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PETER HINTZ

Abstract. We present a detailed construction of parametrices for fully elliptic uniformly
degenerate differential or pseudodifferential operators on manifolds X with boundary.
Following the original work by Mazzeo–Melrose on the 0-calculus, the parametrices are
shown to have (polyhomogeneous) conormal Schwartz kernels on the 0-double space, which
is a resolution of X2. The extended 0-double space introduced by Lauter plays a useful
role in the construction.

1. Introduction

In this note, we present complete details for the construction of elliptic parametrices in the
0-calculus. The reader is assumed to have some basic familiarity with blow-up constructions
and polyhomogeneous conormal distributions; we refer the reader to [Mel92, Gri01, Mel96],
[Maz91, §2A], and further references throughout the paper for the relevant background.

Let n ≥ 1, and let X be a smooth n-dimensional manifold with boundary ∂X 6= ∅.
Following Mazzeo–Melrose [MM87], the Lie algebra of uniformly degenerate vector fields
(or 0-vector fields) is defined as

V0(X) := {V ∈ V(X) : V = 0 at ∂X},
where V(X) = C∞(X;TX) is the space of smooth vector fields. In local coordinates x ≥ 0
and y ∈ Rn−1 near a point in ∂X, 0-vector fields are linear combinations of x∂x and x∂yj
(j = 1, . . . , n − 1) with smooth coefficients. For m ∈ N, the space Diffm0 (X) of uniformly
degenerate differential operators consists of all m-th order operators which are locally finite
sums of up to m-fold compositions of 0-vector fields; in local coordinates, P ∈ Diffm0 (X)
thus takes the form

P =
∑

j+|α|≤m

pjα(x, y)(xDx)j(xDy)
α

with smooth pjα.

The spectral family ∆Hn − λ, λ ∈ C, of the Laplace operator on the Poincaré disc
model of hyperbolic n-space Hn is an example of an elliptic element of Diff2

0(X) where X
is the closed unit ball (the conformal compactification of the Poincaré disc). Indeed, in
suitable local coordinates x ≥ 0, y ∈ Rn−1 corresponding to the upper half plane model of
hyperbolic space, one has ∆Hn − λ = (xDx)2 + i(n− 1)xDx +

∑n−1
j=1 (xDyj )

2 − λ. Writing

λ = ζ(n − 1 − ζ), Mazzeo–Melrose [MM87] study the meromorphic continuation of the
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resolvent (∆g−ζ(n−1−ζ))−1 in ζ from Re ζ � 1 for asymptotically hyperbolic metrics g on
compact manifolds X with boundary; these are suitable variable coefficient generalizations
of the exact hyperbolic metric. The core of [MM87] is the development of a calculus of
0-pseudodifferential operators in which rather precise approximate parametrices (or exact
inverses if they exist) of the spectral family can be constructed.

The spectral family of asymptotically hyperbolic Laplacians features prominently in re-
cent works on the asymptotic behavior of solutions of the wave equation on spacetimes
equipped with suitable asymptotically Minkowskian metrics, such as the Lorentzian scat-
tering metrics of [BVW15, BVW18]. Roughly speaking, when foliating the cone t > r in an

asymptotically Minkowski spacetime by the hyperboloidal level sets of s = (t2− r2)1/2, the
wave operator is, approximately, conformally related to the wave operator on the hyper-
bolic space obtained by restricting a rescaling of the spacetime metric to s = s0 and letting
s0 ↗∞. On exact (n+ 1)-dimensional Minkowski space, the wave operator is indeed equal
to s−2(−(sDs)

2 + i(n − 1)sDs + ∆Hn). Upon passing to the Mellin transform in s, the
properties of the spectral family (in particular the location of its resonances) determine the
asymptotic behavior of waves in the forward light cone. In the works [BVW15, BVW18],
a direct analysis of the asymptotically hyperbolic resolvent can be avoided since the space-
times of interest have a global approximate dilation-invariance in (t, r), including near the
light cone t = r. On the other hand, on asymptotically flat spacetimes that arise in the con-
text of Einstein’s vacuum equations in general relativity, dilation-invariance fails near the
light cone, and a direct analysis of a hyperbolic resolvent becomes necessary when studying
wave asymptotics in t > r. In [HV20], following [Vas13, Vas14], this was accomplished,
in the context of a carefully designed (near the light cone) wave equation on symmetric
2-tensors, via an extension across the conformal boundary; see [Zwo16], [DZ19, §5], and
[Zwo17, §3] for detailed accounts of this procedure, and for some historical context of scat-
tering theory on (asymptotically) hyperbolic manifolds. The present note arose out of the
desire to relax the requirements on the wave equation near the light cone, in which case an
extension across the boundary can no longer be performed; this is used in ongoing work on
the analysis of the Einstein equation on asymptotically flat spacetimes, including Kerr and
Schwarzschild spacetimes.

In this paper, we revisit the construction of parametrices for arbitrary fully elliptic 0-
(pseudo-)differential operators; these notions will be defined below. Elements of the con-
struction of parametrices for edge differential operators—which generalize 0-differential
operators—were given by Mazzeo [Maz91]. As we will discuss below, Albin [Alb08] de-
scribed the 0-pseudodifferential case in some detail, and Lauter [Lau03] constructed rough
parametrices in this generality as well. The detailed construction of a parametrix with
a polyhomogeneous conormal Schwartz kernel in the present note requires a number of
technical ingredients which appear here for the first time.

We now return to the general setup. The space V0(X) is equal to the space C∞(X; 0TX)
of smooth sections of the 0-tangent bundle 0TX → X; in local coordinates x ≥ 0, y ∈ Rn−1

as above, a local frame for 0TX is given by the vector fields x∂x, x∂yj (j = 1, . . . , n − 1).

Denote by 0ΩαX → X the corresponding bundle of α-densities, with local frame given by

|dxx
dy
xn−1 |α = |dxx

dy1···dyn−1

xn−1 |α.
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With diag∂X = {(p, p) : p ∈ ∂X} ⊂ X denoting the boundary diagonal, the 0-double
space is defined as the real blow-up

X2
0 := [X2; diag∂X ].

The boundary hypersurfaces of X2
0 are denoted lb (the lift of ∂X × X), rb (the lift of

X×∂X) and ff (the front face). The lift of the diagonal diagX ⊂ X to X2
0 is the 0-diagonal

diag0 := diagX \diag∂X ⊂ X2
0 ;

it is a p-submanifold, i.e. given in suitable local coordinates on X2
0 by the vanishing of

a subset of the coordinates. (See [Maz91, §2A] and [Mel96, §1.7] for further details on
p-submanifolds.) See Figure 1.1.

yx′

x

diag0

lb

rb

ff

Figure 1.1. The 0-double space X2
0 in a local coordinate chart x, y, x′, y′

with y′ fixed and suppressed, see also the notation in §2.2. The boundary
diagonal which was blown up here is (x, y, x′, y′) = (0, y′, 0, y′).

Schwartz kernels of 0-vector fields, or more generally of elements of Diffm0 (X), lift to
distributional right densities on X2

0 which are conormal to diag0 smoothly (up to a weight
factor) down to ff0; in fact, they are sums of differentiated δ-distributions supported at
diag0. Conversely, any such distribution is the Schwartz kernel of a 0-differential operator,
as follows from the fact that the lift of V0(X) to the left factor of X2 and then to X2

0 is
transversal to diag0, see [MM87, (4.15)]. This fact also implies that one can identify

N∗ diag0
∼= 0T ∗X. (1.1)

Definition 1.1 (0-pseudodifferential operators). Define the kernel density bundle

KD0 := π∗L(0Ω
1
2X)⊗ π∗R(0Ω

1
2X), (1.2)

where πL and πR : X2
0 → X are the lifts of the left and right projections (p, q) 7→ p and

(p, q) 7→ q. Then the space of 0-pseudodifferential operators (acting on 0-1
2 -densities, i.e.

uniformly degenerate 1
2 -densities, on X) is defined on the level of Schwartz kernels as

Ψm
0 (X; 0Ω

1
2X) := {κ ∈ Im(X2

0 ,diag0; KD0) : κ ≡ 0 at lb ∪ rb}.

Here, ‘≡ 0’ means vanishing in Taylor series, and Im is the space of conormal distributions
of order m.



4 PETER HINTZ

In view of (1.1), the principal symbol map for 0-ps.d.o.s fits into the short exact sequence1

0→ Ψm−1
0 (X; 0Ω

1
2X) ↪→ Ψm

0 (X; 0Ω
1
2X)

0σm−−→ (Sm/Sm−1)(0T ∗X)→ 0.

An operator P ∈ Ψm
0 (X; 0Ω

1
2X) is elliptic (in the symbolic sense) if its principal symbol

0σm(P ) is elliptic. In order for P to be Fredholm on weighted function spaces, a further
assumption on its behavior at ∂X is needed; we proceed to introduce the relevant objects

in the case that P ∈ Diffm0 (X; 0Ω
1
2X) is a differential operator. In local coordinates, and

fixing a trivialization of 0Ω
1
2X (e.g. using the section |dxx

dy
xn−1 |

1
2 ), we can write P as

P =
∑

j+|β|≤m

ajβ(x, y)(xDx)j(xDy)
β. (1.3)

(Its principal symbol is
∑

j+|β|=m ajβ(x, y)ξjηβ, where (ξ, η) ∈ 0T ∗(x,y)X.) Freezing the

coefficients of P at (0, y0) ∈ ∂X (which gives the normal operator) and then exploiting the
translation-invariance in y of the resulting operator by passing to the Fourier transform in
y gives the transformed normal operator

N(P, y0, η̃) =
∑

j+|β|≤m

ajβ(0, y0)(x̃Dx̃)j(x̃η̃)β. (1.4)

We use x̃ here instead of x as we consider N(P, y0, η̃) as acting on a model space [0,∞)x̃.
The scaling invariance (x̃, η̃) 7→ (λx̃, η̃/λ) for λ > 0 of the operator (1.4) can be further
exploited by passing to the reduced normal operator

N̂(P, y0, η̂) =
∑

j+|β|≤m

ajβ(0, y0)(tDt)
j(tη̂)β, t = x̃|η̃|, η̂ =

η̃

|η̃|
. (1.5)

On the compactified positive half line [0,∞]t (i.e. using T = t−1 as a defining function of
∞), this is a weighted b-scattering differential operator,

N̂(P, y0, η̂) ∈ Diff
m,(0,m)
b,sc ([0,∞]). (1.6)

Here Diff
m,(l,r)
b,sc ([0,∞]) is the space of smooth coefficient m-th order differential operators

A on (0,∞) so that on [0,∞), the operator tlA is a b-differential operator [Mel93], i.e.
tlA =

∑m
j=0 aj(t)(t∂t)

j with aj ∈ C∞([0,∞)), while on (0,∞]t = [0,∞)T , the operator T rA

is a scattering differential operator [Mel94], i.e. T rA =
∑m

j=0 bj(T )(T 2∂T )j . The operator

N̂(P, y0, η̂) in (1.6) depends smoothly on (y0, η̂) ∈ Rn−1 × Sn−2 (which can be identified
with S∗∂X, if desired, upon fixing a collar neighborhood of ∂X and choosing a Riemannian
metric on X). Moreover, the operator (1.6) is elliptic, including in the sense of decay at
T = 0.2 Any tempered element in its nullspace is thus automatically smooth in (0,∞) and
Schwartz as t→∞.

1The principal symbol is valued in the bundle Ωfiber(N
∗ diag0) ⊗ (KD0)|diag0

, where Ωfiber(N
∗ diag0)

is the bundle of translation-invariant densities along each fiber of N∗ diag0. In view of (1.1), we have a
natural isomorphism Ωfiber(N

∗ diag0) ∼= Ωfiber(
0T ∗X). Since 0TX ∼= N diag0, we can moreover identify

(KD0)|diag0
∼= 0Ω

1
2 (X) ⊗ Ω

1
2
fiber(

0TX). Altogether then, the principal symbol is valued in Ω
1
2
fiber(

0T ∗X) ⊗
0Ω

1
2 (X), which has a canonical nonvanishing section given by the symplectic form.
2In T < 1, one has

TmN̂(P, y0, η̂) ≡
∑

j+|β|=m

ajβ(0, y0)η̂βDj
t mod T Diffm−1

sc ([0, 1)T ) (Dt = −T 2DT ),
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Near t = 0 on the other hand, the behavior of tempered elements of the kernel of the
Fuchsian operator N̂(P, y0, η̂) is controlled by its indicial operator (or b-normal operator)

I(P, y0) :=
∑
j≤m

aj0(0, y0)(tDt)
j

and, via the Mellin transform in t, by the indicial family

I(P, y0, σ) :=
∑
j≤m

aj0(0, y0)σj , σ ∈ C.

(Note that the leading order coefficient am0(0, y0) is nonzero.) As reflected in the notation,
I(P, y0) and I(P, y0, σ) do not depend on η̂. At each y0 ∈ ∂X, we define the boundary
spectrum by

Specb(P, y0) := {(z, k) ∈ C× N0 : I(P, y0, σ)−1 has a pole at σ = −iz of order ≥ k + 1}.
(1.7)

Elements in the nullspace of N̂(P, y0, η̂) have asymptotic expansions at t = 0 involving
terms3 tz(log t)k for (z, k) ∈ Specb(P, y0) (as well as further terms with z increased by
integers, and possibly larger k arising from integer coincidences, i.e. from the existence of
(z1, 0) and (z2, 0) ∈ Specb(P, y0) with z2 − z1 ∈ Z \ {0}).

In §2, we will discuss the definitions of the (reduced) normal operator and indicial opera-

tor/family and boundary spectrum for pseudodifferential operators P ∈ Ψm
0 (X; 0Ω

1
2X). In

particular, in this generality N̂(P, y0, η̂) ∈ Ψ
m,(0,m)
b,sc ([0,∞]; bΩ

1
2 [0,∞]) is an elliptic weighted

b-scattering-pseudodifferential operator.

Definition 1.2 (Invertibility of the reduced normal operator). Let α ∈ R, and let P ∈
Ψm

0 (X; 0Ω
1
2X) be an operator with elliptic principal symbol. We say that N̂(P, y0, η̂) is

invertible at the weight α if the following three conditions hold:

(1) α 6= Re z for all (z, k) ∈ Specb(P, y0).

(2) If u ∈ tαL2([0,∞]; |dtt |) solves N̂(P, y0, η̂)u = 0, then u = 0.

(3) If v ∈ t−αL2([0,∞]; |dtt |) solves N̂(P, y0, η̂)∗v = 0, then v = 0. Here, the adjoint is

defined with respect to the volume density |dtt |, or more generally with respect to

any polynomially weighted (at infinity) b-volume density a(t)(1 + t)−w|dtt | where
0 < a ∈ C∞([0,∞]), w ∈ R.

If N̂(P, y0, η̂) is invertible at the weight α for all y0, η̂, then we say that P is fully elliptic
at the weight α.

Remark 1.3 (Invertibility as an operator between Sobolev spaces). The invertibility at the

weight α can be phrased slightly more naturally as the invertibility of N̂(P, y0, η̂) acting
between suitable weighted b-scattering-Sobolev spaces,

N̂(P, y0, η̂) : Hs,α,r
b,sc ([0,∞]) =

( t

t+ 1

)α
(t+ 1)−rHs

b,sc

(
[0,∞];

∣∣∣dt
t

∣∣∣)→ Hs−m,α,r−m
b,sc ([0,∞]),

(1.8)

which due to the (symbolic) ellipticity of P shows that N̂(P, y0, η̂) is indeed fully elliptic as a weighted
scattering differential operator.

3The introduction of the factor i in (1.7) eliminates a factor of i here.
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for any s, r ∈ R. Here, for s ∈ N0, the space Hs
b,sc([0,∞]; |dtt |) consists of all u ∈

L2((0,∞); |dtt |) so that Au ∈ L2((0,∞); |dtt |) for all A ∈ Diffsb,sc([0,∞]). (It suffices to

require this for A = ( t
t+1∂t)

s.) For general s ∈ R, Hs
b,sc([0,∞]; |dtt |) can be defined using

interpolation and duality. By ellipticity, the invertibility of (1.8) is independent of the
choice of s, r; see (the proof of) Proposition 3.1.

