LINEAR STABILITY OF SLOWLY ROTATING KERR BLACK HOLES

DIETRICH HAFNER, PETER HINTZ, AND ANDRAS VASY

ABSTRACT. We prove the linear stability of slowly rotating Kerr black holes as solutions
of the Einstein vacuum equations: linearized perturbations of a Kerr metric decay at an
inverse polynomial rate to a linearized Kerr metric plus a pure gauge term. We work in a
natural wave map/DeTurck gauge and show that the pure gauge term can be taken to lie
in a fixed 7-dimensional space with a simple geometric interpretation. Our proof rests on a
robust general framework, based on recent advances in microlocal analysis and non-elliptic
Fredholm theory, for the analysis of resolvents of operators on asymptotically flat spaces.
With the mode stability of the Schwarzschild metric as well as of certain scalar and 1-form
wave operators on the Schwarzschild spacetime as an input, we establish the linear stability
of slowly rotating Kerr black holes using perturbative arguments; in particular, our proof
does not make any use of special algebraic properties of the Kerr metric. The heart of the
paper is a detailed description of the resolvent of the linearization of a suitable hyperbolic
gauge-fixed Einstein operator at low energies. As in previous work by the second and
third authors on the nonlinear stability of cosmological black holes, constraint damping
plays an important role. Here, it eliminates certain pathological generalized zero energy
states; it also ensures that solutions of our hyperbolic formulation of the linearized Einstein
equations have the stated asymptotics and decay for general initial data and forcing terms,
which is a useful feature in nonlinear and numerical applications.
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1. INTRODUCTION

We continue our investigation of stability problems in general relativity from a system-
atic microlocal and spectral theoretic point of view. In previous work [HV18b, Hin18a], the
second and third authors proved the full nonlinear stability of slowly rotating Kerr—de Sit-
ter (KdS), resp. Kerr-Newman-de Sitter (KNdS) black holes as solutions of the Einstein
vacuum equations, resp. Einstein—-Maxwell equations, with positive cosmological constant
A > 0. The proofs of these results rest on the completion of two main tasks:

(1) control of asymptotics and decay of tensor-valued linear waves on ezact slowly ro-
tating KdS spacetimes via spectral theory/resonance analysis—we were in fact able
to deduce the structure of resonances as well as mode stability of slowly rotating
KdS black holes from that of spherically symmetric Schwarzschild—de Sitter (SdS)
spacetimes;

(2) robust control of the regularity of linear waves on asymptotically KdS spacetimes
via microlocal analysis on the spacetime. (Combined with the spectral theoretic
results on exact KdS spacetimes, this gives precise regularity and decay results for
waves on asymptotically KdS spacetimes.)

The present paper completes the first task on slowly rotating Kerr spacetimes: we show that
solutions of the linearization of the Einstein vacuum equations around a slowly rotating Kerr
solution decay at an inverse polynomial rate to a linearized Kerr metric, plus a pure gauge
solution which, in a linearized wave map gauge, lies in an (almost) explicit 7-dimensional
vector space.

More precisely, recall that the metric of a Schwarzschild black hole with mass m > 0 is
given in static coordinates by

2 2m '
Im0) = (1 - m) dt* — (1 - m) A2 =12, LER, 7€ (2m,00),
’ r r
where ¢ is the standard metric on S? [Sch16]. The more general Kerr family of metrics
9(m,a) [Ker63] depends in addition on the angular momentum a € R3. These metrics are

solutions of the Einstein vacuum equations’

Ric(g) = 0. (1.1)

Fix a mass parameter mg > 0 and set by = (mg,0) € R*. Restricting to Kerr black hole
parameters b = (m,a) € R?* close to by, we can regard gj as a smooth family of stationary

lAs written, this is a single equation for a symmetric 2-tensor g. However, we follow standard terminology
and refer to this as the Einstein equations in light of the fact that (1.1) is a coupled system of 10 nonlinear
equations for the coefficients of g expressed in local coordinates.
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(time-independent) Lorentzian metrics on a fixed 4-dimensional manifold
M° =R x [r_,00) x S?,

where r_ < 2mg. The level sets of t here are equal to those of ¢ in r > 4myg, i.e. far away
from the black hole, and are regular and transversal to the future event horizon H ™", which
for b = by is located at the Schwarzschild radius r» = 2mg. Linearizing equation (1.1) for
g = gp in the parameters b, we see that the linearized Kerr metrics

. d .
ap(b) = — . beR*
v(b) 7 s:og”+5b’ € R%,

are solutions of the linear equation D, Ric (gb(b)) =0.

Our main result concerns the long-time behavior of general solutions of the linearized
FEinstein vacuum equations
Dg,Ric(h) = 0. (1.2)
To describe it, recall that the non-linear equation (1.1) admits a formulation as a Cauchy
problem [CB52, CBGG69]: fix a Cauchy surface

%5 =t1(0) c M°.

Then the initial data are a Riemannian metric v and a symmetric 2-tensor k£ on %7, and
one seeks a solution g of (1.1) such that —v and k are, respectively, the induced metric
and second fundamental form of ¥§ with respect to g. A solution g exists locally near X
if and only if v, k satisfy the constraint equations, which are the Gauss—Codazzi equations,
see (14.3). The Cauchy problem for (1.2) is the linearization of this initial value problem;
its solutions exist globally and are unique modulo addition of a Lie derivative Ly gy of gy
along any vector field V.

Theorem 1.1. Let b = (m,a) be close to by = (mg,0); let a € (0,1). Suppose ¥,k €
C%(X5; S2T*%3) satisfy the linearized constraint equations, and decay according to

5 (rw) < Or 779 k(r,w)] < Cr=27e,

together with their derivatives along rd, and 9,, (spherical derivatives) up to order 8. Let h
denote a solution of the linearized Einstein vacuum equations (1.2) on M° which attains the
initial data 7, k at 25 Then there exist linearized black hole parameters b= (m,a) € RxR3
and a vector field V. on M° such that

h=go(b) + Lvgs + I, (1.3)
where for bounded r the tail h satisfies the bound |B[ < Cpt™ 1% for all n > 0.

Upon imposing a suitable linearized generalized harmonic gauge condition on h, and

replacing gy(b) by its gauge-fized version, we can choose V' to lie in a 7-dimensional space
(only depending on b) of smooth vector fields on M°.

The gauge-fixed version of g,(b) is a symmetric 2-tensor gl’)(b) = g5(b) + EV(b)gl” where

V (b) is a suitable vector field chosen so that g;(b) satisfies the chosen gauge condition. We
refer the reader to Theorem 14.6 for the precise result, which (1) operates under precise
regularity assumptions on "y,k encoded by weighted Sobolev spaces, (2) controls h in a
weighted spacetime Sobolev space, and (3) gives uniform estimates on spacetime, namely

pointwise bounds on h by t*_l_a+"(<T>%t*)*o‘+" (in t, > 1), where t, is equal to t near the
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black hole, and equal to ¢t — (r + 2mlog(r — 2m)) (which is an affine time function along
null infinity) for large . See Figure 1.1 for an illustration of the setup.

FI1GURE 1.1. Part of the Penrose diagram of a slowly rotating Kerr space-
time, including the future event horizon H ™, null infinity .# T, future timelike
infinity i+ and spacelike infinity i°. Shaded in gray is the domain {t > 0}
inside of M° where we solve the linearized Einstein equations. Also shown
are the Cauchy surface 3§ = t71(0), and a level set of the function ¢, with
respect to which we measured decay in Theorem 1.1.

The gauge in which we work is (the linearization of) the natural wave map gauge for
studying perturbations of a given spacetime (M°, g;). In this gauge, the vector field V
in (1.3) is then asymptotic (as 7 — 00) to a linear combination of translations and boosts
of Minkowski space (and an additional non-geometric vector field, which can be eliminated
by a small, only b-dependent, modification of the gauge); asymptotic rotations either do
not appear (when g is a Schwarzschild metric, which is spherically symmetric) or can be
subsumed in the infinitesimal change a of the rotation axis. Thus, we can read off the
change b of black hole parameters (mass and angular momentum) as well as the shift V' of
the rest frame of the black hole (translation and boost). In a nonlinear iteration, one thus
expects to be able to change the gauge condition at each step to ‘re-center’ the black hole;
a (less explicit, in the sense that it is more analytic than geometric) version of this was a
key ingredient in [HV18Db].

We use the DeTurck trick [DeT82] to relate equation (1.1) to a quasilinear wave equation
P(g) = 0 for the Lorentzian metric g, which correspondingly relates equation (1.2) to a
linear wave equation Lg,h := Dy, P(h) = 0 for the symmetric 2-tensor h. After reduction to
a forcing problem for L, , with forcing supported in the future of a hypersurface transversal
both to H* and future null infinity .#*, we immediately pass to the Fourier transform in
t«. The main part of the proof then takes place on the spectral/resolvent side; see §1.1 for
a description of the key ingredients.

Importantly, our hyperbolic formulation Ly, h = 0 of the linearized Einstein equations
is significantly better than stated in Theorem 1.1: any pair of Cauchy data on X§ (i.e.
a pair of smooth sections of the spacetime symmetric 2-tensor bundle S?T*M® over X7)
with =17 resp. 7727% decay produces a solution h of the form (1.3). (In this sense, the
geometric origin of initial data in Theorem 1.1 is irrelevant; their only use is to eventually
ensure that h not only solves Lg, h = 0, but also the linearized Einstein equations (1.2).) We
expect such a strong stability statement to be useful in nonlinear applications, as explained
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at the end of [HV18b, §1.1] in the KdS setting; it also relates to numerical (in)stabilities
when solving Einstein’s equation, cf. [Pre05].

Beyond our straightforward choice of gauge condition, our construction of L4, with these
properties involves the implementation of constraint damping (CD), which was first dis-
cussed in [GCHMGO5] and played a central role both in numerical work [Pre05] and the
nonlinear stability proofs [HV18b, Hinl8a, HV20]. In fact, CD is a crucial input already
in the proof of Theorem 1.1, as it makes the low energy behavior of the spectral family
of Ly, non-degenerate and thus perturbation-stable, allowing us to deduce Theorem 1.1
perturbatively from the statement for Schwarzschild parameters b = by; we discuss this
in §8§1.1.2-1.1.3.

Indeed, a key feature of our analysis is that we (prove and) use a suitable version of mode
stability only of the Schwarzschild metric, as proved by Regge-Wheeler [RW57], Vishvesh-
wara [Vis70], and Zerilli [Zer70]; we work with the formalism of Kodama-Ishibashi [KI03].
The only structure of Kerr metrics which we use, beyond the fact that they satisfy the
Finstein equations, concerns their asymptotic behavior as r — oo. A central aim of this
paper is thus to show how the (in principle straightforward) computations on Schwarzschild
spacetimes, when combined with robust, perturbation-stable tools from modern microlocal
analysis, imply the linear stability of slowly rotating Kerr spacetimes, without the need for
delicate separation of variable techniques. (See §1.3 for comments about the full subex-
tremal range |a] < m of Kerr parameters.) The relevant recent advances in microlocal
analysis include (see §1.1 for more details):

(1) non-elliptic Fredholm theory, as introduced by Vasy [Vasl3] (see also [HV15, §2]);
for a quick guide, see Zworski [Zwo16];

(2) a robust conceptual understanding of normally hyperbolic trapping, and the mi-
crolocal estimates which are consequences of its structural properties, as discussed
in the context of Kerr and KdS black holes by Wunsch—Zworski [WZ11], Dyatlov
[Dyal6], and Hintz [Hinl7] (see also [HV14, Hin18b, HV18b]);

(3) specific to the asymptotically flat setting: scattering theory at the large end of
Euclidean, or asymptotically conic, spaces, in the form pioneered by Melrose [Mel94]
and extended by Vasy—Zworski [VZ00] and Vasy [Vas20a, Vas20b];

(4) elliptic b-analysis (analysis on manifolds with cylindrical ends), introduced by Mel-
rose [Mel93], and used here for the study of stationary solutions (bound states,
half-bound states, and generalizations).

(We refer the reader to Dyatlov—Zworski [DZ19] for an introduction to some of these
themes in scattering theory.) A commonality of these tools is that they rely only on
structural properties of the null-bicharacteristic flow of the (wave) operator in question,
rather than any special algebraic structures; we note here that our hyperbolic formulation
Ly, of the linearized Einstein operator is a principally scalar wave operator, to which these
microlocal tools readily apply.

Nonlinear stability problems for solutions of (1.1) have attracted a large amount of inter-
est, see Friedrich [Fri86], Christodoulou-Klainerman [CK93], Lindblad—Rodnianski [LR10]
for de Sitter and Minkowski spacetimes, the aforementioned [HV18b, Hinl8a] on cosmo-
logical black holes spacetimes, and the recent proof, by Klainerman—Szeftel [KS17], of the
nonlinear stability of the Schwarzschild metric under axially symmetric and polarized per-
turbations; see also Remark 1.6. A general quasilinear existence result on Schwarzschild
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and Kerr spacetimes was obtained by Lindblad—Tohaneanu [LT18, LT20]. We also mention
the backwards construction of black hole spacetimes settling down at an exponential rate
to a Kerr solution [DHR13].

In very recent work, Andersson, Béackdahl, Blue, and Ma [ABBM19] proved Theorem 1.1
for initial data with strong decay (roughly pointwise r~7/2 decay of %), proving t=3/2%¢ decay
for the metric coefficients using energy methods; the strong decay ensures that solutions are
purely radiative, i.e. decay to zero (so b= 0) modulo pure gauge solutions, see also [AA13];
we recover this by using the structure of the zero energy dual bound states, see Remark 14.7.
They work in an outgoing radiation gauge, available only on algebraically special spacetimes
[ABBM19, Remark 3.3]. Their argument uses the Newman—Penrose [NP62] and Geroch—
Held—Penrose [GHP73] spin formalism, and in fact conditionally proves the linear stability
of the Kerr metric in the full subextremal range, assuming integrated energy decay holds
for the Teukolsky equation; in the slowly rotating case, the latter was proved by Ma [Mal7]
and Dafermos-Holzegel-Rodnianski [DHR19a]. See Finster-Smoller [FS16] for results in
the general case. Mode stability for curvature perturbations of Schwarzschild and Kerr
spacetimes was proved by Bardeen—Press [BP73], Teukolsky [Teu73], Whiting [Whi89], and
Andersson-Ma—Paganini-Whiting [AMPW17]; see Chandrasekhar’s book on the subject
[Cha92] for an extensive literature review.

In order to stress the relevance of studies of the Teukolsky equation [DHR19a, Mal?7,
FS16] in the linear stability problem on subextremal Kerr spacetimes, we recall here that
the (spin-2) Teukolsky equation (or ‘Teukolsky Master Equation’, abbreviated TME) is a
scalar equation on Kerr spacetimes, with principal part equal to the scalar wave operator,
which is satisfied by two components of the linearized Weyl tensor [Teu73]. The linear
stability proof [ABBM19] is then based on the fact the linearized Einstein equations in
the outgoing radiation gauge become a system comprised of the two Teukolsky equations,
connected via the Teukolsky—Starobinsky identities, as well as a number of transport equa-
tions; the strong decay assumptions on the initial data in [ABBM19] ensure that integration
of this system yields decay estimates in time. In the physics literature, the discussion of
the relationship between solutions of the TME and the metric perturbation goes back to
Chrzanowski [Chr75] (in incoming/outgoing radiation gauges), following work by Wald
[Wal73] in which he proves that linearized perturbations are uniquely determined (again,
modulo infinitesimal variations of the black hole mass and angular momentum) by the two
Teukolsky scalars. (See also the recent paper [GHZ20] regarding the role of the Teukol-
sky equation in higher order perturbation theory, and [PW18] regarding the relationship
between the energy estimates of [DHR19b] and the notion of canonical energy introduced
by Hollands—Wald [HW13].) We stress again that our approach does not make any use
of the Teukolsky equation or other special algebraic structures of the Kerr metric, which
dramatically simplifies the necessary algebra, but of course restricts us to small angular
momenta. (However, the robust analytic aspects of the full subextremal problem, such as
high energy estimates and Fredholm properties of the low energy resolvent, are completely
understood already, see §1.3.)

Previously, Dafermos—Holzegel-Rodnianski [DHR19b] proved the linear stability of the
Schwarzschild metric in a double null gauge by reconstructing a perturbation from a certain
decoupled quantity; they prove t~/2t¢ decay of metric coefficients, and stronger decay for
certain geometric quantities. Giorgi [Giol8a, Gio20] establishes the linear stability of weakly
charged Reissner-Nordstrom black holes using similar techniques. (See [Giol7, Giol8b]
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for progress in the nonlinear, axially symmetric, polarized setting.) Hung—Keller—Wang
[HKW17] proved t71/2 decay in the generalized harmonic gauge also used in the present
paper, extending work by Hung-Keller [HK16]; Hung [Hun18] proves t~!7¢ decay for the
odd part of the linear perturbation (called ‘vector part’ on the level of individual modes
in §8), and in upcoming work [Hun19] proves up to t~2*¢ decay (for o close to 1) for the even
part. Similarly, Johnson [Joh19] obtained t~1/2 decay using a modification of this gauge by
suitable gauge source functions. We furthermore mention the work by Hung—Keller—Wang
[HKW18] on the decay of master quantities for the perturbation of higher-dimensional
Schwarzschild black holes. We will discuss further related work in §1.2.

1.1. Ingredients of the proof. We define the gauge 1-form

Y(g;:9") == 9(9°) " 04Gyg",
where ¢° is an arbitrary ‘background metric’ on M°; this vanishes iff the pointwise identity
map (M°,g) — (M°,¢") is a wave map. Here, §, is the negative divergence (thus, the
adjoint of the symmetric gradient 6;), and Gy = 1 — %g try is the trace reversal operator

in 4 spacetime dimensions. Following DeTurck [DeT82], one then considers the nonlinear
operator

P(g;¢°) := Ric(g) — 6; Y (g;9°). (1.4)
Solving the initial value problem for Ric(g) = 0 in the gauge Y(g; ¢°) = 0 is then equivalent
to solving the quasilinear wave equation P(g) = 0 with suitable Cauchy data constructed

from the geometric initial data, namely, the Cauchy data induce the given geometric data
at 9, and the gauge condition Y(g;¢%) = 0 holds there.

Let now gy, b = (m,a), denote a fixed Kerr metric. It is then natural to study pertur-
bations of g, in the gauge Y(—) := Y(—;¢g5) = 0. (Note that g, itself satisfies this gauge
condition.) The linearization of P(g;gp) around g = gy is

Ly := Dy, P(—; g) = Dg,Ric — 8}, 0 Dy, Y. (1.5)

We solve Dy, Ric(h) = 0 in the gauge Dy, T (h) = 0 by solving Lyh = 0 with suitable initial
data. Explicitly, L, = %ng + lower order terms; this is thus a linear wave operator acting
on symmetric 2-tensors. Simple linear theory (using the framework of [HV20]) allows us
to solve the initial value problem for Lyh = 0 up to a hypersurface which is transversal to
future null infinity .# and the future event horizon H™, see Figure 1.1.

Concretely, fix a function t, which equals t, =t + r, near X+ and t, =t — r, near .,
where r, = r + 2mlog(r — 2m) is the Regge—-Wheeler tortoise coordinate. It then remains
to solve a forcing problem

Lyh=f,  ¢.>0 on supph, supp [,

727a>

where f has compact support in ¢, and suitable decay (roughly, r as r — oo. Our

approach is to take the Fourier transform in t,, giving the representation

1 —iota T o)L P o) do
/Imgzce Lo(0) "1 f(0) do, (1.6)

T om
initially for C' > 1 (which gives exponential bounds for k). We point out that typically one
takes the Fourier transform in ¢ rather than t,; the advantage of the latter is that precise

mapping properties of z\b(a) are easier to read off, and, more importantly, the analysis near
o = 0 is simplified.

h(t.)
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The strategy of our proof of Theorem 1.1 is to shift the contour of integration in (1.6)
to C' = 0, which requires a detailed analysis of Ly(0). A simple combination of microlocal
tools already gives a large amount of information on Ly(0):

(1) the operator f/\b(o) is Fredholm (of index 0) as an operator between suitable func-
tion spaces based on weighted Sobolev spaces. This uses the non-elliptic Fredholm
framework of [Vas13], scattering (radial point) estimates at infinity [Mel94, Vas20a]
(for non-zero o), radial point estimates at the horizons [Vas13], real principal type
propagation of regularity [DH72], and (for o = 0) elliptic b-theory [Mel93];

(2) f/\b(a) satisfies high energy estimates (in particular: is invertible) for | Reo| > 1 and
bounded Im o > 0. This uses semiclassical estimates at the aforementioned places,
together with estimates at normally hyperbolic trapping [WZ11, Dyal5b, Dyal6,
Hin17] which originate with [NZ13]; see also [GS87, Chr07]. High energy estimates
at infinity are due to Vasy—Zworski [VZ00] and Vasy [Vas20al;

(3) uniform Fredholm estimates for E;(O’) down to o = 0 [Vasl8, Vas20b]; see also
[BH10, VW13]. (See also [GH08, GH09, GHS13]| for an explicit construction of the
resolvent, in the t-Fourier transform picture, of Schrédinger operators on asymp-
totically conic manifolds.)

We discuss these results in more detail in §4. We only need to apply them once in order to
obtain the uniform Fredholm statements for Lj(o); the rest of the paper, starting with §5,
contains no further microlocal analysis.

There are only two remaining ingredients, the proofs of which occupy §§6—12:

(4) mode stability of Ly, that is, the invertibility of Z\b(a) for Imo > 0, 0 # 0;
(5) the regularity of the resolvent Ly(c)~! near o = 0.

(The regularity at low frequency determines the decay rate in Theorem 1.1, as we explain in
detail in §§13-14.) We first sketch our arguments on Schwarzschild spacetimes in §§1.1.1—
1.1.2. In §1.1.3, we explain the perturbative arguments which give (4)—(5) on slowly rotating
Kerr spacetimes.

We stress that the linearized Einstein operator itself is analytically very ill-behaved
(infinite-dimensional kernel and cokernel, no control of regularity of solutions, etc.), which
precludes the study e.g. of mode stability of slowly rotating Kerr black holes by perturba-
tive arguments starting with the mode stability of the Schwarzschild metric. On the other
hand, the gauge-fixed operator is well-behaved, in the sense of points (1)—(3) above, and has
strong stability properties under perturbations. Thus, a general theme underlying §§3-11
is the exploitation of the exploitation relationship between L; and Dy, Ric.

1.1.1. Mode stability. We work with a fixed Schwarzschild metric g,, and study mode
solutions, with frequency o € C, of the operator Ly,

Lyyh = Dy, Ric(h) — 0, Dy, T(h) =0, h= et py, (1.7)

9bq

where hg is stationary, i.e. only depends on the spatial coordinates (r,w), and satisfies an
outgoing radiation condition, which in particular entails the smoothness of h across H*.

Proposition 1.2. (See Proposition 9.1.) Mode stability holds for Ly,: there are no non-
trivial mode solutions of (1.7) with o # 0, Imo > 0.
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The linearized gauge-fized Einstein operator Lp, and the linearized Einstein operator
ngo Ric are distinct, but closely related, allowing for a conceptually straightforward proof
of this proposition which relies on (1) mode stability for the wave equation on 1-forms and
(2) mode stability for the linearized Einstein equations on a Schwarzschild background.

Indeed, suppose first that in addition to (1.7), h also satisfies the linearized gauge con-
dition
ngOT(h) =0, (1.8)
then we also have D,, Ric(h) = 0. Mode stability of the Schwarzschild metric [RW57,
Vis70, Zer70] implies that h is pure gauge, that is, of the form h = 5;b0w (which equals
the Lie derivative Ly gy,, V = %wﬁ), where the gauge potential w is outgoing and has time
frequency o as well. Our gauge condition (1.8) further restricts w, to wit

(Dg,, T 08}, Jw = 0. (1.9)

(We refer to this as the gauge potential wave equation.) But this is one half times the wave
equation on 1-forms on the Schwarzschild spacetime, for which we prove mode stability
in §7 by adapting the arguments from [HV18a].? Therefore, w = 0 and so h = 0.

In order to prove (1.8), we note that the linearization of the second Bianchi identity,
Sgs, g, ©Dg,, Ric = 0, applied to (1.7) gives the equation (which we refer to as the constraint
propagation wave equation)

Piy(Dg,, T(h)) =0, Py, = 205, Gy, 005, . (1.10)

b

Therefore, mode stability for Py, , which is the 1-form wave operator as well, implies (1.8).

1.1.2. Zero energy modes; resolvent near zero. We need to analyze

(a) the space of bound and half-bound states, and more generally the space of (gener-
alized) zero energy modes of the operator Ly, in (1.7), and

-1

(b) the regularity of the resolvent I//b\o(a) near o = 0.

This is markedly different from the analysis of spacetimes with positive cosmological con-
stant A > 0: the asymptotic flatness of the spacetime causes the (regular part of) the
resolvent to only have finite regularity at ¢ = 0. Moreover, the operator I//b\o(a) satisfies
uniform estimates as ¢ — 0 only on function spaces with a restricted range of allowed decay
rates as 7 — oo, roughly, requiring the decay rate to be between 7~ and 7° = 1. (This
is closely related to the fact that the Euclidean Laplacian on R? is invertible on suitable
weighted (b-)Sobolev spaces only when the weight of the domain allows for r~! asymptotics
but disallows r¥ asymptotics as r — o0o; this is in turn is linked to the off-diagonal r—! decay
of the Green’s function of the Euclidean Laplacian in 3 dimensions.) In particular, the zero
modes of interest are of size o(1) as r — 0o, and smooth across H*.

Proposition 1.3. (See Propositions 9.1 and 9.4.) The space Ky, of zero energy modes
of Ly, is T-dimensional; it is the sum of a 3-dimensional space of linearized Kerr metrics
b, (0,a) corrected by addition of a pure gauge solution to arrange the gauge condition (1.8),

2Mode stability for (1.9) for KdS metrics is likely false: it is known to be false for de Sitter metrics
[HV18b, Appendix C]. In this sense, the spectral theory for the linearized gauge-fixed Einstein operator
on KdS spacetimes is more complicated than on Kerr or Schwarzschild spacetimes. Since the behavior of
Zb\o(a) for real o is more delicate on Kerr spacetimes, we gladly use the extra information here.
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a 3-dimensional space of pure gauge solutions (5;b0w with w asymptotic to a translation, and

another 1-dimensional space of (spherically symmetric) pure gauge solutions.

The space of generalized zero energy modes (with o(1) decay as r — oo for fized t., but
allowing for polynomial growth in t.) of Ly, contains the space l%bo which is the sum of
Ky, a 1-dimensional space of linearized Schwarzschild metrics gy, (m,0) corrected by a pure
gauge solution, and a 3-dimensional space of pure gauge solutions 5’gkbow with w asymptotic
to a Lorentz boost.

The proof of the first part is similar to that of Proposition 1.2, albeit more subtle. The
constraint propagation operator Py, in (1.10) does have a zero mode, which however has
exactly r~! decay, and thus decays more slowly than Dy, Y (h) = o(r~!) when h is a

zero mode (Ijb\o(h) = 0 with o = o(1)). Thus, h in fact solves Dy, Ric(h) = 0, and is
therefore a sum of a pure gauge solution and a linearized Kerr metric, in the precise sense
stated in Theorem 8.1. An analysis of the gauge potential equation (1.9) then restricts the
possibilities to those stated above. Note here that in general a linearized Kerr metric gbo(i))
does not lie in ker Ly, ; rather, gy, (b) +0g, w does, where w needs to solve equation (1.9) with

non-trivial right hand side —Dg, Y (gs, (b)), which is not always possible with stationary w.
The fact that the linearization of the Schwarzschild family in the mass parameter does not
give rise to a zero mode is, in this sense, due to our choice of gauge; see §9.1. The second
part of Proposition 1.3 lists all linearly growing generalized zero energy modes, as can be
shown by similar arguments; see §9.2.

It turns out that there do exist generalized zero modes of Ly, which are (at least) quadrat-
ically growing in t.; see §9.3. However, these are pathological in that they are not solutions
of the linearized (not gauge-fixed) Einstein equations, and do not satisfy the linearized
gauge condition (1.8). Thus, their existence is due to the failure of equation (1.10) to
enforce ngOT(h) = 0 for h which grow quadratically in ..

To remedy this, we thus implement constraint damping, which means replacing (5;% in

the definition (1.4) of the gauge-fixed Einstein operator by a zeroth order modification;
concretely, we shall take

OgAw = dgw + Y(2¢ @5 w — gle,w)a), G= gL,
for a suitable (future timelike) 1-form ¢ with compact support near ™ and small non-zero

7. The linearized modified gauge-fixed Einstein operator Ly, ~ is then given by (1.5) with

5;0 ~ in place of 5;%, and correspondingly the modified gauge propagation operator is

_ T
,Pboy’y - 259130 ngo © 5gb0 e

Proposition 1.4. (See Proposition 10.12.) For a suitable choice of ¢ and v, Py, has no
modes o € C with Imo > 0.

