (1.5), but with
(1+ |€]2)7 " replaced by a more general symbol a(z,£) with |a(z,&)| < (1 + |€]?)™/?; see §3
for the definition of symbols. In §4, we will define W™ (R™) precisely, prove (1.7), as well
as the boundedness of ps.d.o.s on a variety of useful function spaces. We will also discuss
generalizations of (1.4) for elliptic (pseudo)differential operators. (Ellipticity is a notion
concerning only the principal symbol of A; the latter is, roughly speaking, the leading order
part of a, i.e. a modulo symbols of order m — 1, and ellipticity is the requirement that
the principal symbol be invertible.) In particular, we shall prove that on closed manifolds
(compact without boundary) M, every elliptic operator L € W™ (M) is Fredholm as a map
on C*®(M), or as a map L: H*(M) — H*"™(M) (s € R); thus, we can solve the equation
Lu = f provided f satisfies a finite number of linear constraints, and then u is unique
modulo elements of the finite-dimensional space ker L.
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While there are many more interesting things one can say about linear elliptic operators
(index theory, Weyl’s law, degenerate or non-compact problems, etc.), we will switch gears
in the second part (§§6-8) of the notes and study non-elliptic phenomena. We begin in §6
by defining the wave front set of a distribution u € ./(R™), which is a subset

WF(u) C T*R™\ 0 = R" x (R"\ {0}), (1.8)

conic in the second factor. (Here, o is the zero section of the cotangent bundle T*R™.)
Its projection onto R™ coincides with the singular support, sing supp u; roughly speaking,
WF (u) measures where and in what (co)directions u is singular. As a basic example, see
Exercise 6.2, the wave front set of the characteristic function 1 of a smooth domain 2 C R™
is given by the conormal bundle of the boundary (minus the zero section)

WF(1g) = N*9Q\ o. (1.9)

Elliptic regularity can then be microlocalized: if L € U™ (R™) has principal symbol ¢, and
if u € '(R™) is such that Lu is smooth, then WF(u) is contained in the characteristic set
Char(L) of L: roughly speaking, the set of those (x,£) where ¢ is not elliptic. For example,
the wave operator

n
O=-D;+)» D2 (1.10)
j=1

on R%j;” has (principal) symbol £ = —o? + [£]2, [£]? = Py §j2-, where we write (o,&) for
the momentum variables (dual under the Fourier transform) to (¢, x). Thus,

Char(0) = {(t,z,0,£) € T*R™™\ 0: 0 = [¢]*}. (1.11)
As a very concrete example, note that
u=H({t—z) = DOu=0, (1.12)
and indeed WF (u) C Char(O) by (1.9).

The theorem on the propagation of singularities, proved in §8, gives a complete descrip-
tion of the structure of WF (u) for u a distributional solution of an equation Lu = f € C*:
it states that WF(u) C Char(L) is invariant under the flow along the Hamiltonian vector
field of the principal symbol of L. In the case of O, this flow, for time s € R, maps (¢, z,0,§)
to (t — 2s0,x + 2s€, 0,&); use this to verify the theorem for (1.12)!

We shall prove this using the method of positive commutators, which showcases the
utility of ps.d.o.s as tools, rather than as interesting operators in their own right as in (1.4),
and exploits the link between symplectic geometry and ps.d.o.s (a form of the ‘classical—
quantum correspondence’). More importantly, this is a very flexible method, which allows
one to control solutions of PDE also in more degenerate situations—which arise frequently
in applications. We give one example concerning radial points in §9.

As an application which makes use of all these tools, we sketch the proof of resonance
expansions for solutions of linear wave equations on a spacetime of interest in General
Relativity (de Sitter space) in §10.

These notes draw material from Richard Melrose’s lecture notes [Mel07], available under
www-math.mit.edu/~rbm/im190.pdf, the textbooks Microlocal Analysis for Differential
Operators: an Introduction by Grigis and Sjostrand [GS94] and Partial Differential Equa-
tions by Michael E. Taylor [Tay11], lecture notes by Jared Wunsch [Wun13], lecture notes
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by Andrés Vasy [Vas18], as well as my own notes from lectures by Rafe Mazzeo and Andras
Vasy at Stanford University and Ingo Witt at the University of Gottingen.

Hormander’s reference works [Hor03, Hor05, Hor07, Hor09] go significantly beyond the
material developed here up until §8. The radial point estimates and applications to general
relativity in §§9-10 however are not covered there; the book by Dyatlov—Zworski [DZ19]
contains further material on these. We have limited references to the literature to a bare
minimum (or quite possibly even less than that), in particular with regards to the earlier
stages of the development of microlocal analysis which however are described in detail in
Hormander’s treatise. All chapters except the last end with a list of exercises; some of these
exercises are taken directly from the literature cited above.

Acknowledgments. I am grateful to the participants of my courses on microlocal analysis
at MIT and ETH Ziirich in the spring semesters of 2019 and 2020 and the fall semester of
2021 for many suggestions and corrections. Special thanks go to Yonah Borns-Weil, Jesse
Gell-Redman, Cosmin Manea, Aaron Moser, Franziskus Steinert, Ethan Sussman, Tobias
Weich, and Jared Wunsch for corrections and suggestions.

2. SCHWARTZ FUNCTIONS AND TEMPERED DISTRIBUTIONS

Let k € N = {1,2,3,...}. For an open set Q C R", we denote by C¥(Q) the space of
E times continuously differentiable functions (with no growth restrictions), and C*(Q2) =
Nien CF(Q). By CF(Q) C C*(2) we denote the space of functions which are bounded,
together with their derivatives up to order k. We denote by C¥(Q) the space of compactly
supported elements of C¥(2). Unless otherwise noted, all functions will be complex-valued.

We use standard multiindex notation: for x = (z1,...,2,) € R and a = (a1,...,ay,) €
Ng, we set
= 1
29— Hx]%'7 9% =901 ... 9%, DY :=DSl... Do, D = Za' (2.1)
j=1

When the context is clear, we shall often simply write D := Df, and D; := D,,;. We also

put
n n
la] = Zaj, al = Hozj!. (2.2)
j=1 J=1
We will moreover use the Japanese bracket, defined for x € R™ by
(@) = (L4 |2V (2.3)

Definition 2.1 (Schwartz space). The space .7 (R™) of Schwartz functions consists of all
¢ € C°(R™) such that for all k£ € Ny,

@1k == sup ¥ D ()| < oo. (2.4)

la]+18]<k

Ezample 2.2. We have exp(—|z|?) € .7(R"). Moreover, we have a (continuous) inclusion
CP(R") — (R™) with dense range. Recall that there are lots of smooth functions with
compact support; indeed, when K C U C R” with K compact and U open and bounded,
there exists ¢ € C°(R™) with ¢ =1 on K and ¢ =0 on R"\ U.
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Equipped with the countably many seminorms || - ||z, - (R") is a Fréchet space. Directly
from the definition, we have continuous maps

zj: S(R") = S R") (¢ z;9),
Dj: S(R") = Z(R") (¢~ D;¢).

Given a € Cp°(R"), pointwise multiplication by a is also continuous. Furthermore, integra-
tion is a continuous map

(2.5)

/: Z(R") — C. (2.6)

Indeed, this follows from

[ s@de| = | [ @7 (@ o) da| < Culollun (27)
Other useful operations are the pointwise product
JR") x Z(R") 3 (¢,¢) = ¢ € S(R"),  (¢¥)(z) = ¢(z)¢(2), (2.8)

and the exterior product
S R") x S (R") 3 (d,9) = oWy € S(R™), (9BY)(z,y) = d(x)v(y). (2.9

Definition 2.3 (Tempered distributions). The space .#/(R™) of tempered distributions is
the space of all continuous linear functionals u: . (R") — C, equipped with the weak
topology: the seminorms are |uly := |u(¢)| for ¢ € .#(R™). We shall usually write (u, ¢) :=

u(¢)-
FEzample 2.4. The §-distribution is defined by (4, ¢) := ¢(0). We have 6 € ./(R") since
(6, )] < ll¢llo-

Combining (2.6) and (2.8), we can define a continuous map

SR 3¢9 -Tye S RY), Ty(v)= [ ¢()¢(z)da. (2.10)
R”
Proposition 2.5 (Functions as distributions). The map ¢ — Ty is injective, and has dense
range in the weak topology.

Proof. Regarding injectivity: Ty(@) = [gn |¢(x)*dz = 0 implies ¢ = 0. To prove the
density, it suffices to show that, given u € #/(R") and ¢1,...,¢n € L (R") as well as
any € > 0, there exists ¢ € /(R") such that |(u,¢;) — Ty(¢;))| < eforall j =1,...,N.
Assuming, as one may, that the ¢; are orthonormal with respect to the L?(R™) inner
product, this holds (with ‘< €’ replaced by ‘= 0") for ¢ = ijﬂ(u, $;)¢;j. A better proof,
based on a mollification argument, is suggested in Exercise 2.2. O

Now on the one hand, we can extend the maps (2.5) by duality to ./(R™): indeed, for
ue S (R") and ¢ € (R"), we define zju, Dju € ' (R™) by

(xju, d) == (u,z;0), (Dju,@) = (u,—D;d). (2.11)

On the other hand, when u € .7 (R"), then Ty . (¢) = Tu(x;¢) and Tp,u(¢) = Tu(—D;é),

i.e. on the image of .(R") inside of .#/(R"), the definitions 2.11 agree with the usual

definitions of multiplication and differentiation of Schwartz functions. The density state-

ment of Proposition 2.5 then shows that (2.11) defines the unique continuous extensions of
multiplication or differentiation from .7 (R") to .7/ (R"™).
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Similarly, by duality and starting from (2.9), pointwise multiplication by a Schwartz
function extends in a unique manner to a continuous map on .#’(R™); more generally, this
is true for multiplication by a function in Cp°(R").

Other notions, which will be significantly refined later, are:
Definition 2.6 ((Singular) support of a distribution). Let u € ./(R™). Then the support,

supp u, is the complement of the set of z € R™ such that there exists x € C2°(R"), x(z) # 0,
such that yu = 0.

The singular support, sing supp u, is the complement of the set of x € R™ such that there
exists x € C°(R™), x(x) # 0, such that xu is smooth, i.e. xyu =Ty, ¢ € Z(R").

Ezample 2.7. We have suppd = singsuppd = {0}. For u =4 + e~lel® ¢ ' (R™), we have
suppu = R™, but sing suppu = {0} still.

2.1. Fourier transform and its inverse. We define the Fourier transform of ¢ € .(R")
by

FO© =) = [ o), e (212)
and the inverse Fourier transform of ¢ € . (R™) by

Flu)e) = 20 [ e e rn (213)
As in (2.7), one finds || F¢|lo < Cpl|@|lns1 and || F 1|0 < Cnll@|lnt1. Moreover, we have

F U Dgo) = —xF o, FU&o) = Doy F o,

using integration by parts for the first and third statement; reading these from right to left
shows that

[Follk < Crllpllk+nt1 ¥V k € No, (2.15)
hence the (inverse) Fourier transform preserves the Schwartz space:
F, F L. . Z(R") - 7 (R"). (2.16)

Note then that for u, € ./ (R"™),
(Fu, o) = / / e (z) d $(€) dE = e () €) da d
n JRn Rn xR™
= (u, F1).

This allows us to extend F, F~! to maps on tempered distributions,
F, F 1. 7' R") - ' (RY), (2.18)
and the formulas (2.14) remain valid for ¢ € %/ (R"™).

Ezample 2.8. The Fourier transform of & is calculated by (Fd,¢) = (8, F¢) = (0) =
Jon () dz, so Fé = 1.

(2.17)

We recall the proof that F and F~! are indeed inverses to each other.

Theorem 2.9 (Fourier transform and its inverse). We have Fo F ' = F o F =1 on
Z(R™) and &' (R™).
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Proof. Let A := F~1F: Z(R") — (R"). By (2.14), we have AD,, = F ' F = D,/ A
and Az; = F~1(=Dg,)F = x;A, i.e. A commutes with differentiation along and multipli-
cation by coordinates. Given ¢ € ./(R") and x¢ € R", we can write

n 1
$(x) = d(xo) + D ¢(x)(xj — (20);), ¢j(z) = /0 (0;¢)(x0 + t(x — xo))dt.  (2.19)
j=1

The fact that ¢; is in general not Schwartz is remedied by fixing a cutoff x € CX(R"),
identically 1 near xg, and writing ¢(z) = x(z)o(z) + (1 — x(z))p(z), so

$(x) = x(@)d(wo) + D &;(x)(x; — (x0);),
j=1

¢j(x) = x(2)¢;(x) + W

(2.20)
(zj — (%0);)-

Since A annihilates every term in the sum, we have (A¢)(zo) = ¢(zo)(Ax)(zo); note that
the constant (Ax)(xo) here does not depend on ¢, and not on the cutoff x either (since the
left hand side does not involve x at all).

The same cutoff x can be used to evaluate A¢ at points x close to zg; but
Dy (Ax)(2) = A(Dz; x)(z) =0 (2.21)

for x € x~(1). We conclude that A = ¢l for some constant ¢ € C. One can find ¢ by
explicitly evaluating

Fle 17y (g) = 72~ lP/4 - F=1(e= kP4 (g) = q/2e 1217, (2.22)
so ¢ = 1 indeed. The proof that FF~! = I is completely analogous. ]

We also recall that F is an isomorphism on L?(R™); this follows from the density of
Z(R™) in L?(R™) and the following fact:

Proposition 2.10 (Plancherel’s theorem). For ¢ € . (R"™), we have
||]:¢||L2(Rn) = (27T)n/2”¢“L2(R")‘ (2.23)

Proof. Analogously to (2.17), we have

JEo©i© =0 [6@F T sves@). (220
Plugging in ¢ = F¢ proves the proposition. O
2.2. Sobolev spaces and the Schwartz representation theorem. Using the Fourier
transform, we can define operators which differentiate a ‘fractional number of times’:
Definition 2.11 (Fractional derivative operators on R™). For s € R (or s € C), we let

(D) = (1+|DP)2: &' (R") > &' (R"), (D)* = F ()" F. (2.25)

This agrees for s € 2Ny with the usual definition, and for s = —2 with the operator (1.4).
What is implicitly used here is that multiplication by (1 4+ [£|?)*/2 is continuous on .7 (R™).
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Definition 2.12 (Sobolev spaces on R™). For s € R, the Sobolev space of order s is defined
by

HS(R™) := {u € .7'(R"): (D)*u € L*(R")}. (2.26)
With the norm

lull s == [{D)*ull> = (2m) /2| (€)*Ful 2, (2.27)

it is a Hilbert space.

Ezample 2.13. The J-distribution at 0 € R" satisfies § € H*(R") for all s < —n/2.

Since multiplication by (x)" is continuous on ./ (R™) for any r € R, we can more generally
define weighted Sobolev spaces,

(x)"H*(R™) := {u € S (R"): () "u € H*(R")}. (2.28)

These are Sobolev spaces with squared norm
[l Ty ars ey 7= 142) ™" Fre emy- (2:29)
The second part of the following is (a version of) the Schwartz representation theorem:

Theorem 2.14 (Schwartz representation theorem). We have

@)= () @ H®Y, #®)= ] @B @Y. (2.30)
s,reR s,reR
Proof. See Exercises 2.4 and 2.7. (]

It easily implies (using Sobolev embedding, Exercise 2.4) that every tempered distribution
is a sum of terms of the form x*DPa, a € CY(R™).

2.3. The Schwartz kernel theorem. The Schwartz kernel theorem is a philosophically
useful fact, establishing a 1-1 correspondence between the ‘most general’ operators in
the present context—mapping Schwartz functions to tempered distributions—and distri-
butional integral kernels, also called Schwartz kernels. To state this, we note that any
distribution K € .¢/(R™") induces a bounded linear operator . (R™) — .#/(R"™) by
integration along the R™ factor, to wit

(Oko)(¥) == (K, v K ) = / < K(z,y)6(y) dy> V(z)dz, ¢€S(R™), ¥ € S(R").
(2.31)

Rm
Formally, one usually writes

(Ok¢)(z) = - K(z,y)p(y) dy. (2.32)

Theorem 2.15 (Schwartz kernel theorem: Euclidean case). The map K — Ok is a bijec-
tion between ' (R"*™) and the space of continuous linear operators . (R™) — &' (R™).

Proof. See Exercises 2.8 and 2.9. U
Ezample 2.16. The Schwartz kernel of the identity operator I on .(R") is given by
K(z,y)=d(z—y), =zy€eR" (2.33)
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2.4. Differential operators. Given a, € C;°(R") for a € N, |a| < m, we can define the
m-th order differential operator

A= " an(z)D" (2.34)
|| <m

Since multiplication by a,, is continuous on . (R"™), A defines a continuous linear operator
on .(R"). By duality, A extends (uniquely) to an continuous linear operator on .’ (R™).

Definition 2.17 (Differential operators). By Diff™(R"™), we denote the space of all opera-
tors A: .Z(R") — L (R") of the form (2.34).

Given A as in (2.34), let us define the full symbol of A to be
o(A)(2,8) = > aa(z)E". (2.35)

laj<m

Then, in view of (2.14), we can write

(Au)(z) = (2m)™" / e G (A) (x, €)it(€) d

n

—en [ ([ ety utn ay) de

which we read as an iterated integral. On the other hand, the Schwartz kernel K of A is
easily verified to be

(2.36)

K(z,y) = Y aa(@)(D)(x —y), (2.37)

|a]<m
so (formally) we have

K(z,y) = (27)" / =D E0(p €)de, (2.38)

n

which is indeed (rigorously) correct if one reads this as the Fourier transform of a in &.

Proposition 2.18 ((Pseudo)locality of differential operators). Let A € Diff ™ (R™). Then
A is local, that is,

supp Au C suppu, u € .S (R"), (2.39)

and A is pseudolocal, that is,

sing supp Au C singsuppu, u € .%'(R"). (2.40)

The proof is straightforward. From the perspective of the Schwartz kernel K of A, (2.39)
is really due to the fact that K(z,y) is supported on the diagonal x = y, while (2.40) is
really due to the fact that K(x,y) is smooth away from = = y. (That is, adding to K an
element of . (R?") preserves (2.40), but destroys (2.39).) Since as microlocal analysts we
are interested in singularities, it is the property (2.40) which we care about most; and this
will persist when A is a pseudodifferential operator. On the other hand, the only continuous
linear operators A: . (R") — .(R"™) satisfying condition (2.39) are differential operators,
see Exercise 2.11.

We mention three features of differential operators concerning their principal symbol.
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Definition 2.19 (Principal symbol). Given m € Ny and a differential operator A =
Z\a|§m aq(x) D, its principal symbol is defined as

o (A)(@,8) = D aa(@)E", (2.41)

|a|=m

i.e. keeping only the terms of order m.

Note that the principal symbol depends on a choice of m. For example, one may regard
an operator A € Diff""(R") as an operator of order m + 1, and as such its principal symbol
o t1(A) vanishes. Put differently, for A € Diff(R"), we have ¢(A) = 0 if and only if
A € Diff " H(R™).

Proposition 2.20 (Behavior of the principal symbol). Let A € Diff ™" (R").

(1) Define the adjoint A* of A by [pn(A*u)(z)v(z)de = [p, u(z)(Av)(z)dz, u,v €
C(R™). Then A* € Diff™(R"™), and the principal symbol is

0" (A%)(x, &) = 0™ (A)(x,§). (2.42)
(2) Let B € Diff"™ (R™). Then Ao B € Diff ™™ (R™), and
o™ (Ao B)(x,8) = o™ (A)(x, €)0™ (B)(w, ). (2.43)

(3) Let k: R™ — R™ be a diffeomorphism which is the identity outside of a compact
set. Define Ay S (R") — L (R") by (Aeu)(y) = (A(uo 1)) (k(y)). Then A, €
Diff ™" (R™), and the principal symbols are related via

o™ (Ax)(y,m) = ™ (A) (w(y), (W' (y)7) ') (2.44)
Proof. Exercise 2.13. O

Thus, the principal symbol is well-defined as a function on T*R"”, and it is a map—
from the (non-commutative) algebra Diff(R") = |J,,cy, Diff"(R") into the commutative
algebra of functions a(x,&) which are homogeneous polynomials in £ with coefficients in
Cp°(R™)—with a number of useful properties as stated in Proposition 2.20.

2.5. Exercises.
Exercise 2.1 (Shifted Laplacian). Let A =371, Dfﬁj.

(1) Show that A +1: .'(R™) — /(R") is an isomorphism.
(2) Find a non-trivial solution u € C>*(R") of (A + 1)u = 0. Why does this not
contradict the first part?

FEzercise 2.2 (Density of C° in tempered distributions). We will prove in a construc-
tive manner that CS°(R™) C ./(R™) (or more precisely the image of C°(R™) under the
map (2.10)) is dense.

(1) Let x € C(R™), x(0) = 1. Let ¢ € L (R™). Put ¢(z) = x(ex)p(x). Show that
¢e — ¢ in S (R™) as € \( 0. Conclude that the space

&'(R") := {u € S'(R™): suppu is compact} (2.45)
of compactly supported distributions is dense in .7/ (R").
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(2) Let ¢ € C°(R") and put Y(x) = ¢Y(—x). For ¢ € .7(R"), define the convolution of
¢ with ¢ by

(¢* ) (x) = s ¥)U(y) dy. (2.46)

Show that ¢ * ¢ € .#(R"). Define the convolution of u € .#/(R") with ¢ by
(u* 1, @) = (u,¢*1)). Check that this is the correct definition when u € .7 (R™).

(3) Let now x € CX(R"), [en x(2)dz = 1, and set xe(x) := ¢ "x(e 'z). Show that
Xe ¥ ¢ — ¢ in . (R™) as € \, 0.

(4) When u € &'(R") and ¢ € CX(R™), show that u x ¢ € C(R™), that is, there
exists v € C°(R™) so that u v = T,. (Hint. Show that one can define (u * v, ¢)
consistently for ¢ € .#/(R™); define a candidate for v by using d-distributions for ¢.
In order to show that u * ¢ = T, take any ¢ € .(R"), apply both sides to x. * ¢
and let € — 0.)

(5) Combine the previous parts to conclude that C°(R™) C .&/(R™) is dense.

FEzercise 2.3 (Fourier transform of compactly supported distributions). Let u € &’(R")
(see (2.45)). Show that Fu is an analytic function, and there exist C, N € R so that
(Fu)(©)] < C&) for all € € R

Ezercise 2.4 (Sobolev embedding). Let s > n/2.
(1) Prove that there exists a constant Cs < oo such that for ¢ € .#(R"), the estimate

1@/l zoemry < Cisll @l 170 mny- (2.47)

holds. (Hint. Pass to the Fourier transform.) Deduce that H*(R™) C CJ(R™).
(2) Show more generally that H*(R") C CF(R") for s > n/2 + k.
(3) Prove the first equality in Theorem 2.14.

Ezercise 2.5 (Algebra properties of Sobolev spaces). Let n € N.

(1) Let u,v € #(R™) and recall that their convolution is defined by (u * v)(z) =
Jzn u(y)v(x —y) dy. Show that F(uxv) = F(u)F(v). Use this to find a formula for
F(uw).

(2) Define the function

()
(n)?s(§ —m)**’
Show that supgegn [gn (&, 1) dn < co.

(3) Let s > § and u,v € H*(R"). Show that uv € H*(R"), and prove an estimate

luvl| grs@wny < Cllull s ey |v]| s @ny for some constant C' which is independent of
U, .

Ezercise 2.6 (Duals of weighted Sobolev spaces). Show that (x)~"H~™(R") is the L?-dual
of (x)"H™(R™). That is, show that the sesquilinear pairing

a(§,m) = §neR™ (2.48)

(= =2 SRY) X L(RY) 3 (¢, ¢9) = | pa)ip(x)de (2.49)

R"
extends by continuity and density to

(—, =)p2: ()" H™R") x () "H ™(R") = C, (2.50)
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and that the map
()" H™R™) — ((z) "TH ™R™))", ¢+ (¢, —)12, (2.51)
is an antilinear isomorphism.

Ezercise 2.7 (Schwartz representation theorem). Prove the second equality in Theorem 2.14
as follows.

(1) Given u € .#'(R"™), there exist C, k such that |u(¢)| < C||o||x-
(2) Let Ry, = (z)~%(D)~%. Then R, is an isomorphism on .(R™) and .’(R™). More-
over, for sufficiently large ¢, we have || R;¢[|x < C||¢[|2®n) (for some other constant
(). (Hint. Use the previous exercise. It may be convenient to take s there and ¢
here to be even integers.)
(3) Denoting R} = (D)~9(x)~%, deduce that Rj]u € L?*(R"), and conclude that u €
(z)TH4(R™).
FEzercise 2.8 (Schwartz kernel theorem I.). Prove the injectivity claim of Theorem 2.15.
(Hint. Let K € .%/(R™""™) be given with Ox = 0. Given ¢ € . (R"*"™), you need to show
that (K, ¢) = 0. You know that this is true when ¢ is a finite linear combination of exterior
products ¢y K)o, 11 € S (R"), 19 € L (R™). Try to use the Fourier transform, or Fourier
series, to approximate ¢ by such linear combinations. It may help to first reduce to the
case that supp K is compact.)

Ezercise 2.9 (Schwartz kernel theorem IL.). Let A: .(R™) — .#”(R™) be continuous. Prove
the surjectivity claim of Theorem 2.15 as follows.

(1) The continuity of A is equivalent to the statement that for all ) € .#(R™) there
exists N > 1 such that |(A¢, ¥)| < N||¢||n for all ¢ € .7 (R™).
(2) There exist N, M € R such that A extends by continuity to a bounded operator

Az (@)™ MHEM®R™) - (2)VH-N(R™). (2.52)

(Hint. An estimate from Exercise 2.7 will come in handy, in the form ||¢|; <
Crll¥ll (gy-s g ey for given k and sufficiently large M.)
(3) The operator

A i= (D) N2 gy N D)y M2 )M (2.53)

is bounded from H~"/271(R™) to C)(R")
(4) Evaluate A’d, for y € R™ and deduce that A’ has a Schwartz kernel K’ € Cp(R™™™).
(5) By relating the Schwartz kernels of A" and A, prove that A = O for some K €
yI(Rn—‘rm)‘
FEzercise 2.10 (Operators with Schwartz Schwartz kernels). Let A: .7(R") — /(R") be
continuous, and denote by K € .#/(R?") its Schwartz kernel. Show that K € .7 (R?*") if

and only if A maps . (R") — .(R") and as such moreover extends by continuity to a
bounded map .'(R") — . (R"™).

FEzercise 2.11 (Peetre’s Theorem). Let A: .(R") — .#(R") be a continuous linear op-
erator, and suppose for all v € #(R"™), we have supp Au C suppu. Prove that A is a
differential operator. (Hint. Show that the Schwartz kernel K of A has support in the
diagonal {z = y}. Then show that it must be a locally finite linear combination of (differ-
entiated) d-distributions with smooth coefficients. To prove that A is a differential operator
of finite order, exploit that K is a tempered distribution.)
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Ezercise 2.12 (Principal symbol via oscillatory testing). Show that the principal symbol
0™ (A) of A € Diff"(R™) captures the ‘high frequency behavior’ of A in the following sense:
for xg,& € R™, we have

0" (A)(x0,&) = lim )\_m(e_“‘fo'Aei’\fo')(xo), (2.54)
A—00
where €0 is the function z — €%0°%,

Ezercise 2.13 (Behavior of the principal symbol). Prove Proposition 2.20.

3. SYMBOLS
As a first step towards the definition of pseudodifferential operators, we generalize the
class of symbols a(z, ) from polynomials in £ to more general functions:

Definition 3.1 (Symbols). Let m € R, n, N € N. Then the space of (uniform) symbols of
order m

S™(R™;RY) € C®(R"™ x RY) (3.1)
consists of all functions a = a(x, ) which for all « € Nj}, 5 € Név satisfy the estimate
070 alx,€)| < Cas(&)™ 1. (3.2)
for some constants C,3. We also write
S™(RN) := S™(R%RY) (3.3)

for symbols only depending on the symbolic variable &.

The gain of decay upon differentiation in the &-variables is often called symbolic behavior
(in &).

Remark 3.2 (Alternative notation). Sometimes these symbol classes are denoted S™ (R™; RY),
the subscript ‘oo’ indicating the uniform boundedness in C* of the ‘coeflicients’, i.e. the
z-variables. There exist many generalizations and variants of the class S™(R™;RY), such
as: symbols of type p,d; symbols which in addition have symbolic behavior in z (these
are symbols of scattering (pseudo)differential operators); or symbols with joint symbolic
behavior in (z, &) (symbols of isotropic operators). See [Mel07, §4] and [Hor71b, §1.1].

Equipped with the norms given by the best constants in (3.2), or more concisely

o= sup  max (&)~ 20fae, Q). (3.4)
(z,6)€Rn xRN lal+|B|<k

the space S (R"; RN ) is a Fréchet space. Directly from the definition, we note that differ-

entiations
D%: S™(R™RY) - S™(R™MRY),
B m(mpn. N m—|B| (mn. N (35)
Dg: S™(R%RY) = S (R™;R™)
are continuous.

Ezample 3.3. Full symbols of differential operators of order m on R™, see (2.35), lie in
S™(R™ R™). A special case of this is: given a € C;°(R"™), the function (x,&) — a(z) lies in
SO(R™;RN) (for any N).

Example 3.4. Let m € R. Then (§)™ € S™(R™;R™). (See Exercise 3.1.)
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Proposition 3.5 (Multiplication of symbols). Pointwise multiplication of symbols is a
continuous bilinear map

S™ERY RN x 8™ (R™RN) — s (R RY). (3.6)

Proof. This follows from the Leibniz rule: for a € S™(R™%RY), b € S™ (R*RY), and
a e Nj, BENéV,we have

10907 (a- b)| =

> (5)(5)exo e s

a+al'=a

BI+B"=p

S Z Coc’ﬁ’ca”ﬁ” <£>m+m/7|5"7|6”|
Siens
< Coglg)mt™ 1AL 0

‘We note the trivial continuous inclusion
m<m = S™R%RY)C S ERYRY), (3.7)

hence the S™(R™;RY) give a filtration of the space of all symbols | S™(R™;RN). In
the other direction, we define the space of residual symbols by

SR RY) = (] S™RYRY). (3.8)
meR

meR

Equipped with the norms || - ||, m, k € N, this is again a Fréchet space.

Ezample 3.6. We have . (R" x RY) C §7°(R"; R"), or more generally C°(R", #(RY)) C
S~°°(R™; RY). Moreover, given a cutoff y € C3°(RY), its pullback along R" xRN > (z,£) +
¢, ie. (x,8) — x(§), is a residual symbol.

While the inclusion (3.7) never has dense range for m < m/, there is a satisfying replace-
ment:

Proposition 3.7 (Density properties of symbol spaces). Let m < m’. Then S~ (R™;RY)
is a dense subspace of S™(R™RN) in the topology of S™ (R™;RN). In fact, a stronger
statement is true: for any a € S™(R™;RY) there exists a sequence aj € S™°°(R™; RN) which
is uniformly bounded in S™(R"™;RN) and converges to a in the topology of S™ (R™;RN).

Proof. Fix a cutoff function y € CP(RY) c S7°(R™;RY) (see Example 3.6) which is
identically 1 in || < 1 and identically 0 when [£| > 2. By Proposition 3.5, we have

aj(z,€) = a(z,€)x(¢/7) € ST°(R™RY). (3.9)
To prove the proposition, it suffices to show, in view of Proposition 3.5, that
X;(€) = x(£/7) (3.10)

is bounded in S°(R™) and converges to 1 in the topology of S¢(RY) for all € > 0. Regarding
the former, we have |x;(£)| < [/x|lo,0 for all j, while for || > 1 we have 8?)(]-(5) = 0 for
€] < 1, and

1€17107%5(6) = xs(6/5), x8(8) = 11O X) () € C(RY). (3.11)
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Regarding the latter, we note that supp(x; — 1) C {|{] > j}, hence

IX(&/7) — 1 < 57€)" (3.12)

For derivatives, we note that the support observation and (3.11) give
171710 (x5 (6) = 1| = 1€11717410 x5(€)] < 5 Ixs(€/9)]- (3.13)
Thus, ||x; — 1|lex < Crej™ ¢ — 0 as j — 00, as desired. O

3.1. Ellipticity. We now generalize the key property of the symbol of the operator L =
A+1in (1.3).

Definition 3.8 (Elliptic symbols). Let m € R. A symbol a € S™(R™;RY) is (uniformly)
elliptic if there exists a symbol b € S~™™(R™; RY) such that ab — 1 € S~HR"™;RY).

Proposition 3.9 (Equivalent formulations of ellipticity). Let m € R, and a € S™(R™;RY).
Then the following are equivalent:

(1) a s elliptic.
(2) There ezist constants C,c > 0 such that

20 = la@o)l = e (3.14)
(3) There ezist constants C,c > 0 such that
ja(@, )] > cle|™ — Cle™™, lgl > 1. (3.15)

Proof. 1If a is elliptic, then in the notation of Definition 3.8, we have

1= 06" < la(z, €)|lb(z, )| < Cla(z,§)[(€) ™™, (3.16)

for some constant C' > 0, that is,
la(z, &) > (€)™ — (&)™ (3.17)

This implies (3.15), since % € (1,V/2] for |¢] > 1. This in turn implies (3.14) since for

>
all ¢ > 0, there exists C' > 0 such that [£]™~! < ¢[¢|™ for [£] > C (indeed, this holds for
C=c).

Conversely, if (3.14) holds, choose a cutoff x € C*(R"™), x(£) =0 for [£] < 2C, x(§) =1
for [£] > 3C, then (see Exercise 3.2)

b(z,€) = x()/a(z,€) € ST(RRY), (3.18)
and a(z, §)b(z, ) = x(€) € S~ (R™;RY). O

Note that if a € S™(R™RY) is elliptic, then so is a + a’ for any o’ € S™ LR RY).
Thus, ellipticity is only a condition on the equivalence class

[a] € S™(R™;RY)/S™L(R™;RY). (3.19)

For full symbols of differential operators, we can identify [a] with the leading order, homo-
geneous of degree m, part of a. Compare with Definition 2.19 and Proposition 2.20.
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3.2. Classical symbols. An important subclass of symbols mimics those of differential
operators: they are sums of homogeneous (in §) functions. More precisely, we call a function
a(x,§), defined for & # 0, (positively) homogeneous of order m € C iff

a(x, &) = \"a(x,§), A >0. (3.20)
Definition 3.10 (Homogeneous symbols). Let m € R." Then S/ (R™;RY \ {0}) is the

space of all functions a(z, &) € C®°(R" x (RY \ {0})), positively homogeneous of order m in
&, such that for all o, 8 € Ny

050 a(x,€)] < Caplé™ 1, ¢ #0. (3.21)

Definition 3.11 (Classical symbols). Let m € R, and fix a cutoff y € C*(RY) which is
identically 1 near 0. A symbol a € S™(R™ RY) is called a classical symbol of order m if
there exist functions am,—; € S| 7(R™ x (RY \ {0})) such that for all J € N, we have
J—-1
a—Y (1=X)am_j € 5™/ (R"RY). (3.22)
j=0
The space of classical symbols of order m is denoted S(R™; RY). Finally, we put
SR RY) i= ST (R™RY). (3.23)
Equipped with the seminorms of a,,—; and the remainders a — Z}];Ol(l — X)@m—; in the

respective spaces, S:f(R";RN ) is a Fréchet space. Proposition 3.7 fails dramatically for
classical symbols; indeed (Exercise 3.4),

SR RY) ¢ ST(R™;RY) is closed for any m € R. (3.24)
We have the following straightforward lemma (Exercise 3.5):
Lemma 3.12 (Homogeneous components of classical symbols). The homogeneous terms

am—j in (3.22) are uniquely determined by a.

For a € ST(R™;RY) as in Definition 3.11, we can thus identify the equivalence class [a] €
S™(R™;RY)/Sm—1(R™; RY) with the leading order homogeneous part a,,, or even more
simply with the function R” x S¥=1 3 (2,€) = am(z,€), where SV~ = {¢ e RV: |¢] = 1}
is the unit sphere. Cf. (2.41).

3.3. Asymptotic summation. There is a (general) ‘converse’ to (3.22) which is very
useful when performing iterative constructions which yield lower order corrections:

Proposition 3.13 (Existence and uniqueness of asymptotic sums). Let a; € S™ (R™;RY),

J = 0, and suppose limsup;_,,,mj = —oo. Let m; := supj>;mj, and m = mg. Then
there exists a symbol a € S™(R™;RY) such that for all J € N
J—-1 B
a—Y a; € 8™ R%RY). (3.25)
7=0

Moreover, a is unique modulo S~ (R™; RY).

1One can allow m to be complex without any further work, but we do not need this level of generality
in these notes.
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We call a ‘the’ asymptotic sum of the a;, and write
o0
an~ Z a;. (3.26)
j=0

Proof of Proposition 3.13. This is similar to Borel’s theorem concerning the existence of
a smooth function with prescribed Taylor series at 0. Uniqueness is clear, since any two
asymptotic sums a, a’ satisfy a—a’ € S™7 (R™; RY), with m; — —o0, hence a—a’ is residual
indeed.

For existence, we may partially sum finitely many of the a; and thereby reduce to the
case that a; € S™J (R RY), j > 0, and m; = m — j. Fix a cutoff x € C*°(R"), identically
0in [£] <1 and equal to 1 for [£{| > 2. With ¢; > 0, ¢; — 0, to be determined, we wish to
set

o0
a(z,€) = Y x(ej€)a;(z.€). (3.27)
§=0
This sum is locally finite, hence a € C®(R™ x RY). Choosing ¢; more precisely, we can
arrange that

HX(GJ')GJ'Hm*j'J/ <27, Jj> j/ > 0. (3-28)
Indeed, for fixed j,j’, we can choose €; > 0 such that this holds since x(€;-)a; — 0 in
Sm=i"(R™; RN) as €;j — 0, as in the proof of Proposition 3.7; but for any fixed j, (3.28)
gives a finite number of conditions on €;, one for each 0 < j' < j.
But then x(e;&)ay (2, )+ 721 x(€;€)a;(x, &) converges in S§m=3'(R™; RY). Thus, the
sequence (3.27) converges in S™(R"; RY), and we have
J

|
—

J—1 00

a(z,€) =Y aj(w,6) =Y (1-x(e;€))a;(x, &)+ Y x(g€)aj(x,€) € S™ (R RY), (3.29)
=0 =0 i=7

as desired. 0

The space ST(R™RY) can be characterized as the space of symbols in S™(R™;R")
which are asymptotic sums of symbols which in |{| > 1 are positively homogeneous of
degree m — j, j € Ny.

For completeness and later use, we refine the previous result to ensure the continuous
dependence of a on the sequence (a;).

Proposition 3.14 (Continuous asymptotic summation). Denote by
5™ (R RY) = [ ™7 (R™RY) (3.30)
j=0

be the space of all sequences (ag, a1, . ..) of symbols aj € S™ I (R™; RN). Equip £S™ with the
topology generated by the seminorms ||(a;)||; := maxi<g<y ||ak||lm—k,;. Then there exists a
continuous (nonlinear) map

ZA: £5™(R™;RY) — S™(R™RY) (3.31)

with the property that 3= 4((a;)jeny) ~ D520 ;-



MICROLOCAL ANALYSIS 19

Remark 3.15 (Comparison with C*°(R™)). The topology on £S™(R";RY) is akin to e.g.
the standard topology on C*°(R") which is given by seminorms || - [[ck(p(o,r))- To verify
convergence of a sequence of sequences of symbols in this topology, one merely needs to
check that for any fixed J € N, the first J terms of the sequence converge in the respective
symbol spaces.

Proof of Proposition 3.14. Fix x € C®(RY), x(¢) = 0 for |¢| < 1 and x(§) = 1 for |£] > 2.
As in the previous proof, we shall set, for a = (a;) en, € £S™(R™; RM),

(X,0) @0 =3 x(e(@a;(a.€), (3:32)
=0

where €;(a), as in (3.28), is chosen so that for all j € N

; ; g <27 )
Ogrji,lgi_lIIX(GJ(a)é)ag(az,ﬁ)Hm_g g <279, (3.33)

and we set €g(a) = 1. We now need to make a concrete choice of €j(a): to this effect, we
note that for |a| + 8] < j < j—1,

(€~ |0267 (x(es(@)€)as (,€))| < CHEO ™™™ sl Vefze -

< Cjej(a)llag|lm—j.5,

(3.34)

where C; only depends on x (and j of course). Therefore (3.33) holds provided we take

(@) =277 (1+ Cjllajlm—g) - (3.35)
With this choice, > , a is well-defined, and ) 4 a ~ 3772 a;.
We now check continuity. Define
X3(a,€) = Xx(277 (14 Cja) 7). (3.36)
Fix a = (a;)jen, € £S™(R™;RY), and fix k € Ny, € > 0. We need to show that there exist
0 >0 and J € N such that

/ m (mpn. N 7 < H _ / ]
a € ST(RYRY), [la—dl;<§ = ZAa ZAa m7k<e, (3.37)
which holds provided
o
> lxiUlagllm—js:€aj = xj(lla}lm-gs )aj]| e < € (3.38)
j=0

The j-th summand can individually be estimated by
1% (gl €) (@5 — aj) e + | O (lasllm—s.3.€) = X5 (e llm—sg: ) sl ., .
< Cjllaj = dillmn + [llasllm—js = a5 lm—js] 105 llm,x (3.39)
< (Cj + llajllme + lla = a'lmax(ie) ) o — @ lmax(i ey,
which tends to zero as a’ — a in £S™(R™; RY).
The tail of the sum (3.38) on the other hand is estimated simply using (3.33)
x5 (e llm—i.5, €)@ lmx + x5 (105 llm—g.5, €)@ lme < 277 + 277 = 277+ (3.40)
provided j > k. Thus, we first choose Jo € N, Jy > k, such that 3 72 27+ < /2,
and then § > 0, J € N such that o’ € £S™(R";RY), ||a — a'||; < & implies that the j-th
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summand in (3.38) is bounded by €/(2.Jy) for j = 0,...,Jo — 1. This achieves (3.37) and
thus finishes the proof. O

3.4. Exercises.

Ezercise 3.1 (Symbols and classical symbols). Let m € R. Prove (£)™ € S™(RY). By
expanding into Taylor series in 1/|¢|, show that indeed (£)™ € ST(RY).

Ezercise 3.2 (Inverses of elliptic symbols). (1) Show that if a € S™(R™; RY) satisfies (3.14),
and y € SY(RY) vanishes for |¢| < 2C, then x/a € S™™(R";RY).
(2) If in addition a and x are classical symbols, show that y/a is classical as well.

