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Abstract. On a time-oriented Lorentzian manifold (M, g) with non-empty bound-

ary satisfying a convexity assumption, we show that the topological, differentiable,

and conformal structure of suitable subsets S ⊂ M of sources is uniquely deter-

mined by measurements of the intersection of future light cones from points in S

with a fixed open subset of the boundary of M ; here, light rays are reflected at ∂M

according to Snell’s law. Our proof is constructive, and allows for interior conjugate

points as well as multiply reflected and self-intersecting light cones.

1. Introduction

Let (M, g) be a Lorentzian manifold with a non-empty boundary, and denote by M◦

its interior. We consider the problem of reconstructing the topological, differentiable,

and conformal structure of subsets S ⊂ M◦ by boundary observations of light cones

emanating from points in S, with light rays being reflected at ∂M according to

Snell’s law. We accomplish this under a convexity assumption on ∂M and assuming

that broken (reflected) null-geodesics from S have no conjugate points lying on ∂M .

The present paper is similar in spirit to the work by Kurylev, Lassas, and Uhlmann

[KLU14a]: they consider a related reconstruction problem using light observation sets

in the interior of globally hyperbolic spacetimes without boundary. The presence of

a boundary leads to a much richer structure of the broken null-geodesic flow, and

observing only at the boundary limits the available leeway when light cones are

singular (conjugate points or self-intersections) at ∂M .

To state a simple example to which our main result, stated below, applies, consider

the manifold M = {(t, x) ∈ R1+2 : |x| < 1}, equipped with the Minkowski metric

g = −dt2 + dx2, and let the set S of sources be an open subset S ⊆ {(t, x) : |t| <
1/2 − |x|} ⊂ M . The boundary light observation set from a point q = (t0, x0) ∈ S
within the subset U := {(t, x) : 0 < t < 2, |x| = 1} ⊂ ∂M is the intersection

L+
q ∩ U = {(t, x) ∈ U : t ≥ t0, t− t0 = |x− x0|}
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of the future light cone from q with U . See Figure 1.1. Let S = {L+
q ∩ U : q ∈ S}

denote the family (as an unlabelled set) of boundary light observation sets. Then

from S, we can reconstruct S as a smooth manifold, as well as the conformal class of

the metric g|S.

This example generalizes in a straightforward manner to higher dimensions; in 1+3

dimensions, this would be a very simple model for wave propagation in the interior

|x| < 1, x ∈ R3, of the Earth, with observations taking place for some limited period

of time on the surface of the Earth. More generally, our main theorem allows the

wave speed to be inhomogeneous, anisotropic, and time-dependent.

q

L+
q ∩ U

∂M
S

U

Rt

R2
x

Figure 1.1. One can recover the topological, differentiable, and con-

formal structure of S from the collection of boundary light observation

sets.

In general, the future light cone L+
q from a point q ∈ M is defined as the union

of all future-directed broken null-geodesics. (See Figure 2.5 for an illustration, and

Definition 2.7 for the precise definition.) Our main theorem applies to rather general

Lorentzian manifolds, and allows for the reconstruction of S from boundary light

observation sets involving multiple reflections. (See Remark 3.5.) To set this up, we

define the class of manifolds we will work with:

Definition 1.1. Let n ≥ 1. Let (M, g) be a smooth connected (n + 1)-dimensional

Lorentzian manifold with non-empty boundary; thus, g has signature (−,+, . . . ,+).

We call (M, g) admissible if

(1) there exists a proper, surjective function t : M → R such that dt is everywhere

timelike;

(2) the boundary ∂M is timelike, i.e. the induced metric g∂ := g|∂M is Lorentzian;
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(3) ∂M is null-convex : if ν denotes the outward pointing unit normal vector field

on ∂M , then

II(V, V ) = g(∇V ν, V ) ≥ 0 (1.1)

for all null vectors V ∈ Tp∂M .

We recall that a vector V ∈ TpM in a Lorentzian manifold (M, g) is called timelike,

spacelike, or lightlike (null) whenever gp(V, V ) < 0, gp(V, V ) > 0, or gp(V, V ) = 0,

respectively. An admissible manifold (M, g) is time orientable, as we can declare

dt to be past timelike. (We refer the reader to [O’N83] for further background on

Lorentzian geometry.) If n = 1, then condition (3) is vacuous.

For the purposes of this introduction, we will work with manifolds (M, g) with

strictly null-convex boundaries, that is, (1.1) holds with strict inequality for V 6= 0.

In this case, all broken null-geodesics are well-defined globally on M , see §2.4.

Theorem 1.2. Let (Mj, gj), j = 1, 2, be two admissible Lorentzian manifolds with

strictly null-convex boundaries, let Sj ⊂M◦
j be open with compact closure in Mj, and

let U ′j b Uj ⊂ ∂Mj be open. Let

Sj := {L+
q ∩ Uj : q ∈ Sj}.

Assume that for q1, q2 ∈ Sj, the equality of boundary light observation sets L+
q1
∩U ′j =

L+
q2
∩U ′j implies q1 = q2. Assume moreover that for q ∈ Sj, no point in Uj which lies

on a future-directed broken null-geodesic starting at q is conjugate to q.

Suppose there exists a diffeomorphism Φ: U1

∼=−→ U2 which identifies the families of

boundary light observation sets, that is, S2 = {Φ(L) : L ∈ S1}. Then there exists a

conformal diffeomorphism Ψ: (S1, g1|S1)
∼=−→ (S2, g2|S2).

If in addition Φ is conformal for the metrics gj|Uj on Uj and time orientation

preserving, then Ψ preserves the time orientation as well.

Thus, if the smooth structure of the observation set Uj is given, then the collec-

tion of light observation sets — carrying no structure other than that of a set! —

uniquely determines the topological, differentiable, and conformal structure of the

set of sources; given a conformal structure and time orientation on Uj, one can in

addition recover the time orientation of the set of sources. See Theorem 3.3 for

the full statement which replaces the strict null-convexity condition with a certain

non-degeneracy condition (called tameness in §2.4) on broken null-geodesics.

The proof of Theorem 1.2 proceeds in three steps. First, we define a topology

on Sj by declaring collections of boundary light observation sets to be open if they

intersect, resp. miss, a fixed open, resp. compact, subset of U : this topology is shown

to be equal to the subspace topology of Sj via the bijection Sj 3 q 7→ L+
q ∩ Uj; see

§3.1. Second, we show how to construct (intrinsically within Sj and Uj) a large class
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of functions which are smooth on Sj: these functions xµ assign to a point q′ close to

a fixed point q the unique parameter xµ(q′) along suitable curves µ ⊂ Uj at which µ

intersects L+
q′ . (In [KLU14a], a similar construction was used globally.) We show that

all smooth functions on Sj are, locally, C∞ functions of these xµ for varying q and

µ; see §3.2. In order to reconstruct the conformal class of gj on Sj, we show how to

identify a large number of null-geodesics s 7→ q(s) in Sj in terms of the boundary light

observation sets of the points q(s); see §3.3. Since light cones are well-defined given

merely the conformal class of a Lorentzian metric, one can in general not recover

the metric itself. (Under additional assumptions, this may be possible, see [KLU14a,

Corollary 1.3].) Finally, the time orientation on Sj can be determined by analyzing

the behavior of L+
q ∩ Uj as q moves along a timelike curve in Sj; see §3.4.

It would be interesting to reconstruct suitable subsets of (M, g) from active mea-

surements, namely from the Dirichlet-to-Neumann map of initial boundary value

problems for non-linear wave equations. (In the boundary-less setting, the analogous

inverse problem was first solved in the context of the quasilinear Einstein equation

[KLU14b], see also [KLU14a], with improvements by Lassas, Uhlmann, and Wang

[LUW16, LUW17].) The idea is to generate singular small amplitude distorted plane

waves by imposing suitable singular Dirichlet data: these can be engineered so that

their non-linear interaction generates point sources at points q ∈ M◦, allowing one

to identify the boundary light observation set L+
q ∩ ∂M by measuring singularities

of the Neumann trace; this puts one into the setting of Theorem 3.3. We hope to

address this problem in future work. See also [BK92, Esk10, LO14] for results in

related contexts.

For further results on the reconstruction of Lorentzian manifolds, we mention Lars-

son’s work [Lar15] using broken causal lens data or sky shadow data (see also the

related [KLU10]), and the work by Lassas, Oksanen, and Yang [LOY16] on the re-

construction of the jet of a Lorentzian metric on a timelike hypersurface from time

measurements. There is a large amount of literature on inverse problems on Rie-

mannian manifolds with boundary; we refer to [PU05, SUV17] and the references

therein.

The plan of the paper is as follows: in §2.1, we analyze the properties of admis-

sible Lorentzian manifolds and give an equivalent formulation of the null-convexity

assumption; in §2.3, we define the broken null-geodesic flow and discuss its basic

properties. We introduce the important notion of tameness in §2.4; on admissible

manifolds with strictly null-convex boundary, all broken null-geodesics are tame. In

§3 finally, we prove the main result, Theorem 3.3, following the steps outlined above.

2. Geometric preliminaries
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2.1. Structure of admissible manifolds. We begin by elucidating the smooth

structure of admissible manifolds, see Definition 1.1. We use the notation Vb(M) for

the space of smooth vector fields on M which are tangent to the boundary ∂M .

Lemma 2.1. Let (M, g) be an admissible Lorentzian manifold. Then X := {t = 0} is

a compact submanifold with boundary ∂X ⊂ ∂M , and there exists a diffeomorphism

M ∼= Rt×X. Furthermore, there exists a global future timelike vector field T ∈ Vb(M)

such that Tt = 1.

Proof. Since t is proper with dt 6= 0, the first claim is immediate. Moreover, the time

orientation on M induces a time orientation on ∂M , since the latter is assumed to

be Lorentzian; with this time orientation, dt|∂M is past timelike.

Since for O ⊂ M open the set of future timelike vector fields V ∈ Vb(O) with

V t = 1 is convex, it suffices to construct T locally. In the interior of M , this is

straightforward. In a neighborhood O of a point p ∈ ∂M , one first constructs T ′ ∈
V(O∩∂M) with T ′t = 1; one then extends T ′ arbitrarily to a vector field T̃ ∈ Vb(O),

which thus satisfies T̃ t > 1/2 in a smaller neighborhood O′ ⊂ O of p, thus T =

(T̃ t)−1T̃ ∈ Vb(O′) is the desired vector field near p.