For this modified version Ly, of the linearized gauge-fixed Einstein equations, we can
then show that quadratically or faster growing generalized zero modes do not exist, and thus
Proposition 1.3 captures the full space of generalized zero modes of Ly, -, accomplishing
(the constraint damping modification of) part (a):

3The gauge potential of the latter is given in Proposition 9.1, but has no geometric significance. See
Remark 10.14 for an indication of how to eliminate it.



12 DIETRICH HAFNER, PETER HINTZ, AND ANDRAS VASY

Proposition 1.5. (See Theorem 10.4.) The space of generalized zero energy modes of Ly,
is equal to Ky, .

Remark 1.6. For comparison of our linear result with the nonlinear analysis of Klainerman-—
Szeftel [KS17] for axially symmetric and polarized perturbations of a Schwarzschild metric,
we observe that the subspace of /Ebo consisting of those elements which verify (the linearized
version of ) these symmetry conditions is 4-dimensional, spanned by infinitesimal changes of
the Schwarzschild black hole mass (1 dimension), the Lie derivative of gy, along the asymp-
totic translations and asymptotic boosts in the direction of the axis of rotational symmetry
(2 dimensions), and the spherically symmetric pure gauge solution of Proposition 1.3 (1
dimension).

Part (b), or rather the precise regularity of the resolvent of Ly, near o = 0, is the
most technical part of the argument; it relies on a careful analysis of the formal resolvent
identity (dropping by, y from the notation for brevity) L(o) ™' = L(0)™ = =L(o) " (L(0) —
L(0))L(0)~": when does it hold and how often can it be applied, restrictions coming frorn
the limited range (as far as weights at r = oo are concerned) of spaces on which L(o)™!
acts in a uniform manner near ¢ = 0 and the mapping properties of L( ) — L(O) on such
spaces. This is discussed in general in [Vasl8, §7] and [Vas20b, §6], and executed in detail
in the setting of current interest in §§11.2—12.

1.1.3. Perturbation to Kerr metrics. The main work is the extension of Proposition 1.5
to the operators Ly, for b near by. We accomplish this constructively by exhibiting an

11-dimensional space /%b of generalized zero energy modes of L. This can be done with
robust arguments which only use the asymptotic behavior of the Kerr metric g a): the
model case to keep in mind is that for scalar wave operators, the operator D/g(\w (0) equals

D/g(\m,o) (0) modulo two orders (in the sense of decay of coefficients) lower, and equals @(O)
(with g the Minkowski metric) modulo one order down; the latter operator is the Euclidean
Laplacian on R3. (We discuss the precise sense in which these statements hold in §3.

We thus use normal operator arguments familiar from b-analysis [Mel93], or more simply
from the analysis of ODEs with regular-singular points. Namely, an element of the nullspace
of the asymptotic model (or normal operator) EZ,(O) can be corrected to an element of the

nullspace of the actual operator of interest ﬁ;(O); see Proposition 6.2 and its proof for
the simplest instance of this. In this fashion, we can extend asymptotic symmetries of
Minkowski spacetimes, namely translations, boosts, and rotations, to gauge potentials on
Kerr spacetimes whose symmetric gradients already span most of K. (The non-geometric
gauge potential mentioned in Proposition 1.3 can easily be extended to Kerr spacetimes,
too.) The rest of Eb is constructed by adding to linearized Kerr metrics suitable pure gauge
solutions in order to ensure the linearized gauge condition.

Throughout §§6-9 (with the exception of §8), in which we study the (generalized) zero
modes of various wave operators of interest, we shall construct those for Kerr black holes at
the same time as those for Schwarzschild black holes using such normal operator arguments.

Finally, Proposition 1.2 for the modified operator Ly, . holds for L, by simple per-
turbative arguments which exploit the non-degeneracy of lfb;,(a) near o = 0. The basic
structure of the argument is illustrated by a simple linear algebra example: suppose f)(a) is
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holomorphic with values in N x N matrices; suppose ker L(0) = Ch and ker L(0)* = Ch*.
Then if the pairing (9,L(0)h, h*) is non-degenerate (i.e. non-zero), then L(c)~! has a sim-
ple pole at o = 0. If now L(0) = Lo(0) is a member of a continuous family L,(c), a € RP,

of holomorphic operators, and kerf/;(O) = Chq, kerf/;(())* = Ch}, with hg, h} continu-

a’ as 'q

ously depending on a, then z\a(a)_l has a simple pole at ¢ = 0 as well, since the pairing
(05 La(0)ha, h%) is non-degenerate for small a by continuity. Thus, invertibility of fb;(a)_l
in a uniform punctured neighborhood of ¢ = 0 follows from such arguments. On other
hand, invertibility for ¢ € C, Imo > 0, |o| 2 1, follows from that of m(a) by standard

(Fredholm) perturbation theory. See §11.1.

1.2. Further related work. Decay of solutions of Maxwell’s equation to stationary states
was proved on Schwarzschild spacetimes by Sterbenz—Tataru [ST15] and Blue [Blu08], with
the strongest decay rates obtained by Metcalfe-Tataru—Tohaneanu [MTT17], and on slowly
rotating Kerr spacetimes by Andersson—Blue [AB15b]. Pasqualotto [Pas19] proved decay for
the Teukolsky equation for Maxwell fields on Schwarzschild spacetimes. Finster—Kamran—
Smoller—Yau considered Dirac waves on Kerr spacetimes [FKSY03].

There is a vast literature on the scalar wave equation on Kerr spacetimes, starting
with the work by Wald and Kay—Wald [Wal79, KW87]. Sharp pointwise decay (Price’s
law [Pri72a, Pri72b]) is now known in the full subextremal range (|]a] < m) by work of
Tataru [Tat13] (see also the subsequent work by Metcalfe-Tataru-Tohaneanu [MTT12])
and Dafermos-Rodnianski-Shlapentokh-Rothman [DRSR16, SR15] (building on prior work
[DR10, DR11] which followed L* estimates on Schwarzschild spacetimes by Donninger—
Schlag—Soffer [DSS12]). Finster-Kamran—Smoller—Yau [FKSY06] proved decay without
quantitative rates. Earlier results include decay on slowly rotating Kerr black holes due to
Andersson-Blue [AB15a] and Tataru-Tohaneanu [TT11]. Marzuola—Metcalfe-Tataru—To-
haneanu and Tohaneanu [MMTT10, Toh12] proved Strichartz estimates on Kerr spacetimes.
See Luk [Luk13] for the solution of a scalar semilinear equation with null form nonlinearity
on Kerr black holes, and Ionescu—Klainerman and Stogin [IK15, Stol6] for a wave map
equation related to the study of polarized perturbations. We remark that Theorems 6.1
and 7.1 easily imply the decay of scalar waves (to zero) and 1-forms (to an element of a
1-dimensional space of stationary solutions) on slowly rotating Kerr spacetimes when com-
bined with results on the regularity of the resolvent which follow by (a simpler version of)
arguments in §§11-12.

Closely related to black hole stability problems is the black hole uniqueness problem;
the stability of Kerr family would imply that it gives, locally, the full space of stationary
solutions of the Einstein vacuum equations. See [IK09, ATK14, Rob09, CCH12] for results
and further references, and [Hin18c] for results in the cosmological setting.

In the algebraically more complicated but analytically less degenerate context of cos-
mological black holes, we recall that S4 Barreto—Zworski [SBZ97] studied the distribution
of resonances of SAS black holes; exponential decay of linear scalar waves to constants
was proved by Bony-Héfner [BHO8| and Melrose-Sa Barreto—Vasy [MSBV14] on SdS and
by Dyatlov [Dyallb, Dyalla] on KdS spacetimes, and substantially refined by Dyatlov
[Dyal2] to a full resonance expansion. (See [DRO7] for a physical space approach giving
superpolynomial energy decay.) Tensor-valued and nonlinear equations on KdS spacetimes
were studied in a series of works by Hintz—Vasy [HV15, HV16, HV18a, HV18b, Hinl8a).
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For a physical space approach to resonances, see Warnick [Warl5], and for the Maxwell
equation on SdS spacetimes, see Keller [Kell7].

1.3. Future directions. A natural problem is the extension of Theorem 1.1 to the full
subextremal range of Kerr spacetimes, as conditionally accomplished by [ABBM19]. In our
framework, this requires:

(1) a suitable version of mode stability for metric perturbations of Kerr spacetimes,
generalizing §8;

(2) a mode analysis of 1-form operator, and the implementation of constraint damping;

(3) non-degenerate control of generalized zero energy states.

We stress that these are all ingredients on the level of individual modes. It is natural
to expect that (1) and (3) can be accomplished by following, on the level of modes, the
procedure in [ABBM19, §§3, 8] for recovering metric perturbations from the Teukolsky
scalar—for which mode stability is known [Whi89, AMPW17]. Problem (2) has, to the
authors’ knowledge, not yet been studied in the full subextremal range (though it is related
to mode stability for the Maxwell equation on Kerr). The explicit nature of these ingredients
suggests that the use of arguments specifically tailored to the special nature of the Kerr
metric, such as separation of variables, are unavoidable. On the other hand, the general
Fredholm framework discussed in points (1)—(3) at the beginning of §1.1 applies in the full
subextremal range, hence full linear stability would follow from the above mode stability
inputs, as shown for slowly rotating Kerr black holes in the present paper. (See [Dyal5a] for
a discussion of trapping for scalar waves in this generality. Work by Marck [Mar83] implies
that tensor-valued waves on Kerr spacetimes can be treated as well using the techniques of
[Hin17]; this will be taken up elsewhere.)

In another direction, we expect that the methods of the present paper can be used to
give another proof of the results by Andersson—Blue and Sterbenz—Tataru [AB15b, ST15]
on decay to the stationary Coulomb solution for the Maxwell equation on slowly rotating
Kerr spacetimes, or more generally on stationary perturbations of such spacetimes. In fact,
we expect that differential form-valued waves (of any form degree) on slowly rotating Kerr
spacetimes decay to stationary solutions as in the Kerr—de Sitter case studied in [HV18a];
for differential 1-forms, this follows from Theorem 7.1 and (a simpler version of) the argu-
ments in §§11-13. Coupling the Maxwell equation to the Einstein equations, we expect the
full linear stability of slowly rotating Kerr-Newman spacetimes (with subextremal charge)
under coupled gravitational and electromagnetic perturbations to follow by an (essentially
only computational) extension of the methods of the present paper.

Moreover, we expect the linear stability of higher-dimensional Schwarzschild black holes
(see [HKW18] for a first step in this direction) and their perturbations, slowly rotating
Myers—Perry black holes [MP86], to follow by similar arguments, the main task again
being computational, namely the detailed mode analysis; the general microlocal tools apply
to such spacetimes as well. (See [DHS14] for linear instabilities of black holes in high
dimensions with large angular momenta.)

1.4. Outline of the paper. The paper is structured as follows:

e in §2, we introduce notions pertaining to geometry and analysis on compactifications
of non-compact spaces (such as spatial slices £§ of M®), namely b-analysis and



LINEAR STABILITY OF KERR BLACK HOLES 15

scattering analysis and associated bundles and function spaces, following Melrose
[Mel93, Mel94];

e in §3, we describe the Kerr family of metrics as a smooth family of metrics on a
fixed spacetime manifold;

e in §4, we define the gauge-fixed Einstein operator, prove the general properties listed
in §1.1, and introduce general constraint damping modifications;

e in §5, we introduce useful terminology for the description of scalar, 1-form, and
2-tensor perturbations of spherically symmetric spacetimes;

e in §6, we study modes for the scalar wave equation on Schwarzschild and slowly
rotating Kerr spacetimes;

e in §7, we do the same for 1-forms, and also construct the gauge potentials for
asymptotic translations, boosts, and rotations;

e in §8, we prove the version of mode stability of the Schwarzschild metric used in
the sequel;

e in §9, we combine the previous results, analyze the mode stability of the linearized
gauge-fixed Einstein operator, and motivate the need for constraint damping;

e in §10, we implement constraint damping and discuss the consequences for the
linearized modified gauge-fixed Einstein operator Ly -;

e in §11, we prove mode stability for L; , and determine the structure of its resolvent
near zero frequency;

e in §12, we prove higher regularity of the regular part of the resolvent of L, near
zero frequency as well as for large frequencies;

e in §13, we combine the previous sections to establish the precise asymptotic behavior
of solutions of the linearized modified gauge-fixed Einstein operator;

e in §14 finally, we reduce the initial value problem for the Einstein equations to the
general decay result of the previous section.

For the reader interested in getting an impression of the flavor of our arguments, we
refer to the construction of (generalized) zero energy modes in §6.1 and §7.4; the proof
of Proposition 9.1 can be read early on as well, and serves as motivation for most of the
preceding constructions. The key idea/calculation behind the perturbation theory in the
context of constraint damping is explained in §10.1. The perturbative arguments for the
existence of the resolvent on slowly rotating Kerr spacetimes are given in §11.1.
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2. B- AND SCATTERING STRUCTURES

We first discuss geometric structures on manifolds with boundaries or corners, and corre-
sponding function spaces. Thus, let X be a compact n-dimensional manifold with boundary
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0X # (), and let p € C*°(X) denote a boundary defining function: X = p~1(0), dp # 0 on
0X. We then define the Lie algebras of b-vector fields and scattering vector fields by

Wo(X) ={V € V(X): V is tangent to 0X}, Vs (X) = pVp(X). (2.1)

In local adapted coordinates x > 0, y € R"™! on X, with = 0 locally defining the
boundary of X (thus p = a(x,y)z for some smooth a > 0), elements of V},(X) are of the
form a(z, y)xd, + 31— bi(z, y)9yi, with a,b’ € C*°(X), while elements of Vi(X) are of the

form a(x,y)x?0, + Z?;l b'(x,y)xd,i. Thus, there are natural vector bundles

PTX & X, *TX - X,

with local frames given by {8, 0,:}, resp. {220,, z0,:}, such that V,(X) = C=(X; bTX)
and Vs.(X) = C®(X;*°TX); thus, for example, z0, is a smooth, non-vanishing section of
PTX down to 0X. Over the interior X°, these bundles are naturally isomorphic to TX°,
but the maps PTX — TX and TX — TX fail to be injective over 0X. We denote by
Diffp*(X), resp. Diff; (X)) the space of m-th order b-, resp. scattering differential operators,
consisting of linear combinations of up to m-fold products of elements of V},(X), resp.
Vie(X).

The dual bundles PT*X — X (b-cotangent bundle), resp. *T*X — X (scattering cotan-
gent bundle) have local frames

dx

~ dr dy’
—, dy*, resp. T
x

OR )
z x

which are smooth down to 0X as sections of these bundles (despite their being singular
as standard covectors, i.e. elements of T*X). A scattering metric is then a section g €
C>®(X;S%%T*X) which is a non-degenerate quadratic form on each scattering tangent

space *“T, X, p € X; b-metrics are defined analogously.

These structures arise naturally on compactifications of non-compact manifolds, the sim-
plest example being the radial compactification of R™, defined by
R := (R"U([0,1), x S" 1))/ ~ (2.2)
where the relation ~ identifies a point in R™ \ {0}, expressed in polar coordinates as rw,
r >0, w e S" ! with the point (p,w) where
p=rh
this has a natural smooth structure, with smoothness near OR” = p~1(0) meaning smooth-
ness in (p,w). In _polar coordinates in r > 1, the space of b-vector fields is then locally
spanned over C*®(R") by pd, = —r0, and V(S 1); scattering vector fields are spanned by
p*9, = —0, and pV(S"1). Using standard coordinates z!,... 2™ on R", scattering vector
fields on R™ are precisely those of the form

n

> a'd,, a' € CP(RM);

i=1
this entails the statement that {J,1,...,0;n}, which is a frame of T*R", extends by con-
tinuity to a smooth frame of *T*R" down to OR™. Thus, the space of scattering vector
fields on R™ is generated over C*°(R™) by constant coefficient (translation-invariant) vector
fields on R™. On the other hand, V;,(R") is spanned over C*(X) by vector fields on R"
with coefficients which are linear functions, i.e. by 0,1, ...,0;n, and 2'0,;, 1 <1i,j < n.
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On the dual side, SCT*RZ"L is spanned by dz', 1 < i < n, down to OR". Therefore, a
scattering metric g € C*°(R", §25°T *RTES a non-degenerate linear combination of dz’ ®g
dzd = J(dz'®da? +dal @ dz') with C°(R™) coefficients. In particular, the Euclidean metric

(alxl)2 4+ 4 (dx")2 € C*®(Rm™; 52 SCT*R™)
is a Riemannian scattering metric.

By extension from 7 X°, one can define Hamilton vector fields Hj, of smooth functions
p € COCT*X). In fact Hy € Vs.(**T*X) is a scattering vector field on **T*X, which is a
manifold with boundary 7%, X. (Likewise, if p € C>*(®T*X), then H, € V,(°PT*X).) For
us, the main example will be the Hamilton vector field Hg where G(z,() = |C |§;1 is the
dual metric function of a scattering metric g € C>°(X; S?5°T*X).

We next introduce Sobolev spaces corresponding to b- and scattering structures. As an
integration measure on X, let us fix a scattering density, i.e. a positive section of Q' X =
|A"5¢T* X|, which in local adapted coordinates takes the form a(z, y)|i—§ xff?il | with 0 < a €
C>®(X). (On R”, one can take |dz'---dz"|.) This provides us with a space L?(X); the
norm depends on the choice of density, but all choices lead to equivalent norms. Working
with a b-density on the other hand would give a different space, namely a weighted version
of L?(X); we therefore stress that even for b-Sobolev spaces, we work with a scattering
density. Thus, for & € Ny, we define

HYX):={uec L*X): Vi---Viuec L*(X)VVi,...,V; €Vo(X), 0<j <k}, e=h,sc,
called b- or scattering Sobolev space, respectively. Using a finite spanning set in V(X), one

can give this the structure of a Hilbert space; H{(X) for general s € R is then defined by
duality and interpolation. If ¢ € R, we denote weighted Sobolev spaces by

H3(X) = p H2(X) = {plu: u € HI(X)}.

For example, H3' (R™) = (x)~*H*(R"™) is the standard weighted Sobolev space on R". The
space of weighted (L2-)conormal functions on X is

00,0 s,
H(X) = () Hy (X).
seR

Dually, we define
- 78 7z
H,*(x) = [ #y'(X0).
seR

Note that HS’Z(X) C C®(X) := C®(X)* (where C®(X) C C™(X) is the subspace of
functions vanishing to infinite order at 0X) consists of tempered distributions. (In par-
ticular, they are extendible distributions at 0X in the sense of [Hor07, Appendix B].) We
furthermore introduce the notation

= mEyt, B = () HY (2.3)
e>0 e>0

for s € RU{£o00}. A space closely related to HSO’E(X) is
AN X) = {u € p*L>®(X): Diff,(X)u C p*L>®(X)},
consisting of weighted L™ -conormal functions. For X = R3, we have the inclusions

H(B9) € ATSR(E0), AR € 120 (@),
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by Sobolev embedding. (The shift % in the weight is due to our defining b-Sobolev spaces
with respect to scattering densities; indeed, for s > %,

HE'(R3; |da' da? da?|) = HY PR3, () 3 |dat da? da®|) — (r)C32L°([R3),  (2.4)

with the second density here being a b-density on R3.) We define At and A~ analogously
to (2.3). These notions extend readily to sections of rank k£ vector bundles £ — X: for
instance, in a local trivialization of E, an element of H.S’E(X , E) is simply a k-tuple of
elements of Hy"(X).

We next turn to the notion of £-smoothness (or polyhomogeneity with index set £, where
E C Cx Ny is an index set; the latter means that (z,k) € £ implies (z,5) € Efor 0 < j <k
and (z —14,k) € &, and that any sequence (z;,k;) € £ with |z;| + |kj| — oo satisfies
Imz; - —oo. (We refer the reader to [Maz91a, §2A] for a general overview and [Mel93,
§5.10] for a discussion on manifolds with boundary. In the case & C {(—ij,k): 7,k € Np},
E-smoothness is the same notion as the more familiar notion of log-smoothness.) The space

Ab(X) € A2(X) = | AY(X)
LeR
then consists of all u for which

H (pD, — z2)u € AN(X) VN €ER,

(2,5)€€
Imz>—N

where we define D, = z'—la,, with respect to any fixed collar neighborhood of X . Equiva-
lently, there exist a(, ;) € C*°(9X), (z,7) € £, such that

u— Z p**|log p|ja(z7j) e AN(X) YNeR. (2.5)

(z,5)€€
Imz>—N

We say that u € A7°(X) is polyhomogeneous if it is £-smooth for some index set £.

Suppose now X' is a compact manifold with boundary, and let X C X’ be a submanifold
with boundary. Suppose that its boundary decomposes into two non-empty sets

OX =0_X U0, X, 0.X=0X\0X, 0,X=0X (2.6)

we consider d4 X to be a boundary ‘at infinity’, while O_ X is an interior, ‘artificial’ bound-
ary. Concretely, this means that we define (by a slight abuse of notation)

Vo(X) = {V]|x: VeWXN}, VlX):={V]x:V € Ve X}

these vector fields are b or scattering at infinity, but are unrestricted at d_X. A typical
example is X’ = R* and X = {r > 1} C X/, in which case _X = {r = 1}, while
0+ X = 0X' is the boundary (at infinity) of R™. See Figure 2.1.

There are now two natural classes of Sobolev spaces: those consisting of extendible dis-
tributions,

H(X) := {u|lxo: u e HYY(X')}, e=h,sc, (2.7)
and those consisting of supported distributions,

H(X) := {u: ue HX*(X'), suppu C X}. (2.8)
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9. X = 0X’

FIGURE 2.1. A typical example of the setting (2.6): X (dark gray) is a
submanifold of X’ (the union of the dark and light gray regions) with two
boundary components 04X = X’ and 0_X C (X’)°. We then consider
function spaces such as HS’Z(X ), which measures b-regularity of degree s at
0+ X (with decay rate /), and standard regularity (regularity with respect
to incomplete vector fields) at 0_X.

Away from 0_ X, these are the same as the standard spaces Hf’K(X ); thus, the subspaces of
H, ’K(X ) or Hf’K(X ) consisting of those elements which are polyhomogeneous (in particular
automatically conormal) at 0, X are well-defined.

If X is the ‘spatial part’ of a stationary spacetime M = R x X with projection 7x: M —
X, and F(X) denotes a space of distributions on X such as F(X) = f_fﬁo’z(X) or Hb_oo’e(X)
in the setting (2.6), we will be interested not only in zero modes F(X) = w3y F(X), i.e.
t-independent distributions, but also generalized zero modes,

k
Poly() F(X) := | Poly*() F(X), Poly*()F(X):={) ¥a;:a;€ F(X)p. (29)
keNy j=0

(Here, we do not require X to be spacelike or dt to be timelike. Note that the definition (2.9)
is independent of a choice of metric on M.)

For high energy estimates of the resolvent on Kerr spacetimes, we will work with semi-
classical b-Sobolev spaces. Thus, if X is a manifold with boundary, we define Hg’fb(X) =

HS’Z(X ) as a set, but with norm depending on the semiclassical parameter h € (0,1]: if
Vi,..., VN € Vu(X) spans Vi (X) over C*(X), we let

lulZe o= 30 Vi) Viulacyys el ey = 1ol o

for k € Ny; for k € R, we take the dual and interpolated norms. (Alternatively, one can de-
fine Hg:i(X ) using semiclassical b-pseudodifferential operators, see [HV18b, Appendix A].)
On manifolds X as in (2.6), one can then define semiclassical spaces ﬁg’i(X ) and Hﬁ’fl (X)
of extendible and supported distributions analogously to (2.7)—(2.8).
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3. THE SPACETIME MANIFOLD AND THE KERR FAMILY OF METRICS

In §3.1, we define a manifold M°, equipped with the metric of a Schwarzschild black hole

with mass
mgy > 0,

which is a (small) extension of the domain of outer communications across the future event
horizon; the purpose of such an extension is that it allows the immediate application of
by now standard microlocal tools at the event horizon, as we will discuss in §4. In §3.2,
we define the Kerr family with black hole parameters (m,a) € R x R? close to (mg,0)
as a smooth family of metrics on M°. In §3.3, we elucidate the structure of stationary
differential operators on M° near spatial infinity. In §3.4 finally, we describe the full null-
geodesic dynamics of slowly rotating Kerr spacetimes.

3.1. The Schwarzschild metric. Fix a mass parameter mg > 0. We define the static
patch of the mass mg Schwarzschild spacetime to be the manifold

M=R;x X, X = (2mg,00), x S?, (3.1)
with t called the static time function. We equip M with the metric
imo,0) = p(r) dt? — p(r) =t dr? —r?g, (3.2)
with ¢ denoting the standard metric on S?, and where
2m0

This is the unique family (depending on the real parameter mg) of spherically symmetric
solutions of the Einstein vacuum equations in 3 + 1 dimensions:

RiC(g(mO,O)) =0.

We denote the dual metric by Gy, 0) = g(ml0 0)° The form (3.2) of the metric is singular

at the Schwarzschild radius r = 7(y,0) := 2mg. This is merely a coordinate singularity:
switching to the null coordinate
to =t +re, re:=1+2mglog(r —2myp), |dt0\%;<m070) =0, (3.4)
so dr, = p~'dr, the Schwarzschild metric and its dual take the form
I(mo,0) = pdt — 2 dto dr — r2g, G (mo,0) = —204,0r — pd> — g (3.5)
This is now smooth and non-degenerate on the extended manifold
M° =Ry x X° DM, X°=[r_,00), xS?D X, (3.6)

where the endpoint r_ € (0,2mg) is an arbitrary fixed number.

On the other hand, the metric g(y, o) is a warped product in static coordinates, which is
a useful structure at infinity; we thus introduce another coordinate,

_ 1 —xo(r)
by =t 4+ / X0, (3.7)
where X is smooth, vanishes near r < 3mg, and is identically 1 for r > 4myg; thus, t,, — o
is smooth and bounded in r < 4mg, while t,, = ¢ for r > 4mg provided we choose the
constant of integration suitably.
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We compactify X° as follows: recalling the definition of R? from (2.2), we set
X:=X°CR3, p:=r1

adding the boundary {p = 0} = S? at infinity, with p a boundary _defining function of
infinity. Thus, X = {r >r_}, and we let 9_X = r"1(r_), 9, X = OR3 C X. Within X,
the topological boundary of X has two components,

OX =0 _XUd X, O_X:=r"12mg), 0.X:=p 10)=0.X. (3.8)

We shall call (somewhat imprecisely) 0_X the event horizon. Note that 0_X is distinct
from 0_X, and is indeed a hypersurface lying beyond the event horizon.

The level sets of ¢y are smooth submanifolds of M*° (unlike those of ¢ which are singular
at r = 2mg) which are transversal to the future event horizon Ry, x 0_X. However, a
sequence of points with ¢y bounded and r — oo tends to past null infinity. Thus, for the
description of waves near the future event horizon and future null infinity (and in between),
we introduce another function

te =t + (r+ 2mglog(r — 2mg))x(r) — (r + 2mg log(r — 2mp))(1 — x(r)), (3.9)

where x(r) = 1 for r < 3mg and x(r) = 0 for r > 4myg; it smoothly interpolates between
t + 4 near the event horizon and ¢ — r, near null infinity. In the bulk of this paper, we will
study forcing problems for wave equations of the type Dg(momu = f, where f is supported
in t, > 0. (Choosing t, more carefully so as to make dt, future causal would ensure that
u is supported in t, > 0 as well; since we are not arranging this, we will have t, > —C on
supp u for some constant C' > 0 depending only on our choice of ¢,.) Note that Ry, x 0X
has two components,

S =Ry, x 0_X (3.10)

(which is a spacelike hypersurface inside of the black hole) and Ry, x ;X = Ry, x 04X
(which is future null infinity, typically denoted .#T); moreover, the future event horizon
is Ry, x 0-X. Geometrically, the spacelike nature of g, is stable upon perturbing gm, o)
within the class of stationary metrics, while the location of the event horizon is not; in our
perturbative framework, it is thus natural to work on the M° rather than M. Analytically,
on the Schwarzschild spacetime, _& will be the place were elements in nullspaces of the
adjoint of the spectral family are singular; see Proposition 6.2, in particular (6.6), for a
simple example in the more general Kerr context.

The more common setting for the Einstein equations is to place asymptotically flat initial
data on a Cauchy surface

%S C M° (3.11)

which we can choose to be a smooth and spacelike transversal to tg-translations, and equal
to t71(0) in 7 > 3mg. See Figure 3.1.