Ezercise 3.3 (Compositions of functions with symbols). (1) Let f € C*°(R). Show that
if a € S°(R™;RY), then also f oa € S°(R";R").
(2) Show that if a € S°(R"; RY) is elliptic and positive, then there exists b € SY(R"; RY)
such that a — b% € S~HR™; RY).

FEzercise 3.4 (Residual symbols and classical symbols). Prove (3.24).

FEzercise 3.5 (Homogeneous components of classical symbols). Prove Lemma 3.12. (Hint.
Use induction on j; the case j = 0 is the main content.)

FEzercise 3.6 (Nonlinear character of asymptotic summation). Show that there does not
exist a map Y ,: LS™(RMRY) = S™RMRY) with Y 4 ((a))jen,) ~ > 729 a; which is
both continuous and linear.

4. PSEUDODIFFERENTIAL OPERATORS

For developing the theory of ps.d.o.s, it is useful to consider slightly more general symbols,
in the class

(x —y)"S™(Ry x RsRY) = {(z —y)“a: a € S"(R" x R";R")}, (4.1)
where w € R. Our immediate goal will be to make sense of the following definition.

Definition 4.1 (Quantization). Let m,w € R, and a € (z — y)“S™(R} x Rj;RY). Then
we define its quantization Op(a) by

Op@u(a) = (2m) " [ [ ey Oulp)dyde. we S@) (@2)

Previously, see (2.36), we only considered the special case of the left quantization of a
left symbol a € S™(R7;RE), independent of y:

Opy@ua) = @0 [ [ el uly) dyde; (1.3

this immediately makes sense as an iterated integral for u € ./(R™), and should be thought
of as ‘differentiate first, then multiply by coefficients’. Dually, we can consider the right
quantization of a right symbol a € S™(RY; ]R?),

(Oppla)u)(e) = (20" [ [ e aly uly) dyde, (44)
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which does not immediately make sense (similarly to (4.2)); this should be thought of
as ‘multiply by coefficients, then differentiate’. Indeed, for a(z,£) = £%aq(z) with a, €
C°(R™), we have

(Opr(a)u)(z) = aa(x)Dyu(z),  (Opg(a)u)(z) = Di(aa(z)u(z)). (4.5)

The quantization map (4.2) should be read as ‘multiply (y), then differentiate (&), then
multiply (z)’. (Try this with a(x,y,&) = a1(x)%a2(y).) We shall see below that every
operator Op(a) can be written as Op(a) = Opy(ar) = Opp(ar) for suitable left and right
symbols ay, and ap of the same order as a, see §4.1. (You have done most of the work
for proving this for differential operators, i.e. in the case that a is a polynomial in &, in
Exercise 2.13.)

Lemma 4.2 (Quantization of symbols of very negative order). Let w € R, m < —n, and
let a = (x —y)¥a, a € S™(R™ x R";R™). Then the integral (4.2) is absolutely convergent
and defines a continuous operator

Op(a): L (R") — <x>wCl9(R”). (4.6)
More precisely, for N > n + |w|, there ezists a constant C' < oo such that
10p(a)ullzyweomny < Cllallmollulln, we S (RY). (4.7)

For the proof, we need a simple lemma:

Lemma 4.3 (Pectre’s inequality). Let w € R. Then (x +y)¥ < 21w1/2(z)yw (y)wl,

Proof. By the triangle and Cauchy—Schwarz inequalities, we have
Lz +yl? <1420l +20y* <200+ )1+ [y ). (4.8)

If w > 0, then taking this to the power w/2 proves the lemma. For w = 0, the lemma is
the equality 1 = 1. For w < 0, hence —w > 0, we obtain, analogously to (4.8),

(@) <270z 4 y) (Y)Y, (4.9)
which upon multiplication by (x)“({x + y)* gives the desired result. O

Proof of Lemma 4.2. Since u is Schwartz, we have |u(y)| < Cy|lul/n{(y) ™" for all N € Ny.
Therefore, the integrand in (4.2) satisfies

e % a(@, y. Euly)] < Cle = y)* allmol€)™ - lJullx (y) =
< Cla)” (™) - falmollullx-

This is integrable in (y, ) provided m < —n and |w| — N < —n, proving the lemma. O

(4.10)

Proposition 4.4 (Bounds on quantizations of residual symbols). Let w € R and a =

(x —y)?a, a € STC(R™ x R";R™). Then the quantization Op(a): L (R") — L (R") is

continuous. In fact, for all k € Ng, m € R, there exist N € N and a constant C such that

1Op(a)ullk < Cllallm,nlulln- (4.11)

Lemma 4.5 (Differentiation of weighted symbols). Differentiations DS and Dy are con-
tinuous maps (x — ) S™(R™ x R R") — (x — y)YS™(R™ x R™";R™). More precisely,

{z —y) "D allmr < Cll{x = y)~“allmptial; (4.12)

likewise for Dja.
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Proof. 1t suffices to prove the claim for D,,. For a(x,y,§) = (x—y)*“a(z,y,§), a € S™(R™ x
R™; R™), we have

Opya = (z = y)*(92,0) + wlz — y)* (21 — y1)a. (4.13)
The first summand lies in (z — y)*S™(R™ x R™; R™), and the second summand even lies in
the smaller space (z — )Y~ 1S™(R™ x R™; R"™). O

Proof of Proposition 4.4. The key is that for £ # 0, the phase (z — y) - £ has no critical
points in y. We exploit this by writing

(1 - - D)0 = ()2 E)E, (4.14)

so upon integrating by parts in y, one gains decay in £. Concretely, for N € N, we have

Op(a)u(e) = (20) " [ [ (1= D)V 96) 2N ala, . uly) dy dg

(4.15)
= (@m)™" / / 14 € Dy (O ala, y, uly)) dy dé.
By the Leibniz rule, we have
(1+&- D) ((€) N alz,y, Ouy)) = Y ay(w,9,€) - Dyu, (4.16)
<N
where
ay(z,5,8) = > cy5el&) N Dsalx, y, €) (4.17)
|6],e|<N
for some combinatorial constants cyse. By Lemma 4.5, we have a, = (z — y) “a, €
ST®(R™ x R™;R™), and setting a := (z — y)~"a, we have, for any m € R,
1allm-n,0 < Cllalm,n- (4.18)
Thus, if N > m + n, Lemma 4.2 applies, giving
10p(ay) D ull(zyweomny < Cllayllm-nollD7ullar, M >n+ |wl, (4.19)
and therefore
1 Op(a)ullmywco@ny < Cllallmnlullar, M >n+ N+ [wl. (4.20)

To get higher regularity and decay, let now «, 8 € Njj, then
anf Op(a)u(z) = (27T)_n/ / ((Dg + y)o‘ei(x_y)f)(f + Dx)ﬁa(x,y,g)u(y) dy dé

= (2m)™" / . / Ty = D) (€ + Do) (alz, . §uly)) dy ii?l)

This can be expanded using the Leibniz rule; note that powers of y are acceptable since u
is Schwartz. We thus obtain

1z D7 Op(a)ull @yweo@ny < Cllallm,wllullv (4.22)

for N sufficiently large (depending on m,n,«, ). Thus, Op(a)u € .(R™), finishing the
proof. O
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This shows that the map
(x —y)YSTC(R" x R";R") x L (R") 3 (a,u) — Op(a)u € .Z(R") (4.23)
is a continuous bilinear map when putting the topology of (z — 3)*S™ (R™ x R™;R"™) on

the first factor (for any m’ € R). By Proposition 3.7, it thus extends by continuity to a
continuous bilinear map

(x —y)YS™(R"™ x R";R") x Z(R") 3 (a,u) = Op(a)u € L (R"). (4.24)
Identifying Op(a) with its Schwartz kernel, we thus get a continuous map
Op: (x — y)"S™(R" x R™;R") — ' (R™ x R"), (4.25)
which is given (interpreted as a limit along a sequence of residual symbols) by
Op(a)(z.y) = (20) " [ a6 de. (4.26)

(This is of course much weaker than (4.24).)

Remark 4.6 (Quantization via an explicit limit). Let x € C°(R™) be identically 1 near 0.
Given a € (z — y)YS™(R™ x R™;R"™), (the proof of) Proposition 3.7 implies that

Op(a)u(e) = lim (m) " [ [ e pale Guln) dyds, (@20
with convergence in .7 (R").

Definition 4.7 (Pseudodifferential operators). Let m € R. The space of (uniform) pseu-
dodifferential operators of order m,

U (R™), (4.28)
is the space of all operators of the form Op(a): /(R") — (R"), where a € (z —
YY) S™(R™ x R™;R™) and w € R. (As we show in the next section, one can take w = 0. See
Exercise 4.1 for the case of differential operators.) We set

TR = () TR, (4.29)

meR”™

Note that a priori it is not clear that W~°°(R") is equal to the space of quantizations of
residual symbols (it is certainly contained in the latter); we show this in Proposition 4.10
below.

By duality, we can define the action of A = Op(a) € ¥"(R") on tempered distributions:
for u,v € (R™) and a € (x — y)YS™°(R™ x R";R"), we have

©Op(ayu) = o) [[[ e oty ulpuie) dyac s

e ///R 0y, 2, —Ev(y)ulz) dydede  (430)
= (u, Op(a

where we put
CLT(J',y,g) = a(ya$7 _g) (431)
Since a + a' is an isomorphism on (z — y)*S™(R" x R";R"), the equality

Op(a)t = Op(a'), thatis, (Op(a)u,v) = (u, Op(a’)v) (4.32)
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continues to hold for a € (z — y)*S™(R™ x R";R™). By the density . (R") C ./ (R"), we
can thus uniquely extend, by continuity, Op(a) to an operator on .’ (R") via (4.32).
4.1. Left/right reduction, adjoints. In this section, we shall prove:

Theorem 4.8 (Ps.d.o.s as left/right quantizations). Let a € (z — y)YS™(R"™ x R™; R").
Then there exists a unique left symbol ar, € S™(R™;R™) such that

Op(a) = Opy(ar), (4.33)
and a unique right symbol ar € S™(R™;R™) such that
Op(a) = Opg(ag). (4.34)

The symbols ar,,ar depend continuously on a. Modulo residual symbols, they are given by
asymptotic sums

1
ar(@,€) ~ D —(9EDya(@,y,6))ly=r, (4.35)
aeNy
(_1)‘0{' o Ty
ap(y,§) ~ Z T(ag D a(z,y,8)) o=y (4.36)
aeNg )

(The summands are ordered by increasing |c|.)

Definition 4.9 (Left/right reduction). In the notation of Theorem 4.8, we call ar,, resp.
ap the left, resp. right reduction of the full symbol a. Writing A = Op(a), we write

ayp =: O'L(A), apr =: O‘R(A). (4.37)

We first consider the case ‘m = —oo’ of Theorem 4.8 and give a description of kernels of
residual operators, i.e. elements of ¥~>°(R"):

Proposition 4.10 (Schwartz kernel characterization of residual operators). An operator
A: S (R™) — S (R") is a residual operator if and only if its Schwartz kernel K(x,y) is
smooth and satisfies

0200 K (2,y)] < Capn(x —y)™™ ¥V a,B,N. (4.38)

Moreover, any such A can be written as A = Opr(ar) = Opg(ar) for unique symbols
ar,ar € ST*(R";R").

Proof. Since A € U~V (R") forall N € R, we can write A = Op(ay) with ay = (z—y)“Nay,
any € STV(R™ x R";R"), for some wy € R. Taking N > n, the Schwartz kernel K of A is
then given by the absolutely convergent integral

K(z,y) = (2#)"/ ei(‘”*y)'faN(x,y,f) d¢. (4.39)

n

Let M € Ny. For |z —y| < 1, and o, § with |a| + |3] < M, and taking N > n + M, we can
thus bound

0200 K (2,)] < Cagllanll-wus (4.40)
using the triangle inequality. This gives (4.38) in this region.
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For |z —y| > 1, we fix N =n + 1. We use (ﬁ - Dg)e@v)€ = ¢@=¥)€ and repeated

integration by parts to deduce that

) _ M
/ ez(w*y)f <_ Y . D§> an—‘rl(ﬂjv Y, é) d§

K (2,y)| = (2m)™" iz — P

< CM’x — y’_M<:£ _ y>wn+1 / <£>—n—1—M d¢ (4.41)

RTL
< Chyla —y)~MHwnsn,
Since M is arbitrary, this proves (4.38) for a« = 3 = 0. Up to k-fold derivatives in x,y are
estimated in the same way, but now working with a, 14 instead of a,41.

For the converse, note that if K satisfies (4.38), we can define
ar(z,§) = / e K (z, 0 — 2) dz. (4.42)

Then A = Op(ar) has Schwartz kernel K by the Fourier inversion formula, and the esti-
mates (4.38) imply ay, € ST°(R™;R™). Similarly, the operator A = Op(ar) has Schwartz
kernel K for

an(€) = [ Rz de (4.43)
O

Remark 4.11 (Continuity of left /right reduction for residual operators). Define seminorms
on the space of all K € C*(R} x RY) satisfying the estimates (4.38) to be the optimal

constants: |K|agn 1= SUpP, ,ern (T — y>N\8§‘85K(x, y)|. Then the proof of Proposition 4.10
shows that the maps K — ar,p € SR R") and S™°(R";R") > a — K = Opy g(a)
are continuous.

To handle the case of general orders m € R, we first note that integration by parts in £
implies the equality of Schwartz kernels

Ob((y ~ )7a)(,y) = (2) " [ (=D P €)afz,y.) dg

= (2m)7 / e Da(z, y, €) de
= Op(Dga)(z,y),

first for a € (x — y)*ST°(R™ x R™;R™), and then for symbols of order m by density and
continuity. The additional off-diagonal growth of (y — z)%a is the reason for working with
the more general symbol class (4.1).

(4.44)

Proof of Theorem 4.8. Let N € N, then Taylor’s formula states

ey = 3 iy = ) (D0l 9.6) lyme + 7 (a3,6),
laj<N

N (4.45)

1
s = X G- [ 1-0* e+ iy —o.0

la|=N
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Using the identity (4.44), we have

1 o fod m—N n
Op “‘%NOA(Ds a)ly=: | = Op(Fy) € ¥ (R"), (4.46)
where X
_ N R
in(z,y €)=Y, i (1= tyN"N(Dgoga)(x,x + t(y — ), €) dt. (4.47)
lal=N

In view of the symbolic estimates for a, the remainder here satisfies the estimate

10507 007N (2,9, €)| < Canan (x — ) (€)™ N1, (4.48)
hence
iy € (x — y)S™V(R™ x R R™). (4.49)
for all N. Note that for |a| = k, we have Dg0jaly—, € Sm*k(Rg;R’g). Thus, we can let
b e S™(R™;R™) be an asymptotic sum

1 [e%aTed
b —(DED7a)y=s, (4.50)
and then
R:=O0p(a—b)e [ T N(R") = T (R"). (4.51)
NeN
By Proposition 4.10, we then have R = Opy(r) for some r € ST*°(R"™;R"™). Therefore,
A=0O0pr(ar), ar:=b+r. (4.52)

The continuous dependence of ay, on a follows by using the explicit asymptotic summation
procedure of Proposition 3.14 to define b, which thus depends continuously on a, and then
noting that the optimal constants for the Schwartz kernel K of R in (4.38), and thus the
S=°°(R™; RY) seminorms of 7 (see Remark 4.11), depend continuously on a, b.

Reduction to a right symbol is proved analogously. Instead of going through the argu-
ment, one can instead use duality as in (4.30), the idea being that the adjoint of a left
quantization is a right quantization (and vice versa). Namely, using (4.31), we write the
adjoint of Op(a) as Op(a)’ = Op(a') = Op,(a}) for a’;, € S™(R™;R™), and then

Op(a) = Op(a’)" = (Opy(a7))" = Opr((a;)") = Opg(an), (4.53)
where agr(y,§) = a/ (y, —§). The formula for left reductions gives
1
ap(z,8) ~ ) 1 ((5%)*Dia)(y, z, —E)ly—a, (4.54)

(0%
yielding the asymptotic description (4.36) of ap.
It remains to prove the uniqueness of ar,ar. Suppose that Op;(ar) = 0. Then for all
x € L(R"), € > 0, and & € R"™, we have
0 = Opp(ag)(x(e)e™). (4.55)

Since the Fourier transform of x + y(ex)e®0® is given by & — e "x(e (¢ — &)), this
means

/n ear (z, 5)5”;2(5 - 5“) dE =0 (4.56)

€



MICROLOCAL ANALYSIS 27

for all z € R™. If we require x(0) = 1 and thus [, x(£) d = 1, then e_”f((%) — 0(§—&o)
in ./ (R") as € \, 0. Upon letting € N\, 0, we thus obtain ar(z,&) = 0. Since x,&§ € R"
are arbitrary, this proves a;, = 0. (One may alternatively argue as follows: a left symbol
ar, can be viewed as an element ar, € C*°(Rg;.”(RE)), and the Schwartz kernel of Op(ar,)
is

Op(ap)(z,x — 2) = (Fy tar)(x, 2). (4.57)
Since Fj is an isomorphism of C*°(R"™;.#'(R™)), Op(ar) = 0 implies ar, = 0.) The proof
for ap is similar. O
Corollary 4.12 (Ps.d.o.s as left/right quantizations). Let m € R or m = —oo. Then

U (R™) = Oppp(S™(R";R")).

A slight variant of (4.30) gives the first part of the following corollary; the second part
is an immediate application of Theorem 4.8.

Corollary 4.13 (Adjoints of ps.d.o.s). Let A € ¥ (R"), then

/n(A*u)(:U)v(:U)dm = /n u(z)(Av)(x)dz, u,ve S (R"). (4.58)

defines an operator A* € U (R™). If A= Op(a), then A* = Op(a*), a*(z,y,&) = a(y, z,§).
If A=Opy(ar), then A* = Opy(a}) with

* 1 —
aj(w,€) ~ Y —0¢DJar(x,¢) (4.59)
aeNg ’
4.2. Topology on spaces of pseudodifferential operators. Let m € R or m = —o0.

Since Opy: S™(R™;R™) — W™(R"™) is an isomorphism of vector spaces, it is natural to
transport the Fréchet space structure of S”(R™;R™) to U™ (R™) via Op;. For instance:

Lemma 4.14 (Mollifiers). Let x € CSO(RE”) be identically 1 near 0, and put J. = Op(x(€*)),

€ > 0. Then J. € UW=°(R") is uniformly bounded in W°(R™) and converges to the identity
operator I = Op(1) in the topology of W(R™) for any n > 0.

Proof. This is equivalent to the main part of (the proof of) Proposition 3.7. U

It is reassuring to note that one can equally well define the topology on W™ (R™) using
the right quantization. This is a consequence of the following result.

Proposition 4.15 (Topology on ¥ (R"™)). Let m € R orm = —oco. Then the isomorphism
of vector spaces Opg: S™(R™;R™) — U™ (R™) is an isomorphism of Fréchet spaces.

Proof. Right reduction op is the inverse of Opp. By definition of the Fréchet space structure
of ¥ (R™), the proposition is thus equivalent to the continuity of or o Opy, which is part
of Theorem 4.8. O

4.3. Composition. Proving that composition of ps.d.o.s produces another ps.d.o. is now
straightforward:
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Theorem 4.16 (Composition of ps.d.o.s). Let A € U™(R"), B € U™ (R"). Then Ao
B: Z(R") —» Z(R") is a pseudodifferential operator,

Ao B e U™ (R™), (4.60)
and its left symbol is given as an asymptotic sum
1 Qo (03
op(AoB)~ > —0¢0L(A) - DoL(B). (4.61)
a€eNg

The bilinear map (A, B) — Ao B is continuous.

Note that the symbolic expansion (4.61) is local in (z,£): the symbols of A and B do
not ‘interact’ at all, modulo residual terms, at distinct points in phase space R? x R

Proof of Theorem 4.16. Write A = Opy(a) and B = Opg(br). Assume first that A, B €
U~>°(R"), then for u,v € ./ (R"), we have

Av(e) = (2m)" [ o, i(6)

N | (4.62)
Bu(¢) = [ e bay,)uty)dy.

Thus,

ABu(z) = (27) / e baly, uty) dy s (4.63)

giving Ao B = Op(c), c(x,y,§) = a(z,£)br(y,§). (This is one of the reasons for considering
such general symbols!) By density and continuity, this continues to hold for A, B as in the
statement of the theorem.

To get the asymptotic expansion (4.61), let us write a = o,(A), b = o7(B), then?

o140 B)a.) ~ 3 iag( (2,€) Dby, ) y—z)

—1)ll

)

1 ) !
- % 0t 02 | Y D) 30 -1

€ v+o=¢
and the observation that for e = 0, the final sum evaluates to 1, while for Njj 3 € # 0,

3 ;;l(_l)w ~[[a-1==o. (4.65)

y+d=e¢ €; 70
This finishes the proof. ([l

As a simple application, we can now prove:

2Since these are asymptotic sums, it suffices to consider only those terms which have symbolic order
bigger than some fixed but arbitrary number; in particular, there are no convergence or rearrangement
issues.
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Proposition 4.17 (Pseudolocality of ps.d.o.s). Let A € W™ (R"™). Then
sing supp Au C singsuppu, u € .%'(R"). (4.66)

To prove this, we record:

Lemma 4.18 (Residual operators acting on tempered distributions). A residual operator
A € UT°(R"™) is continuous as a map

A: S (RY) = S (R") NCP(R™). (4.67)
More precisely, for any u € .#'(R") we have Au € (z)NC°(R™) for some N (depending on

Proof. Let K denote the Schwartz kernel of A; recall that it satisfies the estimates (4.38).
For u € ./(R™), we then have, for some N € N,

|(Au)(2)] = (K (2, ), u)| < C||K(z,-)[lv =C sup |y*D;K(,y)|

yER™

lal+81<N
< C sup ()" DyK(@,y)| = C sup (y)™ (@ — )~ "|(z — y)" DyK (z,y)|.
€R™ ER™
i< BI<N
(4.68)
Using Lemma, 4.3, we see that (y)V(z —y)™ < Cn(x)", hence
|(Au)(z)| < C(z)V. (4.69)
Derivatives in z are estimated analogously, so Au € C*°(R"), and in fact
102 (Au)()] < Ca o)™ (4.70)
Note here that the number N above only depends on u, not on K itself. ([

Proof of Proposition 4.17. Suppose x ¢ sing supp u. There exist cutoffs y, ¥ € C°(R"™) such
that
x(x)#0, X=1lon suppy, xu € CIR"). (4.71)
Then
xAu = xA(xu) + xA(1 — X)u. (4.72)
Since A acts on .(R"), we have xA(xu) € .#(R"). For the second term, note that y and
1 — ¥ have disjoint supports; hence we have

~ 1 ~
op(xAe (1=X)(x,8) ~> SX(@)0gor(A)(x,€) - D (1 = X(2)) =0, (4.73)
which implies
XA(1 = x) € U"°(R"). (4.74)
By Lemma 4.18, we conclude that yA(1 — Y)u € C*°(R"), finishing the proof. O

Returning to the observation (4.74), note that if A = Op(a) has Schwartz kernel K €
<" (R™ x R™), then the Schwartz kernel of xA(1—X) is x(x)(1 — X(y)) K (z,y). Thus, (4.74)
can equivalently be stated as:

Proposition 4.19 (Schwartz kernels of ps.d.o.s). The Schwartz kernel K of a pseudo-
differential operator is smooth away from the diagonal A = {(x,z): = € R"}. That is,
sing supp K C A.
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4.4. Principal symbols. Similarly to Proposition 2.20, the ‘leading order part’ of the left
or right symbol of an operator A € U™ (R") has particularly simple properties.

Definition 4.20 (Principal symbol of ps.d.o.s). Let m € R. The principal symbol o™ (A)
of a ps.d.o. A € U™(R"™) is the equivalence class

o™(A) := [o1(A4)] € S™(R™;R")/S™HR™; R"). (4.75)

We shall often omit from the notation the passage to the equivalence class.

Directly from the definition, this gives a short exact sequence for every m € R:
0 — U™ LR RY) - TR RY) T SRR /SRR — 0. (4.76)

The surjectivity of 0" is clear: given a representative a € S™(R"™;R™) of an equivalence
class of symbols, we have 0" (Opy(a)) = [a].

Proposition 4.21 (Behavior of the principal symbol). The principal symbol map has the
following properties:

(1) 0™ (Opg(a)) = [a], i.e. using the right symbol in (4.75) gives the same principal
symbol map.

(2) For A e U™(R"), we have 0™ (A*) = o™ (A).

(3) For A e U™(R"), B € U™ (R"), we have 6™ (Ao B) = 0" (A)o™ (B).

(The behavior under changes of variables will be discussed in §5.1.) Notice that the
principal symbol map translates operator composition (a highly non-commutative opera-
tion) to the multiplication of (equivalence classes of) functions (a commutative operation),
though of course at what seems to be an enormous loss of information compared to the full
expansion (4.61) (which itself gives up information on the residual part of Ao B). However,
in most situations, the principal symbol, and sometimes a ‘subprincipal’ part of the full
symbol, dominate the behavior of the operator, while lower order parts are irrelevant; cf.
the discussion of ellipticity for symbols in §3.1.

One crucial calculation is the following. For A € ¥™(R"), B € U™ (R"), note that
o™+ (Ao B) = 0™ (A)o"™ (B) = 0" (B o A), so

o™t ([A,B]) =0, [A,B]=AoB—BoA. (4.77)

In view of (4.76), we thus have [A, B] € U™ ~L(R"), and it is natural to inquire about its

principal symbol as an operator of order m +m’ — 1. It turns out that it can be computed
solely in terms of the principal symbols of A and B:

Proposition 4.22 (Principal symbols of commutators). For A € ¥ (R"), B € U™ (R"),
we have

o™t 1(i[A, B]) = {o™(A), ™ (B)}, (4.78)
where the Poisson bracket of a,b € C*(R} x RY) is defined as

n

{a,b} := (0e,0)(De,b) — (9a;0) (De,b). (4.79)

j=1

This will be the key connection between ‘quantum mechanics’ (quantizations of sym-
bols, noncommutative algebra of operators) and ‘classical mechanics’ (symbols themselves,
commutative algebra of functions), which will play a central role in §8.
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Proof of Proposition 4.22. We leave it to the reader to verify that (4.78) is well-defined, i.e.
that the image of the right hand side in the quotient space S™+m ~1 / SmHm =2 qoes not
depend on the choice of representatives of the principal symbols of A and B.

The proof is an immediate application of (4.61). Let a = o(A4), b = or(B). Working
modulo S™™ =2(R™; R"), we have

n

orL(AoB)=ab+ %Z(@gja)(aij), or(BoA)=ab+ % Z(@gjb)(axja), (4.80)
7j=1

— =
and (4.78) follows. O

4.5. Classical operators. Following Definition 3.11, we have a subclass of classical oper-
ators:

Definition 4.23 (Classical ps.d.o.s). For m € R, we define the space of classical pseudo-
differential operators of order m by

o (R") := Opg (5§ (R™; R™)) € ¥ (R"), (4.81)
equipped with the structure of a Fréchet space which makes Op; into an isomorphism. We
put W < (R") := ¥~>°(R").

The symbol expansions in Theorem 4.16 and Corollary 4.13 imply that compositions and
adjoints of classical operators are still classical:

Proposition 4.24 (Compositions and adjoints of classical ps.d.o.s). Composition of ps.d.o.s
restricts to a continuous bilinear map

(R™) x U (R™) 3 (A, B) — Ao B € U™ (R™), (4.82)
Similarly, the map )
dR") 3 A A" € UT(R"™) (4.83)
s a continuous conjugate-linear map.
For a classical operator A = Opy (a), with a € S (R";R"), we can identify the principal

symbol 0™ (A) with the homogeneous leading order part of a, as discussed after Lemma 3.12.
The corresponding short exact sequence is

0= W R™) = WH(R™) - Sih (R R {0}) = 0. (4.84)

4.6. Elliptic parametrix. Recall Definition 3.8 and the discussion around (3.19). Then:

Definition 4.25 (Elliptic ps.d.o.s). We call an operator A € W™ (R"™) (uniformly) elliptic
if its principal symbol 0" (A) is elliptic.

As a first, and important, application of the symbol calculus we have developed above,
we construct parametrices (approximate inverses—a term which, almost by nature, has no
precise definition, but rather depends on the context) of uniformly elliptic operators.

Theorem 4.26 (Elliptic parametrix). Let A € W™ (R"™) be uniformly elliptic. Then there
exists an operator B € W™ (R™) which is unique modulo W~°°(R"™), such that

AB—1I, BA—TI¢c U ™(R"). (4.85)

We call an operator B satisfying (4.85) a parametriz of A.
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Lemma 4.27 (Asymptotic Neumann series). Let R € T~9(R™), § > 0. Let R’ € U~9(R")
with R’ ~ Z;’il R7, i.e. the left symbol of R is an asymptotic sum of the left symbols of
RI=Ro---oR (j factors). Then (I — R)(I+ R') = I + E where E € U~>°(R").

Proof. For any N € N, we have

(I-R)(I+R)—T=(I- R<I+ZRJ>—I+I R< ZRJ)

7j=1

= R 4+ (I-R) (R’ - ZRJ’).

j=1

(4.86)

The first term on the right lies in W—(N*DI(R") as does the second term since R’ —
S R e (NI (R, O

Proof of Theorem 4.26. Let b € S™™(R";R") be such that 6™ (A)b—1 € S~HR";R"). Put
By = Op(b) € T~™(R™), then

AoBy=I—-R, RecU}R"). (4.87)
Indeed, this follows from 6%(ABy—I) = 0. Choosing R’ ~ PO R/ € U~1(R") and setting
B:= By(I+ R') € ¥"™(R"), (4.88)

we conclude using Lemma 4.27 that AB = I 4+ E, as desired.

An analogous argument produces B’ € U~ (R") with B'A = I + FE', E' € U~°°(R").
But then abstract ‘group theory’ gives

B=IB=(B'A-E)B=B'AB-E'B=B(I+FE)-FEB=DB+(B'E—-E'B). (4.89)
Therefore B — B’ € U~°°(R™). In particular, any two parametrices differ by an element of
U= (R™). O

As a simple application, we prove:

Proposition 4.28 (Elliptic regularity: smooth case). Let A € U™ (R™) be uniformly ellip-
tic, and suppose

ue .S (R"), Au=fe€C>®(R"). (4.90)
Then u € C*°(R™). More precisely, we have
sing supp u = sing supp Au. (4.91)
Proof. We prove (4.91). Let B € U"™(R"™) be a parametrix of A, with BA = I + R,
R € ¥7°>°(R"™). Then by Proposition 4.17, we have
sing supp u = sing supp(BAu+ Ru) = sing supp BAu C sing supp Au C singsupp u. (4.92)
Therefore, equality must hold at each step. ([

Ezample 4.29. Examples to which Proposition 4.28 applies are the Laplacian A € W2(R")
and the Cauchy-Riemann operator 9 = (95, + i0y,) € ¥1(R?), which is identified with
C via (z1,72) = 1 + ixe. For the latter, we deduce that if du = 0 for u € .#/(R"), then
u € C*°(R™). In complex analysis we learn that in fact w is analytic; here we are only
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developing microlocal analysis in the smooth category, hence do not directly recover this
stronger conclusion.

4.7. Boundedness on Sobolev spaces. In practice, one typically uses function spaces
other than . (R") and .%'(R"), such as Holder or L? spaces. Here, we focus on function
spaces related to L?, in parts because they are the most natural for the study of non-elliptic
operators in §8.

As usual, we first consider residual operators:

Proposition 4.30 (L?-boundedness of residual operators). Let A € W~°°(R"). Then A
extends by continuity from> #(R™) to a bounded linear operator A: L>(R™) — L?(R").

This will follow from the estimates (4.38) and Schur’s lemma:

Lemma 4.31 (Schur’s lemma). Let (X, p) and (Y,v) be measure spaces. Suppose K (x,y)
is measurable on X XY and

| iE@alan@ < [ Kl < ¢, (493)
for almost all y € Y and © € X, respectively. Let
~ [ K@) i), (4.0)

Then T: L*(Y) — L?(X) is bounded. Quantitatively,
I Tul 2 x) < (C1C2) 2 [Jul| L2 vy (4.95)

Proof. Let u € L*(Y) and v € L?(X), then by Cauchy-Schwarz

//ny o) dv(y) du(x)

< K (2, y)|[u(y) | dp(e) dv(y) - K (2, y)lJv(z) | dp(e) dv(y) -
XxY XXY

1/2 1/2
< |l 2y - Co P 0l x)- 0

Proof of Proposition 4.30. The Schwartz kernel K of A satisfies |K (z,y)| < C{x —y)~ "1,
hence

/ K (z,y)|dz < o/ ()1 dz < oo, (4.96)
n Rn
and likewise [, |K(x,y)|dy < oo. The claim then follows from Lemma 4.31. O
Using ‘Hérmander’s square root trick’ from the proof of [Hor71b, Theorem 2.2.1], we can
now prove:
Theorem 4.32 (L?-boundedness of zeroth order ps.d.o.s). Let A € WO(R"). Then
A: L*(R™) — L*(R"™) (4.97)

is bounded. In fact, the linear map WO(R"™) — L(L?(R™), L?(R™)) thus defined is continuous;
here we write L(X,Y") for the space of bounded linear operators between normed spaces

(X, [+ lx) and (Y, [| - [ly)-
3We use here that . (R") C L*(R") is a dense subspace.
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Proof. By Corollary 4.13 and Theorem 4.16, we have A*A € U(R"). With a = 0(A) (that
is, a is any representative of 0°(A)), we have ¢”(A*A) = |a|?, which is real, non-negative,
and bounded. Thus, for C' > sup, ¢cgn |a]?, the symbol C — [af* € S°(R™;R™) is elliptic
and positive. By Exercise 3.3, it has an approximate square root 0 < by € S°(R";R"), so
C —|af* — b € STL(R™;R"). Let By = Op(by), then

C —A*A=B}By+ Ry, R;c U }R"). (4.98)
Assume inductively that we have found B; € ¥~ (R"), j =0,...,k — 1, such that
Ry:=C—A*A—(By+---+Bj_1)"(Bo+---+ By_1) € T FR"). (4.99)

This holds for K = 1. We try to improve the error term by finding the next correction
By, = Op(bi) € UF(R"); we compute

Rpy1=C—A"A—(Bo+ -+ Bg)*(Bo + - Bx)

= Ry, — (Bj(Bo+ -+ B_1) + (Bo + - -+ + Bx_1)*Bi + B;By,) € T F(R™).
(4.100)

Thus, the requirement Ry, ; € $~*~1(R?) is equivalent to a principal symbol condition,
brbo 4 boby = o F(Ry,)  (in STF(R™;R™)/S~*H(R™; R™)). (4.101)

Since Ry, = Rj, the principal symbol o~ *(R},) is real; hence we can take by, = %U_k(Rk)/bo €
S—E(R™; R™).
Finally, we let B € ¥°(R") be the asymptotic sum

B~ By (4.102)
k=0
We have then arranged
R:=C—-A"A— B*B € ¥ >(R"). (4.103)

(Thus, we have constructed a square root, modulo residual operators, of C' — A*A.)
Given u € .(R"), we then have

[ Aull72gny = (A" Au, 1) 2 (@)

= CllullZ2gn) — 1BullZ2(gny — (Ru,u) (4100

< Cllullagny + Rl 2gam lull 22eny |
< C'|lull72 @y

by Proposition 4.30. Thus, A extends by continuity to a bounded operator on L?(R").

The second part of the theorem can be proved constructively as follows. For a neigh-
borhood U of 0 € WO(R™), we can take the constant C' above to be equal to 1. We can
choose the operators By, k € Ny, to depend continuously (albeit nonlinearly) on A, and
then also B in (4.102) can be chosen to depend continuously on A in view of Proposi-
tion 3.14. Therefore also R € ¥~>°(R") depends continuously on A. The estimate (4.104)
reads ”AH%(LQ(Rn)’LQ(Rn)) S 1 + HRHﬁ(LQ(RnLLQ(Rn)) for A eu. NOW, HR|’£(L2(RTL)7L2(RTL>) is
bounded by some fixed continuous seminorm of R; indeed, writing R = Op; (), one can take
this seminorm to be C’||r||_p—1n4+1 for some universal constant C’ (see Exercise 4.3). By
the continuity of Y 3> A — R € U~°°(R"), there exists a neighborhood V C U of 0 € UY(R")



MICROLOCAL ANALYSIS 35

so that this seminorm remains uniformly bounded for A € V. Therefore, [|A| z(z2®n),2(r7))
remains uniformly bounded for A € V. See Exercise 4.4 for an alternative argument using
the Closed Graph theorem. O

Proposition 4.33 (Compactness property of certain negative order ps.d.o.s). Let m < 0,
and let A € W™ (R™). Suppose the Schwartz kernel of A has compact support in R™ x R™.
Then A: L*(R™) — L?(R™) is compact.

Proof. Write A = Opy(a) where a € S™(R™;R"), and let B € R™ be a bounded open ball
such that the support of the Schwartz kernel of A is contained in B x B. Since for all
¢ € CX(R™) with suppgp N B = ) we have 0 = ¢pA = Opy(d(x)a(x,)), the uniqueness
part of Theorem 4.8 implies that ¢(z)a(z,&) = 0; that is, a(z,&) = 0 for all ¢ B. The
proof of Proposition 3.7 produces a sequence a; € S™°(R™;R"), j € Ny, of symbols which
is uniformly bounded in S™(R";R™), converges to a in SO(R";R") as j — oo, and satisfies
a;j(z,£) =0 for all x ¢ B. Now, Op(a;) is compact on L?(R™), as it can be factored as

Op(a; _ _
2R 22, 0By © ¢Y(B) < CO(B) < LA(R™), (4.105)
where the penultimate inclusion map is compact by Arzela—Ascoli, and the final map is
extension by 0. By Theorem 4.32, Op(a) is the limit of Op(a;) in £(L*(R™); L*(R")) and
therefore compact as well. O

Boundedness of ps.d.o.s on Sobolev spaces is a straightforward consequence of Theo-
rem 4.32:

Corollary 4.34 (Boundedness on Sobolev spaces). Let s,m € R, and A € V" (R"™). Then
A: H¥(R™) — H5™(R") is bounded. The linear map V™ (R™) — L(H*(R™), H*~™(R™))
thus defined is continuous.

Proof. Recall the operators (D) = F~Y¢)°F for o € R from Definition 2.11; note that
(D) € W7 (R™). Moreover, (D)~*: L2(R") — H*(R") and (D)*~™: H*~™(R") — L2(R")
are isometric isomorphisms. Now

(DY*~™A(D)™* € O (R") (4.106)

is bounded on L?(R™) by Theorem 4.32, which is equivalent to the statement of the corollary.
The second part of the corollary follows from the continuity of compositions of ps.d.o.s
proved in Theorem 4.16. O

In fact, this can be generalized to weighted Sobolev spaces, see (2.28):

Theorem 4.35 (Boundedness between weighted Sobolev spaces). Let s,m,r € R, and A €
U(R™). Then A: (x)"H*(R™) — (x)"H*~™(R"™) is bounded. The linear map ¥"™(R") —
L((x)"H*(R™) — (x)"H*~™(R"™)) thus defined is continuous.
Proof. Since (x)"(D)~%: L*(R") — (z)"H*(R") and (D)*~™(x)~": (x)" H*(R") — L*(R")
are isomorphisms, we need to show that

A= (D)*™(x)" o Ao (x)"(D)"* € TO(R™). (4.107)
If a = 07, (A), then the full symbol a?(z,y, €) of A* := (x)""0 Ao (z)" is given by af(z,y, &) =
() " (y)"a(z,€). By Lemma 4.3, we have

ja* (2, y,€) < 2"z — )M a(z, €)] < Cla — )™, (4.108)
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which is the first step towards showing that af € (x — y)I"|S™(R" x R"™; R"); it remains to
consider derivatives. The essence of this is contained in

18y, 0" (2,9, €)| = [=r(2)"(y) " 2ysa(z, €)(€) 7

T y j m
< Clz —y)=L5(¢) (4.109)
()
< Clz—y)le)™.
We conclude that A* € U™ (R™), hence A’ € U(R™), finishing the proof. O

In view of the Schwartz representation theorem, Theorem 2.14, we thus obtain another
proof of Lemma 4.18. Indeed, a residual operator maps /'(R") = |J, ,(z)"H*(R") into
U, ()" H>*(R") = U, (x)"C°(R™) (using Sobolev embedding, Exercise 2.4).

We can sharpen and upgrade the elliptic regularity result, Proposition 4.28:

Corollary 4.36 (Elliptic regularity: weighted Sobolev case). Let A € U™ (R™) be uniformly
elliptic, and suppose v € (x)"H~N(R") for some r,N € R. If Au = f € (x)"H*"™(R"),
then u € (z)" H*(R™).

Proof. With B € ¥~™(R"™) denoting a parametrix of A, so I = BA+ R, R € U~>°(R"),
we have
u= BAu+ Ru= Bf + Ru, (4.110)

with Bf € (z)"H*(R") and Ru € (x)" J,cr H° (R"). O

Remark 4.37 (A priori membership in weighted space). It is important that the assumption
on u already has the weight factor (x)". Indeed, the conclusion would be false in general
if we merely assumed u € (z)” H~N(R") for some ' < r. (Convince yourself of this. For
example, take A = A, the Laplacian on R", and v = 1.)

4.8. Exercises.

Ezercise 4.1 (Quantization of polynomials in &). Let m € Ny, and let a € S™(R™ x R™; R"™)
be a polynomial in the symbolic variable &.

(1) Show, starting from the definition as a limit of quantizations of residual symbols,
that Op(a) € Diff " (R"™).

(2) Prove that Op({z —y)"a) € Diff™(R") (which in particular entails the boundedness
of the coefficients). (Hint. Compute its Schwartz kernel.)

FEzercise 4.2 (Singularities and decay of Schwartz kernels of ps.d.o.s). Let A € U™ (R"),
and denote by K its Schwartz kernel.

(1) Give another, direct, proof that K € C*°((R"xR™)\A), where A = {(z,z): =z € R"}
is the diagonal. (Hint. For ¢,v € C°(R™) with supp ¢ Nsuppy = 0, rewrite the
pairing (A¢, ) for A € W~>°(R") using integrations by parts as in the proof of
Proposition 4.4. Then use a density argument.)