The flow φ : R×X ∈ (s, x) 7→ expx(sT ) ∈M exists globally; indeed, t(expx(sT )) =

s for all (s, x), since this holds for s = 0, and the s-derivative of both sides is equal

to 1 by construction. The inverse of φ is given by φ−1(p) = (a, expp(−aT )) when

p ∈ t−1(a). Thus, φ establishes a diffeomorphism R×X ∼= M . �

It will be useful to embed (M, g) into a larger spacetime without boundary.

Lemma 2.2. There exists a time-oriented smooth Lorentzian manifold (M̃, g̃) into

which M embeds isometrically as a submanifold with boundary.

Proof. Let M ′ be any open manifold into which M embeds as a submanifold with

boundary, e.g. take M ′ to be the double of M . Extend g to a symmetric 2-tensor g̃

on M ′, and extend t to an arbitrary smooth function, still denoted t, on M ′. Since

the set of Lorentzian metrics on a fixed vector space is open, and since the condition

that dt is timelike (in particular dt 6= 0) is open, there exists an open neighborhood

M̃ of M on which g̃ is Lorentzian and dt timelike; declaring dt to be past timelike

endows M̃ with a time orientation. �

Write ẽxp for the exponential map on (M̃, g̃). Denote by g+ a fixed smooth Rie-

mannian metric on (M̃, g̃), and write

|V |g+ := g+(V, V )1/2.

(All our arguments will take place in compact subsets of M , hence the concrete choice

of g+ will be irrelevant.)
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We now analyze the null-convexity condition. (We encourage the reader to keep

the simpler case in mind that the boundary is strictly null-convex.) We introduce

the outward (+) and inward (−) pointing tangent bundles

T±∂MM = {V ∈ T∂MM : ± g(V, ν) > 0},

where ν is the outward pointing unit normal. Thus, dx(ν) < 0 for any boundary

defining function x (that is, x = 0 and dx 6= 0 at ∂M , while x > 0 in M◦), and we

therefore also have

T±∂MM = {V ∈ T∂MM : ∓ dx(V ) > 0}.

Define the future/past light cones

L±pM = {V ∈ TpM : V is future (+), resp. past (−), lightlike},

and the light cone

LpM = {V ∈ TpM : V is lightlike} ∪ {0} ⊂ TpM.

As a first step, we show:

Lemma 2.3. Let (M, g) be a Lorentzian manifold with null-convex timelike boundary

∂M and outward pointing unit normal ν. Let p ∈ ∂M . Then there exists s0 > 0 such

that for all lightlike V ∈ LpM , |V |g+ = 1, the following holds for the null-geodesic

γ(s) := ẽxpp(sV ):

(1) If V ∈ T±∂MM , then γ(s) ∈ M̃ \M for 0 < ±s ≤ s0.

(2) If V ∈ Tp∂M is tangent to ∂M , then γ(s) ∈ M̃ \M◦ for |s| ≤ s0.

Proof. Pick a boundary defining function x ∈ C∞(M̃), so x−1(0) = ∂M and dx 6= 0

on ∂M , and x > 0 in M◦, while x < 0 in M̃ \M . Since the outward pointing unit

normal to ∂M is then given by ν = −|∇x|−1∇x, one computes

II(V,W ) = −|∇x|−1(Hx)(V,W ), V,W ∈ T∂M, (2.1)

where Hx = ∇2x is the Hessian of x with respect to g̃. Therefore, the null-convexity

condition is equivalent to (Hx)(V, V ) ≤ 0 for all V ∈ L∂M =
⊔
p∈∂M Lp∂M .

Denote by y1, . . . , yn smooth coordinates on a neighborhood U∂ ⊂ ∂M of p, with

yj = 0 at p for 1 ≤ j ≤ n. Using a collar neighborhood of ∂M , identify the set

U := U∂ × (−x0, x0)x (with x0 > 0 small) with a neighborhood of p in M̃ . We

will construct a foliation of a small neighborhood of p intersected with U ∩ {x < 0}
by strictly null-convex hypersurfaces which will act as barriers for the geodesic γ,

roughly speaking preventing it from crossing ∂M into M◦ too quickly.
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To construct the foliation, let δ ∈ (0, x0) and define the function

xε := x+ ε(1− δ−2Y 2) for Y :=
( n∑
i=1

y2
i

)1/2

< δ2, 0 ≤ ε < δ.

We claim that for δ > 0 sufficiently small, the level sets Dε := x−1
ε (0) are strictly

null-convex for ε > 0. To see this, note that the conormal dxε = dx−2εδ−2
∑n

i=1 yidyi
of Dε is εδ−2Y -close (with respect to g+) to dx; furthermore, on Dε, we have x ∈
[−ε, 0]. Given the bound we are imposing on Y , we conclude that null vectors W ∈
L(x,y1,...,yn)Dε with |W |g+ = 1 are ε-close to the boundary light cone L(0,y1,...,yn)∂M .

Since {x = 0} is null-convex, this implies that

(Hx)(W,W ) ≤ C1ε

for some constant C1. Furthermore, we have
∑n

i=1 dyi(W )2 ≥ C2 > 0 for such W

provided δ > 0 is sufficiently small. Therefore,

(Hxε)(W,W ) = (Hx)(W,W )− 2εδ−2

n∑
i=1

dyi(W )2 − 2εδ−2

n∑
i=1

yi(Hyi)(W,W )

≤ C1ε− 2εδ−2C2 − C3εδ
−2Y

≤ −C2εδ
−2

for sufficiently small δ > 0, proving the strict null-convexity of Dε. Fixing such a

δ > 0, define

B :=
{
−δ/2 < x ≤ 0, Y < δ2

}
⊂ U,

and consider the function

f :=
x

1− δ−2Y 2

on B, so Dε = f−1(−ε); since df 6= 0 is inward pointing at p (indeed, df = dx there),

formula (2.1) shows that (Hf)(W,W ) < 0 for 0 6= W ∈ LpDε, ε > 0. See also

Figure 2.1.

Consider now V ∈ LpM ∩ T+
∂MM , |V |g+ = 1, γ(s) = ẽxpp(sV ). The point of

the above construction is that the function d(s) := f(γ(s)) is negative and strictly

decreasing for s > 0 as long as γ(s) ∈ B. Indeed, note first that we have d(0) = 0 and

d′(0) < 0, hence d(s), d′(s) < 0 for small s > 0. Suppose now that d′(s) vanishes for

some s > 0 with γ(s) ∈ B, and let s′ > 0 be the first zero of d′(s′) = 0. Then, letting

ε := d(s′), we have γ′(s′) ∈ Lγ(s′)Dε. The strict null-convexity of Dε forces d′′(s′) < 0,

so d′(s) is strictly decreasing near s′; since d′(s) < 0 for s < s′, this contradicts the

assumption that d′(s′) = 0.

Therefore, we have

s0 := inf
V ∈LpM∩T+

∂M
M

|V |
g+

=1

sup{s > 0: ẽxpp((0, s]V ) ⊂ B◦} > 0,
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B

x = 0

∂M

x = −δ/2

p = γ(0)

x > 0

M

x < 0

Dε

Y = δ

Y = δ2

γ

Figure 2.1. Foliation of a neighborhood of p ∈ ∂M in M̃ \ M by

hypersurfaces Dε, ε > 0, which are strictly null-convex. These hyper-

surfaces are barriers for null-geodesics in the set B: a null-geodesic γ

in B which emanates from a point in ∂M and has outward pointing

initial velocity, that is, (x ◦ γ)′(0) < 0, cannot cross Dε in the inward

direction while in B.

where B◦ denotes the interior of B. (In fact, our arguments show s0 & δ2.) The

conclusion of part (1) then holds for this value of s0.

Part (2) follows from part (1) by a simple limiting argument: let Vε := V + εν,

|ε| < 1, which is outward pointing for ε > 0 and inward pointing for ε < 0. By

part (1), there exists s0 > 0 such that ẽxpp(sVε) ∈ M̃ \M for 0 < (sgn ε)s ≤ s0.

Letting ε→ 0, this implies γ(s) ∈ M̃ \M = M̃ \M◦ for 0 ≤ |s| ≤ s0, as claimed. �

We can now give a useful equivalent formulation of the null-convexity condition.

Proposition 2.4. Let (M, g) be a Lorentzian manifold with timelike boundary ∂M

and outward pointing unit normal ν. Then the following are equivalent:

(1) ∂M is null-convex, i.e. the inequality (1.1) holds.

(2) If γ : (−ε, 0]→M is a null-geodesic segment with γ(0) ∈ ∂M and γ(s) ∈M◦

for s ≤ 0, then γ′(0) ∈ T+
∂MM . Likewise, if γ : [0, ε) → M is a null-geodesic

segment with γ(0) ∈ ∂M and γ(s) ∈M◦ for s > 0, then γ′(0) ∈ T−∂MM .

Proof. (1) =⇒ (2): for a null-geodesic γ : (−ε, 0] → M as in (2), the conclusion

γ′(0) ∈ T+
∂MM ∪ T∂M \ {0} is clear. But by Lemma 2.3, which uses condition (1),

γ′(0) ∈ T∂M would imply that γ(s) ∈ M̃ \M◦ for small s. Hence γ′(0) 6∈ T∂M .



RECONSTRUCTION FROM BOUNDARY LIGHT OBSERVATION SETS 9

(2) =⇒ (1): suppose that condition (1) is violated, hence there exists V ∈ Lp∂M ,

p ∈ ∂M , with II(V, V ) < 0, in particular V 6= 0. Define γ(s) = expp(sV ) for

s ∈ [0, ε), ε > 0 small, and let f = x ◦ γ : [0, ε) → R, with x a boundary defining

function as in the proof of Lemma 2.3. Then

f(0) = 0, f ′(0) = 0, f ′′(0) = (Hx)(V, V ) > 0.

Therefore, γ(s) ∈ M◦ for s ∈ (0, s1) for sufficiently small s1 ∈ (0, ε). Since γ′(0) =

V ∈ T∂M , this contradicts condition (2). �

We end this section with a geometric lemma linking boundary light observation sets

with spacetime light cones on an infinitesimal level. We denote by ρ(V ), V ∈ TpM ,

p ∈ ∂M , the reflection of V across ∂M , that is,

ρ(V ) := V − 2g(V, ν)ν, (2.2)

with ν the outward pointing unit normal. One easily checks ρ : LM → LM . More-

over, if T ∈ T∂M , then g(ρ(V ), T ) = g(V, T ); this in particular applies to future

timelike T , hence ρ : L±M → L±M preserves the time orientation of lightlike vec-

tors.