3.2. The Kerr family. Write by := (mg,0). Consider black hole parameters b = (m,a) €
R x R3, with a € R? denoting the angular momentum. If a = |a| # 0, choose adapted polar
coordinates (6, ¢) on S?, meaning that & = a/|a| is the north pole § = 0; for a = 0, adapted
polar coordinates are simply any polar coordinates. The Kerr metric in Boyer—Lindquist
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FiGURE 3.1. Illustration of time functions on M° in the Penrose diagram
of the Schwarzschild metric (including future/past null infinity #*, the fu-
ture/past event horizon H*, spacelike infinity i°, and future/past timelike
infinity i*). Shown are level sets of the static time function ¢, of its mod-
ification near the event horizon t,,, of the null coordinate ¢y, and of the
function t.. We also indicate the boundaries Ry, x 94X (future null infinity
again) and Ry, x 0_X (a spacelike hypersurface beyond the future event
horizon).

coordinates (¢,r,0, ) is then

A d 2 L2 0
gt = —;(dt —asin® 0 dp)? — o} (L + d92) - bmz (adt — (r* + a2)dg0)2,
Oy Ay O
1 2 Ay 1 1 . 3.12
BL _ 2 2 2 2 2 2 .
Gb B Abgg ((T + a )at + a&p) — ?gar — ;2(99 — m(&gp + a sin (98,5) y ( )
Am,a) = r? — 2mr + a2, Q%m a) = r? 4+ a? cos? 0.
This is a solution of the Einstein vacuum equations:
Ric(g(pya)) = 0- (3.13)

Here, we will focus on parameters (m,a) close to (mg,0); in particular, we are looking at
slowly rotating (e < m) Kerr black holes. The form (3.12) of the metric breaks down at

the event horizon
T =T(ma) =M+ \/m. (3.14)

This is again merely a coordinate singularity: for xy € C*°(R), vanishing in r < 2m, put

2 + a?
Ay

a

(1= pr=p+ [ 0-xODdr (315)

tb,x =t+
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The metric g,];)’L then takes the form

A . .
by = ?;<dtb’x — asin? 0 dpy)? — 2(1 — x)(dty, — asin® 0 dgy, )dr
b (3.16)

~x(2- X)dir2 _2de’ — sin? 0

2 2 2
Ab Q% (adtb% (7" +a )dSOb,X) s

which is smooth and non-degenerate on My = Ry, X [r_,00), X Sg - Taking x = xo

as in (3.7), and choosing suitable constants of integration, we have ty, ,, =t, Y5, = ¢ for
r > 4myg; defining the diffeomorphism

Dy Ml;) — M°, (txm r,0,0)(Pp(p)) = (tb,xov r,0, (Pb,xo)(p)a
where t,, is defined in (3.7) and (6, ) denotes polar coordinates on S? adapted to a,
9 = (Po)s(gp ") € C°(M°; S*T*M°) (3.17)

is a stationary metric on M°. For b = by = (my, 0), this produces the Schwarzschild metric
gb,, thus the notation is unambiguous. As in [HV18b, Proposition 3.5], one can prove that
gp is a smooth family of metrics on M°.

Furthermore, an inspection of (3.12) shows that the mass parameter m contributes
pC>®(X) terms to the metric, while the angular momentum a only contributes p?C>°(X)
terms; see also (3.26)—(3.27) below.

The choice (3.17) of defining the Kerr family as a smooth family of metrics on the
fixed manifold M° is not unique, and in fact another presentation is more convenient for
calculations later on. Namely, we also consider coordinates ty, ¢po (that is, ¢, and ¢y
for the function x = 0) and use the embedding

BY: My — M°, (to,7,0,0)(BY(P)) = (t0,0,7, 0, 0,0) ().
Denote the resulting presentation of the Kerr family on M° by
g = (B9).(gP") € C(M°; S*T*M®).

We have @20 = ¥y, hence ggo = ghy; see also (3.21a) below. The full Schwarzschild family
becomes

2m
Im0) = M At — 2dto dr —12¢,  pm =1 - - (3.18)

Linearizing the families g, and gl? in the parameter b yields linearized Kerr metrics,

Gl (1:8) = (£ s() ooy (319)

with linear dependence on b= (m,a). We record the particular cases
Imo.0)(1,0) = =220.dt5, 0. 6)(0,4) = (222 dt + 2dr) sin® 6 dp, (3.20)
where in the second line |a|] = 1, and (6, ) are spherical coordinates adapted to a. By

linearizing (3.13), we find (Dg<o) Ric) (g(o) (m,a)) =0.
(m

" (m.a)
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Remark 3.1. Since g, = (99 o @b_l)*gg, the linearized Kerr metric g(m ) can be obtained
from g?ma) by pullback along a diffeomorphism and addition of a Lie derivative of g(y a)
along a suitable vector field. More precisely, in (t,r,6, ¢) coordinates on M°, we have

2 2 2
Dot (ty, 1, 0, ) — (t*+/ <T A )der, r, 0, <p+/a><od7“>- (3.21a)
Ay Ay, Ay

In particular, for b = (m,a), the two versions of the linearization of the Kerr metric at gy,
are related by

gbo (b> = ggo (b) + Ev(ij)gboa
d

0 -1
SZO((pboJrsb © (I)b0+sl5) (3.21b)

) T 27“3 ) . ( r X0
=m ——xodr |0, +a / dr |0,.
< ) AZO ) Abo v

(Since 0y, and 9, are Killing vector fields for g, the constants of integration, and thus rg

in the definition of V'(b), can be chosen arbitrarily.)

Finally, we note that spherically symmetric outgoing light cones for g ) depend on m
via a logarithmic (in r) correction. Thus, we introduce the function

tms =t — (2mlog(r — 2m) — 2mg log(r — 2mg)) (1 — x(r)), (3.22)
generalizing (3.9); it is smooth on M°, and equals ¢ — (r + 2mlog(r — 2m)) in r > 4my. In
particular, in r > 4mgy, we have

Im0) = Pm dt* — ppt dr? — 12g = i dt? , + 2dtm . dr — 174,
which thus has the same form as g, 0) with respect to tx = tm+; in particular, dém . is
null for large 7. (One can also construct t(y a).+, a lower order (O(r~')) correction of tm .,

which takes the angular momentum a into account and has the property that dt(y a)« is
null with respect to g ) for large r; see [P198].)

3.3. Stationarity, vector bundles, and geometric operators. In the notation (3.6),
denote the projection to the spatial manifold by

Tx: M° — X°;
this is independent of the choice of time function. Suppose Fq; — X° is a vector bundle;
then differentiation along 0; = 0y, = 0;, is a well-defined operation on sections of the
pullback bundle 7% E;. The tangent bundle of M® is an important example of such a
pullback bundle, as
likewise for the cotangent bundle and other tensor bundles.

Let Fy — X° be another vector bundle, and suppose L(0) € Diff(X°; Ey, Ey) is a
differential operator; fixing t = t, + F', F' € C*°(X°), with dt # 0 everywhere, we can then
define its stationary extension by assigning to u € C*°(M°; 7% E1) the section (Lu)(t, —) :=
E(O)(u(t, —)) of m% E»; this extension does depend on the choice of t. The action of L on
stationary functions on the other hand is independent of the choice of t since

L% = w5 L(0). (3.23)
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Via stationary extension, one can consider Diff,(X;E) (for £ — X a smooth vector
bundle down to 04X) to be a subalgebra of Diff(M°; 7% E); likewise Diffs.(X;E) —
Diff(M°; 7% E).

Conversely, if L € Diff(M°;n\Ey, 7\ E») is stationary, i.e. commutes with 0, there
exists a unique (independent of the choice of t) operator L(0) € Diff(X°; Ey, E) such that
the relation (3.23) holds. More generally, we can consider the formal conjugation of L by
the Fourier transform in t,

L(o) := €' Le ™" € Diff (X°; B, B),
where we identify the stationary operator e*Le %! with an operator on X°. Switching
from t to another time function, t + F’, F’ € C*°(X°), amounts to conjugating L(o) by
eioF’ )
In order to describe the uniform behavior of geometric operators at 0. X concisely, we
need to define a suitable extension of T*M° to ‘infinity’. To accomplish this, note that the
product decomposition (3.6) induces a splitting

T*M° =T'Ry, BT*X® = mp(T*Ry,) & mx (T X°),
where m7: My — Ry, is the projection. We therefore define the extended scattering cotan-
gent bundle of X by
T* X := Rdto & *T* X. (3.24)
At this point, dty is merely a name for the basis of a trivial real rank 1 line bundle over

X; considering the pullback bundle ﬂ}gf*X — M°, we identify it with the differential of
ty € C*>°(M?°), giving an isomorphism

(w55 T* X)) |0 = T*M°. (3.25)

Smooth sections of ST*X — X are linear combinations, with C*°(X) coefficients, of dty
and the 1-forms dz?, where (z!, 22, 23) are standard coordinates on X° C R3. One can
switch to another time function in (3.24), say, t., by writing dt, = dtg + (dt. — dtp), with
the second term being a smooth scattering 1-form on X; likewise for t,, and also for the

static time ¢t in r > 2my.

For a stationary metric g on M®°, there exists a unique g’ € C*°(X°; S? seT* X ) such that

g = g, namely ¢’ is the restriction (as a section of S?5¢T*X) of g to any transversal
of mx, such as level sets of tg,ty,,ts. Identifying g with ¢’ and applying this to the Kerr
family, we then have

s g5 € CX(X; 7T X); (3.26)
they are non-degenerate down to 04+ X. Moreover, we have

g —g€PC™, g:= dtio —dr? — rzg,
B 2000 (3.27)

I(m,a) — 9(m,0) € P )
i.e. a Kerr metric equals the Minkowski metric g to leading order, and is a O(p?) pertur-
bation of the Schwarzschild metric of the same mass.

We proceed to discuss basic geometric operators on Kerr spacetimes. We write

(5;‘”)#1/ = %(W#;l/ +wup),  (Ogh)y = —hw"”, Gg=1- %g try, (3.28)
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and furthermore denote by
Ug,0, g1, Ug2, (3.29)

the wave operator —tr, V? on scalars, 1-forms, and symmetric 2-tensors, respectively. When
the bundle is clear from the context, we shall simply write [,.

Proposition 3.2. Writing the operator Ly, o as
Ogy2 = |dtyo|&, D7, + Og,,2(0) + QoD (3.30)
we have E/|gb\,2(0) € p?Difff(X; 52 ST*X) and Qy, € p*DiffL (X; §25T* X).

Away from 04X, this merely states that [y, o is a second order differential operator
with smooth coefficients, with principal symbol given by the dual metric function. It thus
suffices to analyze [, o near spatial infinity where t,, =t is the static or Boyer-Lindquist
time coordinate; there, Proposition 3.2 is a consequence of:

Lemma 3.3. Suppose g is a stationary Lorentzian metric on M° for which
9(0, 0r) € 14 pC> (X)),
9(0r, =) € p°C(X;*T*X), (3.31)
glserxxserx € —h+ pC™(X; 82T X),
where h € C*(X; S?25°T*X) is Riemannian. Then the operator O, = O, o takes the form
Oy = |dt|z:D + 0y (0) + QD:,
with ﬁg(O) € piEiff%(X; S2sT*X) and Q € p*Diffl (X; 525°T*X). Morcover, é\g(O) mod
pPDiff? (X; §25cT*X) only depends on h.

Proof. We use the splittings

ST X = (dt) @ *T*X, (3.32a)

S2seT*X = (dt?) @ (2dt @ *°T*X) & S2*T* X, (3.32b)

SST*X @5T*X = (dt?) @ (dt @ *°T*X) & (*T*X @ dt) & (*T*X @ *T*X), (3.32c)
ST*X @ S25CT*X = (dt ® S5T*X) @ (T* X @ S?sT*X), (3.32d)
ST X @ ST X = (di? @ §25eT*X) @ ((2dt ©4 T X) ® §25T*X) (3.3%)

B (S?5T*X @ §25T*X),
with the $25T*X factors in (3.32d)—(3.32e) further split according to (3.32b). Thus,
writing OF := pFC>(X) (and writing f = O in the spirit of O-notation instead of f € OF
when f is a smooth function), we have

g=1+0" 0% ~h+0OMH, tr,=(1+0 0% —tr, +O") (3.33)
in the splitting (3.32b) and its dual. The dual metric takes the form G := g~ = (1 +
oL, 0%, —h~t + 0.
For subsequent calculations, let us introduce coordinates

z = (zo,zl,z2,z3),
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where 2 = t, and 2!, 22, 2% are standard coordinates on R3. We use Latin letters i, j, k for

indices from 1 to 3, and Greek letters u, v, A for indices from 0 to 3. We first compute the
Levi-Civita connection of g; for example, 2I'o;; = 0;go; + 9j90i = 03 since g is stationary,
and since 9; € pVp(X) maps go; € p?°C>®(X) into p3C°°(X). The same reasoning shows
that all Christoffel symbols of g lie in ©O? except for

k _ pk 2,
Iy =T (h) + 0% (3.34)

by an explicit calculation, some Christoffel symbols have faster decay. We collect all of
them by stating the form of V € Diff!(M°; T*M°, T*M° @ T*M?°), defined by u — Vu,
(Vu)(V,W) = (Vyu)(W): the dz' @ dz" coefficient of V(udz), with u a scalar function,
is given by

(Vu(u dz)), = (8M51>,‘ - F;\w)u.

In the splittings (3.32a) and (3.32c), we then have

oy + O 0?
o 0? o+ 0?
T*X __ t
\Y - dx + (1)2 03 ) (335)
0¥ vhi0?

where dx is the exterior differential on X, and V" is the Levi-Civita connection of h.
Note that dx € pDiff} (X;C,*T*X) (with C := X x C — X the trivial bundle) and
V" € pDiff} (X;5°T* X, 5T* X @ °T*X).

Using this, one computes V acting on symmetric 2-tensors, expressed in the split-
tings (3.32b) and (3.32d) (the latter refined by (3.32b) as explained before), to be

o + O 02 0
0? Oy + O3 0?
S2 S/C\T*X o 0 (92 at + (93
v ~|dx+0*  O? 0 (3.36)
o vh+o0* 03
0 o v+ 0?
Now §, = — tr;3 V on symmetric 2-tensors, where tr;?’ is the contraction of the first and
third slot. In the splittings (3.32d) and (3.32a), we have
g3 - (1 ol 02 0 0% —trp+0! 0
g = 0 1+0' 0% o0 02 —tri3 4+ 0t )
hence
—0; + p°Diff) + 019, —d, + p?Diff] + 0?9, o3
g = 2 _ 3yl 1 _ 21411 2 . (3.37)
@ O + p°Difty + O 0, on, + p°Diffy, + 00,

Symmetrizing V: C®(M°; T*M° ® S*T*M°) — C®(M°; T*M° @ T*M° @ S*T*M°®) in
the first two factors on the right and expressing the resulting symmetrized gradient in the
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splittings (3.32d) and (3.32e) (both refined by (3.32b)), one furthermore computes

Symvs’c‘T*X@WQf*X

O +0* 0?2 0 0? 0 0
0?2 0 +03 0?2 0 0? 0
0 0?2 0 +03 0 0 0?2

%dx—l-OQ o3 0 %&g—i—@g 02 0 (3.38)
- 03 ivhio? o3 02 lo+0* 02 ,

0 o JVh+0r 0 0?  0+03
O3 0 0 vh+0?2 03 0
0 03 0 o3 vhi0? 03
0 0 03 0 0 Vh1o?

where V" in the (8,5) entry acts on 5°7T*X ® T*X, which is isomorphic to the 5-th
summand of (3.32d) when refined by (3.32b), i.e. *T* X ® (2dt ®; *°T*X); the meaning of
the other V" is analogous.

The trace in the first factor on the left of (3.32¢), expressed in the splittings (3.32¢) and
(3.32b), is given by

+0" 0 0 O 0 0—tr+O' 0 0
tri’=|( 0 1+0' 0 00?0 0 —tr?+O' 0
0 0 1+0'0 00* o0 0 —trj2+0!
Combining this with (3.36) and (3.38), one finds that on symmetric 2-tensors,
trp, vhdx 0 0
Oy = —tr;> VV = (14+ 0" D} + 0 tr}2 Vhvh 0
0 0 tr}2 vhvh

3.39
0 O’D; 0 (3:39)

+10?D, 0  O?D,| + p®Diff D; + p°Diff};
0 0Dy 0
The third and fourth summand lie in p?Diffl.D;. Lastly, the coefficient of D? can be

computed from the principal symbol of [y, hence is ]dt\QG as stated. The proof is complete.
O

By (3.34) and the discussion preceding it, the Riemann curvature tensor
Ry € p2C™(X;5TX @ (*T*X)?) (3.40)
is determined, modulo p3C*, by h; likewise for the Ricci curvature Ric(g) € p?C>. We
similarly obtain that the scalar and 1-form wave operators for metrics of the form (3.31)
are given by
Uy = |tho|éDt2X0 + Dg,j(o) + Qthxg7 J=0,1, (3-41)
where Qg € p3Diff(X) and Q; € p?Diff! (X;5T*X), and where [, ;(0) mod pPDiff? (X)
only depends on h. Indeed, for j =0, (3.33) and (3.35) imply
b6y = —try V = (=0, + p°Diff}, + 09y, —d, + p*Diff} + 0%9y),

which together with d = (9;, dx)T gives Oy = d,d = GD? — Ay, + p*Diff? + p*Diff}, D.
The proof for j = 1 follows from a simple variant of the calculations of Lemma 3.3.
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We furthermore note that G, € C*°(X;End(S? S?T*X)), with G4 mod pC*> depending
only on h. Moreover,

Jg=—ty2 Dy, +04(0),  54(0) € pDiff}(X; 8% T* X, T*X),
X0 N - N N (3.42)
8% = dty, ®s Dy +65(0),  6:(0) € pDiff} (X;5¢T* X, §%5T*X),

with 5;(0), 5:9“(0) mod p?Diff{ only depending on h.

In the context of (3.27), it is useful to record the following strengthening of the leading
order control: if g1, g2 are two metrics of the form (3.31) and so that in addition g; — g2 €

p2C>(X; 525T*X), then
52.(0) — 8% (0) € pPC(X; Hom(*T* X, §25T* X)), (3.43)

similarly for other operators, including
D13 (0) = Oy 3 (0) € p*DIR(X:T7X), j=0,1,2, (3.44)
and Ry, — Ry, € p'C™.

When g is the Kerr metric, then g|sepx xserx = —h+ pC™ is to leading order equal to the
Euclidean metric h = (dz')? + (dz?)? + (dz3)? on R3 (equipped with standard coordinates
(1,22, 23) on R3\ B(0,3m) = X°\ {r < 3m}). Thus, the leading order terms at p = 0 are
simply those of the corresponding operators on Minkowski space R* = R; x R2 with metric

g = dt* —da*. (3.45)

But the latter take a very simple form in the standard coordinate trivialization of seT* X
by dt, dz*, i = 1,2, 3:

Lemma 3.4. Let No =1, Ny =4, N2 =10. For g = g(u ), we have

—

0,,5(0) — O,,5(0) € p°Diff7,

where Uy is the scalar wave operator on Minkowski space, given by Ug; =Ug @ 1n,xn, in
the standard coordinate basis. Likewise,

* * 21l * * 31yl
0y — 59 € p“Diffy,, 5g(m,a) - 5g(m’0> € p°Diff;,.
Proof. By Lemma 3.3, the only structure of gy a) relevant for this calculation is (3.31), with
h the Euclidean metric on X = R3. That is, it suffices to compute Ug,j, where g = dt> — h

is the Minkowski metric. The claim is then immediate since dt, da* are parallel for g. The
final statement follows from (3.43) combined with (3.27). O

In the language of [Mel93|, the normal operators of D/g\,j(O) and D/Q\J(O) at 04X are the
same; this will allow us to deduce precise asymptotic expansions of zero energy modes for
waves on Kerr spacetimes from simple calculations on Minkowski in §§6-9.
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3.4. Properties of the null-geodesic flow. Fix black hole parameters b = (m,a) close
to bg, and let

9=9gma), G=g "

We proceed to describe the null-bicharacteristic flow of the spectral family of the wave
operator [, on Schwarzschild or slowly rotating Kerr spacetimes. (Since this concerns
only the principal symbol of [y, which is the dual metric function, this discussion applies
to the scalar, 1-form, and symmetric 2-tensor wave operators, as well as to the linearized
gauge-fixed Einstein operator L, in (4.2) below.) Concretely, recalling the function ¢y .
from (3.22), we are interested in the null-bicharacteristic flow of

Oy(0) := e'm=Oge~im7 € Diff2 (X), (3.46)
both for finite o as well as in the semiclassical regime, see (3.47).

The principal symbol of —y(c) as a large parameter (in o) differential operator is
p(03€) 1= —G(=0 dtn . +£) €CO(T*X x Cp), £ €0 =*T"X;

the overall minus sign ensures that p(o; —) has positive principal symbol for ¢ € R and
large 7.

Remark 3.5. One typically considers the spectral family of [, with respect to another
‘time’ function such as t,,, which equals ¢ for large r. (Formally taking b = (0,0), so
gy = dt? — dr? — rzg = g is the Minkowski metric, the spectral family with respect to t is
—A + o2, with A > 0 the Euclidean Laplacian.) For future reference, let us thus define

1 e ity O —ity, 0.
Oy (o) 1= e"™07Oye™ "0,

this can be obtained from Ii\g(a) by conjugation by the stationary function ei(fm=~txo)

The semiclassical rescaling of —E\]g(a) is —hQE\g(h_lz) where h = |o|7!, 2 = o /|o|, and
its semiclassical principal symbol is

pr(§) == —G(—zdtms + &) € CCT*X). (3.47)
For the sake of definiteness, we consider the case o > 0, so z = 1. We then define
Yp CseT*X

as the closure of pgl (0) in the (fiber-wise) radially compactified scattering cotangent bundle.
Note that on the set where 0y, , = 0; is timelike, in particular for large r, p;() is classically
elliptic since p;(€) 2 |€]? (with | - | denoting the Euclidean metric) for large |£]. We shall
consider the rescaled Hamilton flow of py, namely, the flow of the vector field

H =[]~ o Hy, € Vo(¥T7X).

The structure of the H-flow on subextremal Kerr spacetimes has been described in de-
tail before: by the third author [Vas13, §6] on Kerr—de Sitter spacetimes, which are very
similar to Kerr spacetimes except for the presence of a cosmological horizon; by Dyat-
lov [Dyalba, §§3.1-3.3] on subextremal Kerr spacetimes, building on the work by Wunsch—
Zworski [WZ11], and with refinements in the presence of bundles due to the Dyatlov [Dyal6]
and the second and third authors [Hinl7, HV18b, Hinl8a, Hin18b]; see also [DZ13]. (We
refer the reader to [Zwol7] for a survey of trapping phenomena.) Vasy—Zworski [VZ00] an-
alyzed the semiclassical scattering behavior near 0.X for the null-bicharacteristic flow of the
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semiclassical principal symbol of —szﬁ/g(a), which is the same, up to a canonical trans-
formation, as that of py. In the non-semiclassical setting, i.e. for fixed o, the description
of the Hamilton dynamics within the characteristic set of 9X is due to Melrose [Mel94];
the remaining part of the characteristic set in this setting lies over » < 2m on a mass m
Schwarzschild spacetime, and in a neighborhood thereof for slowly rotating Kerr spacetimes.

Here, we shall thus merely list (without proof) the relevant properties of the flow. To
begin, over 04 X, we have G(—dtw . +&) = |—dt + (dr +£)|% = 1 —|dr +£|?, where G = g~ *
is the dual of the Minkowski metric, hence )

Yho =X N¥THx X = {( —dr: |C’2 =1}

Note that the semiclassical characteristic set of —U_QDN_(](U) over 0X is the zero set of
G(—dt + ¢), ie. equal to Xy + dr. More generally, conjugation by eiltms—txo)o (ig g
semiclassical scattering FIO which) shifts the characteristic set by d(tm «—ty, ), but preserves
the qualitative properties of the null-bicharacteristic flow discussed here.

First of all, ¥ 5 has two distinguished submanifolds (of radial points),
Rin = {—2dr € *T; X, p€ 0X}, Rou = 0ox C *Tjx X, (3.48)

with oyx denoting the zero section; these are critical manifolds for the rescaled Hamilton
vector field p~1H,, within ;5 (see [Mel94]) and in fact within all of X (see [VZ00]),
with Ri, being a source and Royt a sink. (Indeed, the linearization of pleph at Rout,
resp. Rin, is —2(p0, + NscOh.. ), resp. 2(p0, + NscOn,. ), Where we write scattering covectors
as & dr + rns with ne. € T*S?; this calculation uses that to leading order at 9X we have
Prn = (1 + 57")2 + ‘7750|2 - 1)

Next, globally, X5 has two connected components,
Sh=3FUx;, (3.49)

with X5, 59 C 3; they are defined as the intersection of the future (+), resp. past (—) light
cone in 5¢T* X intersected with —dty « +5¢T*X.

Remark 3.6. Over a point p € X, 3" is empty unless **77 X is timelike or null, i.e. unless
0 is spacelike or null, i.e. unless p lies in the ergoregion, on the event horizon, or inside the
black hole.

We recall that fiber infinity of the conormal bundle of the event horizon 0_X, see (3.8),

has two components
O(N*_X) =R} UR;, RicCXy,
which are invariant under the H-flow.

Finally, recall that there is a trapped set I' C E}f NT*X° consisting of all & € T*X° such
that 7 remains in a compact subset of (7(ya),00) along the H-integral curve with initial
condition a. The trapped set is r-normally hyperbolic for every r € R [HPS77] as proved
in [WZ11, Dyalba).

Recalling the definition of the final hypersurface ¥g, from (3.10), the global structure of
the H-flow is then as follows:

Proposition 3.7. Let s — ~(s) C Z% be a maximally extended integral curve of +H with
domain of definition I C R; let s— =infl, s4 =supl.
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(1) If v C X, , then either v C R, ; or v(s) = R, as s — s_, and y(s) crosses Ygn
into the inward direction (decreasing r) in finite time s < oo.
(2) If y C X}, then either:
(a) yCcTu R}f U Rin U Rout; 0T
(b) as s — s_, y(s) tends to R} URin UT, and as s — s4, Y(s) tends to Rou UT
or crosses Yy, into the inward direction (decreasing r) in finite time s; < 0.
Moreover, v(s) cannot tend to I in both the forward and backward direction.

Next, we discuss the properties of the null-bicharacteristic flow of E\lg(a) ¢ Diff2,(X) when
o € R is fized; concretely, we consider H := |§]*1p*1Hp(U;_). Since Oy4(0) is a scattering

differential operator, its characteristic set is a subset of ¢T*X = ¢T3 X U S*X°, and
indeed is a disjoint union

Yo =S 0US000,  Sea={C—odr:|[(?=0%}, Zse=2,NS5" X"

Note here that on X°, li;(a) is elliptic where 0y, , = 0; is timelike, which is in particular
true for large r; the component 3, o lies over r < 2m for g = g(m), and in a neighborhood
thereof for small angular momenta. In fact, ¥, o is the boundary at fiber infinity of X,
and as such has two connected components Eioo as a consequence of (3.49). Fiber infinity
of the conormal bundle of the event horizon,

RE =RF C S*X°,
is again an invariant submanifold of H. The analogue of Proposition 3.7 is that maximally

extended +H-integral curves inside of ¥, o tend to R* in one direction and escape through
Ygn in the other; integral curves in ¥, 5 on the other hand tend to

Roin = {—20dr}, resp. Ryout = 0dx

in the backward, resp. forward direction.

In the case o = 0, p(0, —) vanishes quadratically at ogx C **T54 X, and in fact @(0) €
p?DiffZ (X) by Proposition 3.2 and equation (3.41). (The degeneracy of %, 5 as o — 0 can

be resolved by working on a resolution of a parameterized version [0,1), x PT*X of phase
space, see [Vas20b].) Away from 0X on the other hand, thus in Xy o, the characteristic
set and null-bicharacteristic flow remain non-degenerate, i.e. have the same structure as for
non-zero real o.

4. THE GAUGE-FIXED EINSTEIN OPERATOR

We now commence the study of the Einstein equations in a wave map (or DeTurck
[DeT82], or generalized harmonic coordinate [CB52, Fri85]) gauge. We shall deduce a sig-
nificant amount of information from the structural and dynamical properties of Kerr metrics
discussed in §§3.3-3.4; only once we turn to obtaining very precise (spectral) information
in subsequent sections do we need to use their exact form.

4.1. The unmodified gauge-fixed Einstein operator. We first study the gauge-fixed
operator arising from a natural wave map gauge which we already used in the Kerr—de Sitter
setting in [HV18b], following [GLI1]:
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Definition 4.1. Given two pseudo-Riemannian metrics g, g° on M°, we denote the gauge
1-form by
Y(g;:9") == 9(g°) " 04Gyg".
= gur (97T (9)in — T(a"))-
Fixing ¢°, the (unmodified) gauge-fized Einstein operator is then the map
g+ P(g) := Ric(g) — 6, (g; 9). (4.1)

(Modifications are discussed in §4.2.) For any choice of ¢°, the equation P(g) = 0 is a
quasilinear wave equation for g with Lorentzian signature. Fix Kerr black hole parameters

b= (m,a),
and let g° = g,. The linearization of 2P around g = g, is then given by the operator

Lg, := 2Dy, P = 2(Dg,Ric + 5;b59ngb) =g 2 + 2%y, (Zgu)uw = (Rgb)nﬂl’)\uﬁ/\
(4.2)

In local coordinates, Y (g; ¢°),

see [GLI1]. We call L,, the linearized (unmodified) gauge-fized Einstein operator. By

Proposition 3.2 and the membership (3.40), and writing p = r~!, we have
Lg, = |dtxo|%¥Dt2X0 + Ly, (0) + QDtX07 (4.3)
Ly, (0) € p?Diff2(X; S25T*X), @Q € p°Diff} (X; §25T*X).