(2) Prove that for every e > 0, N € R, o, 8 € N}, there exists a constant C' such that

050 K (,y)| < Clz —y| ™, |z —y|2e (4.111)

FEzercise 4.3 (Bounds on very negative order ps.d.o.s). Let n € N and fix m < —n.
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(1) Show that the Schwartz kernel K = K (z,y) of A= Op;(a) € U™(R") is a contin-
uous function of (z,y) € R™ x R™. Show moreover that for all N € N there exists a
constant C' € R so that

K (2, 9)| < Cllaflmn (e —y)~. (4.112)
(2) Deduce that there exists C' € R so that || Al z(z2@n,r2@ny) < Cllallmn1-

Ezercise 4.4 (Zeroth order ps.d.o.s as linear maps on L?). Denote by
®: WOR™) — L(L*(R™), L*(R™)) (4.113)

the linear map assigning to A € WO(R") the bounded linear operator ®(A4): u > Au,
u € L?(R™). Use the Closed Graph theorem to show that W is continuous. (Hint. If A; — A
in WO(R") and ®(4;) — T in L(L*(R"), L*(R")), show that T = ®(A) by evaluating both
sides on Schwartz functions and using (4.24).)

FEzercise 4.5 (A classical ps.d.o.). Suppose K(z,z) € C*°(R x (R\{0})) satisfies K (z, A\z) =
MK (z,2), A > 0, and K(z,—2) = —K(z,z). Assume that K(z,1) € C°(R,). Let
X € C(R™) be identically 1 near 0. Show that the operator

Au(z) = lim X(@—y)K(z,z —yu(y)dy, ueCCT(R"), (4.114)
0 S jp—y|ze

is well-defined and defines an element A € \I'SI(R). Compute its principal symbol.

Ezercise 4.6 (Garding’s inequality). Let A € ¥?™(R"), and suppose Re 02™(A) > c(£)?™
for some ¢ € R. Show that for every ¢ > 0 and N € R, there exists a constant C' such that

Re(Au, u) p2gny > (¢ — e)HuH%{m(Rn) - CH“H%{—N(Rn)’ u e L (R"). (4.115)

(Hint. Use the ‘square root trick’.) The sharp Garding inequality states that (4.115) holds
for e = 0, but then with —N = m —1/2; see [Hor03, Theorem 18.1.14]. (This can be further
refined to the Fefferman—Phong inequality, which allows —N =m — 1.)

The following series of exercises introduces the basic properties of scattering pseudodif-
ferential operators on R™.

Ezercise 4.7 (Scattering symbols). For m,r;,ro € R, define the space of symbols
ST (RE x Ry RY) (4.116)
to consist of all a € C>°(R3") such that the seminorms

llallm ok = ‘al|+‘21218r‘6|<k<x>7m+|a1\<y>fm+|a2\<§>fm+lﬁl‘3?3;28?@(%ng)‘ (4.117)

are finite for all k£ € Ny.* Let
SO0 00— (R 5 R™: R") := ﬂ SmTLT2(R™ x R™; R™). (4.118)

m,r1,r2€R

(1) Prove that S7°7°0=°(R" x R™;R"™) C S™":"2(R™ x R™"; R™) is dense in the topol-
ogy of S 12 (R™ x R™; R™) whenever m < m/, 1 < 7}, 7o < 1.

4That is, such a are symbolic not only in £, but also in =z and y.
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(2) Prove the following variant of Proposition 3.13: given a; € S™~/r1=ir2=J(R" x
R™; R™), there exists a € S"™ " 2(R™ x R™; R"), unique modulo S~~~ (R"
R™; R™), such that a — Z}];ol aj € SmTIm=Jdra=J(Rn x R R") for all J € N.

X

Ezercise 4.8 (Scattering ps.d.o.s, I: boundedness). Let m, 71,72 € R. Prove that
Op(a): L(R") —» Z(R™), ae€ S™2(R" x R™";R"). (4.119)
Prove this more generally for a € (z —y)*S"™""2(R" x R";R"), w € R.
Ezercise 4.9 (Scattering ps.d.o.s, II: residual operators). Let ro € R. Show that an operator
A can be written as A = Op(ay), ay € S~V72=N(R" x R*;R"), for all N if and only if
its Schwartz kernel K = K(z,y) satisfies K € (R} x R}j). Show that in this case, there
exist unique ar,ar € ST°"°(R";R") such that A = Opy(ar) = Opg(agr).
Ezxercise 4.10 (Scattering ps.d.o.s, III: reduction). We write
S™T(R™; R™) (4.120)
for the space of a = a(z,£) € C*°(R?") satisfying \3§8§a(x,§)| < Cuplz)rlel(gym=lol for
all o, B € Nj.
Let A= Op(a), a € S™""2(R™ x R";R™). Prove that there exists a unique left symbol
ar, € S™"F2(R™; R") such that A = Opy(ar).
Ezercise 4.11 (Scattering ps.d.o.s, IV: algebra). Define
PT(R"™) ;= Op(S™"(R™;R™)). (4.121)
(1) Prove that A € ¥ge'" (R") implies A* € Wge'" (R™).
(2) Suppose A € U" (R"), B € Wg. " (R™). Prove that
Ao B e untmirtr (e, (4.122)
Ezercise 4.12 (Scattering ps.d.o.s, V: principal symbol). Define the principal symbol of
A =0pg(ar) € U (R") by
SCGMT(A) := [ag] € S™"(R™;R™)/S™ L =R R™). (4.123)
State and prove the analogue of Proposition 4.21 for scattering ps.d.o.s.”
Exercise 4.13 (Scattering ps.d.o.s, VI: ellipticity). Suppose A = Opy(ay) € Ve (R™) is
elliptic, that is, there exists b € S~™~"(R";R") such that ayb — 1 € S~L"1(R";R?).

(1) Prove that there exists B € Wg " " (R") such that BA — I € ¥, (R R") =
ﬂm,rER \ng’r (Rn)

(2) Suppose u € '(R™), and Au = f € L (R"™). Prove that u € .(R™). (Notice the
difference to the statements of Proposition 4.28 or Corollary 4.36! For example, the
Laplacian A € W2(R") is uniformly elliptic, but Au = 0 for u = 1, u = xx9, etc.
However, A is not elliptic as an element of U2 (R™). (Check!) What about A+17?)

FEzercise 4.14 (Scattering ps.d.o.s, VII: boundedness on Sobolev spaces). (1) Prove that

elements of \Ilgéo(R”) are bounded as maps on L?(R").
(2) Show that Ay, := (z)"(D)™ € W' (R") and A, . := (D)™ (x)" € W' (R).

5Thus, the principal symbol is more powerful in the scattering world: it not only captures the high
frequency, i.e. large £, behavior of an operator, but also the large x behavior.
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(3) Let A € W' (R™). Show that for all p,o € R, A is a bounded operator
A: (2)PH(R™) — (x)PT"HT™(R™). (4.124)
Ezercise 4.15 (Scattering ps.d.o.s, VIII: elliptic scattering ps.d.o.s are Fredholm). (1) Let
m < m’ and r > r’. Show that the inclusion (z)" H™ (R") < (z)" H™(R") is com-
pact.
(2) Let A € Uge" (R™) be elliptic (see Exercise 4.13). Show that for any p,o € R, the
operator
A ()P HO(R™) — (x)PT"HO™(R™) (4.125)
is a Fredholm operator.
(3) Show that the index of A in (4.125) is independent of p,o.

5. PSEUDODIFFERENTIAL OPERATORS ON MANIFOLDS

We now show how the ps.d.o. algebra on R™ can be transferred to smooth manifolds by
using local coordinate charts. The key ingredient for showing that this is a reasonable thing
to do is the invariance of the class of m-th order ps.d.o.s under changes of coordinates on
R™.

5.1. Local coordinate invariance. We now prove the analogue of the final part of Propo-
sition 2.20 for ps.d.o.s.

Definition 5.1 (Ps.d.o.s with restricted Schwartz kernels). Let £ C R"™ be an open set.
Then

Ur(Q) ={Aev™(Q): supp K4 € Q x Q}, (5.1)
where K4 € .7/(R?") denotes the Schwartz kernel of A.
Theorem 5.2 (Ps.d.o.s under changes of variables). Suppose Q,Q' C R"™ are open, and
k: Q — Q' is a diffeomorphism. Given A € (), define Ayu = k*A(k™1)*(ulq). Then
A, € UT(Q), and the map ¥I'(Q) > A A, € U (Q) is bijective. Moreover,

0" (Ax)(x,€) = o™ (A)(k(2), (+'(x)T)'€). (5:2)

Proof. We have A = Opy(a) for some a € S™(R";R™). Choose ¢ € C(') such that
Y(x)Y(y) =1 on supp K 4; thus Ka(z,y) = ¥(x)Ka(z,y)¥(y), and therefore

K = Op(v(x)a(z, (). (53)

We localize near the diagonal: for € > 0 (to be determined), let x.(z,y) € C*°(R?*") be such
that xc(x,y) =1 for |z — y| < € and x¢(z,y) =0 for |[x — y| > 2¢. Then

Ky, = Op(ae), ae(m,y,ﬁ) = X€($7y)w(x)w(y)a(x7§)a (5'4)
is the Schwartz kernel of an operator A, € U7 (), and
Re:=A— A, (5.5)

is a ps.d.o. with Schwartz kernel supported away from the diagonal, hence R, € ¥~>°(R"),
and its Schwartz kernel satisfies Kr, € C°(£2 x ©'). We then have

(Re)ru(z) = ,Km(fﬂ(l‘),y’)U(%_l(y’))dy’
(5.6)

Q
- /Q K, (k(2), 5(y))] det &' (y)]u(y) dy.
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Therefore, the Schwartz kernel of (Rc)x is K(r,), (z,y) = Kg, (k(x),x(y))|det x'(y)| for
x,y € Q, and 0 otherwise. Thus, (R.), € ¥ ().

It remains to show that (A¢), € ¥ (€2). Suppose first that a € ST°>°(R"; R™). Note then
that

(Addwula) = (2n) " [ [ D 0 ((w), ', o™ () dy o
- 2m) / / R =KWIE o, (), £(y), £)] det &' () |u(y) dy A,

and thus the Schwartz kernel of (A¢)y is
Ko, (o) = (2m)7" [ 00 (05, ¢ e

be(w,y,€) = ac(i(), k(y), €)] det ()] (58)
= Xe((@), () (5(0) () als(2), €)] det ' ()]

We Taylor expand the exponent: denoting by x; the j-th component of x, we have

(5.7)

n 1
ki) = rmi(y) =Y Borlz, ) (wr —yr), Pjila,y) = / O kij(y +t(x —y)),  (5.9)
k=1 0
and therefore

(k(z) = K(y)) - € = (@(z,y)(x —y). &) = (& —y, @(z —y)"¢), (5.10)
where ®(x,y) = (®jr(2,y))jk=1,..n, and (-,-) is the inner product on R”. Note now that
b(z,x) = K () (5.11)
is invertible for x € §2 since k is a diffeomorphism. For
(2, ) € supp xe((2), K (1)) (5(2) (), (5.12)

we have (z,y) € k! (supp ) x K~ (supp ) € Q x Q and |k(z) — k(y)| < 2¢. Therefore, we
can choose € > 0 such that ®(x,y) is invertible for (z,y) in the set (5.12). In (5.8), we can
then make the change of variables ¢ = (®(z,y)) !¢, so

(Ae)i = Op(ce),  cel,,€) = be(x,y, ((z,y)") 7'€)| det @ (x, y)| ™

= ac(k(x), K(y), (B(z,y)")'E)| det D (2, y)| ™| det &' (y)].
(5.13)

We claim that ¢, € ST°(R"™ x R"; R"); more generally, if a € S™(R";R"), we claim that c,
defined by (5.13) satisfies ¢ € S™(R™ x R™;R"™) and depends continuously on a. We can
drop the (smooth) Jacobian factors. We then compute

020007 (ac(r(x), x(y), (B(z,9)") ')
= > EPE (w0700 07 ad) (w(@), mly)., (B, y)T) IE) (5.14)

[/ +]a/ | < e
1871+18" <18

b’ﬁ’ﬁ/’/’

for some smooth functions F,;/. € C(€2 x ). Since ®(x,y)T and its inverse are uni-

formly bounded on supp ac, there exist ¢, C > 0 such that c|[¢| < |(®(z,y)T) 71| < Cl¢|

on supp a.. Therefore, (5.14) is bounded by <§)m*|7| times a continuous seminorm on a,
as desired. Finally, given a € S™(R™;R"™), we select ald) ¢ ST°(R™R"™), j € N, which
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are uniformly bounded in S™(R™;R") and converge to a in S™(R*;R") as j — oo.
Then the corresponding symbols cgj ) are uniformly bounded in S™(R™ x R™;R"™) and con-
verge to c. in S™FH(R™ x R*;R"). Setting AY = Op(a&j)) with oY defined in terms
of aU) as in (5.4), we have (A.)ou = 1imj_>oo(A€j)),{u for all v € CX(R™), and since
(Agj)),iu = Op(cﬁj))u — Op(ce)u as j — oo by (4.24), we have established (5.13) in general.

As for the principal symbol, we have 6" (A,) = 0" ((A¢)x) = 0" (Op(ce)), which can be
read off from the (first term of the) reduction formula (4.35): using (5.11), it is given by
the equivalence class in S™(R"; R")/S™ 1 (R";R") of

ce(x, ,€) = be(w,z, (&' (x)") )| det ' ()|
= ae(r(2), i(@), (' ()T) 7€) (5.15)
= a(k(z), (' ()")71€).
The proof is complete. O

—~

5.2. Manifolds, vector bundles, densities. We shall only work with smooth manifolds:
they are locally diffeomorphic to the unit ball B(0,1) = {z € R™: |z| < 1}. We recall the
‘hands-on’ definition of smooth manifolds:

Definition 5.3 (Smooth manifolds). Let n € N. A smooth manifold of dimension n is a
second countable, paracompact Hausdorff space M such that

1) for each point p € M, there exist an open neighborhood U, > p and a homeomor-
P
phism F),: U, — B(0,1) C R™;
(2) for all p,q € M such that U, N U, # 0, the transition map

Fyo Fy M u,nu, s Fy(Up NUg) — Fp(Up N U) (5.16)
is smooth (as a map between open subsets of R™).

Definition 5.4 (Smooth structure). Let M be a smooth manifold. A atlas on M is a
collection {(Uy, Fu)} of pairs (Uy, F,), with Uy # 0 and M =, Ua, such that F,: Uy —
R™ is a diffeomorphism onto an open subset F,(Uy) of R™. A mazimal atlas, or smooth
structure, is an atlas with the property that any other atlas is contained in it. An element
of the® maximal atlas is called a (local coordinate) chart.

The ‘hands-on’ definition of vector bundles is the following.

Definition 5.5 (Vector bundles). Let M be a smooth n-dimensional manifold. A real
vector bundle of rank k over M is a triple (m, E, M) with the following properties:

(1) E is a smooth (n + k)-dimensional manifold, and 7: E — M is smooth;

(2) for each p € M there exist an open neighborhood U, C M, p € U, and a diffeo-
morphism 7,: 771(U,) — U, x R* such that m(7, (g, v)) = q is the projection onto
the first factor;

(3) for all p,q € M such that U, N Uy # 0, the transition map

Tog = Tp© Ty lwnvg xre : (Up NU) x R = (U, N U,) x R (5.17)

takes the form 7,,(r, v) = (1, Ppy(r)v), where ®,,: U, NU,; — GL(k) is smooth.

6A maximal atlas always exists and is unique.
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The fiber of E' over p € M is denoted £, := 77 1(p); it is a k-dimensional real vector space.
The zero section of E is the submanifold of E given locally in 7—(U,) by Tp_l(Up x {0}).
A smooth section of E is a smooth map s: M — E such that m o s = Idy;. The space of
smooth sections is denoted C*°(M; E).

Another useful notion for later is the following.

Definition 5.6 (Pullback of vector bundles). Let M, N be smooth manifolds (not neces-
sarily of the same dimension), and let f: M — N be smooth. If 7: E — N is a vector
bundle, then the pullback of E by f is the vector bundle

7 f*E—> M (5.18)

given by f*E = M x E = {(p,e) € MxE: f(p) = n(e)}, with projection map 7(p, e) = p,
and with linear structure on (f*E), = Ef(,) equal to that on Ey,).

To specify a real rank k vector bundle uniquely (up to vector bundle isomorphisms), it
suffices to have the following data and conditions:

(1) a cover {U,} of M by open non-empty subsets;

(2) for all v, 8 with Uyp := Uy NUp # 0 a map 7,3: Usp X RF — Uag X R* of the form
Tap (D, V) = (p, Pap(p)v) With @og: Uys — GL(k) smooth;

(3) Taa(p,v) = (p,v) for all p € Uy, v € R;

(4) the cocycle condition holds: for a, 3,y with Uagy := Uy N Ug N Uy # 0, we have
Ty8 0 Tha = Tya ON Uygy X RF,

Indeed, one can then set

E:= <|_| U, x R’“) / ~, (5.19)

where we define the equivalence relation ~ by
Ua xR 3 (p,v) ~ (q,w) € Us x R* <= p=gq, Tap(g,w) = (p,v). (5.20)

(The cocycle condition guarantees that this is transitive, while reflexivity follows from
the cocycle condition together with 7., = Id.) We denote the equivalence classes by
[Ua, (p,v)] € E. Note that the same point p can lie in two (or more) open sets U, and Usg,
but typically [Us, (p,v)] # [Us, (p,v)] for v € R¥. The projection map 7: E — M is simply
given by 7([Ua, (p,v)]) = p. As local trivializations, we can take

To: {[Un, (,0)]: p € Us} = (p,v) € Uy x RF. (5.21)

Example 5.7. Taking a cover of an n-dimensional manifold M by coordinate charts F;: U; —
R", we take 7;;(p,v) = (p, (F; o ijl)’]Fj(p)v). The resulting vector bundle is the tangent
bundle of M, denoted T'M. Note that a chart F': U — R"™ induces a trivialization of Ty M =
7 HU) via U x R" 3 (p,v) = [U, (p,v)] € TyM. A tangent vector V = [U, (p,v)] € T,M
has several interpretations.
(1) V is a directional derivative on M at p. That is, it gives a map
d

(M) 3 f = V(f) = — ((F7) flo) (F(p) + sv)

- (5.22)

(See also Exercise 5.1.)
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(2) V is the tangent vector of a smooth curve on M. This comes from the following
construction: consider the set of all smooth curves y: I — M with v(0) = p, where
I C R is an open interval containing 0. An equivalence relation on this set is defined
as follows: 7y; ~ =9 if and only if, in any local coordinate system F: U — R" with
p € U, we have LF(71(s))]s=0 = - F(72(s))|s=0. (Check that this condition is
independent of the choice of F.) Then T,M is the set of equivalence classes of
curves. The tangent vector V is identified with the equivalence class of the curve
s+ F71(F(p) + sv).

Functorial operations on vector spaces give corresponding operations on vector bundles.
For instance, given a linear map A: V — W between two vector spaces, the adjoint is
AT W* — V*; if A is invertible, then this gives a map (AT)~!: V* — W*. In the notation
of Example 5.7, we thus take

Tij(p,v) = (p7 ((m;j]Fj(p))T)_lv), ’{ij = E (e} ijl. (523)

The resulting vector bundle is the cotangent bundle, denoted w: T*M — M. Note that
formula (5.23) appears in (5.2) (except in the latter we also use/change local coordinates
on the base M via r;j). We recall then that given a smooth function f € C*°(M), we can
define its exterior derivative df € C°(M;T*M) as follows: if F;: U; — F;(U;) C R" is a
coordinate chart, we define

7i(df(p) = (p. (00, (7 1)),y ) €U xR, pe U (5.24)

That this indeed gives a well-defined section of T*M follows from the change of variables
formula.

As in Example 5.7, a local coordinate system F': U — R™ induces a trivialization of
T*U = = Y(U). The relationship between T*M and TM is as follows: for any p € M, we
have an isomorphism of vector spaces

T*M = Hom(T,M,R) (5.25)

which is defined independently of any choices. This isomorphism can be described in
local trivializations of TM and T*M induced by the same local coordinate system F: if
w=[U,(p,§)] € TyM and V = [U, (p,v)] € T,M where §,v € R", we set w(V) = (§,v)
(Euclidean inner product). See Exercise 5.2.

A natural choice for f in local coordinates near p is f = z, (i.e. f = Fjxy), in which
case (5.24) defines the differential dzj with 7;(dzr) = (p, (0,...,1,...,0)) (with the 1 in
the k-th slot). The exterior derivative df is then usually written as df = Zg.gl(azj f)da,
dropping the coordinate and trivialization maps from the notation.

Ezample 5.8. Let E — M and F' — M denote two vector bundles.

(1) The fiberwise direct sum of vector spaces produces the vector bundle £ & F' — M,
with fibers (£ @ F), = E, @ F,.

(2) Likewise, taking the fiberwise tensor product gives F ® F' — M, with fibers (F ®
F),=E,®F,.

(3) The vector bundle Hom(E, F') — M has fibers Hom(E,, F},). We have Hom(FE, F') =
E® F*.

(4) Let ¢ € N. The fiberwise g-th exterior power of E produces the vector bundle
AE — M. In the special case £ = T*M, one often writes AYM := A9T*M.
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We discuss another important vector bundle, closely related to the top exterior power
A"T*M of the cotangent bundle of an n-dimensional manifold M:

Definition 5.9 (Density bundles). Let a € R. In the notation of Example 5.7, the a-
density bundle on M is the vector bundle

O°M - M (5.26)
with transition functions 7;;(p, v) = (p, | det k};| g, ()| ~v), Kij = Fi o F;l. We also write

QM = Q' M. (5.27)

Since the transition functions 7;; act in the second argument (v) via multiplication by
a positive number, there is a well-defined notion of positive a-densities, which are those
densities which in the trivialization of Q*M over a coordinate chart on M are given by
positive smooth functions.

Remark 5.10 (Functorial perspective on density bundles). QM — M arises functorially
from the following operation on vector spaces, applied to T'M: given a real n-dimensional
vector space V', we define

QW i={w: A"V = R: w(uw) = |p|w(v), ve A"V, n € R}. (5.28)

To see the relationship, note first that A™V is 1-dimensional. Then, given another n-
dimensional vector space W and a map x: V — W let us fix bases ej,...,e, of V and
fi,.-., fn of W. Consider, as a warm-up, the top exterior powers: e; A --- A e, and
fi Ao A fn are bases of A"V and A"W, and the map A"k: A"V — A"™W is given by
etN---Nep > k(er) A---k(e,) = (det &) fi A+ -+ A frn, where det  is the determinant of the
matrix of k in these bases: that is, in the stated basis, A"k is simply multiplication by det .
Similarly, Q*V and Q*W are 1-dimensional, with basis elements wy : peg A -+ A ey — |p]®
and wy: pfi A+ A fn = |p|® Now, the map

Q%%: Q%V — Q°W (5.29)
is given by
Q)1 A A fa) =0T ) A ARTH ), (5.30)
hence Q%k(wy ) = | det |~ Yww.
The proof of the following simple lemmas is left to the reader as a simple exercise.
Lemma 5.11 (Properties of density bundles). Let a, 8 € R. Then
(1) Q)M =Q M,
(2) QM ® Q°M = QP M,
(3) Q°M = M x R.
Proof. See Exercise 5.6. (I

If x € R™ denotes local coordinates on a manifold M, then a typical a-density is

|da|®: wOpy A+ A Oy, — |p]”. (5.31)

Similarly to differential forms, a-densities can be pulled back by smooth maps:
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Lemma 5.12 (Pullback of densities). Let f: M — N be a smooth map between smooth
manifolds of the same dimension; assume that f has no critical points. In local coordinates
x,y on M, N, and u(y) = uo(y)|dy|®, define (f*u)(xz) = uo(f(x))|det f/'(x)|*|dz|*. Then
f* is a well-defined map

£ C°(N; QON) — C°(M;Q°M). (5.32)

Remark 5.13 (Invariant formulation). If V' € T, M, define its pushforward along a smooth
map f: M — N to be the tangent vector f.V € T, N so that, as a directional derivative,
(fV)(g) =V (f*g) for g € C>°(N). Then in the notation of Lemma 5.12, the pullback of an
a-density u is given by (f*u)|[,(Vi A+ A Vi) = ulppy (VI A+ A fiVi) where n = dim M.

See Exercise 5.12.

For us, 1-densities are the most useful: sections of QM can be invariantly integrated. On
R™, we write for u € C°(R™; QR"™), u = up(z)|dz|:

/n i / wo(z) dz (5.33)

Let {¢;} be a partition of unity on M subordinate to a cover by coordinate systems F;: U; —
F;(U;) C R™ with U; compact. Define the map

- C° . U —1y* U).
/M. CX(M; QM) — R, Hzi:/n(Fl Y (piw) (5.34)

(Note here that (E; ')*(¢;u) € C(R™; QR™)!)

Proposition 5.14 (Integration of 1-densities). The map (5.34) is independent of the choice
of local coordinates and the partition of unity.

Proof. First, suppose u € CX°(M; QM) is supported in the intersection of two coordinate
charts, with local coordinates € R" and y € R"™ and transition function x = k(y), then

w(@) = uo(x)|dz| = u1(y)|dy|. (5.35)

But at = x(y), we have (Q'x)|dy| = | det ' (y)|~t|dz|, so |[dx| = | det &’ (y)||dy|. Therefore,
u1(y) = uo(k(y))| det £’ (y)|, and thus

[ ay= [ w@)ldeert)ldy= [ ulz)de. (5.36)

n
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The proposition follows easily from this: if {t;} is another partition of unity subordinate
to a cover by coordinate systems G: V; — G;(U;) C R", then [, u=>3", [} 1ju, and

=3 [ (G Y (G o) (537

This finishes the proof. U

In analogy with the case of R™, this leads us to the following definition:

Definition 5.15 (Distributions on manifolds). The space 2'(M) consists of all continuous
linear maps C°(M; QM) — C. More generally, if E — M is a vector bundle, then 2'(M; E)
consists of all continuous linear functionals C°(M; E* ® QM) — C. The space &'(M; E)
consists of all continuous linear functionals C*°(M; E* @ QM) — C.

Thus, C*°(M; E) — 2'(M; E) via the pairing
CX(M: B © QM) x C*(OLSE) 3 (10) = [ {ulp)(0). (539)

where (-,-): E* x E'— R is the dual pairing; note that (u, ¢) € C>°(M; QM) can indeed be
invariantly integrated by Proposition 5.14.

The support and singular support of a distribution are defined analogously to the local
(R™) case, see Definition 2.6. The space &' (M; E) C 9'(M; E) is, as in the local theory (on
R™), the space of distributions with compact support. (Without further structure, there
is no natural analogue of the space of Schwartz functions or tempered distributions on a
general smooth manifold.)

Ezample 5.16. Let p € M, then 6, € &' (M;QM) is the distribution defined by mapping
¢ € C*(M) to ¢(p).
In order to state the Schwartz kernel theorem in this context, we define the projections
2
7TL:]\4 HM? p,q) — p,
9 p.9) (5.39)
7TR:]\4 —>Ma (p,Q)'_)q
Then:
Theorem 5.17 (Schwartz kernel theorem: manifold case). Let M be a smooth n-dimensional

manifold, and let E, F — M be two vector bundles. Then there is a one-to-one correspon-
dence between continuous linear operators A: C°(M; E) — 2'(M;F) and distributional
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Schwartz kernels K € 2'(M x M;n} F @ np(E* ® QM)). This correspondence is given by
assigning to K the operator O : C°(M; E) — 9'(M; F), defined as

(Okd) (W) = (K, 7 @ mpe), ¢ € CZ(M;E), € C°(M; F* @ QM). (5.40)
5.3. Differential operators on manifolds. Let M be a smooth n-dimensional manifold.
Before we talk about ps.d.o.s on M, let us think about differential operators.
Definition 5.18 (Vector fields on manifolds). The space of smooth vector fields on M is
V(M) :=C>®(M;TM).

An element V' € V(M) can be regarded as a differential operator by assigning
CH(M) > f=Viel®(M), (Vf)p)=df@)(V(p) (5.41)

Definition 5.19 (Differential operators on manifolds). (1) We define Diff(M) = C>®(M

(2) We define Diff' (M) as the space of all operators A: C*°(M) — C>°(M) of the form
Au=Vu+ fuwith Ve V(M), f € C*(M).

(3) Let m € Ny. Then Diff"(M) is the space of all operators A: C*(M) — C*(M)
which are of the form

K
Au = ZAkl .- 'Akau, Akj S lefl(M), K eN, N, <m. (542)
k=1

(Check that this agrees with the standard local coordinate definition.) Of course, differ-
ential operators also map C°(M) — C(M), 2'(M) — 2'(M), &' (M) — &'(M). What
are the Schwartz kernels of differential operators? The Schwartz kernel K of the identity
operator I € Diff®( M) should be

Ki(z,y) = d(z —y). (5.43)

We aim to make sense of this. Using the right projection mgr from (5.39), we define the
right density bundle by

Qr = 7mR(QM) (5.44)
Thus, integration in the second variable is a well-defined map C(M?;Qg) — C°(M).
More generally, the following map is well-defined:

(M2 Q) x C(M) 5 (K, u) > /M K (-, y)uly) € 7'(M). (5.45)

By the Schwartz kernel theorem, every continuous map C°(M) — 2'(M) is of this type!
Thus, (5.43) is well-defined as an element

K; € 9'(M?Qp). (5.46)

Remark 5.20 (Schwartz kernel of the identity map). As a check, recall that K; acts on
elements of”

CO (M Q(M?) ® (Qr)*) = C(M?Qy), (5.47)
and indeed maps u € C°(M?; ;) into J3y u(z, ), defined by Proposition 5.14. (Note that
restriction to the diagonal gives a map C°(M?; Q) — C°(M; QM) by Lemma 5.12.)

"This uses that Q(M?) = Qr, @ Qg.

).
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Given A € Diff™ (M), its Schwartz kernel K4 € 2'(M?; Q) is then given by
K = (rjA)K7, (5.48)

where 77 A denotes the lift of A to the first factor, i.e. differentiating only in the first factor
of M?. Check that this is well-defined in the following general context: if 7: E — M is a
vector bundle, then

(L AK € 7(M%74E), (7 AK)(,y) = (AK)(y), ye M, K € 7' (M 4E),
(5.49)
is well-defined.

5.4. Definition of ¥ (M). We continue to denote by M a smooth n-dimensional man-
ifold, and use the notation (5.39). The following definition captures what we would like
pseudodifferential operators on a manifold (not necessarily compact) to be: their Schwartz
kernels should, near the diagonal, be Schwartz kernels of ps.d.o.s on R" in local coordinates,
while away from the diagonal they are simply smooth.

Definition 5.21 (Pseudodifferential operators on manifolds). Let M be a smooth n-
dimensional manifold. Let m € R. Then U™ (M) is the space of linear operators

A: C(M) — C>*(M) (5.50)
with the following properties:

(1) if ¢,1p € C°°(M) have supp ¢ Nsupp ) = 0, then there exists K € C>(M?;{g) such
that

oA = [ Ky, wec(n. (5.51a)

(2) if F: U — R" is a diffeomorphism from an open set ) 2 U C M to F(U), and if
1 € CX(U), then there exists B € WI(F(U)) C Y™ (R"™) (see Definition 5.1) such
that on U, we have

bAu) = F*(B((F7) (Yw)), ueC(M). (5.51b)

Remark 5.22 (Ps.d.o.s on the manifold R™). Taking as the smooth manifold M = R", the
space U™ (M) defined here is much larger than the space ¥ (R™) of uniform pseudodiffer-
ential operators defined in §4. (One reason is that we do not constrain the size of Schwartz
kernels away from the diagonal Ay = {(p,p): p € M}.). To avoid confusion, one should
denote the latter space by U7 (R™). When working on R", we shall, in these notes, only ever
employ operators in the uniform algebra, hence we shall right away drop the ‘oo’ subscript
again!

Remark 5.23 (Residual operators). Directly from the definition, the space ¥~ (M) consists
of all operators which have a Schwartz kernel in C*(M?;Qg). Equivalently, U=°°(M) is
the space of all bounded linear operators &' (M) — C>°(M).

Ps.d.o.s act on distributions with compact support. We give a direct proof here, and
defer a ‘better’ proof in the spirit of (4.32) to later; see Corollary 5.42.

Proposition 5.24 (Boundedness on distributions). Let A € U™ (M). Then A extends by
continuity from C°(M) to a bounded linear operator

A: E'(M) — 2" (M). (5.52)



MICROLOCAL ANALYSIS 49

Proof. Fix a cover of M by coordinate systems F;: U; — F;(U;) C R™ with U; compact,
and let {¢;}, ¢; € C°(U;), be a subordinate partition of unity. Fix ¢; € C°(U;) with ¢; = 1
near supp ¢;. By (5.51b), we can write
GiAd; = iAdidi = Fy By(F; ') ¢,  Bi € W'(Fi(Uy)). (5.53)
Let now u € &' (M), then ¢;u # 0 only for finitely many i. We then set

Au = Z FfBi(F7Y* (piu) + Z(l — ¢i)Agju. (5.54)

Each one of the finitely many non-zero summands in the first sum is a pullback from R"™
of a tempered distribution with compact support, hence lies in &’(M). The second (also
finite) sum lies in C*°(M) by (5.51a).

For u € C°(M), we clearly have Au = Au. Since C°(M) C &'(M) is dense, (5.54)
defines the unique continuous extension of A to &'(M) (which, of course, we call A simply,
rather than A). O

To get a more manageable characterization of W™ (M), we first prove:

Lemma 5.25 (Ps.d.o.s defined in a chart). Let M be an n-dimensional manifold, and let
F:U — F(U) C R"™ be a coordinate patch. If B € W (F(U)) C ¥ (R™), then the operator
A: CX(M) — C>®(M) defined by

Au = F*B(F~Y)*(uly), wueC>®(M), (5.55)
on U, and Au =0 in M \ U, defines an element A € W™ (M).

Proof. We first check (5.51a): given ¢,v¢ € C°°(M) with supp ¢ Nsupp ¥ = 0, we have for
u € CP(M)

¢A(pu) = F*B'(F)"(uly), B':= ((F~1)"¢)B((F~)") € U¥(F(U)) C ¥~(R"),
(5.56)
where we used that supp((F~1)*¢) Nsupp((F~1)*1) = 0. Since the Schwartz kernel of B’
is smooth, we obtain (5.51a). (In more detail, if Kg € C(F(U) x F(U)) denotes the
Schwartz kernel of B’ then (5.51a) holds for K(z,y) := F*(Kpg/(z,y)|dy|).)

As for (5.51b), suppose G: V. — G(V) C R™ is another coordinate patch, and let x €
C (M), supp x C V. Then

By = (F7)"x)B((F~')"x) € ¥I(F(UNV)). (5.57)
Denote the change of coordinates by K = Fo G~ 1: G(UNV) — F(UNV), then
By = (By)e = 6By (x71) € WP(GUNV)) (5.58)

by Theorem 5.2. Therefore,
XA(xu) = F*Bi(F~ ) uluay = G*+*Bi(x™ ) (G~ 1) uluny = G*Ba(G™ ) ulunv, (5.59)
as desired. O
This already implies that there are lots of pseudodifferential operators on M, given

by locally finite sums of operators of the form (5.55). This gives almost (namely, up to
operators with smooth integral kernels) all of W™ (M):
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Theorem 5.26 (Characterization of ps.d.o.s via charts). Let M be an n-dimensional mani-
fold, and let M = \J, U; be a locally finite open cover by coordinate charts Fy: U; — Fi(U;) C
R™ with U; compact. Let A: C*(M) — 2'(M) be a linear operator. Then A € W™(M) if
and only if there exist operators B; € W™ (F;(U;)) and a section K € C*°(M?;Qg) such that
A=K+ FBi(F ). (5.60)
i
Proof. If A is of the form (5.60), then A € W™ (M) by the previous lemma. Conversely,
suppose A € U™(M). Let {¢;}, ¢; € C°(U;), be a partition of unity subordinate to {U;},
i.e. supp¢; C Uj, and ), ¢i(x) = 1 for all € M. Choose ¢; € C(U;) with supp ¢; C U;
and ¢; = 1 near supp ¢;. For u € C$°(M), we then have

By definition, (1 — <Z~>,~)A<Z>Z~ has a smooth Schwartz kernel K; € C*(M?;QR); since supp K;
is locally finite, we can define

K =) K; € C®(M?*Qp). (5.62)

Considering a term ¢;A¢; in the first sum in (5.61), note that

PiA(piu) = iAdi(piu). (5.63)

But ¢;A¢; = FyBL(F; ')*¢; for some B} € W (F;(U;)), and therefore
iy = F{Bi(F 1), Biu:= Bi((F ¢:)u), u € CZ(M), (5.64)
with B; € ¥'(F;(U;)), as desired. O

When M is not compact, one can in general not compose two ps.d.o.s, even when both
are of order —oo, since they only act on C$° (M), but not on C>°(M) in general, the problem
being potential growth of the Schwartz kernel away from the diagonal. The simplest cure
is to place an additional assumption on the Schwartz kernels:

Definition 5.27 (Properly supported ps.d.o.s). We say that A € ¥ (M), with Schwartz
kernel K € 2'(M?;QpR), is properly supported if the projection maps 7z: supp K — M
and wgr: supp K — M are proper, i.e. preimages of compact sets are compact.

Every ps.d.o. is the sum of a properly supported operator and a residual operator. (See
Exercise 5.10.) In other words, in situations where one does not care about order —oo
errors, one can work entirely with properly supported operators.

Thus, properly supported operators are bounded on C2°(M) and &”’(M). Using partition
of unity arguments, one can show that they are also bounded on C*°(M), 2'(M). For a
proof using a duality argument, see Corollary 5.42 below.

Remark 5.28 (Properly supported and uniform ps.d.o.s on R™). Complementing Remark 5.22,
the subspace of ¥ (M), M = R", consisting of properly supported operators does not have
a simple relationship with W7 (R™): on the one hand, Schwartz kernels of elements of
U (R™) may even have full support in R™ x R™, hence are not properly supported; on
the other hand, properly supported elements of ¥ (M) may not be elements of W7 (R™)
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since membership in the latter space requires uniform bounds off the diagonal, see e.g.
Exercise 4.2.

Theorem 5.29 (Composition of ps.d.o.s on manifolds). Let A € W™(M) and B € " (M),
and assume at least one of A and B is properly supported. Then Ao B: C3°(M) — C*(M)
is a ps.d.o., Ao B € ymt+m’ (M). If both A and B are properly supported, then so is Ao B.

We will use the description of Theorem 5.26 for a particular kind of open cover:

Lemma 5.30 (Special covers). Let M be a smooth manifold. There exists a locally finite
open cover {U;} of M such that whenever U; N Uj # 0, then there exists a local coordinate
chart F: U — F(U) C R™ with U D U; UU;.

Proof. M is metrizable; this follows either by Urysohn’s metrization theorem, or from basic
Riemannian geometry. Denote a fixed metric on M by d, and denote metric balls by
B(p,7)={q € M: d(p,q) <r}. For each p € M, let

ro(p) := sup{r € [0,1]: B(p,r) is contained in a coordinate chart}. (5.65)

Since M is a manifold, we have ro(p) > 0 for all p € M. For p € M, define the open set

V, = B(p, Tol(g)). (5.66)

Suppose V, NV, # 0; then d(p, q) < 15(ro(p) + ro(q)) < £ max(ro(p), ro(q)). By symmetry,
we may assume ro(p) > ro(q). If z € V, UV, then

d(p, z) < max<m1((];),d(p, q) + ml((;])) < max(rol(é)), Toép) + 7"01((1)?)) < %To(p). (5.67)

Therefore, V, UV, C B(p, TOT(M) is contained in a coordinate chart. Any locally finite
refinement {U;} of the cover {V,,: p € M} of M satisfies the conditions of the lemma. O

Proof of Theorem 5.29. By the previous lemma, we can fix an open cover M = J; U; of M
by coordinate charts F;: U; — F;(U;) C R™, with U; compact, and so that for any ¢, 7 with
U; NU; # 0, the union U; UU;j is contained in a coordinate chart Fy;: U;; — Fj;(Usj) C R™.

Let us assume that A is properly supported. (The case that B is properly supported is
handled similarly.) Write

A=K+ FfAFTY, A€ U(F(U),
g e (555)
B=K'+> F/By(F7Y)",  B; € UI(E(Uy)), K' € C®(M* Qp).
i

Since A and all the F;*Ai(Fi_l)* are properly supported, so is K € C*°(M?;Qg).

We consider the composition A o B term by term and keep track of the support of the
Schwartz kernels of the various pieces.

We first prove that K o K/ € ¥=>°(M). We have (K o K')(z,y) = [ K(x,2)K'(z,y)dz;
for any compact set K1 C M there exists Ko C M such that in fact

(Ko K')(z,y) = . K(z,2)K'(z,y)dz, x€ K. (5.69)
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Indeed, this holds for Ky = 77 (supp K N 7' (K1)). Thus, the Schwartz kernel of K o K’
lies in C°(M?; Q).
Consider next the composition K; := KoF;B;(F; *)*. This maps u € &' (M) into C>(M)
(in fact, into C°(M)); and if suppu N U; = ), then K;u = 0. Thus, by Remark 5.23,
K; € C°(M?* Qpr), suppK; C M x U. (5.70)
(In fact, supp K; C 7 (supp K N ﬂ]le(Ui)) x U; is compact, but we do not need this infor-
mation.) Similarly, one shows that
K| :=F}A{(F )" o K' € C®(M?*Qg), suppK] C U; x M. (5.71)
(Note that its Schwartz kernel is not compactly supported since K’ is not properly sup-

ported.) Finally, we need to consider the composition
Cij := Ff Ai(F; )" o Fy Bj(F;1)*: C°(M) — (M), (5.72)

(2

When U; N U; = 0, this composition is the 0 operator. When U; N U; # (), we can use
Lemma 5.25 and write (5.72) equivalently as

FjAi(F ;') o Fj5Bij(Fi;')* = Fji(Aij o By) (Fi;')*, (5.73)
where A;; € U(E;(U;)), Bij € UM (Fy;(U;)). But then A;j o By € WM™ (E;(U; UU;)),
hence (5.73) lies in W7 (M), with Schwartz kernel supported in Uy; x U;.

The proof is complete once we show that the supports of the Schwartz kernels of K;, K,
and Cj; are locally finite. Take a point (p,q) € M2, and choose ig, jo such that p € U;, and
q € Uj,. Then U := U;, x Uj, has non-trivial intersection with only finitely many of these
supports, as follows immediately from the local finiteness of {U;}. O

Since every operator on a compact manifold is properly supported, we deduce:
Corollary 5.31 (Composition on compact manifolds). If M is a compact manifold, then
UM o U™ (M) C U+ (M).