In order to state the main result, we need to introduce the large 0-calculus. Recall
first that an index set is a subset E ⊂ C × N0 with the property that (z, k) ∈ E implies
(z + 1, k) ∈ E and (when k ≥ 1) (z, k − 1) ∈ E , and so that moreover for any C the set
{(z, k) ∈ E : Re z < C} is finite.4 Recall moreover that spaces of polyhomogeneous conormal

distributions are local, and it suffices to define the space A(E1,...,Ek)
phg ([0,∞)kx×Rn−ky ) for index

sets E1, . . . , Ek ∈ C×N0. This space can be defined by induction over k [Mel96, §4.13], and
consists of distributions which at x1 = 0 are asymptotic sums of terms xz1(log x1)kaz,k(x

′, y),

(z, k) ∈ E1, x′ = (x2, . . . , xn), where the az,k themselves lie in A(E2,...,Ek)
phg ([0,∞)k−1

x′ ×Rn−ky );

similarly at all other boundary hypersurfaces xj = 0. In the interior of a manifold with
corners, (polyhomogeneous) conormal distributions are required to be smooth.

Definition 1.4 (Full 0-calculus). For a collection E = (Elb, Eff , Erb) of index sets Elb, Eff ,
Erb ⊂ C× N0, we define the space of residual operators

Ψ−∞,E0 (X) := AEphg(X2
0 ; KD0),

with the index set EH associated with the boundary hypersurface H ⊂ X2
0 . More generally

for m ∈ R ∪ {−∞}, put

Ψm,E
0 (X) := AEphgI

m(X2
0 ,diag0; KD0),

i.e. where the conormal distribution to diag0 has coefficients which are polyhomogeneous
down to ff with index set Eff . For E ′ = (E0, E1), we moreover define the space of fully
residual operators

Ψ−∞,E
′
(X) := AE ′phg(X2; KD0),

with the index set E0, resp. E1 associated with the boundary hypersurface ∂X ×X, resp.
X × ∂X of X ×X.

Recall also that the sum and extended union of two index sets E ,F are defined as

E + F := {(z1 + z2, k1 + k2) : (z1, k1) ∈ E , (z2, k2) ∈ F},
E ∪F := E ∪ F ∪ {(z, k1 + k2 + 1): (z, k1) ∈ E , (z, k2) ∈ F}.

We moreover set E + j = E + {(j′, 0) : j′ ∈ N0, j
′ ≥ j}. With this setup, our main result is:

Theorem 1.5 (Fully elliptic 0-ps.d.o.s). Let P ∈ Ψm
0 (X; 0Ω

1
2X) be fully elliptic at the

weight α, and assume that Specb(P, y0) is independent of y0 ∈ ∂X; put Specb(P ) :=
Specb(P, y0). Denote by E± ⊂ C× N0 the smallest index sets5 with

E+ ⊃ {(z, k) : (z, k) ∈ Specb(P ), Re z > α},
E− ⊃ {(−z, k) : (z, k) ∈ Specb(P ), Re z < α}.

(1.9)

4Other conventions, with factors of ±i in the first component, are also frequently used in the literature.
Our present convention is chosen to match (1.7).

5The existence of these index sets is proved in Corollary 2.16.
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(Thus, Re E+ > α, i.e. Re z > α for all (z, k) ∈ E+, and Re E− > −α.) Set Ê±(0) := E± and

Ê±(j) := E± ∪ (Ê±(j− 1) + 1) for j = 1, 2, 3, . . ., and let Ê± :=
⋃∞
j=0 Ê±(j). Define similarly

Ê[± := Ê± ∪ (Ê± + 1)∪ · · · , and put Ê]± := Ê[± ∪ (Ê± + 1), Ê±ff := N0 ∪ (Ê∓ + Ê[± + (n − 1)).
Then there exist parametrices

Q ∈ Ψ−m0 (X; 0Ω
1
2X) + Ψ

−∞,(Ê+,Ê−ff ,Ê
]
−+(n−1))

0 (X; 0Ω
1
2X),

Q′ ∈ Ψ−m0 (X; 0Ω
1
2X) + Ψ

−∞,(Ê]+,Ê
+
ff ,Ê−+(n−1))

0 (X; 0Ω
1
2X),

so that

PQ = I −R, R ∈ Ψ−∞,(∅,Ê
[
−+(n−1))(X; 0Ω

1
2X),

Q′P = I −R′, R′ ∈ Ψ−∞,(Ê
[
+,∅)(X; 0Ω

1
2X).

The index sets of Q, resp. Q′ at ff and rb, resp. lb are likely much bigger than needed in
order for the error terms R,R′ to be fully residual with trivial index set at one of the two
boundaries of X2; we do not aim to optimize them here. (See also Remark 3.2.)

When X is compact, this implies the Fredholm property of P on suitable function spaces.

Relative to the intrinsic L2-space of 0-1
2 -densities L2(X; 0Ω

1
2X), we define these weighted

0-Sobolev spaces as follows. Let ρ ∈ C∞(X) denote a boundary defining function. For a ∈ R
and s ≥ 0, we then set

ρaHs
0(X; 0Ω

1
2X) =

{
u = ρau0 : u0 ∈ L2(X; 0Ω

1
2X), Au0 ∈ L2(X; 0Ω

1
2X)

}
,

where A ∈ Ψs
0(X; 0Ω

1
2X) has an elliptic principal symbol; and for s < 0, we define the

space ρaHs
0(X; 0Ω

1
2X) to consist of all sums u0 +Au1 where u0, u1 ∈ ρaL2(X; 0Ω

1
2X), with

A ∈ Ψ
|s|
0 (X; 0Ω

1
2X) any (fixed) operator with an elliptic principal symbol.

Corollary 1.6 (Fredholm property). Suppose X is compact, and let ρ ∈ C∞(X) denote a

boundary defining function. Let P ∈ Ψm
0 (X; 0Ω

1
2X) be fully elliptic at the weight α, and

assume that Specb(P, y0) is independent of y0 ∈ ∂X. Then

P : ρα−
n−1

2 Hs
0(X; 0Ω

1
2X)→ ρα−

n−1
2 Hs−m

0 (X; 0Ω
1
2X)

is a Fredholm operator. Its generalized inverse has the same structure as the parametrices
Q,Q′ in Theorem 1.5 except for differences in the index sets at lb and rb.

See Corollary 3.3 for the full statement.

When P is an element of the spectral family of the Laplacian on an asymptotically
hyperbolic manifold, with spectral parameter lying in the resolvent set, Theorem 1.5 gives
the same information on the resolvent kernel as [MM87] (except with less precise index sets).
Note however that the meromorphic continuation of the resolvent in the spectral parameter
(away from an exceptional set [Gui05]) proved in [MM87] goes far beyond Theorem 1.5, since
the parametrix construction for individual 0-operators provided by Theorem 1.5 cannot
distinguish between the cases that the spectral parameter lies in the resolvent set or in
the continuation region. We also mention Eptaminitakis’ recent work [Ept22] on the X-ray
transform on asymptotically hyperbolic manifolds, in which an important technical task
is the inversion of a certain ps.d.o. which lies in the large 0-calculus; this setting is thus
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not covered by our Theorem. We remark that in both [Ept22] and [MM87], the normal
operator is an explicit operator on hyperbolic space whose inverse is likewise explicit, and
for which it is thus easy to check that it is itself in the range of the normal operator map
acting on the large 0-calculus.

Albin’s lecture notes [Alb08] give a rather detailed account of the proof of Theorem 1.5;
we largely follow the arguments of [Alb08, §5.5] and supplement them with the necessary
auxiliary technical results.

(1) The first step of the parametrix construction is purely symbolic: it only uses the
invertibility of the principal symbol of P and takes place in the small 0-calculus,
i.e. the algebra of operators defined in Definition 1.1.

(2) The next step is the inversion of the reduced normal operator, which is mainly
done in the framework of Melrose’s (large) b-calculus [Mel93]; the analysis at the
scattering end is purely symbolic and thus much easier. A major subtlety however
is that we need to show that the inverse of the reduced normal operator is itself
in the range of the reduced normal operator map; this is nontrivial (even when P
is a differential operator) due to the absence of a simple description of the range
of the reduced normal operator map in general. (Put more simply, we need to
show that the normal operator has an inverse which is the normal operator of an
element of the large 0-calculus.) Indeed, unlike in [MM87, Ept22], absent an explicit
formula for the inverse of the normal operator (i.e. prior to passing to the reduced
normal operator) one needs to find successively improved approximate inverses, and
ultimately the true inverse, of the reduced normal operator family while remaining
in the range of the reduced normal operator map throughout the construction. See
Proposition 3.1; this is the technical heart of the paper.

(3) Given the normal operator inverse, the construction of a full right 0-parametrix
follows a standard procedure (solving away the remaining error to infinite order at
lb using indicial operator arguments, and then using an asymptotic Neumann series
to solve away the remaining error at ff to infinite order).

When the boundary spectrum Specb(P, y0) does depend on y0, Schwartz kernels of sim-
ilarly precise parametrices are no longer polyhomogeneous, but one can still prove their
conormality (with rather sharp bounds) on X2

0 under a mild gap condition on the bound-
ary spectra; see Theorem 3.4. In this generality, Lauter [Lau03] constructs a parametrix on
the extended 0-double space which is sufficiently precise to deduce Fredholm properties of
P . (In the notation of Theorem 1.5, Lauter’s error terms RL and RR are residual operators
which vanish to some small positive order at the hypersurfaces ff ′ ∪ ffb of the extended
0-double space, cf. Figure 2.1.)

Remark 1.7 (Bundles). We shall only consider operators acting between 1
2 -densities. The

analysis of operators acting between sections on bundles requires purely notational changes.

Remark 1.8 (Generalizations). A detailed parametrix construction for fully elliptic pseu-
dodifferential operators in Mazzeo’s edge calculus [Maz91] can be given in much the same
way as in the present note. In particular, the reduced normal operator is still a b-scattering
operator, just not on [0,∞] but rather on the product of [0,∞] with the typical fiber of the
boundary fibration.
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2. The (extended) 0-calculus

The (large) 0-calculus was already introduced in Definitions 1.1 and 1.4. Following
[Lau03], defining the extended 0-calculus requires a further resolution of the 0-double space:

Definition 2.1 (Extended 0-double space). The extended 0-double space6 X2
0′ is defined

as the iterated blow-up

X2
0′ :=

[
X2; (∂X)2; diag∂X

]
.

Its boundary hypersurfaces are denoted lb′ (lift of ∂X ×X), ff ′ (lift of diag∂X), rb′ (lift of
X × ∂X), and ffb (lift of (∂X)2).

See Figure 2.1.

x′

x

lb′

rb′
ff ′

ffb

ffb

Figure 2.1. The extended 0-double space X2
0′ .

Since diag∂X ⊂ (∂X)2, the order of the two blow-ups is immaterial in the sense that the
identity map on (X◦)2 extends to a diffeomorphism

[X2; (∂X)2; diag∂X ]
∼=−→ [X2; diag∂X ; (∂X)2].

Thus, X2
0′ is the blow-up of X2

0 along the lift of (∂X)2; moreover, ff ′ is the blow-up of ff at
the corner ff ∩ (lb ∪ rb).

Since X2
0 and X2

0′ are naturally diffeomorphic near diag0, we can equivalently define

Ψm
0 (X; 0Ω

1
2X) := {κ ∈ Im(X2

0′ ,diag0; KD0) : κ ≡ 0 at lb′ ∪ ffb ∪ rb′}. (2.1)

Here, we abuse notation and write KD0 also for its lift to X2
0′ . Spaces of residual operators

lift according to

Ψ
−∞,(Elb,Eff ,Erb)
0 (X; 0Ω

1
2X) ⊂ Ψ

−∞,(Elb,Eff ,Elb+Erb,Erb)
0′ (X; 0Ω

1
2X), (2.2)

6This is denoted X2
0,e in [Lau03]; we use a slightly different notation here to avoid confusion with the

notation for the edge double space in [Maz91].
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where the right hand side consist of polyhomogeneous Schwartz kernels with the stated
index sets at lb′, ff ′, ffb, and rb′ (in this order). Conversely, we note the inclusion

Ψ
−∞,(Elb,Eff ,∅,Erb)
0′ (X; 0Ω

1
2X) ⊂ Ψ

−∞,(Elb,Eff ,Erb)
0 (X; 0Ω

1
2X).

The usefulness of the extended 0-double space in the present paper stems from the fact
that it allows us to record trivial behavior at ffb during various steps of the parametrix
construction, even if the index sets at lb′ and rb′ are nontrivial; this is not possible in the
0-double space, cf. (2.2).

We shall also consider less precise classes of residual operators whose Schwartz kernels
are merely conormal at some of the boundary hypersurfaces. For a general manifold with
corners M and embedded boundary hypersurfaces H1, . . ., HN with boundary defining
functions ρH1 , . . ., ρHN , we denote by

A(α1,...,αN )(M) (α1, . . . , αN ∈ R)

the space of elements of (
∏N
j=1 ρ

αj
Hj

)L∞loc(M) which remain in this space under application

of any number of b-vector fields (smooth vector fields on M tangent to all Hj). More
generally, let H = {Hi : i ∈ I} ⊂ {H1, . . . ,HN} denote a subset of boundary hypersurfaces,
where I ⊂ {1, . . . , N}. Consider weights β = (βi : i ∈ I) where βi ∈ R; then

AβH(M)

consists of those elements of (
∏
i∈I ρ

βi
Hi

)L∞loc(M) which remain in this space upon application
of any number of smooth vector fields on M which are tangent to all elements of H. In

particular, elements of AβH(M) are smooth down to all boundary hypersurfaces of M which
are not in H.

For weights αlb, αff , αrb ∈ R ∪ {∞}, we now let

Ψ
m,(αlb,αrb)
0 (X; 0Ω

1
2X) := Ψm

0 (X; 0Ω
1
2X) + Ψ

−∞,(αlb,αrb)
0 (X; 0Ω

1
2X),

where

Ψ
−∞,(αlb,αrb)
0 (X; 0Ω

1
2X) := A(αlb,αrb)

{lb,rb} (X2
0 ; KD0),

Ψ
−∞,(αlb,αff ,αrb)
0 (X; 0Ω

1
2X) := A(αlb,αff ,αrb)(X2

0 ; KD0).

Carefully note that elements of these two spaces do not have polyhomogeneous expansions
at the boundary hypersurfaces: they are merely conormal. The 0-calculus with bounds is
then the space of all operators in

Ψ
m,(αlb,αff ,αrb)
0 (X; 0Ω

1
2X) := Ψm

0 (X; 0Ω
1
2X) + Ψ

−∞,(αlb,αrb)
0 (X; 0Ω

1
2X)

+ Ψ
−∞,(αlb,αff ,αrb)
0 (X; 0Ω

1
2X)

for m,αlb, αff , αrb ∈ R. Very residual operators have Schwartz kernels in

Ψ−∞,(α0,α1)(X; 0Ω
1
2X) := A(α0,α1)(X2; KD0).
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2.1. Composition. For calculations with polyhomogeneous conormal distributions, it is
convenient to work with b-densities. We have a natural isomorphism of weighted density
bundles 0ΩX ∼= ρ−(n−1) bΩX where ρ ∈ C∞(X) is a boundary defining function. If we
denote by ρH a smooth defining function of a hypersurface H, then since bΩX2 lifts to X2

0

as ρn−1
ff

bΩX2
0 , we have

KD0
∼= ρ

−n−1
2

lb ρ
−n−1

2
rb ρ

−n−1
2

ff
bΩ

1
2X2

0
∼= ρ

−n−1
2

lb′
ρ
−n−1

2

rb′
ρ
−n−1

2

ff′
ρ
−n−1

2
ffb

bΩ
1
2X2

0′ . (2.3)

In the 0-calculus, we need the full range of composition results. The following is a special
case of7 [Maz91, Theorem (3.15)]:

Proposition 2.2 (Composition of 0-ps.d.o.s). Let E = (Elb, Eff , Erb) and F = (Flb,Fff ,Frb)
be two collections of index sets, and put G = (Glb,Gff ,Grb) where

Glb = Elb ∪ (Eff + Flb), Grb = (Erb + Fff)∪Frb,

Gff = (Eff + Fff)∪ (Elb + Frb).

Suppose that Re(Erb + Flb) > n− 1. Then for m,m′ ∈ R ∪ {−∞}, we have

Ψm,E
0 (X; 0Ω

1
2X) ◦Ψm′,F

0 (X; 0Ω
1
2X) ⊂ Ψm+m′,G

0 (X; 0Ω
1
2X).