As motivated in §1, we consider the spectral family of L, with respect to the function
tm« from (3.22); the level sets of ¢y, « are approximately null in the sense that

|dtm|&, € PPC(X). (4.4)
n the other hand, we only have |dt. . €ep when m m. us, let
On th her hand ly h dt QGb C>(X) wh ! Thus, 1

—

Ly, (0) = €9'm= L, e~0m= ¢ Diff?(X; §2 5T+ X). (4.5)

We prove that this fits into the framework of [Vas20a, Vas20b]. We work in the collar
neighborhood [0, (3m)™1), x S% of 6X.

Lemma 4.2. Let p=r—".

Ly, (0) = 20p(pD, + i) + Lg, (0) + 0Q + ac?, (4.6)
where Q' € p?DiffL (X; $25T*X), a € p2C*°(X), and I//;b(()) € p’DiffZ(X; 52 T+ X).

The operator Ij;)(cr) has the form

As a concrete illustration, we note that on Minkowski space with metric g = dt? — dr? —
2 ¢, and taking the Fourier transform in ¢ —r, we have

Lyg(0) = Og2(0) = 20p(pDy + 1) + (=(p*D,)* + 2ip° D), — p* ).

We also remark that the form of the first term in (4.6) is consistent with [HV20, Lemma 3.8]
(taking v = h = 0 in the reference); see also the proof of Lemma 14.5.

Proof of Lemma 4.2. Changing from t,,,r coordinates in (4.3) to ty «, 7 coordinates, with
tmx = by, — (r+ 2mlog(r — 2m)) modulo bounded smooth functions in r > 3m, transforms
Oryy> O into By, ., O — (1= 22)7 + p2C)0,, ..
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Thus, since @ is a sum of terms of the form p?C>, p?D,., p3V(S?), the spectral family
of @Dy, is of the form apzDiffiC + 02p?C™. In a similar vein, the tm,s-spectral family of
an operator in p*Diff? (X; 52 seT* X ), extended by stationarity using the time function t,,
lies in the space p*DiffZ 4 op?Diffl. + 02p?C>. Terms in p?Diff?(S?) in I//;)(O) in (4.3) are
unaffected upon changing coordinates. Cross terms involving 9, and V(S?) only arise for
b = (m,a) with a # 0 and hence contribute at the level of, schematically, r =29, 0r~'V(S?) =
pt(rd,) o V(S?) C p*Diff2(X), see (3.27); hence upon changing coordinates, they can be
subsumed in the final three terms in (4.6).

It remains to consider the terms (1 — QTm)_lD?XO + ((1 — )92 + 20,) coming from
the first two summands in (4.3); upon changing coordinates to (r,tm ), the Dfm’* terms
cancel modulo p?C™(M )Dfm ., which gives o upon passing to the spectral family. (The
membership of o can also be directly deduced from principal symbol considerations: a €
p*C>®(X) is equivalent to (4.4).) The only remaining unaccounted term is

2(1 - QTm)ar o(—(1~- QTm)atm,*) —2r7'o,,,

whose spectral family is, modulo terms that can be subsumed in @', o, equal to 20p(pD,+1).
The proof is complete. O
We can now prove (omitting the vector bundle S? scT*X from the notation for brevity):

Theorem 4.3. Let by = (mg,0). There exists € > 0 such that for b € R* with |b — bg| < €,
the following holds. Suppose that s > % and { < —% with s + £ > —%.

(1) (Uniform estimates for finite o.) For any fized C > 1, and sy < s, €y < {, there
exists a constant C' > 0 (independent of b) such that

el e < € (12 (@)u gesse + el o) (47)

for all o € C, Imo € [0,C), satisfying C~' < |o| < C. Ifl € (—%, —%), then this
estimate holds uniformly down to o =0, i.e. for |o| < C.

(2) (High energy estimates in strips.) For any fized C' > 0, there exist C1 > 1 and
C" > 0 (independent of b) such that for 0 € C, Imo € [0,C], |Reo| > C1, and

h = |o|~t, we have
||u|]1—{§i < C/HL%(U)“HFIS:?L (4.8)
Moreover, the operators
Ly (0): {u € H(X): Ly (0)u e HXHX)} — HYHX), Tmo >0, 0 #0, (4.9a)
T 75,0 - rrs—1,0+2 rrs—1,0+2
Ly, (0): {u€ H'(X): Ly, (0)u € H V(X)) — H7 V(X)) (4.9b)
are Fredholm operators of index 0.

The fixed frequency version of (4.8) reads

||“Hggl < (”Lgb(g)uugglﬂ + ||UHH;0,£0) .

The relationship between this and (4.7) is obscured by our usage of imprecise function
spaces: we refer the reader to [Vas20a, Vas20b] to the precise statements in terms of second
microlocal scattering-b-Sobolev spaces, and only remark here that the above estimates are
optimal as far as the b- (as well as scattering) decay orders are concerned.
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Proof of Theorem 4.3. The main ingredient which did not arise in spectral theory on Kerr—
de Sitter spacetimes [Dyallb, Vas13, HV18b] and which goes beyond the settings discussed
in [Mel94, GHO8, GH09, GHS13] is the Fredholm analysis near zero energy. Furthermore,
we are working with ¢y . here, rather than the more usual t,,, which allows for concise
proofs of stronger (in terms of function spaces) results. Concretely, we use the main results
of [Vas20a] for the estimates at fixed o # 0, Imo > 0, as well as for high energy estimates
when | Reo| — oo with Imo > 0 bounded, while the uniform description in Im o > 0 near
o = 0 is provided by [Vas20b].

Radial point estimates at R% = R* require the computation of threshold regularities,
which was done for Schwarzschild—de Sitter metrics in [HV18b]; the calculations there
apply also in the case of Schwarzschild metrics for which the cosmological constant A
vanishes. In short, the subprincipal operator (see [Hinl7]) at R; is computed in §9.2;
[HV18b, Equation (9.9] (with the bottom sign, k_ = (4mg) ! being the surface gravity, and
with v1 = 792 = 0) gives as eigenvalues of its 0-th order part —4k_,—2xk_,0,2x_,4k_, and
in the subsequent displayed equation, with S_ o = 2x_ by [HV18b, Equations (3.13), (3.27),
(6.1), (6.15)], the bundle endomorphism S_ of S2T*X° thus has eigenvalues —2, —1,0, 1, 2.
As discussed in [HV18b, Theorem 5.4], the threshold regularity (for spectral parameters
o € C,Imo > 0, thus taking C' = 0 in the reference) is therefore % +2= %.4 This implies
that the threshold regularity for nearby Kerr metrics is close to %; a calculation shows that
it is in fact equal to g for all b.

For 0 # o € R, radial point estimates at ¥, o for E;)(O’) similarly require the computa-
tion of a threshold decay rate relative to L?(X). Concretely, the threshold —% from [Mel94,
Propositions 9 and 10|, [VZ00], [Vas20a, Theorems 1.1 and 1.3] is modified by the subprin-
cipal symbol 5‘301(%(@(0) - I//;)(O-)*))’Ro',in/out; we now argue that this symbol vanishes.
Indeed, formally taking b = (0,0), so g, = g is the Minkowski metric, and working in

the trivialization of §2s¢T*X given in terms of the differentials of standard coordinates
t,x' 22, 23, the operator L, is the wave operator on Minkowski space acting on symmet-
ric 2-tensors, hence a 10 x 10 diagonal matrix of scalar wave operators, and therefore the
subprincipal symbol vanishes when using the fiber inner product on S?s¢T* X which makes
dt?, 2dtdx', dr’ dzd orthonormal. Changing from the Minkowski metric to a Kerr metric
does not affect the subprincipal symbol at Ry iy /out, as follows from a simple calculation
using (3.27) and Proposition 3.2 together with (the proof of) Lemma 4.2.

Combining the radial point estimates at infinity from [Vas20a] with those at the event
horizon from [Vas13] (see also [HV15, Proposition 2.1]), gives the stated uniform estimates
for Imo € [0,C], C~! < |o| < C for any fixed C' > 1. (We also point the reader to [Vasl8,
§6] for a discussion of the low energy Fredholm analysis for the t,,-spectral family of the
scalar wave equation on Kerr spacetimes.) The uniformity of the stated estimate down to
o = 0 is proved in [Vas20b, Proposition 5.3]; this uses the invertibility of a model operator,
see [Vas20b, §5], which in the current setting and in the standard coordinate trivialization

4Dually7 the cokernel may contain 2-tensors which barely fail to lie in H ~3/2 at the event horizon,
thus permitting at most once differentiated J-distributions, which indeed arise, see Proposition 9.1. The

threshold regularity is % for Oy, acting on functions and % +1= % for Og, acting on 1-forms, the latter

being a consequence of [HV18b, Equation (6.15)].

5
29
which ensures that it exceeds the threshold regularity for L, for b close to by simply by continuity.

5This calculation is not needed if one assumes that s is some fixed amount larger than say, s > 3,
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of S25¢T*X is the 10 x 10 identity matrix tensored with the scalar model operator discussed
(and proved to be invertible) in [Vas20b, Proposition 5.4].

The high energy estimates in strips of bounded Im ¢ > 0 use the phase space dynamics
of the Hamilton vector field of the semiclassical principal symbol, as described in Propo-
sition 3.7. The main new ingredient concerns the trapped set which was discussed, for
Schwarzschild—de Sitter spacetimes, in [HV18b, §10.1]; the calculations there apply directly
in the Schwarzschild setting (A = 0) as well, and imply (as discussed in [Hinl7, §4] and
[HV18b, §5.1]) that the semiclassical estimates at I' proved in [Dyal6] (see [HV16, §4.4]
for the microlocalized version) apply. (See also the discussion prior to, and the proof of
[HV18b, Theorem 5.4] for further details.)

It remains to prove that E\gb(a) has index 0 as stated in (4.9a)—(4.9b). This is clear

when |o| is large since f/;b(a) is then invertible; hence we only need to consider bounded o.
One approach is to prove the continuity of the index in o by exploiting uniform Fredholm
estimates; we present the details of such an argument in the proof of Theorem 6.1. Here,
we instead use a deformation argument, which reduces the index 0 property of Lg, (o) to
that of the Fourier-transformed scalar wave operator (which is established, by means of
direct, non-perturbative arguments for real o, in the proof of Theorem 6.1).

We first treat the case o = 0: choose a global trivialization of $25¢T* X, then Li;(O) is
a 10 x 10 matrix of scalar operators in p?Diff3(X), with the off-diagonal operators lying
in p?Diff{ (X). Since adding an element of p?Diff{ to I//;j(()) does not change the domain
in (4.9b), we can continuously deform E;)(O) within the class of Fredholm operators on the
spaces in (4.9b) to a diagonal 10 x 10 matrix with all diagonal entries equal to the scalar

wave operator at zero energy, E;(O); the latter operator is well known to be invertible for
b = by (we recall the argument in the proof of Theorem 6.1 below), and thus for |b — by
small enough by a perturbative argument as in [Vas13, §2.7], which we recall in the proof

of Theorem 6.1 below; in particular, it has index 0. Thus, I//;b(O) has index 0 as well.

Moreover, as shown in [Vas20b, §5], the invertibility of E;(O) for b near by implies that
of E;(a) on the spaces (4.9a) for (b,0) (with Imo > 0) near (bg,0). For these (b,0), we
can use a completely analogous deformation argument to deform I//; (o) to a 10 x 10 matrix
of scalar operators i;(a), hence I//g\b(a) is Fredholm of index 0 indeed.

For o0 € C, Imo > 0, bounded away from 0 and oo, say C~! < |o| < O, the index 0 claim
follows again by a deformation argument together with the invertibility of i;(a). The
latter invertibility is straightforward to prove for b = by using boundary pairing/integration
by parts arguments; we recall the argument in the present conjugated setting in the proof
of Theorem 6.1. Thus, invertibility holds for b with |b — by| sufficiently small (depending on
C) by a perturbative argument as in [Vas13, §2.7]. O

Moreover, we can describe putative elements of the nullspace of Ij;)(a) rather precisely:
Proposition 4.4. Let s > %, and suppose b = (m,a) is close to by.

(1) Suppose u € ﬁg’g(X), te(-3,-3). If E;(O)u = 0, then u € A'=(X). More

precisely, there exists ug € C®(0X;5%5T% X) such that u — r~'ug € A*~(X).
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More generally, for arbitrary £ € R, every u € kerf/;)(O) N ﬁg’g s polyhomogeneous
with index set contained in {(z,k): z € iN, k € Ny}.

(2) Ifu e ker[j;)(())* N Hioo’g( X), then near 0X, u € HEO’E(X), and it has expansions
as in part (1). Moreover, u € H1 Se( X) for all s > 3

(3) If 0 # 0 and u € kerLgb( )OHS’Z(X) for some £ € R with s + (¢ >
u € pC®(X) + A%~ (X).

—%, then

Proof. For part (1), note that u € FI ( ) by elliptic regularity, the propagation of regular-
ity at the radial sets RT at the horlzons and real pr1n01pal type propagation. The polyho-
mogeneity of u is then a consequence of the fact that Lgb (0) € p?Diff? is a (weighted) elliptic
b-operator near 90X, see [Mel93, §54-5], with boundary spectrum contained in iZ x {0}.

In more detail, the normal operator of I//;)(O) is the negative Euclidean Laplacian —A =
p*(p0,(p0,—1)—A) tensored with the 10 x 10 identity matrix when working in the standard
coordinate trivialization of §2seT*X (meaning: the difference of the two operators lies in
p3Difob). Thus, the asymptotic behavior of u can be found by writing

p 2 A(xu) = p (L, (0) = (—2)) (xuw) — p*[Lg, (0), xJu € H Y,

where y is a cutoff, identically 1 near 4 X and vanishing for » < 3mg; one then takes the
Mellin transform in p and uses the properties of the meromorphic (in A € C) inverse of the

operator p/—zz()\) = iA(iA+ 1)+ A on C®(9, X; S? @;;X) to deduce a partial expansion

00,0+1

of xu, plus a remainder term in H, near 04 X. An iterative argument gives a full

polyhomogeneous expansion.
The boundary spectrum of the scalar Fuclidean Laplacian is, by definition, the divisor

of p~2A(N\)~!. Decomposing functions on 9X into spherical harmonics, and denoting by S;
a degree [ € Ny spherical harmonic, we have

p AA(PS) = (IAGN+ 1) +1(1+1))Sy,

which vanishes for A = il, —i(l 4 1). Thus, the boundary spectrum of A is equal to iZ, with
space of resonant states at il given by 7S, for I > 0 and 7S_;_; for | < —1. (The need to
allow for logarithmic powers of p in the expansion of u arises as usual from the presence of
integer coincidences in the boundary spectrum.)

Part (2) is proved similarly; the regularity statement follows from the fact that we have
u = 0 in the interior 7 < 7 of the black hole, together with a radial sink estimate at R*.

In part (3), smoothness of u away from 0X follows as above, while the radial point
estimates at 0X in [Vas20a] imply that w is conormal at 0X. But then note that the
normal operator of Lg, (o) (which for o # 0 merely lies in pDiff?) is 20p(pD, + i) by

Lemma 4.2, whose boundary spectrum consists of the single point {(—4,0)}. This implies
UEAphg( ) where & C {(—,0)} U{(—ij, k): 2<j €N, k € No}. O

We will make abundant use of such the normal operator arguments. Note that t part (1)
holds under much weaker assumptions, namely Lgb(O)u € CX(X°) or just Lgb(O)u €

Hﬁoﬁﬂ_ (except for the last statement).
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Remark 4.5. The relationship of ker E; (o) to the usual outgoing condition on Schwarzschild

—

spacetimes is as follows: any u € ker Ly, (o) as in part (3) solves
Lgb (e—’iUtXOU/) — 0’ u/ _ eiO’(tXO_tm,*)u;

but ty, — tms« = 7« = 7+ 2mlogr up to addition of a smooth bounded function, hence
u ~ r~teT for large r.

4.2. Constraint damping and the modified gauge-fixed Einstein operator. We
will show in §10 and exploit in §11 and subsequent sections that the properties of the low
energy resolvent of the linearized gauge-fixed Einstein operator can be crucially improved by
modifying the way the gauge 1-form is combined with the Ricci tensor in (4.1). Concretely:

Definition 4.6. Let E € C®(M°;Hom(T*M°,S*T*M?°)), and let g denote a pseudo-
Riemannian metric. Then the modified symmetric gradient is

In this paper, we shall use F of the form

E = E(g;¢,71,7%2) = 271¢ ®, (=) — 129~ (c, —)g, (4.10)

where 71,72 € R, and ¢ is a stationary 1-form on M° with compact spatial support, i.e.
¢ € C(X°;5¢T*X). The modified gauge-fized Einstein operator is then the map

g+ Pi(g) = Ric(g) — 0; 5 T(g: 9°). (4.11)

Fixing ¢° = J(m,a) to be a subextremal Kerr metric, and linearizing around g = g(m,a), wWe
then have

Lg.i := 2Dy Py = 2(DgRic + &} 6,Gg) = Ogz + 256,Gy + 2%,. (4.12)

Here, it will suffice to use small v1,v2 and perturbative arguments in order to reap the
benefits of constraint damping, as outlined in §1 and explained in detail in §§9.3 and 10.
Thus, we record here that Theorem 4.3 and Proposition 4.4 remain valid for L/g;g(a), E =
E(gp; ¢, 7v1,72) for some fixed ¢ € C°(X°; s+ X ), provided b is sufficiently close to by and
|71, |2 are sufficiently small (depending on the regularity parameter s), with the estimates
in Theorem 4.3 being uniform for such b,~y;,v2. (For s > 3, say, the point being that it is
a fized amount about 3, the theorem and the proposition hold for [b— by| + |y1| + |72 < €
with e independent of s.)

We note that for g satisfying Ric(g) = 0, we have L, g(5;w) = 0 for a 1-form w provided
that d,Ggo w = 0, which is the tensor wave equation on 1-forms. In this way, suitable zero
energy states of the 1-form wave equation give rise to pure gauge bound states of Ly k.
Dually, we have

L;,E = 2(G9(D9RiC)Gg + Ggé;gg,E)v gg,E = (5;,E)*a (4.13)

which satisfies L} ;(Ggd;w") = 0 provided gg,EGg(s;w* = 0. (For E = 0, this is the same
equation as for w, though we need to solve it on different function spaces.) Such ‘dual-pure-
gauge’ 2-tensors Ggoyw™ are thus, for suitable w*, bound states of L;j o
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5. SPHERICAL HARMONIC DECOMPOSITIONS

We introduce the terminology which will be used in the subsequent precise (generalized)
mode analysis, borrowing from [KI03|, and taking some of the notation from [Hinl8a, §5].

5.1. Spherical harmonics: functions, 1-forms, symmetric 2-tensors. Recall that ¢
denotes the standard metric on S?, and denote geometric operators on S? using a slash,
thus th = try, § = d4, etc. We denote by Y, | € No, m € Z, |m| <[, the usual spherical

harmonics on S? satisfying AYj,, = (I + 1)Y},,. Define the space
S; = span{Yy,,: Im| <1} (5.1)
of degree I spherical harmonics. Thus, L?(S?) = @ jeN, S; is an orthogonal decomposition.

Consider next 1-forms on S?. Denote the Hodge Laplacian by Ay = (d 4 §)?; the tensor
Laplacian 4&%1 = —th V? (also denoted A for brevity) satisfies A = Ay — Ric(g) = Ag—1.
Therefore, a spectral decomposition of A on L%(S?; T*S?) is provided by the scalar/vector
decomposition

dSi, Vi :=#dS; C ker(A — (I(1+1) — 1)) (1>1); (5.2)
note that §V; = 0, and that the two spaces in (5.2) are trivial for [ = 0.

For symmetric 2-tensors finally, we have an analogous orthogonal decomposition into
scalar and vector type symmetric 2-tensors: the scalar part consists of a pure trace and a
trace-free part, the latter defined using the trace-free symmetric gradient ;5["3 =4+ % gﬁ :

Sig (1>0), godS; (1>2). (5.3a)

(Note here that for S € Sy @ S1, we have ﬁéds = 0, hence the restriction to [ > 2.) The
vector part consists only of trace-free tensors with [ > 2 (since the 1-forms in V; are
Killing),

Vv, (1>2). (5.3b)

The geometric operators on S? which we will encounter here preserve scalar and vec-
tor type spherical harmonics; indeed, this holds in the strong sense that a scalar type
function/1-form/symmetric 2-tensor built out of a particular S € S; is mapped into an-
other scalar type tensor with the same S, likewise for vector type tensors; this is clear for 4
on functions, ¢ on 1-forms (§(4S) = I(I + 1)S). Furthermore, for S € S; and V € V,

F*(dS) = _Msg + #5dS, !5(554) = —dS, $(FidS) = l(l+1 W1)=2 4o
g8V = (l+1) V, AF5S) = (1(1+1) —4)F5dS,  A(F*V) = (I(1 +1) — 4)§*V.

5.2. Decompositions on spacetime. Rather than working in a splitting into temporal
and spatial parts, we split the spacetime M° in (3.6) into an aspherical and spherical part,

M°=X xS, 7:M°—X, #: M°—S?, (5.4)
where )2' Ry, X [r_,00),. Via pullback by 7*, we can identify C>(X) with the subspace
TP (X X) C COO(MO) of aspherical functions. Similarly, C*(S?) C C*°(M°) via » pullback
by 7, and C*> (X X ) C C®(M°; T*M?), likewise for other tensor bundles on X and S

Functions on M° can be decomposed into spherical harmonics in the S? factor restricting
to degree Iy harmonics gives the space of scalar | = lo functions {uS: u € C®(X), S € Sio }-
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We can split the cotangent bundle of M° into aspherical and spherical parts,
T*M° =Tis ® TS, Tig=7"T"X, Tg =#TS% (5.5)
this induces the splitting
SPT*M° = S°Tig @ (Tig ® TE) ® S*T¢ (5.6)
of the second symmetric tensor power into the aspherical, mixed, and spherical subbundles;

here, the second summand is a subbundle of S?T*M via a ® s — 2a ®; s

Corresponding to the scalar/vector decomposition (5.2), there are two classes of 1-forms
of fixed spherical harmonic degree on M°, which we write in the splitting (5.5) and using

T € C®(X;T*X), L € C(X):
scalar [ =1y (lp > 1): (TS, LdS), S €S,
scalar [ = 0: (T, 0), (5.7)
vector [ =1y (Ip > 1): (0, LV), Vev,.
Similarly, symmetric 2-tensors on M° come in two classes, Wlth low spherlcal harmonic

(Fivegrees rgquiringAseparate treatment. Below, Hyp, Hp € C*(X ) f e COO(X T*X ), and
feC™®(X;S%*T*X):

scalar [ =1y (lp > 2): fS feds, HiS¢ + HrgidS), S €Sy,
1S, f®dS, HSg), Ses,
scalar [ = 0: 7,0, Hyg), (5.8)
vector [ =1y (lp >2): (0, f®V, Hrg*V), Vevy,.
vector [ = 1: (0, f®@V,0), VeV

scalar [ = 1:

(
(
(
(

We call tensors of this form scalar type S, resp. vector type V if S, resp. V are fixed.

6. MODE ANALYSIS OF THE SCALAR WAVE OPERATOR

As a preparation for the precise spectral analysis of wave-type operators on tensor bun-
dles, we briefly discuss the properties of the Fourier-transformed scalar wave operator on
slowly rotating Kerr spacetimes. As in (4.5), we define the spectral family of a stationary
operator L on a Kerr spacetime with parameters b = (m,a) by

L(o) := ¢!7tm= Lo~ itm (6.1)
Theorem 6.1. Lel g = g(ny,0)- For Imo >0, o # 0, the operator

ﬁg(a): {ue HS’E(X): O (0)u € HX (X)) — HZ(X) (6.2)

is invertible when s > < — , and s+ £ > —%. The stationary operator

ﬁg(O) : {U € ES’K(X) : @(O)U c H£*17€+2 (X)} N H§71,£+2(X)
is invertible for all s > % and f € (—%, —%) Both statements continue to hold for g = g(m a)
with (m,a) near (mg,0).
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Proof. We analyze the case of the Schwarzschild metric first, beginning with ¢ = 0. Thus,
suppose Dg_(O)u = —(r2Dypr®’D, + r2A)u = 0, where p = 1 — 2%, and u € BS’K(X).
Then u € Hgo’g, and in fact |ul, |r0,u| < r~! by Proposition 4.4. Therefore,

R
0= —/ / (Oppr?0, — A)u - i dr|dg|
S2 J2mg
R
= / / (ulrorul® + |Yul?) dr|dg| / pr?(Opu) - @ |dg|.
S2 J2mg {r=R}

The second term is < R~!. Taking the limit R — oo, we thus conclude that u is constant
and hence vanishes in r > 2mg; the infinite order vanishing at r = 2mg and smoothness
in r < 2mg then imply v = 0 in r < 2mg as well, see [Zwol6, Lemma 1]. Thus, E\]g(O) is
injective.

To prove surjectivity, we can either use an abstract deformation or perturbation argument
to show that é\g(O) has index 0; or we can proceed directly, and show that v € Hé_s’_é_Q(X)
with 0 = ﬁ;(O)*v = li;(O)v vanishes. We do the latter: energy estimates in r < 2mg for
ﬁ\g(O)* (which is a hyperbolic operator in r < 2mg, with r a timelike function) show that v
vanishes in r < 2my; furthermore, v is smooth in r > 2my, and |v|, |rd,v| < r~!in r > 2my.
Moreover, radial point estimates at the event horizon imply that v € H 1/2= pear r = 2my,
i.e. yv € HY/?~ when x € C2°((mg, 00)) is identically 1 near r = 2mg. We claim that v|,som,
is smooth down to r = 2myg; the arguments above then imply v = 0 in r > 2mg, hence v is
supported at 7 = 2mg and thus vanishes since v lies in L2.% To prove the smoothness, recall
that v is conormal at r = 2mg by [HV13], hence we can obtain the asymptotic behavior of
v there by writing

(pr*Dy)?v + prtAv = 0, (6.3)
where the crucial point is that 4 = 0 at » = 2mg. Now (ur?D,)? is a Fuchsian operator
with a double indicial root at 0: it annihilates 1 and logu in g > 0; we thus have v =
H(r —2mg)(vo +v1 log 1) + v where vg, v; € C®°(S?) and v' € A~ ({r > 2mg}) is conormal
at r = 2mp and bounded by u'~. Now @(O)H(r —2mgp) =0, so

1 —~

0 =0, (0)v = 5, (0) (w1 H (r — 2mo) log r) + T, (0)0' = -5(r — 2mo) + Ty (00"
0

The second term lies in A%, whereas the first term does not lie in A%~ unless v; = 0. Using
this information in the asymptotic analysis of (6.3) at u = 0 then implies v € C®({r >
2mp}), as desired.

We shall sketch the proof of invertibility of ﬁ\g(a) for non-zero o as well to illustrate the
relationship between outgoing solutions in the ‘conjugated perspective’ (i.e. using tm, « to
define spectral families) and in the ‘standard perspective’, cf. Remark 4.5. We start with

0 # o € R. In this case, u € ker ﬁ;(a) gives rise to an outgoing solution
ﬁg(o*)u’ =0, ﬁg(a) = el et o = e tno)y, (6.4)

A boundary pairing argument, see [Mel95, §2.3] and also the proof of Proposition 7.5
(starting at (7.22)) below, then shows that the leading order terms of u’ at the event
horizon and at infinity must vanish, thus u(2mg) = 0 and v € A2~ (X). An indicial root

60ne can alternatively check by an explicit calculation that sums of differentiated J-distributions at
r = 2mg never lie in ker (y(0) unless they vanish.
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argument then implies that u vanishes to infinite order at r = 2mg and 0X. A unique
continuation argument’ then gives u = 0 in 7 > 2mg, hence also in 7 < 2mg using energy
estimates as in [Zwo16]. This proves the injectivity of Oy(o) for 0 # o € R.

The proof of surjectivity, or equivalently (since E\Ig(a) as a map (6.2) has closed range)
the proof of injectivity of the adjoint, is not quite symmetric in the conjugated perspective.
We thus sketch an argument which directly proves the triviality of ker é\g(a)* on Hb_ s—4-18
First, one notes that v € ker ﬁg(a)* N H];S’_Z_l, where now —s < —% and —¢ —1 > —%,
is an element of a second microlocal scattering-b space as defined in [Vas20a, §2], to wit,
veH S—Cs];—s—e—l,—e—17 where the orders denote the scattering regularity, scattering decay,
and b—décay (which can be thought of as a very precisle form of ‘scattering decay order

at 0 scattering frequency’). Note that —s — £ —1 < —5. Let us work in 7 > 3mg; then

Ho 57571 and a normal operator argument at 90X as

elliptic regularity implies v € H_

,—s—f—1,00

in the proof of Proposition 4.4(3) improves the b-decay order to 400, so v € Hsoccjb
in 7 > 3mg. Radial point estimates at the (lift of the) outgoing radial set Rout, see (3.48),
improve the scattering decay order to +oo away from Ri,. This now implies that (restricting
to r > 3mg still) WFg.(v') C Rin. At this point, we can again consider (6.4); thus ' is now
an incoming mode solution, and can easily be shown to be equal to? e™™"(cr™1 4 A%7)
for some ¢ € C. The same boundary pairing and unique continuation arguments as for the
direct problem prove that v = 0.