5.5. Principal symbol. Motivated by Theorem 5.2, in particular formula (5.2), we want
to define the principal symbol of A € W™ (M) as an equivalence class of symbols on T*M.

Definition 5.32 (Symbol spaces on vector bundles). Let M be a manifold and 7: E — M
a rank k vector bundle. For m € R, we define S"™(E) C C*°(E) as the subspace of all
a € C*°(F) having the following property: for each coordinate chart F': U — F(U) C R"

on M on which E is trivial with trivialization 7: 7=1(U) — U x RF 2214 F(U) x RF, set
b(x,v) := (Tﬁl)*(a‘ﬂ.—l(U))(l',’U) =a(t7 (z,v)) € C®(F(U) x ]Rk). (5.74)
Then for any ¢ € C°(F(U)) C CX(R"™), we have ¢(z)b(z,v) € S™(R™;RF).

The key to making this a useful definition is the following analogue of Lemma 5.25.
Lemma 5.33 (Symbols defined in a chart). In the notation of Definition 5.32, suppose
¢ € CP(F(U)), be S™(R™;R¥). Then a := 7*(¢b) € S™(E).

Proof. The expression for a in another coordinate system F’: U’ — F/(U’) C R™ on M and
a trivialization of F on U’ is

b (x,v) = ¢(k(x))b(k(x), ®(x)v), ze€ F(UNU') (5.75)
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for some diffeomorphism «: F'(UNU’) — F(UNU’) and a smooth map ®: U" — U. Let
1 € CO(F'(U")). Then x(z) == (x)d(k(x)) € CC(F'(U) Nk~ (F(V))) = C(F'(UNT)),
and we need to check that

x(2)b(k(x), ®(x)v) € S™(R™;RF). (5.76)

This however follows from the same type of calculation as (5.14). O

In analogy with Theorem 5.26, we have:

Corollary 5.34 (Characterization of symbols via charts). Let M = |J, U; be a locally finite
open cover by coordinate charts F;: U; — F;(U;) C R™, with U; compact, over which E has
a trivialization 1;: 7Y (U;) — F;(U;) x RE. Let a € C®(E). Then a € S™(E) if and only if
there exist symbols b; € S™(R™;R¥) and x; € C°(F;(U;)) such that

a= (1) (xibi)- (5.77)
1
Now, given an operator A € U™ (M), we expect its principal symbol to be an element of
the quotient space S™(T*M)/S™~Y(T*M). We first define it locally. Let F: U — F(U) C
R™ be a coordinate chart with U compact, and let V' C U be open with V' C U. Denote by
7: T5M — F(U) x R™ the trivialization induced by F. Let x € C2°(U) be such that y =1
on V. Then we put

ay = T*(O'L((Ffl)*XAXF*))’T‘jM € Sm(T{’}M) (578)
By the local (R™) theory, and in particular by Theorem 5.2, the equivalence class
[av] € S™(TyM)/S™ (T M) (5.79)

is independent of the choice of x, and of the coordinate system F' covering a neighborhood
of V. Moreover, if V! C V, then restriction to V' gives [ay]|y = [ay/].

Definition 5.35 (Principal symbol of ps.d.o.s on manifolds). The principal symbol of
A € U™(M) is the unique element

o™ (A) € S™(T*M)/S™ 1 (T* M) (5.80)
with the following property: if a € S™(T*M) is any representative of 0™ (A), and V is as
above, then [a|rs:] = [av] € S™(TH M)/ S™ YTy M).

We start by proving existence. (Effectively, we are proving that U + S™(T};M)/S™ (T M)
is a sheaf.) This follows easily from the properties of the [ay]. Indeed, taking a locally
finite subcover {V;} of the cover of M by all sets V' as above, and a subordinate partition
of unity {¢;}, we have a =, ¢;ay, € S"(T*M) by Corollary 5.34; we then put

o™ (A) = [a. (5.81)

We check that this satisfies the property required in Definition 5.35. Given V open as above,
it suffices to show that for ¢ € C°(V'), we have [paly]| = [pav]. Now ¢piay, = ¢diay + e;
for some e; € S™~1(T*M) with support in Ty 1, M. Let ¢; € C°(V;) be equal to 1 on

supp ¢;, and with supp él locally finite; then
daly =Y dildiday,) =Y _ di(diday + &) = day + > _ dies, (5.82)

as desired (since Y3, ¢ie; € S™~H(T*M)).
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We now turn to the uniqueness part of Definition 5.35; it suffices to show that if a €
S™(T*M) is such that alrzy € Sm=1(Ty M) for open sets V. C M as above, then a €

Sm=1(T*M). But this follows by writing a = 3", ¢a

T M, where ¢;, V; are as above.
1

Proposition 5.36 (Principal symbol short exact sequence). The principal symbol map
gives a short exact sequence

0 — U Y(M) — ™M) T S™(T*M)/S™ T M) — 0. (5.83)

Proof. We only prove surjectivity of ™. Take a partition of unity {¢;} subordinate to
a locally finite cover of M by coordinate charts F;: U; — F;(U;) C R™ with U; compact.
Writing any a € S™(T*M) as a = ), ¢;a, it suffices to show that there exists an operator
A; € U™(M) with Schwartz kernel supported in U; x U; such that 0 (A4;) = [¢;a], as we
can then take A = 3", A; (which is a locally finite sum). This is easy: if ¢; € C(U;),
é; = 1 on supp ¢;, then simply take

Ai = Fr 0p(((F71Y60) (2)ala, &) (B 60 () (B 689

An immediate consequence of the R™ result, Proposition 4.21, is:

Proposition 5.37 (Multiplicativity of the principal symbol). If A € ¥(M), B € U™ (M),
with at least one of them properly supported, then

/

™t (Ao B) = 0™ (A)d™ (B). (5.85)

The analogue of Proposition 4.22 concerning the principal symbol of commutators will
be discussed in §5.13.

5.6. Quantization. There is no completely natural way, in general, to quantize symbols
on T*M to pseudodifferential operators on M. However, we do have the following useful
construction: fix a locally finite open cover M = |J,U; by coordinate charts Fj: U; —
F;(U;) C R™ with U; compact, and let {¢;}, ¢; € C°(U;), be a partition of unity subordinate
to {U;}. Fix ¢; € C°(U;) with ¢; = 1 near supp ¢;. Given a € S™(T*M), define then

Op(a) = ZF;‘ Op, ((F;)* (¢ia)) i(FH)*, (5.86)

where Opy: S™(T*R"™) — W™ (R") is the left quantization map. By Theorem 5.26, the
formula (5.86) defines a map

Op: S™(T*M) — U™ (M). (5.87)

Proposition 5.38 (Properties of the quantization map). The map Op in (5.87) is con-
tinuous, linear, and takes values in the subspace of properly supported operators. We have
Op(1) = I (the identity operator). Moreover, Op: S™(T*M) — W™ (M) is surjective mod-
ulo W=°(M); that is, V™(M) = Op(S™(T*M)) + V=>°(M).

Proof. We only sketch a proof of the final claim. It follows from Theorem 5.26. Indeed,
in the notation of equation (5.60), we can write any A € U™ (M) in the form A,, :=
A— K =Y, FB;(F,')*. Using a partition of unity, we can combine the symbols of the
operators B; € U™ (R"™) into a symbol a,, € S™(T*M); by the coordinate invariance of
the principal symbol, we then have A,, 1 := A,, — Op(a,) € V" 1(M). We may then



MICROLOCAL ANALYSIS 55

apply Theorem 5.26 to A,,,—1. An inductive argument thus produces a,—; € S™ 7 (T*M),
j €N, so that A;—j_1 := Ap—j — Op(am—;) € U™ I(M). Letting a € S™(T*M) be an
asymptotic sum of the a,,,, j € No, we therefore have A = A,;, + K = Op(a) + K + R
where K € C*°(M?;Qgr) and R € ¥~°°(M) are residual operators, and thus so is their sum
K+ R. U

5.7. Operators acting on sections of vector bundles. The reader might ask why we
have not discussed adjoints of A € W (M) (or even A € Diff"™"(M)) yet. Since we do not
have an invariant way of integrating functions on M, the only sensible way to define A* is
by

/ (Au)(2)0(z) = / w(@)Ao(D), u e CO(M), v e CX(M; QM) (5.88)
M M

that is, A* should be an operator acting on sections of QM. We leave it to the reader to
define the space of m-th order differential operators Diff™(M; E, F') mapping sections of E
to section of F', and go straight for the pseudodifferential version.

Definition 5.39 (Ps.d.o.s acting on sections of vector bundles). Let M be a smooth man-
ifold, and let ng: B — M, np: F — M denote two real vector bundles of rank kg, kp.
Then ¥™(M; E, F) is the space of linear operators

A: CE (M E) = C®(M; F) (5.89)
with the following properties:
(1) if ¢, € C>®(M) have supp ¢ Nsupp ) = 0, then there exists K € C°(M?%* 7t F ®
TR(E* ® QM)) such that pAyY = K.
(2) Let U € M be any open set, G: U — G(U) C R" a diffeomorphism, and let
mp: 15 (U) = GU)xRFe rp: n 21 (U) — G(U) x R¥F local trivializations of E, F.
Using 7g, identify smooth sections of E over U with kg-tuples of smooth functions

on U, likewise for sections of F. If 1) € C°(U), then there exists a kp X kg matrix
B = (Bjj) of ps.d.o.s B;; € ¥*(G(U)) such that on U

kg
A () =Y 6" (Bij(@—l)*u))j), weC®(M;E), i=1,... kp. (5.90)

In the special case F' = E, we write V™(M; E) = V™(M; E, E).

In local coordinates and trivializations, the symbol of A € ¥ (M; E, F') is a symbol with
values in linear maps from R*? to R¥F. The invariant definition is as follows. Denote by
w: T*M — M the projection. Given a vector bundle G — M, we can consider its pullback
™G — T*M; a trivialization of G over an open set U C M, so G|y = U x Rk | then
induces a trivialization of 7*G over T}; M which is ‘constant in the fibers of T M’, namely

(7*G) |y = T*U x RFe, (5.91)
by identifying (7*G)(y¢) = Gz = R*¢ using the local trivialization. We then denote by
S™T*M;7*G) C C*(T*M; m*Q) (5.92)

the space of all smooth functions which in local coordinates and in a trivialization of G
(which induces a trivialization of 7*G as in (5.91)) are kg-vectors of symbols on R™ of order
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m. Invariantly then,
o™ (A) € (S™/S™ NT*M;7* Hom(E, F)), m:T*M — M. (5.93)

This means that a representative of 0"(A) is a map assigning to (x,£) € T*M an element
of Hom(FE,, F). We have a short exact sequence

0— U YM;E, F) — U™(M; E, F) < (S™/S™ (T*M; 7* Hom(E, F)) — 0. (5.94)
The results from §§5.4-5.5 carry over; moreover, one can define adjoints:

Proposition 5.40 (Compositions and adjoints). Let M be a smooth manifold, and let
E, F,G — M denote three vector bundles.

(1) Let A € Y"(M; F,G) and B € \I/m/(M;E, F), with at least one of them properly
supported. Then Ao B € W™ (M;E,G), and "™ (Ao B) = 0™(A) o 6™ (B).5
(2) Let A€ U™ (M;E,F). Then the (real) adjoint AT, defined by

/(Au)v:/ uw(ATv), ueC®(M;E), veC®(M;F*®QM), (5.95)
M M

1 a pseudodifferential operator,
AT e v™(M; F* @ QM, E* @ QM). (5.96)
It is properly supported if A is.

Remark 5.41 (Bundles with extra structure). (1) If E, F are complex vector bundles
with a anti-linear involution (‘complex conjugation’), then one can define the adjoint
A* similarly to (5.95), but with complex conjugation of the second factor; one then
has
o™(A*) =o™(A)". (5.97)
This in particular applies to the case that £ = F = M x C, so sections of E, F' are
simply complex-valued functions on M, which we discussed in (5.95).
(2) An inner product on E induces an isomorphism E* = F (anti-linear when the inner
product is sesquilinear). If one moreover chooses a trivialization of QM, e.g. from
a semi-Riemannian metric, then AT € ™ (M; F, E) (and A* € ¥ (M; E, F) in the
complex case).

A consequence of (5.96) is the following extension of Proposition 5.24:

Corollary 5.42 (Action of ps.d.o.s on distributions and smooth functions). Let A €
U™(M;E,F). Then A extends to a bounded linear operator A: &' (M;E) — 2'(M;F).
If A is properly supported, then A also maps 9'(M; E) — 2'(M; F), and by restriction
C*®(M;E) — C>®(M;F).

Proof. AT is a bounded map CX(M; F* @ QM) — C®(M; E* ® QM). Therefore we can
define A: &' (M;E) — 2'(M;F) by duality using (5.96); this agrees with the original
operator A when restricted to C°(M; E).

If A is properly supported, then AT maps C°(M; F*®@QM) — C(M; E* ® QM), hence
we can now define A: 9'(M; E) — 2'(M; F) by duality. Now C>*(M; E) C 9'(M; E). Tt

8Note that for operators acting between bundles, composition is no longer commutative on the level of
principal symbols.
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remains to check that Au € C*°(M; F') when u € C*°(M; E); but using a partition of unity
1 =), ¢;, with supp ¢; compact, we have

Au=A (Z @»u) = Z A(iu), (5.98)

with convergence in 2'(M; F). But since A is properly supported, the final sum is a locally
finite sum of smooth terms, hence smooth. O

5.8. Special classes of operators. Let M be a manifold, and let £, F' — M denote two
vector bundles of rank kg, kp.

Definition 5.43 (Classical ps.d.o.s on manifolds). Let m € R. The subspace W[} (M; E, F) C
U™(M; E, F) of classical pseudodifferential operators consists of those operators whose full
symbol in a local coordinate chart and in local trivializations of F, F' is a krp X kg matrix
of classical symbols of order m. The principal symbol map on V7 (M; E, F) records the

leading order homogeneous part,
o™ W(M;E F) — St (T*M \ o;7* Hom(E, F)). (5.99)

The reason this is a sensible definition is that classicality is preserved under local co-
ordinate transformations; this follows from the proof of Theorem 5.2, in particular equa-
tion (5.13). Using the R™ results such as Proposition 4.24, one easily checks that the
composition of two classical ps.d.o.s (at least one of which is properly supported) is again a
classical ps.d.o., and that taking adjoints preserves classicality as well. A class of a classical
ps.d.o.s is of course given by differential operators:

Diff "(M; E, F) C YV} (M; E, F). (5.100)
Moreover, parametrices of classical operators are again classical.

Often, operators arising in geometric problems are Laplace operators to leading order,
such as the Hodge Laplacian (5.120). A very useful generalization of this is the following.

Definition 5.44 (Principally scalar operators). Let m € R and A € U™ (M; E). Then A
is principally scalar if its principal symbol is multiplication by scalars on the fibers of F,
that is, if there exists a symbol a € S™(T*M) such that 0™ (A)(x,&) = a(z,€) Idg, .

Principally scalar operators behave similarly to operators acting on scalar functions; we
shall see examples of this in §8.

5.9. Elliptic operators on compact manifolds, Fredholm theory. Let M be a com-
pact n-dimensional manifold (without boundary), and let E, F — M denote two vector
bundles.

Definition 5.45 (Ellipticity). We say that A € W™ (M; E, F'), with principal symbol a =
0™ (A), is elliptic if there exists a symbol b € S™™(T*M;7* Hom(F, E)) such that ab—1 €
S=YT*M;7* End(F)), ba — 1 € S~Y(T*M; 7* End(E)).

Remark 5.46 (Equivalent definition of ellipticity). By ‘abstract group theory’ as in (4.89),
the following seemingly more general definition is in fact equivalent to the ellipticity of
A: there exist symbols b, € S™™(T*M;x* Hom(F, E)) with the property that ab —1 €
S=YT*M;7* End(F)) and V'a — 1 € S~HT*M;7* End(E)).
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Theorem 5.47 (Fredholm properties and generalized inverses of elliptic ps.d.o.s). Let
A e V™(M; E,F) be an elliptic operator.
(1) Then A: C®(M;E) — C>®(M; F) is Fredholm, that is, ker A is finite-dimensional,
and ran A is closed and has finite codimension. Furthermore,
ran A={f €C(M;F): (f*,f) =0V f*e€C®(M;F*oQM), A*f* =0}, (5.101)

where A* € W™ (M; F* @ QM, E* @ QM).

(2) Let 0 < v € C®°(M;QM) be a volume density on M, and fix positive definite fiber
inner products on E,F. A linear operator G: C*(M; F) — C*(M; E) is uniquely
determined by

Gf=u if feranA, Au=f, u Lker A in L>(M;E;v),
Gf=0 if f LranA in L*(M;F;v).
It is called the generalized inverse of A. It satisfies G € V™" (M; F, E) and
GA=1—-nyn, AG=1—T7p, (5.103)

where wyn: L*(M; E;v) — L2(M; E;v) is the orthogonal projection onto ker A and
mr: L2(M; F;v) — L?(M; F;v) is the orthogonal projection onto ker A* = (ran A)*.
We have my € UW=°(M; E) and ng € V=°°(M; F). In particular, if A is invertible,
then G = A~ € U=™(M; F, E).

(5.102)

Proof. The elliptic parametrix construction, see Theorem 4.26, works in this setting as well
(see Exercise 5.14). Thus, there exists B € W~ (M; F, E) such that

Ri=AB—-1€V *(M;F), Ry=BA—-1€3VY *(M;E). (5.104)
We show that dimker A < co. First, note that
we Z' (M;E), Au=0 = u=(BA— Ry)u=—Ryu € C®(M;E). (5.105)

Let us look at this from the point of view that the identity map on ker A ¢ L?(M; E;v)
can be written as I = BA — Ry = —Ry. Now Ry maps L*(M; E;v) — C®(M;E), and
hence is compact as a map L2(M; E;v) — L?*(M; E;v) by Arzela-Ascoli. Therefore, the
unit ball in the closed subspace ker A C L?(M; E;v) is compact, thus ker A C L?(M; E;v)
is finite-dimensional.

Next, we show that ran A is closed. Suppose f; = Au; — f € C¥(M; F), u; € C°(M; E).
We may change u; by an element of ker A to ensure that u; 1 ker A. We have

uj = BAu; — Rouj = Bf; — Rou,;. (5.106)

Suppose that, along some subsequence, |uj||z2 — co. Then

“j:B(f3>—R<“7>. 5.107
AN AN (5.107)

This is bounded in C*°(M; E), hence we can pass to a subsequence which converges in
L*(M; E;v), say u;/||luj]l = uw € L*(M; E;v). Then Au = lim; o fi/|luj]] = 0, so u €
ker A, but also u L ker A by construction. Since ||u|;2 = 1, this is a contradiction.
Therefore, |u;||z2 is bounded. Equation (5.106) then shows that w; is bounded in
C*>(M; E), hence has a subsequence converging to u € C*°(M; E), and
Au = lim Au; = lim f; = f. (5.108)
j—00

Jj—00
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Since A* is elliptic, the finite-codimensionality of ran A is a consequence of (5.101).
Now, (5.101) is a consequence of two facts. First, since R =ran A C C*(M; F) is a closed
subspace of a Fréchet spaces, we have R = *(RY) := {f € C®(M;E): (f*, f) =0V f* €
RY} where

L= {f e 2 (M;F*@QM): (f*,f)=0YfeR} (5.109)

is the annihilator of R; indeed, the inclusion R C +(R1) is clear, while for fy € C®°(M; F)\
R the Hahn—Banach theorem, using the closedness of R, produces a continuous linear
functional f*: C>*(M;F) — C, i.e. f* € 2'(M; F* ® QM ), which vanishes on R—so f* €
R+—but with (f*, fo) = 1. Second, f* € R if and only if for all u € C*°(M; E) we have
0= (f*, Au) = (A*f*, u), i.e. if and only if f* € ker A*. Since A* is elliptic, this implies
that R+ C C®(M; F* ® QM), and (5.101) follows.

Fixing an orthonormal basis {uy, ...,u;} C C®(M; E) of ker A, the orthogonal projection
mn onto ker A is given by

WN—ZUJ ) U L2(MEV) (5.110)

Therefore, it has a smooth Schwartz kernel. An analogous argument shows that the or-
thogonal projection mp: L?(M; F;v) — L?(M; F;v) onto (ran A)* = ker A* C C®(M; F)
has a smooth Schwartz kernel. Therefore, Ty, 7r € V™.

By (5.101), we have ran(I — 7g) = (ker A*)* = ran A, and therefore G is uniquely de-
termined by (5.102). The statement G € U~ (M; F, E) for the generalized inverse (5.102)
now follows by writing

G =G(AB — Ry)
= —7nny)B—-GR;
= ([ —7nn)B—(BA—- Ry)GRy
([—TFN)B B([—TFR)Rl + RoGR;y.

(5.111)

Indeed, the first summand lies in ¥ (M; F, E), the second in W~°°(M; F, E), and the last
one is a smoothing operator, hence lies in W~=°(M; F, F) as well. [l

We revisit the proof of the existence of the generalized inverse using L2-techniques
in §5.11.

As a typical example, we discuss the Laplace operator on a compact n-dimensional man-
ifold M, which we assume to be connected for convenience. Denote by S?T*M the second
symmetric tensor product of T*M with itself. Let g € C*°(M;S?T*M) be a Riemannian
metric, so in local coordinates

g= Z gij(x dx ® da? + da? ® dz?), gij(x) = gji(x). (5.112)
i,7=1

Write g% (z) = g~ '(z);; and |g| = |det(g;;)|. Then the (scalar) Laplace operator is

Agu= Y 917" *Da,(lg'?" (2) Do u) (5.113)
ij=1
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in local coordinates. Thus, A, € U?(M), with

UQ(AQ)(:E’&) = Z gij(x)fifj = |£‘3*1(az) (5.114)

i,j=1
Thus, Ay is elliptic. By Theorem 5.47, the kernel and cokernel of A, are finite-dimensional.

Moreover, A, is a symmetric operator with respect to the inner product on L*(M;|dgl),
where |dg| € C*°(M; QM) is defined in local coordinates by

dg| = |g(x)|"/?dz. (5.115)
Thus, ker A, = (ran AQ)L; and if v € ker Ay, then
0= [ @guuidgl = [ 7u2ldgl (5.116)
M M
so u is constant. In the notation of Theorem 5.47, we thus have
1
= 11 = A1
™ VO](M) < ) > TR (5 7)
(projection onto constants).
Let us study
Agu=f, [feD'(M). (5.118)

Let G € U=2(M) denote the generalized inverse of A,. In the notation of Theorem 5.47,
we then have

u= (GAyg+mny)u=Gf + mnu. (5.119)
This solves (5.118) if and only if f = Aju = AJGf + Agnnu = (I — wg)f. This shows:

Proposition 5.48 (Laplace equation on compact manifolds). The equation (5.118) has a
solution uw € P'(M) if and only if (f,1) = 0, and in this case u is unique up to additive
constants. If f € C°(M), then u € C=(M).

Ezample 5.49. For the operator A = Ay +1 € W?(M) on a compact Riemannian manifold,
one finds ker A = 0 = (ran A)*, thus one can always solve Au = f for f € C®(M) or
f € 2'(M), with solution u € C*°(M) or u € Z'(M).

Ezample 5.50. One can define natural generalizations of A, which act on vector bundles
rather than functions. Let d;, € Diff!(M; A*T*M; A*+1T7* M) denote the exterior derivative,
and denote by J, € Diffl(M;AkT*M; AF=YT*M) the adjoint of dj_;. Let d, = 0 and
00 = 0. Then the Hodge Laplacian in degree k is

Ay := Opy1dy + dj_16;, € Diff2(M; AFT*M). (5.120)

Its principal symbol is scalar, i.e. at each (z,&) € T*M a multiple of the identity operator on
(W*AkT*M)(w,f); in fact 02(Ay)(7,&) = ]§|3,1(x) Id. (The expression (5.113) is the special
case k = 0.) Again Ay is symmetric with respect to the fiber inner product and volume
density induced by g. Its kernel and orthocomplement of the range are finite-dimensional,
and can be identified with the singular cohomology group H*(M;C) by Hodge theory. For
a general version of this, see Exercise 5.28.
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5.10. Sobolev spaces on manifolds. We need two key facts about Sobolev spaces H*(R")
for the generalization of Sobolev spaces to manifolds. For an open set 2 € R"™, we define

H:(Q) :={ue H*(R"): suppu C Q}. (5.121)

Lemma 5.51 (Sobolev spaces under localizations and coordinate changes). Sobolev spaces
on R™ have the following properties.

(1) Let a € C°(R™). Then multiplication by a is a bounded linear map H*(R") —
H*(R™) for all s € R™.

(2) Suppose k: Q — Q' is a diffeomorphism of precompact open subsets Q,Q € R™.
Then k*: HE(QY) — HE(Q). Here, the pullback of a distribution w € 2'(R™) with
support in € is defined via duality using the formula

(5w, @) = (u, | det(s™)|(571) "), &€ CE(Q). (5.122)

Proof. The ‘standard’ proof of the first claim proceeds by proving it for s € Ny using the
Leibniz rule, then for all real s > 0 by complex interpolation, and then for all s € R by
duality. With the machinery of §4 at hand, we can instead just observe that a € WO(R"),
and appeal to Corollary 4.34.

The second claim is clear for s = 0. We shall prove it for general s € R using our
ps.d.o. machinery. Indeed, given u € HZ(Q') C &'(£), we certainly have k*u € &'().
Let A € U%(R") be elliptic, and let ¢, € C°(€) be such that ¢ = ¢ = 1 on supp(k*u),
and such that ¢~) = 1 in a neighborhood of supp ¢. By choosing A carefully (localizing its
Schwartz kernel near the diagonal-—which does not affects its ellipticity property), we may
arrange that

A(k*u) = pAdK u. (5.123)

Note that ¢pA¢ € W:(Q). Therefore, by Theorem 5.2,
A(k*u) = ¥ (A), A = (k") GAdr* € U3(QY). (5.124)
Therefore A'u € L?(Q'), hence k*(A'u) € L?(Q), so A(k*u) € L*(R™). Since A is elliptic,
Corollary 4.36 implies that k*u € H*(R"), as desired. O

The ‘local coordinate’ definition of Sobolev spaces on manifolds is then:

Definition 5.52 (Sobolev spaces on manifolds). Let M be an n-dimensional manifold,
s € R. Then:

(1) We define H{ (M) as the space of all u € 2'(M) such that for all coordinate charts
F:U — F(U) C R" on M, and all x € C°(U), the distribution C°(R"™) > ¢
(u, xF*(¢|dz|)) is an element of H*(R").

(2) We define H(M) = {u € Hj (M): suppu C M is compact}.
If M is compact, we write

H*(M) = HE (M) = H(M). (5.125)

Lemma 5.51 shows that if u € HS(F(U)) for some coordinate chart F': U — F(U) C R"
on M, then F*u € H(M).
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Remark 5.53 (Topology on Hf (M)). One can equip Hj (M) with the structure of a
Fréchet space by using the seminorms ||(F; )*¢ul| He(rn) for any fixed countable cover of
M by coordinate charts F;: U; — F;(U;) C R™ and a subordinate partition of unity {¢;},
¢; € C°(U;). The resulting topology is independent of the cover and the partition of unity.

The proof of Lemma 5.51 suggests a more intrinsic definition of Sobolev spaces on M.
Note first that the spaces L2 (M) and L?(M) are well-defined, independently of a choice
of integration measure on M. (On the other hand, the space L?(M), even as a set, is not
well-defined when M is non-compact without specified integration measure.)

Proposition 5.54 (Boundedness of ps.d.o.s on Sobolev spaces: I). Let u € 9'(M).

(1) Suppose w € HE(M). Then Au € L2 (M) for all A € ¥S(M). If A is properly
supported, then A: HE(M) — L2(M), HE (M) — L% _(M).

(2) If Au € L2 (M) for some properly supported elliptic operator A € WS(M), then
€ Hiy (M).

loc

Proof. Suppose that F': U — F(U) C R™is a coordinate system on M, and let b, 6 € C(U)
with ¢ = 1 in a neighborhood of supp ¢.

The first claim follows by writing
pAu = pAdu + pA(1 — d)u. (5.126)

Indeed, the second summand lies in C*°(M) C L (M). The first summand can be evalu-
ated in local coordinates, and lies in L2(M) by Theorem 4.32.

Turning to the second claim, we need to show that (F~1)*(¢u) € &' (F(U)) lies in H*(R™).
Let B € U¥(R"™) be elliptic. We can arrange for its Schwartz kernel to be supported so close
to the diagonal that

(1= (F)'9)B((F1)"¢) = (5.127)

By elliptic regularity, we need to establish B(F~')*¢u € LQ(]R"), which by (5.127) is
equivalent to

Bue L2(M), B :=¢F*B(F~Y)*¢ec ws(M). (5.128)
Since A is elliptic, there exists a properly supported parametrix Q € V=¥(M) with [ =
QA+ R, where R € U~>°(M) is then also properly supported. Therefore,

B'u = B (QA+ R)u = (B'Q)(Au) + B'Ru. (5.129)
Now B'Q € UY(M) is bounded on L2 (M), so (B'Q)(Au) € L% (M), while B'R €
U=°(M), so B'Ru € C>°(M). Therefore, B'u € LIOC(M) O

Corollary 5.55 (Boundedness of ps.d.o.s on Sobolev spaces: II). Let A € W™(M). Then
A is a bounded linear operator

A: H¥ (M) — HE™(M). (5.130)

loc

If A is properly supported, then A: H(M) — HZ™(M), H (M) — Hp ™ (M).

Proof. We only prove (5.130). Let A € W5~ (M) be properly supported and elliptic. By
the second part of Proposition 5.54, it suffices to show that Ao A: HE(M) — L2 (M); but
this follows from A o A € ¥*(M) and the first part of Proposition 5.54. O
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Proposition 5.56 (Compactness of negative order ps.d.o.s). Let M be a compact n-
dimensional manifold. Let A € V™(M), m < 0. Then A: L*(M) — L*(M) is compact.

Proof. Decomposing A into finitely many terms as in (5.60), this follows from the com-
pactness on L?(R™) of negative order ps.d.o.s on R" with compactly supported Schwartz
kernels (Proposition 4.33) and the compactness of residual operators with Schwartz ker-
nels K € C*°(M?;Qg); the latter follows from the fact that such operators are continuous
L*(M) — C*®(M), while C*(M) c C}(M) — C°(M) — L?*(M) is compact by Arzela—
Ascoli. O

On a compact manifold M, the space H*(M) can be given the structure of a Hilbert
space:

Proposition 5.57 (H*(M) as a Hilbert space). Let M be compact, and let s € R. Fiz a
volume density on M. Then there exists A € W*(M) such that

(w,0) sy == (Au, Av) o arys Ul ) 7= (s w) s ). (5.131)

gives H3(M) the structure of a Hilbert space. The topology on H*(M) is equal to the norm
topology of (H*(M), [| - || s (ar))-

Proof. Let s > 0. Fix a smooth fiber metric || - | on T*M, and let A’ € ¥%/2(M) be an
operator with o*/2(A’)(xz, &) = ||€]|*/2.° Then A’ is elliptic, and so is
As =T+ (A)*N € U9 (M). (5.132)
By Theorem 5.47, Ag: C*(M) — C*°(M) is Fredholm. We claim that As is invertible on
C>®(M). Indeed, Asu = 0 implies HUH%Q(M) + HA’UHQLQ(M) = 0, hence u = 0. Since Ay is
symmetric (that is, (Asu, f)r2(ar) = (u, Asf) r2(ar) for u, f € C*°(M)), this also shows that
A is surjective. The second part of Theorem 5.47 then implies that
A_g:= At e U3(M). (5.133)
Using Proposition 5.54, we conclude that Ag: HS(M) — L?*(M) and A_s: H=5(M) —
L?(M) are isomorphisms.
For s € R, we can thus take A = A,. O
Remark 5.58 (The case H?*(M), k € Ny). For s = 2k, k € N, one can take Agy = (A, +1)%
for any Riemannian metric g on M. (In fact, this is true for any & € R by a theorem of

Seeley which states, as a special case, that (A,+1)% € U2$(M) for any s € R. This operator
is defined using the functional calculus for self-adjoint operators.)

Adding vector bundles to this discussion requires only notational changes. Namely, if
E — M is areal/complex rank k vector bundle, we say that uw € 2'(M; E) lies in H{ .(M; E)
if and only if in local trivializations of F over coordinate charts on M, u is a k-vector of real-
valued /complex-valued elements of H*(R"). We let H(M; E) = H}: (M;E)N &' (M;E)
as usual. We leave the statements and proofs of the generalizations of Proposition 5.54,
Corollary 5.55, and Proposition 5.57 to the reader.

Example 5.59. If M is n-dimensional and p € M, then 6, € H*(M; QM) for all s < —n/2;
cf. Example (5.16).

9Strictly speaking, one should smooth the right hand side out near £ = 0 to get a smooth symbol; but
principal symbols only care about behavior for large &, hence we do not do this here.
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5.11. Elliptic operators on compact manifolds, revisited. Throughout this section,
we denote by M a compact manifold.

Proposition 5.60 (Rellich compactness theorem). Let s’ < s. Then the inclusion
H*(M) < H* (M) (5.134)

18 compact.

Proof. One can prove this by localizing in coordinate charts and using a suitable analogue
on R™—in fact, one can use a special case of the first part of Exercise 4.15. (Beware
however that the inclusion H*(R") < H*(R™) is not compact.) In the spirit of using
ps.d.o. techniques to establish properties of Sobolev spaces, one can alternatively argue as
follows. Fixing invertible ps.d.o.s A, € W7 (M) for 0 = s, s’ as in Proposition 5.57, we can
factor the inclusion (5.134) as

—1

AgoAt A /
—— L*(M) = H*® (M), (5.135)

HS (M) 25 12(M)
where the first and last arrows are isomorphisms. The middle arrow is AgoA ! € \I'S/_S(M ),
i.e. a ps.d.o. of negative order. The result then follows from Proposition 5.56. O

We can now refine Theorem 5.47:

Theorem 5.61 (Fredholm properties of elliptic ps.d.o.s on Sobolev spaces). Let A €
U™(M; E, F) be an elliptic operator. Then for any s € R,

A: H*(M; E) — H*™(M; F) (5.136)

is Fredholm. Its kernel ker A is independent of s, and ker A C C>°(M; E). Moreover, if we
fix a volume density on M and positive definite fiber inner products on E,F, the cokernel
coker A can be identified with the subset ker A* C C*°(M; F) which is independent of s; that
is, f € H*"™(M; F) lies in van A if and only if (f,g)r2(m.r) = 0 for all g € ker A™.

Proof. If B € W™ (M; F, E) denotes an elliptic parametrix, then AB = I + Ry and BA =
I+ Ry with Ry, Ry € U™ as in (5.104). By Proposition 5.60, the errors Ry: H*(M; F) —
C®(M;F)— H*(M;F) and Ry: H*"™(M; E) — C>®(M; E) — H* ™(M; E) are compact
operators. Therefore, A is Fredholm. The regularity statement ker A C C*(M;E) is
a special case of (5.105). The solvability claim follows from Theorem 5.47 and elliptic
regularity. (I

In fact, this theorem has a converse: if A € ¥ (M; E, F') is such that (5.136) is Fredholm
for some s € R, then A is elliptic. A special case of this result is the subject of Exercise 5.23.

Remark 5.62 (Fredholm index). Theorem 5.61 also shows that the index ind A = dim ker A—
dim coker A is independent of s. Simple functional analytic arguments show that ind A =
ind(A + B) for any B € Y"1 (M; E, F); thus, ind A only depends on the principal symbol
0™(A). The Atiyah-Singer index theorem gives a formula to compute ind A in terms of

o™ (A).

We can now give a more transparent perspective on the generalized inverse of Theo-
rem 5.47(2). Indeed, by Theorem 5.61, ranym g A := A(H™(M; E)) C L*(M;F) is a
closed subspace, and therefore L?(M; F) = rangm gy A® (rangm k) A)t. Thus, (5.102)
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for f € L?>(M; F) defines a linear operator G: L?(M; F) — H™(M; E). The membership
G € ¥ (M; F, E) now again follows from (5.111).

Ezample 5.63. Expanding upon Example 5.49, the operator A = A, + A € V(M) on a
compact Riemannian manifold (M, g) is invertible as a map H*(M) — H*"2(M), s € R,
whenever A ¢ (—o0,0]. Indeed, for u € ker A one has u € C*°(M) by elliptic regularity, and
therefore 0 = (Au,u)2(arjag) = [oy VUl |c}g| + )\HUH%Q(M;\ng = 0 which implies u = 0;
one similarly shows that ker A* = ker(A, + A) is trivial.

An interesting application concerns the spectral theory of symmetric ps.d.o.s.

Theorem 5.64 (Self-adjointness of elliptic symmetric ps.d.o.s). Fiz a volume density on M,
and a positive definite fiber inner product on E — M. Let m > 0, and let A € "™ (M; E)
be elliptic and symmetric, that is, (Au,v) = (u, Av) for u,v € C°(M; E), where (-,-) is the
inner product on L?>(M;E). Then A is an unbounded self-adjoint operator on L*(M;E)
with domain H™(M; E). Its spectrum spec A C R is discrete and accumulates only at co.
There exists an orthonormal basis of L?>(M; E) consisting of eigenfunctions of A, all of
which are smooth.

Proof. By [RS72, Theorem VIIL.3], we need to show that A+i: H™(M; E) — L?>(M; E) is
surjective. By Theorem 5.61, its range is closed, and any element u € (ran(A4 44))* lies in
ker(AFi) C C®(M; E), so

0 =TIm((AF i)u,u) = Fillullferry = u=0. (5.137)

This proves self-adjointness.

One can also argue directly: if A is given the domain D(A) = H™(M; E), then v €
L?(M; E) lies in D(A*) if and only if D(A) > u — (Au,v) satisfies a bound |(Au,v)| <
C|lu|| 2 for some C. But (Au,v) = (u, A*v), hence we conclude that A*v € L?(M; E), and
by elliptic regularity v € H™(M; E); thus D(A*) C D(A). The converse is clear since A is
symmetric.

To prove the discreteness of the spectrum, note first that (A + i)~': L2(M;E) —
H™(M; E) < L?(M; E) is a compact operator, and hence its spectrum is discrete and can

only accumulate at 0. Therefore, there exists a complex number A € C so that i — A~ € R
and (A +4)~! — X is invertible on L?(M; E); but since

A+ = A=-XA+i) " (A+i—171), (5.138)

this implies that A — u: H™(M; E) — L?(M; E) is invertible where y = A\™! —i € R.
Therefore, (A —p)~': L2(M; E) — L*(M; E) is compact and self-adjoint, and the spectral
theorem produces an orthonormal basis of L?(M; E) consisting of eigenfunctions of (A —
1)~ ! corresponding to a sequence of eigenvalues tending to 0. But (A —u)~'¢ = ¢ implies
A¢ = (n+ A1), and hence spec A accumulates only at co. O

Ezample 5.65. This applies to the Laplacian A, on any compact Riemannian manifold
(M, g), acting on functions or differential forms.

Ezxample 5.66. There exist elliptic non-selfadjoint operators whose spectrum is the entire
complex plane. In fact, there exists an elliptic operator A € U!(S!) with index 1 (or any
other integer). By Remark 5.62, A — )\ is never invertible for any A € C.
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5.12. A simple nonlinear example. As a simple (and naive, weak, and wasteful, but
instructive) nonlinear application of the elliptic theory developed thus far, we shall solve a
non-linear elliptic equation on a compact 2-dimensional manifold M. If g is a Riemannian
metric on M, we denote the Gauss curvature of M by K, € C*°(M). If ¢ € C>°(M), then
the metric ¢'(z) = 62¢(x)g(x) is said to be conformal to g. The Gauss curvature of ¢’ is
given by

Ky =e (K, + Ay0). (5.139)

We recall the expression for K, in local coordinates (x1,x2) € R?: writing 0; := 0z, and
gij = 9(0s,05), further g% for the components of the inverse matrix (gij)_l, and Ffj =
%gkl(&-gﬂ + 0;gi1 — 019:5) for the Christoffel symbols of g, it is

Ky =3 > ¢F Rk, Rl =0Tk — 0T + Tyl — Tj,T. (5.140)

1:7j’k
Proposition 5.67 (Local version of the uniformization theorem in negative curvature).
Suppose (M, g) has constant Gauss curvature K, = —1. Let § € C*°(M;S*T*M) be a
Riemannian metric with ||g — gl g4 (ar,s20 0y < €, € > 0 small. (Here we use g to define the

fiber inner product on S?*T*M.) Then there exists ¢ € C°(M) such that €**§ has constant
Gauss curvature —1.

This is a local version of the uniformization theorem; the conclusion holds for any metric
g, not necessarily close to g. The assumptions require that M is a manifold of genus at
least 2 (that is, a doughnut with at least two holes). For M =2 S?, one can always find a
conformal multiple with constant curvature +1, and for M =2 T2, one can always find one
with constant curvature 0.

In the proof, we will use algebra properties of Sobolev spaces on manifolds which are the
subject of Exercise 5.19: since M is 2-dimensional, H*(M) is an algebra under pointwise
multiplication for s > 1, with

ol sy < Collullisan ol any (5.141)

for some constant Cy; and we recall that H*(M) < C¥(M) when s > 1 + k.

Proof of Proposition 5.67. Metrics g € H*(M;S*T*M) are twice continuously differen-
tiable, and therefore their Gauss curvature is a continuous function on M. More pre-
cisely, in smooth local coordinates (z1,z2) € U on M, we have g;; € H (U), therefore

. loc
det(g;;) € H;l (U) as well and thus also g% € H (U). This implies I‘fj € H? (U) and

loc

Rl € HE (U). By (5.140), K, lies in H2 _(U) in local coordinates. Globally on M, we
have thus shown that K, € H?(M); and the map

HY(M;S*T*M) > g — K, € H*(M; S*T*M) (5.142)
is continuous.

We want to solve the equation
—1 = K5 = e (K + 0;0), (5.143)

or equivalently
Agp+e?? —1=—(K;+1). (5.144)
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Since || K + [ g2(ar) = 1K — Kgllg2(ar) is small (namely: smaller than a constant times
€), we expect ¢ € H*(M) to be small. (We remark that for ¢ € H*(M), the series
>0 %(2¢)j converges in H*(M) in view of (5.141), so ** € H*(M) is well-defined.)
This suggests Taylor expanding around ¢ = 0, which gives

Ap = E(¢) — N(9),

2% (5.145)

A=D,+2, B(@)=—(Kg+1) = (85— Ao, N(@) = —1-2¢.