Lemma 2.5. Suppose (M, g) is a time-oriented manifold with timelike boundary

∂M . Let p ∈ ∂M . Then there exists an isomorphism φ between the space S of

linear spacelike hypersurfaces S ⊂ Tp∂M and the space V of rays R+V ⊂ TpM along

future-directed outward pointing null vectors, given by mapping S ∈ S to the unique

future-directed outward pointing null ray φ(S) contained in S⊥. The inverse map is

given by V 3 R+V 7→ Tp∂M ∩ V ⊥ ∈ S .

Moreover, there exists an isomorphism between S and the space N of linear null

hypersurfaces N ⊂ TpM which contain a future-directed outward pointing null vector,

given by S 3 S 7→ S ⊕ spanφ(S) ∈ N .

See Figure 2.2.

Proof of Lemma 2.5. Given a spacelike hypersurface S ⊂ Tp∂M , the orthocomple-

ment S⊥ is a time-oriented 2-dimensional vector space with signature (1, 1), hence

there exists a non-zero null vector W ∈ S⊥; the four distinct rays of null vectors con-

tained in S⊥ are then the positive scalar multiples of W , −W , ρ(W ), −ρ(W ). Since

multiplication by −1 exchanges future- and past-directed null as well as outward and

inward pointing vectors, and since application of ρ exchanges outward and inward

pointing vectors but preserves the time orientation, exactly one of these four vectors,

which we call V , is future-directed and outward pointing; and φ+(S) = R+V .

On the other hand, if 0 6= V ∈ TpM is null (thus V ⊥/RV is spacelike) and out-

ward pointing, in particular V 6∈ Tp∂M , then the composition V ⊥ ∩ Tp∂M ↪→ V ⊥ →
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Tp∂M

N

R+V

S

Figure 2.2. Illustration of Lemma 2.5; everything takes place in TpM .

N is a null hypersurface containing an outward pointing null vector V ,

while S is a spacelike hypersurface in Tp∂M . We have R+V = φ(S),

N⊥ = RV , and S = N ∩ Tp∂M .

V ⊥/RV is an isometric isomorphism, hence S := V ⊥ ∩ Tp∂M is a spacelike hyper-

surface. This establishes the isomorphism S ∼= V + (as smooth manifolds).

For the last claim, we note that N + 3 N 7→ N⊥ ∩ L+
pM ∈ V + maps a null

hypersurface N into the unique ray along a future-directed outward pointing null

generator of N . The inverse of this map is given by V + 3 R+V 7→ V ⊥ = V ⊕ (V ⊥ ∩
Tp∂M) ∈ N +. Composition of these maps with φ+ gives the desired isomorphism

S
∼=−→ N +. The inverse of this isomorphism is given by N 7→ N ∩ Tp∂M . �

2.2. Examples of admissible manifolds. Small perturbations of admissible Lo-

rentzian manifolds with strictly null-convex boundaries are admissible:

Lemma 2.6. Suppose (M, g) is admissible and strictly null-convex, with an embed-

ding (M, g) ↪→ (M̃, g̃) as in Lemma 2.2. Let K b M̃ , and define Ck spaces using the

Riemannian metric g+ on M̃ .

(1) Let x ∈ C∞(M̃) denote a defining function of ∂M . If x′ ∈ C∞(M̃) is equal to

x outside of K and sufficiently close in C2 to x in K, then M ′ := {x′ ≥ 0} is

admissible and strictly null-convex.

(2) If g′ is a smooth Lorentzian metric on M , equal to g on M \K and sufficiently

close in C1(K) to g, then (M, g′) is admissible.

Proof. This follows from the observation that the assumption of strict null-convexity

involves up to first derivatives of the metric and up to second derivatives of the

boundary defining function, see (2.1). �
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If more is known about the global structure of (M, g), one can allow non-compact

perturbations as well. For example, the cylinder

M0 := {(t, x) ∈ R× Rn : |x| < R}, R > 0, (2.3)

with the Minkowski metric g = −dt2 + dx2, is admissible with strictly null-convex

boundary; indeed,

II(V, V ) = R−1dx(V )2

is strictly positive for non-zero null vectors V ∈ T∂M . If now f : R1+n → R has

small C2 norm, then

Mf := {(t, rω) ∈ R× Rn : r < (1 + f(t, ω))R} (2.4)

is admissible, with strictly null-convex boundary; see Figure 2.3.

Rt

Rn
x

Figure 2.3. An admissible manifold (Mf , g) ↪→ (R1+n
t,x ,−dt2 + dx2),

with f having small C2 norm.

Another interesting class of examples, which includes the cylinder (2.3), is obtained

as follows: let (X, h) be a compact Riemannian manifold with convex boundary, so

II(V, V ) = h(∇V ν, V ) ≥ 0 for all V ∈ T∂X, where ν is the outward pointing unit

normal. (We thus allow for the possibility that parts of the boundary are totally

geodesic.) Then the product manifold M := Rt × X, g = −dt2 + h, is admissible,

with ∂M strictly null-convex if and only if ∂X is strictly convex. See Figure 2.4;

another example is (partially) shown in Figure 3.2.

2.3. Broken null-geodesics. Throughout this section, (M, g) will be a fixed ad-

missible Lorentzian manifold. Motivated by the fact that singularities of solutions of

wave equations on (M, g) propagate along null-geodesics in M◦ and undergo reflection

according to Snell’s law at the boundary ∂M , see Taylor [Tay75], we rigorously define

and study such broken null-geodesics in this section. Define the open submanifold

LbM := LM \ (T+
∂MM ∪ T∂M) (2.5)

of LM , so (p, V ) ∈ LbM if and only if V ∈ LpM and V ∈ T−∂MM when p ∈ ∂M . We

then introduce:
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(X, h)

Figure 2.4. An admissible manifold, obtained as the product of the

real line with a Riemannian manifold X with convex boundary. We

can allow parts of ∂X to be flat.

Definition 2.7. Let (p, V ) ∈ LbM . We call a piecewise smooth curve γ : I → M ,

with 0 ∈ I ⊂ R an open connected interval, γ(0) = p, γ′(0) = V , a broken null-

geodesic, if

(1) for all open intervals J ⊂ I with γ(J) ∩ ∂M = ∅, γ|J is an affinely parame-

terized null-geodesic in (M◦, g);

(2) if s ∈ I, γ(s) ∈ ∂M , then for small ε > 0, γ|(s−ε,s] and γ|[s,s+ε) are null-

geodesics with γ(s± (0, ε)) ⊂M◦, and γ′(s+ 0) = ρ(γ′(s− 0)), where ρ is the

reflection map (2.2).

Thus, broken null-geodesics are null-geodesics which undergo reflection at the

boundary ∂M preserving their velocity tangent to ∂M ; see Figure 2.5.

∂M

ρ(V )

V
ν

γ

γ(s)

Figure 2.5. A broken null-geodesic undergoing a reflection at γ(s) ∈
∂M . Here, V = γ′(s).



RECONSTRUCTION FROM BOUNDARY LIGHT OBSERVATION SETS 13

A broken null-geodesic with (γ(0), γ′(0)) = (p, V ) as in this definition always exists

on sufficiently small intervals I = (−ε, ε), ε > 0: when p ∈ M◦, γ|I is an interior

null-geodesic, while for p ∈ ∂M , one takes γ(s) = expp(sV ) for s ≥ 0 and γ(s) =

expp(sρ(V )) for s ≤ 0. Also note that if γj : Ij → M , j ∈ J , 0 ∈ Ij, are broken null-

geodesics which all have the same initial condition, then the prescription γ|Ij = γj
defines a broken null-geodesic γ :

⋃
j∈J Ij → M . Thus, for (p, V ) as in the above

definition, there always exists an inextendible broken null-geodesic with initial position

p and speed V .

Definition 2.8. For (p, V ) ∈ LbM , let γ : I → M denote the unique inextendible

broken null-geodesic with (γ(0), γ′(0)) = (p, V ). Suppose 1 ∈ I. We then define the

broken exponential map by expb
p(V ) := γ(1). Denote the domain of definition of expb

by D ⊂ LbM .

Thus, for (p, V ) with γ((0, 1)) ⊂M◦, we simply have expb
p(V ) = expp(V ). We pro-

ceed to analyze the properties of inextendible broken null-geodesics. For convenience,

we make our choice of the Riemannian metric g+ on M̃ more specific by demanding

g+(ρ(V ), ρ(V )) = g+(V, V ), V ∈ TpM, p ∈ ∂M. (2.6)

This is easily arranged by taking any Riemannian metric g+
0 on T∂MM , then letting

g+
1 (V,W ) := g+

0 (V,W ) + g+
0 (ρ(V ), ρ(W )) for V,W ∈ T∂MM , and finally taking g+

to be a Riemannian metric on M̃ extending g+
1 smoothly to the rest of M̃ . The

consequence of (2.6) is that the g+-length of the tangent vector of a broken null-

geodesic γ is continuous when γ hits the boundary.

Proposition 2.9. Let γ : I → M be a broken null-geodesic with γ′(0) ∈ L+
pM , and

let I+ := sup I ∈ R ∪ {∞}. Then γ is future inextendible1 if and only if one of the

following happens:

(1) t(γ(s))→∞ as s→ I+.

(2) I+ <∞, t(γ(s))→ t∞ <∞ as s→ I+, and I+ ∈ γ−1(∂M).

There exists an analogous characterization of past inextendibility.

In other words, a broken null-geodesic is future-inextendible if and only if it leaves

every region {t ≤ t0}, t0 <∞ (this may happen even in the case I+ <∞, e.g. for M =

{(t̃, x) : |t̃| < π/2, |x| ≤ 1} with the metric g = −dt2 +dx2, t = tan t̃), or it undergoes

infinitely many reflections as s → I+ < ∞; similarly for past inextendibility. We

remark that the latter scenario can indeed occur in certain cases when ∂M is flat to

infinite order; see [Tay76, §6].

1By this we mean that the parameter interval for which the maximal broken null-geodesic with

the same initial data as γ is defined has supremum equal to sup I.
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Proof of Proposition 2.9. We note that dt(γ′(s)) > 0 for all s ∈ I since dt is past

timelike and γ′(s) is future causal; hence t ◦ γ is strictly increasing.