For Im o > 0, the proof of injectivity uses that v’ in (6.4) now decays exponentially fast as
|rs] = oo where ., = r+2mg log(r —2my) is the tortoise coordinate; taking imaginary parts
of 0 = (ﬁ;(a)u’ ,u') then implies v/ = 0. Surjectivity is proved most easily by establishing
that ﬁ\g(a) has index 0. This holds for fixed Imo =: C' > 0 when |Reo| > 1, since then
E\lg(a) is in fact invertible by high energy estimates, cf. Theorem 4.3. We claim that the

index of ﬁ\g(a) is constant on Imo = C, and thus equal to 0 for all such o; it suffices to
show that it is locally constant. Let

X(0) := {u € H*(X): Oy(o)u € HXTH(X)}.

Then if ﬁ\g(ao), Im oy = C, has kernel and cokernel of dimension ki and ks, respectively,
we define an operator

L(o) = <D%(2U) 161> : X (o) ® Ck2 ﬁg’Hl(X) @ Ck,

where L;: C*2 — C2°(X°) maps into a complement of ran E\!g(ao), and Ly: 2/'(X°) — Ch
restricts to an isomorphism ker Oy (0g) — C*1; thus, L(op) is invertible. Uniform Fredholm
estimates for Ogy(o) imply such for L(o); but L(op) is invertible, hence so is L(o) for o

"One can use either unique continuation at infinity for Oy (o)’ = 0 as in [H6r05, Theorem 17.2.8], or
unique continuation at r = 2mg using [Maz91b].

80ne can also give an alternative proof based on abstract perturbation theory, which we will present in
the Imo > 0 case below.

90ne can follow the arguments of [Mel94, §12]. An approach closer in spirit to the conjugated perspective
passes to the spectral family relative to the time variable 2¢ — tn,,«, which is the time-reversed analogue of
tmg,«: its level sets are transversal to the past event horizon and past null infinity. Indeed, what we have
just proved is that an incoming mode solution for ﬁ,(o) is an outgoing mode solution for this new spectral
family.



LINEAR STABILITY OF KERR BLACK HOLES 43

near oy by the perturbation arguments in [Vasl3, §2.7]. Therefore, the index of @(U) is
constant (namely, equal to k1 — k), as claimed.!”

That the same results hold for slowly rotating Kerr metrics g, with b close to by, was
already discussed in the proof of Theorem 4.3. Here, we flesh out the argument near zero
energy, as we shall need more general versions of this later on. The key is that we have
uniform estimates for sg < s, o < ¢,

B, (Oull g1+ + l1ull o0

for b close to bg. Thus, if ker @(0) were non-trivial for a sequence b; — by, j — oo, we
could find u; € ﬂg’f Nker Oy, (0), |luj|lzs¢ = 1; this estimate gives a positive lower bound
b

;| fe0-t0 > (20)7! > 0 for large j, hence we can extract a weakly convergent subsequence

uj = u € ﬁé’g (thus u; — v in I:IEO’ZO) with the limit u necessarily non-zero and satisfying

—

Ty, (O)u = lim (T, (0)(u — ) + (g, (0) ~ Ty, (0);) = 0.

But this contradicts ker[/lg;0 (0) = 0. Surjectivity, which is equivalent to the injectivity of
the adjoint, is shown similarly.

A minor modification of this argument (now using the uniformity of the estimate (4.7)
near rather than merely at zero energy) applies more generally to putative sequences of
normalized elements u; € ker i;(aj) N Hg’e where 0; — 0, Imo; > 0. Thus, i;(a) is
injective for (b, o) near (bg,0); surjectivity follows from the index 0 property. O

6.1. Growing zero modes. For later use, we record the explicit form of scalar functions
in ker [y (0) which are allowed to have more growth at infinity. Their differentials are 1-
forms, some of which are gauge potentials for (pure gauge) metric perturbations arising in

the spectral analysis of E;)(O) in §9.

Proposition 6.2. For b = (m,a) near by = (mg,0), we have

ker i;(()) ﬂf[ﬁo’_sﬂ_ = (up,50), (6.5a)
ker T, (0)* N Hy, ™77 = (uj o), (6.5b)
where, in the notation (3.14),
Upso = 1, u?;SO =H(r — r(mpa))- (6.6)
Furthermore, the spaces
ker Ty, (0) N A7 = (up0) ® {ups1(S): S € Su}, (6.72)
ker O, (0)* N A, ™% = (uj40) @ {u,1(S): S € S1} (6.7b)

are 4-dimensional; the maps b — uy 51(S) and b — uj ,(S) can be chosen to be continuous
(with values in the respective spaces), and to take the values

U(m,0),s1 (S) = (T - m)sa uz(m,(l),sl (S) = (7’ - m)H(r - 211‘1)5 (68)

100ne can give a more direct argument, in which one directly realizes i\g(cf) as a Fredholm family of
operators acting between o-independent function spaces for Im o > 0, by using the more precise microlocal
point of view sketched in [Vas20a, Remark 4.17].
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Remark 6.3. We keep the notation w4 etc. even though the spherical harmonic and
scalar /vector decompositions cease to be globally well-defined on Kerr spacetimes with
non-zero angular momentum. In later sections, proving the existence of continuous families
of zero energy solutions will in fact require mixing continuous (in b) extensions of 1-forms
or symmetric 2-tensors which at b = by are of distinct types, see e.g. (7.44) and (9.8).

Remark 6.4. The dual states automatically vanish in r < ry, are smooth in r > 7, and are
conormal at 01 X. They are only singular at the event horizon (and in fact only microlocally
at its conormal bundle), where they lie in H 1/2= in the present, scalar setting. Since we are
interested in the construction of modes with controlled decay or growth, we shall typically
not state the precise regularity of dual states; the center of attention is the weight at 94 X.

Proof of Proposition 6.2. Consider first an element u € ker i;(O) N I;TEO’_B/Q_. By normal
operator arguments as in Proposition 4.4,"" 4 has an expansion at infinity, u = ug + 1,
where wug is constant and u € ﬁﬁo’_lm_; but then 0 = g, (0)ug + Oy, (0)u = Oy, (0)u
and Theorem 6.1 imply u = 0, hence u = ug is constant. Conversely, constants do lie in
ker (g, (0), proving (6.5a). The proof of (6.5b) is analogous: by normal operator arguments
as in Proposition 4.4, the space in (6.5b) is at most 1-dimensional, and indeed uj , €
ker Oy, (0)*.

Passing to the weights (6.7a), one crosses the point A = ¢ in the boundary spectrum,
corresponding to | = 1 and asymptotics S, S € Sy; since dim S; = 3, the space in (6.7a) is
at most 4-dimensional, with its elements equal to rS plus functions with faster decay. To
prove that it is 4-dimensional indeed, let v :=rS € H,° %27 and fix a cutoff x € C*(R)
with x =0 for » < 3m, x =1 for r > 4m; then

e := g, (0)(xv) = xTg(0)v + [Ty (0), xJv + (g, (0) — Ty (0)) (xv)

€0+ HX™ + HXOV? = @t/

where we used Lemma 3.4 for the third summand. Now, i;(O)w = —e can be solved with
w € FIEO’_B/Q_; indeed, e is L?-orthogonal to the kernel of E;(O)* on H}:w’_l/u, which is
trivial by Theorem 6.1. Therefore, xv + w furnishes an element in (6.7a) with leading term
rS. The continuous dependence on b is a consequence of this construction.

A similar argument gives (6.7b), using in the final step now that ker i;(O) N Hgo’_l/2+
is trivial. The explicit expressions (6.8) on the Schwarzschild spacetime (M°, gp,) are found
by solving the radial ODE 5/9:0 (0)(p(r)S) = 0 for p(r) with p(r)—r = o(r). (Concerning the
computation of these expressions for general Schwarzschild metrics with parameters (m,0),
note that the stationary operator []/9(:0) (0) is the same for any two choices of presentations
of g(m,0) @8 a metric on M* that are related by pullback along a diffeomorphism of M®° of
the form (ty,, 7,0, ¢) — (ty, + F(r),r,0,¢) for any smooth F'; therefore, calculations for
9(m,0) are the same as those for gy, 0) upon replacing mp by m.) ([

HNote that passing from the weight —g 40 to —% — 0, we cross the point 0 in the boundary spectrum,

corresponding to A = 0 and [ = 0 and the solution 1 of the normal operator, E\IQ(O)I =0.
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7. MODE ANALYSIS OF THE 1-FORM WAVE OPERATOR

While we are ultimately interested in the linearized gauge-fixed Einstein operator acting
on symmetric 2-tensors, the wave operator on 1-forms, U, := [, 1, appears in two different
functions when studying the unmodified operator: once as the (unmodified) constraint
propagation operator acting on the gauge 1-form, and once as an operator acting on gauge
potentials; see the discussion in §1.1.1. We thus study it here in detail, largely following
the notation, and parts of the presentation, of [HV18a].

Theorem 7.1. Let g = g(m,,0), and consider Uy acting on 1-forms.
(1) For Imo >0, o # 0, the operator
0, (o) {w € BN (X;5T*X): Oy(0)w € Bgv”l(x;s?T*X)} — HY (X T X)
18 invertible when s > %, < —%, s+L> —%.
2) For s> 3 and ¢ € (—2,-1), the stationary operator
2 2: 72

0, (0) : {w e B (X;T*X): O,(0)w € Eﬁ‘l’“z(X;Sa“*X)} -
Nl
has 1-dimensional kernel and cokernel.

Both statements continue to hold for g = gm.a) with b = (m,a) near by = (mp,0). Con-

cretely, there exist wy g0 € ﬁgo’_l/Q_ and wy 50 € Hb_oo’_l/Q_, depending continuously on b
near by, such that
ker g, (0) N H V27 = (wp0), (7.22)

—1/2—

ker 0, (0)* N H, > (Wi 50)- (7.2b)

Explicitly, using the notation of Proposition 6.2, we can take

Who,s0 = r*1<dt0 — d?"), wlto,s() = duZO,so = (5(7“ - 2m0)d7“, (7 3)
WZ,SO = duz,s() = 5(7’ - T(m,a))dr‘

In the spirit of Remark 6.4, we note that the precise regularity for dual states here is
smoothness away from the event horizon, conormality at infinity, and conormality relative
to H~Y2~ at the event horizon.

Remark 7.2. We can give an explicit expression for wp o by noting that the elements
mdr, r~ldt € ker Ugoy 1 (in the static patch r > 2my) have analogues on Kerr space-
times. Namely, the 1-forms

1
W)= ——dr, Wy = %(dt — asin?fdep) = %(dtb,O — asin® 0 dppg) — T dr

’ Ay ’ s s Ay
lie in ker Dgg,l In 7 > 7(m.a), and hence so does their linear combination wg’ 0= wg’Q + wag’l
which depends continuously on b and is smooth across the event horizon. We can then
define wy, 50 as the pullback (Y o <I>b_1)*wg 00 ¢f. Remark 3.1.

Remark 7.3. Regarding the nullspace of the adjoint in (7.2b), we note that the dual of the

target space of ﬁ\g(O) in (7.1) is Hb_sﬂ’_e_2, whose weight lies in (—2, —1); elements of the
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kernel of ﬁg(O)* thus automatically have the decay rate —%— stated in (7.2b) by indicial
root (or normal operator) arguments as in Proposition 4.4.

The arguments in the proof of Theorem 4.3 apply also to E;(a), thus it is Fredholm of
index 0, and the determination of its kernel suffices to determine the dimension of the kernel
of the adjoint; we find the latter, when non-trivial, by a simple observation, see (7.30). In
the Schwarzschild case b = by, one can prove Theorem 7.1 using separation of variables into
radial and spherical variables, and expanding further into 1-form spherical harmonics; this
is the approach used in the proof of mode stability for the linearized Einstein metric in §8.
Here, we instead opt for a more conceptual proof, adapting the arguments of [HV18a] to
the present asymptotically flat setting.

The main part of the proof is the analysis of the Schwarzschild case; let us thus put
m =My, g = g(m,0), until specified otherwise. Since g is Ricci-flat, the tensor wave operator
equals the Hodge d’Alembertian,

Oy = (d + 6,)? = dby + 6,4d.

We are specifically interested in its action on 1-forms, though by virtue of [J; being a square
of d 4 ¢4, which mixes form degrees, most of our analysis will apply more generally to [,
acting on forms without a restriction on their form degree. We shall first prove the absence
of mode solutions in Im ¢ > 0 in §§7.1-7.2, and proceed to compute the space of stationary
solutions on Schwarzschild spacetimes in §7.3; simple perturbative arguments then finish
the proof of Theorem 7.1 for slowly rotating Kerr metrics.

We write g = g(m,0) in the static patch M (see (3.1)) as

2m

g=a?dt* —h, h:a_QdT2+T2g, O<a=4/1——, (7.4)
r
We use « as a (radial) coordinate; note da = r%oz_l dr. Denoting points on S? by ¥,
~. ~ 72 2m/(1 — a?))?
h=32do? + k(a2 y.d G-l e
p7da” + k(a”,y, dy), B=— o : ¢

The (non-zero) quantity
B = Blamo = dm,

which is the reciprocal of the surface gravity of the event horizon, will play an important
role in describing outgoing asymptotics below.

We set up our analysis by splitting the (full) form bundle on M:
AM = AX @ (adt NAX). (7.5)

Correspondingly, we write differential forms on M as

w(t,z) =wr +adt Nwy =: (ZT) ,
N

where wp,wy are t-dependent forms on X. In this splitting, we have

_( dx 0 ~((=DkH, 0
d= <Oé_1at —Oé_ldXOé> ’ Gk - ( 0 (_1)k_1Hk—1 ) (76>
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where Gy, is the fiber inner product on A* M induced by g (thus Gy = g~' is the dual
metric), and Hy, is the fiber inner product on A¥X induced by h. The adjoint of d is thus

P P
5=, = < o owe o 8t>, (7.7)

where 0y is the adjoint of dy with respect to h (giving both the volume density on X and
the fiber inner product).

Recall the two components 0_2X" (event horizon) and 9, X (infinity) of the boundary of
the closure X C X from (3.8); both are diffeomorphic to Y := S2.'? Near 0_X, we refine
the splitting (7.5) by writing

AX =AY @ (daANAY), ie w=wpr+daAwry+adt Nwyr+adt NdaAwyy. (7.8)
(Note that this is not smooth down to 0_X, as da is not smooth at 0_X.) In this splitting,

we also record, using [§, ] = 0:

dy = ((;i _Od) , Ox = (g ?%) : (7.9)

Here, 07 is the adjoint of 9, : L2(X; |dh|, AY, K) — L2(X;|dh|, AY, 2K) (with K denoting
the metric on forms on Y induced by k), so

Ot = —B200 + a*p10a + apa,  p1,p2 € CO(X).

Outgoing modes are of the form e~"%w/(x) near d_X, where ty = t + 7., and with o’
smooth down to _X. Such a mode is a linear combination, with C*°(X’; AY') coefficients, of
1, d(a?), dt, and dt, Ad(a?). Using that 7. = r + 2mlog(r — 2m) € Blog a + C>([2m, 00)),
we find that such forms e~%%w’ =: e~y are precisely those for which w has the form

wrT wrT 10 0 0

WrN | _ o —iBe | WTN |0 a Ba7t 0 ~ 00 (7.

onr | = Ca onr | C = 00 ol ol @€ C®(X;AY). (7.10)
WNN WONN 0 O 0 1

We denote the space of stationary differential forms w € C*°(X; AX) with this structure
near J_X, and which for o # 0 lie in ei‘”*HfzO £ near 04+ X for some £ € R, and for o = 0 lie
in HEO’K near ;X for some £ € (—3,—1), by
o0
Co)-
Phrased differently, the membership w € CE’;’) amounts to the smoothness of e~*w on M°
down to Ry, x 0_X&, together with an outgoing condition at R;, x 0+ X.
We denote the conjugation of d by the t-Fourier transform by
C?(O') _ eiatde—iat’
likewise g(a) = ¢!7t§e~i9t acting on t-independent forms on M. Note that c/l\(cr) and 3(0)
preserve C(), hence ¢ 'd(0)€ and €~16(0)€ preserve a~PIC®(X \ 0,.X; (AY)?). For
later use, we note that the components of w € C7y in (7.10) satisfy

wrT, WNN € afiﬁacoo’ WTN,WNT € O[fiﬁaflcoo' (7.11)

121, [HVlSa], we used the notation X even for the part of (in present notation) X near the event horizon.
I3This is different from the normalization used in (6.1).
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For w satisfying only (7.11) (rather than having the precise structure (7.10)), it only follows
from (7.6)—(7.7) and (7.9) that the components of v = C/i\(O')OJ and w = S\(U)w lie in the
spaces (7.11) with the exceptions of vy n, wrr € a~P7=2C%. (This is discussed in [HV18a,
Equations (3.13)—(3.14)].)

Near 04X, we record that
d(0), 8(c) € Diffl (X; AX & AX), (7.12)

using the splitting (7.5); note here that a € 1 + pC>°(X’). More precisely, we can split AX
near 4+ X, and in fact globally on X’; into

AX =A(rT*Y) @ (dre NA(rT*Y)); (7.13)

we thus identify AX = AY @ AY via (n,¢) — rd8My 4 dr, A 798¢ on the pure form
summands of AY, with deg denoting the form degree. In view of (7.4), the inner product
on k-forms is Hy = @&, ® o 2@,_1. Correspondingly, we express forms on M as finite sums
of forms of the type

w = rTTwpp + dr, ATTNwpn + adt ATINTwNT + adt A dre ATV wny (7.14)

where the wee are A%*Y -valued forms on X'. The point of rescaling spherical forms accord-
ing to their degree in (7.13) is that the size of the coefficients of w in the basis dt, dz', with
x!, 22, 23 standard coordinates on R?, is comparable to the size of wee as forms on Y = S?

with respect to the standard metric. In the splitting (7.13), one computes that

r1id 0 r7 1§ —ar720, 20" + r~ldeg
dx = (&n* +o?r~ldeg —r‘ld) y Ox = < 0 —r—14 - (7.15)

7.1. Absence of modes in Im o > 0. We are interested in mode solutions
Og(e™"'w) =0, weCE), Imo>0.
In particular, w is exponentially decaying at 9, X. This equation is equivalent to
Oy(0)w = (d(o) +8(0))*w =0 (7.16)

Proposition 7.4. Any solution w of (7.16) for o € C, Imo > 0, vanishes identically.

Proof. Tt suffices to show that if w is outgoing with

(d(0) + 8(0))w = 0, (7.17)
then w = 0: applying this first to (d(c) + 6(c))w in place of w and subsequently to w itself
then proves the proposition. Assuming (7.17), we obtain w = 0 using an integration by
parts argument by following [HV18a, §3.1] verbatim. Due to the exponential decay of w at
04 X, integration by parts is immediately justified there. O

7.2. Absence of real non-zero frequency modes. Here, the argument differs slightly
from the Schwarzschild—de Sitter case discussed in [HV18a] in that the outgoing condition
at 04X enters; this boundary at infinity is not present for de Sitter black holes. Concretely,



LINEAR STABILITY OF KERR BLACK HOLES 49

fixing ¢ € R, ¢ # 0, the outgoing condition w € Cf;) implies, using the identification
AM = AX & AX via (7.5), that in r > r¢ > 1, we have (following Proposition 4.4)
w(r,y) =7 (rws(y) + @0 y),
wy € CT(04 X5 Ag, x X @ %Ay, x X), (7.18)
Blpyy) € A2 ([0,r51), X 83 AX @& AX),

Proposition 7.5. Ifc € R, 0 #0, and w € Ca‘_’) solves ﬁ\g(a)w =0, then w = 0.

Proof. We give the full proof, which is similar to that in [HV18a, §3.2], in order to point
out where the outgoing condition at infinity comes in. It suffices to show that any outgoing
solution of the first order equation (d(c) + d(o))w = 0 vanishes identically. Expanding this
equation into its tangential and normal components, this means

(ady — dxya)wr +iowy =0, —iowr + (—dya+ ady)wy = 0. (7.19)

We apply (—dya + ady) to the first equation and use the second to obtain the decoupled
equation

(dyadya + adyady — dya’dy — o?)wr = 0. (7.20)
Applying dy from the left, the outgoing form vy := dywr satisfies the simpler equation
(dyadya — o*)vp = 0. (7.21)

It suffices to show that all outgoing solutions of this equation vanish identically; indeed,
this would first give vy = 0, i.e. dywy = 0, which by (7.20) implies (dyadxya — o?)wr = 0,
hence wp = 0; using (7.19) and o # 0, this implies wy = 0.

Note that the operator dyadxya in (7.21) is formally self-adjoint in L?(X; a|dh|, AX, H).
Let now f € C®((2m, >)) denote a positive function with f(r) = a(r) = (1 — 2m/r)*/? for
2m < r < 3m and f( ) = 7=t for r > 4m. Fix moreover a cutoff x € C*°(]0,00)) which is
identically 0 on [0, 3] and identically 1 on [1,00). For small e > 0, define then

= x(f/e) € C(X). (7.22)
Thus, xc = 1 when o > €, 7 < ¢!, while o > 1 56, 17 <26 I on supp xy. We then evaluate

0 = lim{(dyadya — a®)vr, xevr) — (vr, Xe(dxadya — o?)vr)
0 (7.23)
= hr%<vT, [dyadxa, x|vr).
€—

(The localizer x. is necessary to make sense of the pairings since vy fails, just barely, to lie in
L?.) The commutator has two pieces: one near O_X, and one near 9, X. The former piece
was analyzed in [HV18a, Proof of Proposition 3.6]: writing vy = (a*w"v}T, a~Bo— Lohn)s
its contribution to the above limit is

—2iB %0 ||V lo_x ||%2(8_X;|dk\,K)'

The latter piece, at 04X, can be evaluated using (7.15): put xe(r) = x(1/(er )) ( ),
with ¢ (r') = 1, resp. 0 for v’ <1, resp. r’ > 2; then O, xe = €1¢, VY1,(r) := ¢'(er). Thus,

B 0 —a?r 1y
ldxadza, xd = <a4r_11/11,d5 Yre(—a?0p, + AY) = O (1 + At
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Inserted in the pairing (7.23), the off-diagonal terms here give terms of the form
/(ei”*r_l) cer ™y LO(1)eior =12 dr |dg]

with v” bounded on X; as € — 0 and changing variables to 7’ = er, thisise [ ¢/(+")O(1) dr’ =
O(e) — 0. Likewise, the two A! terms on the diagonal give vanishing contributions in the
limit € — 0. Next, writing v = r97Tvpp + dry A r9Nopy as in (7.14), and further writing

VN = 61’07"*(

rurn4+ +0rN), Ury € AT,

we note that 0, vry = €7 (z’a’r’_lvTN7+ + Upp), Upy € A%~ hence in view of a — 1 €

10 (X \ 0_X):
(vrn, *€¢1,50l23r*UTN> =0 // 61/),(€T)|UTN7+|2dT‘ |dg| + o(1) — fio'||vTN,+||L2(Sz;Agz).

Similarly, we have e(vrn, =0y, Y1 cvrN) = —io||vrn 4|12 as € — 0, as can be seen by first
integrating by parts and then taking the limit. In summary, (7.23) reads

= 2i0 (87 %([vrwlo_xllT2 + orn+[172) =0, (7.24)
which implies v/ y]o_x = 0 and vry 4 = 0.

A simple indicial root argument then shows that vr in fact vanishes to infinite order
at 0_X, which by Mazzeo’s unique continuation result [Maz91b| implies vy = 0 near
0_X, which by standard unique continuation implies v = 0 globally, finishing the proof.
Alternatively, one can study vy near 94X by calculating

2 -
—ioTy 2\ iore _ -0 —ior—d 2— 12
e (dyodyo —o%)e'™ = <im“_15 —2ier1(rd, + 1)> + A" Diffy.
Applying this to e ™ vy =: (ipp,dry), which is conormal with o7y € A%~ in view

of (7.24), the first line shows that 977 € A3~; the second line then implies, by integration
of 70, + 1 and using o7y € A, that opy € A%~ as well. Proceeding iteratively, this gives
e~ yp € A%, hence vr vanishes to infinite order at ;. X. Unique continuation at infinity
then implies that vy = 0 near 04X, and thus globally as before. O

7.3. Description of zero modes. Membership in w € C(og) together with ﬁ;(O)w =0
implies, by normal operator arguments as in Proposition 4.4, that
CU(T, y) = T_lw-l- (y) + ‘:5(7“_17 y)?
with w, and @ € A%~ as in (7.18). We now restrict to I-forms on M°. Define
K1 = ker ﬁg(O) NCoH)-

We aim to show that IC; is 1-dimensional and spanned by wy, 50, see (7.3). The proof
proceeds in several steps, making use of various calculations of [HV18a, §3.3-3.4], but
simplified and made concrete in the present Schwarzschild 1-form setting. First, writing
w € C) near 0_X as w = %w as in (7.10) (with o = 0), we define the restriction map

R:ww— (:VUNT‘B_X-

Define also the space

~ ~

Hi = {w e () d(0)w =6(0)w =0, Rw = 0}.
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Lemma 7.6. If w € Ky, then Rw is a constant function. Let v: Hy — Ky denote the

inclusion map; then the following sequence is exact: Hi — K1 £ c.

Lemma 7.7. H; = {0}.

These two lemmas together imply that dim K < 1. The statement (7.2a) of Theorem 7.1
thus follows from the fact that wy, 5o € C&‘f) and 0(0)wp,,s0 = 0, which is a direct calculation

using [HV18a, Lemma 4.3]. We now drop “(0)’ from the notation and write d = d(0), etc.

Proof of Lemma 7.6. Near 0_X, we compute

d 0 0 0 —§ —a719%a® —pa”tor 0
~, | Oa —ad —pad 0 ~, | 0 af Ba1§ 0
d¢ = 0 0 —a 4 o 0 = 0 0 a ar |’
0 0 _ailaa d 0 0 0 —6
and
d 0 0 0 —§ —a~'0ra® —palo) 0
-1 —1 9%
15, | & Ba —d 0 0 1% 0 6 0 —,BOé 8a
¢ de = 0 0 —d of e =1 0 ) ad}
0 0 _a_laa d 0 0 0 —6

Since ad?: C®(X) — a2C®(X), the (NT) coefficient of ¥~ '00¢ % is therefore equal to
—ADNnT + ?C®; since this vanishes when w = €W € Kj, we find that Oyr|o_x is a
harmonic 0-form on O_X = S?, hence constant. This proves the first claim.

Now if w € K1, w = €w, has Rw = 0, i.e. wyr|sg_x = 0, we proceed as follows. First,
given Ow = 0, we can apply either d or 5\, obtaining

dddw =0, ddow = 0. (7.25)

Consider the first equation, and write w’ = &\w, which is outgoing and decays faster, by

a factor r 1, than w itself. Writing w’ = €'&’, we have &yr|s_x = 0. Note that d and —§

are adjoints of each other with respect to the L? pairing with volume density a|dh| and

fiber inner product H ® H. We work with this inner product from now on, unless otherwise
specified. With x, xe as in (7.22), we then have

T /TS N — T (S S o\ — 1 1/275 7112 S0s /
0= ll_r)l(l)<d(5w , Xew') 11_1}(1)(500 ,Oxew') ll_{% lIxe/ 0w’ ||* 4+ (0w, [0, xe|w')- (7.26)
Let us evaluate the second term on the right. It has two pieces; using the O(r~1), resp.

O(r=?) decay of w', resp. ow' , the piece near 94X is easily shown to vanish in the limit.
Near 0_X, we write x1. := X'(f/€) = x'(a/€) and compute

0 B 2a+a3C>® B lal+aC>® 0
= _1 0 0 0 0
[5%1 Xe} €€ "Xle 0 0 0 _5—2 + anoo

0 0 0 0
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Thus, using the vanishing of W/, at 0_X, we have

aC>
N ~ -1 0
[5%7 Xe]w €€ "Xie _B_QCNUEVN‘FO‘QCOO
0

We furthermore compute
(OCT Yo € —Fipy + 28720y — Ba 0Ty + 22C,
(06" NT € al™.
Since H® H = K & E*ZK o K e® FBV*ZK is block-diagonal, we thus see that the pointwise

inner product of Sw' and [:5\, XeJw’ is bounded by ae 1y ¢; using a|dh| = agda|dk|, it follows
easily that lim._,o(dw’, [d, xcJw’) = 0, and therefore (7.26) implies dw’ = 0, so ddw = 0.

Consider similarly the second equation (7.25), and let w” = dw: we now have

0 = lim [|x2/2du" |2 + (", [d, o). (7.27)
€—

The contribution of the second term near 01X again vanishes in the limit, while the con-
tribution near 0_ X" can be evaluated using

00 0 0
(46, xe] = € xae (1) 8 8 8 ,
00 —at 0
which for @ = €~1w” with &%plo_x = 0 gives
0
@ x| 6|
aC™>

on the other hand, (8‘5@’/)TN € aC* and (E[%&”) NN € C*®. Thus, as in the previous
calculation, the pairing is pointwise bounded by ae 11, whose integral with respect to

af do|dk| tends to 0 as € — 0. We conclude that dw” = 0, so dow = 0.