Remark 2.3 (Properly supported Schwartz kernels). If X is noncompact, we shall consider
compositions of two 0-ps.d.o.s only under the assumption (which we will not spell out
henceforth) that the Schwartz kernel of at least one of them is properly supported in X2

0 .

Note that any P ∈ Ψm
0 (X; 0Ω

1
2X) is equal to the sum of a properly supported operator and

an element of A∅phg(X2; KD0). Thus, for the purposes of parametrix constructions, we can

restrict to the subclass of operators with properly supported Schwartz kernels.

Proof of Proposition 2.2. We sketch the proof using the machinery of triple spaces, b-
fibrations, and Melrose’s pullback and push-forward theorems [Mel92]. We shall only con-
sider the case m = m′ = −∞. The 0-triple space is

X3
0 := [X3;B′;BF , BS , BC ], (2.4)

where B′ = {(p, p, p) : p ∈ ∂X} is the triple diagonal of the boundary, and BF , BS , BC
are the lifts to [X3;B′] of the preimages of diag∂X under the projection maps X3 → X2

given by πF : (p, q, r) 7→ (p, q), πS : (p, q, r) 7→ (q, r), and πC : (p, q, r) 7→ (p, r), respectively.
We denote the lift of B′ by fff, and the lifts of BF , BS , BC by ffF ,ffS ,ffC ; the lifts of
X ×X × ∂X, ∂X ×X ×X, and X × ∂X ×X are denoted bfF , bfS , and bfC , respectively.
The projection maps πF , πS , πC lift to b-fibrations X3

0 → X2
0 , see [Alb08, §4.6].

Consider now residual 0-ps.d.o.s A,B with Schwartz kernels

KA ∈ AEphg(X2
0 ; KD0) = AE ′phg(X2

0 ; bΩ
1
2X2

0 ), KB ∈ AF
′

phg(X2
0 ; bΩ

1
2X2

0 ), (2.5)

where, in view of (2.3), E ′ = (E ′lb, E ′ff , E ′rb) := E − (n−1
2 , n−1

2 , n−1
2 ), similarly for F ′. The

Schwartz kernel of A ◦B (if the composition is defined) is the push-forward

KA◦B = ν−1(πC)∗
(
π∗FKA · π∗SKB · π∗Cν

)
,

7Mazzeo uses a kernel density bundle which differs from ours by a certain power of the defining functions
of lb and rb; this leads to shifts in the index sets relative to the result stated here.
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where 0 < ν ∈ C∞(X2
0 ; bΩ

1
2X2

0 ) is arbitrary. Upon ordering the hypersurfaces of X3
0 by fff,

ffF ,ffS ,ffC , bfF , bfS , bfC , we have

π∗FKA · π∗SKB · π∗Cν

∈ A(E ′ff+F ′ff+n−1
2
, E ′ff+F ′lb+n−1

2
,E ′rb+F ′ff+n−1

2
,E ′lb+F ′rb+n−1

2
, F ′rb,E

′
lb,E
′
rb+F ′lb)

phg (X3
0 ; bΩX3

0 ).
(2.6)

The shifts by n−1
2 arise due to the relationship between b-1

2 -density bundles upon blowing
up a submanifold which has codimension n− 1 in the smallest boundary face containing it.
(This is analogous to the discussion leading up to (2.3).)

The map πC maps fff∪ffC to ff, bfS∪ffF to lb, and bfF ∪ffS to rb; push-forward of (2.6)
along πC is well-defined provided Re(E ′rb + F ′lb) > 0. Under this condition,

KA◦B ∈ A
(E ′lb ∪ (E ′ff+F ′lb+n−1

2
),(E ′ff+F ′ff+n−1

2
)∪ (E ′lb+F ′rb+n−1

2
),F ′rb ∪ (E ′rb+F ′ff+n−1

2
))

phg (X2
0 ; bΩ

1
2X2

0 ).

Reverting back to the density KD0, we obtain KA◦B as a section of KD0, with all index
sets increased relative to those of KA◦B by n−1

2 . This gives the claimed result. �

Lemma 2.4 (Action on polyhomogeneous distributions). Let E = (Elb, Eff , Erb) be a collec-

tion of index sets and A ∈ Ψm,E
0 (X; 0Ω

1
2X). Let F ⊂ C×N0 denote an index set. Suppose

Re(Erb + F) > n− 1, and let G = (F + Eff)∪Elb. Then

A : AFphg(X; 0Ω
1
2X)→ AGphg(X; 0Ω

1
2X). (2.7)

Proof. For simplicity of notation, we only consider the case m = −∞. Let πL, πR : X2
0 → X

denote the stretched left and right projections. Fix a b-density 0 < ν ∈ C∞(X; bΩ
1
2X).

Write KA ∈ AE
′

phg(X2
0 ; bΩ

1
2X2

0 ), E ′ = E − (n−1
2 , n−1

2 , n−1
2 ), for the Schwartz kernel of A as

in (2.5). For f ∈ AFphg(X; 0Ω
1
2X) = AF ′phg(X; bΩ

1
2X), F ′ = F − n−1

2 , we compute

Af = ν−1(πL)∗
(
KA · π∗Rf · π∗Lν

)
.

Note then that the index set at rb of

KA · π∗Rf · π∗Lν ∈ A
(E ′lb,E

′
ff+F ′+n−1

2
,E ′rb+F ′)

phg (X2
0 ; bΩX2

0 )

has real part larger than 0, and hence pushforward along (πL)∗ produces an element of

AE
′
lb ∪ (E ′ff+F ′+n−1

2
)

phg (X; bΩX). Division by ν and regarding the result as a section of 0Ω
1
2X

gives (2.7). �

Remark 2.5 (Action on polyhomogeneous distributions does not determine Eff). The index
set G can be significantly smaller than stated in Lemma 2.4. For example, the opera-
tor (xDy1)N ∈ ΨN

0 (X)—whose Schwartz kernel does not vanish at ff—maps AFphg(X) →
AF+N

phg (X). Using the notation (2.10), this is related to the fact that the first N moments

of K0
P in the Υ-variables vanish, or equivalently that its Fourier transform in Υ vanishes to

order N at η = 0. More generally then, one can construct an operator P ∈ Ψ−∞0 (X; 0Ω
1
2X)

with nontrivial normal operator but which maps AFphg(X)→ A∅phg(X) =: Ċ∞(X) for all F .

In the extended 0-calculus, we only need the following result:



ELLIPTIC PARAMETRICES IN THE 0-CALCULUS 13

Proposition 2.6 (Composition of extended 0-ps.d.o.s). Let E = (Elb′ , Eff′ , Effb
, Erb′) denote

a collection of index sets, and let m ∈ R. Then

Ψm
0 (X; 0Ω

1
2X) ◦Ψ−∞,E0′ (X; 0Ω

1
2X) ⊂ Ψ−∞,E0′ (X; 0Ω

1
2 ).

Proof. Lifting the Schwartz kernel of an element of Ψm
0 (X; 0Ω

1
2X) to X2

0′ (see (2.1)), the
proof follows via pullback and pushforward results completely analogously to the proof of
Proposition 2.2. In fact, general compositions in the extended 0-calculus can be analyzed
by means of an appropriate extended 0-triple space, defined as

X3
0′ :=

[
X3; (∂X)3;X × ∂X × ∂X, ∂X ×X × ∂X, ∂X × ∂X ×X;B′;BF , BS , BC

]
where B′, BF , BS , BC are as after (2.4); the three projections X3 → X2 lift to b-fibrations
X3

0′ → X2
0′ . We leave the details to the reader. �

In the calculus with bounds, we shall use the following composition result; the (omitted)
proof follows again from pullback and pushforward results [Mel92].

Proposition 2.7 (Composition in the 0-calculus with bounds). Given α = (αlb, αff , αrb)
and β = (βlb, βff , βrb) ∈ R3, fix γ = (γlb, γff , γrb) ∈ R3 so that

γlb ≤ min(αlb, αff + βlb), γrb ≤ min(αrb + βff , βrb), γff ≤ min(αff + βff , αlb + βrb),

with strict inequality in each individual case when both arguments of min are equal.
(2.8)

Suppose that αrb + βlb > n− 1. Then for m,m′ ∈ R ∪ {−∞}, we have

Ψm,α
0 (X; 0Ω

1
2X) ◦Ψm′,β

0 (X; 0Ω
1
2X) ⊂ Ψm+m′,γ

0 (X; 0Ω
1
2X).

When αff = 0, βff = 0, let γlb, γrb be as in (2.8), and let γff = αlb + βrb unless αlb + βrb =
k ∈ N0 in which case fix γff < k. Then

Ψ
m,(αlb,αrb)
0 (X; 0Ω

1
2X) ◦Ψ

m′,(βlb,βrb)
0 (X; 0Ω

1
2X)

⊂ Ψ
m+m′,(γlb,γrb)
0 (X; 0Ω

1
2X) + Ψ

−∞,(γlb,γff ,γrb)
0 (X; 0Ω

1
2X).

2.2. Schwartz kernel of the (reduced) normal operator. Let x ≥ 0, y ∈ Rn−1 denote
local coordinates near a point in ∂X. The lifts of these functions along the left projection of
X2

0 and X2
0′ to X are denoted by the same letters x, y, and the lifts along the right projection

by primed letters x′, y′. (Discussions of the invariant content of various constructions below
can be found in [MM87, Lau03].)

At first, let us work locally near ff \ rb, where we can use the coordinates

s =
x

x′
, Υ =

y − y′

x′
, x′, y′. (2.9)

Consider two operators P,Q ∈ Ψ−∞0 (X; 0Ω
1
2X) whose Schwartz kernels are supported away

from lb∪rb; note that the space of such operators is dense in the space Ψ
m,(αlb,αrb)
0 (X; 0Ω

1
2X)

in the topology of Ψ
m+ε,(αlb−ε,αrb−ε)
0 (X; 0Ω

1
2X) for any m ∈ R, αlb, αrb ∈ R, and ε > 0.

Write the Schwartz kernel of P in local coordinates as

KP (x, y, x′, y′)
∣∣∣dx
x

dy

xn−1

dx′

x′
dy′

x′n−1

∣∣∣ 1
2

= K0
P (s,Υ, x′, y′)

∣∣∣dx
x

dy

xn−1

dx′

x′
dy′

x′n−1

∣∣∣ 1
2
, (2.10)
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and likewise for Q. The Schwartz kernel K0
P◦Q(s,Υ, x′, y′)|dxx

dy
xn−1

dx′

x′
dy′

x′n−1 |
1
2 of P ◦Q in the

coordinates (2.9) (thus x = sx′ and y = y′ + x′Υ) is then given by

K0
P◦Q(s,Υ, x′, y′) =

∫∫
KP (sx′, y′ + x′Υ, x′′, y′′)KQ(x′′, y′′, x′, y′)

dx′′

x′′
dy′′

x′′n−1

=

∫∫
K0
P

(sx′
x′′
,
y′ − y′′ + x′Υ

x′′
, x′′, y′′

)
K0
Q

(x′′
x′
,
y′′ − y′

x′
, x′, y′

) dx′′

x′′
dy′′

x′′n−1

=

∫∫
K0
P

( s
s′
,
Υ−Υ′

s′
, s′x′, y′ + x′Υ′

)
K0
Q(s′,Υ′, x′, y′)

ds′

s′
dΥ′

s′n−1
,

where we introduced s′ = x′′

x′ and Υ′ = y′′−y′
x′ . Upon restriction to the 0-front face x′ = 0,

we thus find that

K0
P◦Q(s,Υ, 0, y′) =

∫∫
K0
P

( s
s′
,
Υ−Υ′

s′
, 0, y′

)
K0
Q(s′,Υ′, 0, y′)

ds′

s′
dΥ′

s′n−1
.

Thus, operator composition in the 0-calculus restricts at ff to the composition of convolution
operators on the semidirect product Rn−1

Υ o (R+)s, with smooth parametric dependence on
the boundary point y′. That is, the normal operator map

N(P, y′) := K0
P |ffy′ ,

where ffy′ is the fiber over y′ of the blow-down map ff → diag∂X
∼= ∂X, is a homomorphism

from Ψ−∞0 (X; 0Ω
1
2X) into the space of convolution operators on Rn−1 oR+. By the afore-

mentioned density, the homomorphism property N(P ◦Q, y′) = N(P, y′)◦N(Q, y′) continues
to hold for elements P,Q of the (extended) large calculus whenever the composition P ◦Q
is defined.

Let us extend the restriction K0
P (s,Υ, 0, y′) to the Schwartz kernel of the unique operator

which has normal operator K0
P (s,Υ, 0, y′) and is invariant under the action of the group

Rn−1 oR+. To make this explicit, we use tildes to denote coordinates on the model space

Xy′ := [0,∞)x̃×Rn−1
ỹ . Thus, we identify N(P, y′) with the operator in Ψ−∞0 (Xy′ ;

0Ω
1
2Xy′)

whose Schwartz kernel is

N(P, y′)(x̃, ỹ, x̃′, ỹ′) = K0
P

( x̃
x̃′
,
ỹ − ỹ′

x̃′
, 0, y′

) ∣∣∣dx̃
x̃

dỹ

x̃n−1

dx̃′

x̃′
dỹ′

x̃′n−1

∣∣∣ 1
2
.

For fixed (x̃, x̃′), this is a convolution in the ỹ-variables. Trivializing the 1
2 -density bundle

in the tangential variables ỹ, ỹ′ via |dỹ dỹ′| and conjugating by the Fourier transform, we
obtain an operator family with Schwartz kernel

(x̃, x̃′) 7→ x̃′n−1K̂0
P

( x̃
x̃′
, x̃′η̃, 0, y′

) ∣∣∣dx̃
x̃n

dx̃′

x̃′n

∣∣∣ 1
2
,

where K̂0
P denotes the Fourier transform in the second argument (Υ); this is an operator

acting on the bundle of weighted b-1
2 -densities with local frame |dx̃x̃n |

1
2 . Multiplication by

x̃
n−1

2 is an isomorphism between this bundle and the unweighted b-1
2 -density bundle, and

upon conjugation by this weight we obtain the transformed normal operator (changing y′
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to y0 for notational consistency with the introduction)

N(P, y0, η̃)(x̃, x̃′) := x̃
n−1

2 x̃′−
n−1

2 · x̃′n−1K̂0
P

( x̃
x̃′
, x̃′η̃, 0, y′

) ∣∣∣dx̃
x̃n

dx̃′

x̃′n

∣∣∣ 1
2

= K̂0
P

( x̃
x̃′
, x̃′η̃, 0, y′

) ∣∣∣dx̃
x̃

dx̃′

x̃′

∣∣∣ 1
2
,

(2.11)

as an operator acting on sections of the b-1
2 -density bundle over [0,∞].

Definition 2.8 (Normal operator). In local coordinates x, y on X, lifted to the left, resp.
right factor of X2 as x, y, resp. x′, y′, write the Schwartz kernel of an element P of the (large)
(extended) 0-calculus as (2.10) in the coordinates (2.9). Then the operator N(P, y0, η̃)
defined by (2.11) (acting on b-1

2 -densities on [0,∞]) is the transformed normal operator.

The reduced normal operator is the operator family, acting on b-1
2 -densities on [0,∞]t,

parameterized by y0 ∈ Rn−1 and η̂ ∈ Sn−2, with Schwartz kernel

N̂(P, y0, η̂)(t, t′) := K̂0
P

( t
t′
, t′η̂, 0, y0

) ∣∣∣dt
t

dt′

t′

∣∣∣ 1
2
.

Thus, N̂(P, y0, η̂) arises from N(P, y0, η) by changing variables t = x̃|η̃|, t′ = x̃′|η̃| and
setting η̂ = η̃/|η̃|. In the case that P is the differential operator given by (1.3) in the

trivialization |dxx
dy
xn−1 |

1
2 of 0Ω

1
2X, then N(P, y0, η) and N̂(P, y0, η̂) are (the Schwartz ker-

nels of) the operators (1.4) and (1.5). By construction, the maps P 7→ N(P, y0, η) and

P 7→ N̂(P, y0, η̂) are homomorphisms in the generalized sense that they respect operator
compositions in the large (extended) 0-calculus whenever the composition is defined. As a
simple but important example, we note that the reduced normal operator of the identity I,

N̂(I, y0, η̂)(t, t′) = δ( tt′ )|
dt
t

dt′

t′ |
1
2 , is the identity operator on b-1

2 -densities.