If I+ =∞, then γ is clearly future inextendible. Suppose I+ <∞ and t(γ(s))→∞
as s→ I+. If there were an extension γ1 : I1 →M , I+ ∈ I1, of γ, then

∞ > t(γ1(I+)) = lim
ε→0+

t(γ1(I+ − ε)) = lim
ε→0+

t(γ(I+ − ε)) =∞,

a contradiction. We next claim that

I+ =∞ =⇒ t(γ(s))→∞, s→∞. (2.7)

Taking this for granted, the assumption t(γ(s)) → t∞ < ∞ implies I+ < ∞; more-

over, γ(s) stays in a fixed compact set as s → I+ since t is proper. If there exists a

broken null-geodesic γ1 : I1 → M extending γ, I+ ∈ I1, then since γ−1
1 (∂M) ⊂ I1 is

discrete by definition, we infer that I+ is not a limit point of γ−1
1 (∂M), hence not of

γ−1(∂M). Conversely, if I+ 6∈ γ−1(∂M), then s0 := max{s ∈ I : γ(s) ∈ ∂M} < I+.

Let (p0, V0) := (γ(s0), γ′(s0 + 0)), then

γ1(s) := ẽxpp0
(
(s− s0)V0

)
satisfies γ1(s) = γ(s) ∈ M◦ for s ∈ (s0,∞) ∩ I. If γ1(I+) 6∈ ∂M , then γ1|I∪(s0,I++ε),

defined for small ε > 0, is an extension of γ. Otherwise, γ1 intersects ∂M at s = I+,

and it necessarily does so transversally according to Proposition 2.4; hence we can

continue γ1(s) past s = s1 as a broken null-geodesic by defining

γ1(s1 + s′) := ẽxpγ1(s1)

(
s′ρ(γ′1(s1 − 0))

)
,

s′ > 0 small. This construction shows that γ is future extendible past I+.

It remains to prove (2.7). Assume to the contrary that

t(γ(s))→ t∞ <∞ as s→∞. (2.8)

Since K := t−1([t(γ(0)), t∞]) is compact, there exists c > 0 such that

dt(V ) ≥ c|V |g+ , V ∈ L+
KM. (2.9)

Define `(s) := |γ′(s)|g+ . Since the difference of connections D = ∇g+ − ∇g induces

a bilinear map TpM ⊗ TpM → TpM , Dp(X, Y ) = ∇g+

X Y −∇g
XY , we can write for s

with γ(s) ∈M◦:

1

2

d

ds

(
`(s)2

)
= g+|γ(s)

(
∇g+

γ′(s)γ
′(s), γ′(s)

)
= g+|γ(s)

(
Dγ(s)(γ

′(s), γ′(s)), γ′(s)
)

On the other hand, if γ(s) ∈ ∂M , then `(s + 0) = `(s − 0) in view of (2.6). Since

γ(s) ∈ K remains in a compact set, this implies

1

2

d

ds

(
`(s)2

)
≥ −C`(s)3
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where C > 0 is a uniform constant only depending on K. Rewriting this differential

inequality as (1/`)′ ≤ C, we obtain

`(s) ≥ 1
1
`(0)

+ Cs
. (2.10)

Therefore, the bound (2.9) implies

t(γ(s)) ≥ t(γ(0)) +

∫ s

0

c`(u) du ≥ t(γ(0)) +
c

C
log
(
1 + Cs`(0)

)
,

which exceeds t∞ for sufficiently large s, contradicting (2.8). The proof is complete.

�

We next study the regularity properties of the broken exponential map. For

(p, V ) ∈ D, the domain of definition of expb, consider the maximal broken null-

geodesic γ(s) = expb
p(sV ), s ∈ I, let

J(p, V ) := #{s > 0: γ(s) ∈ ∂M} ∈ N0 ∪ {∞}

denote the number of reflections at ∂M , and enumerate the affine parameters for

which γ intersects the boundary:

γ−1(∂M) ∩ (0,∞) =: {sj(p, V ) : j = 1, . . . , J(p, V )}, 0 < sj(p, V ) < sj+1(p, V ).

Further, let

pj(p, V ) := γ(sj(p, V )), Vj(p, V ) := γ′(sj(p, V ) + 0) ∈ Lb
pj(p,V )M

denote the position and the velocity of the broken null-geodesic leaving the boundary

at a reflection point. For k ∈ N0, define

D◦k :=
{

(p, V ) ∈ D : #{s ∈ (0, 1) : γ(s) ∈ ∂M} = k, expb
p(V ) 6∈ ∂M

}
,

i.e. k is the number of reflections of the broken null-geodesic segment γ((0, 1)). Let

Dk denote the closure of D◦k in D. See Figure 2.6.

Proposition 2.10. The broken null-geodesic flow on an admissible Lorentzian man-

ifold (M, g) has the following properties:

(1) For every k ∈ N0, the set D◦k ⊂ LbM is open. The functions sj(p, V ) as well

as the points (pj(p, V ),Vj(p, V )) ∈ LbM depend smoothly on (p, V ) ∈ D◦k, and

so does expb
p(V ) ∈M◦.

(2) We have the decomposition ∂Dk = Bk,− t Bk,+ into a disjoint union of the

closed sets

Bk,− = {(p, V ) ∈ D : J(p, V ) ≥ k, sk(p, V ) = 1},
Bk,+ = {(p, V ) ∈ D : J(p, V ) ≥ k + 1, sk+1(p, V ) = 1}.

See Figure 2.7. Furthermore, sj, pj, and Vj for 1 ≤ j ≤ k as well as expb

extend from D◦k to smooth functions on Dk.
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∂M ∂M

p

p1

p2

expb
p(V )

V

V1

V2

Figure 2.6. A broken null-geodesic with initial data (p, V ) ∈ D◦2.

Here pj = pj(p, V ) = expb
p(sj(p, V )V ) and Vj = Vj(p, V ).

(3) D is open in LbM ; more precisely, D◦k ∪
⋃
j<kDj is open for all k ∈ N0. The

map expb is continuous on D.

∂M ∂M

p

p1

expb
p(V )

V

V1

∂M ∂M

p

p1 = expb
p(V )

V

V1

Figure 2.7. Illustration of part (2) of Proposition 2.10. Left: initial

data (p, V ) ∈ B1,+. Right: initial data (p, V ) ∈ B1,−, with (p1,V1)

defined by smooth extension from D◦1.

Proof of Proposition 2.10. (1): for k = 0 and (p, V ) ∈ D◦0, we have expb
p(sV ) =

ẽxpp(sV ) for 0 ≤ s ≤ 1, and ẽxpp(V ) ∈ M◦; hence the smooth dependence of

expb
p(V ) on (p, V ) follows from that of the standard exponential map ẽxpp(V ).

Consider now k ≥ 1. Denote the map acting by dilation by c ∈ R in the fibers

by Rc : LM → LM , (p, V ) 7→ (p, cV ). Let (p, V ) ∈ D◦k, and let s̄j = sj(p, V ),

p̄j = pj(p, V ), and V̄j = Vj(p, V ) for j = 1, . . . , k. We start by defining neighborhoods

of (p̄j, V̄j) of initial conditions of null-geodesics for which the next intersection with

∂M is controlled. Thus, for j = 0, let

Z0 := (ẽxp ◦Rs̄1)
−1(∂M).
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Note that (p, V ) ∈ Z0. Moreover, in a neighborhood of (p, V ), Z0 is a smooth

codimension 1 submanifold of LbM which is transversal to R+V ⊂ Lb
pM ; this follows

from the implicit function theorem applied to the map x◦ ẽxp◦Rs̄1 where x ∈ C∞(M)

is a boundary defining function: this map has a non-zero differential at (p, V ) due to

part (2) of Proposition 2.4. See Figure 2.8.

LpM

V

Z0 ∩ LpM

U0 ∩ LpM

Figure 2.8. Illustration of the proof of part (1) of Proposition 2.10.

Shown are the preimage Z0 of ∂M under ẽxp ◦ Rs̄1 within LpM (only

the future half of which is drawn) near V , and the intersection of the

neighborhood U0 of (p, V ) with LpM .

For a small neighborhood U0 ⊂ LbM of (p, V ) such that U0 ⊂
⋃
c∈(1−ε,1+ε) RcZ0,

with ε > 0 small, and such that Z0∩U0 is a smooth connected submanifold transversal

to all dilation (in the fiber) orbits intersecting U0, define the function d0 ∈ C∞(U0)

by

d0(q,W ) := s̄1c, Rc(q,W ) ∈ Z0, c ∈ ( 1
1+ε

, 1
1−ε), (2.11)

so d0(p, V ) = s̄1, and ẽxpq(Rd0(q,W )W ) ∈ ∂M for (q,W ) ∈ U0. Similarly, but now

working within ∂M , we define for 1 ≤ j ≤ k − 1

Z∂
j :=

(
ẽxp ◦Rs̄j+1−s̄j |Lb

∂MM

)−1
(∂M) ⊂ Lb

∂MM,

so (p̄j, V̄j) ∈ Z∂
j , and near this point, Z∂

j is a smooth codimension 1 submanifold

of Lb
∂MM transversal to R+V̄j ⊂ Lb

p̄j
M . For a small neighborhood U∂j ⊂ Lb

∂MM of

(p̄j, V̄j) such that U∂j ⊂
⋃
c∈(1−ε,1+ε) RcZ

∂
j , with Z∂

j ∩U∂j smooth and connected, define

dj ∈ C∞(U∂j ) by

dj(q,W ) = (s̄j+1 − s̄j)c, Rc(q,W ) ∈ Z∂
j ,

so dj(p̄j, V̄j) = s̄j+1−s̄j, and ẽxpq(Rdj(q,W )W ) ∈ ∂M for (q,W ) ∈ U∂j . Lastly, let U∂k ⊂
Lb
∂MM denote a small neighborhood of (p̄k, V̄k) such that U∂k ⊂ (ẽxp ◦R1−s̄k)

−1(M◦);

in particular (p̄k, V̄k) ∈ U∂k .

We now construct a neighborhood of (p, V ) for which the j-th reflection point and

velocity lie in U∂j . Thus, encoding point and velocity of the extended manifold by the

map

ẽxp′(q,W ) :=
(
ẽxpq(W ), d

ds
ẽxpq(sW )

∣∣
s=1

)
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we inductively define V∂k := U∂k and, for 1 ≤ j ≤ k − 1,

V ∂
j := U∂j ∩

(
ρ ◦R−1

dj
◦ ẽxp′ ◦Rdj

)−1
(V ∂

j+1),

where we used the reflection map ρ defined in equation (2.2), and finally

V0 := U0 ∩
(
ρ ◦R−1

d0
◦ ẽxp′ ◦Rd0

)−1
(V ∂

1 ).