We now repeat these arguments: replacing w’ by w in (7.26), we find Sw = 0; using (7.27)
with w in place of w” gives dw = 0. Therefore, w € H1, finishing the proof. O

Proof of Lemma 7.7. Let us write an outgoing 1-form as
w = wr +wyadt.

Then wy is a function which lies in a71C>®(X \ 9_X) and takes the form r~lwy  + A%~
near J4X’; moreover,
wr = wrr + wry dr, (7.28)

where wpr € C® and wry € a 2C*> near 0_X; near 0+ X on the other hand, wry =
TﬁleNH,_ + A%~ and WTT = WTT,+ + A" with WTN,+ € Coo(6+X), wrT+ € COO(8+X; T*S2).
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Since d and & are diagonal in the splitting (7.5), wpr and wy satisfy decoupled equations.
For the function wy, this gives dyawy = 0, hence wy = ca™! = ¢(1 + O(r~!)) for some
c € C; for this to be O(r~!) as r — 0o, we need ¢ = 0, hence wy = 0.

For the 1-form wy, we first use dywr = 0, i.e.
dwrr =0, Owrr — dwry = 0.
Since H'(S?) = 0, we can write wrr = d¢ with ¢ smooth down to d_X and of the form
¢=¢.+ A" near O.X, ¢, € CP(HLX).
The second equation then gives d(9,¢ — wrn) = 0, hence
(wrr,wrN) = (A, 0,¢); (7.29)

there is no constant of integration since wry is required to decay as r — oc.
Finally, we use dywr = 0 and the expression dy = (r*2;5, —047“*2874047“2) in the split-
ting (7.28). Expressing this equation in terms of ¢ gives
@)(O)Qb =0, @)(0) = r20,a%r%0, — r2A.

By the normal operator calculations in the proof of Proposition 6.2, ¢ must be constant
and can thus be assumed to be zero by replacing ¢ by ¢ — ¢4 (which preserves (7.29));

therefore ¢ € A~ = .F_Igo’_l/Z_. Theorem 6.1 gives ¢ = 0, and by (7.29), we get wp = 0. O

Since D/g:] (0) is Fredholm of index 0, this proves the 1-dimensionality of (7.2b) for b = by.
But in fact, we have, for all b,

D1 (0)(duf o) = AT 00 ) = (0) = 0. (7.30)
This conversely implies that (7.2a) is at least 1-dimensional for b near by.

A slight extension of the argument in the proof of Theorem 6.1 proves that K :=
ker E;(O)ﬁf_[so’*l/zf is at most 1-dimensional for b near by. Indeed, fix n € C°(X°; T*X°)
such that (wy, s0,7) = 1. Assuming that dim ker ngj (0) > 2 for a sequence of parameters
b;j — by, j — 0o, we can select u; in K1 N7t of norm ||uj||gg,z = 1, where we fix s > 2,
le (—%, —%) As in the proof of Theorem 6.1, we can pass to a weakly convergent (in ETS’Z)
subsequence uj; — u # 0; but 0 = (u;,n) — (u,n) = 1, which is a contradiction.

This finishes the proof of Theorem 7.1.

7.4. Growing and generalized zero modes. We shall later see that 1-form zero energy
states with more decay at infinity may generate asymptotic symmetries which contribute
to the kernel of the linearized gauge-fixed Einstein operator. This section can be skipped
at first reading; its purpose as well as the motivation behind the constructions in its proof
will become clear in §9.

Proposition 7.8. For b = (m,a) near by = (mg,0), we have
ker Oy, (0) N HZ ™7 = (wps0) @ (wihg) @ {wps1(S): S € S}, (7.31a)

ker Oy, (0)* N Hy ™% = (wf 40) @ {wf1(S): S € Si}, (7.31b)
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where, with b denoting the musical isomorphism V’ := g (V, =), and using (6.7a)—(6.7b),

wyng = &, (7.32)
wp,s1(S) = dups1(S),  wp1(S) = dug 4 (S). (7.33)

Proof. This follows from a normal operator argument, using that the normal operator
0g,1(0) (see Lemma 3.4) annihilates the 1-forms

dt, dzt, da?, da; (7.34)
the first one is of scalar type | = 0, while the latter three are of scalar type [ = 1.

We first construct the space on the right in (7.31a). Let v be one of 1-forms in (7.34),

in particular v € H® =3/ 2_; then with a radial cutoff x, identically 1 near infinity and
vanishing for r < 3m, we have

e =0, (0)(xv) € B,

with the extra order of vanishing due to the normal operator annihilating v; moreover,
supp e Nsuppwy ., = 0, the latter being a d-distribution at the event horizon. Therefore,

we can find w € flﬁo’fl/% with ﬁ;(O)w = —e, and xv + w furnishes an element of (7.31a).
As v varies over span{dt, dz', dz?, dz3}, we obtain the 4-dimensional supplement to (wp o)
as in (7.31a), with continuous dependence on b. The explicit expressions given in (7.32)
and (7.33) are of size O(1) and thus lie in the desired space. (Note that 9; is Killing, hence
5% (97) = 0 and so Oy, 1(87) = 25,4,Gg, 5%, (97) = 0.)

Next, note that the right hand side of (7.31b) indeed lies in the space on the left hand side.
Arguing more robustly in the Schwarzschild case b = by, the 1-forms v = ydz?, i = 1,2, 3,
can be corrected similarly as above by decaying 1-forms with supported character at 9_X,
giving the zero modes wy ;(S); this uses that kerD/g;O (0)N Hgo,—3/2+ = (Why,s0) (Which is
of scalar type [ = 0) is orthogonal to the error term D/,;O(O)*(Xv) € Hgoo’:s/zf (which of

scalar type [ = 1). On the other hand, v = X@E cannot be corrected in this fashion since
this orthogonality fails; indeed, one can compute

(O, (0)*(x82), whos0) = 4, (7.35)

where we use the volume density and fiber inner product induced by g, in the pairing and
in the definition of the adjoint. (The resulting L?-type pairing is not positive definite, but
still non-degenerate, which is all that is needed here.)

In order to prove ‘C’ in (7.31a), note that any w € ker i;(()) N FISO’_3/2_ is of the

form w = xv + @ where v is a linear combination (with constant coefficients) of the 1-
forms (7.34), and @ € P_Iso’_lﬂ_; this follows from (the proof of) Proposition 4.4. Upon
subtracting a linear combination of wlg?s)o and wy 51 (S) from w, we can thus assume w = @,
which by Theorem 7.1 is a scalar multiple of wy 0.

The argument for proving ‘C’ in (7.31b) is slightly more subtle in view of the obstruc-
tion (7.35) to the existence of a mode with 87 asymptotics. Now, w* € ker[,, (0)* N
Hb—oo,—3/2— can be written as w* = yv + ©* where v = vgdt + v' with vg € C and v’ a

linear combination of dz', dz?, dz3. Upon subtracting wy ¢1(S) for a suitable S € Sy, we can
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assume v’ = 0. Therefore - -
v, (0)*(X dt) = —0g, (0)*w”

is necessarily orthogonal to ker ng( )N V2= o (we,50), which in view of (7.35) (and
continuity in b) implies vy = 0, thus w* = w is a scalar multiple of wb <0 by Theorem 7.1. 0]

Remark 7.9. This is an instance of the relative index theorem [Mel93, Theorem 6.5] (albeit
in a non-elliptic setting): allowing more growth as in (7.31a) and thereby crossing the
indicial root 0, with 4-dimensional space of resonant states, shifts the index by 4; the
cokernel, consisting of a d-distribution (which lies in every weighted Sobolev space with
below-threshold regularity), remains unchanged, and therefore the dimension of the kernel
must increase by 4. On the dual side (7.31b) on the other hand, the index still shifts by

4 when crossing the indicial root 0, but now the cokernel (of the adjoint), consisting of

—oo,—1/2— . . X .
Wp,s0 € Hso 1/ , disappears as one imposes more decay. Therefore, the dimension of the

kernel (of the adjoint) increases only by 4 — 1 = 3.

Beyond the ‘asymptotic translations’ wy 1, we have ‘asymptotic rotations’
Proposition 7.10. There exist continuous families (with b near by)
b wpn (V) € ker Oy, (0) NS 27 b wi (V) € ker Oy, (0)* 0 Hy, ™72
linear in V € V1, which satisfy
whow1 (V) =12V, w1 (V) = r*VH(r — 2mg), (7.36)
and which are such that 6}, wy 1 (V) € Hy 2 and dg,wh o1 (V) € Hbfoo’fl/Qf.

Proof. This follows again from a normal operator argument. Indeed, let V € V1 and put

v=r2Ve ﬁgo =5/ 2_, which on Schwarzschild spacetimes is a 1-form dual to a rotation
vector field and thus lies in ker 6;170 C ker ngo. On Kerr spacetimes, we need to correct it:

fixing a cutoff x as in the previous proof, and writing b = (m, a), we have
€= Dg(m,a) (0) (X'U) XDg(m 0) (O)U + [Dg(m,o) (0)7 X]'U + (Dg(m,a) (0) - Dg(m,o) (O)) (X'U)
€0+ > 4 A%

where we use that the operator in the third summand lies in p?Diff2 by (3.44). Since
ker Og, (0)* N H oo m3/2+ = (W}, 50) consists of d-distributions with support disjoint from e,

we can solve away the error, —e = E;(O)w, with w € Hy” 1/27; we then put wp 1 (V) :=
xv + w. Its symmetric gradient is
g, wh01(V) = [05,, x|V + X(é* - 6;( O)) 2V + O, W
c Hoooo +Hoo 1/2— +Hoo 1/2—

where for the second term we used (3.43).

For the dual state, we argue similarly; the error term i;(()) (xv) € Hb_oo’g/Q_

v —00,1/2— —00,—3/2—
Hy,

C
can now be solved away by E;(O) w, w € H , in view of the trivi-
ality of ker E;(O) NH? b/ proved in Theorem 7.1. (Note that we give up one order of
decay here compared to the construction of wpy1(V).) The explicit form of wj ,; in (7.36)

can be verified by a direct calculation. ([
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Another useful family of 1-forms is the following; it plays a technical role in the sequel.
Lemma 7.11. There exist continuous families
b wil)(S) € ker Dy, (0) N A7, s wil)i(S) € ker O, (0)* N A, >
depending linearly on S € Sy, with b near by, with specified leading order term.:

WL (S) — rSdty, € HZ T wflH(S) — xrSty, € 1,7

with x € C*°, x =0 for r < 3my, x =1 for r > 4my. Moreover, wéi)sl = r(udty — dr)S.

Proof. The key is that EE](O) annihilates z° dt. Since rSdt,, € ﬁgo’fs’/zf, we thus have

Oy, (0) (xS dty, ) € HXM?,

and this is orthogonal (by support considerations) to ker E;(O)* N Hb_oo’_l/2+ = (Wi 40)>

hence can be written as E;(O)w with w € flgo’%/%. Then wéls)l(S) = x7rSdty, +w is the
desired 1-form. The explicit expression on Schwarzschild space‘éimes is obtained by a direct
calculation following these steps.

00,1/2—

For the dual states, the error term is now i;(O)*(XTS dty,) € H, ; but since
ker i;(O) N f[ﬁo’_l/% = 0, this error term can be solved away as claimed. ]

For later use, we also record the leading order terms of the symmetric gradient,
0, wi (S) = diy, @4 d(rS) + HY V. (7.37)
Indeed, we can replace g, by g and wéls)l(S) by rSdt,, modulo error terms in Hy* Y >
the calculation then becomes straightforward.

Lastly, we discuss generalized zero modes. As a simple instance of degeneracy/non-
degeneracy considerations in §9, we prove:

Lemma 7.12. For b close to by, there does not exist a 1-form w = t,w1 + wo with wp, w1 €
Hgo’_3/2+ and wy # 0 so that Ogw = 0.
Proof. Consider first the Schwarzschild case. Given w of this type solving

0 = O, w = t0g, (0)wr + ([, » tlwr + O, (0)n),

we deduce that D/Q; (0)wi = 0, hence (after rescaling by a non-zero constant) wi = wy, s0-
Since

[Ogy, - £:]7(0) = i05 0y, (0) € p* D}, (7.38)
by Lemma 4.2, we conclude that
Oy, (0)wo = — [Ty, , tuler € A2,

The existence of a 1-form wg € I:ISO £ for some £ € R satisfying this equation requires that
the right hand side be orthogonal to ker g, (0) N Hb_oo’_e_2 5wy, - However,

<[|:|gb0 ’ t*]wbo,SOa w;)ko,50> =4 7é 0; (739)

indeed, this holds for ¢y in place of ¢, (using [ngo,to]wbmsg = —2mgr3dty), and changing
back from ¢y to t. gives a vanishing correction since for f(r) = tg — t. = 2r + 4mg log(r),
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the 1-form [Og, , f(r)]wsy,s0 = D/g:O (0)(f (r)wpy,s0) is orthogonal to wy , (which annihilates
the range of D/g;) (0) acting on .F_Igo’fg/%). O

By continuity in the parameter b, the pairing in (7.39) remains non-zero for b near by:
([ng,t*]wb,so,wiso) # 0, b near by. (7.40)

The relationship between the (non)degeneracy of such pairings and the (non)existence of
solutions which grow linearly in time will play a major role in §9.

On the other hand, there do exist linearly growing generalized modes with [ess restrictive
decay conditions at infinity, as well as linearly growing generalized dual zero modes. This
includes the ‘asymptotic Lorentz boosts’ @y 1(S) below:

Proposition 7.13. There exist continuous families
b= wpg € kerlg, N Polyl(t*)HEOO,—3/2_’
b @p,41(S) € ker O, N Poly! (¢,) H™ 7%
b @5 1 (S) € ker Oy, N Poly () H, ° %
with linear dependence on S € Sy, which in addition satisfy

6;bwb,sl (S) c POlyl (t*)[:[go’_l/Q—7

. . s L —oo—1/2— (7.41)
ng(sgbwb,sm ngégbwb,sl(s) S POly (t*)Hb 7 .
At b= by, Wy 51(S) takes the value
Who,s1(S) = toWho,s1(S) + Wpo 1(S), (7.42)

wboﬁl(s) = _wao,sl(s) - wz&i,)ﬂ(s) + moS(dto + dr)
+ d<2m0(2m0 + (mg — 1) log(i))5>.

mo

In r > 1, our construction gives @y 51(S) = t(wp 51(S) + A!) — wéls)l(S) + A% = t(da’ +
AY) — 2t dt + A~ when S = r~12%, s0 @p51(S) is indeed asymptotic to a Lorentz boost.

Proof of Proposition 7.13. e Scalar type | = 0 generalized dual modes. The ansatz ‘“:’Z,so =

tiwy oo + Wy 0 gives an element of ker g, iff @(0)*@,;30 = —[Og,, t«]wy 43 note that the
right hand side is a differentiated §-distribution at r» = 7. This equation can be solved for
Wy 50 € Hgoo’_g/Q_ since ker Eg\b(O) N flgo7_1/2+ = 0 for b near by by Theorem 7.1. While
Wy 40 18 unique modulo Q* := (w; ) & {w}y ;1(S): S € S1}, one can force it to be unique,
and thus automatically continuous in b, by requiring that it be orthogonal to a collection
NyeeoyMq € Co® (X; seT* X ) of 1-forms which are linearly independent functionals on *.

Ak *

The membership in (7.41) holds since &y, @y o = tedy, Wi o + [0, , tlwp oo + 05, @ 4, With
the first summand a linearly growing differentiated §-distribution at » = 7, and the last
—1/2= by definition and using (3.42).

e Scalar type | = 1 generalized modes. For better readability, we put

two summands lying in Hb_ o

t=ty,.
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Let hyp s := dg,wp,s0 and hys1(S) = 0, Wb, s1(S). Note that

B0, hns1(S) € Hy' 27 (X 87T X); (7.43)
for hy 1(S), this is due to fact that the normal operator of g\;b(()) (which is 5A§(0)) annihilates

the leading order term d(rS) (which is the differential of a linear function on R?) of wy, 41 (S).
Fixing S € Sy, the ansatz

W51 = H(wp 51(S) + cpwi s0) + Wp 515 (7.44)
with ¢, € R and @y 51 to be determined, then gives
]Al = 5Zbd)b781 = t(hb,sl (S) + Cbhb,SO) ([5;1)7 ](wb781(s) + wab,s()) + 5;11(:)[”51)'

In view of (7.43) and t,—t € A™1, we therefore have &y, 51 € ker O, he Polyl(t*)}_[go’_lﬂ_
provided the two conditions

Oy, (0)@b,61 = — [y, (b1 (S) + cow,s0), (7.45a)
[5;,’ t]Wb,sl (S) + 621,(:}1),81 € Hgo,fl/2f (745b)
—1/2—

are satisfied. (Note that [5>gkb,t] € A° maps w5 into flﬁo , which thus automatically
has the required decay). We first arrange (7.45b) using the refined ansatz

Dps1 = (—D)wg ) (S) + @p (7.46)

00,—3/2—

with wb g € HY to be determined; the prefactor (—1) is explained below. Note

that (7.45b) is insensitive to the choice of &y ;. Moreover, since [dy, , w51 (S), wé 3)1 (S) e

? 79
H]jo —3/2= change by elements of Hb 127 Shen replacing b by any other Kerr parameters
such as b = (0,0) (formally), we conclude that (7.45b) is a condition solely involving the
leading order parts of all appearing operators and 1-forms; we thus merely need to compute

(3. 41(d(rS)) = dt @, d(rS),

which indeed agrees modulo pC>* C f]ﬁo’fl/% with &g, wéo)sl(S), see (7.37). (This is not
a coincidence, but merely the fact that on Minkowski space, d, (¢ det) = 5;‘(:# dt), which is

precisely the statement that the Lorentz boost t dx’ — ¢ dt is Killing.) Thﬁs, (7.45b) holds,
and (7.44) is asymptotic to a Lorentz boost.

Turning to equation (7.45a), we write it using (7.46), and expanding the commutator as

[Dgwt] = [zégngb’ t]&gkb + 26gbG [6;1,’ ]

—

ng(o)‘blly,sl = _cb[ng’t]Wb s0 — [26gngb’ ]hb s1(S)
% r700,1/2—
— 284, Gg, (187, ns1(S) — 8%, wp iy () € H™Y?,

where we used (7.43) and (7.45b) to get the improved decay of the second and third term,

respectively. But this can be solved for & wb s € H 00,~3/2~

1/2+)

iff the right hand side integrates to

0 against wy .4 (which spans ker ng (0)* ﬂHb . In view of the non-degeneracy (7.40),
this can be accomplished by a suitable choice of ¢, with ¢, continuous in b and linear in
S € S;. (In the Schwarzschild case b = by, we have

Chy =0 (7.47)
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since the second and third summands in this equation are of scalar type [ = 1, while wf;o <0
is of scalar type | = 0, and 1-forms of different pure types are orthogonal.)
Making this explicit for Schwarzschild metrics, let us work for computational simplicity

with the function t = ¢ty — r; we make the ansatz Wy, s1 = twpy,s1(S) — wl();)sl(S) + %0,31-

Thus, we seek &y ; such that

gy (0)h0,51 = ~[Clyy  thong,1(S) = —FWS dg — 20Fm00dS =z e,
We can solve this in two steps: firstly, one can check that e — D/Q;(O)(mo(dto +dr)S) is

exact, and indeed equals df, f = WS; secondly, we have

ngmo(O)u =f, u=2mg (2m0 + (mg—7) log(mLo))S‘
Combining these calculations gives the expression in (7.42).
o Scalar type l = 1 generalized dual modes. The arguments are completely analogous,

with the role of wl()’ls)l(S) now being played by wl()ls)f (S). O

8. MODE STABILITY OF THE SCHWARZSCHILD METRIC

A crucial input for the spectral theory of the linearization Lgb0 of the gauge-fixed Einstein
operator at the Schwarzschild metric, defined in equation (4.2), is the mode analysis for the
linearization of the Einstein equations themselves. We carefully follow the arguments of
Kodama-Ishibashi [KI03] (which in turn build on [KIS00, KS84]) in the form presented in
[Hin18a, §5]. In particular, we will highlight the places where decay assumptions at infinity
are used, and what asymptotics one obtains for the gauge potentials, i.e. the 1-forms whose
symmetric gradients produce a given pure gauge perturbation.

Throughout this section, we take m = my and

9 = 9(m,0), te = b s
We work in the setting of §5.2, equipping M° with the Schwarzschild metric g = g(m ),

written as g = g — r2g. Thus, the aspherical part X in (5.4) carries the Lorentzian metric
g = pdt3 — 2dto dr; in static coordinates on Ry X (2m, 00),., this means g = pdt? — p=t dr?.
We shall moreover phrase the outgoing condition on modes from the conjugated perspective,
cf. Remark 4.5.

Theorem 8.1. Let 0 € C, Imo > 0, and suppose § is an outgoing mode solution of the
linearized Finstein equations

DgyRic(g) = 0. (8.1)
Then there exist parameters m € R, a € R3, and an outgoing 1-form w on M, such that
9= 9(m,0)(M, &) = fyw. (8.2)
More precisely:
(1) If o # 0, suppose that § = e~ go with g € ﬁgo’e(X; S? SEJ\?*X) for some { € R.

Then (8.2) holds with (wm,a) = (0,0) and w = et wy, with wy € HSO’KI(X;SET/*X)
for some ¢ € R.
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(2) Ifo =0, and g € Flgo’é(X;SQ SfC\'j’*X), 0 € (—3,-3), is a stationary perturbation,
we consider each part in the spherical harmonic decomposition of g—which is of
one of the types in (5.8)—separately:

(a) If g is a scalar perturbation with | > 1 or a vector perturbation with I > 2, then

. C*
9_59w7

where w € ﬁgo’zfl(X;sfc\T*X) is a 1-form of the same type as §;
(b) if g is a scalar perturbation with | = 0, i.e. spherically symmetric, then

g— g(m,O) (ma 0) = 5;(,0,

where w € ﬁﬁo’kl s a spherically symmetric 1-form;
(c) if g is a vector perturbation with | =1, then

9= 9(m,0)(0,8) = dgw,
where w € ﬁﬁo’kl is a vector type | = 1 1-form.
The zero energy scalar I =0 and | = 1 statements can be strengthened as follows:

(d) If g is a stationary scalar | = 1 perturbation with merely § € I:IEO’E for some £ < —%,
¢ —% — N, then g is pure gauge,

g = 0,w

with w € ﬁgo’efl(X; S/C\T*X) of scalar type I = 1.

(e) if g € Poly(t*)kﬁgo’e(X; S? SE\T*X) is of scalar type | = 0 and satisfies DyRic(g) =
0, then there exists m € R such that

9= 9(m,0)(m, 0) + dw,
where w € Poly(t*)kHFIsO’K/(X;S/C?*X) (for some €' € R) is of scalar type I = 0.

Remark 8.2. In parts (2b) and (2c), we can replace (o) by g(om 0) upon changing w by

an element of Hgo’fs/Qf(X; SCAf*X); likewise in part (e). Indeed, this follows from (3.21b),

which gives V (b)’ € A%~ FISO’_S/2_.
We list a number of explicit expressions needed for the proof. Recall from [GL91] that'4
DyRic = 10y — 850,Gy + By, (Zyd)uw = (Rg)rund™,
where the expression for %, simplifies when g is the Schwarzschild metric, since Ric(g) = 0.

We adorn operators on (X, §) with hats. For the calculations below, we recall from [Hin18a,

Mywhenever 1 is used in a super- or subscript, it is an abstract index; otherwise, u refers to the metric
coefficient y =1 — 27‘“ of the Schwarzschild metric.
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§5.1] that in the splittings (5.5) and (5.6), and writing w := dr and O := O5, we have

Oy = 00— r2A + diag [—27“71@@ +4r %0 Ry b, Ar 20 R L + (—Tﬁlﬁr + r72\w|2)

R R 0 dr3w®sf 2r i (w e w)th
27’*1Vw — 27‘7157“] + | =2r 0 r 3w ,
2ot —Ar g 0
5 0 -25,2 4 Lag —24 L.—27
Op=| sd  gridr 7). 0,6y = (T | Lot _sz 2 ;E’" 1 E/idz ) ’
g § sdtr r20r? —r 72 — Sr 3k
20" Gy + 2r 1y 0 r g b
2R, = 0 TG+ 2 (= 1)+ 3r~ 0
T/L,ga‘ 0 4r=2(p — 1)Gy + 2r 1/
(8.3)
On the static part R; x (2m,00), of X, we furthermore split
T*X = (dt) @ (dr), S*T*X = (dt*) & (2dtdr) & (dr?). (8.4)

In the first splitting, @ = (0,1). On functions,

1= <gt> , O=—u"'0} + 0,0,

while on 1-forms, ¢t = (0, —x) and

R R Oy —%uu’
§= (_/’Li ata aT‘,u)J = %/’Lahu_l Qat

On symmetric 2-tensors, Ve = diag(—p20,pu=t, —pdy, —0,p) and

5o <—u18t Ot 0 > , _<0 —1 ())
s —ptoe pPo? ) 0 0 )

2
—M’5r+’§7—u” 2//@ _%MMQ
~ / 2
O=—p'0} + po; + 10, Wo, — 1o 10,
12 / 12
- 5u3 25, 3u' 0 + ‘2‘7 +

Below, we shall write ]7 IS COO()?;SQT*)?), f e C"O()?;T*)?), H; Hp € COO()?), and
TeC®(X;T*X), L € C®(X).

8.1. Scalar type perturbations. We discuss | > 2, [ = 1, and | = 0 modes separately.
We denote by S € S; a spherical harmonic with eigenvalue k2, where k = /I(l +1). We

also introduce a rescaled version of the trace-free part of the Hessian:

My = k72650 (1 £0).
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8.1.1. Modes with | > 2. Consider a metric perturbation of the form

fS
g= —2f @ dS . (8.5)
QTQ(HLSg + HTHkS)
Pure gauge solutions of the same type take the form
| (25°T)S 2TS
8g = yw = —%(—%T +rdr—tL) @ dS ) W= (—%:LdS) ; (8.6)

272 [(—T‘leT + %L)Sg — %LHkS]
upon adding this to g, the quantities fetc. change by
8f =20°T, &f=—ETrdr'L, 8H,=—r"YoT+LEL sHr=-EL. (87)

T

Defining the 1-form X := %(f + %EHT), which satisfies 60X = —T', the quantities
F:=f+25"X, J:=Hp+3iHr —r1,X (8.8)

are therefore gauge-invariant: SF = 8J = 0. Conversely, if F=J= 0, then g is a pure
gauge solution:

FGw=g, w=(-2X,2% HrdS). (8.9)
If g is an outgoing mode solution with frequency o # 0, then so is w, with an extra factor of
r2 relative to g. When o = 0 on the other hand, then Hy is stationary; on time-independent
functions, rd in the definition of X acts as an unweighted b-operator, and therefore w grows
at most by a factor of » more than ¢ in this case.

As explained after [Hinl8a, Equation (5.27)], we can express the linearized Einstein
equations in terms of F ,J (by formally replacing f, f, Hp, Hr by F ,0,J,0). Expressing the
scalar type symmetric 2-tensor equation 2D4Ric(g) = 0 analogously to (8.5) in terms of
quantities J?E, fE, HJTE, HJLE, one obtains

fP = (028" — 0"dix) F + 2r ' (26* 1 F — Vo F)

SN ~ - o~ (8.10a)

+46%dJ + 8r tw @5 dJ + (W' — k*r A F — p'gtrF =0,
— 1 fE = —6F +2dJ — rdr 'trF =0, (8.10b)
2r?HE = 0(2r%) + 210 F — 2l F + rigditF + (rp + %)ﬁ"ﬁ —2k%J =0, (8.10c)
22 HE = —I*{rF = 0. (8.10d)

Using (8.10d) and k? # 0, we can eliminate all occurrences of trF. Plugging dJ = %gﬁ
from (8.10b) into (8.10a), one obtains a wave equation for F which is (via subprincipal
terms) coupled to the wave equation for J resulting from (8.10c¢); i.e. we obtain a principally
scalar system of wave equations for (F,.J). When ¢ and thus (F,.J) are smooth modes,
then this wave equation becomes an ODE on the 1-dimensional space t;!(0) with a regular-
singular point at r = 2m; the vanishing of (}7’ ,J) in r > 2m thus implies its vanishing in
r < 2m as well.

The goal is thus to prove (f, J) =0 in r > 2m; there, we can use the static coordinates
(t,r). By the linearization of the second Bianchi identity, d,G4(DgRic(g)) =0 (for any g),
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the above equations are not independent: putting
E:=G;ff +2HFg
we have
20 25(r?E) + d(tefP) + 2P =0, @fF - (22503 + A EE) < 0.