Remark 2.9 (Short exact sequence). Directly from the definition, if all normal operators

N(P, y0) of an operator P ∈ Ψm
0 (X; 0Ω

1
2X) vanish, then P ∈ ρffΨm

0 (X; 0Ω
1
2X) (i.e. the

Schwartz kernel vanishes to leading order at ff). The analogous statements for the trans-
formed or reduced normal operator are discussed in Remark 2.18.

For the study of the boundary behavior of the reduced normal operator, it is compu-
tationally more convenient to pass to a different coordinate system which does not give
preference to lb or rb. Thus, consider as local coordinates near ff \ (lb∩ rb) = ff ′ \ffb inside
the (extended) 0-double space of X

ρ = x+ x′, y′ ∈ Rn−1, τ :=
x− x′

x+ x′
∈ [−1, 1], Y :=

y − y′

x+ x′
∈ Rn−1. (2.12)

Thus, ρ is a local defining function of ff, while τ + 1 and τ − 1 are local defining functions
of lb and rb. Also, 〈Y 〉−1 extends by continuity to a local defining function of ffb inside

X2
0′ . We similarly define ρ̃, ỹ′, τ̃ , Ỹ on (Xy′)

2
0. Let us write (the Schwartz kernel of) P in

these coordinates as

P = p(ρ, y′, τ, Y )
∣∣∣dx
x

dy

xn−1

dx′

x′
dy′

x′n−1

∣∣∣ 1
2
. (2.13)

(Thus, if P lies in the small 0-calculus, then p vanishes rapidly as τ → ±1 or |Y | → ∞, and
p has a conormal singularity at the 0-diagonal (τ, Y ) = (0, 0).) The transformed normal
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operator is then

N(P, y0, η̃)(x̃, x̃′) :=
( x̃′

x̃+ x̃′

)−(n−1)
p̂
(
y0,

x̃− x̃′

x̃+ x̃′
, (x̃+ x̃′)η̃

)∣∣∣dx̃
x̃

dx̃′

x̃′

∣∣∣ 1
2
,

p̂(y0, τ, η) :=

∫
Rn−1

e−iY ·ηp(0, y0, τ, Y ) dY.

(2.14)

Thus, for an operator in the full extended calculus, the conormal (or polyhomogeneous)
behavior at ffb (i.e. |Y | → ∞) of its normal operator can be read off from the regularity (or
polyhomogeneous expansion) of p̂(y0, τ, η) at η = 0: fast decay as |Y | → ∞ corresponds to
high regularity at η = 0. See Lemma 2.17 and Remark 2.18 for further discussion.

In the notation of (2.14), the reduced normal operator is (via t = x̃|η̃|, t′ = x̃′|η̃|, η̂ = η̃
|η̃|

for η̃ 6= 0, as before) given by

N̂(P, y0, η̂)(t, t′) =
( t′

t+ t′

)−(n−1)
p̂
(
y0,

t− t′

t+ t′
, (t+ t′)η̂

)∣∣∣dt
t

dt′

t′

∣∣∣ 1
2
. (2.15)

Conversely, we can recover p̂(y0, τ, η) for η 6= 0 from N̂(P, y0, η̂) by computing the solution

(t, t′, η̂) of the system t−t′
t+t′ = τ , (t + t′)η̂ = η, which is given by η̂ = η

|η| , (t, t′) = 1
2 |η|(1 +

τ, 1− τ); this gives the formula

p̂(y0, τ, η) =
(1− τ

2

)n−1
(∣∣∣dt

t

dt′

t′

∣∣∣− 1
2
N̂
(
P, y0,

η

|η|

))(
1
2 |η|(1 + τ), 1

2 |η|(1− τ)
)
, η 6= 0.

(2.16)

2.3. b-scattering pseudodifferential operators. Following [Lau03, §3], we now de-
scribe the class of operators in which the reduced normal operator of a 0-ps.d.o. lies.

Definition 2.10 (b-scattering double space). Let [0,∞] denote the compactification of
[0,∞)t with (1 + t)−1 as the defining function of infinity. We define the b-scattering double
space of [0,∞] as

[0,∞]2b,sc :=
[

[0,∞)2; ∂ diag
]
,

where [0,∞)2 is the closure of the first quadrant in the radial compactification R2 (thus

it is closed quarter disc), and diag ⊂ [0,∞)2 is the closure of the diagonal {t = t′}, with
boundary consisting of two points: ∂ diag = {(0, 0), (∞,∞)}. We denote by diagb,sc ⊂
[0,∞]2b,sc the lifted diagonal, and by lbb, rbb, and ffb,0, ffsc, and ffb,∞ the lifts of {0} ×
[0,∞], [0,∞] × {0}, and of {(0, 0)}, {(∞,∞)}, and of the boundary at infinity of [0,∞)2,
respectively.

See Figure 2.2.

In terms of the coordinates τ̂ = t−t′
t+t′ and ρ̂ = t + t′ (analogous to τ , ρ in (2.12)), the

b-scattering double space is diffeomorphic to
[
[−1, 1]τ̂ × [0,∞]ρ̂; {(0,∞)}

]
.

Definition 2.11 (b-scattering ps.d.o.s). Let KDb := π∗L
bΩ

1
2 [0,∞] ⊗ π∗RbΩ

1
2 [0,∞] (which

thus has the global section |dtt
dt′

t′ |
1
2 ). Let ρffsc ∈ C∞([0,∞]2b,sc) denote a defining function
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t

t′

rbb

lbb

ffb,0

ffsc

ffb,∞

ffb,∞

di
ag

b,
sc

Figure 2.2. The b-scattering double space.

of ffsc. For m, r ∈ R, we define8 9

Ψ
m,(0,r)
b,sc ([0,∞]; bΩ

1
2 ) :=

{
κ ∈ A−r−1

ffsc
Im([0,∞]2b,sc,diagb,sc; KDb) : κ ≡ 0 at lbb∪rbb∪ffb,∞

}
,

where A−r−1
ffsc

Im is the space of conormal distributions which are smooth down to ffb and

conormal down to ffsc.
10 For a collection of index sets E = (Elbb

, Effb,0
, Erbb

), we define

Ψm,E
b,sc ([0,∞]); bΩ

1
2 ) :=

{
κ ∈ AEphgI

m([0,∞]2b,sc,diagb,sc; KDb) : κ ≡ 0 at ffb,∞ ∪ ffsc

}
,

i.e. the index sets at ffsc and ffb,∞ are trivial.11 For E ′ = (E0, E1), we finally set

Ψ−∞,E
′
([0,∞]; bΩ

1
2 ) := A(E0,E1,∅)

phg

(
[0,∞)2; KDb

)
, (2.17)

with index set E0, E1, ∅ assigned to {0}× [0,∞], [0,∞]×{0}, and the boundary at infinity,

respectively. We similarly define conormal versions Ψ−∞,(α0,α1)([0,∞]; bΩ
1
2 ) for α0, α1 ∈ R.

The shift of the weight −r at ffsc by −1 is due to the relationship between scattering
and b-1

2 -density bundles near ffsc

|dt dt′|
1
2 = t

1
2 t′

1
2

∣∣∣dt
t

dt′

t′

∣∣∣ 1
2
,

with t
1
2 t′

1
2 a smooth positive multiple of ρ−1

ffsc
ρ−1

ffb,∞
near ffsc. The chosen normalization thus

ensures that the identity operator on b-1
2 -densities on [0,∞] lies in Ψ

0,(0,0)
b,sc ([0,∞]; bΩ

1
2 ).

Under composition, b-scattering-ps.d.o.s behave like b-ps.d.o.s near lbb ∪ ffb,0 ∪ rbb and
like scattering ps.d.o.s near ffsc. We refer the reader to [Lau03, §3], [Mel93, §5], [Mel94] for
more in-depth treatments. Here, we only record:

8In view of the rapid vanishing at ffb,∞, one can equivalently replace ρffsc in this definition by the total
defining function (1 + t+ t′)−1 of ffsc ∪ ffb,∞.

9We write bΩ
1
2 = bΩ

1
2 [0,∞] here for better readability.

10That is, omitting the density bundle, they are inverse Fourier transforms from the σ-variable to t− t′
of symbols a = a(t, σ) on [0,∞]t × Rσ satisfying estimates |∂jt ∂kσa| . 〈σ〉m−k for t ≤ 2 and |(t∂t)j∂kσa| .
(t−1)−r−1〈σ〉m−k for t ≥ 1.

11For m = −∞, this space equals A
(Elbb

,Effb,0
,Erbb ,∅,∅)

phg ([0,∞]2b,sc; KDb).
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Proposition 2.12 (Composition of b-scattering-ps.d.o.s). Let E = (Elbb
, Effb,0

, Erbb
) and

F = (Flbb
,Fffb,0

,Frbb
) be two index sets. Define G = (Glbb

,Gffb,0
,Grbb

) by

Glbb
= Elbb

∪ (Effb,0
+ Flbb

), Grbb
= (Erbb

+ Fffb,0
)∪Frbb

,

Gffb,0
= (Effb,0

+ Fffb,0
)∪ (Elbb

+ Frbb
).

The composition of b-scattering ps.d.o.s (acting on b-1
2 -densities on [0,∞]) then satisfies:

Ψ
m,(0,r)
b,sc ◦Ψ

m′,(0,r′)
b,sc ⊂Ψ

m+m′,(0,r+r′)
b,sc ,

Ψ
m,(0,r)
b,sc ◦Ψ−∞,Eb,sc ⊂Ψ−∞,Eb,sc ,

Ψ−∞,Eb,sc ◦Ψ−∞,Fb,sc ⊂Ψ−∞,Gb,sc .

2.4. Range of the reduced normal operator. The range of the homomorphism from
0-ps.d.o.s to reduced normal operators is difficult to describe in a useful manner; this means
that special care is required in ensuring that parametrix constructions on the level of the
reduced normal operator remain in the range of the reduced normal operator. In this
section, we collect several results which will facilitate this task in §3.

Proposition 2.13 (Reduced normal operator for the small 0-calculus). Fix an operator

P ∈ Ψm
0 (X; 0Ω

1
2X). Then N̂(P, y0, η̂) ∈ Ψ

m,(0,m)
b,sc ([0,∞]; bΩ

1
2 ), with smooth parametric

dependence on y0 ∈ Rn−1 and η̂ ∈ Sn−2. Moreover, if 0σm(P )|0T ∗y0X is elliptic, then

N̂(P, y0, η̂) is elliptic, in the sense that its principal symbol

b,scσm,(0,m)(N̂(P, y0, η̂)) ∈ (Sm,(0,m)/Sm−1,(0,m−1))(b,scT ∗[0,∞]) (2.18)

is invertible.12 Finally, the indicial operator13 I(P, y0) of N̂(P, y0, η̂) at t = 0 is independent
of η̂ ∈ Sn−2.

Here, b,scT ∗[0,∞] has local frame dt
t in t ≤ 2 and dt = −dT

T 2 in T = t−1 ≤ 1. Moreover,

Sm,(0,r)(b,scT ∗[0,∞]) is the space of symbols of order m which are smooth down to t = 0
and conormal with weight (t−1)−r at t−1 = 0. We also used the following terminology:

Definition 2.14 (Indicial operator). The indicial operator (or b-normal operator) I(P, y0)

of N̂(P, y0, η̂) is the dilation-invariant extension of the restriction N(P, y0, η̂)|ffb,0
to a b-

ps.d.o. acting on 1
2 -b-densities on [0,∞]; thus, its Schwartz kernel is

I(P, y0)(t, t′) =
( t′

t+ t′

)−(n−1)
p̂
(
y0,

t− t′

t+ t′
, 0
) ∣∣∣dt

t

dt′

t′

∣∣∣ 1
2

= K̂0
P

( t
t′
, 0, 0, y0

) ∣∣∣dt
t

dt′

t′

∣∣∣ 1
2

(2.19)

in the notation of (2.13), (2.14) and (2.10), (2.11).

Proof of Proposition 2.13. Write P as in (2.13); we restrict p to the 0-front face ρ = 0 and
fix y′ = y0. Thus, p|ffy0 = p(0, y0, τ, Y ) is an oscillatory integral

p(0, y0, τ, Y ) = (2π)−n
∫∫

ei(τξ+Y ·η)a(ξ, η) dξ dη

12In particular, in T = t−1 < 1, the operator N̂(P, y0, η̂) is fully elliptic as a scattering ps.d.o.
13This is obtained by setting the third argument, (t+ t′)η̂, of p̂ in (2.15) to 0; see also Definition 2.14.
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for some symbol a ∈ Sm(Rn(ξ,η)); moreover, p is smooth away from (τ, Y ) = (0, 0) and

vanishes to infinite order as τ → ±1 or |Y | → ∞. We then have

p̂(y0, τ, η) = (2π)−1

∫
eiτξa(ξ, η) dξ. (2.20)

This is a smooth function of η with values in distributions on (−1, 1)τ which are conormal
(of order m) to 0 and vanish to infinite order at τ = ±1. The formula (2.15) thus shows

that N̂(P, y0, η̂) lies in Ψm
b ([0,∞)t). Note also that if (ξ, η) 7→ a(ξ, η) is an elliptic symbol,

then also ξ 7→ a(ξ, η) is elliptic for any fixed η ∈ Rn−1.

Near ff◦sc ⊂ [0,∞]2b,sc, we pass to the coordinates

T = (t+ t′)−1, s =
t− t′

t+ t′

/
T = t− t′,

i.e. t = 1
2(T−1 + s) and t′ = 1

2(T−1 − s). Thus, T is a local defining function of ff◦sc, and

diagb,sc = {s = 0}. We then compute the Schwartz kernel of Tm+1N̂(P, y0, η̂) to be

(T, s) 7→
(

1
2(1− Ts)

)−(n−1)
Tm+1p̂(y0, sT, T

−1η̂)
∣∣∣dt
t

dt′

t′

∣∣∣ 1
2
.

But changing variables via Tξ = σ in (2.20), we obtain

Tm+1p̂(y0, sT, T
−1η̂) = (2π)−1

∫
eisTξTm+1a(ξ, T−1η̂) dξ

= (2π)−1

∫
eisσTma(T−1σ, T−1η̂) dσ.

The map asc(η̂;T, σ) := Tma(T−1σ, T−1η̂) obeys the conormal (at T = 0) symbolic (in σ)

bounds |(T∂T )j∂kσasc| . 〈σ〉m−k−|α|, as do its derivatives in η̂. We have thus proved that

N̂(P, y0, η̂) ∈ Ψ
m,(0,m)
b,sc ([0,∞]; bΩ

1
2 ), with smooth dependence on y0, η̂. (The rapid vanishing

at ffb,∞ = s−1({±∞}) is a consequence of the fact that the inverse Fourier transform of a
symbol vanishes rapidly at infinity.)

Moreover, if a(σ, η) is elliptic, i.e. is bounded from below by c(1+|σ|+|η|)m for |σ|+|η| >
C for some constants c, C > 0, then also

|asc(η̂;T, σ)| ≥ cTm(1 + T−1|σ|+ T−1)m ≥ c(1 + |σ|)m

provided |σ|+ 1 > CT , and thus for all σ ∈ R when T < C−1. Together with the ellipticity

of N̂(P, y0, η̂) near t = 0, this proves the ellipticity of (2.18). �

Recall that parametrix constructions in the b-calculus require the inversion of the b-
normal operator, which in the present context concretely concerns the indicial operator
I(P, y0) from Definition 2.14. The indicial family for a fixed boundary point y0 is the
Mellin transform of I(P, y0)|ffb,0

(which can be identified with a b-1
2 -density on ffb,0, see

[Mel93, §4.15]) in the projective coordinate s = t/t′ ∈ [0,∞] along ffb,0, and hence (upon

dropping the 1
2 -density factor |dσ|

1
2 ) explicitly given by

I(P, y0, σ) :=

∫ ∞
0

siσK̂0
P (s, 0, 0, y0)

ds

s
.