Then V0 is the desired neighborhood of (p, V ). Indeed, if (q,W ) ∈ V0, we inductively

define (q0,W0) = (q,W ), and for j = 0, . . . , k − 1

(qj+1,Wj+1) := ρ
(
R−1
dj(qj ,Wj)

(
ẽxp′

(
Rdj(qj ,Wj)(qj,Wj)

)))
∈ V∂j+1.

Then we have expb
q (sj(q,W )W ) = qj for 1 ≤ j ≤ k, where

sj(q,W ) =
∑
i<j

di(qi,Wi).

Therefore expb
q (W ) = ẽxpqk

(
(1 − sk(q,W ))Wk

)
, and by construction, we also have

(pj(q,W ),Vj(q,W )) = (qj,Wj), with smooth dependence on (q,W ).

(2): Suppose D ⊃ ∂Dk 3 (p, V ) = limi→∞(pi, Vi) with (pi, Vi) ∈ D◦k, and denote

J̄ := J(p, V ), s̄j := sj(p, V ). The above arguments imply J̄ ≥ k − 1, and

s̄j = lim
i→∞

sj(pi, Vi), j ≤ min(k, J̄),

likewise (p̄j, V̄j) := (pj(p, V ),Vj(p, V )) = limi→∞(pj(pi, Vi),Vj(pi, Vi)) for these j. Let

γ(s) = expb
p(sV ) and γi(s) = expb

pi
(sVi).

Suppose first that J̄ ≥ k, then s̄j ∈ (0, 1] for j ≤ k. If s̄k = 1, then γ(s) undergoes

(k − 1) reflections and ends at γ(1) ∈ ∂M , and (p, V ) ∈ Bk,−. If sk < 1, then both

the case J = k and the case J ≥ k + 1, sk+1 > 1, would imply (p, V ) ∈ D◦k. Hence,

we must have J ≥ k+ 1, and sk+1 ≤ 1. If sk+1 < 1, then the arguments for (1) would

imply that γi((0, 1)) intersects ∂M at least k + 1 times for large i. Thus necessarily

sk+1 = 1, and (p, V ) ∈ Bk,+.

In order to exclude the case that J̄ = k − 1 (k ≥ 1), note that (p, V ) ∈ D implies

that we can define γ(s) as a broken null-geodesic for s ∈ [0, 1 + ε] for some ε > 0. We

claim that γ necessarily has a k-th intersection point with ∂M , contradicting J̄ < k.

If k = 1, this is straightforward, as γ|[0,1+ε] not intersecting ∂M would imply (by

continuity of ẽxp) the same statement for γi|[0,1+ε], contradicting Vi ∈ D◦1. For k ≥ 2,

we note that

pk(pi, Vi) = ẽxppk−1(pi,Vi)

(
(sk(pi, Vi)− sk−1(pi, Vi))Vk−1(pi, Vi)

)
;

passing to a subsequence, we may assume that sk(pi, Vi) → s̄ ∈ [̄sk−1, 1]. Since

limi→∞ Vk−1(pi, Vi) = V̄k−1 ∈ T−∂MM is strictly inward pointing (as follows from the
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definition of expb andD), there exists c > 0 such that for all i, sk(pi, Vi)−sk−1(pi, Vi) ≥
c; therefore s̄ > s̄k−1, and we obtain

ẽxpp̄k−1(p,V )

(
(s− sk−1(p, V ))Vk−1(p, V )

)
∈ ∂M,

so indeed J̄ ≥ k (and sk(p, V ) = s̄).

This proves the inclusion ∂Dk ⊂ Bk,− tBk,+. (The disjointness of the two sets on

the right is evident.) For the reverse inclusion, we note that (p, V ) ∈ Bk,− is the limit

as ε→ 0 of (p, (1 + ε)V ) ∈ D◦k (this uses that sj(p, cV ) = c−1sj(p, V ) for c > 0), while

(p, V ) ∈ Bk,+ is the limit of (p, (1 − ε)V ) ∈ D◦k. The smooth extendibility of sj etc.

follows easily from the construction used in the proof of part (1).

(3): Note that Bk,+ = Bk+1,−, so the family expb |Dk , k ∈ N0, of smooth maps does

glue to a continuous function on
⋃
Dk; furthermore, D =

⋃
k∈N0
Dk by definition

of broken null-geodesics. In view of (1), and noting that B0,− = ∅, it remains to

show that every (p, V ) ∈ Bk−1,+, k ∈ N, has an open neighborhood in LbM which is

contained in Dk−1 ∪ D◦k; but this follows again from the proof of part (1). �

2.4. Tame broken null-geodesics. We define the class of tame null-geodesics for

which the possibility (2) in Proposition 2.9 does not occur for a given range of values

of t:

Definition 2.11. We call an inextendible broken null-geodesic γ : I → M tame for

−∞ ≤ a < t < b ≤ ∞ if for all a < a′, b′ < b, we have t(γ(I))∩(a, a′), t(γ(I))∩(b′, b) 6=
∅. If γ is tame for −∞ < t <∞, we simply say that γ is tame.

By Proposition 2.9 and its proof, this can be rephrased as follows: an inextendible

broken null-geodesic γ is tame for a < t < b if and only if the only possible accu-

mulation points of γ−1(∂M) ∩ (a, b) ⊂ R = R ∪ {±∞} are a and b; that is, γ only

undergoes a finite number of reflections whenever t◦γ stays in a fixed compact subset

of (a, b). Tame geodesics are precise those for which t(γ(I)) = R.

From the point of view of solving boundary value problems for wave equations, we

have precise control over the singularities of geometric optics solutions along tame

broken null-geodesics [Tay75]. There are much more general results about the prop-

agation of singularities for boundary value problems, see for example [Tay76, MS78,

MS82, MT], which would become relevant if one dropped the null-convexity assump-

tion on ∂M . They in particular give rather precise information on the curves along

which singularities intersecting the boundary tangentially propagate; for null-convex

∂M , these are null-geodesics within the boundary. Our reconstruction arguments on

the other hand crucially rely on the spacelike nature of the boundary light observation

sets, which is guaranteed by the tameness assumption.

To illustrate Definition 2.11 and to provide a natural class of examples, we show:
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Proposition 2.12. If (M, g) is admissible with strictly null-convex boundary, then

all inextendible broken null-geodesics γ : I →M are tame.

This is a generalization of [Tay76, Lemma 6.1].

Proof of Proposition 2.12. Assume the conclusion is false, then we must have I+ :=

sup I <∞, and γ−1(∂M) ∩ [0, I+) = {bj : j ∈ N0} ⊂ I, with

0 ≤ bj−1 < bj → I+, t(γ(bj))→ t∞ <∞. (2.12)

Denote pj := γ(bj) ∈ ∂M . By the proof of Proposition 2.9, in particular the es-

timate (2.10), there exists a constant C+ > 1 such that C−1
+ ≤ |γ′(s)|g+ ≤ C+

for all s ∈ [0, I+); thus, γ(s) is uniformly continuous, which implies that the limit

lims→I+ γ(s) =: p∞ ∈ ∂M exists.

Letting

Vj := γ′(bj + 0) ∈ Lb,+
pj
M,

we claim that Vj converges to some 0 6= V∞ ∈ Lp∞∂M , i.e. V∞ is tangent to the

boundary; note that C−1
+ ≤ |Vj|g+ ≤ C+ for all j, proving that any subsequential

limit of the Vj must be a non-zero element of L∂M . To prove the convergence,

denote by ν the outward unit normal to ∂M , and assume to the contrary that there

is a subsequence Vjk such that |g(Vjk , ν)| ≥ C∂ > 0 for some fixed constant C∂.

Using a finite number of local coordinate charts covering the compact set K :=

∂M ∩ t−1([t(γ(0)), t∞]), one easily sees that

CR := inf
q∈K

sup{t : ẽxpq((0, t)W ) ⊂M◦ for all W ∈ (T−∂MM)q,

C−1
+ ≤ |W |g+ ≤ C+, |g(W, ν)| ≥ C∂}

is positive, as follows from the fact that in a local coordinate chart and for such W ,

we have ẽxpq(sW ) = q + sW + O(s2), which does not return to ∂M for a uniform

amount of time (depending on C∂, C+, K, and the C1(K) norm of the metric g). But

then bjk+1−bjk ≥ CR, contradicting (2.12). A similar argument shows more generally

that

lim
s→I+

γ′(s) = V∞ ∈ Lp∞∂M. (2.13)

By affinely reparameterizing γ, we may assume |V∞|g+ = 1.

Fix a boundary defining function x, and let

f := x ◦ γ ≥ 0,

then f is continuous on the closed interval [0, I+], with f(bj) = 0 for all j; therefore

lims→I+ f(s) = f(I+) = 0. Let further

θj := f ′(bj + 0) = dx(Vj) > 0,
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then limj→∞ θj = 0. We aim to prove estimates on the ‘chord lengths’ bj+1 − bj and

the ‘reflection angles’ θj as j →∞ which will contradict the convergence (2.12); our

arguments will slightly more generally prove that reflection points cannot accumulate

near a strict null-convex boundary point.

The strict null-convexity of ∂M at p∞ implies, by continuity, that (Hx)(V, V ) ≤
−k < 0 for some constant k > 0 whenever V ∈ Lp∂M , |V |g+ = 1, p near p∞. For

large j then, by (2.13), we have

f ′′(s) = (Hx)(γ′(s), γ′(s)) ≤ −k/2, s ∈ (bj, bj+1),

which gives an estimate for how close γ stays to ∂M :

f(s) ≤ θj(s− bj)− k(s− bj)2/4 ≤ θ2
j/k. (2.14)

Furthermore, f(bj+1) = 0 implies the estimate

bj+1 − bj ≤ 4θj/k. (2.15)

Consider now a reflection point pj, j large, then Vj is θj-close to a null vector

V ′j ∈ Lpj∂M . Let kj := −(Hx)(V ′j , V
′
j ) > 0, then the smoothness of Hx and the

estimates (2.14)–(2.15) give

f ′′(s) = −kj +O(θj + f(s) + |s− bj|) = −kj +O(θj), s ∈ (bj−1, bj).