We solve this using the contraction mapping principle, i.e. by iterating the map
T: HY (M) > ¢ — AN (E(¢) — N(¢)) € HY(M). (5.146)

Recall from Example 5.63 that A is invertible as a map H*(M) — H*"2(M) for all s € R.

Now the local coordinate expression (5.113) for the Laplace operator, which can be
rewritten as Agu = — Zi’j(g”(?iaj—zk Ffj@k)u, shows that ||Ag—Agllzmaan),m2 () < Ce
for some constant C, thus

IE@) 2 < Ce(L+ ||l gacan)- (5.147)
Moreover,
IN (@) z2(ary < IN(@) | ra(ary < Z*II 20) |2 (ary < ClllFra s (5.148)
Jj= 2

for ||p|| ra(ary < 1. Therefore, if ||| 4(ar) < 6 where 6 € (0,1], then
1T gaary < C'(Ce(1 4 6) + C52), C" = 1A g2 any, 1o (an)- (5.149)

Fix 6y > 0 so that C'C8y < %; then for 0 < § < min(dy, 1), we obtain ITol raary < 0
provided € > 0 is sufficiently small. Thus, T maps the §-ball in H*(M) into itself.

The map T is moreover a contraction on the é-ball in H*(M), since

IT¢ — Tl aary < C'(Celld = bllmagary + Clld — Gllmagany (10l o ary + 111 ary))
< C'(Ce+ CO)ll¢ = Yllmsan)

1
< §||<75 — Yl
(5.150)

for small enough §,e > 0. Here we use N(¢) — N(¢p) = 2502 jl, 27 (¢ — ) Z gbk J=1=k
and the triangle inequality.

Let now ¢ € H*(M), |9l zr4(ary < 6, denote the unique fixed point of T3 then ¢
solves (5.144). We rewrite this one last time as

Ayp = —K; — . (5.151)

Suppose we already know ¢ € H¥(M), k > 4. Then the right hand side of this equation
lies in H*(M), so by elliptic regularity we conclude that ¢ € H*+2(M). Therefore, ¢ €
Ny H*(M) = C>(M), finishing the proof. O
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5.13. Commutators and symplectic geometry. We tie up a loose end and describe,
invariantly, the principal symbol of the commutator of two ps.d.o.s. Key is the symplectic
structure of the cotangent bundle 7% M.

Definition 5.68 (Canonical 1-form and symplectic form on 7*M). Let M be an n-
dimensional manifold. The canonical 1-form on T M is the section o € C°(T*M;T*(T*M))
defined by

a(x@(v) =&(mw), zeM, €T M, ve T(xyg)(T*M), (5.152)
where 7: T*M — M is the projection. The canonical symplectic form on T*M is
w = —da € C®(T*M; A*(T*M)). (5.153)

In local coordinates x € R™ and corresponding canonical coordinates £ € R™ on the fibers
of T*M, we have m, (") a0y, + bi0¢,) = Y ar0Oy,, and therefore

a=> &dug, w=)Y dzyAdg. (5.154)

k=1 k=1
This is a non-degenerate 2-form: contraction T(T*M) 3> v — v yw = w(v,—) € T*(T*M)
is an isomorphism, and identifies vector fields and 1-forms on 7% M:

Z akaxk + bkagk = Z —bp dzg + ap . (5.155)
k=1 k=1

Definition 5.69 (Hamiltonian vector field). Let p € C*°(T*M). Then the Hamiltonian
vector field of p is the unique H, € V(T*M) such that

H, sw = dp. (5.156)
The Poisson bracket of p,q € C*°(T*M) is defined as
{p,q} == Hypq = —Hgp. (5.157)
In local coordinates, we deduce from (5.155) that
Hy = " (0¢,p)0z, — (0, 0) 0, - (5.158)
k=1

Thus, the ‘ad hoc’ definition (4.79) in fact makes invariant sense on 7% M. As a consequence
of the local R™ theory, Proposition 4.22, we thus deduce:

Corollary 5.70 (Principal symbols of commutators). Let A € U™(M), B € "' (M), at
least one of which is properly supported. Then [A, B] € U™+t =1(M), and

o 1(i[A, B]) = {0 (A), o™ (B)}. (5.159)
5.14. Exercises.

FEzercise 5.1 (Tangent vectors as directional derivatives). In the notation of Example 5.7,
prove that the map (5.22) is well-defined, i.e. does not depend on the choice of coordinate
system.

Ezercise 5.2 (Cotangent bundle as the dual of the tangent bundle). Prove that the definition
of the isomorphism (5.25) given in the subsequent paragraph is independent of the choice
of the local coordinate chart.
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FEzercise 5.3 (Derivatives and differentials). Let V' € C*(M;T M) denote a vector field.

(1) For a smooth function f € C*(M), define (Vf)(p) := V(p)f for p € M as the
directional derivative of f along V(p) (see Example 5.7). Show that V f € C>(M).
Show moreover that the map f — V f is a derivation, i.e. it satisfies the Leibniz
rule

V(fg) = fV(g) + gV (f). (5.160)

(2) Given f € C>*(M), note that df € C>*(M,T*M). Show that df(V(p)) = V(p)f,

where the left hand side is the dual pairing between T, M and T, M (see (5.25)).

FEzercise 5.4 (Quotient vector bundle). Let E — M be a vector bundle. Let F' — M be a
subbundle of FE, i.e. a vector bundle over M with the property that F, C E, for all z € M.
Give a construction of the quotient vector bundle E/F — M whose fibers are the quotient
vector spaces F, /Fy.

FEzercise 5.5 (Normal and conormal bundles). Given a smooth submanifold S C M of a
manifold M, define its normal bundle as the quotient bundle NS = TsM/TS. Show that
the duality between T'M and T* M induces a duality between N.S and the conormal bundle
N*S C TEM consisting of all covectors which annihilate T'S.

FEzercise 5.6 (Properties of density bundles). Prove Lemma 5.11. (Hint. One method of
proof is to analyze the transition functions of the various bundles. The idea of another
method is to prove the analogous statement for the vector spaces Q“V of Remark 5.10.)

FEzercise 5.7 (Pullback of densities). Prove Lemma 5.12 and the statement in Remark 5.13.

FEzercise 5.8 (Distributions on manifolds). (1) Let M be a manifold (compact or non-
compact), and let u € &'(M). Show that there exists s € R so that u € HZ(M).
(Thus, &' (M) = HZ(M).)
(2) Suppose M is non-compact. Show that there exists u € 2'(M) so that u ¢ H (M)
for any s € R. (Thus, 2'(M) 2 JH .(M).)

Ezercise 5.9 (Schwartz kernel theorem: manifold case). Prove the following generalization
of Theorem 5.17: if E — M and F' — N are vector bundles over the smooth manifolds

M and N, then there is a one-to-one correspondence between continuous linear operators
A: CE¥(M;E) — Z'(N;F) and distributional Schwartz kernels K € 2'(N x M;njF ®
TH(E* @ QM)), where 7,: N x M — N and wr: N x M — M are the projection maps.

Ezercise 5.10 (Ps.d.o.s are properly supported modulo residual operators). Let A € W™ (M).

Show that there exists a properly supported operator Ay € ¥ (M) with A—Ay € U™°(M).

FEzercise 5.11 (Operators on half-densities). Let M be a smooth manifold. Let A €
U™ (M; Q2 M).

(1) What bundle is the Schwartz kernel of A a section of? Show that A* € W™ (M; Q3 M).

(2) Suppose A is a classical operator. Write a ~ 222, am—j, am—j € She 7, for the

left symbol a = a(x,£) of A in a local coordinate chart and corresponding local

trivialization of Q2 M. Show that not only the principal symbol a,,, but also the
subprincipal symbol

1 (5,6) = 52 D 0, Oy ,) (5.161)
j=1



70 PETER HINTZ

is well-defined (i.e. independent of the choice of coordinates) as a function on 7*M \
0.

Ezercise 5.12 (Asymptotic summation on manifolds). Let M be a manifold, and let m € R.

(1) Given a sequence of symbols a; € S™J(T*M), j € Ny, show that there exists a
symbol a € S™(T*M) so that for all N € Ny, we have a — Z;V:_OI a;j € S™N(T*M).

(2) Given a sequence of operators A; € S™77(M), j € Ny, show that there exists a
properly supported operator A € U™ (M) so that for all N € Ny, we have A —
SN A € U (M),

FEzercise 5.13 (Fractional Laplacians). Let n € N, and let « € R, @« > —n/2. Set A% :=
FleF.

(1) Show that A% is a well-defined operator .(R"™) — ./(R™).

(2) Show that A% is a classical pseudodifferential operator of order 2a on R™ in the
sense of Definition 5.21 with M = R"™. Compute its principal symbol and show that
A“ is elliptic.

(3) Show that A® is not a uniform ps.d.o. on R” in the sense of Definition 4.7 unless
a € Ng.

FEzercise 5.14 (Elliptic parametrix). Give a detailed proof of the existence of elliptic para-
metrices on manifolds. That is, if A € U™ (M) is elliptic, show that there exists a properly
supported operator B € U~ (M) so that Ao B—1, BoA—1¢& U~ >°(M).

FEzercise 5.15 (Exterior derivative on k-forms). Let M denote a smooth manifold, and
denote by

d: C°(M; AFT* M) — C°°(M; A¥1T* M) (5.162)
the exterior derivative. Show that d € Diﬂ“l(M;AkT*]W7 AFFIT*M), and compute its
principal symbol.

FEzercise 5.16. Let (M, g) denote a smooth Riemannian manifold, and denote by
V:C®(M;TM) - C®(M;T*M @ TM), Vi (VV:X s VyV), (5.163)

the covariant derivative on vector fields. Show that V is a first order differential operator,
and compute its principal symbol.

Ezercise 5.17 (A classical ps.d.o.). Let I' C C be a smooth, simple, closed curve. Let
K € C>*(I" xI'). Prove that

Au(t) := lim
e—0 [t—s|>e t—s

u(s)ds, wueC>™() (5.164)

is well-defined and defines an element A € \I/(C]l(l“). Here, t,s € I' C C are complex numbers,
and the division here is division by a complex number. Compute its principal symbol.

Ezercise 5.18 (Regularity of the Green’s function). Let M be a smooth compact n-dimensional
manifold, and fix a volume density on M. Let A € ¥ (M) be an elliptic ps.d.o., and as-
sume that A: C°(M) — C>®(M) is invertible. Let p € M, and put G(p,—) := A71(5p).
Determine the set of all s € R so that G(p,—) € H*(M).

Ezercise 5.19 (Properties of Sobolev spaces). Let M be a smooth n-dimensional manifold,
and let s > 5. This exercise builds on Exercises 2.4 and 2.5.
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(1) Let k € Ny be such that s — % > k. Show that Hp (M) < C*(M).

(2) If u,v € Hy] (M), show that uwv € Hj (M).

(3) When M is compact, show that for any fixed choice of norm on H®(M) there exists
a constant Cj so that [[uv| sy < Csllull gsan vl s ary for all u,v € H*(M).

Ezercise 5.20 (Fredholm estimates). Let (X, || - ||x), (Y, - ||v) be two Banach spaces, and
suppose A: X — Y is a bounded linear map.

(1) Suppose Z is another Banach space, and there is an inclusion (continuous injective
map) X < Z which is compact. Suppose there exists a constant C' > 0 such that
lullx < C([[Aully + [lullz) - (5.165)

Show that ker A C X is finite-dimensional, and that ran A C Y is closed.

(2) Suppose that, in addition, to (1), there exists a Banach space Z and an inclusion
Y* < Z which is compact. Suppose there exists C' > 0 such that

v < C (|A% || x~ + |Jv]|5) - (5.166)

Show that if f € Y is such that v(f) = 0 for all v € ker A*, then there exists u € X
with Au = f. Deduce that A is a Fredholm operator.

[0]

Ezercise 5.21 (Elliptic estimates). Let M be a compact manifold, let E, F' — M denote
two vector bundles, and let A € U™ (M; E, F') be an elliptic operator. Show that for all
s, N € R, there exists a constant C € R so that

ull s (ar;m) < C(HAUHHS*’”(M;F) + ”uHH—N(M;E))’ u€ H*(M; E). (5.167)

Show that this estimate holds in the strong sense that if the terms on the right hand side
are well-defined and finite, then the left hand side is finite and the estimate holds.

Ezercise 5.22 (Principal symbol via oscillatory testing). Let M be a smooth manifold, and
let A € Diff"(M). Let o € M and 0 # & € T,; M.

(1) Show that there exists a smooth function u € C*°(M) with (du)(xg) = &p.

(2) Prove that 0™(A)(z0, &) = limy_yee A=) A(P24)(20).

(3) State and prove analogous results for A € Diff""(M; E, F') where E,F — M are
two vector bundles.

(4) Prove analogous results for A € W'(M; E, F). (Hint. This requires the use of the
stationary phase lemma, which we do not discuss in these notes.)

Ezercise 5.23 (Ellipticity and the Fredholm property). Let M be a smooth manifold, and
let A € Diff™(M). Show that A is elliptic if and only if A: H™(M) — H°(M) is Fredholm.
(Hint. If A is Fredholm, prove the validity of an estimate (5.167) for A. Plug in highly
oscillatory functions, as in the previous exercise, multiplied with cutoff functions to neigh-
borhoods of points in M, into this estimate to conclude that o™ (A) is injective. Argue
similarly for A*.)

Ezercise 5.24 (Over- and underdetermined elliptic operators: I). Let M be a compact
manifold, let E, F' — M denote two vector bundles, and let A € Y™ (M; E, F).

(1) Suppose there exists a symbol b € S™™(T*M; Hom(F, E)) such that bo™(A) — 1 €
S—YT*M;End(E)). (If A is not elliptic, one says in this case that A is overde-
termined elliptic.) Show that A: H*(M; E) — H* ™(M;F) has finite-dimensional
kernel and closed range.
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(2) Suppose 0™ (A) there exists b € ST (T™*M;Hom(F, E)) such that ¢ (A)b—1 €
S=Y(T*M;End(F)). (If A is not elliptic, one says in this case that A is underde-
termined elliptic.) Show that A: H*(M; E) — H*~™(M;F) has closed range and
finite-dimensional cokernel.

(3) Show that if A has a homogeneous principal symbol 0™ (A) (so in particular when
A is a classical operator), the assumption in part (1) is equivalent to the injectivity
of 0™(A) on T*M \ o, and the assumption in part (2) to the surjectivity.

Ezercise 5.25 (Over- and underdetermined elliptic operators: II). Let M be a compact
manifold, let E, ' — M denote two vector bundles, and let A € ¥ (M; E, F) be elliptic,

or over- or underdetermined elliptic. Fix a positive smooth density on M and fiber inner
products on E, F'.

(1) Establish the L?(M; E)-orthogonal splitting
L*(M; E) =kerp2(ar.p) A® A*(H™(M; F)). (5.168)

(2) For s € R, show that H*(M; E) = kerys,py A © A*(H*Y™(M; F)). (Hint. When
A is underdetermined elliptic, use the decomposition of the first part. When A is
overdetermined elliptic, work with the elliptic operator A*A.)
(3) Show that C*°(M; E) = kerceo(ps,p) A & A*(C(M; F)). That is, show that every
u € C®(M; E) can be written as u = ug + A*uy for smooth ug,u1, with uy and
A*uj unique, and prove that A*(C*(M; F)) C C>*(M; E) is closed.
Ezercise 5.26 (Underdetermined elliptic operators: I). Let M be a compact manifold, let

E,F — M denote two vector bundles, and let A € Diff""(M; E, F') be underdetermined
elliptic, i.e. 0™ (A) is surjective but not injective.

(1) Show that there exists a constant C' € R so that for all u € A*(H*T™(M; F)) one
has ||ull gs () < CllAUl| gs—m (a1, )-

(2) Show that kerps(p.p) A is infinite-dimensional. (Hint. If this were false, show the
validity of an estimate

HUHHS(M;E) < C(HAUHHS*T”(M;F) + HUHH*N(M;E)) (5.169)
and use this to deduce that ¢ (A) is injective.)
(3) Show that kerceo(ps,p) A is infinite-dimensional. (Hint. Use the last part of the

previous exercise and, assuming that kerce(ys,) A is finite-dimensional, prove the
validity of the estimate (5.169) for smooth w.)

FEzercise 5.27 (Helmholtz decomposition). Let (M, g) be a compact Riemannian manifold,
denote by d: C*®(M) — C>*(M;T*M) the exterior derivative acting on functions, and
denote by 6, = d* its adjoint. Let w € H*(M;T*M) be a 1-form. Prove that there exist
u € H¥"Y (M) and n € H*(M;T*M) such that

w=du+mn, dmn=0. (5.170)
(Note that d and d, are first order differential operators with smooth coefficients, and hence
they do act on distributions valued in the appropriate bundles.)
Ezercise 5.28 (Elliptic complexes). Let M be a compact manifold, let FE; — M, i =
0,...,N, be complex vector bundles, and suppose d; € Diff'(M; E;, E;1),i=0,...,N—1.
Suppose they form a complex of differential operators

C®(M; Ey) 2 c(M; By) I .. L oo (0 By):; (5.171)
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that is, for each i < NNV,
dit1 0d; =0 € Diff*(M; E;, Eiy o). (5.172)
Assume moreover that this complex is elliptic, meaning that the symbol complex

ol(dy) ol(dy_1)

1
C(T*M \ o;7°Eg) T 9% coo(T* M \ 0y 7 1) C®(T*M \ o;7*Ey)

(5.173)
is exact (that is, ran o' (d;_1)(x, &) = ker o%(d;) for all i < N). The goal of this exercise is
to study the cohomology groups

H'(E,) := (kerd;)/(rand;_1), i=1,...,N —1, (5.174)
using PDE theory.

(1) Equip M with a volume density and the E; with Hermitian fiber inner products;
define §; € Diffl(M; E;, E;_1) to be the adjoint of d;_1. Show that the ‘Laplacian’

A;:=d;_108; + 841 0d; € DIff}(M; E;), 1<i<N-—1, (5.175)

is elliptic and symmetric.
(2) Show that

ker A; = {u € C*(M; E;): dju =0, du =0}. (5.176)
(3) Show that the inclusion ker A; < kerd; induces an isomorphism of vector spaces
ker A; = H'(E,). (5.177)

(4) Prove the Hodge theorem: if (M,g) is a compact Riemannian manifold, and Ay €
Diff?(M; A*T* M) is the Hodge Laplacian on k-forms, then ker Ay, = H* (M), where
H*(M) denotes the k-th de Rham cohomology group (with complex coefficients) of
M.

6. MICROLOCALIZATION

We now turn to the second part of these lecture notes: finer properties of distributions,
and, closely related, non-elliptic phenomena. We develop the notion of distributional wave
front set, following [Hor71b], from the observation about the local nature of full symbolic
expansions that we made e.g. after the statement of Theorem 4.16.

From now on, all ps.d.o.s shall either be properly supported, or elements of the uniform
ps.d.o. algebra on R™.

6.1. Operator wave front set. Recall from (4.59) and (4.61) the full symbols, modulo
S~ for adjoints and compositions: if A = Op;(a), B = Op;(b) are ps.d.o.s on R", then

oL(A") @) ~ Y 208 DYl ),
aeNp 7

6.1)
1 (
or(AoB)(x,&) ~ Y deal@, ) - Dyb(z, §).
aeNg
A key feature, which so far we have only exploited at the principal symbol level, is that
these formulas are local in (z, ). We would like to say that if A is ‘trivial’ at or near (z, &),
in the sense that if a vanishes there, then A* and A o B (for any B) are trivial there as
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well. Unfortunately, since the expressions (6.1) are asymptotic sums, thus have no content
at any fixed point (z, &), the meaning of this is not immediately clear.

The correct notion of ‘triviality’ must depend on the behavior of symbols as |{| — oo, and
must be insensitive to modifications by symbols of order —oo. This leads to the following
definition:

Definition 6.1 (Essential support). Let a € S™(R™;RY). Then a point (zg,&) € R" x
(RN \ {0}) does not lie in the essential support

esssuppa C R? x (Rév \ {0}) (6.2)

if and only if a is a symbol of order —oco near xg and in a conic neighborhood of &y; that is,
there exists € > 0 such that for all o € N2, 8 € N), k € R, we have

0200a(z.€)| < Coprl®)™* ¥ (.60, €12 1. Jo = a0l + |55 =

It suffices, in fact, to assume (6.3) only for a = 8 = 0; the estimates for general «, 3 are
then automatic. See Exercise 6.1.

< e (6.3)

Remark 6.2 (Simple properties of the essential support). By definition, esssupp a is a closed
subset of R™ x (R™ \ {0}). Moreover, esssuppa is conic in &, that is, (z,£) € esssuppa
implies (x, A\§) € esssuppa for all A > 0.

Definition 6.3 (Operator wave front set: Euclidean case). Let A = Opy(a). Then we
define the operator wave front set of A as the closed, conic set

WEF'(A) := esssupp(a) C R} x (R \ {0}). (6.4)

The following follows immediately from (6.1), the formulas for left/right reductions
in (4.35)—(4.36), as well as formula (5.13) in the proof of the local coordinate invariance of
ps.d.o.s:

Proposition 6.4 (Properties of the operator wave front set for ps.d.o.s on R™). The oper-
ator wave front set for operators A, B € W(R™) has the following properties:

(1) Suppose A has compactly supported Schwartz kernel. Then WF'(A) = 0 if and only
if A € U°(R").10

(2) Let A= Opg(a’). Then WF'(A) = esssuppa’.

(3) WF'(A+ B) c WF'(A) UWF/(B).

(4) WF'(Ao B) Cc WF'(A) N WF/(B).

(5) WEF'(A*) = WF'(A).

(6) If Q, € R", k: Q — ' is a diffeomorphism, A € U.(), and A, = k*A(k™1)*,
then

WF'(A) = k*"WF'(4), (6.5)

where we define k*(x,&) = (k~1(x), K (2)T€).

10We make the assumption on the Schwartz kernel merely to exclude scenarios where A = Op(a) has
empty wave front set, but the constants in the estimate (6.3) blow up as |zo| gets large. An example is
given by a(z,€) = x({(x)(€)™") where x € C°(R™). Indeed, a is a uniform symbol of order 0 on R™, but
WF'(Op(a)) = 0 since a is locally in = a symbol of order —oc.
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Of these, properties (4) and (5) were our motivation for the introduction of esssupp
above. Property (6) implies that the operator wave front set can be defined invariantly for
operators on manifolds:

Definition 6.5 (Operator wave front set: manifold case). Let M be a manifold and A €
U™ (M). Then WF'(A) C T*M \ o is the closed conic subset (i.e. invariant under dilations
in the fibers of T*M) given near T, M, p € M, by WF'(Ag) where Ag € ¥™(R") is the
expression for A in a local coordinate system near p.

Properties (1) and (3)—(5) in Proposition 6.4 thus hold for ps.d.o.s on manifolds as
well; since on general manifolds we do not impose growth restrictions on symbols outside of
compact sets in the base, property (1) in fact holds without any assumption on the Schwartz
kernel of A. We leave the details of the definition of WF'(A) for operators A € U™ (M; E, F)
acting between sections of vector bundles over M to the reader; in local coordinates and
trivializations, a point is in WF/(A) if it is in the operator wave front set of at least one
entry of the matrix of ps.d.o.s on R" representing A locally.

One thinks of WF/(A) € T*M \ o as the set in phase space where A is microlocally
non-trivial. This is a much weaker notion than having a (microlocally) elliptic principal
symbol, see §6.2.

Ezample 6.6. If A € V"™ (M) is elliptic, then WF'(A) = T*M \ o.
Ezample 6.7. Let A =3, -, aa(z)Dg € Diff"(R"). Then

WF'(A) = | |J suppaa | x R™\{0}). (6.6)

la|<m

Thus, differential operators never have ‘interesting’ operator wave front set.

Ezample 6.8. Let y € Sm(R?), and consider the Fourier multiplier A = x(D) := Op(x).
Then WF/(A) = R” x esssupp X.

Ezample 6.9. We combine Examples 6.7 (for m = 0) and 6.8. Let ¢ € C(R"™) and
X € SO(RQ). Then

A= X(D) 0 () = Opr(x(E)(y)) € P(R™) (6.7)
has WF’(A) = (supp ¢) x (esssupp x).

Working with conic sets is a bit tedious. In most circumstances, one can simplify notation
by working on the cosphere bundle

S*M := (T*M \ 0) /R, (6.8)
with fibers given by SyM = (T M \ 0)/R", where R* acts by dilations in the fibers. Thus,
S*M is a fiber bundle with typical fiber S*~!. We can identify conic subsets of T*M \ o
with their image in S*M. For instance, if A € W™ (M), then for a € Sy M, the condition
a € WF'(A) means that (p,&) € WF'(A) where a = [£] (i.e. @« = R€). Note that a
compact subset of S*M is identified with a conic subset of T*M \ o whose cross section
(i.e. intersection with |¢| = 1 for some choice of fiber metric on T*M) is compact. The

projection map is denoted
m: S*M — M. (6.9)
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The following technical result states that one can construct partitions of unity microlo-
cally:

Lemma 6.10 (Microlocal partitions of unity). Suppose S*M = |J,U; is an open cover.
Then there exist operators A; € WO(M) such that

(1) the supports of the Schwartz kernels of A; are locally finite,
(2) WF,(AZ‘) c U,
(3) S di= 1.

Proof. 1t suffices to prove this for a locally finite refinement of the cover, which we shall
denote by {U;} still, for which moreover each U lies over a coordinate chart, i.e. U; C Sy, M
with F;: V; — F;(V;) C R™ a chart, and with {V;} locally finite.
Pick a partition of unity {x;} subordinate to the cover {U;}; fix 4, 1; € C°(F;(V;)) such
that ¢; = 1 near F;(mw(supp x;)), and 1; = 1 near supp ;. We then put
Ap 1= F7 ($: 0pa)v: ) (F7)* (6.10)
Then (1) and (2) are satisfied for A7, but rather than (3) we only have >, A} = I — R/,
R’ € U~1(M). Thus, simply let B ~ > i2o(R') and put A; := A;B. (This still satisfies (1)
and (2), in the former case since B is properly supported, and in the latter case by part (4)

of Proposition 6.4.) then >, A; =1 — R, R € ¥~>°(M). Replacing any single one of the
A; by A; + R, we are done. O

Corollary 6.11 (Microlocalizers). Let K € U C S*M, with U open. Then there exists
A € WO(M) such that WF'(A) C U and WF'(I — A)N K = ().
We say that A is microlocally equal to I on K.

Proof of Corollary 6.11. S*M = UU(S*M \ K) is an open cover of S*M, hence there exists
a partition of unity I = A+B with WF'(4) C U and WF/(I-A)NK = WF/(B)NK = 0. O

6.2. Elliptic set, characteristic set. We next refine the notion of ellipticity of operators
and symbols in a microlocal manner analogous to esssupp and WF’.
Definition 6.12 (Elliptic set). Let A € ¥ (M). Then the elliptic set of A,

Ell(A) cT*M \ o (6.11)

(or Ell,,(A) if one wants to make the order explicit), consists of all (zg, &) € R x (R™\{0})
in a conic neighborhood of which 6" (A) is elliptic; that is, in local coordinates and picking
a representative of 0™ (A), there exist ¢,C > 0 and € > 0 such that

(A @ O] = el €2 O, o —anl+| & — 2 < (612)
The complement of Ell(A) is the characteristic set
Char(A) := (T"M \ o) \ Ell(A). (6.13)

An equivalent definition of Ell(M), closer to Definition 3.8, is that there exists b €
S™™(T*M) such that 0™(A)b — 1 is a symbol of order —1 in a conic neighborhood of
(z0,&0). Note that Ell(A) is automatically open. Moreover,

Ellyi (Ao B) = Ell,(A) NEll (B), A€ ™M), B e U™ (M). (6.14)
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Ezample 6.13. Elliptic operators on M have elliptic set equal to T*M \ o, and empty
characteristic set.

Ezample 6.14. On R'™" = R, x R”?, with canonical momentum variables o € R, £ € R", the
wave operator [J = D? — D2 has principal symbol ¢?((J) = 02 — &2, hence its characteristic
set is the double cone

Char(0) = {(t,x,0,€): 0® — [¢]* =0, (0,€) # (0,0)}. (6.15)
The elliptic parametrix construction, Theorem 4.26, can be microlocalized:

Proposition 6.15 (Microlocal elliptic parametrix). Let A € W™ (M), and suppose K C
Ell(A) is a closed subset. Then there exists a microlocal parametrix for A on K, namely,
an operator B € W~"(M) such that

KNWF(AB-1)=0, KNWF(BA—-1I)=4. (6.16)

Proof. By Corollary 6.11, we can pick Q,Q € WO(M) with
WF/(I - Q)N K =0, WF'(Q), WF'(Q) C Ell(A), WF'(I - Q)NWF'(Q)=0. (6.17)
Let then By € U~"(M), 0~™(By) = 0°(Q)/0™(A), and write
ABy=I-R=1-QR—(I-Q)R, RcV'(M). (6.18)
Now WF'((I — Q)R) N K = 0, while 6°(QR) = ¢°(Q)(1 — 0°(Q)) = 0, so QR € U~ (M).

We then improve the situation near K using a Neumann series argument, cf. Lemma 4.27;
that is, let

B'~> (QR) € ¥°(M), (6.19)
§=0
and put B := BgB’ € U~™(M). Then
AB=I-R —(I-Q)RB', R e ¥ (M), WF(I-Q)RBYNK =1, (6.20)
as desired.
A microlocal left parametrix, say B, can be constructed similarly. Then, modulo opera-
tors with WF’ disjoint from K, we have
B = (BA)B = B(AB) = B. (6.21)

Since (6.16) is invariant under addition to B of an operator with WF’ disjoint from K, this
proves that any microlocal left parametrix is also a right parametrix, and vice versa. O

One would like to use this to sharpen elliptic regularity theory, Proposition 4.28, by
saying that if Au = f, then on Ell(A), u is smooth when f is. This leads to the notion of
wave front set, which we discuss next.

6.3. Wave front set of distributions. Let u € .%/(R") denote a distribution, and
A € U™(R™). Then Au € .'(R") is ‘trivial’ outside of WF/(A): all information about
singularities of u is lost. Indeed, if B € WY(R") is such that WF'(B) N WF'(A) = (), we
have B(Au) € C*°(R™) by part (1) of Proposition 6.4. The precise notion of ‘triviality’ here
is, directly stated on manifolds:
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Definition 6.16 (Wave front set). Let u € 2'(M). Then o € S*M does not lie in the
wave front set,

a ¢ WF(u) C S*M (6.22)
if and only if there exists a neighborhood U C S*M of « such that
Ac U (M), WF'(A) cU = Au e C®(M). (6.23)

By definition, WF(u) C S*M is closed. We leave to the reader the simple verification
that for M = R", WF(u) for u € #/(R") can be defined equivalently by testing with
uniform ps.d.o.s 4 € UO(R™).

We will give equivalent conditions which are easier to verify. We begin by reducing the
number of operators for which one needs to check (6.23) to one.

Lemma 6.17 (Wave front set: equivalent definition #1). Letu € 2'(M). Then o ¢ WF (u)
if and only if there exists A € WO(M), elliptic at o, such that Au € C®°(M).

Proof. The direction ‘=" is obvious. To prove ‘«=’, we take U := Ell(A), which by as-
sumption is a neighborhood of a. Let B € ¥9(M), WF'(B) =: K C U; we claim that
Bu € C®(M). By Proposition 6.15, there exists a microlocal parametrix Q € W°(M) of A
with QA =1 — R, R € YO(M), WF'(R) N K = (). Therefore,

Bu = B(QA+ R)u = (BQ)(Au) + BRu € C*(M). (6.24)
Indeed, Au € C*®(M), hence the first summand is smooth; and WF'(BR) ¢ WF/(B) N
WF'(R) ¢ KNWF'(R) =0, hence BR € V~°°(M) and so BRu € C®(M) as well. O
Corollary 6.18 (Wave front set: equivalent definition #2). Let u € 2'(M). Then
WF(u)= (] Char(A). (6.25)
AewO (M)
AueC® (M)

Proof. If a ¢ WF(u), then Au € C>®(M) for some A € V(M) with o € El(A), so
o ¢ Char(A). Conversely, if a € Ell(A) for some A € UO(M) with Au € C°°(M), then
a ¢ WF(u) by Lemma 6.17. O

This leads to the following very concrete description of the wave front set, which we state
directly on R"™; it is the same on manifolds upon localizing in a chart and transferring to
R™,

Proposition 6.19 (Wave front set: equivalent definition #3). Let u € 2'(R"), and let
(x0,&) € R™ x (R™\ {0}). Then (x0,&) ¢ WF(u) if and only if there exist ¢ € C°(R"™),
d(xg) # 0, and € > 0 such that for all N € R we have

§ &

€l 1ol

Remark 6.20 (A mild but useful strengthening). The converse direction can be strengthened
slightly: to show that (xo,&0) € WF(u) does lie in the wave front set, it suffices to show
that for any € > 0 there exists ¢ € CS°(R"™), ¢(xo) # 0, supp ¢ C B(zo,€), such that the
estimate (6.26) fails. (That is, as witnesses one can take any convenient cutoffs ¢ with
support arbitrarily close to xg.) Indeed, this follows from the definition of WF and (the
proof of ) Lemma 6.17.

pu(€)] < Onle|™N, ¢ eR™, ¢ > 1, <e (6.26)
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An advantage of our invariant approach to WF is that it implies ‘for free’ that the hands-
on condition (6.26) gives a well-defined notion of wave front set as a subset of the cotangent
bundle. We encourage the reader to try and give a direct proof of this fact, based on the
characterization (6.26).

Proof of Proposition 6.19. Suppose (6.26) holds. Let ¢ € C>(S"~!) have support in an
e-ball around &p/|&o|, with 1/)(%) # 0. Let moreover x € C*(RE), x(§) = 0 for [{] <1 and
x(§) =1 for || > 2. Then

B
€]
and |F(Opg(a)u)(€)] < Cn{€)™N; therefore Opg(a)u € C®(R™).! Since a is elliptic at
(x0,&p), this implies (z9,&0) ¢ WEF(u).

Conversely, if (zg,&) ¢ WF(u), pick B € U9(R"), elliptic at (zg,&), such that Bu €
C>®(R™). We can then choose ¢ € C°(R"), ¢(xo) # 0, and ¢p € C®(S"1), ¢(%) # 0, such
that for a(§,y) defined in (6.27), and A := Opg(a), we have

WF'(A) C EI(B). (6.28)

(Cf. Example 6.9.) By the proof of Lemma 6.17, we thus have Au € C*°(R™). We claim
that in fact

al€.) = X(E) < ) b(y) € S°(R"™;R") (6.27)

Au € ' (R™), (6.29)

which proves (6.26) upon taking the inverse Fourier transform of Au. To prove (6.29), let
¢ € C°(R™) be identically 1 near supp ¢. Then ¢(Au) € C°(R™), while (1—¢)Au = Op(a’)u
where

d'(@,y,€) = (1= ¢(x)a(¢,y) € S"(R" x R™; R"). (6.30)
But d/(z,y,&) = 0 near z = y! In fact, d’ is a scattering symbol of order (0,0,0) vanishing

near the diagonal, hence Op(a’) € VU™~ *°(R™) has Schwartz kernel in .7 (R" x R"™) by
Exercises 4.9-4.10, which implies Op(a/)u € .7 (R").!2 O

Another important consequence of Lemma 6.17 and Corollary 6.18 is the following result
which shows that WF is a significant refinement of sing supp:

Theorem 6.21 (Wave front set and singular support). Let u € 2'(M), and denote by
w: T*"M — M the projection. Then

7(WF(u)) = singsupp u. (6.31)

Proof. If xp ¢ singsuppu, then there exists x € C°(M) with x(zp) # 0 such that yu €
C°(M). But x is elliptic at (zo,&o) for any 0 # & € Ty M; hence T M N'WF(u) = 0.

Uy, fact, the Fourier transform of ¢u € &’ (R") is analytic and polynomially bounded. Using Cauchy’s
integral formula, or Exercise 6.1 if one wants to stick to real methods, one then shows that the estimate (6.26)
holds for all derivatives 8?(51\1(5), a € Ny, as well. Thus Opg(a)u € S (R™).

12A direct proof proceeds by writing Op(a’) = Op(|z — y|7*N A d’) and noting that |z — y|*N <
()N ()" on supp a’ as well as Aéva' € S7T2N(R™ xR"™; R™). Thus, mimicking the proof of Proposition 4.10
gives Op(a’) € S (R"™ x R™).
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To prove the converse, suppose xg ¢ 7(WF(u)). Then for each { € S; M, there exists
A¢ € UY(M), elliptic at &, such that Au € C*°(M). Let Ug := Ell(A¢) N Si M. Then Uy is
an open cover of the compact set Sy M; thus we can pick a finite subcover,

N
SeM=JUs, &eS;M i=1,..N. (6.32)
=1
But then the operator
N
A= "Ar A € UO(M) (6.33)
i=1

is elliptic on Sy M, and satisfies Au € C°(M). If x € C°(M), x(zo) # 0, is chosen to

have support so close to zo such that Sg,,,, M C Ell(A), then xu € C>*(M) by the proof

of Lemma 6.17. O

Corollary 6.22 (Wave front set and smoothness). Let u € 2'(M). Then WF(u) = 0 if
and only if u € C*°(M).

It is now time to give some examples:

Example 6.23. Let § € 2'(R™). We claim that WF(d) = {(0,£): £ # 0} = N*{0}\ 0. There
are several ways to see this. For instance:

(1) Using Proposition 6.19: since supp d = {0}, WF(9) can at most be equal to {(0,&)}.
But given a cutoff ¢ € C°(R™) with ¢(0) # 0, we have @(5) = ¢(0), which is not
rapidly decreasing in the conic neighborhood of any &y # 0; hence the claim.

(2) Ad hoc argument: since sing supp d = {0}, WF(J) can at most be equal to {(0,&)}
by Corollary 6.22. But § ¢ C*(R"), hence WF(4) # (. But 4 is rotationally
symmetric, hence (0,£) € WF(0) implies (0, R{) € WEF(J) for all R € SO(n — 1),

and we are done.

Ezxample 6.24. Let  C R™ be a smoothly bounded domain. Then WF(1g) = N*0Q \ o.
(See Exercise 6.2.)

Ezample 6.25. Consider (z +40)~! = lim,o(x + ie) ™! € Z'(R). Then WF((z +i0)~!) =
{(0,€): € > 0}. This can be proved very explicitly using F((x+i0)~!) = (27i) "' H, where H
is the Heaviside function. (This equality is proved easily by calculating the inverse Fourier
transform of H as the ./(R)-limit of that of H(z)e™“ as e \,0.) See also Exercise 6.3.

Ezample 6.26. If A € ¥"(R") is a ps.d.o. with Schwartz kernel K, then
WF(K) = {(z,2,¢,-€): (z,€) € WF'(A)}. (6.34)
See Exercise 6.6.
We next study the relationship of wave front sets and PDE. We first prove:

Proposition 6.27 (Microlocality of pseudodifferential operators). Let A € U™ (M) and
ue P'(M). Then
WF(Au) € WEF'(A) N WF(u). (6.35)

In view of Theorem 6.21, this is a significant strengthening of the pseudolocality property
of ps.d.o.s, see Proposition 4.17 (which holds on manifolds as well).
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Proof of Proposition 6.27. Suppose a ¢ WEF'(A), then there exists B € W°(M), elliptic at
«, but with WF'(B)NWF’(A) = 0. Thus B(Au) = (BA)u € C*°(M) since BA € U~>°(M).
If @ ¢ WF(u), then there exists B € \IIO(M), elliptic at «, such that Bu € C*(M). Let
B € U9(M) be elliptic at o and with WF'(B) C EIl(B). Let Q € \IJO(]\{) be a microlocal
parametrix of B on WF/(B), that is, QB = I — R, R € ¥O(M), WF'(B) N WF'(R) = 0.
Then

B(Au) = BA(QB + R)u = BAQ(Bu) + (BAR)u. (6.36)
The first summand is smooth since Bu is; the second summand is smooth since BAR €
U=°(M). O

Moreover, we have the following regularity result, which substantially sharpens Proposi-
tion 4.28:

Proposition 6.28 (Microlocal elliptic regularity). Let u € 2'(M) and A € ¥™(M). Then
WF(u) € WF(Au) U Char(A). (6.37)
In particular, if A is elliptic, then WF(u) = WF(Au).

Proof. Suppose a ¢ WF(Au) and « € Ell(A). Then there exists B € WO(M), elliptic at a,
such that B(Au) € C*°(M); but « € Ell(BA) by (6.14), hence o ¢ WF(u) by Corollary 6.18.

The claim about elliptic A follows from (6.35) and (6.37) since Char(A) = 0. O

The wave front set studied above is more specifically the smooth wave front set or C*™
wave front set, as it measures the lack of smoothness of a distribution. In applications, a
more refined notion is much more useful:

Definition 6.29 (H*® wave front set). Let s € R, uw € Z'(M). Then the H® wave front set
of u is
WF*(u):= ()| Char(A). (6.38)

Aev0 ()
AucHE (M)

That is, its complement is the set of all « € S*M for which there exists A € WO(M), elliptic
at o, such that Au € H(M).

This is equivalent to the alternative definition paralleling Definition 6.16. We collect
results analogous to those for the C*° wave front set; the proofs are left to the reader.
(They are the same as those for the C*° wave front set, except one now one needs to keep
track of Sobolev orders.) We have

WF*(u) =0 < ue Hj . (M). (6.39)
The analogue of Proposition 6.19 is the following:

Proposition 6.30 (H*® wave front set: equivalent definition). Let u € 2'(R"), (x,&) €
R™ x (R™\{0}). Then (xo,&) ¢ WF?*(u) if and only if there exists ¢ € C°(R™), ¢p(xo) # 0,
and v € C%(S7Y), ¥(&/[&]) # 0, such that

(€0 (1g7) Fut) € LR, (6.40)

The sharpening of Propositions 6.27 and (6.28) is:
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Proposition 6.31 (Microlocality and microlocal elliptic regularity: H® version). Let A €
U™(M), u e P'(M). Then

WF™(Au) C WF'(A) N WF*(u), (6.41)

WEF*(u) ¢ WF*™™(Au) U Char(A). (6.42)

In particular, if A is elliptic, then WF?®(u) = WF*™™(Au).
Proof. See Exercise 6.8. ([

The more precise way of stating the qualitative statement (6.42) of microlocal elliptic
regularity is the following quantitative estimate,"* stated on a compact manifold for conve-
nience: if B, G € WO(M) are such that

WF'(B) C EIl(G), WF'(B) C Ell(A), (6.43)
then for any N € R, there exists C' > 0 such that

|Bullzsury < C (I1GAUl e any + el r-an) ) (6.44)

and this estimate holds in the strong sense that if u € 9’(M) is such that the right hand side
is finite, then so is the left hand side, and the estimate holds.™ (Thus, this is better than an
a priori estimate, as microlocal H*-membership of u is concluded, with estimates—rather
than merely assumed and estimated.)