20 PETER HINTZ

Lemma 2.15 (Properties of the indicial family). Let P ∈ Ψm
0 (X; 0Ω

1
2X). Then the indicial

family I(P, y0, σ) is holomorphic in σ ∈ C. Furthermore, if P is elliptic, then for any C1 > 0
there exist c, C2 > 0 so that

|I(P, y0, σ)| > c|σ|m, | Imσ| < C1, |Reσ| > C2. (2.21)

If R ∈ Ψ−∞0 (X; 0Ω
1
2X), then for all C1, N there exists C(N) so that

|I(R, y0, σ)| ≤ C(N)〈σ〉−N , | Imσ| < C1. (2.22)

Proof. The function s 7→ K̂0
P (s, 0, 0, y0) vanishes to infinite order at s = 0 and s = ∞,

which implies the holomorphicity of I(P, y0, σ). When P is elliptic, we write

K0
P (s, Y, 0, y0) = (2π)−n

∫∫
ei(σ log s+η·Y )a(y0, σ, η) dσ dη

where a is an elliptic symbol of order m. Thus, K̂0
P (s, 0, 0, y0) = (2π)−1

∫
siσa(y0, σ, 0) dσ

has Mellin transform I(P, y0, σ) = a(y0, σ, 0) which thus satisfies (2.21) for real σ. For
Imσ = α with arbitrary α ∈ R, the estimate (2.21) follows from the fact that also
sαK0

P (s, Y, 0, y0) is the inverse Fourier transform of an elliptic symbol.

The bound (2.22) follows from the rapid decay of K̂0
P (s, 0, 0, y0) and its derivatives along

any power of s∂s as s→ 0,∞. �

The boundary spectrum

Specb(P, y0) ⊂ C× N0

is defined by (1.7).

Corollary 2.16 (Index set from boundary spectrum). Suppose P ∈ Ψm
0 (X; 0Ω

1
2X) is ellip-

tic, and let α ∈ R. Let E ⊂ C×N0 the smallest set containing {(z, k) ∈ Specb(P, y0) : Re z >
α} which has the properties that (z, k) ∈ E implies (z + 1, k) ∈ E and (when k ≥ 1)
(z, k − 1) ∈ E. Then E is an index set (as defined before Definition 1.4). The same is true
if instead E is required to contain {(−z, k) : (z, k) ∈ Specb(P, y0), Re z < α}.

Proof. Lemma 2.15 implies that for any C, the set {(z, k) ∈ Specb(P, y0) : α < Re z < C}
is finite, as is the set {(z, k) ∈ Specb(P, y0) : −C < Re z < α}. This implies the claim. �

For special classes of residual operators, it is possible to give a full characterization of
the range of the reduced normal operator map:

Lemma 2.17 (Reduced normal operator for residual extended 0-ps.d.o.s). Let Elb′ , Erb′ ⊂
C × N0 denote two index sets, and put E = (Elb′ ,N0, ∅, Erb′) (i.e. the index set at ffb is

trivial). Then for P ∈ Ψ−∞,E0′ (X; 0Ω
1
2X), we have

N̂(P, y0, η̂) ∈ C∞
(
Sn−2
η̂ ; Ψ

(Elb′ ,N0,Erb′−(n−1))
b,sc ([0,∞]; bΩ

1
2 )
)
,

and in fact the function p̂(y0, τ, η) defined in terms of N̂(P, y0, η̂) for η 6= 0 by (2.16) extends
across η = 0 to an element

p̂(y0, ·, ·) ∈ S
(
Rn−1
η ;A(Elb′ ,Erb′ )

phg ([−1, 1]τ )
)
. (2.23)
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Conversely, any family of operators N ∈ C∞
(
Sn−2
η̂ ; Ψ

(Elb′ ,N0,Erb′−(n−1))
b,sc

)
([0,∞]; bΩ

1
2 )) with

the property that (−1, 1) × (Rn−1 \ {0}) 3 (τ, η) 7→ (1−τ
2 )n−1(|dtt

dt′

t′ |
− 1

2N( η
|η|))(

1
2 |η|(1 +

τ), 1
2 |η|(1− τ)) extends to an element of the space in (2.23) is the reduced normal operator

of an element of Ψ−∞,E0′ (X; 0Ω
1
2X).

Proof. The first part follows directly from the definition (2.15) of N̂(P, y0, η̂); the smooth-
ness of p̂(y0, τ, η) at η = 0 is a consequence of the rapid vanishing of the kernel of P at
ffb. (See also the discussion following (2.14).) The second part is a consequence of the

formula (2.16). The shift of the index set at rbb comes from the factor ( t′

t+t′ )
−(n−1); note

here that t′

t+t′ is a defining function of rbb. �

Remark 2.18 (Decay at ffb and regularity in η). When the Schwartz kernel of an element

P ∈ Ψ
−∞,(Elb′ ,N0,Effb

,Erb′ )
0′ (X; 0Ω

1
2X) has nontrivial index set Effb

at ffb, then p̂(y0, τ, η) is

typically singular (albeit conormal) at η = 0. Since the Schwartz kernel of N̂(P, y0, η̂) is
defined only with reference to η 6= 0, possible (differentiated) δ-distributional contributions
to p̂(y0, τ, η) at η = 0 are lost when passing to the transformed or reduced normal operator.
This problem does not occur however when Re Effb

> 0, and this will always be the case
in this paper; thus, under this condition, if all reduced normal operators of P are zero,

then P vanishes to leading order at ff ′, i.e. P ∈ Ψ
−∞,(Elb′ ,N0+1,Effb

,Erb′ )
0′ (X; 0Ω

1
2X). For

P ∈ Ψ
−∞,(Elb,N0,Erb)
0 (X; 0Ω

1
2X), the corresponding condition is Re(Elb + Erb) > 0 by (2.2).

Corollary 2.19 (0-operator from indicial operator). Let E0, E1 ⊂ C×N0 be two index sets.

Suppose a ∈ A(E0,E1)
phg ([−1, 1]). Then there exists P ∈ Ψ

−∞,(E0,N0,∅,E1+(n−1))
0′ (X; 0Ω

1
2X) with

I(P, y0)(t, t′) = a( t−t
′

t+t′ )|
dt
t

dt′

t′ |
1
2 . If a in addition depends smoothly on a parameter y ∈ Rn−1,

so a = a(y), then one can find a single such P with I(P, y) = a(y) for all y.

Proof. Let χ ∈ C∞c (Rn−1) be identically 1 near 0. Set

q(τ, η) =
(1− τ

2

)n−1
a(τ)χ(η),

which lies in the space (2.23) for Elb′ = E0, Erb′ = E1 + (n − 1). Thus, by (the proof of)
Lemma 2.17, if we set

p(y0, τ, Y ) := (2π)−(n−1)

∫
Rn−1

eiY ·ηq(τ, η) dη,

then p(y0, τ, Y )|dxx
dy
xn−1

dx′

x′
dy′

x′n−1 |
1
2 is the restriction of the Schwartz kernel of an element

P ∈ Ψ
−∞,(E0,N0,∅,E1+(n−1))
0′ (X; 0Ω

1
2X) to ffy0 . By construction, the reduced normal operator

satisfies N(P, y0, 0)(t, t′) = (1−τ
2 )−(n−1)q(τ, 0) = a(τ) where τ = t−t′

t+t′ .

Since the given construction depends smoothly on the point y0, the final statement of
the Corollary follows. �

The next result shows the surjectivity of the reduced normal operator map onto fully
residual operators:

Proposition 2.20 (0-ps.d.o. from fully residual reduced normal operators). Consider an

operator family N(η̂) ∈ C∞(Sn−2; Ψ−∞,(E0,E1)([0,∞]; bΩ
1
2 )) with Re(E0 + E1) > −(n − 1).
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Let y0 ∈ Rn−1 denote a point on ∂X. Then there exists P ∈ Ψ
−∞,(E0,N0,E1+(n−1))
0 (X; 0Ω

1
2X)

with N(P, y0, η̂) = N(η̂) for all η̂ ∈ Sn−2. If N in addition depends smoothly on a parameter
y ∈ Rn−1, so N = N(y, η̂), then one can find P with N(P, y, η̂) = N(y, η̂) for all y, η̂.

The analogous conclusions hold when N(η̂) takes values in Ψ−∞,(α0,α1)([0,∞]; bΩ
1
2 ) for

α0 + α1 > −(n− 1), with P ∈ Ψ
−∞,(α0,α1+(n−1))
0 (X; 0Ω

1
2X) then.

Proof. Write the Schwartz kernel of N(η̂) as

n(η̂; t, t′)
∣∣∣dt
t

dt′

t′

∣∣∣ 1
2
.

Let αi < Re Ei for i = 0, 1 be such that α0 + α1 > −(n − 1). Recalling the definition of

Ψ−∞,(E0,E1)([0,∞]; bΩ
1
2 ) ⊂ Ψ−∞,(α0,α1)([0,∞]; bΩ

1
2 ) from (2.17), we then have estimates

|∂αη̂ (t∂t)
j(t′∂t′)

kn| . tα0t′α1(1 + t+ t′)−N (2.24)

for all α, j, k,N . The polyhomogeneity of n is equivalent to the statement that for all
C,N ∈ R, ∣∣∣∣∂αη̂( ∏

(z,k)∈E0
Re z≤C

(t∂t − z)
)

(t′∂t′)
kn

∣∣∣∣ . tCt′α1(1 + t+ t′)−N , (2.25)

together with analogous estimates capturing the expansion at t′ = 0; see [Mel96, Proposi-
tion 4.14.2].

By analogy with (2.16), define now for τ ∈ (−1, 1) and η ∈ Rn−1 \ {0}

q(τ, η) :=
(1− τ

2

)n−1
n
( η
|η|
, 1

2 |η|(1 + τ), 1
2 |η|(1− τ)

)
. (2.26)

The estimates (2.24) imply∣∣((1− τ2)∂τ
)j
ηα∂βη q(τ, η)

∣∣ . (1 + τ)α0(1− τ)α1+n−1|η|α0+α1(1 + |η|)−N (2.27)

for all j and α, β ∈ Nn−1
0 with |β| ≤ |α|. Thus, the function q can be extended uniquely

across η = 0 as an element of L1
loc((−1, 1)τ × Rn−1

η ) (which is conormal at η = 0), with
rapid decay as |η| → ∞ for any fixed τ ∈ (−1, 1). As such, we can take its inverse Fourier
transform in η,

p(τ, Y ) := (2π)−(n−1)

∫
Rn−1

eiY ·ηq(τ, η) dη. (2.28)

The bound (2.27) implies |p(τ, Y )| . (1 + τ)α0(1 − τ)α1+n−1, and similarly for derivatives
along any power of (1−τ2)∂τ and along Y β∂αY for |β| ≤ |α|. We can prove a better bound for
|Y | ≥ 1 by exploiting the conormal regularity of q at η: we split the domain of integration
and prepare for an integration by parts argument (for improved decay in Y ) by writing

|p(τ, Y )| .
∫
|η|<|Y |−1

|q(τ, η)| dη +

∣∣∣∣∫
|η|>|Y |−1

((
|Y |−2Y ·Dη

)M
eiY ·η

)
q(τ, η) dη

∣∣∣∣
for some M chosen below. Write w := (1 + τ)α0(1 − τ)α1+n−1, then the first integral is
bounded by

w

∫ |Y |−1

0
rα0+α1rn−2 dr . w|Y |−(n−1)−α0−α1 .
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In the second integral, we can integrate by parts M times; each boundary term at |η| =

|Y |−1 can be estimated by w|Y |−k−1
∫
|η|=|Y |−1 |η|α0+α1−k dη ∼ w|Y |−α0−α1−(n−1) for some

k = 0, . . . ,M − 1, and the final bulk integral is bounded from above by

w|Y |−M
∫
|η|>|Y |−1

|η|α0+α1−M (1 + |η|)−N dη . w|Y |−M
∫ ∞
|Y |−1

rα0+α1−M+n−2 dr

. w|Y |−α0−α1−n+1

as well, provided we choose M > α0 + α1 + n− 1. Altogether, we have thus proved

|p(τ, Y )| .
(1 + τ

〈Y 〉

)α0
(1− τ
〈Y 〉

)α1+n−1
, (2.29)

likewise for derivatives along (1− τ2)∂τ and Y β∂αY , |β| ≤ |α|.
This gives the desired conormality of p at lb and rb away from lb ∩ rb. To prove that

indeed p ∈ A(α0,α1+n−1)(ff), ff ⊂ X2
0 , it remains to analyze the behavior of p near the corner

lb ∩ rb ⊂ X2
0 , where we pass to the coordinates

ρlb =
1 + τ

|Y |
, ρrb =

1− τ
|Y |

, Ŷ =
Y

|Y |
;

these are related to the coordinates τ , ρY := |Y |−1, Ŷ near ff ′ ∩ ffb ⊂ X2
0′ by ρY = ρlb+ρrb

2

and τ = ρlb−ρrb
ρlb+ρrb

. While (2.29) thus already gives the desired L∞-bound for p, it is more
transparent to write

p0(ρlb, ρrb, Ŷ ) = p
(ρlb − ρrb

ρlb + ρrb
,

2Ŷ

ρlb + ρrb

)
for the function p in the new coordinates; using (2.26) and (2.28) and the change of variables
η = (ρlb + ρrb)ζ, one finds

p0(ρlb, ρrb, Ŷ ) = (2π)−(n−1)

∫
Rn−1

e2iŶ ·ζρn−1
rb n

( ζ
|ζ|
, ρlb|ζ|, ρrb|ζ|

)
dζ, (2.30)

with the pointwise bound

|p0| . ρα0
lb ρ

α1+n−1
rb (2.31)

from (2.29). Directly differentiating the integral expression (2.30) shows that the derivative
of p0 along any power of ρlb∂ρlb

, ρrb∂ρrb
, and ∂Ŷ obeys the same pointwise bound in view

of (2.24). This proves p ∈ A(α0,α1+n−1)(ff).

For the polyhomogeneous version, note that for any C, the derivative

p0,C(ρlb, ρrb, Ŷ ) :=

( ∏
(z,k)∈E0
Re z≤C

(ρlb∂ρlb
− z)

)
p0(ρlb, ρrb, Ŷ )

obeys the bound (2.31) with α0 replaced by C, and so do all derivatives of p0,C along
any power of ρlb∂ρlb

, ρrb∂ρrb
, ∂Ŷ ; indeed, this follows from (2.25). This, together with an

analogous argument at rb, proves p ∈ A(E0,E1+n−1)
phg (ff) and thus finishes the proof. �
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3. Elliptic parametrix construction

In this section, we shall prove Theorem 1.5 as well as a weaker result (Theorem 3.4)

when the boundary spectrum is not constant. Thus, P ∈ Ψm
0 (X; 0Ω

1
2X) is fully elliptic at

the weight α ∈ R in the sense of Definition 1.2.

3.1. Constant boundary spectrum. In this section, we assume that the boundary spec-
trum Specb(P, y) of P is independent of the boundary point y; we denote it by Specb(P ) ⊂
C× N0.

At first, we focus on the construction of a right parametrix. The usual symbolic para-

metrix construction produces Q0 ∈ Ψ−m0 (X; 0Ω
1
2X) with the property that

PQ0 = I −R0, R0 ∈ Ψ−∞0 (X; 0Ω
1
2X).

Passing to reduced normal operators in local coordinates x ≥ 0, y ∈ Rn−1, η̂ ∈ Sn−2 on the
0-cosphere bundle, this implies

N̂(P, y, η̂)N̂(Q0, y, η̂) = I − N̂(R0, y, η̂).

We wish to find a residual operator Q1 in the large 0-calculus so that (recalling Proposi-
tion 2.13)

N̂(P, y, η̂)N̂(Q1, y, η̂) = N̂(R0, y, η̂) ∈ Ψ
−∞,(∅,N0,∅)
b,sc ([0,∞]; bΩ

1
2 ). (3.1)

For the analysis of the reduced normal operator, we need to work with weighted b-
scattering Sobolev spaces. Thus, let

H
0,(α,r)
b,sc ([0,∞]; bΩ

1
2 ) :=

( t

t+ 1

)α
(1 + t)−rL2([0,∞]; bΩ

1
2 [0,∞]), (3.2)

and define H
s,(α,r)
b,sc ([0,∞]; bΩ

1
2 ) for s ≥ 0 to consist of those elements of the space (3.2)

which remain in this space upon application of any elliptic s-th order b-scattering ps.d.o.

in Ψ
s,(0,0)
b,sc ([0,∞]; bΩ

1
2 ); for s < 0, define H

s,(α,r)
b,sc ([0,∞]; bΩ

1
2 ) as the space of distributions

of the form u1 + Au2 where u1, u2 ∈ H0,(α,r)
b,sc ([0,∞]; bΩ

1
2 ) and A ∈ Ψ

|s|,(0,0)
b,sc ([0,∞]; bΩ

1
2 ) is

elliptic.