We also record that kj ≥ k/2 for large j. Therefore, for such s, we have

f ′(s) = θj − (s− bj)(kj +O(θj)),

f(s) = (s− bj)θj − (s− bj)2(kj +O(θj))/2.

Hence, f(bj+1) = 0 implies

bj+1 − bj =
2θj

kj +O(θj)
≥ CBθj, (2.16)

and thus

θj+1 = −f ′(bj+1) = −θj +
2θj(kj +O(θj)

kj +O(θj)
≥ θj − Cθ2

j ,

with C and CB > 0 constants independent of j.

Fix j0 such that θj <
1

2C
for j ≥ j0. Since x 7→ x − Cx2 is increasing for x < 1

2C
,

we conclude that θj ≥ aj/C, where aj0 = Cθj0 ∈ (0, 1/2) and

aj+1 = aj − a2
j .

Since aj ≥ CA
j−(j0−1)

by Lemma 2.13 below, the estimate (2.16) implies that bj ≥
C0 + C1 log j for some constants C0 and C1 > 0, contradicting (2.12). The proof is

complete. �

Lemma 2.13. If a1 ∈ (0, 1/2) and aj+1 = aj − a2
j , then aj ≥ C/j for some C > 0.
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Proof. Clearly, aj > 0 for all j. Write aj = bj/j, then bj > 0, and

bj+1 = bj

(
1 +

1

j

(
1− j + 1

j
bj

))
If bj ≤ j

j+1
(this holds for j = 1), this gives bj ≤ bj+1 ≤ 1. If on the other hand

j
j+1
≤ bj ≤ 1, then j−1

j
≤ bj+1 ≤ 1. Thus, bj ≥ C for some C > 0, as claimed. �

3. Reconstruction from boundary light observation sets

In this section, we prove (a generalization of) Theorem 1.2, showing how one can

reconstruct the topological, smooth, and conformal structure of suitable precompact

subsets S b M from the observation of light cones on (subsets of) the null-convex

boundary ∂M , following the arguments outlined in the introduction.

There are substantial differences compared to the arguments in [KLU14a] due to

the presence of a boundary which we will explain in more detail below: the bound-

ary allows for the reconstruction of S using (multiply) reflected rays; it necessitates

certain restrictions on S due to possible strong refocusing after reflection; and the

codimension 1 nature of ∂M causes complications when there are null conjugate

points on ∂M — we circumvent the latter by assuming that there are no such con-

jugate points in the set U ⊂ ∂M where we observe the future light cones from points

in S.

Let (M, g) denote an admissible manifold.

Definition 3.1. Let (q, V ) ∈ LbM , see (2.5), and suppose p := expb
q (V ) ∈ ∂M .

Then we say that (q, V ) and p are not conjugate if expb
q |LqM has injective differential

at V , where we define the differential as the limit D(1−ε)V expb
q as ε→ 0+.

If expb
q (sV ) 6∈ ∂M for 0 < s < 1, this can be phrased equivalently as the condition

that the exponential map ẽxpq|LpM has injective differential at V .

The existence of the limit follows from part (2) of Proposition 2.10, since (q, V ) ∈
B+
k for some k ∈ N0. Since broken null-geodesics are transversal to ∂M , we can

rephrase the definition as follows: denote Z = (expb
q )
−1(∂M) ⊂ Lb

qM , which is a

smooth codimension 1 submanifold near V (see the proof of Proposition 2.10). Then

(q, V ) and p are not conjugate if and only if the map Z 3 W 7→ expb
q (W ) ∈ ∂M

has injective differential at V ; that is, the boundary point near p depends non-

degenerately on the initial velocity. See also Figure 2.8 for a closely related setting.

The implicit function theorem immediately gives:

Lemma 3.2. If (q, V ) and p are not conjugate, then, in the above notation, there ex-

ists a neighborhood U ⊂ Z of V such that expb
q |U : U → expb

q (U) is a diffeomorphism

onto its image, which is thus a 1-codimensional smooth submanifold of ∂M .
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Recalling (2.5), denote by

Lb,+M := LbM ∩ L+M = L+M \ (T+
∂MM ∪ T∂M)

the set of future-directed light-like vectors which are inward pointing at the boundary.

We then define by

L+
q := expb

q (L
b,+
q M ∩ D), q ∈M, (3.1)

the future light cone from q. Thus, if q ∈M◦, we simply have L+
q = {q}∪expb

q (L
+
q M).

(The set on the right hand side is already closed since expb
q is proper; this uses that

there exists a global timelike function on M .)

Theorem 3.3. Let (Mj, gj), j = 1, 2, be admissible Lorentzian manifolds, let Sj ⊂
M◦

j be open with compact closure in Mj, and let U ′j b Uj ⊂ ∂Mj be open. Denote the

collection of light observation sets by

Sj := {L+
q ∩ Uj : q ∈ Sj}. (3.2)

Assume:

(1) for any two points q1 6= q2 ∈ Sj, we have L+
q1
∩ U ′j 6= L+

q2
∩ U ′j.

(2) all inextendible broken null-geodesics passing through a point in Sj are tame,

see Definition 2.11;

(3) for all q ∈ Sj and V ∈ Lb,+
q Mj such that p = expb

q (V ) ∈ Uj, (q, V ) and p are

not conjugate.

Suppose there exists a diffeomorphism Φ: U1

∼=−→ U2 such that

S2 = {Φ(L) : L ∈ S1}.

Then there exists a conformal diffeomorphism Ψ: (S1, g1|S1)
∼=−→ (S2, g2|S2).

If in addition Φ is conformal, i.e. Φ∗(g2|U2) = fg1|U1 for some function f 6= 0, and

preserves the time orientation, then Ψ preserves the time orientation as well.

In fact, we will show that the map Ψ: S1 → S2 given by the composition of

S1 3 q 7→ L+
q ∩ U1 ∈ S1, Φ, and the inverse of S2 3 q 7→ L+

q ∩ U2 ∈ S2 is a conformal

(and time orientation preserving) diffeomorphism.

Remark 3.4. For a general admissible manifold (M, g), the constructions below allow

for the reconstruction of S from light observation sets if the closure S̄ of the set S of

light sources as well as the subset of the boundary on which we observe are contained

in a fixed slab M ′ := t−1((I−, I+)), −∞ ≤ I− < I+ ≤ ∞, with the property that

all inextendible broken null-geodesics passing through a point in S̄ are tame for

I− < t < I+. One can then define a new time function t′, proper as a map M ′ → R,

such that t′ → ±∞ as t→ I±. Replacing M by M ′, condition (2) is satisfied.



24 PETER HINTZ AND GUNTHER UHLMANN

Remark 3.5. Theorem 3.3 allows for the reconstruction of subsets S ⊂ M◦ even in

certain situations in which the first intersection point of future null-geodesics from

sources in S with ∂M is not contained in U ; that is, the theorem crucially uses

possibly multiply reflected broken null-geodesics. As an example, in Figure 3.2, one

can take S ⊂M◦ and U ⊂ ∂M to be small neighborhoods of q and p, respectively; if

U is sufficiently small, then the shown once broken null-geodesics are the only broken

null-geodesics starting at q and intersecting U .

Assumption (1) is very natural: we illustrate this with two examples.

Example 3.6. Consider the cylinder M0 = {(t, rω) : r < 1} ⊂ R × Rn, n ≥ 1, of

radius 1, see also equation (2.3). Let S1 = {(t, rω) : |t| < 1/2 − r, r < 1/2} and

U = (0, 2) × Sn−1, U ′ = [1/2, 3/2] × Sn−1. Then Theorem 3.3 applies: the topo-

logical, differentiable, and conformal structure of S1 can be recovered from the light

observation sets L+
q ∩ U , q ∈ S1.

Denoting by Ta : (t, x) 7→ (t + a, x) the time translation operator, let S2 := S1 ∪
T−2(S1). Using the notation (3.2), we then have S1 = S2, hence observers in U cannot

distinguish S1 and S2, even though the sets S1 and S2 are not homeomorphic (S1 is

connected, S2 is not); assumption (1) is violated. See the left panel of Figure 3.1.

Example 3.7. Consider Mf ⊂ R × Rn, n ≥ 2, defined in equation (2.4) with R = 1,

for the function f(t, ω) = χ0(t)χ(ω), where χ0(t) ≡ 0 for t ≥ 0 and χ0(t) = δe1/t for

t ≤ 0, and where χ ∈ C∞(Sn−1) is identically 1 in the neighborhood |ω − ω0| < 1/2

of some fixed ω0 ∈ Sn−1 ⊂ Rn, and χ(ω) = 0 for |ω − ω0| > 1. See the right panel of

Figure 3.1. For δ > 0 sufficiently small, Mf has a strictly null-convex boundary by

Lemma 2.6. Let

S = S ′ ∪ S ′′,
S ′ = {(t, rω) ∈ R1+n : |t| < 1/2− r, r < 1/2},
S ′′ = {(t, rω) ∈ R1+n : |t+ 9/4| < 1/4− r, r < 1/4}.

We use the observation set U = (0, 2) × Sn−1 ⊂ ∂Mf and U ′ = [1/2, 3/2] × Sn−1.

Theorem 3.3 applies to the set S ′, and in fact yields a conformal diffeomorphism

(which in this case is just the identity map on R1+n) between (S ′,−dt2 + dx2) and

(S1,−dt2+dx2) from Example 3.6. Theorem 3.3 can also be shown (by a perturbative

argument off the case δ = 0) to apply to S ′′ and U for small δ > 0. If one attempts

to recover S, all light observation sets L+
q ∩U , q ∈ S, are distinct. However, we have

lim
t→−2

L(t,0) ∩ U → L(0,0) ∩ U

as smooth submanifolds of U . That is, separated points can have very similar light

observation sets. This motivates the stronger hypothesis that light observation sets

from points in the closure S̄ are distinct.
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q2

q1

∂M ∂M

S1

S2

UU

q

∂M

S

U

Figure 3.1. Illustration of examples which violate assumption (1) of

Theorem 3.3. Left: example 3.6. The sets S1 and S2 of sources have the

same light observation sets in U , for instance L+
q1
∩U = L+

q2
∩U for q1 =

(0, 0) and q2 = (−2, 0). Right: example 3.7. All light observation sets

from points in S are distinct in U , but as q → (−2, 0), the observation

set L+
q ∩U converges to L+

(0,0) ∩U . (The light cone based at q does not

refocus near (0, 0) in three and more spacetime dimensions due to its
distorted form, contrary to the appearance in this 2-dimensional pic-

ture.)