We end with recording the relationship between H® and C* wave front set:

Proposition 6.32 (C*® and H*® wave front sets). Let u € 9'(M). Then

WF(u) = | WF*(u). (6.45)
seR

It is easy to see that J,cp WF®(u) is, in general, a proper subset of WF(u).

Proof of Proposition 6.32. Clearly WF*(u) C WF(u), implying ‘2’. For the converse, sup-
pose a € S*M has an open neighborhood U C S*M such that U N WF*(u) = () for all
s € R. Then if A € U9(M), WF'(A) C U, is elliptic at o and has compactly supported
Schwartz kernel, then Au € (g HS (M) = CZ°(M), hence o ¢ WF (u). O

6.4. Pairings, products, restrictions. The wave front set allows one to give fairly precise
answers to questions such as: when is the product of two distributions well-defined? When
can distributions be restricted to submanifolds? For notational simplicity, we work on R™,
but all results have analogues on manifolds.

We first consider generalizations of the L?(R") inner product

(u,v) = /n u(x)v(z) de. (6.46)

130ne can in fact recover the estimate from (6.42) using the closed graph theorem, though this loses the
(in principle) explicit nature of the constant C' as depending on seminorms of A.

10on a non-compact manifold, this holds if one takes B, G with Schwartz kernels supported in K x K,
K & M, and upon replacing the final, error term by ||xul||z-~ where x € C°(M) is identically 1 near K.
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Proposition 6.33 (L? pairings with wave front set conditions). Suppose u,v € &' (R")
satisfy WF(u) N WF(v) = 0. If A € O(R") is such that
WF(u) "WF'(A) =0, WF(u)NWF/(I —A) =0, (6.47)
then the sesquilinear form
(u,v) := (Au,v) + (u, (I — A*)v) (6.48)
is independent of the choice of A.

Proof. Note that (6.48) is well-defined since Au, (I — A*)v € C*>°(R"™) by microlocality,
Proposition 6.27.

Suppose B € UO(R") satisfies the conditions on A in (6.47). Then

(u,v)" := (Bu,v) + (u, (I — B*)v) (6.49)
is well-defined, too, and we want to show that the difference
{(u,v)" — (u,v) = ((A — B)u,v) — {u, (A* — B*)v) (6.50)

vanishes. If u, v were in C2°(R™), this would be clear by integration by parts. Since u, v are
merely distributions, we need to be more careful and use an approximation argument.

Thus, choose v; € C°(R™) such that v; — v in &’'(R™); then
(A~ B)u,v) = lim (A~ Blu,vj) = lim (u, (A" — B*Joy). (6.51)
j—o0 j—o0

We have (A* — B*)v; — (A* — B*)v in 2'(R"); but since u € &’'(R™), this is not enough to
naively take the limit in (6.51). Pick thus @ € W°(R") with compactly supported Schwartz
kernel, and with WF'(Q) N WF(u) = ) and WF'(I — Q) N (WF'(A) U WF/(B)) = 0, then

we can further write
(u, (A" = B*)vj) = (u, (I — Q)(A" — B )v;) + (u, Q(A" — B¥)vj). (6.52)

Since (I — Q)(A* — B*) € U~2(R"), we have (I — Q)(A* — B*)v; - (I — Q)(A* — B*)v
with convergence in C*°(R"™), hence the first pairing converges to (u, (I — Q)(A* — B*)v).
In the second pairing, we can integrate () by parts, and then

(Q*u, (A" — B*)vj) = (Q™u, (A" — B*)v), j— o0 (6.53)
since Q*u € C°(R™). Since (A* — B*)v € C*(R"), we can move Q* back to the second
factor.

Altogether, we have proved that the limit in (6.51) is indeed equal to (u, (A* — B*)v),
hence (6.50) vanishes, as desired. O

We state a more precise form of Proposition 6.33 which will be useful in positive commu-
tator arguments in §§8-9. First, note that the L2-pairing (6.46) extends to a sesquilinear
pairing

H*R") x H*(R") 5 (u,v) — (u,v), (6.54)
defined by (u,v) := ((D)%u, (D)~ %v). The following is proved similarly to Proposition 6.33:

Lemma 6.34 (L? pairings with H* wave front set conditions). Let s € R. Suppose u €
H*(R"™), v € &(R"), and suppose that WF(u) N WE™%(v) = (). Let A € WO(R") be such
that

WF(u) "WF'(A) =0, WF *(v)NWF'(I — A) = 0. (6.55)



84 PETER HINTZ

Then the sesquilinear form (u,v) — (Au,v) + (u, (I — A*)v) is independent of A.

Remark 6.35 (L? pairings: manifold version). The manifold version of (6.54) is the follow-
ing: fixing a smooth density © on M, we have a pairing

LE (M) x L2 (M) 3 (u,v) = (u,v) = / u(z)v(z) dp(z). (6.56)
M

For s € R then, fix an elliptic operator A € W5(M) with parametrix A_ € U~5(M), so
I =A_A+ R with R € ¥~>°(M). Then the pairing

(u,v) = (Au, A* v) + (Ru,v) (6.57)
agrees with (6.56) for u,v € C°(M), and extends by continuity to a sesquilinear pairing
HS(M) x H_*(M) — C.

loc

For a distribution u € 2'(R"), we have

WF(u) = —=WF(a) := {(z, =§): (z,§) € WF(u)}. (6.58)
We thus deduce from Proposition 6.33 that we can define a pairing
(u,v) = (u, ), wu,ve€ & R"), WF(u) N (-=WF(v)) = 0. (6.59)
Corollary 6.36 (Product of distributions). Let u,v € &' (R™), and suppose that
WF(u) N (—=WF(v)) = 0. (6.60)
Then the product uv € &' (R™) given, in terms of (6.59), by
CF(R™) 3 ¢ — (u, ¢v), (6.61)

is well-defined.

The condition (6.60) is of course much more precise than the condition singsuppu N
sing supp v = (), under which the product uv can be defined easily using a partition of unity
on R".

Proof of Corollary 6.36. If A € YO(R") has WF(u) "WF'(A) = 0 and (~WF(v))"WF'(I —
A) = (), then
[(u, dv)| < |(Au, ¢v)| + |(u, (I — AT)(dv))]. (6.62)
Since Au € C*°(R"), the first summand is clearly continuous in ¢. For the second summand,
choose B € WO(R") such that WF'(B) N WEF'(I — AT) = () and WF'(I — B) N WF(v) = 0,
then
v=Bv+w, w=(—-DB)veClC?R"), (6.63)
hence |(u, (I — AT)we)| < C||¢llck@n) by the continuity of u and the ps.d.o. (I — AT)w €
UY(R™). Furthermore,
(I — ATY¢Bv € C*(R") (6.64)
depends continuously on ¢ € C°(R") since (I — AT)¢pB € U~>°(R") does. O

Remark 6.37 (Topology). One can put a complete locally convex topology on the space
2\ (R") := {u € Z'(R™): WF(u) C A}, where A C S*R" is closed, such that C°(R™) C
2} (R™) is dense, and such that the pairing (u,v) for u,v € C°(R") extends by continuity
tou e (ZyN&E)R"), ve Z),(R") when AN (—A") = 0.
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Remark 6.38 (Sobolev refinements). One can substantially refine Corollary 6.36, e.g. by
working with Sobolev spaces and assumptions on H?® wave front sets for various s. Such
refinements are useful in the study of nonlinear PDE.

Lastly, we consider restrictions to submanifolds, starting with the local model
Y ={(z,0): 2 € R¥} CR" =RE x R} % (6.65)

Denote by ¢: Y — R™ the inclusion map. For u € CX°(R"), its restriction to Y is the
distribution ¢*u defined by

CERM) 3 ¢ = (Fu)(9) := (u-6(y))(9), ¢ €C(R™), o= ¢. (6.66)
If uw € &'(R™) is such that
WF(u) N {(z,0,0,n): € R, n e R"*} =0, (6.67)

then the product ud(y) € &' (R™) is well-defined by Corollary 6.36, and hence we get the
first part of the following result:

Proposition 6.39 (Restriction of distributions to linear subspaces). Suppose u € &' (R™)
satisfies (6.67). Then (6.66) defines a linear restriction map, and

WE(*u) C {(x,€) e RF x (RF\ {0}): 3n e R**, (2,0,£,n) € WF(u)}. (6.68)

Proof. We have (*(xu) = t*u for any x € C°(R"¥) which is identically 1 near 0. The
assumption (6.67) implies that if x has sufficiently small support, then v = yu satisfies that

(€, n) is rapidly decreasing in a cone around {0} x (R"~*\ {0}). (6.69)
When u = u(z,y) € C°(R"), the Fourier inversion formula gives
Fu©) = (F(.0) = e 0 [ aman, (6.70)

where F; denotes the Fourier transform in the first argument of u. More generally then,
the property (6.69) ensures that the integral in (6.70) converges, and it computes t*u even
for distributional u subject to (6.67) by a density argument.

To prove (6.68), we apply (6.70) to a localized version of u. Indeed, suppose (xg,&) €
R* x (R¥ \ {0}) is such that for all n € R"* we have (x9,0,&,n) ¢ WF(u). Then
for ¢ € CSO(R’“) with support close to = and x € CSO(R”*’“) with support close to 0, the
Fourier transform of ¢ (x)x(y)u(z,y) is rapidly decreasing for (£, 7) in a conic neighborhood
of (&, n) for all n € R" % as well as for (£,1) in a conic neighborhood of (0,7) by (6.67).
Therefore, there exists € > 0 such that

dxuen)| < Cnle VN, |- < (6.71)
€l 1ol
for all N. Using (6.70) for yu (which satisfies t*(xu) = t*u), we conclude that
e < ol |- < (6.72)
€l 1ol

for all N, proving that (xo, &) ¢ WF (¢t u). O
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Corollary 6.40 (Restriction of distributions to submanifolds). If ¢: Y C M is a smooth
submanifold, then there exists a linear restriction map

i {ue 2'(M): WE(u) N N*Y =0} — 2'(Y), (6.73)
and WF(t*u) C T*Y \ o is the image of WF(u) NTy M in T*Y = Ty M/N*Y .
Ezample 6.41. On Rfc’y, consider u, = 0(y — ax), a € R. Then the restriction of u, to
Y = {y = 0} is well-defined for a # 0. We have t*(u,) = |a|~*d(x), where ¢: Y — R? is the
inclusion.

One can similarly analyze the wave front sets of general pullbacks and pushforwards of
distributions, and analyze the relationship between WF(Au) and WF(u) in terms of the
wave front set of the Schwartz kernel of A: C°(R™) — 2'(R™). See e.g. [Hor71b, §2.5].

We have now developed the main aspects of the pseudodifferential calculus. For a partial
summary of the calculus on compact manifolds, see [Wun13, §3.4].

6.5. Exercises.

Ezercise 6.1 (Equivalent definition of essential support). Let a € S™(R™;RY). Show that
(z0,&) € R™ x (RN \ {0}) does not lie in esssuppa if and only if there exist ¢ > 0 such
that for all k£ € R, we have

0l O < GO ™V (@.8), 1621, fo—aol + |5 — 22
€] Teol

(Hint. To obtain an estimate for derivatives of a, say 0d.a(x,€) in the case n = 1, write
a(z + h,§) = a(x,§) + hoza(w,§) + %2(%@(3: + 0h, &) where 6 € [0,1]. Rewrite this as an
expression for d;a(x, &) and select h suitably, depending on &, to prove an upper bound
|0za(z, )| < CJ(€)~! for all 1.)

Ezercise 6.2 (Wave front set of characteristic functions). Let € C R™ be a smoothly
bounded domain, and denote by

<e. (6.74)

0, z¢Q

its characteristic function. Compute (with proof) WF(1q). (Hint. Straighten out 0
locally in suitable local coordinates. Then use the characterization of Proposition 6.19 and
Remark 6.20 for cleverly chosen cutoffs; alternatively, use Lemma 6.17 for some well-chosen
test operators A.)

FEzercise 6.3 (£i0 distributions). Let s € C, s ¢ Ny. Recall that the distribution (x+1:0)® €
2'(R) is defined as the limit

((x £10)%, ¢) = 1%<(xiie)s,¢>, (6.76)

lo(z) = {1’ vel (6.75)

where (x + i€)® = exp(slog(x £ i€)). (The logarithm here is the principal branch, i.e. it is
real-valued for real arguments, and its branch cut is along (—oc, 0].) Prove that

WE((z +i0)°) = {(0,€): +€ > 0} (6.77)

(Hint. Show that it suffices to prove this for s with (large) negative real part. When
Re s < 0, shift the contour of integration in the Fourier transform [ (z + i€)*e "¢ dz to a
line Imx = C and analyze what happens when you let € — 0 and then C — o0.)



MICROLOCAL ANALYSIS 87

Ezercise 6.4 (Distribution with special wave front set). Let n € N, n > 2. Give an example
of a distribution u € 2'(R™) whose wave front set WF(u) C S*R™ consists of a single point.

Ezercise 6.5 (Conormal distributions). Let a € S™(Rk; R?‘k).

(1) Make sense of the oscillatory integral

(@, 2) = (2m)~ (k) / ¢i#Ca(z, ¢) dC (6.78)
Rn—k
as a distribution on R® = R* x R?* in such a way that for m < —(n — k), your
definition agrees with the Riemann integral.
(2) Show that WF(u) C {(z,2,£,(): 2 =0, { =0}.
(3) Prove that WF(u) = {(,0,0,¢): (z,() € esssuppa}.

FEzercise 6.6 (Wave front sets of Schwartz kernels of ps.d.o.s). Let A € U™ (M) be a pseu-
dodifferential operator, and denote its Schwartz kernel by K. Prove that

WF(K) = {(z,2,,—€) € T*(M x M): (z,€) € WF'(A)} (6.79)

Ezercise 6.7 (Holomorphic functions in a half space). The following is a generalization of
Exercise 6.3. Denote by 2 = {z € C: Imz > 0} the upper half plane, and let F': Q@ — C
be holomorphic. Suppose that for each C' > 0 there exist C/, N € R so that |F(z)| <
C'|Tm z|™N for 2 € Q, |Rez| < C, Im z € (0, 1].

(1) Show that the functions F, = F(- + i€) € C*°(R) converge in 2'(R) as € \, 0. The
limit is denoted f := F(- +i0) € 2'(R). (Hint. Write F. in terms of F} using
the fundamental theorem of calculus for F' in the imaginary direction. Using the
Cauchy-Riemann equations, show in this manner that for ¢ € C°(R) with support
in (—C,C), one can write (F¢,¢) = (Fe(l),qﬁ’) where F(1) is holomorphic in Q and
satisfies [F(D(2)| < C'|Im z|~N*! for |Rez| < C, Imz € (0,1] when N > 1, or
with F(1) continuous down to the real line when N < 1. Starting with general N,

proceed iteratively.)
(2) Show that WF(F(- +i0)) C {(x,&): £ > 0}.

FEzercise 6.8 (H® wave front sets and estimates). (1) Prove Proposition 6.31.
(2) Prove the estimate (6.44).

7. HYPERBOLIC EVOLUTION EQUATIONS

As a neat application of the ps.d.o. machinery, we now study first order systems of
evolution equations; our presentation is inspired by [Tayll, §§7.7-7.8]. We work on R",
but all results have analogues on compact manifolds.

7.1. Existence and uniqueness. Consider
Diyu=a(t,z,Dy)u+g(t,x), teR, zeR",
u(0,z) = f(x), xz eR”,

where

fe HS(R™CF), gec® (R H (R CK)). (7.2)
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We let A(t) = Op(a(t,z,£)), and assume that a(t,z,£) € C®(Ry; Mat™ K (S1(R™; R")))
is a K x K matrix of first order symbols with smooth dependence on t; we simply write
a(t) € S'. We further assume that (7.1) is symmetric hyperbolic, meaning

a(t,z,&) —a(t,xz,&)* € S0, (7.3)

Theorem 7.1 (Existence and uniqueness for first order symmetric hyperbolic systems).
The equation (7.1) with data (7.2) has a unique solution

ue C’ (R HS(R™;CX)) net (R HHR™; CK)). (7.4)

Proof. We drop the ‘bundle’ CX from the notation. We shall obtain u as a limit of solution
ue to a regularized equation

Dyue = JEAJE € )
u ety (7.5)
u€(0) = f)
where we use a Friedrichs mollifier
Je=¢(eDs), ¢ €CF(R™), ¢(0) =1. (7.6)

Note that J. € ¥~°(R") for € > 0, and J. € ¥O(R") is uniformly bounded for € € (0, 1].

For € > 0, J.AJ. is a smooth family of bounded operators on H*(R™), hence solvability
of (7.5) with u. € CY(R; H*(R™)) follows from ODE theory. We need to establish uniform
estimates on u.. Let A® = (D,)®. Then

5 < le(t) 3 = Re(A® i Aeue, A*u) + Re(A%g, A*u) (7.7)
= Re(tAN° Jeue, A° Jeue) + Re([A®, i Al Jeue, A Jeue) + Re(A°g, A®ue). (7.8)

Since B(t) = A(t) — A(t)* € U, the first term is equal to
(B(t)A®* Jeue, A Joue) < Ol Jcuc||3rs < Clluel|3s- (7.9)

Since [A%, A] € W, the second term in (7.8) is bounded by C||uc||%. as well. Applying
Cauchy—Schwarz to the third term in (7.8), we obtain

d
g lue®llzr < Clluc®l: + Cllg(t)|z- (7.10)
By Gronwall’s inequality, this implies the e-independent estimate
et e < CCE) (1 e + Nl aascamy ) - (7.11)
Therefore, for any T'> 0 and I = [T, 7],
uc € CO(I; HS(R™)) N CH(I; HSL(R™)) (7.12)

is uniformly bounded. (Boundedness in the second space follows boundedness in the first
space and the equation (7.5).)

We can extract a subsequential limit of u. very easily by using the continuous injection
CHI; H*71(R™)) — HI(I; H5~1(R™)); the latter space is a Hilbert space, so there exists a
weak subsequential limit

uwe HY(I; HSHR™)) — C(I; HH(R™)) (7.13)
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of u.. Thus, u is a weak solution of (7.1), and thus also u € C!(I; H*~2(R")). Since
5(t) € H-Y27¢(R), we also have u(0) = (u,d) = lim(uc,d) = f. Uniqueness of u follows
using estimates similar to (7.11) for the difference of two putative solutions.

To prove the correct regularity of u, we approximate f € H*(R"), g € C°(R; H*(R")) in
these topologies by f; € H*TL(R™), g; € C°(R; H*T1(R™)). Then we have just constructed
a solution u; € CO(I; H*(R™)) NCY(I; H*~1(R™)) of (7.1). Moreover,

Vjk = Uj — Uk (7.14)
solves (7.1) with initial data f; — fr and forcing g; — gx. An estimate similar to (7.11)

thus implies that vj, — 0 in CO(I; H*(R")) as j,k — oo. Therefore, u; is Cauchy in
CO(I; H*(R™)), hence its limit u satisfies (7.4), as desired. O

As a simple example, we solve the wave equation on R",

Ou:= (D} ~A)u=g, teR, z€R",

u(0,z) = fo(x), x € R", (7.15)
Duwu(0,z) = fi(z), r € R™,
where
g€ COR; H*LR™), (fo, f1) € H*(R™) @ H*Y(R™). (7.16)

Corollary 7.2 (Solving the wave equation). The wave equation (7.15) with data (7.16)
has a unique solution

u € CO(R; H*(R™)) N CY(R; H*~H(R™)). (7.17)

Proof. Let A = (D). We write

U := (Au, Dyu),
F = (Afo, f1) € HTYR™; C?), (7.18)
G :=(0,9) € C°(R; H* 1 (R"; C?)),

then the equation (7.15) is equivalent to the first order system

DU = AU + G, (7.19)
U(0) =F, ’
where the operator A is given by
0 A

Note that A(t) — A(t)* € WY Therefore, by Theorem 7.1, the equation (7.19) has a
solution U € ﬂ}zo C/(R; H~17J(R"; C?)). The function u := A~1Uj is the desired solution
of (7.15). O
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7.2. Egorov’s theorem; propagation of singularities. We now study the microlocal
behavior of solutions of scalar hyperbolic equations

Dy = A(t,z, Dy)u, (7.21)

where we assume that A € C*°(Ry; ¥ (R™)). Denote by a € C*®(Ry; St (R R™\ {0})) the
homogeneous principal symbol of A; we assume that

a(t, x,€) is real-valued. (7.22)
We denote the solution operator for (7.21) by
S(t,s): u(s) — u(t). (7.23)
By Theorem 7.1, S(t,s) € L(H?(R™)) for all 0 € R; moreover, S(t,s) is invertible with
S(t,s)t = S(s,t).

Theorem 7.3 (Egorov’s theorem). Let Py = Op(pg) € Y™ (R") be a ‘test operator’, and
define
P(t) :== S(t,0) 0 Pyo S(0,t), teR. (7.24)
Then P(t) € U™ (R™) modulo a smoothing operator: there exists R € C*°(R;C*>°(R?*")) such
that P(t) — R(t) € W™(R™). The principal symbol of P(t) is given by
o™ (P(t))(C(t)(x0,&0)) = polzo, o), (7.25)
where C(t) is the time t flow (from 0 to t) of the time-dependent Hamiltonian vector field
Hy(t26); that is, C(t)(zo,&0) = v(t) where v(0) = (xo, &) and '(s) = Ha(s)h(s).
Proof. Differentiating (7.24) in ¢ gives the equation
P'(t) = i[A(t,z,D), P(t)], P(0) = P. (7.26)
Using the symbol calculus and an asymptotic summation, we will first construct an
approximate solution Q(t) = Op(q(t)), q(t,x,&) € S™, of this, so
Q'(t) =i[A(t, =, D), Q)] + R1(t), Q(0) =Py, R €C®RuyT >(R"). (7.27)

We make the ansatz
q(t) ~ D ar(t), () € S, (7.28)
k=0

Taking the principal symbol of (7.27) then gives

(at — Ha(t)) q(t,z,6) =0, qo(0,2,&) = po(x,§). (7.29)

Thus qo(t,C(t)(x,€)) = po(x,§). We leave it to the reader to check that go(t) € S™.
Proceeding iteratively, we take ¢;(t) € S™77, j > 1, to be the solution of a transport
equation

(8,5 — Ha(t)) qi(t,x, &) = ej(t,z,§), (7.30)
where e;(t) € S™ is computed from the full symbol of 4 and qo, ..., qj_1.
Having thus arranged (7.27), we now prove that for any N € R, the difference R(t) =
P(t) — Q(t) maps any f € H-N(R") into H®(R"). Equivalently, we will show

(t) —w(t) € HX([RM), o) := S(t,0)Pof, w(t) := Q(£)S(t,0)f. (7.31)
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Note that v(t) and w(t) solve the equations

Dy = A(t,x, Dy)v, v(0) = f,
Dyw = A(t,x, Dy)w — iR S(t,0)f,  w(0) = f. (7:32)
Therefore, putting g(t) = iR15(t,0)f € C°(Ry; H*(R™)), we have
Di(v—w) =g, (v—w)(0)=0. (7.33)

By Theorem 7.1, (7.31) follows, finishing the proof. (This argument shows that the smooth-
ing error in fact lies in the space ¥~°°(R") + H*°(R?"), with smooth dependence on t.) [

As a simple consequence, we can track the wave front set of a solution of a scalar evolution
equation (7.21).

Theorem 7.4 (Propagation of wave front sets). Suppose A is as in (7.21)-(7.22). Let
up € H-N(R™), and let u denote the solution

Do = A(t, z, Dy)u,
tU (t7 x, )U (734)
u(0) = up.
Then, with C(t) as in the statement of Theorem 7.3, we have
WEF (u(t)) = C(t)WF (up). (7.35)

Proof. 1t suffices to prove the inclusion ‘C’ (since switching the time direction then proves
‘D"). Thus, suppose o ¢ WF(ug). Take an operator Py € WY(R"™), elliptic at «, such that
Poup € C>°(R™). Then, in the notation of Theorem 7.3,

Poug = S(0,t)P(t)S(t,0)ug € C(R"™), (7.36)
so P(t)u(t) € C>*(R™). But P(t) is elliptic at C(t)c, hence C(t)a ¢ WF (u(t)). O

Remark 7.5 (Generalization to weighted Sobolev spaces). Theorem 7.1, and thus also The-
orem 7.4, can be generalized easily to the case of initial data and forcing terms in weighted
Sobolev spaces. In particular, by Theorem 2.14, we can allow ug in Theorem 7.4 to be any
tempered distribution ug € ' (R").

Ezample 7.6. For A = D, € U1(R), the solution operator is (S(t,0)u)(x) = u(t + z), and
C(t)(xo,&0) = (o +t,&). And indeed P(t) = Op(p(t)), p(t,x,&) = po(x + t,§).

Example 7.7. Consider the half Klein—-Gordon equation
Diu = (D;)u on R; x RZ. (7.37)

(This arises from the factorization D? — (A + 1) = (Dy — (D.))(D; + (D,)).) In this case,
a(x,&) = ||, which has Hamiltonian vector field H, = |¢|71¢ - 8,. Thus, the operator P
gets ‘transported’ along straight lines with direction determined by the momentum variable
€. Explicitly, (7.37) is solved by u(t) = e**P)u(0), and the wave front set statement can be
checked explicitly from this; however, the true power of Theorems 7.3 and 7.4 of course lies
in the fact that they apply to equations with non-constant coefficients as well.
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7.3. Exercises.

Ezercise 7.1 (Necessity of a symmetry assumption). On R; x R,, consider the equation
Diyu = —iDgu. (This is the Cauchy-Riemann equation for u = u(t,x), regarded as a
function of the complex variable ¢t +ix.) Suppose that u is a solution of this equation with
u € CO°(R; H*(R™)). What can you say about u(0,z)? Conclude that Theorem 7.1 fails for
a(t,x,Dy) = —iD,.

Ezercise 7.2 (Solutions of the Klein-Gordon equation and their singularities). Consider the
initial value problem for the Klein—Gordon equation,

(D}~ A—-1u=g, teR, zecR"
U(O,III) - fO(‘r)a z € R", (738)
Du(0,2) = fi(z), = eER™.

Here (fo, f1) € H*(R™) ® H5}(R") for some s, and g € C*°(R; H**(R")) is smooth.

(1) Show that (7.38) has a unique solution u € (2, CH(R; H*=I(R™)).
(2) Show that WF(u(t)) C T*R"™ \ o is contained in the set
U { (xo + té2|, §0> : (.730, 60) S WF(U()) U WF(ul)} (739)
+
(Hint. Factor equation (7.38) as (D; — (D))(Dy + (D))u = g.) Can you make a
more precise statement?

FEzercise 7.3 (Symmetrizable hyperbolic systems). Suppose the K x K system of first order
evolution equations

D= L(t,x,D)u+g, u(0)=feHR"), geCRHR"CK)), (7.40)

is a symmetrizable hyperbolic system: there exists a K x K-matrix-valued symbol S(¢,z,§) €
S9 which is positive definite and such that S(t, z, £) L(t, x, ) is symmetric modulo S°. Prove
that (7.40) has a unique solution

u € C°(R; H*(R™; CF)) nCt(R; H*H(R™; CF)). (7.41)

(Hint. Construct a positive definite operator S(t) € WY with principal symbol S(t,z,¢).
Mimic the proof of Theorem 7.1 and prove an e-independent estimate for the quantity
%(Asue(t),S(t)ASuQLz instead of %Hue(t)H%Is.)

Ezercise 7.4 (Strictly hyperbolic systems). A K x K system of the form (7.40) is strictly
hyperbolic if the principal symbol Lq (¢, x, &) of L is positively homogeneous of degree 1 in
¢, and if for all (¢,2) € R x R", £ € R™"\ {0}, Li(t,x,&) has K distinct real eigenvalues.
Show that a strictly hyperbolic system is symmetrizable.

n

", consider an m-th

Ezercise 7.5 (Higher order strictly hyperbolic equations). On R; x R

order operator
m—1

L=Dy+ > aj(y,x,D;)D] (7.42)
5=0
where a;(y, z, D) € Diff "7 (R"). We study the system

{Lu = g € CO(Ry; H— ™),

7.43
(u,Dyu,...,D;”_lu) = (U0, ULy -+ y Un—1)5 (7.43)
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where u; € H*~J(R") for j =0,...,m — 1.

(1) Reduce (7.43) to an m x m system of first order evolution equations for the C™-
valued function (A™ 1u, A" 2Dyu, ... ,DZ"‘_lu) where A = (D).

(2) Give a condition on the principal symbol of L which is equivalent to the strict
hyperbolicity (see Exercise 7.4) of this m x m system.

(3) Under the strict hyperbolicity assumption of part (2), prove existence and unique-
ness of a solution u € ;2 C7(Ry; H*™/ (R™)) of (7.43).

8. REAL PRINCIPAL TYPE PROPAGATION OF SINGULARITIES

We now free ourselves from the restrictive setting'® of equations which are explicitly given
in evolution form, and consider the propagation of singularities (wave front set)/regularity
for solutions of rather general non-elliptic (pseudo)differential equations

Pu=f, Pev™(M), (8.1)
where M = R"™ or some other manifold, and m € R; we assume that the principal symbol
p(z,§) = o™(P)(x,§) (82)

is (positively) homogeneous of degree m and real.

Definition 8.1 (Null-bicharacteristics). A null-bicharacteristic of P is an integral curve in
Char(P) C T*M \ o of the Hamiltonian vector field H,,.

Note that H,p = 0; hence an integral curve of H,, with initial condition a € Char(P) is
automatically a null-bicharacteristic (and all null-bicharacteristics arise in this fashion).

Theorem 8.2 (Propagation of singularities: smooth case). Suppose P € W™ (M) has a
real-valued homogeneous principal symbol, and w € P'(M) is such that Pu € C™(M).
Then WF (u) C Char(P) is a union of mazimally extended null-bicharacteristics of P.

The statement WF(u) C Char(P) is just microlocal elliptic regularity, Proposition 6.28.
The theorem asserts that within Char(P), the wave front set of a ‘microlocal solution’ u is
invariant under the Hy-flow. Rather than calling Theorem 8.2 a result on the propagation
of singularities, one often (and more usefully) regards it as a result on the propagation of
regularity, since o« ¢ WF(u) N Char(P) implies that the entire maximally extended null-
bicharacteristic of P through « is disjoint from WF (u). The first proof of Theorem 8.2 was
given in [DH72] using the machinery of Fourier integral operators.

Remark 8.3 (Real principal type operators). Suppose a € T*M \ o is such that H,|, = 0.
Then the null-bicharacteristic through « is the constant curve «, i.e. Theorem 8.2 does not
give any information at a. One says P is of real principal type if dp # 0 on Char(P); in
this case, H, never vanishes on Char(P).

Remark 8.4 (Radial points). Denote by V' the generator of dilations in the fibers of 7% M,
so V' = £0¢ in local coordinates. Since WF(u) is conic, Theorem 8.2 is trivial also at radial
points: these are points a € T*M \ o where Hy|o = ¢V, ¢ € R. We shall discuss interesting
classes of radial points in §9.

15he theory of Fourier integral operators provides tools to ‘microlocally conjugate’ every real principal
type operator into the operator D; on Ry x R"™! see [Hor71b, DH72, Hor09], thus this setting, with L = 0,
in fact captures the general situation. We shall however not develop this theory here.
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Proof of Theorem 8.2. This can easily be reduced to a local result. Indeed, if x, x € C(M)
are two cutoffs and x = 1 near supp ¥, then

xPxu = xPu+ x[P,X]u € CZ(M). (8.3)

Thus, if ¢ € C°(M) is identically 1 near supp X, we can replace P by xPx and u by ¢u, and
we still have Pu € C*°(M); moreover, these replacements do not alter null-bicharacteristics
of P and the wave front set of u in x~*(1). Localizing in this fashion to a coordinate patch,
we can thus assume

P e U™R"), ue &'(R"), Pu=feCOR"). (8.4)

We normalize this using A = (D)™~ by replacing (P, u) by (PA~!, Au); thus we can assume
m = 1. After these replacements, the principal symbol of P is still homogeneous (of degree
1) and real.

We now add an artificial time variable ¢ and set

i(t.7) =u(z), F(t,z) = f(x). (8.5)

Then @ solves the equation

Dyii = Pii — f. (8.6)

A simple extension of the proof of Theorem 7.4 (taking into account the presence of fe
C>®(R;C°(R™))) implies that

WF(u) = WF(a(t)) = C(t)WF(a(0)) = C(t)WF(u), (8.7)
where C(t) is the time ¢ flow of H,. Thus, WF(u) is invariant under the Hp-flow, proving
the theorem. 0

One of the main drawbacks of the above proof (apart from being rather ad hoc) is that it
ultimately rests on the solvability theory for the (auxiliary) equation (8.6). But solving PDE
is difficult, hence one should try to solve as few as possible! We shall thus present another
proof of Theorem 8.2 which is longer and looks more complicated, but is at its core very
simple, and the prototypical example of a positive commutator argument which in this form
first appeared in [Hor71a]. It has the technical benefit of only utilizing pseudodifferential
operators (rather than Fourier integral operators as in [DH72]).

We will prove the following sharpening of Theorem 8.2:
Theorem 8.5 (Propagation of singularities: Sobolev case). Suppose P € W™ (M) has a

real-valued homogeneous principal symbol. Let w € P'(M) and f := Pu € 9'(M). Let
s € R. Then

WEF?(u) C Char(P) UWF*™"(f). (8.8)
Moreover, within Char(P)\ WF*~™+1(f),
WE®(u) \ WE*"4(f) (8.9)

is a union of maximally extended null-bicharacteristics of P.

Remark 8.6 (Loss of one derivative). Note that in order to obtain the propagation of
microlocal H*-regularity of u in Char(P), one needs to assume that f lies in H~ ™!
microlocally. This is one degree more smoothness than what microlocal elliptic regularity
requires. Thus, on Char(P), u ‘loses’ one derivative relative to elliptic regularity.
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From now on, all ps.d.o.s will have Schwartz kernels supported in a fixed compact subset
of M x M, and all distributions are supported in a fixed compact subset K C M. This is not
a restriction in view of the arguments at the beginning of the proof of Theorem 8.2. Note
that {u € HS(M): suppu C K} has the structure of a Hilbert space. We will really prove
quantitative estimates somewhat similar to those that arose in the discussion of microlocal
elliptic regularity, see (6.44). Namely, we will show:

Theorem 8.7 (Propagation of singularities: estimate version). We use the notation of
Theorem 8.5. Let 7: [0, s9] — Char(P) be a null-bicharacteristic of P; let Uy C S*M and
U C S*M be arbitrary neighborhoods of v(0) and ([0, so]), respectively. Then there exist

B,G,E € V(M) (8.10)
so that

(1) EL(B) > ([0, s0]),
(2) WF'(B) C Ell(G) C U,
(3) WF'(E) C Uy

so that the following estimate holds for any N € R and a constant C = C(N) > 0:
[Bull s < C([[Eullms + G Pul| a=m+r + [Jull gr-~) - (8.11)

Moreover, this holds in the strong sense that if uw € & (M) is such that the right hand side
is finite, then so is the left hand side, and the estimate holds.

One reads the estimate (8.11) as follows: assuming a priori microlocal H® control of u
on Ell(E), we conclude microlocal H*® control of u on Ell(B) by propagation along null-
bicharacteristics (provided Pu remains microlocally in H*~™%! along the way). See Exer-
cise 8.2 for a semiglobal version of Theorem 8.7.

Theorem 8.5 is an immediate consequence of Theorem 8.7. Indeed, if a € Char(P) \
WEF?(u), then this implies that the forward null-bicharacteristic of P with initial condition
o remains disjoint from WF*(u) as long as it does not intersect WF*~™FL(f). Applying
the theorem to —P gives the backward propagation of regularity. (Away from Char(P),
the estimate (8.11) follows from microlocal elliptic regularity in view of condition (2) in
Theorem 8.7, though in a weak form since we are assuming microlocal H*~™%! control on
Pu).

8.1. Positive commutator argument I: sketch. Let us consider a basic example: P =
Dy, on RZ, so p = & and Hy, = 0,,. Let us take B, E,G to be cutoff functions, say

smoothed out versions of the characteristic functions of Qg = [~2, —1],, x [-2,2]""! (for
E), Qp :=1[1,2] x [-1,1]""! (for B) and [-3,3] x [-3,3]""! (for G). Take s = 0; assume
Dg,u= f € L*(R"). (8.12)

Then (8.11) asserts that u|g, € L?, provided u|g, € L% But this is obvious! Indeed, one
can solve (8.12) explicitly, and do simple estimates. (The ‘high brow’ proof of Theorem 8.7,
see [DHT72], reduces to this situation (modulo smoothing operator) using Fourier integral
operators.)

A much better proof does not require the explicit solution of (8.12). (This ‘better proof’
does use the fundamental theorem of calculus, but in the form of integration by parts, and
in a way that generalizes readily to general operators.) To explain it, let us take n = 1,
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r = x1, for simplicity, and let us estimate |u(1)|?> in terms of |u(—1)|*> and D,u. Let
X = 1{—1,1) denote the characteristic function of [~1,1]. Then

(D + Ju(~ 1) = / (D XJu - Tz

=4t (/ Dyu - xyudr — /Xu . Dxudx> (8.13)

= 2Im(Dyu, xu).

If D,u = 0, we see from the first line that what really provides control of |u(1)|? is the
fact that the cutoff x has negative (the ‘good’ sign) derivative along H, at 1. Since we are
proving a localized estimate, the function y must be compactly supported, and hence it
must have a positive (the ‘bad’ sign) derivative somewhere, here at —1, which necessitates
a priori control of u there.

If Dyu # 0, one needs more ‘negativity’ of the commutator i[D,, x]; one can e..g take
1
2Im(Dyu, e " xu) = —/ e lul? dz — e Hu(1)|? + elu(—1)|?, (8.14a)
-1
and estimate the left hand side using Cauchy—Schwarz by
2Im(Dyu, e xu) > —|xe 2 Dyul|2, — He_x/QuH%g([_l 1)- (8.14b)

Combining (8.14a)—(8.14b) gives |u(1)]* < C(Ju(=1)[* 4 ||Dyull32), as desired. This is a
typical positive commutator argument; the function e~*y is called the commutant.'®

The proof of Theorem 8.7 will be based on similar considerations. The rough, formal
sketch goes as follows.!” We formally compute for A = Op(a) € W?—m+1 A = A*,

2Im(Pu, Au) = i({Au, Pu) — (Pu, Au)) = ((i[P, A] + i(P* — P)A)u,u). (8.15)
Let p = 0™(P) and p; = 0™ 1(i(P* — P)). Then
o (i[P, A] + i(P* — P)A) = Hya + pia. (8.16)

Suppose we can arrange

Hya+pra=—b*+¢ (8.17)
where b € S* is elliptic in the desired conclusion region, and €’ € S?° has essential support
contained in the a priori control region. Taking B = Op(b), E' = Op(¢’), we then have

i[P,A|+i(P*—~P)A= -B*B+E + R, RecU* 1 (8.18)

hence (8.15) implies
| Bu||? = —2Im(Pu, Au) 4+ (E'u,u) + (Ru,u). (8.19)
If Pu = 0, this controls the microlocal H® norm of u on Ell(B) by that on ElIl(E’). (Note
that, using Lemma 6.34, (E'u, ) is finite by the a priori H® control on u on WF/(E’).) The

term (Ru,u) is lower order, and finite provided we already have proved H s=1/2 control of
u. Thus, starting with s = —N + 1/2, we can iteratively improve the control on u by half

1GStrictly speaking, one should call it a negative commutator argument, which can be turned into a
positive commutator argument by switching the sign of the commutant. However, people typically use
positive commutants, and we will do the same here.

1T\we encourage the reader to assume at first reading that P = P*.
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a derivative, until after finitely many iterations we reach the desired level of regularity. (If
Pu # 0, we arrange for more negativity in (8.17) and estimate the first term in (8.19) using
Cauchy—Schwarz, similarly to (8.14a)—(8.14b) above.)

To make this into an honest positive commutator argument, we need to
(1) construct the commutant (this is the ‘interesting’ part of the argument), i.e. con-
struct a satisfying (8.17);
(2) regularize the argument (this is the ‘technical’ but straightforward part of the ar-

gument): we need to ensure that the integrations by parts in (8.15) and (8.19) as
well as various norms are well-defined.

8.2. Positive commutator argument II: construction of the commutant. We first
do some preliminary simplifications. Using a partition of unity argument, it suffices to work
near a single null-bicharacteristic segment

v: [0, so] © s — ~(s) € Char(P), so> 0. (8.20)

We will show that v(0) ¢ WF*(u) and ([0, s0]) N WES™™FL(Pu) = () implies (so) ¢
WF?(u), with estimates.

We further simplify notation by passing to the cosphere bundle.

Lemma 8.8 (Homogeneity of the Hamiltonian vector field). Let p € S{ (T*M \ o). Then

H, is homogeneous of degree m — 1. That is, denoting by My: (x,&) — (x,A), A > 0, the
dilation in the fibers of T* M, we have

M;H, = \""1H,. (8.21)
Proof. We work in local coordinates. Since p(z, A{) = A"'p(z, ), differentiation in £ shows
that Og,p € S;"-1. Let now f € C®(T*M) and (z¢, &) € T*M \ o, then
(M3 Hp)l(20.60) (f) = Hpl(wo re0) (f © My )
= (9¢p) (20, \o) - (D (f o My 1)) (20, Ao)
— (0zp) (w0, A6o) - (O (f © M) (o, Aéo)

m—1 (822)
= N""(0¢p) (0, &0) - (02 f)(x0,%0)
— N"™(9up) (20, &0) - A0 f) (20, &0)
= )\m_lHP‘(xg,fo).ﬂ
as claimed. O
Fix an elliptic symbol
€] € Shom(T*M \ 0) (8.23)
and define .
Hy, = (7™ H, € V(T*M \ o). (8.24)

This is homogeneous of degree 0 and hence descends to a smooth vector field ﬁzl, e V(S*M)
on the cosphere bundle.'® (Indeed, for f € C®(S*M), one defines flj’of by q*(f[z’,f) =

18The passage from H, € V(T*M \ 0) to H, € V(5*M) does lose information, namely the fiber-radial
component of Hy. For example, the vector field £0; € V(T*R™), which is homogeneous of degree 0, descends
to the 0 vector field on S*R". Keeping track of the radial component will be crucial in §9.
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(q f) where q: T*M \ 0o — S*M is the quotient map. ) We immediately simplify notation
and denote H " by H simply. An integral curve of H is the image in 7% M \ o of an integral
curve of H,, up to reparameterlzatlon

Working in S* M, we thus take 7 in (8.20) to be an integral curve of Hp; we may rescale to
arrange that so = 1. Note that there is nothing to prove if ~ is stationary, cf. Remarks 8.3—
8.4. Otherwise, H), is non-zero along v, and by basic ODE theory, we can straighten out
H,, locally: there exist local coordinates on S*M

(21,7)), z1 € [—2, 2], 2 e R 2 2| <1, (8.25)

near ([0, 1]) such that v(0) = (0,0), H, = 0,,, and (1) = (1,0).