In particular, the vanishing of f£ and HE implies that of trfF and § ( 2F), and in this case,
fE and HF 1 are the trace-free, resp. pure trace part of E. By the calculations after (8.4),
the dr-component of 5( 2F) = 0 reads

%E‘tt - TQM_latEtr + M_l/zar(TQ,ug/QE‘rr) =0,

so in view of p' # 0, the vanishing of Etr, ETT implies Ett = 0. We have thus reduced the
linearized Einstein equations to the system

(fE7 H’]EU Elt?"a ET’T‘) = 07
with HE = 0 simply giving frF = 0. Let us combine F (trace-free) and J by writing

~ pX
F+2Jg=|-pu1z (8.11)

in the splitting (8.4); we have 5(F +2Jg) = 0 by (8.10b) and 4J = f(F+2J3) =X +VY.
The equations for f£, Ey,., and pE,, = F(p —1fE 4 fE) — 2HE then read

WX +0,Z=0, =0, +u 07+ L (X Y) =0, (8.12a)
00, X — 8.0, X + 00,V + (2r' = £y + k72 =0, (8.12b)
pTIORX — B0 X + 7Y — (5 + 20,y + EZ2y + 40,7 = 0. (8.12¢)

We first discuss the case that § is a mode with o # 0. We now have 0, X = —ioc X etc.,
so writing X’ = 0, X etc., the equations (8.12a)—(8.12b) become

/ ! 2 k2 o2
X X 0 %—; Ph T2
v |=r|v|, r=|x "« T2
7 A 24 Pm 12 ’
ic io 1 0 0

while (8.12¢) gives the linear constraint

( o° wooo +k:2—2_/,£+2u' 202 KX

). (8.13)

X
Y :0 —
U z ’ wooA4por i r2 dp v orp 2r2p

Thus, a generic linear combination ® of XY, % satisfies a second order ODE; choosing ®
carefully, one can make this ODE be of Schrodinger type

(10,)*® — (V — 02)® = 0. (8.14)
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Concretely, this holds if we let!®
2
mi=k>—2, x:= —m, H :=m+ 3z,
r
27
22 _pr(X+Y
P =10 r; ), V= T;;P (92° + 9ma® + 3m2z + m*(m + 2)). (8.15)

Conversely, one can recover X, Y, % from ® by means of

2 2

X — (ﬂ_ PXO)@—F%@/, VY — (_ﬂ_ Pyg )Q)_i_%(p/’ %:%(I)—']‘/,L(I),, (816)

n 2rH? n 2rH?
where
Pxo = 272 + 24ma® + 3m(3m + 2)x + 2m?(m +2), Px1 = 922 + (5m — 6)x — 4m,
Pyo = 923 + 6ma® + 3m(m + 2)z, Py = 32° — (m + 6)z,

Py = 32% + 3maz — 2m.

It thus remains to show that ® = 0. Now m,x, H > 0 are bounded away from 0 in
[2m, 00),, hence V > 0 is of size O(p) near 7 = 2m, and of size O(r~2) as r — oo; passing
to the Regge-Wheeler coordinate ry, = [ u~! dr = r+2mlog(r—2m), this means exponential
decay as r, — —oo and (’)(r*_2) decay as 14 — +00.

Note then that F and J , as a 2-tensor, resp. function on X (which extends across r = 2m)

are smooth. Thus, the contribution of J = (X +Y)/4 to ® is smooth at the event horizon.
Similarly, recall that in static coordinates, the vector fields

(9,5, 8r + /ufl@t (817)

are smooth across the event horizon, hence Z = —,uﬁtr = —uﬁ(at,f)r + p o) + Et is
smooth as well. Thus, ®(t.,r) = e “*C([2m, 00)); writing this as

O(t,r) = e NW(r), W(r) € e mC®([2m, c0)),
we see that U decays exponentially as r, — —co when Im o > 0.

Consider first the case that Imo > 0. The outgoing condition on ¢ implies the rapid
vanishing of ¢, hence of (F,.J), thus of (X,Y, Z/io) and finally of ¥ as r — oo (for constant
t). Switching to the tortoise coordinate r, in (8.14), i.e. (D2 +V — 0?)¥ = 0, we can
integrate against ¥ in L?(R,,;dr,) and integrate by parts, obtaining

0= [[V/20||? — o[ W[|? + || Dy W%,

When o ¢ i(0,00), taking the imaginary part gives ¥ = 0, while for o € i(0, 00), this is a
sum of squares, hence again ¥ = 0; in both cases, we deduce ® = 0.

When o € R, o # 0, note that ¥ = ¥(r) inherits the radiation condition from ¢. Since it
satisfies the ODE (8.14), this excludes the ‘incoming’ asymptotics e =™ as , — oo and thus
forces U = €7 (U, 4+ A7), ¥, € C; here, A’ denotes the space of functions on R which
are conormal at oo relative to YL, i.e. remain in this space upon application of (r0, )7,
j € Np. A standard boundary pairing, or in the present ODE setting Wronskian, argument
then implies that lim,., y1., €T W = 0 (the upper sign corresponding to ¥, = 0), which
then implies ¥ = 0, finishing the argument in the case o # 0.

15The authors performed these calculations using the computer algebra system mathematica, verifying
the calculations of Kodama-Ishibashi [KI03] who themselves used Maple.
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Next, we describe the modifications for the case 0 = 0. Now, ¢ and thus ]5, Jand X,Y, Z
are stationary, but Z/io is no longer well-defined; hence we first rewrite the treatment of
the case o # 0: using (8.13), we can express Z/io as a linear combination of X, Y. Plugging
the resulting expression into (8.15) and making the o-dependence explicit, we get

®(0) = Cx(0)X + Cy(0)Y,

P ~
Cxy(o) = %, H(o) = (K*y' — 4ro®)H, (8.18)

Px = (92 —3(6 + m))z, Py = —3(92x + 5m — 6)z + 12m.
But this means that ®(o) exists down to o = 0 (note that x # 0 in » > 2m); we thus

define the master variable at zero frequency to be ® := ®(0). One can then check that the
linearized Einstein equations (8.12a)—(8.12c) imply the master equation

(10,)?® — V& =0, (8.19)

with V' as before. Using the expressions (8.16) with o = 0, one can recover X,Y from ®.
Since g € ﬁﬁo’z C A3/2 we also have X, Y € A“3/2. Now H € m+ pC>([2m, co]) and
thus H(0) € —2k?mm/r? + p3C®, while Py, Py € C*; therefore, C'x(0),Cy(0) € p~2C*,

implying that & € A2 ¢ A=t a priori. Consider now the asymptotic behavior of
solutions of (8.19): note that

2
V(r) = 7“21nQ m?(m + 2) + p*C™ = % + p*C™,
hence V = f—j + A3~ as a function of r,. Thus, the leading order part (as a weighted b-
differential ogerator on [0,1),, z =r;1) of (ud,)? —V is r72(r?02 — k?), which has kernel
et Ay = $(1 £ V4k? +1). Since k* > 6, we have Ay > 3; since therefore ® = o(r*+),
the leading order term of ® at infinity must be r~ = O(r=2). This suffices to justify
pairing (8.19) against ¢ (on t = 0) and integrating by parts, giving ® = 0 since V' > 0.
Thus, X =Y = 0in r > 2m; by (8.12b), we then also have Z = 0, hence (F,J) = 0,
proving that g is pure gauge.

8.1.2. Modes with | = 1. We now have k? = [(l + 1) = 2. We shall again show that an
outgoing mode solution ¢ is pure gauge, with the gauge potential an outgoing mode as well.
Consider a general metric perturbation ¢ satisfying the linearized Einstein equations (8.1)
and of the form

fS
g=|—-5fedsS (8.20)
ZTQHLSg
with S € S;. While Hr is no longer defined in this situation, we use the expressions from
the [ > 2 discussion with Hr set to 0, thus
X:=1f, F:=[+20X, J:=H,—r "X (8.21)

Pure gauge solutions 6§ = 52;% w = (2T, —%LdS), as in (8.6) change f.f Hy as in (8.7),
and therefore 6X = —T + %dr‘lL. Let us first choose L = 0, T'= X, and replace ¢ by

g+dyw, w=(2XS,0), (8.22)
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which for ¢ = 0 lies in the same weighted space as ¢ itself, and for o # 0 is still outgoing;
note though that w has an extra factor of r relative to g. This replacement implements the
partial gauge X = 0 (thus f = 0), in which we shall work from now on. The remaining
gauge freedom is the following: given any aspherical function L, we can add

Giw, w=(2T(L)S,~2LdS),  T(L):="dr 'L, (8.23)

which ensures that 8X = 0. The change in the quantities Fand J upon addition of such a
pure gauge term is

§F = 25%r2dr~'L, §J=&L T dr L. (8.24)

In the gauge X = 0 and for any fixed choice of L, we have (ﬁ, J) = (f, Hp) as before,
and the linearized Einstein equations are again given by the system (8.10a)—(8.10c) (with
the equation (8.10d) for H:,E absent since we are considering scalar [ = 1 modes). Moreover,

if F=J =0, we have f = H, = 0 (and f = 0), hence ¢ = 0, which means our original
perturbation ¢ is pure gauge,
g="0w(L), w(L)=(2T(L)S,—3LdS). (8.25)

We shall choose L so as to simplify the structure of the linearized Einstein equations
further. Namely, let us define HE := —%‘E}F, cf. (8.10d), and note that by (8.24),

SHE = kr=20r2dr 'L = kO,(r 'L).
We shall demonstrate how to arrange HTE + SHC}E = 0 by choosing L appropriately.
Let us first consider non-stationary mode solutions, Imo > 0, o #% 0. In this case, w
in (8.23) is an outgoing mode, and
Og(r'L) = k' HE = L6 F (8.26)

has a spherically symmetric and outgoing mode solution 7~ 'L, since the right hand side
is outgoing and [y(o) is invertible on the relevant function spaces by Theorem 6.1. The
linearized Einstein equations for ¢’ := g + 0;w(L) now take the form (8.12a)(8.12c), with

F ,J and X,Y, Z defined relative to ¢’ ; one can then follow the arguments of the previous
section to deduce that the quantities F, J vanish, and therefore ¢ = 0 (since ¢’ is in the
gauge X = 0), so g = —d;w(L) is pure gauge.

Nezxt, we consider stationary mode solutions, o = 0, with g € ﬁﬁo ,e, where we only assume
¢ < —% (as in part (d) of Theorem 8.1). Since §* acts on the stationary X € ﬁfjo’e_l as
an element of pDiffllg, we have §*X € ﬁfjo ’4; J?lies in the same space. The right hand side
of (8.26) thus lies in I:IEO’HQ. Since ﬁ\g(O): Hfjo’f — H]:O’KH is surjective for any £ < —3,
¢ —% — N, we can solve (8.26) with r—1L ¢ Hgo’f, so L € Hgo’é_l; moreover, L is

spherically symmetric since F is. Therefore, w(L) € Hgo =1 Letting
g =g+ 06,w(L), (8.27)
the quantities F and J for g’ change, relative to those for ¢, by terms in Hf;o Cin view

of (8.24), hence ¢’ € ﬁﬁo “ lies in the same weighted space as ¢; and we now have ftrF = 0.

We will apply a modification of the arguments of the scalar [ > 2, ¢ = 0 discussion
in §8.1.1 to ¢’. We still have XY € I:ISO’E, but the quantities in (8.18) (at ¢ = 0) are now
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Px = 9z(z —2), Py = —92(3x —2) (which have 7~! more decay at infinity than in the case
¢ >2) and H = 24m?r—3 (likewise), hence

CX = 7r(mfr)7 Cy = r(r73m), V= 21‘(17’_3(1 - Qﬁ);

2m 2m T

the master quantity ® is thus
O =CxX+CyY =Cx(X+Y)+ (Cy —Cx)Y =Cx(X +Y) + Lpy € H 2

As discussed around (8.17), X +Y = 4J is smooth at r = 2m, and so is puY = —p?(E.. +
2J§yr), hence so is ®. The ODE (8.19) has two linearly independent solutions

¢ =r, D= ﬁlOg( - 27111)7

in > 2m. The smoothness of ® at » = 2m implies that ® = ¢®;, ¢ € R. By (8.16) with
o =0 and k% = 2, this implies X = —¢, Y = —¢, hence Z = 0 by (8.12b), and therefore
F=0and J = —3cin (8.11). But since J € flgo’g, we must have ¢ = 0 if £ > —3_ hence
® =0and X =Y = 0, and we are done. If on the other hand ¢ < —%, then ¢ may be

non-zero; but by (8.21), and since X = 0, the metric perturbation then equals

. « 0
g= —CTQSg =0,w, w= <_2€T2 ds)

kQ

by (8.6) (or (8.24) with L = ¢, T = T(L) = 0), hence is pure gauge with gauge potential
wepic>® c ﬁgo’é_l, as desired.

8.1.3. Spherically symmetric modes (I = 0). We follow the linearization of the argument
in [SW10] as in [HV18b, §7.2] and [Hinl8a, §5.5]. Thus, we work with the coordinates
(to,r) in which g = pdt§ — 2dto dr — r*¢. Rather than using the form (5.8) of spherically
symmetric (scalar type [ = 0) metric perturbations, we write ¢ in the form

g = fdt —2X dtodr + Z dr® — 2r’Y ¢,

with coefficients which are smooth functions of (tp,r) in 0 < r < oo. To describe pure
gauge perturbations, we calculate that as a map between sections of (3y,) ® (9,-) and (dt3) @
(2dto dr) & (dr?) @ (¢), so in particular g = (1, —X, Z, —2r?Y’), we have

2#8,50 —28t0 + ,u,

_ :U’a’r - ato _ar
Lo9=1" Lo, 0
0 —2r
Therefore, putting
z2=1{ 24 = 210y —1VO, = [ 2 8.28
1-—§3m T Wi= 210, —TEor =\ _ vy ) (8.28)
we have ' '
20104 Z1 + 210y Y —rp'Y
8 = Loug — uZ — 21+ 0p(rY)

-7
22y



68 DIETRICH HAFNER, PETER HINTZ, AND ANDRAS VASY

Consider the case that ¢ is a mode. If 0 =0, so g € Hgo £ and w are stationary, then
Zi, we BN 85 e HX.

When o # 0, we integrate in (8.28) along level sets of ., thus w, 8¢ are outgoing modes as
well. If g € Poly(t.)"H*  is a generalized zero mode as in part (e) of Theorem 8.1, then in-
tegration gives w € Poly(t*)kﬁgo’gl for some ¢/ < £—1, and therefore 6g € Poly(t*)kflgo’y—l.
Replacing ¢ by ¢ + 8g, we have reduced to the case

g = pdtt —2X dty dr,

without increasing the highest power of ¢, in the generalized zero mode setting.

Next, the Einstein equations Ric(g) = 0 for metrics § = fi dt2 — 2X dto dr —r? ¢, with f1, X
functions of (tg,7), have dr?-component 9,X/(2rX) = 0, thus imply 9,X =0 when X #£0.
For g = g, we have X = 1; the linearized Einstein equations for ¢ thus imply 9,X = 0, so

X = X(to) (8.29)

for some function X; since X is a mode, we have X (to) = X (0)e~"%. Thus, for o # 0, X
violates the outgoing condition unless X = 0; for 0 = 0, the membership ¢ € FI{;O Lo AtT3/2
(so g = o(1), thus X = o(1)) likewise forces X = 0. Therefore, when ¢ is a mode, we have

g = judt3. (8.30)

The spherical component of the linearized Einstein equations then reads —d,(ri) = 0,
therefore [ = —@, where ™ = m(to) is a constant of integration. The dt3 component of
the linearized Einstein equations however implies 9;,m(tg) = 0, so m is in fact constant.
This shows that ¢ in (8.30) is necessarily stationary (in particular, if ¢ is a mode solution
with non-zero frequency, it must vanish), and in fact equal to the metric perturbation
arising by an infinitesimal change of the Schwarzschild mass: ¢ = g?m’o) (m,0).

In the generalized zero mode case, we can only conclude X € Poly(to)* from (8.29);
however, we cannot conclude that X = 0 since X does not necessarily decay at infinity.
Instead, write X = 9, f with f = f(tg) € Poly(to)**; note that this has an extra power
of tg. Then

89 := Lasa, g = (4uX, —2X, 0, 0),

and therefore g 4 8¢ is now of the form (8.30), hence a linearized Schwarzschild metric as
before.

8.2. Vector type perturbations. We discuss [ > 2 and [ = 1 modes separately. We
denote by V € V; (in particular §V = 0) a spherical harmonic 1-form with eigenvalue k2,
E=(11+1)-1)Y2

8.2.1. Modes with | > 2. Here, k? > 5. To study metric perturbations of the form

0
g= rf @V ; (8.31)
—%TQHTﬁ*V
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we first compute the form of pure gauge solutions of the same type, to wit

0
~ 0
8§ = dyw = |r’dr-'LeV w= ( )
’ 2rLV
2 LE*V "

The change in the parameters f, Hy of ¢ upon adding 84 is thus

e | _ _k

8f =rdr—"L, 8Hp=—L,
which implies that the quantity
J = f + %dHT
is gauge-invariant. If J = 0, then ¢ is a mode solution; indeed,
g=265(0,~ZHpV).
The gauge potential here has an extra factor of r relative to g.
Expressing the vector type tensor DyRic(g) similarly to (8.31) in terms of f¥ (aspherical

1-form) and HJE (aspherical function), the linearized second Bianchi identity gives

—2% 3¢E | k*-117E

Thus, f¥ = 0 automatically gives HZE = (0. The linearized Einstein equations for ¢ are
thus equivalent to f¥ = 0; using the calculations starting with (8.3), see also [Hin18a,
Equation (5.73)], this takes the form

r25rtdr T — (K2 — Dr=tJ =o0. (8.32)

Now, on an orientable, signature (p, ¢) pseudo-Riemannian manifold of dimension n = p+g,
one has «2 = (—1)k(=k)+4 and § = (—1)k—k+D)+e5dyx on k-forms. Therefore, (8.32) implies

~

srd =d(r®), ®:= k21_1r325\r71;<].

Applying ror—2 = rrd*r—2 from the left, we obtain the equation kj;1<1> = rgr_gc/i\rq), SO

- 6
O-V)o=0, V=r2(k+1-22). 8.33
T

In static coordinates (t,7), this reads
(D} = (uDy)? = uV)® = 0. (8.34)

Note that V' > 0 in 7 > 2m, and its asymptotic behavior is V' = (k% + 1)r=2 + O(r~3).
To show that ¢ is pure gauge, it suffices to show that ® must vanish. In Imo > 0, this
follows from the positivity of V' and an integration by parts argument as in §8.1.1; note
that ® is outgoing at » = 2m and rapidly decaying as r — co. When o € R is non-zero, ®
is outgoing on the real line R,._, as follows from its definition; therefore, a boundary pairing
or Wronskian argument implies the vanishing of ® in this case as well.

For o0 = 0 finally, note that J € ﬁgo’z, therefore ® € Hgo’e_l, in particular ® = o(r).
In view of (8.33), the asymptotic behavior of ® as r — oo is governed by the indicial
roots of r20? — (k? 4+ 1), which are Ay = (1 £ V4k2 +5); using k* > 5, the solution
r+ corresponding to Ay > 3 is excluded, hence ® = O(r*~) = O(r~2). Thus, one can
pair (8.34) with ® and integrate by parts, obtaining again ® = 0.
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8.2.2. Modes with | = 1. Finally, we consider a metric perturbation ¢ = (0,7 f ® V,0) with
V € V. Pure gauge solutions of the same type are

0

—~ 0
O 27..—1 _
6g—5gw— redr 0L®V , w= <27’[V)’

and adding them to ¢ changes f by df = rdr='L. Therefore, the quantity c?(r_l f) is
gauge-invariant; note that this is a (top degree) differential 2-form on X.

If c/i\(r*1 f) vanishes, then ¢ is pure gauge: indeed, since X is contractible, we can write
r~1f =d(r~'L), and then

g=70yw, w=(0,2rLV). (8.35)

~

Let us determine the size of L: in the splitting T*X = (dt.) @ (dr), and using the basis
dts N dr for 2-forms, the exterior differential d acting on modes of frequency o, that is, the
operator d(o) := e"*de~"% is given by

(3\(0) = <_(9ZTU> on functions, 6/1\(0') = (=0, —ioc) on 1-forms.
If o # 0, write L = e 0% [/, f = e~ f/_ Then d(r~'f) = 0 is equivalent to or(r 1)+
ior~'f} = 0. Thus, for L’ = Lf] we have d(o)(r L) = r~1f’; hence, we can take
L= ﬁft*, which is outgoing, in (8.35). In the stationary case o = 0, we have 9,(r~1f,,) = 0,
so fi, = cr, ¢ € C; since f € I:IEO’Z is o(1) as r — oo, we must have ¢ = 0, so f;, = 0.
Therefore, we have

T
rif=rlfdr=d(r~'L), L:= 7‘/ r=tf.dr,
[e.9]
with L € ﬁgo’e_l, thus also w € ﬁé’o’g_l in (8.35).
Returning to the study of g, the linearized Einstein equations are equivalent to the single
equation r—26r*dr—'f = 0 for f, thus
dFridr=f) = 0
4

thus, the function xr dr—! f is constant. Now, differentiating the Kerr family in the angular
momentum parameter, we recall from (3.20) that

Iom0)(0,8) = 2 fn @5V, fro = 2mr 2 dto + " dr, V =sin®0dp = (9,,)’.

In particular, o fm = 6m; this equality is independent of the particular presentation of
the Kerr family since dr—1 [ is gauge-independent. Therefore, replacing g by g — (m,0)(0, a)
for a suitable linearized angular momentum a € R, we may assume that Frtdr—! f=0,
hence c/l\rflf = 0, so ¢ is pure gauge.

This finishes the proof of Theorem 8.1.



LINEAR STABILITY OF KERR BLACK HOLES 71
9. MODES OF THE UNMODIFIED LINEARIZED GAUGE-FIXED EINSTEIN OPERATOR

We now combine the results of the previous sections to study the linearized unmodified
gauge-fixed Einstein operator

Ly = 2(DyRic + §3,Gy)

from (4.2) on the Schwarzschild spacetime g = gp,. In §9.1, we prove the absence of non-zero
frequency modes of this operator in the closed upper half plane Imo > 0, and compute
the space of zero modes. In §9.2, we find all generalized zero modes on Schwarzschild
spacetimes which grow at most linearly in t,; these include asymptotic Lorentz boosts.
We briefly discuss (at least) quadratically growing generalized modes of Lgbo in §9.3; they
do exist, but do not satisfy the linearized Einstein equations. We will eliminate such
pathological modes by means of constraint damping in §10.

In §§9.1-9.2, we will at the same time construct spaces of zero modes and linearly growing
zero modes of Lg,, where b = (m, a) denotes Kerr black hole parameters close to by, which
have the same dimension as the corresponding spaces for Lgbo. However, we stress that,
prior to controlling the resolvent of Lgb0 on a Schwarzschild spacetime in a neighborhood
of 0 = 0 in a suitably non-degenerate manner, cf. the toy model at the end of §1.1.3, we
cannot even prove the absence of small non-zero frequency modes for Lg,. Thus, the results
in §89.1-9.2 are merely ezistence results for generalized zero modes of L, when a # 0.
The constraint damping modification Lg, 5, v # 0, discussed in §§4.2 and 10, does have a
non-degenerate (and rather explicit) resolvent, as we show in §11.

9.1. Modes in Imo > 0. We now prove the analogue of Theorems 6.1 and 7.1; we use
the notation for 1-forms from Theorem 7.1 and Propositions 7.8 and 7.10, and define the
spectral family Lg, (o) for b = (m, a) using the function ¢y 4 as in (4.5).

Proposition 9.1. The spectral family of Lgbo on the Schwarzschild spacetime has the fol-
lowing properties:

(1) For Imo >0, o # 0, the operator
Ly, (0): {w € HY'(X; 825T*X): Ly, (0)w € HY'™M (X;825T*X)}

— HY'Y(X; 82T X)

1s invertible when s > %, < —%, s+4L> —%.

(2) Fors>3 and (€ (—%, —%), the zero energy operator
Ly, (0): {w € HY (X; 82T X): Ly, (0w € Hy "2 (X; 82T X)} o)
— BV (X ST X) '
has 7-dimensional kernel and cokernel.
The second statement holds also for E\gb(O) with b = (m,a) near (mg,0); concretely,
ker L, (0) N A /2~ (hys0) ® {ho1(V): V€ V1)@ {hps1(S): S€S1},  (9.2a)
ker Ly, (0)* N Hy ™27 = (hf o) @ {hfi(V): V € ViY@ {hi1(S): S € S1},  (9.2b)
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where the h'*) depend continuously on b, with

b,ee
hb750 = 5;6(4}17,50, hlt,so = GQb&;bw;,SO’ (9.3&)
hb,51 (S) - 5;bwb,sl(s)a h;,ﬂ(s) = ngégbw;sl(s)ﬂ (93b)
hyw1 (V) = g5(b) + 65,00, hy a1 (V) = Gy, 04,051 (V), (9.3¢)

where b, w € ﬁgo’_?’ﬂ_ depend on b,V; here S € S1, V € V. At b = by, we have
hig w1 (V) = 2wy 50 @5 V. The dual states are supported in r > 1y, C* in r > 1y, conormal
at 0. X with the stated weight, and lie in H=3/2~ near the event horizon.

Furthermore, all zero modes are solutions of the linearized Finstein equations and satisfy
the linearized gauge condition; that is, ker Ly, (O)ﬂﬁﬁo’flﬂf C ker Dy, Ricnker Dy, T (—; gs)

in the notation of Definition 4.1.

The zero energy states are linear combinations of linearized Kerr metrics and pure gauge
tensors. The dual states all turn out to be dual-pure-gauge solutions: recall from (4.13)
(with E' = 0) that Lj annihilates Gy6,w™ if 0 = d,(Ggdyw*) = $0,,1w*, which is the origin of
the expressions on the right in (9.3a)—(9.3c). We also note, as in Remark 7.3, that elements
of kerl//;)(O)* which lie in the dual space Hg sTL=72 of the range of (9.1) automatically
have the decay rate —%— by normal operator arguments as in Proposition 4.4.

The vector [ = 1 modes hy, ,,1(V) on Schwarzschild spacetimes are linearizations of the
Kerr family (plus a suitably chosen pure gauge term) in the angular momentum, see the
arguments following (9.7) below. On the other hand, the linearized Schwarzschild family,
i.e. the linearization of g(y ) in m, does not appear here due to our choice of gauge (see
also Remark 10.14); it shows up only as a generalized zero mode in §9.2.

Proof of Proposition 9.1. We first consider the Schwarzschild case b = by = (mg,0), and
write g = gp,. Consider a non-zero frequency mode solution Ly(c)h = 0, Imo > 0. The
linearized second Bianchi identity implies

04Gy0%(8,Ggh) = 0.

If 0 # 0, then 6,G4h is an outgoing mode; if o = 0, then §,G4h € HEOJ/Q_ by (3.42). In
both cases, Theorem 7.1 and the fact that the generator wy, s0 of the kernel in (7.2a) does
not lie in Hso’lﬂ_ imply
0gGgh =0 (9.4)
and thus also
DgyRic(h) = 0. (9.5)

Next, we apply the mode stability result, Theorem 8.1. Consider first the case o # 0;
then h = dyw with w an outgoing mode; plugging this into (9.4), we obtiiin Ug,1w = 0 and
hence w = 0 by Theorem 7.1, thus h = 0. This proves the injectivity of Ly(c) for non-zero
o with Im o > 0, hence its invertibility by Theorem 4.3.

Suppose o0 = 0; without loss, we can assume h to be of pure type. If h is of scalar or
vector type | > 2, then h = §jw with w € }_Iﬁo’_sﬂ_, and again w € ker ﬁ\g(O) by (9.4). By
Proposition 7.8, there are no non-trivial such scalar or vector type | > 2 1-forms, giving
w = 0 and thus h = 0 again. We study the remaining three types of zero modes separately.
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e Scalar type | = 0 modes. If h is of scalar type [ = 0, then

h= g9 (m,0) + 0w, we X,
and (9.4) gives the additional condition

O, (0)w = —28,G4gh (1, 0) = 1Bt
Integrating this against wj, ., see (7.3), which annihilates the range of i;(()) on H? £ for
any ¢ € R, the left hand side gives 0, while the right hand side equals —167t in view of'°

(69G gy (1,0), wp, s0) = 8. (9.6)

Therefore, m = 0, and h = dyw is pure gauge, with w of scalar type [ = 0 and of size o(r);
by Proposition 7.8, we therefore have w = ciwy, 50 + CQW&Eg)so for some c1,co € C. In view
of (7.32), this gives h = d;w = c20ywpy s0 = c2hp 50, as advertised in (9.3a). Conversely,
hig,s0 € ker I/J;(O); in fact, hy, s0 satisfies both equation (9.4) (by construction in terms of
the zero mode wy s of 6,G,40;) and equation (9.5) (since it is pure gauge).

e Scalar type | =1 modes. If h is of scalar type [ = 1, then h = dyw, with w € flgo’fg/%ﬂ

ker ﬁ\g(()) of scalar type [ = 1, which means w = cwy, 51(S) for some S € S; by Proposi-
tion 7.8, and thus h = edywp, 51(S) = chy, 51(S) indeed, giving (9.3b). Conversely, Ay, 1(S)
satisfies equations (9.4)—(9.5), hence is, a fortiori, a zero mode of L.

o Vector type | =1 modes. For h of vector type I = 1, we have

h= 5, (0,4) + 6w, we B

with & € R3, and w moreover satisfies ﬁ\g(O)w = —25,Gggp,(0,a) € ﬁgo’lm_. Since the
vector type | = 1 kernel of ﬁ\g(()) on ﬁso’f?’/% is trivial, there is at most one such w

for fixed a. Conversely, given a € R3, the existence of w is guaranteed by duality since
ker y(0)* N Hb_ > ~1/2F qoes not contain non-zero vector I = 1 solutions by Theorem 7.1.
Thus, the vector I = 1 nullspace of Ly(0) is 3-dimensional and spanned by such h.