We shall use the notation E±, Ê±(j), Ê±, Ê[±, Ê]±, Ê±ff for the index sets in Theorem 1.5.
The following is the technical heart of the paper:

Proposition 3.1 (Inverse of the normal operator). Let P ∈ Ψm
0 (X; 0Ω

1
2X) be fully elliptic

at the weight α, and assume Specb(P, y) is independent of y ∈ ∂X. Then the map

N̂(P, y, η̂) : H
s,(α,r)
b,sc ([0,∞]; bΩ

1
2 )→ H

s−m,(α,r−m)
b,sc ([0,∞]; bΩ

1
2 ) (3.3)

is invertible for all s, r ∈ R, and there exists

P− ∈ Ψ−m0 (X; 0Ω
1
2X) + Ψ

−∞,(Ê+,N0,Ê−+(n−1))
0 (X; 0Ω

1
2X)

so that N̂(P−, y, η̂) = N̂(P, y, η̂)−1 (the inverse of (3.3)) for all y, η̂.

Proof. We shall construct the difference P−−Q0 by solving (3.1); the choice of the weight

α will inform the asymptotics at lb and rb. Recall that by Proposition 2.13, N̂(P, y, η̂) ∈
Ψ
m,(0,m)
b,sc ([0,∞]; bΩ

1
2 ) is an elliptic operator with η̂-independent indicial operator I(P, y).
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• (1) Inverting the b-normal operator. Passing to indicial operators in (3.1), we first solve

I(P, y)I(Q11, y) = I(R0, y). (3.4)

Passing to indicial families and using the full ellipticity at the weight α, we may thus define
q11 using the inverse Mellin transform14 by

q11(y, s) = (2π)−1

∫
Imσ=−α

siσI(P, y, σ)−1I(R0, y, σ) dσ.

The integral converges since the bound (2.22) applies to I(R0, y, σ), and I(P, y, σ)−1 is
meromorphic and satisfies the bound (2.21). We may shift the integration contour to
Imσ = −β < −α where β avoids the discrete set {− Imσ : σ is a pole of I(P, y, σ)−1}; by
the residue theorem, this shows that q11(y, s) has a polyhomogeneous expansion at s = 0
with a conormal remainder of weight β. Similarly, one can shift the contour to Imσ =
γ > −α and obtain a polyhomogeneous expansion at s = ∞ with a conormal remainder

of weight γ. Letting β, γ → ∞, this proves that q11 ∈ C∞(Rn−1
y ,A(E+,E−)

phg ([0,∞]s)) where

E+, E− ⊂ C× N0 are defined around (1.9) (see also Corollary 2.16). See also [Mel93, §5.7].

Using τ = s−1
s+1 and Corollary 2.19, we conclude that there exists

Q11 ∈ Ψ
−∞,(E+,N0,∅,E−+(n−1))
0′ (X; 0Ω

1
2X), I(Q11) = q11. (3.5)

Proposition 2.6 implies that

R11 := I − P (Q0 +Q11) = R0 − PQ11 ∈ Ψ
−∞,(E+,N0,∅,E−+(n−1))
0′ (X; 0Ω

1
2X).

Then Proposition 2.12 and equation (3.4) give

N̂(R11, y, η̂) = N̂(R0, y, η̂)− N̂(P, y, η̂)N̂(Q11, y, η̂) ∈ Ψ
−∞,(E+,N0+1,E−)
b,sc ([0,∞]; bΩ

1
2 ).

It is important to keep track of the stronger information provided by Lemma 2.17, namely
that r̂11(y, τ, η) (defined via a partial Fourier transform of the de-densitized Schwartz kernel

of R11 restricted to ff ′y, or directly in terms of N̂(R11, y, η̂) by the formula (2.16)) is an

element of S (Rn−1
η ;A(E+,E−+(n−1))

phg ([−1, 1]τ )) and moreover, by construction, vanishes at
η = 0.

• (2) Solving away the error at lbb. Define the index sets

Ẽ±(0) := E± ∪ E±, Ẽ±(j + 1) := E± ∪
(
Ẽ±(j) + 1

)
, Ẽ± :=

∞⋃
j=0

Ẽ±(j). (3.6)

We claim that there exists

Q12 ∈ Ψ
−∞,(Ẽ+,N0,∅,∅)
0′ (X; 0Ω

1
2X) = Ψ

−∞,(Ẽ+,N0,∅)
0 (X; 0Ω

1
2X) (3.7)

so that the reduced normal operator of the remaining error

R12 := I − P (Q0 +Q11 +Q12) = R11 − PQ12 ∈ Ψ
−∞,(Ẽ+,N0,∅,E−+(n−1))
0′ (X; 0Ω

1
2X) (3.8)

has trivial index set at lbb, that is,

N̂(R12, y, η̂) = N̂(R11, y, η̂)− N̂(P, y, η̂)N̂(Q12, y, η̂) ∈ Ψ
−∞,(∅,N0+1,E−)
b,sc ([0,∞]; bΩ

1
2 ). (3.9)

14We recall here that the Mellin transform of u(s) is defined as û(σ) :=
∫∞

0
s−iσu(s) ds

s
, and the inverse

Mellin transform of v(σ) is defined as s 7→
∫

Imσ=−α s
iσv(σ) dσ. Depending on the choice of α, the inverse

Mellin transform of v = û need not be equal to u (though this is e.g. true for u ∈ L2([0,∞], |ds
s
|) and α = 0).
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In order to accomplish this, we first make a general observation. If Flbb
,Fffb,0

⊂ C×N0

are any index sets and B ∈ Ψ
−∞,(Flbb

,Fffb,0
,∅)

b,sc ([0,∞]; bΩ
1
2 ), then N̂(P, y, η̂) ◦B is to leading

order at lbb given by the action of I(P, y), lifted to the left factor, on the polyhomogeneous
expansion of B at lbb. More precisely, consider local coordinates

s =
t

t′
∈ [0, 1), t′ ∈ [0,∞] (3.10)

near lbb ⊂ [0,∞]2b,sc. Then |dtt
dt′

t′ |
1
2 = |dss

dt′

t′ |
1
2 . We define Ilbb

(P, y) to have Schwartz kernel

given by the same formula as I(P, y) in (2.19) but in the s-coordinates, so

Ilbb
(P, y) = K̂0

P

( s
s′
, 0, 0, y

) ∣∣∣ds
s

ds′

s′

∣∣∣ 1
2
.

This acts fiberwise (on each fiber of [0, 1) × [0,∞] → [0,∞]) on extendible distributions
with compact support on [0, 1)s × [0,∞]t′ . With χ ∈ C∞c ([0, 1)s × [0,∞]t′) ⊂ C∞([0,∞]2b,sc)

denoting a cutoff which is identically 1 near {0} × [0,∞], we then have

χ
(
N̂(P, y, η̂) ◦B − Ilbb

(P, y) ◦ (χB)
)
∈ Ψ

−∞,(Flbb
+1,Fffb,0

,∅)
b,sc ([0,∞]; bΩ

1
2 ). (3.11)

Indeed, recalling Definition 2.8, the Schwartz kernel of χN̂(P, y, η̂) ◦B at (s, t′) is equal to

χ
( t
t′
, t′
)∫

K̂0
P

( t
t′′
, t′′η̂, 0, y

)
KB

( t′′
t′
, t′
) dt′′

t′′

∣∣∣dt
t

dt′

t′

∣∣∣ 1
2

= χ(s, t′)

∫
K̂0
P

( s
s′
, s′t′η̂, 0, y

)
KB(s′, t′)

ds′

s′

∣∣∣dt
t

dt′

t′

∣∣∣ 1
2

where (s′, t′) = ( t
′′

t′ , t
′) 7→ KB(s′, t′) is polyhomogeneous with index set Flbb

, resp. Fffb,0
at

s′ = 0, resp. t′ = 0. Passing to Ilbb
(P, y) amounts to setting the second argument of K̂0

P

to 0; this produces an error term of the same form but with an additional factor s′ = s s
′

s .
The additional factor of s is responsible for the shift of the index set at lbb by 1 in (3.11);

note that the infinite order vanishing of K̂0
P ( ss′ , η, 0, y) at s

s′ = 0 allows one to absorb the

factor s′

s .

Returning to the task at hand, the first step is to find an operator family B0(y, η̂) ∈
Ψ
−∞,(Ê+(0),N0+1,∅)
b,sc ([0,∞]; bΩ

1
2 ), with Schwartz kernel B0(y, η̂)(s, t′)|dss

dt′

t′ |
1
2 vanishing for

s ≥ 1
2 (using the coordinates (3.10)), so that

N̂(R11, y, η̂)− N̂(P, y, η̂) ◦B0(y, η̂) ∈ Ψ
−∞,(Ẽ+(0)+1,N0+1,E−)
b,sc ([0,∞]; bΩ

1
2 ) (3.12)

has index set at lbb improved by 1. In view of (3.11), this holds provided

χ
(
N̂(R11, y, η̂)(st′, t′)− Ilbb

(P, y) ◦B0(y, η̂)(s, t′)
)
∈ Ψ

−∞,(Ẽ+(0)+1,N0+1,∅)
b,sc ([0,∞]; bΩ

1
2 ).

(Here the arguments of N̂ are t = st′ and t′.) We can explicitly construct such an operator
B0 using the (inverse) Mellin transform: with χ0 ∈ C∞c ([0, 1

2)) identically 1 on [0, 1
4 ], we

define

n(R11, y, η̂)(σ, t′) :=

∫ ∞
0

s−iσχ0(s)

(
N̂(R11, y, η̂)(st′, t′)

∣∣∣ds
s

dt′

t′

∣∣∣− 1
2

)
ds

s
(3.13)
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and then set

B0(y, η̂)(s, t′) := (2π)−1

∫
Imσ=−α

siσχ0(s)I(P, y, σ)−1n(R11, y, η̂)(σ, t′) dσ
∣∣∣ds
s

dt′

t′

∣∣∣ 1
2
.

Note then that n(R11, y, η̂)(σ, t′) is meromorphic in σ with divisor −iE+, and thus the
integrand defining B0(y, η̂) is meromorphic and its divisor in Imσ > −α is contained in

−i(E+ ∪ E+) = −iẼ+(0). For later use, we note that if we define

α0 := min
(z,k)∈E+

Re z (3.14)

and let ε ∈ (0, 1) be such that Re z /∈ (α0 − ε, α0) for all z ∈ C for which −iz is a pole of
I(P, y, σ)−1, then we may equivalently integrate over Imσ = −(α0 − ε

2).

Having thus arranged (3.12), we next show that the family B0(y, η̂) is the reduced nor-
mal operator of an element of the large extended 0-calculus. With the partially Fourier
transformed Schwartz kernels p̂ and r̂11 of the normal operators of P,R11 at hand, we need
to study (cf. (2.16) relative to B0, and note that t

t′ = 1+τ
1−τ when τ = t−t′

t+t′ )

q̂
(0)
12 (y, τ, η) :=

(1− τ
2

)n−1
(∣∣∣dt

t

dt′

t′

∣∣∣− 1
2
B0

(
y,

η

|η|

))(1 + τ

1− τ
, 1

2 |η|(1− τ)
)

=
(1− τ

2

)n−1
(2π)−1

∫
Imσ=−α

(1 + τ

1− τ

)iσ
χ0

(1 + τ

1− τ

)
× I(P, y, σ)−1n

(
R11, y,

η

|η|

)(
σ, 1

2 |η|(1− τ)
)

dσ

=
(1− τ

2

)n−1
χ0

(1 + τ

1− τ

)
(2π)−1

×
∫

Imσ=−α

(1 + τ

1− τ

)iσ
I(P, y, σ)−1

×
∫ ∞

0
s′−iσχ0(s′)(1 + s′)n−1r̂11

(
y,
s′ − 1

s′ + 1
, (s′ + 1)

1− τ
2

η
) ds′

s′
dσ.

In the passage to the last line, we used (3.13) as well as (2.15) for R11. Changing variables

via κ = s′−1
s′+1 (i.e. s′ = 1+κ

1−κ), this equals

q̂
(0)
12 (y, τ, η) =

(1− τ
2

)n−1
χ0

(1 + τ

1− τ

)
(2π)−1

×
∫

Imσ=−α

(1 + τ

1− τ

)iσ
I(P, y, σ)−1

∫ ∞
0

(1 + κ

1− κ

)−iσ
r̃11

(
y, κ, (1− τ)η

) 2 dκ

1− κ2
dσ,

(3.15)

where r̃11(y, κ, ζ) = χ0(1+κ
1−κ)(1−κ

2 )−(n−1)r̂11(y, κ, ζ
1−κ) is supported in κ < 0 and thus lies in

S
(
Rζ ;A

(E+,∅)
phg ([−1, 1]κ)

)
with smooth dependence on y ∈ Rn−1. The inner (κ-)integral in (3.15) is a Mellin transform,
and thus it gives a Schwartz function in (1−τ)η (with smooth dependence on y) with values
in the space of meromorphic functions of σ ∈ C whose divisor is contained in−iE+ and which
vanish rapidly at real infinity. Multiplication by I(P, y, σ)−1 (whose divisor is contained in
−iE+ ∪ iE−) increases the divisor at most to −i(E+ ∪ E+) ∪ iE−, and therefore the outer
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(σ-)integral is Schwartz in (1−τ)η, smooth in y, and valued in A(Ẽ+(0),E−)
phg ([−1, 1]τ ). Taking

into account the cutoff χ0(1+τ
1−τ ) in (3.15), we thus conclude that

q̂
(0)
12 (y, τ, η) ∈ S

(
Rn−1
η ;A(Ẽ+(0),∅)

phg ([−1, 1]τ )
)

inherits the smooth dependence on η across η = 0 from r̂11(y, τ, η), and like the latter
vanishes at η = 0. By (the proof of) the second part of Lemma 2.17, this implies the
existence of an element of

Q
(0)
12 ∈ Ψ

−∞,(Ẽ+(0),N0,∅,∅)
0′ (X; 0Ω

1
2X), N̂(Q

(0)
12 , y, η̂) = B0(y, η̂).

Thus, setting

R
(0)
11 := R11 − PQ(0)

12 ∈ Ψ
−∞,(Ẽ+(0),N0,∅,E−)
0′ (X; 0Ω

1
2X),

we have N̂(R
(0)
11 , y, η̂) ∈ Ψ

−∞,(Ẽ+(0)+1,N0+1,E−)
b,sc ([0,∞]; bΩ

1
2 ), and indeed the sharper regular-

ity across η = 0 captured by Lemma 2.17.

We then solve away the improved leading order term of R
(0)
11 at lbb using the same argu-

ment, but now taking the Mellin transform along a contour Imσ = −α′ lower in the complex
plane. Concretely, with α0 defined by (3.14), we have α0 + 1 = min

(z,k)∈Ẽ+(0)+1
Re z; we

then pick ε ∈ (0, 1) such that no (z, k) ∈ Ẽ+(0) + 1 has real part in (α0 + 1− ε, α0 + 1), and
take α′ = α0 + 1− ε

2 . Setting

E ′(1) := (Ẽ+(0) + 1)∪{(z, k) ∈ E : Re z ≥ α0 + 1} ⊂ Ẽ+(1),

this produces an operator B1(y, η̂) ∈ Ψ
−∞,(E ′(1),N0+1,∅)
b,sc ([0,∞]; bΩ

1
2 ) in the range of the

reduced normal operator map, and indeed with q̂
(1)
12 defined analogously to (2.16) (relative

to B1) satisfying

q̂
(1)
12 (y, τ, η) ∈ S

(
Rn−1
η ;A(E ′(1),∅)

phg ([−1, 1]τ )
)
, q̂

(1)
12 (y, τ, 0) = 0,

with the property that

N̂(R
(1)
11 , y, η̂) := N̂(R

(0)
11 , y, η̂)− N̂(P, y, η̂)B1(y, η̂) ∈ Ψ

−∞,(E ′(1)+1,N0+1,E−)
b,sc ([0,∞]; bΩ

1
2 ).

Note that E ′(1) + 1 ⊂ {(z, k) ∈ Ẽ+(1) + 1: Re z ≥ α0 + 2} encodes one more order of decay

than the index set Ẽ+(0) + 1 of the previous error term R
(0)
11 .