We now construct a commutant a; we need to ensure that a is supported in any pre-
specified neighborhood of ([0, 1]), and that €’ is supported in any pre-specified neighbor-
hood of ¥(0). Suppose € > 0 is such that

([—2¢,1 4 2€] x {|2/| < 2€}) NWEF*™ 1 (Pu) =, (8.26)
([—2€,2¢] x {|2'| < 2e}) NWF*(u) = 0.
Fix a cutoff (in the transverse directions)
Y € C(R?™2), suppy C {|Z/| < 2¢}, w(2) =1for || <, (8.27)

and a ‘turn-on’ function (in the z; direction)

x1 € C*(R), suppxi C (—¢,00), supp(l — x1) C (—00,€). (8.28)
The main term of the commutant arises from
—F/x
e x>0
T) = ’ ", 8.29
Xo(z) {0’ £ <0 (8.29)

where the constant F' > 1 will be chosen below. Note that
Xo(z) = Fa%xo(x), (8.30)

so for z in any fixed compact subset I € [0,00), and for any given C' > 0, we can choose
F > 1 so that x{, > Cxo for x € I. That is, the derivative of xo can be made to dominate
any multiple of xo; this is an important mantra in the commutant construction business.
We then set

X(21) = xo(L+e—z), a:=x(z)x()’¥(z')? (8.31)
which is supported in a 2e- nelghborhood of 'y([ ,1]). Setting p1 = [¢]7™F1p; € C°(S*M)
(using the notation p; = 0™~ !(i(P* — P)) from (8.16)), we then compute

Hya+ pra = 2x(z1)xa(20)x1 (209 () + X' (z1)xa (20)*0 (") + Brx(z1)xa (1) 9 (')
=0+ ¢
(8.32)

where

oy
Il
[\

x(z1)xa(z21)x (21)0(2)?,
X1 (209 (') /=X (21) — Pix(z1) (8.33)
X1(20)¥(2)Vx(21)VF(1 + € — 21)72 = pr.

SN
Il
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Note that for I sufficiently large, b € C*°(S*M). Moreover, supp & C {|z1|, |#/| < 2¢}, and
b is positive on [e, 1] x {0}.

This almost arranges (8.17): we need to put the differential order back. Thus, we set

a:= ¢ G e ST M \ o) (8.34)
and compute
Hya+pra = ¢ (Hpa + pad), P2 = pr+ (|¢[72F" L H g7, (8.35)
Therefore, giving ourselves some extra room (to deal with Pu # 0), we have
Hya+pra = —|¢*™257262 —b? + ¢ (8.36)
if we set
e = |¢*¢, (8.37)
b= [¢1°x1(21)¢ (') /=X (21) — Pax(z1) — x(21)2x1(21) 2 ()2 (8.38)

= &P x1 (209 (Z)Vx(2)VF (1 + € = 21)72 = fa — x(21)xa(21)20(2')%; (8.39)
we have ¢/ € 2% and b € S* for sufficiently large F' > 1.

8.3. Positive commutator argument III: a priori estimate. Let us quantize these
symbols as in (8.18), giving A € W2~m+1 B € ¥% E' € U?5; we can also arrange WF’'(4) =
esssuppa etc. Assuming u € C*°(M), integrations by parts are never a concern, and we
then have the following slight improvement over (8.19):

| Bul]® + | AAu||* = —2Tm(Pu, Au) + (E'u,u) + (Ru,u), R € U1 (8.40)

where A € ¥™=571(M) is elliptic with principal symbol [£|™~5~1; and WF'(R) C WEF'(A).
Let A_ € U—™Fst1()f) denote an elliptic parametrix of A, with I = A_A+ R, R €
W—°°(M). Fix an operator G € V(M) with WF'(I — G) "WF'(A) = (); in particular, G is
elliptic on WF/(A). We then have

2| Im(Pu, Au)| < 2| Im(G Pu, (R + A_A)Au)| + 2| Tm(Pu, (I — G*) Au)|

<IN GPul? + A Aul® + Clluly-x.

Let E € U9(M) be elliptic on WF'(E’). Plugging (8.41) into (8.40), we then get the
estimate

(8.41)

|Bullz2 < C(IGPull gre=msr + [|Bullszs + |Gull go-/2 + [ull g-v). (8.42)
If s —1/2 < —N, we simply estimate |Gu||gs-1/2 < Cllu||p-~, obtaining the desired
estimate (8.11). For s > —N + 1/2, we can control ||Gul|zs-1/2 inductively. Indeed, if
WF'(G) lies in an €271*I=2 neighborhood of WF’(A), one can control ||Gul|gs-1/2 by the
right hand side of (8.42) with E, G replaced by operators E, G elliptic on WF'(E), WF'(G)
and with operator wave front set in an €271*I=1 neighborhood of WF'(E), WF'(G). After
finitely many iterations, we thus obtain the desired estimate

1Bull 2 < C(IGPul| gro-msr + || Eull e + |[ull ) (8.43)
where E,G € ¥° with WF'(E) in a 3e-neighborhood of v(0), and WF'(G) in a 3e-

neighborhood of ([0, 1]). Starting out with € replaced by %e, we have the desired a priori
estimate.
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Remark 8.9 (A priori estimate). While these arguments required the a priori membership
u € C®(M) (or at least for u to have sufficiently high regularity), the estimate (8.43) is
highly non-trivial as an a priori estimate, as it gives quantitative control on the microlocal
H#-mass of u along ([0, 1]).

8.4. Positive commutator argument IV: regularization. We now regularize the ar-
gument so that v € H~N together with some microlocal regularity is sufficient. By an
inductive argument as above, we may moreover assume that WFs~1/ 2(u) is disjoint from
a 2e-neighborhood of ([0, 1]). The a priori assumption is that WF?(u) is disjoint from a
2e-neighborhood of v(0).

The regularization argument replaces a,b, e’ by symbols a,,b,, e}, r € (0, 1], of (much)
lower symbolic order, which converge to a,b, e’ as r — 0 (or rather, to a, b, ¢’ multiplied by
a cutoff which cuts away the singularity at £ = 0) in slightly weakened symbol classes. We
first deal with the symbolic construction.

For K > 1, define
or(t) = A +7rr) K2 re(0,1]. (8.44)

Thus, ¢.(|¢?) € S~K(T*M) is uniformly bounded in S%(T*M), and converges to ¢g = 1
in the topology of S®(T*M) for any § > 0. Note moreover that
rT

(1) = [ (D)en(r), () = ~(K/2)

so in particular |f,(7)| < K/2. With n € C*°(R), vanishing near 0 and identically 1 outside
[—1,1], we then define the regularized commutant

ar = ¢, (IE[*)n(l€]) - a
= o (€1%)n(1€]) - [ x(zn)xa (1) 29 (")

Thus, a, € L>((0, 1], S>~™+1(T*M)), and a, € S>~™H=K(T*M) for r > 0. In addition
to the terms in (8.36), the computation of Hpa, produces two extra terms: for H, falling
on ¢, we get a term involving

Hy(o:(16%) = fron(€5), Fr= (€2 HIEP) £ (161 (8.47)

note that n(|¢])f- € L>((0, 1], S°(T*M)) is uniformly bounded. When H, falls on 7(|¢]),
we get a symbol with compact support in &, which is hence of order —oo.

Using the notation of (8.32) and (8.35), we then compute

Hyay + prar = [€[*¢,(1€[*)n(1€]) (Hpa + p2a)
+ froe(1E)nENIE™ a + o (1€1°) (Hpn ([€]))a (8.48)

— _|§|2m—25—2a2 bz + 6;,

—

(8.45)

(8.46)

where
er = or(1E17) (n(I€]) - 21€1* x(21)x1 (20) X7 (20) () + (Hpn([€]))a),
by = [€]°V/ ér (I€15)n(IEDx1 (20)8(2") VX (21) (8.49)

X \/F(l +e—21)"2 = P2 = fr = S (IE2)n(IED X (z1)xa (1) ()2
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Since fr is uniformly bounded, the extra term fr here is harmless: choosing F' > 1 suffi-
ciently large makes the square root well-defined. Indeed, we have

by € L®((0,1],; S*(T*M)), €. € L>=((0,1],; S*(T*M)). (8.50)
Moreover, by construction, supp a,, supp b, and supp e, are contained in 2e-neighborhoods
of v([0, 1]) and ~(0), respectively.

The quantization of (8.49) requires a bit of care since we need more precision than that
afforded by a quantization which only respects principal symbols. Recalling the construction
in §5.6, we thus fix a linear continuous quantization map

Op: S™(T*M) — W™ (M) (8.51)

by Op(a) = Z(Z)Z Op(a;)¢;, where ¢; is a partition of unity on M subordinate to a cover

by coordinate systems, ¢; = 1 near supp ¢;, and a; € S™(R™;R™) is the local coordinate
expression for a. Thus, Op is a quantization map in the sense that ¢ (Op(a)) = [a] for
a € S™(T*M), and Op is surjective modulo W~°°(M). This definition also ensures that Op
is continuous, and WF’ o Op = ess supp.

Let then
Ar = Op(ar) € L((0, 1]; ¥~ H(M)),
B, = Op(b,) € L>((0,1],; T*(M)), (8.52)
E}. = Op(e}) € L2((0, 1,5 U (M)).
Letting A = Op({£)™=*~1), we then have
i[P, A;] +i(P* — P)A, = —(AA,)*(AA,) — B/ B, + E. + R,,
R, € L>=((0,1],, ¥**~Y(M)). (8.33)

The orders of A,, B, and E!, R, are lower by K and 2K, respectively, for r > 0. Thus, if
we take K large enough (depending on s and N), we can safely compute
2Im(Pu, Ayu) = ((i[P, Ay] + i(P* — P)A,)u,u)

8.54
= Al — Bl (B )+ (R (559

We need to show that the final two terms are uniformly bounded for r € (0,1]. The
crucial insight is that we have uniform control on A, etc. in the following sense:

Definition 8.10 (Uniform wave front set). Suppose A = {4,} € L>((0,1],; ¥V (M))
is a bounded family (for some N € R) of ps.d.o.s on M. Then o € S*M does not lie

in the uniform wave front set WF, (A) C S*M if and only if there exists an operator
B € W°(M), elliptic at «, such that BA, is bounded in ¥~=°°(M).

(This generalizes WF': if A, = A is r-independent, then WF’ (A) = WF/(A).) We
then have the following extension of microlocal elliptic regularity:

Lemma 8.11 (Uniform microlocal elliptic regularity). Let A = {A,} € L>((0, 1],; ¥"(M)).
Suppose B € WO(M) is such that WF«(A) C EIl(B). Let s, N € R. Then there ezists a
constant C' (independent of r) such that

lArull grs-m < C(I|Bullms + lull g-n). (8.55)
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Proof. Writing I = QB + R with Q, R € (M), WF'(R) N WF} « (A) = (), we have

Au = A,QBu + A, Ru. (8.56)
But A,Q € L*>*((0,1],; ¥™(M)) and A, R € L*°((0,1],; ¥~>°(M)) are uniformly bounded;
this implies (8.55) in view of the quantitative version of Corollary 4.34. O

By construction, we have WF o ({A,}) C esssuppa etc. Let us thus take G € WO(M),
elliptic near WF’ ({4, }) and with WF’(G) contained in a 2e-neighborhood of v([0, 1]), and
E € U°(M) elliptic near WF/ o ({ EL.}) and with WF'(E) contained in a 2e-neighborhood
of v(0); we then conclude that

(Bl u)] < C(IBullye + ull?y ),
(B, )] < CIGu 1+ ulfw).
Plugging this into (8.54) and arguing as in (8.41)—(8.42), we thus obtain a uniform estimate
1Brullrz < C(I1Eullms + |GPull gro—msr + | Gull go-iro + |[ull g-n). (8.58)

(8.57)

Since the unit ball in L? is compact, B,u has a weakly convergent subsequence with limit
v € L?. On the other hand, B,u — Bou in 2'(M); hence Bou = v € L?. Therefore,
WF?(u) NEl(By) = 0, proving microlocal H*-regularity of u at (1), and at the same time
giving an estimate for ||Bou| ;2 < liminf || Byul|;2 by the right hand side of (8.58).

The proof of Theorem 8.7 is complete.

Remark 8.12 (Generalization to operators on vector bundles). Theorems 8.5 and 8.7 also
hold for operators P € W™ (M;E) acting on sections of a vector bundle E, provided P
has a scalar, homogeneous principal symbol, see Definition 5.44. To extend the proof
to this case, one fixes an arbitrary smooth fiber inner product on F. The main change
is that the ‘subprincipal’ symbol p; is now endomorphism-valued, and hence so is p; €
C>°(S*M;End(7*E)). This is inconsequential however since the square root in (8.33) is still
well-defined (using the power series expansion for v/1 — S for S € End(E,) with ||S|| < 3).

8.5. Exercises.

Ezercise 8.1 (Hands-on propagation of singularities). Prove the following statements with-
out using any of the machinery developed in this section. We work on R” = R, x Rg_l
and study the equation D,u(z,y) = f(x,y).

(1) Write covectors as £ dx + ndy. Compute Char(D,).

(2) Suppose f € C*(R™). Show that WF(u) C Char(D,).

(3) Suppose f € C*(R"™) and (z,y,0,n7) € WF(u). Show that (x + s,y,0,7) € WF(u)
for all s.

(4) Let f € 2'(R") and (x,y,0,n7) € WF(u). Suppose that s; < 0 < sy are such that
(x+s,9,0,n) ¢ WE(f) for all s € (s1,s2). Show that (z + s,y,0,n7) € WF(u) for
s € (s1,82).

(5) Let u(z,y) = 1 for (z,y) € [0,1]? and u(z,y) = 0 otherwise. Compute WF(u) and
WEF(f) for f = D,u. Describe the wave front set of u over y = 1 and its relationship
to WE(f).

Ezercise 8.2 (Semiglobal propagation of regularity). Prove the estimate (8.11), in the strong
sense, given any three operators B,G, E € W?(M) whose Schwartz kernels supported in a
fixed compact subset of M x M and which satisfy the following two conditions:
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(1) WF'(B) C Ell(G),
(2) all backwards null-bicharacteristics of P starting from a point in WF'(B) N Char(P)
enter Ell(E) in finite time while remaining in Ell(G).

(Hint. Control u on WF'(B) \ Char(P) using elliptic estimates. Near Char(P) on the other
hand, exploit the localization properties of the specific operators B, G, F in Theorem 8.7
and piece together finitely many propagation estimates for such specific operators.)

Ezercise 8.3 (Keldysh equation). Suppose u € 2'(R?) solves the Keldysh equation
(xD2+ D)u = f € C*(R?). (8.59)
Assume that
WF(u) N N*{z = 0} = 0. (8.60)
Show that u € C°(R?). Show also that there exist solutions of the equation (8.59) which
are not smooth (and which thus necessarily violate (8.60)).

Ezercise 8.4 (Tricomi equation). Suppose u € 2'(R?) solves the Tricomi equation (D? +
:ED;)U = f € C®(R?). Assume that u = u(x,y) is smooth for x < —1. Show that

u € C®(R?).

Ezercise 8.5 (A simple system of equations). Suppose u € 2'(R?) satisfies xu € C®(R?)
and yu € C*(R?).

(1) Show that WF(u) C T4R? \ 0 = {(z,y,£m): (z,y) = (0,0), (&,7) # (0,0)}.
(2) Suppose that there exists o € TyR? \ o with a ¢ WF(u). Show that WF(u) = (.

9. PROPAGATION OF SINGULARITIES AT RADIAL POINTS

The propagation theorem proved in §8 is a general purpose tool for analyzing the regu-
larity of solutions of general linear PDE Pu = f when P € ¥ (M) has real homogeneous
principal symbol, assuming one has information on u somewhere to begin with. In par-
ticular, in view of the (necessary) a priori control assumption of microlocal regularity of u
(encoded by the term Eu in the estimate (8.11)), one cannot, in general, control u globally
only in terms of f.

What is needed for global control of u is the existence of a subset of phase space S*M
where one can get unconditional control of u. There are two main situations in which this
happens:

(1) initial value problems. Consider, as the simplest example, the forcing problem for
the wave equation on R",

{Du(t,x) =g(t,x), teR, x € R",

9.1
u(0,2) = Dyu(0,2) =0, z€R", (9.1)

and assume that ¢ > 1 on suppg. By Corollary 7.2, equation (9.1) has a unique
solution u, which is necessarily equal to 0 for ¢ < 1. A fortiori, v is smooth there,
and we can then analyze the regularity of u for later times using Theorem 8.5. This
gives more information than Corollary 7.2, since we can precisely study situations
where the forcing term g is smooth in some places but singular at others.

We remark that our discussion of hyperbolic evolution equations in §7 was based
on a product decomposition of R"*! into R; x R?, starting already with the function
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space we used for g in (7.2); this is a sensible setting for the study of the operator
D;—A(t) there, which is not a ps.d.o. in general, unless A(?) is a differential operator.
The wave operator in (9.1) can be analyzed both from this product perspective (§7)
and from the ‘spacetime’ perspective (§8) in which one simply views [J as an operator
0 e U2(R™H).
(2) radial points (or other degeneracies) of P.
Let us give a simple example of an operator with radial points. Let P = 2 € WO(R"),

R” = R, x Rg_l, be the multiplication operator, with principal symbol p(z,y,&,n) = x,
characteristic set

% := Char(P) = {(z,y,&,m): © =0, (§,1) # (0,0)} C T"R" \ o, (9-2)
and Hamiltonian vector field H, = —0¢. Suppose u € Z'(R") solves the ‘PDE’
Pu=zxu=feC*R"). (9.3)

Elliptic regularity (Proposition 6.27) or common sense imply that WF(u) C X. By the
propagation of singularities (Theorem 8.2), WF(u) is a union of maximally extended null-
bicharacteristics of P. Note that at (x,0,£,0) € ¥, H, = —0 is radial; the null-bichar-
acteristic remains in the half-line {(x,0,¢£,0): ¢ > 0}, hence the propagation theorem is
vacuous there. Let us thus define the following two sets of radial points:

Ri = {(0,4,€,0): =& >0} C . (9.4)
Now, the general solution of the PDE (9.3) is of the form
u(r,y) = ut (y)(z +i0) " +u_(y)(z — i0) ™ + a(z,y), (9.5)

where uy € Z'(R"™1), uy(y) +u—(y) = £(0,y) (note that us do not need to be smooth!),
and u € C*(R").

Proposition 9.1 (Multiplication by z). Suppose u € Z'(R"), zu = f € C®(R"), and
WEF (u) "Ry =0 for some sg > —%. Then WF(u) C R_. Moreover, WF*(u) =0 for all
s<—1.

Proof. The key observation is that (z £i0)~! € HE (R") if and only if s < —3. The as-
sumption thus implies that uy = 0; thus u_(y) = f(0,y) is smooth, and the first conclusion
follows from the fact that WF(uy(y)(z — i0)™') C R_, see Example 6.25. The second

conclusion then follows again from the fact that (z —i0)~! € ngg/%e(]R”) foralle >0. O

This can be broken down into a concatenation of three arguments:

(1) if WF*°(u) "Ry = 0, then WF(u) N R4 = 0, hence w is microlocally smooth in a
neighborhood of R4 ;

(2) by propagation of regularity, WF(u) C R_;

(3) if WF(u) is disjoint from a punctured neighborhood of R_, then u is microlocally
in H® at R_ for all s < —%.

Parts (1) and (3) are special cases of a general result on the propagation of singulari-
ties/regularity at radial points proved below. A key feature is that there is a threshold
regqularity: if the microlocal regularity of u exceeds a threshold (here —%) at Ry, then u
is microlocally smooth at R (provided f is) and we can propagate H® regularity out of
Ry for s > —%; on the other hand, one can conclude microlocal regularity of u below this
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threshold when propagating into R_. The first microlocal radial point estimate appeared
in the context of scattering theory on asymptotically Euclidean spaces in [Mel94] and takes
place in scattering Sobolev spaces (see Exercises 4.8-4.15). The version we present here
takes place in standard Sobolev spaces on precompact domains and originates in [Vas13];
see also [DZ19, Appendix E] for another presentation.

9.1. Intermezzo: radial compactification of phase space. We pause to describe a
convenient and intuitive point of view for understanding qualitative properties of null-
bicharacteristic flows.

Definition 9.2 (Radial compactification). The radial (or projective) compactification of
R” is the set R* = R® US" !, equipped with the structure of a manifold with boundary as
follows: writing 0 # 2 € R™ in polar coordinates as = rw, » > 0, w € S"~!, then

R = (R” U ([0, 00), x S”‘1)>/ ~, (9.6)

where R” 3 rw ~ (r~1,w). Thus, p~1(0) =2 S~ is the ‘sphere at infinity’, and R® C R™ is
the interior.

Remark 9.3 (Smooth functions on R"). We have C*°(R") = SY(R"): being smooth on

i cl
R™ precisely means having a Taylor expansion in p = r~! at p = 0. More generally,

SE(R™) = p~#C°(R™), in the sense that the space of restrictions of elements of p~#C°(R")

cl

is equal to S%(R").

Convenient local coordinates near R™ are projective coordinates: write x = (x1,...,x,),
and let us work in the subset of R” where z1 > emax(|z2|,...,|z,|). We then let
1 CCj
=—, ZTi:=—,j=2,...,n. 9.7
pri= oo B (9.7)
Then (p1,&2,...,4n) (with |2;] < €7!) is system of local coordinates on R™ which by

continuity extends to a local coordinate system
[0,00)p, X {(£2,...,dn): |25] <€, 1=2,...,n} (9.8)

on R”. Together with the standard coordinate system on R", such coordinate systems
(upon permuting indices and taking € > 0 small enough) cover R”.

Lemma 9.4 (Invertible linear maps and radial compactifications). Let A € GL(n,R). Then
matriz-vector multiplication R" > x — Az € R" extends, by continuity, to a diffeomorphism
A: R? — R,

Proof. This is an easy verification in projective coordinate systems. O

This lemma allows us to define radial compactifications of vector bundles:

Definition 9.5 (Radial compactification of vector bundles). Let E — M be a real rank k
vector bundle. Then the radial compactification £ — M is the fiber bundle obtained by
radially compactifying each fiber of E. (In local trivializations of E, the transition maps of
E are the continuous extensions of those of E using Lemma 9.4.)
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As microlocal analysts, we are interested in the radially compactified cotangent bundle

T*M — M. (9.9)
Note that for p € M, we can identify SyM with the sphere at infinity of TT;*M ; this embeds
S*M Cc T*M (9.10)

as a submanifold, called fiber infinity. We can now make the relationship between homo-
geneous vector fields and vector fields on S*M more precise.

Lemma 9.6 (Homogeneous vector fields and compactifications). Suppose V- € V(T*M \ o)
is homogeneous of degree 0. Then V extends by continuity to a smooth vector field

V e V(T*M \ o) (9.11)
which is tangent to S*M.
Proof. Indeed, in local coordinates (z1,...,2n,&1,...,&,) on T*M, this means that
V= a;j(2,£)0; + bir(z, £)&k0, (9.12)

j=1
where a;(x, \§) = a;(x,§) and bj(x, A§) = bjr(x,§) for all A > 0. Let us work in projective
coordinates

1 A § .
= =, = =, :2’...,71 913
P 3 & 3 J ( )
in & > emax(|&2],...,|&]). Then aj(z,§) = a;(x, (1,&2,...,&,)) is smooth down to p =0,

and so is b;. Moreover, 0, € V(T*M). Tt remains to compute for 2 < i,j < n:

10¢, = —pdp — Y &k,
K=

516&1 = 0

o . (9.14)
€0, = =Eip0, = > &ibw;
k=2
i, = é:iagj-
This proves the lemma. O

9.2. Radial point estimates: a simple example. In the coordinates used in (9.2),
consider again the equation Pu := zu = f and the Hamiltonian vector field H,, = —0;. In
projective coordinates

-1 ~_ N
(p:f 17 ﬁ:g), £>€|77|’ (915)
let us rescale this to the homogeneous degree 0 vector field
V =¢H, = —£0c = p0, + 105, p>0, [f <e . (9.16)

Restricting this to a vector field on S*R", the first term disappears, and we see that H,
being radial means that V|g«gn vanishes on

OR+ :={(z,y,p,n): =0, n =0} C S*R", (9.17)
the boundary of R (from (9.4)) at fiber infinity.
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In our quest to prove microlocal estimates at OR  via positive commutators, we therefore
need to make use of the first summand in (9.16): we need to exploit that V' has non-trivial
behavior in the fiber-radial direction, that is, it acts non-trivially on differential weights
p~ % = £%. Concretely, consider a commutant

a = p (i), (9.18)

where ¢ € C°(R) is identically 1 near 0, and satisfies z¢)’(z) < 0 for all z € R. Then, in
our projective coordinate system (9.15), we have

Hpa = pVa = p~ > (=(2s + 1)9(7) + 7' (7)) (9-19)

Thus, when s > —%, both summands have the same (indefinite) sign (namely, they are
< 0). Moreover, crucially, the first summand is elliptic at OR,. Thus, quantizing the
calculation (9.19) as in §8, we can write

i[P,A]=-B*B+R, RcU¥»!1 s> —%, (9.20)
with B € U* elliptic at 0R.. Ultimately, this gives an estimate for ||Bul|z2, thus a mi-
crolocal H® estimate of u at OR ., without any a priori control. Notice on the other hand
that the ‘positivity’ (meaning: the ‘good’ sign, so negativity...) of the first term in (9.19)
is delicate and limited; thus, error terms from the regularization argument can only be
absorbed when the amount of regularization is limited, which will be the reason for an a
priori regularity assumption at IR 4.

Conversely, if s < —%, then the two terms in (9.19) have opposite signs, but the first
summand is still elliptic at ORy. Thus, assuming H?® control of u on the support of
the second summand (which is contained in a punctured neighborhood of OR. ), we can
conclude H® regularity of u at OR4. (The situation at OR_ is completely analogous of
course.)

9.3. Radial point estimates: general setup. We now set up the general theorem on
the propagation of singularities/regularity at (generalized) radial points.

Thus, suppose P € W'(M) is a classical operator with real homogeneous principal
symbol p.'? Fix an elliptic symbol 0 # p € Sc_ll(T*M) and let
pi=p"peC®(T*M\ o), H,:=p"  H,cV(T*M\ o). (9.21)
Suppose that
R C Char(P) (9.22)

is a smooth submanifold to which ﬁp is tangent. Suppose that dp # 0 in a neighborhood
of R in S*M. For the sake of definiteness, we assume that R is a source for the Hp-flow,
in the following precise sense:

(1) Suppose p1,; € C*(S*M), j =1,...,k, define R inside Char(P), in the sense that
R={p=0, P11 =" "= PLEk = 0}, (9.23)

191t suffices to assume that P € U™ (M), with real homogeneous principal symbol. The only change
is that in equation (9.27) below, B € S° is not necessarily smooth on T*M; what enters in the threshold
quantities in Theorems 9.8 and 9.9 below is then the supremum or infimum of B, whichever gives the stronger
requirement.



108 PETER HINTZ

and dp11, ..., dp1 are linearly independent at R. Let
k
pL=>_ i (9.24)
j=1

which is a ‘quadratic defining function’ of R. Since ﬁp is tangent to R, the deriva-

tives Hpp1 ; vanish at R, hence f{ppl vanishes quadratically at R. We then assume
that there exists a positive function 0 < 51 € C*°(S*M) such that

H,p1 = Bip1 + Fr + F3, (9.25)

where Fy > 0, and F3 vanishes cubically at R. (Thus, R is a source for the ﬁp—ﬂow
within Char(P) C S*M since |F3| < C,O:l))/Q < %51/)1 near R, so I:Ippl > %ﬂlpl; cf.
the behavior in the 7-variables in (9.16).)

(2) We have
Hpp = Bop,  Bolr > 0. (9.26)

Note that since pr is tangent to S*M, flpp vanishes there, hence is of the stated
form with 8y € C°°(T*M) near R. (The assumption (9.26) implies that R is a
source for the Hy-flow also in the fiber-radial direction.)

The subprincipal part of P at R now plays a significant role, too:?’
(3) Let p1 := 0™ (55 (P — P*)) and p; := p™ p;. Define B € C®(S8*M) near R by

P = BopB. (9.27)

Remark 9.7 (Choices). Condition (1) is independent of choices, and the positivity of 3o
in (9.26) does not depend on the choice of p in the case that H, vanishes at R; in general,

when H,, is only tangent to R, the choice of p does matter (but only through the derivative
taken in (9.26), not through the rescaling in (9.21).

We state the main result of this section in two forms, one qualitative (analogous to
Theorem 8.5), one quantitative (analogous to Theorem 8.7).

Theorem 9.8 (Microlocal regularity at radial sets: qualitative statement). Let P and
R C Char(P) C S*M be as above. Let u € 9'(M), Pu= f.

(1) (Propagation out of the radial set.) Let s, sg € R, and suppose that s > sg > mTfleB
on R. IfWF*°(u) "R =0 and WF"™ L (f)NR =0, then WF*(u) N R = 0.

(2) (Propagation into the radial set.) Let s € R, and suppose s < m2—1 +B onR. If
WF*(u) is disjoint from a punctured neighborhood of R, and if WES~™ L f)NR =0,
then WF*(u) "R = (.

The quantitative version (and also slightly more global, though the difference can be
bridged using the propagation estimates of Exercise 8.2) is the following:

20For a simple example, consider P = 2D, — A € ¥!(R). Then Pu =0 e.g. for u = mﬁ?, suggesting that
the threshold regularity at the radial sets TgR \ o is % — Im X (which is the Sobolev regularity which z**
barely fails to have). And indeed, 3 —ImA = - (P — P*) is the skew-adjoint part of P. (Any additional
terms of even lower order do not contribute to the threshold regularity.)
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Theorem 9.9 (Microlocal regularity at radial sets, quantitative statement). Let P and
R C Char(P) C S*M be as above. Let u € P'(M), Pu= f.

(1) (Propagation out of R.) Let B,G € W°(M) be such that
(a) WF/(B) C Ell(G);
(b) Ell(G) contains a neighborhood of R;
(¢) all backward null-bicharacteristics of P from WF'(B)NChar(P) tend to R (that
is, p1 tends to 0 along them) while remaining in EIl(G).
Then for all s,s9, N € R such that s > sg > mT_l + B on R, there exists C > 0 such
that if WF*°(u) "R = (), then

|1Bullszs < C(|GPullge—msr + 1l jr-n).- (9.282)

This estimate does not hold in the usual strong sense. However, if B € WO(M) is
elliptic at R, then the estimate

|Bullze < C(IGPullpromes + [ Bulleo + lull ) (9.28D)

does hold in the strong sense that if all quantities on the right are finite, then so is
the left hand side, and the estimate holds.
(2) (Propagation into R.) Let B,G, E € $°(M) be such that
(a) WF'(B) C EIl(G);
(b) all forward null-bicharacteristics of P from WF'(B) N Char(P) are either con-
tained in R, or enter EIl(E) in finite time, all while remaining in El(G).
Then for all s, N € R such that s < mTfl + B on R, there exists C > 0 such that

| Bu||gs < C(HGPUHHS*W%FI + || Eul| s + ||UHH7N) (9.29)

This estimate holds in the usual strong sense.

The proof will require a secondary regularization argument, which will use the following
lemma:

Lemma 9.10 (Strong convergence of ps.d.o.s). Suppose A. € L*((0,1]¢; ¥™) is uniformly
bounded, and Ac — A in W™ qs e — 0, for alln > 0. Then A, converges strongly to A
in L(H®; HS=™); that is, for any u € H®, we have Acu — Au in H*~™ as e — 0.

Proof. If uw € HT!, then we certainly have Acu — Au in H*~™. Given v € H® and p > 0,
choose v’ € H*! with ||u — u/||gs < p. Let then ¢y > 0 such that for € € (0, ¢p), we have
|Acu' — AY|| gs—m < p. Then for such e,

[Aeu — Aullpro-m < [Ac(u — )| grs-m + [[Act” = AU || g + [|A(u — @) || -

9.30
<Cp+p+Cp, (6.30)

where C' = sup || Ac|| z(gs, rs—m)- O

Proof of Theorems 9.8 and 9.9. We follow the steps of the positive commutator argument
in §§8.2-8.4.

e Construction of the commutant for part (1). With p asin (9.21), the quadratic defining
function of R, p1, as in (9.24)—(9.25), and the defining function of fiber infinity, p, as used
in (9.26), we set

@ i= Bl (5) ()2 (0.31)
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Here, ¢ € C°(R;[0,1]), #(0) = 1, so ¢(p) localizes near Char(P); and ¢ € C2°(]0, o0); [0, 1])
is 1 near 0 (so 1(p1) localizes further near R) and satisfies /=" € C*°([0,00)). (The
latter assumption only requires a bit of thought near the boundary of supp ¥. Taking 1 to
be a variant of e~/ H(z) there does the job.) Write

Hpp = qp, q=p " Hpp", (9-32)
where ¢ is smooth near R. We then compute the symbol of i[P, A] + i(P* — P)A =

i[P, A] + 28552 A to be

Hpa + 2pra = p~ ™ (Hya + 2p1a)
= 57 (Bo(=2s +m — 1+ 2B)6(5) " (1)’
+ 2(Hpp1)¢(5)* 1 (p1) 9 (p1)
+ 2056/ (5) () (p1)? ).
When the support of ¢ and ¢ is sufficiently small, the terms in the parenthesis here play
the following roles:

(9.33)

(1) the first is elliptic (and negative) at R under the assumptions on s;
(2) the second is non-positive as well, and has essential support contained in a punctured
neighborhood of R;
(3) the third is supported away from Char(P), hence can be dealt with using elliptic
regularity.
At this point, one can already prove the estimate (9.28a) as in §8.3; we leave this to the
reader.
e Regularization of commutant for part (1). We regularize our commutant a as in §8.4,

see equations (8.44)—(8.45), though with slightly different notation. Thus, let now K > 0
and r > 0, and put

-1
or(p) = A +rp )% pdi(p) = fr(p)or(p),  fr(p) = K#m_laﬁm (9.34)

so ¢, € L>((0,1],; 8%), and ¢, € S~ for r > 0. We then let
ar == ¢r(p)®a € L=((0,1]; S, (9.35)

and compute
Hyar + 210, = p~26,(0)(Bo(~25 +m = 1+ 2B + 2£,)9(5) 4 (p1)?
+ 2(Hpp1)$(p)*Y' (p1)¥(p1) (9-36)
+ 2356 (OB (1)?).
Note that since 0 < f, < K, the amount K of regularization we can do is limited when

propagating out of the radial set R: in order to ensure that the first term is negative at R,
we need s — K > mT_l + B, restricting K. Fix such K > 0. For § > 0 chosen so small that

still s — K — 560_1 > mT_l + 3 on R, we then write
Hpa, + 2p1a, = —26p* 2 2q2 — p2 — bi,, + hyp, (9.37)
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where

b, = p—s¢T(p)¢(5)¢(pl)\/ﬁo(2$ — (m = 1428+ 2f + 2585 6, (p)?6(5)*¥(p1)?)),

bir = o0 (0) () —2(Hpp1 ¥ (o)1),
he = 2p” 2 . (0)%30 (B) P (P)Y (p1)°-

(9.38)

Thus, by, b1, € L>((0,1];5%) and h, € L>=((0,1],,5?~™), with orders reduced by K, K,
and 2K, respectively, for r > 0.

e Quantization of the symbol calculation; conclusion of the proof of part (1). Let A, =
Op(ar), B, = Op(b,), Bi, = Op(bi,), and H, = Op(h,), using a full quantization as
in (8.51). Put A = Op(p*~™*!). Then (9.37) and (9.38) imply

i[P, A,] +i(P* — P)A, = —25(AA,)*(AA,) — B:B, — B{,Bi, + H,P+R,,  (9.39)

where R, € L>((0,1],; ¥~ 1), with WF,  ({R,}) C esssuppa.

Now, recall that we are assuming WE* (u)NR = 0; let B € U0 be elliptic at R and such
that Bu € H®°. Fix K > 0 such that
S
mT+ﬂ<s—K<so, (9.40)
and choose the support of our cutoffs so small that esssuppa C El(B). Since A, €
Y2s—mH1=2K — g2so—m+l for - > 0, we have A,u € H~0t™~1 We want to compute

2 Im(Pu, A,u) = i((Pu, Ayu) — (Ayu, Pu))

= ((i[P, A,] +i(P* — P)A,)u,u). (9.41)

All terms make sense individually using Lemma 6.34 (since WF*0~™+1(Py)NWF'(A,) = ()
and since the operator in the second line lies in U2%°). However, the integration by parts
needs to be justified, since for general u € H?®°, one only has Pu € H® ™", which is
in general insufficient to justify the integration by parts. This is easily accomplished by
inserting yet another regularizer, J. € L°°((0,1]¢; ¥?), with J. = J* € ¥~ for € > 0, and
Je = I in the topology of W n > 0, and using Lemma 9.10. Namely,

(Pu, Ayu) — (Aru, Pu) = lirr(l)((Pu, JeAru) — (Ayu, J.Pu))

€E—>

im((A,J.P — P*J A, )u, u)
—0
i_%((Je(ATP — P*Ay)u,u) + (([Ar, JJP — [P*, J A, )u,u))
(

=1
=1
= (A, P — P* A, )u, ).

(9.42)
Note here that [A,, J¢] is uniformly bounded (in € € (0,1], for » > 0 fized) in W2s0—™

and converges to 0 in W20=™m+1 5 > (0 hence [A,, JJPu — 0 in H*°, and therefore
([Ar, J]Pu,u) — 0 as € — 0; likewise, ([P*, J|A,u,u) — 0 as e — 0 for fixed r > 0.

We proceed to rewrite the right hand side of the pairing (9.41) by plugging in (9.39). Let
G € VY WF'(I - G)NWF}«({A,}) = 0. Then the Peter-Paul inequality and Lemma 8.11
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give the estimate
1Brull3a + | Busulia + 28 Al
< 26)| Apu||Fy—ssme1 + 6 |G Pul|Fs—min (9.43)
+[(Pu, Hyu)| + C(|Gullfep + llullfr-n)

for an r-independent constant C. The first term in the last line can be estimated (using

WF o ({H,}) NWF'(I - G) =0) by
|(Pu, H,yu)| < C’(HGPUH%,S,W+1 | Hyu|)oims + ”UH%VN)
< C(IGPulf3emsr + |Gull3pems + ull3-n);

recall that H, € L*((0,1]; ¥?~™). Combined with (9.43), and an iterative argument
(improving the regularity by 1/2 in each step) as usual, we finally obtain the uniform
estimate

(9.44)

|Brull sz < C(IGPuUllgs-ms + lul gr-x)- (9.45)

(Recall that our proof of this estimate requires that Bue H .) Asin §8.4, we thus conclude
that Bou € L?, in particular WF*(u) "R = (), together with an estimate of || Bou||z2 by the
right hand side of (9.45). This proves the estimate (9.28a).

e Modifications for part (2). The propagation of microlocal regularity into a radial point
uses the same commutant; now the degree K of regularization is arbitrary. Indeed, in the
calculation (9.36), the first term (which is the main term, elliptic at R) is now positive (and
only gets more positive with more regularization), and thus has the opposite sign of the
second term. One thus now writes

Hpa, + 2p1a, = 26p°5 2" 202 4+ b2 — b%r + hyp, (9.46)
where by, h, are as in (9.38), and

b= 000 (IS () Bo( =25+ 1 — 1+ 26+ 2, — 2665 00 () (520 (p1)?).
(9.47)

Upon quantizing this, we get a uniform estimate
IBrullz < C(|GPul gre—m+r + | Bryull 2 + |Gull o172 + ullg-~)- (9.48)

Thus, we now have an a priori control term || By ,u|z2: it is uniformly bounded if WF?®(u)
is disjoint from a punctured neighborhood of R. (Note that WF’ . (B1,) is some small
positive distance away from R, hence this appears stronger than merely assuming B gu €
L% but from Bjgu € L?, one can conclude that WF*(u) is disjoint from a punctured
neighborhood of R using the propagation of regularity, Theorem 8.5.) The study of the
limit 7 — 0 thus gives Bou € L?, hence WF*(u) N R = (), and (after an iterative argument
improving the regularity by 1/2 at each step) the uniform estimate

IBoullr2 < C(IGPull grs=msr + | Eull = + |lull gr-~) (9.49)
for £ € U0 with EIl(E) D WF, o ({B1.})- a

Remark 9.11 (Bundles). Paralleling Remark 8.12, we point out that Theorems 9.8 and 9.9
apply also to ps.d.o.s P € U} (M; E) acting between sections of vector bundles, provided
P has a real scalar principal symbol. Now, a subprincipal term of P modifies the threshold
regularity; and in fact the mere definition of 3 in equation (9.27) requires the choice of a

fiber inner product on E. Thus, in applications, one typically needs to choose this fiber
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inner product carefully in order to obtain the strongest possible conclusions under the
weakest possible assumptions in these theorems. (Note that this is still a purely symbolic
calculation, hence straightforward, even if occasionally a bit lengthy in practice.)

10. ASYMPTOTIC BEHAVIOR OF LINEAR WAVES ON DE SITTER SPACE

We now show, following [Vas13] (see also [Zwo16]) how the tools developed so far can
be used for a description of the precise asymptotic (late time) behavior of solutions of
wave equations on spacetimes of interest in general relativity. Concretely, we shall consider
de Sitter space, or rather a subset of it called the static patch (or static model) of de Sitter
space (M, g) which is a solution of Einstein’s vacuum equation with cosmological constant
A >0,

Ric(g) + Ag = 0, (10.1)
where Ric denotes the Ricci curvature of g.

We first give a quick introduction to Lorentzian metrics and wave equations in §10.1
before studying the wave equation on static de Sitter space in §§10.2-10.3.