Fix an admissible Lorentzian manifold (M, g), and sets S ⊂M and U ′ b U ⊂ ∂M

satisfying the assumptions of Theorem 3.3, and denote S̄ = {L+
q ∩ U : q ∈ S̄}. By

assumption (1), the map

L : S̄ 3 q 7→ L+
q ∩ U ∈ S̄ (3.3)

is bijective, as is its restriction to S as a map S → S. There exists a unique topo-

logical, smooth, and conformal structure on S, defined by pushing these structures

forward from S ⊂M to S using L, which makes this map a conformal diffeomorphism.

In order to prove Theorem 3.3, we need to show that we can uniquely recover these

structures merely from the knowledge of the collection S of subsets of the manifold U
and the conformal class of g|U . From now on, we identify the set S of sources and the

set S of light observation sets using the map (3.3), and use the two interchangeably.

The proof of Theorem 3.3 will occupy the remainder of this section: in §3.1, we

show how to recover the topology of S, in §3.2 we recover the smooth structure, in

§3.3 the conformal structure, and finally in §3.4 the time orientation of S.
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3.1. Topology. We define a topology T on S by using the collection of sets of the

form

UO := {L ∈ S : L ∩O 6= ∅}, O ⊂ U open,

UK := {L ∈ S : L ∩K = ∅}, K ⊂ U compact,

as a subbasis. Note that the definition of T only involves the set S and the a priori

known topology of U .

Proposition 3.8. The topology T is equal to the subspace topology TM of S ⊂M .

Proof. T ⊂ TM : We show that sets of the form UO and UK and open in S ⊂ M . If

O = ∅, then UO = ∅ is open. If on the other hand O 6= ∅, let L = L+
q ∩ U ∈ S,

q ∈ S, and suppose V ∈ Lb,+
q M is such that expb

q (V ) ∈ O; in the notation of

Proposition 2.10, we have V ∈ Bk,− for some k ∈ N, i.e. p is the k-th intersection of the

broken null-geodesic with initial data (q, V ) with the boundary ∂M , and pk(V ) = p.

By part (2) of that proposition, pk(W ) depends continuously on q′ ∈M , W ∈ Lb
q′M ,

hence pk(W ) ∈ O when (q′,W ) is close to (q, V ). This shows that L+
q′ ∩ O 6= ∅, as

desired.

For K ⊂ U compact, we claim that S \UK is closed in the subspace topology of M :

if qj ∈ S, limj→∞ qj =: q̄ ∈ S, and Vj ∈ Lb,+
qj
M , pj := expb

qj
(Vj) ∈ K, then, passing to

a subsequence if necessary, we may assume that pj → p̄ ∈ K as j → ∞. Moreover,

it follows from the proof of Proposition 2.9, see in particular the estimates (2.9) and

(2.10), that |Vj|g+ remains in a compact subset of (0,∞), hence we may assume that

(qj, Vj)→ (q̄, V̄ ) ∈ Lb,+M . But by Proposition 2.10, we then have p̄ = expb
q̄ (V̄ ) ∈ K,

hence q̄ 6∈ UK , as claimed.

TM ⊂ T : we need to prove that for any TM -open set U ⊂ S, every q ∈ U has a T -

open neighborhood which is contained in U . To see this, denote L := L+
q ∩U ′, and fix a

compact set K ′ with U ′ b K ′ ⊂ U ; for any ε > 0, let Kε := K ′\
{
p ∈ ∂M : dg+(p, L) <

ε
}

, where dg+(p, L) = infp′∈L dg+(p, p′) is defined using the Riemannian distance

function of g+. Further, pick a countable dense subset {pi : i ∈ N} ⊂ L+
q ∩U ′, and let

Oi,ε = {p ∈ U : dg+(p, pi) < ε}. By the compactness of L, for each ε > 0, there exists

a finite number N(ε) such that L ⊂
⋃N(ε)
i=1 Oi,ε. Consider now the nested sequence of

T -open neighborhoods

Uj := UK1/j ∩
N(1/j)⋂
i=1

UOi,1/j

of L+
q ∩ U .

Suppose that Uj 6⊂ U for all j, then we can pick a sequence qj ∈ Uj \ U ⊂ S,

and we may assume without loss that qj → q̄ ∈ S̄. It then follows that L+
q̄ ∩ U ′ is

equal to the set of limit points of the sequence of sets L+
qj
∩ U ′; for q̄ 6∈ ∂M , this is a
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consequence of Proposition 2.10, while for q̄ ∈ ∂M , recalling the definition (3.1), this

follows from a simple approximation argument. By definition of the sets UK1/j , we

infer that L+
q̄ ∩ U ′ ⊂ L. If this were a strict inclusion (of closed sets), we could find

i0 ∈ N with pi0 ∈ L\L+
q̄ and j0 ∈ N such that Oi0,1/j ⊂ L\L+

q̄ for all j ≥ j0. However,

by definition of UOi0,1/j , there exists, for all j ≥ j0, a point xj ∈ L+
qj
∩ Oi0,1/j; hence

pi0 = limj→∞ xj is a limit point of the sets L+
qj

, hence contained in L+
q̄ , which is a

contradiction. Therefore, L+
q̄ ∩U ′ = L = L+

q ∩U ′. By assumption (1) of Theorem 3.3,

this implies S̄ \U 3 q̄ = q ∈ U . This contradiction shows that Uj ⊂ U for sufficiently

large j, and the proof is complete. �

Example 3.9. A key construction in [KLU14a] is the earliest observation time along

timelike curves in the observation region. We give an example to indicate why,

without modifications as in §3.2 below, this is not as useful in the present setting.

Consider the cylinder M0 ⊂ R1+n, n ≥ 1, with radius 1, see equation (2.3), and

consider the set

S = {(t, rω) ∈ R1+n : |t+ 1| < 1/2− r, r < 1/2}.

We observe in the set U = (0, 3)× Sn−1. Thus,

L+
(t,0) ∩ U =

{
{t+ 3} × Sn−1, t ≤ −1,

{t+ 1, t+ 3} × Sn−1, t > −1.

Correspondingly, the earliest observation time of L+
(t,0) along the timelike curve γ(s) =

(s, ω0) (with ω0 ∈ Sn−1 fixed) within ∂M0, defined by sγ(t) := inf{s : γ(s) ∈ L+
(t,0)},

is discontinuous, namely sγ(t) = t+ 3 for t ≤ −1, and sγ(t) = t+ 1 for t > −1.

3.2. Smooth structure. With the topology of S at our disposal, the space of con-

tinuous maps from S into any topological space is well-defined. In order to recover

the structure of S as an (open) smooth manifold, we will, in a neighborhood of any

point q ∈ S, define a coordinate system by using ‘earliest observation times’ along

suitable curves passing through points where L+
q ∩ U is a smooth submanifold.

Lemma 3.10. For q ∈ M and p ∈ ∂M , the number of different vectors V ∈ Lb
qM

for which expb
q (V ) = p is finite.

Proof. Note that all such V have to be non-zero. If V is such a vector, then

expb
q (sV ) = p only holds for s = 1. Thus, it suffices to prove that there are only

finitely many rays in Lb
qM \ {0} whose image under expb

q passes through p. Since

(Lb
qM \ {0})/R+ is a compact space, it suffices to prove that every ray R+V with

expb
q (V ) = p has a punctured neighborhood consisting of rays whose image under

expb
q does not contain p. But this follows from Lemma 3.2 (using assumption (3) of

Theorem 3.3). �
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Lemma 3.11. Suppose that q ∈ S and p ∈ ∂M are such that for all V ∈ Lb,+
q M

satisfying expb
q (V ) = p, (q, V ) and p are not conjugate. Then there exist a neighbor-

hood O 3 p, an integer N < ∞, and N pairwise transversal smooth codimension 1

submanifolds Lj (j = 1, . . . , N) of O such that L+
q ∩O =

⋃N
j=1 Lj.

See Figure 3.2.

V2

V1q

p
L2

L1

∂M

Figure 3.2. Two different future-directed light rays from q intersect-

ing the boundary at the same point p. Under the assumption that

(q, Vj) and p are not conjugate for j = 1, 2, the light observation set

L+
q ∩ ∂M is, near p, the union of two transversally intersecting codi-

mension 1 submanifolds L1, L2 ⊂ ∂M .

Proof of Lemma 3.11. Let {V1, . . . , VN} := (expb
q )
−1(p) ∩ Lb,+

q M . As in Lemma 3.2,

there exists a smooth codimension 1 submanifold Zj ⊂ Lb
qM containing Vj such that

Lj := expb
q (Zj) is a smooth codimension 1 submanifold of ∂M , which moreover is

spacelike by Lemma 2.5. Furthermore, by construction,
⋃N
j=1 Lj = L+

q ∩ O′ for a

sufficiently small neighborhood O′ of p.

IfN = 1, we can takeO = O′, and the proof is complete. IfN ≥ 2, we first establish

the transversality of Lj and Lk, 1 ≤ j 6= k ≤ N , at p. Let γi(s) = expb
q (sVi), i = j, k;

we then observe that TpLi uniquely determines an outward lightlike ray through p,

which is necessarily equal to the ray R+Wi, where Wi := γ′i(1 − 0) ∈ (T+
∂MM)p for

i = j, k; this uses Lemma 2.5. Thus, if TpLj = TpLk, then cWj = Wk for some c > 0.

But then

expb
p(−csWj) = expb

p(−sWk) ∈ γj([0, 1]) ∩ γk([0, 1]), s ∈ [0, 1]. (3.4)

Now for s = 1, we have expb
p(−Wk) = q, but we also have expb

p(−Wj) = q by

construction. Thus, c = 1, and by differentiating the equality in (3.4) in s at s = 1,

we find −Vj = −Vk, contradicting j 6= k. The conclusion of the Lemma follows if we

take O ⊂ O′ to be a sufficiently small neighborhood of p. �
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Thus, away from a finite union of smooth codimension 2 submanifolds of ∂M ,

L+
q ∩O is a smooth codimension 1 submanifold of ∂M . Define the smooth part

Lreg
q :=

{
p ∈ L+

q ∩ U : there exists p ∈ O ⊂ ∂M open such that L+
q ∩O is a

smooth connected codimension 1 submanifold of O
}
.