Proceeding iteratively, we obtain a sequence of partially Fourier transformed, de-densi-
tized Schwartz kernels

q̂
(j)
12 (y, τ, η) ∈ S

(
Rn−1
η ;A(E ′(j),∅)

phg ([−1, 1]τ )
)
, q̂

(j)
12 (y, τ, 0) = 0,

E ′(j) := (E ′(j − 1) + 1)∪{(z, k) ∈ E : Re z ≥ α0 + j} ⊂ Ẽ+(j),

corresponding to reduced normal operators Bj(y, η̂) ∈ Ψ
−∞,(E ′(j),N0+1,∅)
b,sc ([0,∞]; bΩ

1
2 ) via

the relationship (2.16), so that

N̂(R
(j)
11 , y, η̂) := N̂(R

(j−1)
11 , y, η̂)− N̂(P, y, η̂)Bj(y, η̂) ∈ Ψ

−∞,(E ′(j)+1,N0+1,E−)
b,sc ([0,∞]; bΩ

1
2 ).
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We then asymptotically sum the q
(j)
12 , j = 0, 1, 2, . . ., at τ = −1; noting that S (Rn−1) =

A∅phg(Rn−1), this is a standard asymptotic sum for polyhomogeneous conormal distributions

on [−1, 0)τ × Rn−1. Thus, there exists q12 = q12(y, τ, η),

q12 ∼
∑
j≥0

q
(j)
12 ∈ S

(
Rn−1
η ;A(Ẽ+,∅)

phg ([−1, 1]τ )
)
, q12(y, τ, 0) = 0,

with smooth y-dependence, corresponding to a reduced normal operator

B(y, η̂) := N̂(Q12, y, η̂) ∈ Ψ
−∞,(Ẽ+,N0+1,∅)
b,sc ([0,∞]; bΩ

1
2 )

of an operatorQ12 as in (3.7), so that (3.8)–(3.9) hold. While (3.8) states that the restriction

of the Schwartz kernel of R12 to ff ′ has index set Ẽ+ at lb′ ∩ ff ′, Lemma 2.17 and the
membership (3.9) show that this can be improved to the index set ∅. Thus, we have

N̂
(
P (Q0 +Q11 +Q12), y, η̂

)
= I − N̂(R3, y, η̂),

R3 ∈ Ψ
−∞,(∅,N0,∅,E−+(n−1))
0′ (X; 0Ω

1
2X) = Ψ

−∞,(∅,N0,E−+(n−1))
0 (X; 0Ω

1
2X),

N̂(R3, y, η̂) = N̂(R12, y, η̂) ∈ Ψ
−∞,(∅,N0+1,E−)
b,sc ([0,∞]; bΩ

1
2 ),

• (3) Solving away the error at ffb,0. We now solve away the errorR3 using an asymptotic

Neumann series argument. To this end, note that by Proposition 2.12, we have

Rj3 ∈ Ψ
−∞,(∅,N0,∪j(E−+(n−1)))
0 (X; 0Ω

1
2X),

N̂(Rj3, y, η̂) = N̂(R3, y, η̂)j ∈ Ψ
−∞,(∅,N0+j,Ê−(j)+(n−1))
b,sc ([0,∞]; bΩ

1
2 ) (3.16)

for any j ∈ N, where ∪j E = E ∪ · · · ∪ E (j extended unions). The stated membership of Rj3
shows that Lemma 2.17 is applicable, and in view of the stated membership of N̂(Rj3, y, η̂),

we may replace Rj3 by an operator

R
(j)
3 ∈ Ψ

−∞,(∅,N0,Ê−+(n−1))
0 (X; 0Ω

1
2X)

with N̂(Rj3, y, η̂) = N(R
(j)
3 , y, η̂); the point is that the index set of R

(j)
3 at rb is fixed.

We wish to take an asymptotic sum of N̂(R
(j)
3 , y, η̂) at ffb,0 while remaining in the range

of the reduced normal operator map; this is most easily done by working with the partially

Fourier transformed restricted Schwartz kernels R
(j)
3 |ff′ ,

r̂
(j)
3 (y, τ, η) ∈ S

(
Rn−1
η ;A(∅,Ê−+(n−1))

phg ([−1, 1]τ )
)
.

Note that by (2.16) and (3.16), we have |r̂(j)
3 (y, τ, η)| . (1 + τ)N (1 − τ)β0+(n−1)|η|j for

|η| < 1, and with β0 < Re Ê− and N ∈ R; but since r̂
(j)
3 is smooth in η, this implies that

r̂
(j)
3 in fact vanishes together with all its derivatives of order ≤ j − 1 at η = 0. We record

this as

r̂
(j)
3 ∈ IjS

(
Rn−1
η ;A(∅,Ê−+(n−1))

phg ([−1, 1]τ )
)
,

where IjS (Rn−1) is the space of Schwartz functions vanishing at 0 together with all their
derivatives of order ≤ j − 1.
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We can thus asymptotically sum the r̂
(j)
3 at η = 0, obtaining

r̃3(y, τ, η) ∈ S
(
Rn−1
η ;A(∅,Ê−+(n−1))

phg ([−1, 1]τ )
)
,

r̃3 −
N−1∑
j=1

r̂
(j)
3 ∈ INS

(
Rn−1;A(∅,Ê−+(n−1))

phg ([−1, 1])
)
, N ∈ N.

Upon taking the inverse Fourier transform of r̃3 in η, we obtain, upon extension off ff ′, an
operator

R̃3 ∈ Ψ
−∞,(∅,N0,Ê−+(n−1))
0 (X; 0Ω

1
2X), (3.17)

N̂(R̃3, y, η̂)−
N−1∑
j=1

N̂(Rj3, y, η̂) ∈ Ψ
−∞,(∅,N0+N,Ê−)
b,sc ([0,∞]; bΩ

1
2 ), N ∈ N.

Therefore, I+ R̃3 is an approximate inverse of I−R3 on the reduced normal operator level,
in the sense that

(I −R3)(I + R̃3) = I −R′

where

R′ ∈ Ψ
−∞,(∅,N0,Ê−+(n−1))
0 (X; 0Ω

1
2X),

N̂(R′, y, η̂) ∈ Ψ
−∞,(∅,∅,Ê−)
b,sc ([0,∞]; bΩ

1
2 ) = Ψ−∞,(∅,Ê−)([0,∞]; bΩ

1
2 ).

(3.18)

• (4) Full right parametrix. The memberships (3.5) and (3.7) give Q0 + Q11 + Q12 ∈

Ψ−m0 (X; 0Ω
1
2X)+Ψ

−∞,(Ẽ+,N0,E−+(n−1))
0 (X; 0Ω

1
2X). Enlarging the index set of this operator

as well as of (3.17) at rb to Ẽ−+ (n− 1) for symmetry reasons (already having in mind the
construction of a left parametrix below), Proposition 2.2 shows that

(Q0 +Q11 +Q12)(I + R̃3) ∈ Ψ−m0 (X; 0Ω
1
2X) + Ψ−∞,Ẽ

′′

0 (X; 0Ω
1
2X),

with Ẽ ′′ = (Ẽlb, Ẽ ′ff , Ẽ ′rb) where we can take

Ẽlb = Ẽ+ ∪ Ẽ+, Ẽ ′ff = N0 ∪
(
Ẽ+ + Ẽ− + (n− 1)

)
, Ẽ ′rb = (Ẽ− ∪ Ẽ−) + (n− 1).

Setting Ẽ ′ = (Ẽlb,N0, Ẽ ′rb), extension off ff gives an operator

Q′1 ∈ Ψ−m0 (X; 0Ω
1
2X) + Ψ−∞,Ẽ

′

0 (X; 0Ω
1
2X) (3.19)

with the property that

N(PQ′1, y, η̂) = I −N(R′, y, η̂)

with R′ as in (3.18).

• (5) Left parametrix; true inverse. Analogous arguments (or application of the right

parametrix construction to P ∗ followed by taking adjoints) produce a left parametrix Q̃′1
in the same space as Q′1 in (3.19) with

N(Q̃′1P, y, η̂) = I −N(R̃′, y, η̂),

R̃′ ∈ Ψ
−∞,(Ẽ+,N0,∅)
0 (X; 0Ω

1
2X), N̂(R̃′, y, η̂) ∈ Ψ−∞,(Ẽ+,∅)([0,∞]; bΩ

1
2 ).
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Since N̂(R′, y, η̂) maps H
s−m,(α,r−m)
b,sc ([0,∞]; bΩ

1
2 ) (for any s, r) into A∅phg([0,∞]; bΩ

1
2 ), it

is a compact operator on H
s−m,(α,r−m)
b,sc ([0,∞]; bΩ

1
2X); similarly, N̂(R̃′, y, η̂) is a compact

operator on H
s,(α,r)
b,sc ([0,∞]; bΩ

1
2 ) (as it maps this space into H

∞,(α+ε,∞)
b,sc ([0,∞]; bΩ

1
2 ) for

ε > 0 chosen so small that α+ ε < Re Ẽ+). Therefore,

N̂(P, y, η̂) : H
s,(α,r)
b,sc ([0,∞]; bΩ

1
2 )→ H

s−m,(α,r−m)
b,sc ([0,∞]; bΩ

1
2 ) (3.20)

is Fredholm, with approximate right, resp. left inverse N̂(Q′1, y, η̂), resp. N̂(Q̃′1, y, η̂). The

full ellipticity assumption on P now implies that N̂(P, y, η̂) has trivial kernel and cokernel
(for the particular value of α, but for any s, r), and thus is invertible. The Schwartz kernel
of the inverse of (3.20) can then be related to the left and right parametrices constructed
above via

N̂(P, y, η̂)−1 = N̂(Q′1, y, η̂) + N̂(Q̃′1, y, η̂)N̂(R′, y, η̂) + N̂(R̃′, y, η̂)N̂(P, y, η̂)−1N̂(R′, y, η̂).
(3.21)

We first claim that

N̂(R̃′, y, η̂)N̂(P, y, η̂)−1N̂(R′, y, η̂) ∈ Ψ−∞,(Ẽ+,Ẽ−)([0,∞]; bΩ
1
2 ), (3.22)

with smooth dependence on y and η̂. Indeed, the Schwartz kernel of (3.22) can be computed

by applying N̂(P, y, η̂)−1 and then the (smoothing) operator N(R̃′, y, η̂) to the restrictions
of the Schwartz kernel of N(R′, y, η̂) to level sets of t′ (see step (6) below for a more delicate
version of this argument); the statement (3.22) follows from this description. Smoothness in
y and η̂ follows by direct differentiation and repeated application of (the inverse of) (3.20).

By Proposition 2.20 then, the operator (3.22) lies in the range of the reduced normal

operator; it is equal to N(R′′, y, η̂) for some R′′ ∈ Ψ
−∞,(Ẽ+,N0,Ẽ−+(n−1))
0 (X; 0Ω

1
2X). Taking

P− to be an extension off ff of Q′1 + Q̃′1R
′ +R′′ (cf. (3.21)), we have thus shown that

N̂(P, y, η̂)−1 = N̂(P−, y, η̂), P− ∈ Ψ−m0 (X; 0Ω
1
2X) + Ψ−∞,Ẽ0 (X; 0Ω

1
2X),

where Ẽ = (Ẽlb,N0, Ẽrb) with Ẽrb := Ẽ ′rb ∪ (Ẽ− + (n− 1)) in view of Proposition 2.2.

• (6) Sharpening of the index sets. We first claim that the index set of P−|ff at lb is

contained in Ê+; to prove this, we need to show that N̂(P−, y, η̂) has index set Ê+ at lbb

for all y, η̂. For this purpose, fix t′0 ∈ (0,∞) and a cutoff function χ ∈ C∞c ([0,∞)) with
χ(t) = 1 for t < 1

2 t
′
0 and χ(t) = 0 for t > 3

4 t
′
0. In the coordinates t ≥ 0, t′ ∈ (0,∞) on

[0,∞]2b,sc near lbb \ (ffb,0 ∪ ffb,∞), the cut-off restriction

qt′0(t) := χ(t)p−
t′0

(t) ∈ AẼlbphg([0, t′0)t;
bΩ

1
2 ), p−

t′0
(t) :=

∣∣∣dt′
t′

∣∣∣− 1
2
N̂(P−, y, η̂)(t, t′0),

lies in the approximate nullspace of N̂(P, y, η̂); to wit,

N̂(P, y, η̂)qt′0 = χN̂(P, y, η̂)p−
t′0

+ [N̂(P, y, η̂), χ]p−
t′0
∈ A∅phg

(
[0,∞); bΩ

1
2 [0,∞)

)
.

Here we used that N̂(P, y, η̂)p−
t′0

is supported at t = t′0 and thus outside of suppχ; and for

the second term we also used that the Schwartz kernel of [N̂(P, y, η̂), χ] vanishes to infinite
order at all boundary hypersurfaces of [0,∞]b,sc and is supported in t, t′ < t′0. But as in
step (2) of the proof, we can then use the (inverse) Mellin transform and the indicial family



32 PETER HINTZ

to show that qt′0 ∈ A
Ê+
phg([0,∞); bΩ

1
2 [0,∞)). This proves the claim. By extension off ff, we

may thus replace the index set Ẽlb of P− at lb by Ê+.

The index set of P−|ff at rb can be similarly improved by using the fact that

N̂(P, y, η̂)∗N̂(P−, y, η̂)∗ = 0,

where we define adjoints with respect to the L2([0,∞]; bΩ
1
2 ) inner product. Note that

(z, k) ∈ Specb(N̂(P, y, η̂)∗) if and only if (−z̄, k) ∈ Specb(N̂(P, y, η̂)); indeed, the inverse of

I
(
N̂(P, y, η̂)∗, y, σ

)
= I
(
N̂(P, y, η̂), y, σ̄

)
has a pole at −iz of order ≥ k + 1 iff iz̄ is a pole of I(N̂(P, y, η̂), y, σ)−1 of order ≥ k + 1.
We thus conclude that P ∗ is fully elliptic at the weight −α, and moreover that

{(z, k) ∈ Specb(N̂(P, y, η̂)∗) : Re z > −α}

= {(−z, k) : (z̄, k) ∈ Specb(N̂(P, y, η̂)), Re z < α} = {(z̄, k) : (z, k) ∈ E−}.

On the other hand, the index set of N̂(P−, y, η̂)∗ at lbb is {(z̄, k) : (z, k) ∈ Ẽrb}. Following

the previous arguments thus shows that we can shrink the index set of N̂(P−, y, η̂)∗ at lbb

to the set of (z, k) so that (z̄, k) ∈ Ê−; that is, we can replace Ẽrb by Ê−. The proof is
complete. �

End of proof of Theorem 1.5. We may now apply Proposition 3.1 to the task (3.1): we set

Q1 = P−R0 ∈ Ψ
−∞,(Ê+,N0,Ê−+(n−1))
0 (X; 0Ω

1
2X). We then have

P (Q0 +Q1) = I −R1, R1 := R0 − PQ1 ∈ Ψ
−∞,(Ê+,N0+1,Ê−+(n−1))
0 (X; 0Ω

1
2X),

since all normal operators of R1 vanish (see also Remark 2.18).

• Solving away the error at lb. This is analogous to the corresponding step in the inver-
sion of the normal operator and involves, via the Mellin transform, the inversion of the

indicial family I(P, y, σ). Thus, there exists Q2 ∈ Ψ
−∞,(Ê+,N0+1,∅)
0 (X; 0Ω

1
2X) so that

P (Q0 +Q1 +Q2) = I −R2, R2 := R1 − PQ1 ∈ Ψ
−∞,(∅,N0+1,Ê−+(n−1))
0 (X; 0Ω

1
2X).

Here, naive accounting of index sets would suggest merely

Q2 ∈ Ψ
−∞,(Ẽ+(0),N0+1,∅)
0 (X; 0Ω

1
2X),

where we recall (3.6). The fact that we can take Ê+ as the index set of Q2 at lb can be
seen by adapting the argument in step (6) of the proof of Proposition 3.1 to the 0-setting;
the only difference is that now we need to localize also in the boundary variables. Thus,
denote the Schwartz kernel of Q0 +Q1 +Q2 by

q(x, y, x′, y′)
∣∣∣dx
x

dy

xn−1

dx′

x′
dy′

x′n−1

∣∣∣ 1
2
,

fix z′0 = (x′0, y
′
0) with x′0 > 0 and y′0 ∈ Rn−1, and consider the restriction

qz′0 = q(−,−, x′0, y′0)
∣∣∣dx
x

dy

xn−1

∣∣∣ 1
2 ∈ AẼ+(0)

phg (X; 0Ω
1
2X)

Let
K = [0, x′0)x × {y ∈ Rn−1 : |y − y′0| < x′0}
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and fix a sequence of cutoff functions χ0, χ1, . . . ∈ C∞c (K) so that

χj(x, y) = 1, x ≤ 1
2x
′
0, |y − y′0| < 1

2x
′
0; suppχj ⊂ {χj−1 = 1}.