10.1. Lorentzian geometry and wave operators.

Definition 10.1 (Lorentzian manifold). Let M be an n-dimensional manifold, n > 2. Let
g € C®(M;S?T*M), so g, = g(p), p € M, is a bilinear form on 7, M depending smoothly
on p. Then g is a Lorentzian metric if g, has signature (1,n — 1) (sometimes written
(+,—,...,—)) for all p. We call (M, g) a Lorentzian manifold.

This means that at any p € M, there exists a basis Vi,...,V,, of T,,M such that
g(Vi,\1) =1 g(V;, Vi) = -1, j=2,....m 9(Vi, Vj) =0, i # j. (10.2)

Since a Lorentzian metric g is a non-degenerate bilinear form on 7T,M, it induces an
isomorphism T,M — Ty M via V + gp(V,—). Thus, g induces a signature (1,n — 1)
bilinear form on 7,y M, denoted G' or g1 € C®(M;S?TM) and called the dual metric.

Ezample 10.2. Let M = R™ = R; x R?1. Then the Minkowski metric on M is

n—1
g=dt’ = > dal. (10.3)
j=1
The dual metric is . .
2 2
G=0]-) 02 =0,®0,— »_ 0s; ® s, (10.4)
j=1 j=1

so for instance G(dt,dt) = 1.
Definition 10.3 (Tangent vectors in spacetimes). Let (M, g) be a Lorentzian manifold.

(1) Let p € M. Then we say that a tangent vector V € T, M is
o timelike if g,(V,V) > 0,
e spacelike if g,(V,V) <0,
e null or lightlike if g,(V,V) = 0.
Likewise, one can classify covectors ¢ € Ty M as timelike, spacelike, or null, depend-
ing on the sign of G,(¢, ¢).
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(2) Let S € M be a smooth hypersurface. Then S is spacelike if for all p € S and
¢ € N*S\ o, the covector ( is timelike.

Physically, massive observers (like myself) travel along timelike curves in M (curves with
timelike tangent vectors), and massless particles (think of photons) travel along lightlike
curves.

Ezample 10.4. In the notation of Example 10.2, the vector 9; +v10;, is timelike iff |v;| < 1,
null iff |v1| = 1, and spacelike iff |v1| > 1. The hypersurface {t = 0} is spacelike; indeed,
its conormal bundle is spanned by dt, which is timelike. More generally, for v € R?~!, the
hypersurface {t = v -z} is spacelike if and only if |v| < 1.

Note that the set of timelike vectors is a solid cone with the vertex removed, thus has two
connected components. A continuous choice of one of them is called a time orientation of
(M, g). This does not exist in general. If it does, there exists a smooth timelike vector field
V on M; we then say that a timelike/null vector W is future timelike/null if g(V, W) > 0.
(In particular, V' is future timelike.)

Given a Lorentzian manifold (M, g), we define the wave operator O, € Diff*(M) by
the same formula as the Laplace operator on a Riemannian manifold: in local coordinates
(21,---,2n) on M, we write g;j = g(0z,,0-,), g¥ = G(dz;,dz;), and |g| = | det(g;;)|; then

n
Ogu =Y |g|""/*D.,(|9]"*¢" D-,u). (10.5)
ij=1
Its principal symbol is the dual metric function

G(Q) = 0*([O)(C) = D 976¢ = Kz, ¢ eTyM. (10.6)
ij=1
Thus, the characteristic set Char(Ody) = {¢ € T*M \ o: G(¢) = 0} consists of all lightlike
covectors.

Remark 10.5 (Null-bicharacteristic and null geodesics). Integral curves of H,, are the lift to
T*M of geodesics of (M, g). Recall that for a geodesic v: I C R — M, the squared length
9r(s) (Y (8),7/(s)) is constant; we then call a geodesic with squared length 0 (i.e. 7'(s) is null
for all s) a null-geodesic. Correspondingly, singularities of solutions of the wave equation
Ogyu = f propagate along null-geodesics inside of Char([y).

Definition 10.6 (Wave-type operators). Let E — M be a vector bundle over the Lorentzian
manifold (M, g). We say that P € Diff>(M; E) is a wave-type operator if P is principally
scalar with 02(P) = G, where G(¢) = g~ 1(¢, () is the dual metric function.

Typical examples include the scalar wave operator [,, or the tensor wave operator
—try V2, or modifications of such operators by first and zeroth order terms.

We record here an existence and uniqueness statement for the wave equation whose proof
we omit.

Proposition 10.7 (Solvability of forward problems). Let P € Diff*(M; E) be a wave-type
operator on a Lorentzian manifold (M,g). Suppose t € C>®(M) is a timelike function,
i.e. dt is everywhere timelike. Suppose 2 C M is a domain with spacelike boundary, and
suppose Qo = QN t71([0,00)) is compact. Then, given any f € C®(Q; E) such that
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supp f C {t > 0}, there exists a unique v € C*(; E) with suppu C {t > 0} such that
Pu=fin Q.

This for example applies to wave-type operators on Minkowski space (Example 10.2)
for domains Q = {t < F(z)}, where F € C®°(R"™1) satisfies |F’(z)| < 1 for all z, and
F(xz) — —oo when |z| — oo. By a simple approximation argument, one can also take
functions like F'(z) = 1 — ¢|x| when ¢ < 1.

10.2. Waves on the static model of de Sitter space. From now on, we shall work on
a particular 3-dimensional Lorentzian manifold. (This can all be generalized significantly,
of course, but we stick to a concrete setting for simplicity of presentation.)

Definition 10.8 (de Sitter space). We define 3-dimensional de Sitter space (M, g) by
M =Ry x {z € R?: |z| < 2},

10.7
g:=(1—|z[)dt? + (At ® (z - dz) + (z - dz) @ dt) — da?, (10.)
where we write = - de = x1 dzy + 22 dzs, and da? = dx% + dx%.
It is easier to work with polar coordinates (r,#) on R?, in which
g=(1—7rH)dt* + (At @rdr+rdr®dt) —dr® — r*dé?, 108)

G=g'=04+ (0, @r0 +70, @) — (1 — %)% — r203.
We note a few features of this spacetime:

(1) g is stationary, that is, Ly,g = 0, or more prosaically: the coefficients of g are
t-independent.

(2) dt is timelike (since |dt|% =1 > 0), so the level sets t71(¢y), to € R, are spacelike;
we declare dt to be future timelike;

(3) for any ro > 1, the level set 7~ 1(rg) is spacelike (since |dr|% = —(1 —r3) < 0), and
G(dr,dt) =19 > 0, so dt and dr are both future timelike;

(4) the hypersurface

HY=r"1(1) (10.9)

is null (meaning dr is null there). It is called the cosmological horizon.

Thus, the geometry of (M, g) is quite interesting: consider a point p € M with r(p) > 1,
and a future timelike or null vector V' € T, M, ¢ := g,(V,—) € TyM. Then Vr = dr(V) =
Gp(dr,¢) > 0. Therefore, any physical observer or light particle travels even further away
from = 1. On the other hand, if 7(p) < 1, there are no such restrictions.

An application of Proposition 10.7 (with © a smoothed out version of {(t,z) € M: ¢ <
T, |z| < R} for R € (1,2) and any T > 0) implies that the wave equation Ogu = f € C*>(M)
with supp f C t71([0,00)) has a unique solution u € C®(M) with suppu C t~1([0, 00)).
(This is true more generally for wave-type operators on (M, g).) Our aim is to describe the
asymptotic behavior of u(t,z) as t — oo.

We denote the spatial slices of M by
X = {z e R%: |2] < 2}, (10.10)
which can be identified with ¢t~1(to) for any ¢y € R.
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Theorem 10.9 (Resonance expansion for waves on de Sitter space). Let P € Diff?(M) be
a wave-type operator on (M, g) with t-independent coefficients, that is, [0y, P] = 0. Then
there exists a sequence of numbers (called resonances) o; € C with Imo; — —oo, and
finite-dimensional spaces (of (generalized) resonant states R; C C*°(M) Nker P consisting

of functions of the form ZZJ:_Ol e"ittkhay (), ap € C®(X), such that the following holds.
Let f € C*(M), supp f C t71([0,0)), and let u € C*°(M) denote the unique solution of
Pu=f, suppuC t (]0,00)). (10.11)

Let a € R be such that —Imo; # o for all j. Then there exist u; € R; and a constant
C > 0 such that fort >0

u(t,) = > uy(t) +alt, x), a(t, z)| < Ce . (10.12)

Imo;>—a

That is, modulo an error decaying at any fived exponential rate o, u(t, ) is equal to a finite
sum of terms of the form e~ "ittka;(z) with ajr € C(X).

Note that |e=t| = e )t which decays when Ima; < 0.

Remark 10.10 (Comparison with waves on compact manifolds). Compare this with the
description of linear waves on a compact Riemannian manifold (X, h), i.e. solutions u of
(D? — Ap)u = f € C®°(R; x X): they can be expanded in eigenfunctions ¢;, Ap¢; = A?gf)j,
AjeER,sou= Z;’;O(aﬁeikﬂ + a;j_e~it). All frequencies here are real, so this is a sum
of oscillating, but non-decaying terms. A strong manifestation of the lack of decay is that
[ 10su(t, 2)|* + |0pu(t, z)|* dz is conserved (t-independent).

Morally speaking, the reason for the decay (modulo finitely many terms) of u in Theo-
rem 10.9 is that waves can cross H+, and once they have done so, they continue travelling
outwards and leave our (incomplete) spacetime M. The numbers o; in Theorem 10.9 are
the replacement for eigenvalues in the system of interest here were energy can ‘leak’ out,
and the spaces R; of generalized resonant states are the replacements of eigenspaces. (In
particular, just like eigenvalues, the resonances o; cannot be computed explicitly except in
very special situations.)

Remark 10.11 (Explicit formulas for resonances). For the wave operator P = [, the
resonances are o; = —ij, j € No, and k; = 1 for j = 0,1, while k; = 2 for j > 2. For the
Klein-Gordon operator P = [, —m?, the resonances are —i+iv/1 —m2—iNp. (See [Vas10]
and [HV18, Appendix C], the latter also including a calculation for a wave-type operator
acting on symmetric 2-tensors, though in 3 4+ 1 dimensions.)

Remark 10.12 (Wave type operators on stationary vector bundles). If £ — X is a vector
bundle which, via 7: M > (t,z) — z € X, lifts to a ‘stationary’ vector bundle £ :=
™ FE — M, then Theorem 10.9 remains valid for wave-type operators P € Diff2(M i E)
with ¢-independent coefficients. (This is a well-defined notion since sections of £ can be
invariantly differentiated with respect to t.) In this case, the resonant states are elements of
C*>®(X; E). Examples include the wave operator on differential forms or symmetric 2-tensors
(or other tensor bundles).

For the most part, we shall only sketch the proof of Theorem 10.9; we provide details for
the most interesting (and conceptually central) part of the argument. To begin with, it is
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not hard to show an exponential bound for u: there exists Cyp > 0 such that
lu(t, z)] < Coe®®t, t>0. (10.13)

(This follows from the stationarity and linearity of P by a simple energy estimate. Morally,
we can see this as follows: we have Pu = 0 for ¢t > tg > 1 since f has compact support;
the estimate (10.13) then follows from an estimate of the energy E(t) := [[u(t, )| g2(x) +
|0ru(t, z)|| g1 (x) of the form E(t +1) < CE(t) for a constant C' which, by stationarity, can
be taken to be t-independent.)

The strategy of the proof is to use spectral theory after taking the Fourier transform in ¢

with a sign change relative to our previous convention, for C()IlSiStelle with the literature):
g g p ’
letting

(o, x) :—/eiatu(t,x) dt, (10.14)
R

and likewise f(o, ), (formally) taking the Fourier transform of (10.11) gives

~ ~

P(o)u(o) = f(o), (10.15)

where the operator P(o) € Diff?(X) is obtained from P = P(x, Dy, D,.) by replacing D; by
—0, S0
P(0) = P(z,—0, Dy). (10.16)
Since the leading order part of the wave-type operator P is D?+2D;r D, —(1—r%)D?—r=2 Dy,
the leading order part of —P(c) is (1 — r?)D2 + r=2D3; near r = 0, this is close to the
Laplacian on R?, and indeed it is elliptic for » < 1, but at r = 1 it degenerates, and it
becomes a hyperbolic operator in r > 1 (with r taking the role of a ‘time function’ there).
Now, since u(t,z) = 0 for ¢ < 0, the bound (10.13) implies that u(co, z) is well-defined for
Imo > Cp; moreover, it implies that all resonances o; satisfy Imo; < Cy. For f(o,x), the
situation is even better: since f has compact support in ¢, f (o,z) € C*°(X) is holomorphic
in the full complex plane o € C.

Thus, the equation (10.15) holds true for Imo > Cy. Suppose now we can invert P(o)
(on C*°(X), or suitable Sobolev spaces) for such o; then

(o, z) = P(o) " f(o,2), (10.17)
and we therefore have
u(t,z) = (2m) 71 / et P(o) " f(o, x) do. (10.18)
Imo=Cp+1

We shall prove is that P(c)~! is a meromorphic family of operators on C®(X); the
connection to Theorem 10.9 will then be:

(1) the resonances o; are then the poles of P(a)~!;

(2) the integer k; + 1 is the order of the pole at o = 0.
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Indeed, in the expression (10.18), we use Cauchy’s theorem to shift the integration con-
tour from Imo = Cp + 1 to Imo = —a, giving

u(t,z) = > (21) 7 Reso—y, (e P(0) 7! (o, 1))

Imo;>—a

(10.19)
+ (2m) 7! / e ' P(o) " f(o, x) do.
Imo=—a
In the case k; = 0 and P(o) = (o — ;)" 1Py + holomorphic, we have
Resy=o; et P(0) " (o, x) = e 9P (f (o). (10.20)

Thus, in this case, R; = {e "i'a(z): a(z) € ran Pi}; the case of higher order poles is
similar. The second term in (10.19) is the remainder (¢, z) in the notation of Theorem 10.9;
note that the integrand is pointwise bounded by e~

Remark 10.13 (Contour shifting). Justifying (10.19) uses that P(c)~' f(o, ) has suitable
decay as |Reo| — oo with Imo € [—a, Cy + 1]. Operator norm bounds on P(c)~! for such
o are called high energy estimates, which can be proved by methods from semiclassical
microlocal analysis. Moreover, such estimates imply that there are only finitely many
resonances in any strip |[Imo| < C, C € R.

Remark 10.14 (Black hole spacetimes). The arguments sketched here can be used to de-
scribe in a similar manner linear and even nonlinear waves on black hole spacetimes such
as Schwarzschild—de Sitter and Kerr—de Sitter black holes. For the high energy estimates
(briefly mentioned below), one needs an additional ingredient to deal with trapping effects.
See for instance [Vas13, WZ11, Dyall, HV18], and references therein.

1

The only statement we shall prove here in detail is that P(c)~! is meromorphic (on

suitable function spaces).

10.3. Analysis of the spectral family ]5(0'). We begin by defining the relevant function
spaces:

Definition 10.15 (Extendible and supported distributions). Suppose M is a manifold,
and X C M is open. Let s € R, and let F(M) denote a space of distributions on M, such
as F(M)=2'(M) or F(M) = H{ .(M). We then define the space

loc
F(X):={u|lx:ue F(M)} (10.21)
of restrictions to X its elements are called extendible distributions. We also define
F(X):={u: ue F(M), suppu C X}. (10.22)

Its elements are called supported distributions.

Note that the kernel of F(M) 3 u — u|x € F(X) is F(M \ X); hence we have
F(X)= F(M)/F(M\ X). (10.23)
Recall from (10.10) that P(c) is an operator on the spatial slice X = {|z| < 2} C R2.
Taking F = H*®(R?) gives the function spaces
H*(X), H*(X); (10.24)



MICROLOCAL ANALYSIS 119

we have P(c): H*(X) — H5"2(X) and H*(X) — H‘ifz()i(). Note that H5(X) is a closed
subspace of H*(R?). In view of (10.23), the space H*(X) also carries the structure of a
Hilbert space. Note moreover that C*°(X) = C>®(X) C H*(X) and C*°(X) C H*(X) are
dense.

Lemma 10.16 (Duality between extendible and supported Sobolev spaces). The L? pairing
C®(X) x C*(X) > (u,v) = (u,v) = [uvdx € C extends by continuity to a pairing

H*(X)x H*(X) — C. (10.25)
It has the property that H*(X) 3 u > (u,—) € (H~*(X))* is an isomorphism.

One says that H—*(X) is the dual space of H*(X) relative to L?(X).

Proof of Lemma 10.16. We have (u,v) = 0 for u € Ce(R?\ X) and v € C>®°(X), hence this
holds also for v € H*(R?\ X) and v € H—*(X). By (10.23), the pairing (10.25) is therefore
well-defined.

For the final claim, note that if v € H*(X) is such that (u,v) = 0 for all v € H—*(X),
write u = | x, 4 € H*(R?) and conclude that supp % C R?\ X, therefore u = 0. Conversely,
given ¢ € (H—*(X))*, use Hahn Banach to extend ¢ to a continuous linear functional
¢ € H*(R?); then £(v) = (@, v) for some @& € H*(R?), and setting u := @|x completes the
proof. O

Given P € Diff?(M) as in Theorem 10.9, there exists a constant 3 € R (explicitly
computable and given in the course of the proof) such that the following holds:

Theorem 10.17 (Fredholm property of the spectral family). For s € R, define the function
space

X% :={ue HX): P(0O)uc H1(X)}. (10.26)
Let o € R. Then, for s > %—i—B—I—a,
P(o): X° - H*Y(X), o¢€C, Imo > —a, (10.27)
18 a Fredholm operator. Moreover,
ker P(0) N X C C®(X), (10.28)
and ranys P(0) ¢ H"1(X) is the annihilator of
ker P(o)* N H—*t(X) ¢ HY/>Btmo—e vy g (10.29)
Note that P(c) — P(0) € Diff'(X), hence P(o) indeed maps X* — H*1(X). In the

final statement, P(0)* is the formal adjoint defined by (P(0)*u,v) = (u, P(c)v) for u,v €
C(X); it is easy to see that

N

P(o)* = P*(5). (10.30)
We prove this theorem below; first, we explain why it is so useful.

Lemma 10.18 (Invertibility of the spectral family when Imo > 1). For Imo > 1,
P(o): X% — H*1(X) is invertible.
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Proof (sketch). An element u € ker P(0)NC™(X) gives rise to a solution U (¢, z) = e "tu(x)
of PU = 0. In view of the estimate (10.13), we must have U = 0 when Im o > Cj, hence
u = 0. Therefore, P(0) is injective for large Imo.

Dually, if v € ker P(0)*, then P*V = 0 for V(t,z) = e“v(z). Since v = 0 for r > 1
(which follows from the fact that v, extended by 0 beyond X, solves the hyperbolic equation

A

P(o)*v =0in r > 1), we have V = 0 for r > 1 as well. Moreover, for Imo > 1, v lies in
H'. One can then again use an energy estimate (for P* and ‘from ¢ = 0o’) to show that
there exists C'1 € R such that V =0 when Im o > C7, hence v = 0. By Theorem 10.9, this
implies that P(o) is surjective. O
Corollary 10.19 (Meromorphic extension). For a € R, s > % + B +a, Imo > —a as in
Theorem 10.9, the family ]5(0): X% — H"Y(X) is a family of Fredholm operators of index
0. Its inverse extends from Imo > 1 to a finite-meromorphic family

P(o)™t: H7Y(X) — H*(X). (10.31)

The first part is clear since the index of a continuous family of Fredholm operators is
constant. For the second part, we use the following terminology:

Definition 10.20 (Finite-meromorphic functions). Let X,Y denote two Banach spaces.
Let © C C be an open set. Then we say that B(c): X — Y, o € Q, is finite-meromorphic
if there exists a discrete subset D = {01, 09,...} C Q such that:
(1) B(o) is holomorphic on Q \ D;
(2) near o, there exists k; € N such that
k;
B(o) = (0 —0;) "Bji + By(0), (10.32)
k=1
where Bj(a): X — Y is holomorphic near o = 0, and Bjp: X =Y, 1<k < kj, is
a finite rank operator.

Corollary 10.19 is then an immediate consequence of:

Proposition 10.21 (Analytic Fredholm Theorem). Let X,Y be Banach spaces, let ) C
C be open and connected, and suppose A(c): X — Y, o € Q, is an analytic family of
Fredholm operators. Then either A(c) is not invertible for any o € 0, or A(o)~! is finite-
meromorphic.

Proof. Suppose the (open) set Q' C Q of o for which A(o) is invertible is non-empty; then
A(o) has index 0 for o € €, hence for all o € €.

If QO # Q, let o9 € QN OQY. Consider A(op): X — Y. Let Xy = ker A(0p) and
Ry = ran A(op); pick closed subspaces X1 C X and Y, C Y with

X=X18Xs, Y=Y 0Y. (10.33)
Since ind A(op) = 0, dim Xy = dimY> = N < oco. We write A(o) as a block matrix in the

decomposition (10.33),
A(o) = (];((g; gg) : (10.34)
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where P(og): X1 — Y) is invertible, and @, S, T = 0 at ¢ = 9. Thus, P(0): X; — Y is
invertible for | — og| < € for some € > 0; by the Schur complement formula (block-wise
inversion of A(c)), A(o) is invertible for |0 — og| < € if and only if

Z(0) :=T(o) — S(o)P(0)'Q(0): X3 — Yy (10.35)
is invertible; in this case, we have
_ Pl prlQz-lsp~t —plQz!
Alo)™! = ( B Z—l%p—l 291 . (10.36)

But Z(o) is a holomorphic N x N matriz near g, and invertible for some o arbitrarily
close to og. Hence, fixing a basis of Xy and Y3, its determinant det Z(o) is a non-zero
holomorphic function which vanishes at ¢ = o¢; hence det Z(o)~! is meromorphic, and so
is Z(0)~!. Therefore, A(c) is invertible in a punctured neighborhood of 0. The conclusion
is now immediate from (10.36). O

Returning to the main calculation (10.19) in our sketch of the proof of Theorem 10.9, this
justifies (modulo control for large |Reo|) the contour shifting and the use of the residue
theorem.

Now, Theorem 10.9 will be an easy consequence of the following result:

Proposition 10.22 (Fredholm estimates for the spectral family). We have the following
Fredholm estimates for P(o):

(1) Let s > sp > % + B —Imo. Then there exists C > 0 such that for u € X*,

lull s x) < CUIP@)ull o1 x) + lull o (x))s (10.37)

this holds in the strong sense that if all quantities on the right hand side are finite,
then so is the left hand side, and the inequality holds.
(2) Define, analogously to X*, the space

yotbi— v e H5TY(X): P(o)*v e H*(X)} (10.38)

Let N € R and s > % + B —Imo. Then there exists C > 0 such that for all
v E y—s—i—l}

1ol gr—ss1 2y < CUPO) 0l sy + 10 g5 (10.39)

this holds in the strong sense.

Proof of Theorem 10.9 assuming Proposition 10.22. The estimate (10.37) together with the
compactness of the inclusion H*(X) < H*(X) (exercise!) imply that dim ker s (x) P(o) <
00, and that ranys P(o) € H*'(X) is closed. Moreover, since (10.37) holds in the strong
sense, it implies that if P(o)u = 0, then we can take s arbitrary and obtain u € C*(X).

On the other hand, the estimate (10.39) implies dim K < co where
K :=kery g P(0)" < oo (10.40)

Again, since (10.39) holds in the strong sense, we see that P(o)*v = 0 implies v €
H/2-F+mo—e(X) for all € > 0.
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Finally, let f € H5"!(X) be such that (f,v) = 0 for all v € K. We claim that there
exists u € H*(X) such that

Ployu= f e H7YX). (10.41)
(This implies that ran P(o) has finite codimension, thus finishing the proof.) This solvability
follows by a general argument from the (almost) injectivity (10.39) of the adjoint operator.

First of all, fix a closed complementary subspace L C H ~5(X) of K; then a simple
argument by contradiction shows that there exists a constant C’ such that

[0l gos1 5y < CNP@) 0l o5y, v EL (10.42)

Therefore, we have |(v, f)| < ||f’(a)*vHH_S(X) for v € L. Writing a general element v €
H‘S“(X) as v = vy +v2, v1 € L, v9 € K, we have

(0, 1)1 = o1, ) S 12O 01l e ) = 1B 0l - (10.43)
Using Hahn-Banach, the (thus well-defined and bounded) functional
H*(X)3 P(o) v (v, f), veY st (10.44)

can be extended to an element of (H~*(X))*, which is represented by an element v € H*(X)
by Lemma 10.16. In particular, for all v € C°(X),
(. f) = (P(0)"v,u) = (v, P(o)u), (10.45)

which implies P(o)u = f, as desired. O

The proof of Proposition 10.22 will, of course, be microlocal. Thus, we need to analyze
the characteristic set and null-bicharacteristic flow of P(c). Recall the form (10.8) of the
dual metric G of de Sitter space; writing covectors on X = {|z| < 2} in polar coordinates
inr=|z|#0as

&dr 4+ ndb, (10.46)
we therefore have
p(r,0,6,1) = 0*(P(0)) = —(1 = r*)g? —r 20’ (10.47)
We denote the characteristic set of P(c) by
Yi=p0)CcT*X \o. (10.48)
Polar coordinates break down at r = 0, one can easily calculate in standard coordi-

nates (z1,72) on R? (namely: by computing the form of the dual metric of (10.7)) that
p(z1,m2,&1,&) = —(1 — 22)€3 — (1 — 23)€3 — 21179€1 &2, Which is clearly elliptic for (21, z2)
near (0,0).

Lemma 10.23 (Properties of the characteristic set). ¥ is a smooth conic submanifold of
T*X \ o, and r > 1 on 3. It has two connected components,

S=S,U%_, Sp={(r6&n) €N £&>0} (10.49)

Proof. Certainly, p = 0 requires r > 1 in view of (10.47). Furthermore, suppose ¢ € X is a
point at which r > 1, p = 0; we need to show dp # 0. If we assume the contrary, dp = 0,
then d,p = —2r~2n = 0 implies n = 0. Then 0 = p = —(1 — r?)&? implies £ = 0 (and thus
we are the zero section, hence outside of X) unless r = 1. If r = 1 and £ # 0, however, we
have 0 = 0,p = 2ré? # 0, a contradiction.
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The final claim follows immediately from (10.47). O

In fact, since p is homogeneous, we have ¥_ = —¥_. Moreover, the (—H))-flow in ¥_
is the mirror image (multiplication by —1 in the fibers of 7% X) of the Hy,-flow on ¥,. We
thus only study the properties of the Hp-flow in 3.

Note now that €71 is elliptic and positive near ¥ ; let us thus work with projective
coordinates

Lo n
=2 = . 10.50
p ¢ n ¢ ( )
We can then identify ¥, with its boundary at fiber infinity inside T* X,
Sy ={(r0,0): * =r*(1-r?)} (10.51)

(Forgetting about the f-variable, this thus looks like a parabola in (r,7) with vertex at
r=1.)

Next, we compute the Hamiltonian vector field H, = —2(1 — r2)£0, — 2r—2n0p — 2(r&% +
r731?)9¢ and its rescaling

Hy =& Hy = —2(1 = 1%)9, — 2r 270 + 2(r + r37?)(pd, + 105), (10.52)
which on ¥ takes the form
Hy, = —2(1 —1%)d, — 2r 270 + 2r*(p0, + 10;). (10.53)
Its only critical points are at r = 1, 77 = 0. We have thus identified the radial set
Ry ={(r=10,n=0)}C ¥, CS*X. (10.54)

Lemma 10.24 (Dynamics of the null-bicharacteristic flow). Let s — ~(s) € X4 be a
null-bicharacteristic, i.e. an integral curve of H,, with v(0) ¢ R4. Then:

(1) in the backward direction, v(s) tends to R4 as s — —oo;
(2) in the forward direction, y(s) crosses r = 2 in finite time (in the direction of in-
creasing ).

Proof. We have r > 1 at (0). Note then that Hy,r = 2(r? — 1) > 0; thus, r o y(s) is

monotonically increasing in the forward direction, and indeed H,r > 2(r(v(0))? — 1) for

s > 0. This implies the second statement. On the other hand, as s = —o0, r(y(s)) — 0; in

view of (10.51), this implies y(s) — R4 indeed. O
Thus, the only interesting place is R.

Lemma 10.25 (Dynamics of the null-bicharacteristic flow near the radial set). R4 is a
source for the Hy-flow inside of T*X . For p as in (10.50), we have

Bo:=p tHyp=2 atRy (10.55)
(cf. the definition (9.26)). Moreover, we have

B(o) = By le 1ol (W) —f—Imo (10.56)

at Ry for some (o-independent) B € C°(Ry) (cf. the definition (9.27)).
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Proof. The calculation of 5y is trivial, and shows that R, is a source in the fiber-radial
direction. Next, the function p; = 72 is a quadratic defining function for R inside of 3,
and we have H,p; = 4r~1p;.

For the calculation of 3(c), note that by inspection of (10.8), we have
P(0) = P(0) 4+ 0(—=2rD, + Ry) + 0R; (10.57)

near r = 1, where Ry, Ry € C(X) are lower order terms, and P(0) € Diff?(X) has real
principal symbol. Thus,

o1 (P(a);f(a)*) =0 (W) —2(Imo)ré. (10.58)

This implies (10.56). O

Equipped with this dynamical information, and the calculation (10.56), we are now in a
position to prove Proposition 10.22.

Proof of Proposition 10.22. e Proof of the estimate (10.37). The idea is to piece together
radial point estimates, real principal type propagation estimates, and microlocal elliptic
regularity to control u solving

Ployu= f e HYX). (10.59)
For clarity and simplicity, we shall not use the semiglobal results (such as Theorems 9.9
and 8.7), but rather work step by step.
For 0 < 0 < 1, let
Xs=A{lz| <2-46} C X; (10.60)
we assume all Schwartz kernels below to have compact support in X5 x Xj. For s > so >
% + B —1Imo, and for B € U0 elliptic near R, Theorem 9.9 gives the estimate
[Bullrs < (1 f [l grs=r + llull 220, (10.61)

in the strong sense. (We may replace f by Gf, where G € ¥° microlocalizes near WF'(B).)
By Lemma 10.24, the H®-regularity of u can now be propagated to all of the characteristic
set over Xs by means of Theorem 8.7; thus, for By € UV elliptic near ¥, N .S* X5, we have
(for any fixed N € R)

1Byulls S |1 Bullas + [ fll a1 + llull g~

(10.62)
SNl rrs=2 + Ml mso-

The same estimate holds, by the same reasoning, for B_ € W0 elliptic near ¥_ N S* Xj;.

On the other hand, for By € W0 elliptic near S*X; \ (Ell(B,) U Ell(B_)), microlocal
elliptic regularity (Proposition 6.28, or really the quantitative form (6.44)) gives

[Boullars S N fllms—2 + l[ull -~ (10.63)
But Ell(By) UElN(B_) UEl(B4) D S*X;. Fix cutoffs
X € C°(X5), x =1 on Xos, X €C(X), x =1 on Xg; (10.64)

we have then proved

Ixullzs S XS =+ IXullzso S 1F s + Xl mso- (10.65)
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This gives an estimate of [|u|[gs(x,), but with an error term (the last term on the right)
which is measured on a larger set than w itself (but in a weaker norm as far as the degree
of differentiability is concerned), as is typical for any microlocal estimate. To bridge the
gap, we use that in r > 1, P(o) is a hyperbolic operator (equal to (r? — 1)D? — r=2D2 to
leading order, so r becomes the ‘time’ function); note then that if

¢ €C*(Xas5), ¢ =1 on X, (10.66)
then for
= (1— ¢)u, (10.67)
which is supported in r > 2 — 39, we have
Ploya=f, [:=01-0¢)f~[Plo) ¢lu, (10.68)

and the forcing f € H51(X), with 7 > 2 — 38 on supp f, satisfies the estimate

1l o1y S M as-2cx) + Ixullzs S 1F s + Ixull o (10.69)

in view of (10.65). We claim that the unique solution @ (subject to the support condition)
of (10.68) satisfies the estimate

17l 7+ ) S 11l 1 x0)- (10.70)

One way to prove this estimate is the following: using (a slight extension of) the uniqueness
and existence theory for hyperbolic equations developed in §7, @ can be estimated on X in
some space of distributions by the norm of f on X using that @ vanishes, hence is smooth,
in r < 2 — 39, the propagation of regularity implies that @ € Hj (X). This is almost
what we are after, except for the loss of uniform control right at 9X (which is a completely
artificial place!); to fix this, one proceeds as follows:

(1) one extends f to an element of H*~! on a slightly enlarged domain X_s, and so
that the H*~1(X_s)-norm of the extension is bounded by, say, 2 x Hngsq(X);

(2) one then solves (10.68) on X_s, getting u € H}} (X_5) by the arguments described
just now;

(3) finally, one restricts back to X, giving & € H*(X) and the estimate (10.70) plus an
extra term ||| A-N(x_j) coming from the use of microlocal propagation estimates;

the latter term however is bounded by some (weak) norm of f by the results of §7.
Putting (10.65) together with (10.69), (10.70), and writing v = xu + (1 — x)u = xu +
(1 — x)u, we find
lull s xy S Wl as—1x) + lullgso(x)s (10.71)
as desired.
e Proof of the estimate (10.39). We study the equation

P(o)v=he H*X). (10.72)

The arguments near X are now slightly easier, as we are working with supported dis-
tributions which vanish on R? \ X. Thus, letting x, ¥, ¢ be as in (10.64) and (10.66), we
have

10 =00l sy S 10 = Sl - (10.73)
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But this H—**!-control of v for 2 — § < r < 2 can be propagated along ¥ N S%kr>1}X' A

simple calculation shows that the threshold regularity at R for P(o0) is $—B(0) (i-e. there
is a sign switch); since —s + 1 < % — B(0), we can thus propagate H 5T!-regularity of v
into R+. We thus control v microlocally near the full characteristic set ¥; away from 3,
we have microlocal H *T2-estimates on v by microlocal elliptic regularity. Altogether, the

microlocal estimates give
Ixvllg=s+1 S XA = 4+ [[(1 =)0l f-ss1 %) + (X0l - (10.74)

(The first term on the right is the forcing term of the equation (10.72), the second term is
the a priori control term needed for real principal type propagation estimates, and the last
the term is the usual weak error term in microlocal estimates.) Combined with (10.73), we
obtain the estimate

ol sy S Il + 1ol gy (10.75)
as desired. The proof is complete. O

We end this section with a general observation which is of critical importance when
studying perturbations of linear operators or nonlinear PDE (the two being closely related):
the microlocal estimates used above (elliptic regularity, real principal type propagation,
radial point estimates) are stable under perturbations. Let us explain this ingredient by
ingredient for a family of operators P(a) € U™ depending continuously on a parameter
a € A (where A is a normed vector space), |a| < 1. For example, in the notation above,

A

the reader may take P(0) = P(o) for some fixed o, and P(a) is any perturbation of this.

(1) (Elliptic estimates.) Suppose B, G € WY are such that WF'(B) c Ell(G)NEI(P(0)).
Then there exist €, C such that for |a| < €, we have the uniform estimate

|Bullgs < CIGP(a)ull gro—m + [lull ) (10.76)

(for any fixed N € R), cf. (6.44). This follows from the fact that ellipticity is an
open condition, hence the microlocal parametrix construction for P(a) on WF'(B)
can be performed with uniform control of the ps.d.o. seminorms of all operators
arising in the construction.

(2) (Real principal type propagation.) The flow of the Hamiltonian vector field Hy, )
of P(a) depends continuously on the parameter a. In particular, if the assumptions
on the microlocalizers B, G, E in Theorem 8.7 hold for the operator P(0), then
they hold for P(a) as well when a is small, for the same microlocalizers. We claim
that the estimate (8.11) (with s, N fixed) holds uniformly for small a. The robust
way to prove this (which does not involve straightening out Hp,) in a manner
that is continuous in a) is to take the commutant used in the positive commutator
argument for the operator P(0), and run the argument with the same commutant:
this works since positivity is an open condition, hence any square roots we took,
and any symbols which were elliptic in the arguments for P(0), will remain elliptic
for P(a) as well.

(3) (Radial point estimates.) Even if P(0) has a radial set satisfying the hypotheses
in §9.3, this is general not true anymore for P(a). However, fixing microlocalizers
as in any of the two parts of Theorem 9.9 when applied to P(0), the quantitative
estimates (9.28a), (9.28b), (9.29) (with s, sg, N fixed) continue to hold for P(a) when
a is sufficiently small, with uniform constants C. This is again due to the stability
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of the positive commutator arguments under perturbations: the same commutant
that was used for P(0) can be used for P(a) as well.

REFERENCES

Johannes J. Duistermaat and Lars Hormander. Fourier integral operators. II. Acta Mathematica,
128(1):183-269, 1972.

Semyon Dyatlov. Exponential energy decay for Kerr—de Sitter black holes beyond event horizons.
Mathematical Research Letters, 18(5):1023-1035, 2011.

Semyon Dyatlov and Maciej Zworski. Mathematical theory of scattering resonances, volume 200 of
Graduate Studies in Mathematics. American Mathematical Society, 2019.

Alain Grigis and Johannes Sjostrand. Microlocal analysis for differential operators: an introduc-
tion, volume 196. Cambridge University Press, 1994.

On the existence and the regularity of solutions of linear pseudodifferential equations. Enseigne-
ment Math., 2(17):99-163, 1971.

Lars Hérmander. Fourier integral operators. I. Acta mathematica, 127(1):79-183, 1971.

Lars Hormander. The analysis of linear partial differential operators. I. Classics in Mathematics.
Springer-Verlag, Berlin, 2003.

Lars Hormander. The analysis of linear partial differential operators. 1I. Classics in Mathematics.
Springer-Verlag, Berlin, 2005.

Lars Hérmander. The analysis of linear partial differential operators. I1I. Classics in Mathematics.
Springer, Berlin, 2007.

Lars Hérmander. The analysis of linear partial differential operators. IV. Classics in Mathematics.
Springer-Verlag, Berlin, 2009.

Peter Hintz and Andrés Vasy. The global non-linear stability of the Kerr—de Sitter family of black
holes. Acta mathematica, 220:1-206, 2018.

Richard B. Melrose. Spectral and scattering theory for the Laplacian on asymptotically Euclidian
spaces. In Spectral and scattering theory (Sanda, 1992), volume 161 of Lecture Notes in Pure and
Appl. Math., pages 85—130. Dekker, New York, 1994.

Richard B. Melrose. Introduction to microlocal analysis. Lecture notes from courses taught at MIT,
2007.

Michael Reed and Barry Simon. Methods of modern mathematical physics. I. Functional analysis.
Academic Press, New York-London, 1972.

Michael E. Taylor. Partial differential equations II. Qualitative studies of linear equations, volume
116 of Applied Mathematical Sciences. Springer, New York, second edition, 2011.

Andrés Vasy. The wave equation on asymptotically de Sitter-like spaces. Advances in Mathematics,
223(1):49-97, 2010.

Andrés Vasy. Microlocal analysis of asymptotically hyperbolic and Kerr—de Sitter spaces (with an
appendix by Semyon Dyatlov). Invent. Math., 194(2):381-513, 2013.

Andrés Vasy. A minicourse on microlocal analysis for wave propagation. In Thierry Daudé, Dietrich
Héfner, and Jean-Philippe Nicolas, editors, Asymptotic Analysis in General Relativity, volume 443
of London Mathematical Society Lecture Note Series, pages 219-373. Cambridge University Press,
2018.

Jared Wunsch. Microlocal analysis and evolution equations: lecture notes from 2008 CMI/ETH
summer school. In Fvolution equations, volume 17 of Clay Math. Proc., pages 1-72. Amer. Math.
Soc., Providence, RI, 2013.

Jared Wunsch and Maciej Zworski. Resolvent estimates for normally hyperbolic trapped sets.
Annales Henri Poincaré, 12(7):1349-1385, 2011.

Maciej Zworski. Resonances for asymptotically hyperbolic manifolds: Vasy’s method revisited. J.
Spectr. Theory, 2016(6):1087-1114, 2016.

DEPARTMENT OF MATHEMATICS, ETH ZURICH, RAMISTRASSE 101, 8092 ZURICH, SWITZERLAND

Email address: peter.hintz@math.ethz.ch



	1. Introduction
	Acknowledgments

	2. Schwartz functions and tempered distributions
	2.1. Fourier transform and its inverse
	2.2. Sobolev spaces and the Schwartz representation theorem
	2.3. The Schwartz kernel theorem
	2.4. Differential operators
	2.5. Exercises

	3. Symbols
	3.1. Ellipticity
	3.2. Classical symbols
	3.3. Asymptotic summation
	3.4. Exercises

	4. Pseudodifferential operators
	4.1. Left/right reduction, adjoints
	4.2. Topology on spaces of pseudodifferential operators
	4.3. Composition
	4.4. Principal symbols
	4.5. Classical operators
	4.6. Elliptic parametrix
	4.7. Boundedness on Sobolev spaces
	4.8. Exercises

	5. Pseudodifferential operators on manifolds
	5.1. Local coordinate invariance
	5.2. Manifolds, vector bundles, densities
	5.3. Differential operators on manifolds
	5.4. Definition of the space of pseudodifferential operators on a manifold
	5.5. Principal symbol
	5.6. Quantization
	5.7. Operators acting on sections of vector bundles
	5.8. Special classes of operators
	5.9. Elliptic operators on compact manifolds, Fredholm theory
	5.10. Sobolev spaces on manifolds
	5.11. Elliptic operators on compact manifolds, revisited
	5.12. A simple nonlinear example
	5.13. Commutators and symplectic geometry
	5.14. Exercises

	6. Microlocalization
	6.1. Operator wave front set
	6.2. Elliptic set, characteristic set
	6.3. Wave front set of distributions
	6.4. Pairings, products, restrictions
	6.5. Exercises

	7. Hyperbolic evolution equations
	7.1. Existence and uniqueness
	7.2. Egorov's theorem; propagation of singularities
	7.3. Exercises

	8. Real principal type propagation of singularities
	8.1. Positive commutator argument I: sketch
	8.2. Positive commutator argument II: construction of the commutant
	8.3. Positive commutator argument III: a priori estimate
	8.4. Positive commutator argument IV: regularization
	8.5. Exercises

	9. Propagation of singularities at radial points
	9.1. Intermezzo: radial compactification of phase space
	9.2. Radial point estimates: a simple example
	9.3. Radial point estimates: general setup

	10. Asymptotic behavior of linear waves on de Sitter space
	10.1. Lorentzian geometry and wave operators
	10.2. Waves on the static model of de Sitter space
	10.3. Analysis of the spectral family

	References