(3.5)

(In the notation of the Lemma 3.11, we have Lreg
q ∩ U = (L+

q ∩ U) \
⋃
j 6=k(Lj ∩ Lk).)

Fix now any q ∈ S, and denote by µ : [−1, 1] → U a smooth curve in ∂M which

is transversal to Lreg
q , with µ′(s) 6= 0 for s ∈ [−1, 1], and such that µ(0) ∈ Lreg

q and

µ(s) 6∈ L+
q for s 6= 0. Consider the set

R′(µ) := {q′ ∈ S : #(Lreg
q′ ∩ µ([−1, 1])) = 1, with transversal intersection}.

While R′(µ) is neither open nor closed in general, it does contain an open neighbor-

hood of q. Therefore, the set

R(µ) :=
⋃

R⊂R′(µ)
open in S

R

is a non-empty open neighborhood of q. By part (2) of Proposition 2.10, the earliest

observation time

xµ : R(µ) 3 q 7→ s ∈ [−1, 1], where µ(s) ∈ L+
q ,

is a smooth function on R(µ), and xµ(q) = 0. (We stress that R(µ) and xµ are well-

defined given the topology of S and the smooth structure of U .) We aim to show that

suitable families of such functions xµ give local coordinates near q. The key step is to

show that there is always a large supply of curves µ for which xµ is non-degenerate

at q; more precisely:

Lemma 3.12. Fix q ∈ S, and let

M := {µ : [−1, 1]
C∞−−→ U : µ is transversal to L+

q , µ
′(s) 6= 0 for s ∈ [−1, 1],

µ(0) ∈ Lreg
q , µ(s) 6∈ L+

q for s ∈ [−1, 1]}.

Then ⋂
µ∈M

ker(dxµ|q) = {0} ⊂ TqM.

We give an analytic proof here, arguing by contradiction. The arguments in §3.4

below provide a different, more geometric proof.

Proof of Lemma 3.12. Let (−1, 1) 3 r 7→ q(r) ∈ S be a smooth path with q(0) = q

and V := q′(0) 6= 0 ∈ TqM . Suppose that

dxµ(V ) = 0 for all µ ∈M; (3.6)
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equivalently, for all µ ∈M, the curve r 7→ µ̃(r) defined by {µ̃(r)} = L+
q(r)∩µ([−1, 1])

for small r, so µ̃(0) = µ(0), satisfies µ̃′(0) = 0.

Let now O ⊂ ∂M be an open neighborhood of a point in Lreg
q , as in (3.5). Pick

any non-empty O′ b O, and denote L := Lreg
q ∩ O′. Since Lreg

q ∩ O is smooth of

codimension 1, we can pick a smooth open map

µ : L× (−2, 2)→ O

such that s 7→ µ(p, s) is a curve with µ(p, 0) = p, transversal to Lreg
q ∩O, and so that

µ is a diffeomorphism onto its image O′′ ⊂ U .

For small r, the preimage µ−1(L+
q(r) ∩ O′′) is the graph of a smooth function

f(r, ·) : L→ (−2, 2) and in fact f : (−ε, ε)×L→ (−2, 2) (shrinking ε > 0 if necessary)

is smooth. (These are consequences of Proposition 2.10.) Furthermore, f(0, ·) ≡ 0.

Since we are assuming that (3.6) holds, so ∂rf(0, p) ≡ 0, the tangent space

T (r, p) := Tµ(p,f(r,p))L+
q(r)

is r2-close to T (0, p) = TpL+
q , uniformly for all p ∈ O′, hence the same is true for the

unique future lightlike, outward pointing ray `(r, p) ⊂ T (r, p)⊥, see Lemma 2.5.

Let now V1, V2 ∈ Lb,+
q M be two distinct non-zero tangent vectors such that pj :=

expb
q (Vj) ∈ L, j = 1, 2, then R+ · dds expb

q (sVj)|s=1−0 = `(0, pj). Denote by W (r, p)

a generator of `(r, p) which depends smoothly on (r, p) ∈ (−ε, ε) × L, and which

is r2-close to W (0, p). Then the images of the two broken null-geodesics s 7→
expb

pj
(−sW (0, pj)) for j = 1, 2 intersect cleanly at q. But this implies that the

point q(r) is the unique element near q of the set of intersections of the broken null-

geodesics expb
µ(pj ,f(r,pj))

(−sW (r, pj)), j = 1, 2, and moreover q(r) depends smoothly

on f(r, pj) and W (r, pj). The properties of f and W therefore imply that q(r) is

r2-close to q = q(0), contradicting the assumption q′(0) 6= 0 and completing the

proof. �

In particular, for every q ∈ S, there exist (n + 1) curves µj ∈ M such that the

set {dxµj : j = 0, . . . , n} is linearly independent at q, and therefore (xµj)j=0,...,n is a

smooth local coordinate system near q. However, only knowing the collection S of

light observation sets, it is not immediately clear how to determine if a family µj,

j = 0, . . . , n, has this property. We thus argue indirectly: define a subalgebra

C ⊂ C0(S)

by declaring that f ∈ C0(S) is an element of C if and only if for every q ∈ S, there

exist an open neighborhood U 3 q and curves µi ∈M (in the notation of Lemma 3.12)

for 0 ≤ i ≤ n such that U ⊂
⋂n
i=0 R(µi), and a smooth function F : Rn+1 → R so

that

f(q′) = F (xµ0(q′), . . . , xµn(q′)), q′ ∈ U. (3.7)
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By the arguments presented in this section, C = C∞(S), and hence we have recovered

the algebra of smooth functions on S from the family of sets S.

Lastly then, a set of n+1 curves µi, 0 ≤ i ≤ n, for which every element of C can be

expressed in a neighborhood U of q in the form (3.7) gives rise to a local coordinate

system (xµj)j=0,...,n : U → Rn+1. This completes the reconstruction of S as a smooth

manifold.

3.3. Conformal structure. The reconstruction of the conformal structure of S is

straightforward: if q ∈ S, let V ∈ Lb,+
q M be such that p = expb

q (V ) ∈ Lreg
q , and put

L := Tp(L+
q ∩ U). Consider the set

Q =
{
µ : (−1, 1)→ S : µ is smooth, µ(0) = q, p ∈ L+

µ(r) ∀r, Tp(L
+
µ(r) ∩ U) = L

}
of all paths which have the same outgoing future null ray at p, see Lemma 2.5. Then

{µ′(0) : µ ∈ Q} = RV ∈ TqM recovers a 1-dimensional lightlike subspace of TqS.

Repeating this procedure for all points p ∈ Lreg
q , and noting that Lreg

q ⊂ Lq∩U is dense

by Lemma 3.11, we can reconstruct an open subset of the light cone LqM ⊂ TqM .

But LqM is a real-analytic submanifold of TqM , hence this determines LqM uniquely.

Since q ∈ S was arbitrary, this proves that we can recover LSM , hence the conformal

structure of S. This finishes the proof of the first part of Theorem 3.3.

3.4. Time orientation. In order to recover the time orientation of S when we are

given the conformal structure of U as well as its time orientation, we analyze the

dependence of the boundary intersection point of a broken null-geodesic on its initial

point:

Lemma 3.13. Suppose (−1, 1) 3 r 7→ (q(r), V (r)) ∈ Lb,+M is a smooth path such

that p(r) := expb
q(r) V (r) ∈ ∂M . Let γ(r, s) := expb

q(r)(sV (r)) and γ(s) := γ(0, s).

Then

g(q′(0), V (0)) = g(p′(0), γ′(1)). (3.8)

Proof. The values 0 < s1(r) < · · · < sk(r) = 1 of s for which γ(r, s) = 0 are smooth

functions of r for r small, likewise the boundary intersection points pj(r) = γ(r, sj(r));

see also the discussion preceding Proposition 2.10. Define s0(r) := 0 and p0(r) := q(r).

For j = 0, 1, . . . , k − 1, we then have
∫ sj+1(r)

sj(r)
|∂sγ(r, s)|2g ds = 0 for all r, hence by

differentiation in r, using that ∂sγ(r, s) is null for all s, and further using that γ(r, s)

is a null-geodesic for s ∈ (sj(r), sj+1(r)),

0 =

∫ sj+1(r)

sj(r)

g(∂sγ(0, s), Ds∂rγ(r, s)|r=0) ds

= g
(
γ′(sj+1(r)− 0), p′j+1(0)

)
− g
(
γ′(sj(r) + 0), p′j(0)

)
.
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Summing these identities and using that γ′(sj(r) + 0)− γ′(sj(r)− 0) ⊥ T∂M 3 p′j(0),

all but the first and last terms cancel, and we obtain (3.8). �

Let now (−1, 1) 3 r 7→ q(r) ∈ S be a timelike path; we show that one can determine

whether q is future timelike:

Proposition 3.14. Let p(r) ∈ Lreg
q(r)∩U be a smooth path, and denote by N ∈ Tp(0)∂M

the future-directed unit normal to the spacelike hypersurface Tp(0)L+
q(0). Then q is

future timelike if and only if g(p′(0), N) < 0.

We stress that this criterion only uses the conformal structure and time orientation

of (U , g|U).

Proof of Proposition 3.14. We claim that p(r) = expb
q(r)(V (r)) with V (r) ∈ Lb,+

q(r)M

smooth in r. By definition of Lreg
q(0), there exists a unique V (0) ∈ Lb,+

q(0)M such that

p(0) = γ(1) for γ(s) := expb
q(0)(sV (0)). Similarly to the proof of Lemma 3.12, let

W (r) denote a generator of the future-directed outward pointing null ray orthogonal

to L+
q(r)∩U , see Lemma 2.5, so that W (0) = γ′(1). Since q is timelike, the intersection

of the broken null-geodesic µr(s) := expb
p(r)(−sW (r)) with q is unique (if necessary

shrinking the interval that r takes values in) and clean; therefore we can choose a

smooth function s(r) such that µr(s(r)) = q(r), with s(0) = 1. But then V (r) =

−µ′r(s(r))/s(r) is smooth, as claimed.

We can now apply Lemma 3.13 and use that the orthogonal projection of γ′(1) =

W (0) ∈ Tp(0)M to Tp(0)∂M is a positive multiple of N ; since V (0) is future-directed,

we conclude that q′(0) is future timelike iff g(p′(0), N) < 0, proving the proposition.

�

This finishes the proof of the second part of Theorem 3.3.
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