We have χ0qz′0 ∈ A
Ẽ+(0)
phg (K; 0Ω

1
2K). We claim that, for j ∈ N0,

χj+1P (χjqz′0) = χj+1Pqz′0 + χj+1[P, χj ]qz′0 ∈ A
∅
phg(K; 0Ω

1
2K). (3.23)

Indeed, for the first term, we note that Pqz′0 is given by the restriction of the Schwartz

kernel of I −R2 to (x′, y′) = z′0 (ignoring half-density factors) and thus vanishes to infinite
order at ∂X and has singular support equal to (x, y) = z′0, thus outside of suppχj+1. For

the second term, note simply that χj+1[P, χj ] ∈ Ψ
m−1,(∅,∅,∅)
0 (X; 0Ω

1
2X) and use Lemma 2.4.

Starting with j = 0 in (3.23) and passing to indicial operators shows that χ0qz′0 must lie in

AE+phg up to an error term in Aα0+1 where α0 was defined in (3.14). Using this information

in equation (3.23) with j = 1 gives χ1qz′0 ≡ A
Ê+(1)
phg mod Aα0+2; and upon using induction,

we conclude that χ∞qz′0 ∈ A
Ê+
phg(K; 0Ω

1
2K) where χ∞ ∈ C∞c (K) has suppχ∞ ⊂ {χj = 1}

for all j. Since we can take χ∞ to be equal to 1 in a neighborhood of (0, y′0), and since x′0
and y′0 were arbitrary, we conclude that we can reduce the index set of Q2 at lb to Ê+, as
claimed.

• Solving away the error at ff. This is again an asymptotic Neumann series argument.

Let Ψ
−∞,(∅,N0+1,Ê[−+(n−1))

0 (X; 0Ω
1
2X) 3 R̃2 ∼

∑∞
j=1R

j
2, where we recall Ê[− = Ê− ∪ (Ê− +

1)∪ · · · . Then Proposition 2.2 and the fact that Q0 + Q1 + Q2 ∈ Ψ−m0 (X; 0Ω
1
2X) +

Ψ
−∞,(Ê+,N0,Ê−+(n−1))
0 (X; 0Ω

1
2X) give

Q := (Q0 +Q1 +Q2)(I + R̃2) ∈ Ψ−m0 (X; 0Ω
1
2X) + Ψ

−∞,(Ê+,Ê−ff ,Ê
]
−)

0 (X; 0Ω
1
2X); (3.24)

and we have

PQ = I −R, R ∈ Ψ
−∞,(∅,∅,Ê[−+(n−1))

0 (X; 0Ω
1
2X) ⊂ Ψ−∞,(∅,Ê

[
−+(n−1))(X; 0Ω

1
2X).

The construction of a left parametrix is analogous, or one can take Q′ to be the adjoint
of a full right parametrix for P ∗. The proof of Theorem 1.5 is complete. �

Remark 3.2 (Index set at the right boundary). The index set of the right parametrix Q at
rb can in general not be reduced without modifying Q. Indeed, note that one can add to Q

any element of Ψ
−∞,(∅,F)
0 (X; 0Ω

1
2X) for any index set F , and one will still have PQ = I−R

with R fully residual. That is, sharpening Q at rb to a smaller index set requires either
more careful bookkeeping or a suitable modification of Q. (An analogous comment applies
to the index set of the left parametrix Q′ at lb.)

When X is compact, we now use these parametrices to prove the Fredholm property

of fully elliptic 0-operators acting between the weighted 0-Sobolev spaces ρaHs
0(X; 0Ω

1
2X)

defined before the statement of Corollary 1.6; here ρ ∈ C∞(X) is a boundary defining
function of X. We remark that

L2(X; 0Ω
1
2X) = ρ

n−1
2 L2(X; bΩ

1
2X)

(with equivalent norms), similarly for weighted 0-Sobolev spaces valued in b-1
2 -densities.
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Corollary 3.3 (Generalized inverse). Suppose X is compact. Let P ∈ Ψm
0 (X; 0Ω

1
2X) be

fully elliptic at the weight α. Then

P : ρα−
n−1

2 Hs
0(X; 0Ω

1
2X)→ ρα−

n−1
2 Hs−m

0 (X; 0Ω
1
2X) (3.25)

(i.e. P : ραHs
0(X; bΩ

1
2X)→ ραHs−m

0 (X; bΩ
1
2X)) is a Fredholm operator. Denote by

G : ρα−
n−1

2 Hs−m
0 (X; 0Ω

1
2X)→ ρα−

n−1
2 Hs

0(X; 0Ω
1
2X)

its generalized inverse; that is, G|(ranP )⊥ ≡ 0, and for f ∈ ranP we set Gf = u where u
is the unique solution of Pu = f with u ⊥ kerP ; here, orthogonal complements are defined

with respect to the ρα−
n−1

2 L2(X; 0Ω
1
2X) inner product. Then, with index sets defined as in

Theorem 1.5, we have

G ∈ Ψ−m0 (X; 0Ω
1
2X) + Ψ

−∞,(Ê+ ∪ (Ê−+2α),Eff ,(Ê− ∪ (Ê+−2α)+(n−1))
0 (X; 0Ω

1
2X),

where with Êff := N0 ∪ (Ê]+ + Ê]− + (n− 1)) we put15

Eff = Êff ∪
((
Êff +

[
2(Ê[+ − α) ∪ 2(Ê[− + α)

]
+ (n− 1)

)
∪
(
Ê]+ + Ê]− + (n− 1)

))
.

Furthermore, the orthogonal projections Π = I − GP to the nullspace of P in (3.25) and
Π′ = I − PG to the orthogonal complement of the range of P satisfy

Π ∈ Ψ−∞,(Ê+,Ê+−2α+(n−1))(X; 0Ω
1
2X),

Π′ ∈ Ψ−∞,(Ê−+2α,Ê−+(n−1))(X; 0Ω
1
2X).

(3.26)

If P is invertible, then G = P−1 ∈ Ψ−m0 (X; 0Ω
1
2X) + Ψ

−∞,(Ê+,Êff ,Ê−+(n−1))
0 (X; 0Ω

1
2X).

Proof. Let Q,Q′, R,R′ be as in Theorem 1.5. Thus PQ = I −R, with R a compact opera-

tor on ρα−
n−1

2 Hs−m
0 (X; 0Ω

1
2X) (since it maps ρα−

n−1
2 Hs−m

0 (X; 0Ω
1
2X)→ A∅phg(X; 0Ω

1
2X),

and the inclusion of this space back into ρα−
n−1

2 Hs−m
0 (X; 0Ω

1
2X) is compact); likewise

Q′P = I − R′, with R′ compact on ρα−
n−1

2 Hs
0(X; 0Ω

1
2X) (as it maps this space into

Aα+ε(X; 0Ω
1
2X) for some small ε > 0, the inclusion of which into ρα−

n−1
2 Hs

0(X; 0Ω
1
2X)

is compact). Therefore, P is Fredholm.

Now, every u ∈ kerP in the domain of (3.25) satisfies u = −R′u ∈ Aα(X; 0Ω
1
2X);

but then Pu = 0 in fact implies u ∈ AÊ+phg(X; 0Ω
1
2X) in view of the same arguments as

around (3.23). Thus, if u1, . . . , uN ∈ AÊ+phg(X; 0Ω
1
2X) is an orthonormal basis of kerP ,

then the orthogonal projection Π =
∑N

j=1〈−, uj〉ρα−n−1
2 L2(X;0Ω

1
2X)

uj to kerP has Schwartz

kernel

X ×X 3 (z, z′) 7→
N∑
j=1

uj(z)ρ
′−2α+(n−1)uj(z

′),

where ρ′ is the lift of the boundary defining function of X to the second factor. This implies
the membership of Π in (3.26).

15We make no attempt to optimize the index set Eff here. We merely point out that Eff is equal to the
union of N0 with an index set all of whose elements (z, k) have Re z > n− 1.
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To control Π′, we consider its adjoint (Π′)∗ = I − G∗P ∗, which is the orthogonal

projection to kerP ∗ in ρ−α+n−1
2 L2(X; 0Ω

1
2X). A calculation based on the relationship

0ΩX = ρ−(n−1) bΩX shows that the boundary spectrum of P ∗ ∈ Ψm
0 (X; 0Ω

1
2X) is given by

Specb(P ∗) =
{

(z, k) : (−z̄ + (n− 1), k) ∈ Specb(P )
}
. (3.27)

Now, if v ∈ ρ−α+n−1
2 L2(X; 0Ω

1
2X) ∩ kerP ∗, then

v = Q∗P ∗v +R∗v = R∗v ∈ A−α+(n−1)(X; 0Ω
1
2X).

But by (3.27), the smallest index set containing all elements (z, k) ∈ Specb(P ∗) with Re z >
−α+(n−1) is equal to E−+(n−1) where E− = {(z̄, k) : (z, k) ∈ E−}, and therefore P ∗v = 0

implies v ∈ AÊ−+(n−1)
phg (X; 0Ω

1
2X). Therefore,

(Π′)∗ ∈ Ψ−∞,(Ê−+(n−1),Ê−+2α)(X; 0Ω
1
2X),

which implies (3.26).

The generalized inverse G is related to the left and right parametrices via

G = (Q′P +R′)G = Q′(I −Π′) +R′G(PQ+R)

= Q′(I −Π′) +R′(I −Π)Q+R′GR = Q′ +R′Q+R′GR−Q′Π′ −R′ΠQ;

note then that

R′Q ∈ Ψ
−∞,(Ê[+,Ê[++Ê]−+(n−1),Ê]−+(n−1))

0 (X; 0Ω
1
2X)

and also R′GR ∈ Ψ−∞,(Ê
[
+,Ê[−+(n−1))(X; 0Ω

1
2X) lies in this space. If P is invertible and

therefore Π = 0, Π′ = 0, then from PG = I and P ∗G∗ = I we conclude that the index set

of G at lb, resp. rb can be reduced to Ê+, resp. Ê− + (n− 1).

If P is not invertible, we compute using Proposition 2.2 that

Q′Π′, R′ΠQ ∈ Ψ−∞,(Elb,Eff ,Erb)(X; 0Ω
1
2X)

for some (explicit) index sets Elb, Erb with Re Elb > α and Re Erb > −α+ (n− 1), and with
(the somewhat wasteful index set) Eff given in the statement of the Corollary. The index set
of G at lb can then be improved using PG = I−Π′ by a simple adaptation of the arguments
around (3.23): the restriction Gz′0 of the Schwartz kernel of G to the preimage of z′0 ∈ X◦

under the projection X ×X◦ → X◦ after division by the lift of a positive 1
2 -density on X◦

satisfies P (χ0Gz′0) ∈ AÊ−+2α
phg (X; 0Ω

1
2X) where χ0 ∈ C∞c (X) cuts off to a neighborhood of

z′0; therefore χ0Gz′0 ∈ A
Ê+ ∪ (Ê−+2α)
phg (X; 0Ω

1
2X) by indicial operator arguments. Thus, the

index set of G at lb can be reduced to Ê+ ∪ (Ê− + 2α). The argument at rb is analogous
upon passing to the adjoint equation P ∗G∗ = I − (Π′)∗. �

3.2. Parametrices in the calculus with bounds. In the case that the fully elliptic
0-ps.d.o. P does not have constant boundary spectrum, the Schwartz kernel of detailed
parametrices cannot be polyhomogeneous anymore (see however [KM13]). In this case, one
can still construct a parametrix in the calculus with bounds.
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Theorem 3.4 (Precise parametrix in the 0-calculus with bounds). Let α0 < α1. Let

P ∈ Ψm
0 (X; 0Ω

1
2X) be fully elliptic at all weights α ∈ [α0 − ε, α1 + ε] for some small ε > 0.

Then there exists operators

Q,Q′ ∈ Ψ−m0 (X; 0Ω
1
2X) + Ψ

−∞,(α1,−α0+(n−1))
0 (X; 0Ω

1
2X) + Ψ−∞,(α1,−α0+(n−1))(X; 0Ω

1
2X)

(3.28)
so that PQ = I −R and Q′P = I −R′ with

R ∈ Ψ−∞,(∞,−α0+(n−1))(X; 0Ω
1
2X), R′ ∈ Ψ−∞,(α1,∞)(X; 0Ω

1
2X).

Remark 3.5 (Existence of a gap when X is compact). When X is compact and P is fully
elliptic at the weight α ∈ R, then the hypotheses of Theorem 3.4 are satisfied when α0 < α
and α1 > α are sufficiently close to α and ε > 0 is sufficiently small.

Proof of Theorem 3.4. Since the arguments are very similar to and indeed more transpar-
ent (requiring less bookkeeping) than those in §3.1, we shall be brief. We take Q0 ∈
Ψ−m0 (X; 0Ω

1
2X) to be a symbolic parametrix, so PQ0 = I−R0 with R0 ∈ Ψ−∞0 (X; 0Ω

1
2X).

We can apply Proposition 3.1 to write the inverse N̂(P, y, η̂)−1 (of N̂(P, y, η̂) regarded as a
map between the spaces in (3.3)) for each y separately as the reduced normal operator at

y of an element of the large 0-calculus. Note that the index set of N̂(P, y, η̂)−1 at lbb has
real part larger than α1 + ε, and the index set at rbb has real part larger than −(α0 − ε).
Assembling these inverses, we can thus construct an operator

P− ∈ Ψ
−m,(α′1,−α′0+(n−1))
0 (X; 0Ω

1
2X)

with N̂(P−, y, η̂) = N(P, y, η̂)−1 for all y, η̂. Here, we denote by α′0 ∈ [α0 − ε, α0) and
α′1 ∈ (α1, α1 + ε] two weights which may increase (in the case of α′0) or decrease (in the
case of α′1) from line to line throughout the rest of the proof.

Proposition 2.7 gives Q1 := P−R0 ∈ Ψ
−∞,(α′1,−α′0+(n−1))
0 (X; 0Ω

1
2X), and we have

R1 = R0 − PQ1 ∈ ρffΨ
−∞,(α′1,−α′0+(n−1))
0 (X; 0Ω

1
2X).

At lb, we can solve this error away using indicial operator arguments, thus producing an

operator Q2 ∈ ρffΨ
−∞,(α′1,∞)
0 (X; 0Ω

1
2X) so that

R2 = R1 − PQ2 ∈ ρffΨ
−∞,(∞,−α′0+(n−1))
0 (X; 0Ω

1
2X).

This is solved away using an asymptotic Neumann series, i.e. taking an operator R̃2 ∈
ρffΨ

−∞,(∞,−α′0+(n−1))
0 (X; 0Ω

1
2X) with R̃2 ∼

∑∞
j=1R

j
2.16 Defining Q = (Q0 +Q1 +Q2)(I +

R̃2), we then have

PQ = I −R, R ∈ Ψ
−∞,(∞,∞,−α′0+(n−1))
0 (X; 0Ω

1
2X) ⊂ Ψ−∞,(∞,−α

′
0+(n−1))(X; 0Ω

1
2X),

as desired. In the membership (3.28), we use that

Ψ
−∞,(α1,α1−α0+(n−1),−α0+(n−1))
0 (X; 0Ω

1
2X) = Ψ−∞,(α1,−α0+(n−1))(X; 0Ω

1
2X).

We can construct a left parametrix Q′ as usual as the adjoint of a right parametrix (Q′)∗

for P ∗. The proof is complete. �

16The composition properties of elements of ρjffΨ
−∞,(βlb,βrb)
0 (X; 0Ω

1
2X) can be deduced for general j

from those for j = 0 by writing ρff = x′ρ−1
rb .
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Corollary 3.6 (Generalized inverse in the 0-calculus with bounds). Suppose X is compact,
and let P be an operator satisfying the assumptions of Theorem 3.4 (see also Remark 3.5).
Then for any α ∈ [α0, α1], the operator P is a Fredholm operator as in (3.25). Put

βlb := min(α1,−α0 + (n− 1) + 2α) > α, βrb := βlb − 2α+ (n− 1) > −α+ (n− 1).

Then the generalized inverse G of P satisfies

G ∈ Ψ−m0 (X; 0Ω
1
2X) + Ψ

−∞,(βlb,βrb)
0 (X; 0Ω

1
2X) + Ψ−∞,(βlb,βrb)(X; 0Ω

1
2X).

Proof. We leave the proof to the reader, as it is a straightforward modification of that of
Corollary 3.3. �
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