We can easily find h explicitly by writing it as

h = gp,(0,4) + 6w’ (9.7)

and verifying that it has the required decay at infinity. Here, rescaling to |a| = 1, w® solves
O, (0)w® = —26,Gyg8 (0,4) = —4r~ 1V,
where V = sin?dy in polar coordinates adapted to a. This has the explicit solution
w? = 2(mg + )V, hence 5;w0 =—(1+ 2%)dr ®s V and therefore indeed
h = dmr~t(dtg — dr) @5 V = dmwy, 0 Qs V,

finishing the calculation of zero energy states on Schwarzschild spacetimes.

e Dual states for Schwarzschild and Kerr spacetimes. From our calculations thus far, and
noting that Lgbo, restricted to tensors of pure type, is Fredholm of index 0, we conclude

that the dimensions of the spaces of dual zero energy states of pure type are 1 (scalar type
[ =0), 3 (scalar type [ = 1), and 3 (vector type [ = 1). We can find bases for them by a

16T his calculation, and related calculations below, are in principle straightforward in incoming
Eddington—Finkelstein coordinates. We double-checked them using mathematica.
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dual-pure-gauge ansatz, as explained above, using the calculations of 1-forms zero energy
dual states in §7. In fact, the elements on the right in (9.3a)-(9.3c) span a 7-dimensional
space of dual states also on slowly rotating Kerr spacetimes. We briefly check the required
decay at infinity: for hy 50, Which is a differentiated J-distribution at the event horizon

r = 7y, this is clear; for ;. it follows from &, (0) € pDiff} and wj ,, (S) € H;, *~**7; and

for hZ’Ul, it was proved in Proposition 7.10.
e Persistence for slowly rotating Kerr spacetimes. The argument at the end of §7.3 shows

that the dimensions of kerI//;)(O) N ﬁgo’_lﬂ_ and kerl//;](O)* N Hb_oo’_l/2_ are upper semi-
continuous at b = by, where they are equal to 7; the explicit construction of a 7-dimensional
space of dual states for L, shows that they are at least 7-dimensional for b near by. Thus,
they equal 7; the continuous dependence of the nullspace on b then follows by a general
functional analytic argument (cf. the proof of Lemma 10.5).

Getting a precise description of the space zero energy states of L, requires a direct
argument. Now, we certainly have hy 0, hp51(S) € kerlz;(O); it remains to construct a
continuous family (in b) of elements of kerl//;)(O) N H" /2= extending hgp, 1 (V). For
V € V; which is (dual to) the rotation around the axis a € R? (with V having angular

speed |a|), we make the ansatz
how1(V) = gp(Mo(a), a) + 5w, (9.8)

with Ay € (R3)*, Ay, =0, and w € ﬁgo’_g/Q_ to be found. The equation E;)(O)hbﬂ,l(V) =0
is then satisfied provided

—

Oy, (0)w = —28,4,Gg, (M (8), ) € B (9.9)

In view of Theorem 7.1, the obstruction for solvability of this is the cokernel ker ﬁ;(())* N

lﬁlgoo’*l/%r = (wp s0)- That is, we need to choose Ay(a) so that the right hand side of (9.9)
is orthogonal to wj ;. This gives

(0g,Gg, 0(0,a), wy ) ]
<5gngbgb(17 0), wlj,30> ’
note here that the denominator is non-zero for b near by by continuity from the calcu-
lation (9.6) and the orthogonality (g, G, (5;b0w),wg)"0750> = 0 for any w. The proof is
complete. O

Ap(a) = —

Remark 9.2. The ‘asymptotic rotations’ wp,1(V) of Proposition 7.10 were not used here,

even though they give rise to zero energy states hy(V) := & wy1(V) € kerLZL(O) N
HSO 2= g explain why they are, in fact, already captured by Proposition 9.1, note
first that when b = (m,0) describes a Schwarzschild black hole, then wy,1(V) = r2V is
dual to a rotation, thus Killing, vector field, hence hy(V) = 0. On the other hand, when
b= (m,a) with a # 0, consider the orthogonal splitting V; = <8<bp) @® V=+, where 9, is unit
speed rotation around the axis a/|al; the latter is a Killing vector field for the metric gp,
and thus hb((‘)Z,) = 0. On the other hand, V* >V + hy(V) is now injective; that this does
not give rise to new (i.e. not captured by Proposition 9.1) zero energy states is due to the
fact that for such b, the parametrization of the linearized Kerr family b — gb(i)) is no longer
injective when quotienting out by pure gauge solutions, but rather has a 2-dimensional
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kernel. Indeed, if a L a, then g(y4)(0,4) is pure gauge: it merely describes the same Kerr
black hole with rotation axis rotated infinitesimally, i.e. is precisely of the form hy(V) for
Vevt (plus an extra pure gauge term depending on the presentation of the Kerr family,
as described in §3.2). In summary then,

hy1 (V1) + he(V1) = by 1 (V1), b= (m,a),

is 3-dimensional for a = 0 as well as for a # 0.

9.2. Generalized stationary modes: linear growth. The zero energy behavior of the
linearized gauge-fixed Einstein operator in the vector [ = 1 sector is non-degenerate, simi-
larly to the wave operator on 1-forms in Lemma 7.12:

Lemma 9.3. Let d > 1. There does not exist h = Z?:o tlhj with h; € ﬁ]:o’_l/2_ of vector
type | =1 and hqg # 0 for which Lgboh =0.

Proof. It suffices to prove this for d = 1; indeed, in the case d > 2, given h as in the
statement, J;, h has one degree less growth in ¢, and still lies in ker Lgb07 hence 0;,h = 0 by
induction, and in particular the leading term of h vanishes, contrary to the assumption.

Now, for h as in the statement of the lemma, we necessarily have h1 = hy, ,,1(V) for some
0 #V € V;. We wish to show that there is no hg € Hﬁo’_lﬂ_ such that
Lgbo ho = _[Lgbo ) t*]hbo,vl (V).
It suffices to check that the pairing of the right hand side with h;o’vl(V) is non-zero; as in the
proof of Lemma 7.12, the pairing is unchanged upon replacing ¢, by t,. For V = (sin? 6)0,

(which can be arranged in adapted polar coordinates by rescaling h), we calculate (by hand
or using mathematica)

(L gy » tol o1 (V) iy 01 (V)
= (2r 2 (—(1 + 0)dty + dr) ®s V, 4m3d(r — 2mg)dr @4 V') (9.10)
- —<V7 V,>L2(S2;T*S2)7

which is non-zero for V/ =V, as desired. ([

More generally, there are no non-trivial polynomially bounded solutions which are of a

pure type restricted to which IZ;) (0) has trivial kernel within ﬁgo 1/ 27; this applies to

scalar type [ > 2 and vector type [ > 2 modes. On the other hand, there do exist generalized
scalar type I = 0 and [ = 1 zero modes with linear growth:

Proposition 9.4. For by = (mg,0), define the spaces of generalized zero modes
I/C\b0780 = {h € ker Lg, N Polyl(t*)ffso’flpf: h is of scalar type | = 0} ,
I%bo,sl = {h € ker Lg, N Polyl(t*)ﬁgo’_lm_: h is of scalar type | = 1} .
Then I/C\bo,so = span{hy, 0, Bbg,sO}; where hy, 50 is defined in (9.3a) and
o 50 = Gy (=%, 0) + 05, (Fowno, 0 + Dy s0) Dy 0 = — BG4 L(1+ 2m0)dp. (9.11)

Furthermore, Ebo,sl = span{hp, s1(S), izbo’sl(S): S € S1} where hy, 51(S) is defined (9.3b),
and ﬁbo,sl = (5;0(211,0731, see (7.42).
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The generalized modes Bbo,sO; ﬁbo,sl(S) extend to continuous families

b hipso = G5(b) + 8w € ker Ly, N Poly! () B> />,
b— Bb,sl (S) = 5;@@51(5) € ker Lgb N Polyl(t*)ﬁgo,fl/va Sc SL

for suitable b € R, w e Polyl(t*)ﬂgo’_?’/z_; they furthermore satisfy }Azb,so, flbysl(Sl) €
ker Dy, Ric Nker Dg, Y (—; g). Similarly, in the notation of Lemma 7.13, we have

b o = Gy, 6%,@% 0 € ker LY, 0 Poly! (8,) H, >~/ 0.12)
b b1 (S) = G, 87 71 (S) € ker L, M Poly! () H, ™ %7, ses,. ’

Proof. Given IEbO’Sj S h=tih+hgfor j =0o0r j =1, we have Lg, h1 = 0. Thus, either
hi = 0, in which case hg is a scalar multiple of hy, s; by Proposition 9.1; or, after rescaling
by a non-zero constant, hi = hy, s = 6;b0wb073]~ (depending on S € S; when j = 1). The
second Bianchi identity and dg, Gg, hb,,sj = 0 then imply, by (3.42) and (7.43),

ker ngo 2 5_%0 ngoh = [6%0 ngovt*]hbo,Sj + 591)0 ngo ho
c E[]c;o,l/Z— +E—§o,1/2— _ I_{]:O’l/Q_.

By Theorem 7.1, this implies d,, Gg, h =0, thus Dy, Ric(h) = 0; thus, writing

h = (5;b0 (t*wbo,sj) + h{), h6 = hy — [(5;b0,t*]wb075j, (9.13)

we obtain the two equations
Dy, Ric(hy) = 0, (9.14a)
[ngo s telwpg,sj + 209, Ggy, hi = 0. (9.14b)

e Generalized scalar | = 0 states. Here, j = 0. Then h{, € I:[go’_lﬂ_ by (7.2a) and (3.42);
by mode stability, Theorem 8.1 and Remark 8.2, we have h( = ggo (m,0) + 5;b0 w for some

me R and W] € flgo’_3/2_. Equation (9.14b) thus reads

Ogs, (0)t + [Oy,, > telwpy 0 + 2mg, Gy, dp, (1,0) = 0. (9.15)

Integrating this against wy o, the first term gives 0, the second term gives 2 by (7.39), and
the last term gives 8m by (9.6); thus 2+8m = 0. Let us hence fix m = —1. Since the second

and third term in (9.15) lie in H,~ A/ %~ we can then solve for Wi € ; moreover,
in this space, w) is unique modulo multiples of (wp s0). Thus, h is necessarily of the form

[ 7_3/2_
Hy,®

h = hpy.s0 = g?mmo)(_i, 0) + 8, (txwp,s0 + wy).

This proves that Ebo,sO is 2-dimensional. We can easily make this explicit by replacing t.
by to and W} by w? := W] + (t. — to)ws, 0, the latter solving
= 0

ngo (O)wy = _[ng()’t()]wbo,so + 59130 ngog?mo,o)(%7 0) = _T72(1 - @)dto,

which has the solution w{ = dzgwo, see (9.11).
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We next construct a generalized zero mode iAn,,so for b near by. We change the point of
view and make wy, 5o into the main term of an ansatz, while the linearized Kerr family will
give a correction term similarly to above. Thus, starting with

hiso = 05, (£xwh 0 + Db,50) + Go(1i1(b), 0), (9.16)

1
— 1

. But this can be done provided we arrange the orthogonality

we shall determine m(b), with m(by) = such that the equation Lgbﬁb780 = 0 can be

o 7700,—3/2—
solved for wy 50 € Hy /

<[ng’ t*]wb,so + 2691: nggb(m(b)’ 0)’ w;,30> =0.
But as in the proof of Proposition 9.1, this holds for a unique m(b) because of the non-
degeneracy (9.6), which persists for b near by.
e Generalized scalar | =1 states. Now, j =1 in (9.13), where wy, 51 = wp,,s1(S) for some

S e Sy;and j =1 in (9.14b), so by € Hgo’_3/2_ since wy, 51(S) is only of size O(1). By
Hoo,75/27
b

Theorem 8.1, equation (9.14a) now implies h{, = 5;% wp for wi € , and therefore

h = 65, (txwpy,s1(S) +wh), (9.17)
with w] satisfying D/g\bo(o)w’l = _[ngovt*}wbo,sl(s) c f{EO,—l/2—.

(1)
bo,s1

By Lemma 7.11, f is

unique modulo {w; ’ . (S): S € S1} in the scalar type | = 1 sector. Expanding

b= tuhig a1 + (6t s1(S) + 85 wh),

recall that the membership h € l%bo,sl requires the term in parentheses to lie in ﬁgo —1/ 2_,

thus to be of size o(1). In view of (7.37), this implies that w/ is unique. Thus, there exists
at most one generalized scalar [ = 1 mode of Lgbo with leading term t,hp, 51(S).

On the other hand, existence of h of this form, and its extension to a continuous family of
generalized modes for L, , b near by, follows immediately from Proposition 7.13 by setting

Bb,sl(s) = 5;)@6,31(5)- (918)

e Generalized scalar I =0 and I = 1 dual states. Certainly, the expressions in (9.12) pro-
duce elements ker Ly, of the desired form. O

By Proposition 4.4, all zero energy modes are polyhomogeneous at r = oo; this is also
true for the coefficients of 0 and t! of the generalized zero modes constructed above. For
later use, we determine their leading order behavior more precisely. Note first that the
construction of ﬁ@sg in (9.16) shows that its t,-coefficient is hj 59. Consider similarly the

definition (9.18) of ﬁb’ s1(S) in terms of @y, 41, which is constructed in (7.44); upon re-defining
wh,s1(S) as wp s1(S) + cpws so (Which is still a continuous family in b, linear in S, and agrees
with wy, s1(S) for b = by since ¢y, = 0 by (7.47)), and then letting hy, 41(S) = 5;bwb751(5), we

ensure that the t,-coefficient of lAzb,Sl(S) is equal to hp 51(S). Analogous arguments apply to
h; o and hy ;. Choosing hy 5o etc. in this manner, we now make the following definition:

Definition 9.5. For ¢, = tm ., S € S1, V € Vi, we set

\FLb,SO = ilb,s(] - t*hb,s(]? ;L?;,s() = ;12750 - t*hz,s()?
;Lb,sl(s) = iLb,sl(S) - t*hb,sl (S)v }VLZ,SI(S) = hz,sl (S) - t*hz,sl(s)‘
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These are stationary (t.-independent), and lie in FISO’_I/Q_ and Hgoo’_l/z_, respectively.
Lemma 9.6. For S € S; and V € V1, we have
ho,s0, hws1(S), hewi(V) € ﬁﬁ"’l/Q‘,
hh i (S) € H, ™12, (9.19)
By (V) € pC 4 H 22,

where the pC™ term has support in r > 4mgy; moreover, hZ}SO has compact support. In the
notation of Definition 9.5, we have

Tios0s hos1(S) € pC= + HYMP7 oy B i (S) € pC™ + Hy *oM* (9.20)

the remainder terms of 71;80 and hz’sl(S) have support in v > 1, are smooth in r > Ty,
17

conormal at 04+ X with the stated weight, and lie in H3/2= pear the event horizon r = ry.
Proof. The statement for hy,1 was proved in Proposition 7.10; the statement for iy, (V)
follows directly from Proposition 4.4, using the fact that zero frequency solutions of the wave
operator on symmetric 2-tensors on Minkowski space, which in the standard coordinate
splitting is a 10 x 10 matrix of scalar wave operators, have r—! asymptotics provided they
00,—1/2— . .

belong to H, near infinity.

The statements about hy . and hy, 5 follow immediately from (7.3) and (9.3a). For hy, 40,

. . 00,1/2— , . . .
we record a more precise statement: since wy, 59 € pC™ + Hgo 1/ (either by inspection, see

Remark 7.2, or by similar normal operator arguments), we have hy 5 € p2C>® + H'EO 32
Since elements of the kernel of the spectral family of the scalar wave operator on Minkowski
space at zero energy with decay 2 have a leading order term in r~2S1, we in fact deduce
from hy 50 € ker Lg, (0) that

_ ~50,3/2—
hps0 €7 291 + HEO / ,
where

Q) = span{Sdt?, Sdt @, dz’, Sdz’ ®,dz’: S e Sy, 1 <1,j < 3}. (9.21)

We proved the statement (9.19) for hy, 41 (S) in equation (7.43); the argument given there
also applies to hj ., (S). We again record a more precise statement: dropping the argument
S € S; from the notation, write b = (m,a) and denote by by = (m,0) the Schwarzschild

parameters with the same mass. Then wy 51 = wp, 51 +w’, where o’ € .F_Igo’fl/% solves
Oy, (0)w’ = O, (0)wn 51 = (T, (0) = O, (0))ewn o1 € B2 (9.22)

here, we used Lemma 3.4. Normal operator arguments give w’ € pC> + flgo A/ 27, hence
hb,sl = 5;bwb,sl = 5;,10%1,51 + (526 — 5;’1 )wb1731 + 5;}&/
* [700,3/2—
€ 591,1"%1,81 + p?C>® + (p*C> + HEO / )
C pQCoo + ch;o,?)/Q—‘

1Tpyut differently, we have 32750 € pC™ +XH§°’1/27 +(1—x)H %%, where y = 1 for r > 4mg and x = 0
for r < 3myp; likewise for FL;Q(S).
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A normal operator argument implies that the leading order term has to lie in 21, so
hos1(S) € P20y + HZ>?
We argue similarly for h} ;: by (6.8), (7.33), it lies in p*C> + Hgo’3/2_ near infinity, hence

hy g € xr 20 + Hy oY (9.23)
where x is a cutoff, identically 0 for » < 3mg and identically 1 for r > 4m.

To prove the statements (9.20), recall that lvzb,so solves

Lgy (050 = ~[Lgy, tolhoso € p°C + HOV. (9.24)

This can be solved by first solving away the leading order term via inversion of the normal
operator of Lg, (0) at infinity; since the latter has —i in its boundary spectrum, this may a
priori produce logarithmic terms ! logr in addition to 7~! terms. It then remains to find

5/2—

a correction term that solves away, globally on X, an error term lying in ETEO ; this can

certainly be done in the space I:ISO —1/2- (since we already know that a solution, FLb,So, to

the full equation (9.24) exists), and by the usual normal operator argument this correction
automatically lies in pC* + ﬁgo’fl/zf.
Thus, it suffices to show that the leading term of [Lg, , t«]hy 5o can be solved away without

a logarithmic term of size 7~ logr. But this only requires a normal operator calculation;

in particular, in view of Lemma 4.2, we can replace [L,, t.] by 2ip(pD,+i) where p = r~1,

which on p?C>/ f_Igo 327 4 simply multiplication by 2; so the task is to solve
Ogoh € =201 1720 = r73Qy. (9.25)

The space of (generalized) resonant states of D/Q\Q(O)* at —i, i.e. the space of tensors which

are (quasi)homogeneous of degree —1 and annihilated by @(O)*, is spanned by r~! times
dt?, dt @, da’, dr' @gda? (1<1i,j <3). (9.26)

Thus, h has no logarithmic terms provided each of these are orthogonal to €2; when inte-
grated over the sphere S? at infinity; and this is indeed the case, due to the fact that S € Sy
integrates to 0 over {p = 0} & S%. The same argument proves the result for hps1.

The statement for FLZ s0» Which solves IT;)(O)*;LZ, s0 = —[Lgy, t]hp g0 with compactly sup-
ported right hand side, is clear. (Note also that the right han(i\ side is one derivative less
regular than hy ., at the event horizon; the solution operator (Lg,(0)*)~! gains one deriva-
tive there, hence 712'; s0 has (at least) the same regularity as hj  itself.) The claim for BZ sl
is proved like that for ;Lb751 in view of (9.23). O

9.3. Generalized stationary modes: quadratic growth. We next study whether the
linearization Lgb0 at the Schwarzschild metric admits quadratically growing solutions of
scalar type | = 0 or [ = 1. (For all other types, this possibility has been excluded already.)

Lemma 9.7. Let d > 2. There does not exist h = Z?:o tihj with h; € H?’_I/Q_ of scalar
type | =1 and hg # 0 for which Lgboh =0.
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Proof. By the argument at the beginning of the proof of Lemma 9.3, it suffices to prove
this for d = 2. Then hg = hy, 1(S) € ker Lgb0 for some 0 # S € Sy, and

0 = Ly, h = t.(2[Lg,,, tulha + Lg, h1) + ([[Lgy,  t), tlh2 + [Lg,,, telh1 + Lg, ho). (9:27)

The vanishing of the linear (in ¢.) term is equivalent to Ly, (2tihe + hi) =0, thus 2t.ho +
hy = 25b0,51(5)+0hbo,51(5,)a c e R, S € S;. By subtracting from h the 2-tensor cﬁbo,sl(S’) €
ker Lgb07 we can set ¢ = 0, thus hy = 2(%0751 — tyhp, s1). It thus remains to determine
whether hg can be chosen to make the constant term in (9.27) vanish. This is equivalent to
the vanishing of the pairing of this term with hz(), <1 but, dropping S from the notation, a
lengthy calculation shows that, for S = cos# (which can be arranged by choosing suitable
polar coordinates, and rescaling by a non-zero complex number),

<[[L9b07t*]>t*]hb0,81 + 2[L9b07t*](ilbo751 - t*hboﬁl)’ hzo,81> = —8mmg 7é 0. (9'28)

(One can show that this calculation is unaffected when one replaces t. by tp; but then
to being null implies that [[Lg, ,%o],to] = 0, which simplifies the calculation. We double-
checked it using mathematica.) O

By continuity, the non-degeneracy (9.28) remains valid for by replaced by nearby b.

For scalar type | = 0 modes on the other hand, one can verify that the pairing

<HLgbO s ]t hig,s0 + 2[Lgb0 ’ t*](ﬁbo,so = txhig,s0) hzo,50> (9.29)

vanishes, which by the arguments following (9.27) implies the existence of a quadratically
growing generalized mode solution. We do not use this degeneracy in the sequel, but do
point out that this is the reason for implementing constraint damping, as we discuss momen-
tarily. The key observation is that these quadratically growing solutions are pathological
in that they cannot satisfy the linearized gauge condition:

Lemma 9.8. Suppose h = t2hy + t,h1 + hg € PolyQ(t*)f_Igo’*l/Qf is of scalar type | = 0

and solves Dy, Ric(h) = 0 and 591)0 ngoh = 0, then necessarily ho = 0. In particular, if
Lg, v =0 but hy # 0, then dg, Gg, h # 0.

Proof. The assumptions on h imply that Lgboh = 0. Suppose we can find a generalized
mode h with hy # 0. As in the proof of the previous lemma, after multiplying by a
non-zero scalar and subtracting from A a multiple of l}bm 50, we must have hy = hy, 50 and
hi = 2(ﬁb0’so—t*hb0’so). Thus, by Proposition 9.4, and writing w, so = @1?0750+(t0—75*)wb0,so7

h=t2hpy 50 + 2tu(fipg 50 — thing,50) + o (9.30)
= tz52bowb0,50 + 2t (5Zb0 (t*wbo,so + (:)bo,s()) - t*égbowbo,s() + gl())o(_%’ O)) + ho

= G, (3,0 + 26:059,50) + 2t G, (— 1, 0) + hy,

where hy = —2[d;, ,t.Ji,,s0 + ho. Since Dy, Ric(h) = 0, we have Dy, Ric(t.gp, (1,0) —
2h{)) = 0; but then Theorem 8.1(e) implies that there exist scalar type | = 0 1-forms
W, w1, ws € ET]:O’K for some ¢’ € R such that

t*gl())g(lv 0) - 2h’6 = 6;,0 (tiWQ + tewy + w0)~ (931)
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Expanding the right hand side into powers of t,, the coefficient of t? vanishes, hence 52170 wo =
0, thus wy = ¢d;, ¢ € C. The linear term of (9.31) then reads

G (1,0) = 265, ,teJws + 65, w1 =6}, (2ct.0] +w1); (9.32)
that is, the linearized Schwarzschild metric is pure gauge, which is not the case.'® O

According to this lemma, in order to exclude quadratically (and faster polynomial) grow-
ing generalized mode solutions in the scalar [ = 0 sector on Schwarzschild spacetimes, it
suffices to ensure that the linearized gauge condition necessarily holds for h € ker Lg, N

PolyQ(t*)f_]Eo Y27 We thus proceed to explain why this may (and indeed does) fail for
the unmodified linearized gauge-fixed Einstein operator: consider again h as in (9.30); then

by the linearized second Bianchi identity, and writing ;Lbo,so = ﬁbo,so —tyhpgy,s0 € ﬁgo —1/ 2_,

ker ngo > (5gb0 ngo h = 2t, ([5gb0 ngo st P50 + 59130 ngo hbo,so)
+ (2 [59170 ngo st hig,s0 + 691;0 ngo ho) :

The coefficient of the linear (in ¢.) term thus lies in kerD/gzO (0)N Hy? A/ " hence vanishes
by Theorem 7.1. Thus, the (stationary) second line lies in

* ~ _00,71 2—
ker (0, Gy, © 05, ) ~(0) N H" /27 (9.33)

But the latter space is non-trivial, allowing for 5gb0 ngoh = cwpy,s0 for ¢ # 0. (This calcu-
lation also implies that necessarily Dy, Ric(h) # 0: indeed, we otherwise would also have
0= (5;b0 09y, Ggyy It = Chug 0, forcing ¢ = 0, and thus h would only be linearly growing by
Lemma 9.8—a contradiction.)

This is therefore the place where constraint damping (CD) becomes crucial. Namely,
replacing (5;b0 in the definition of the linearized gauge-fixed Einstein operator, and thus
in (9.33), by a lower order (and spherically symmetric) modification of the form described in
Definition 4.6—]let us simply denote the resulting operator by §* here—one can ensure that

—1/2—

the zero energy nullspace of 59170 ngo 046* on IYSO ’ is trivial. For putative quadratically

growing scalar [ = 0 zero modes h, with non-vanishing ¢? term, of the corresponding

linearized modified gauge-fixed Einstein operator, we can then conclude o4 G4 h = 0,
0 0

which is a contradiction by Lemma 9.8.

10. CONSTRAINT DAMPING (CD)

We proceed to describe constraint damping modifications, as motivated in §9.3. We
will show in §10.1 that replacing dg by 6, 5, see Definition 4.6, with £ = E(g;¢,71,72)
(see (4.10)) being a modification, with a suitably chosen (and in fact compactly supported)
¢, and with 1,y small, eliminates the zero energy nullspace of the constraint propagation
operator 6gGgg;7  on PI]SO 127 for the Schwarzschild metric g = gny, and thus for slowly
rotating Kerr metrics ¢ = ¢5. This information suffices to get a complete description of

I8 This is easy to check explicitly. Suppose equation (9.32) held; more generally, let w = p(to,r)dto +
q(to,r)dr and suppose S := 5;b0w — 920(1,0) = 0. Since Sy = Orq, we have ¢ = ¢(to). Then, Sos =
2mg

rp + (r — 2mp)g = 0 implies p = —(1 — =72)q, and then S, = %q/ = 0 implies that g(to) is a constant;
therefore, w = q(—(1 — 2%)alto +dr) = —q@fo; but then we have S = —gp (1,0) # 0.
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the generalized zero energy nullspace of Lg,, see Theorem 10.4. In §10.2 we show that one
can ensure that this modification not only eliminates the zero energy nullspace, but also
preserves the absence of non-zero resonances ¢ € C, Imo > 0, both for the constraint
propagation operator and for the linearized modified gauge-fixed Einstein operator.

Remark 10.1. For comparison with the large (i.e. taking 71,72 > 1) CD used in [HV18b],
note that here, the only problematic behavior which we aim to eliminate by means of CD
concerns quadratically (or more) growing generalized zero energy modes, whereas on Kerr—
de Sitter we needed to eliminate non-pure-gauge modes in the open upper half plane (see
e.g. [HV18b, Appendix C.2] for the explicit calculations on static de Sitter spacetimes),
which clearly cannot be done by perturbative methods.

Remark 10.2. On the other hand, in [HV20], we used small CD which however is asymp-
totically (at .#T) non-trivial (roughly, in the reference we took ¢ = r~1dt near .#T). Such
CD modifications affect (albeit only mildly so for small -1, v2) the asymptotic behavior of
(mode) solutions of the modified linearized gauge-fixed operator. Recall however that CD
at £ in [HV20] was implemented only to ensure better decay properties of certain metric
components at .# " in a nonlinear iteration scheme; hence, for the present linear stability
problem, there is no need for such asymptotically non-trivial CD. With an eye towards a
possible proof of the nonlinear stability of the Kerr family, we do remark however that this
type of CD can be implemented in this paper as well (as an additional small perturbation
on top of an already working compactly supported CD); the changes in the behavior of
the resolvent are minor, as discussed in a general setting in [Vas20b]. The details will be
discussed elsewhere.

Let x € C((r—,3mg)) be a localizer, identically 1 near 2my; let further
di=dty —vdr, c:=x(r)d, (10.1)

with v € R to be chosen later. (For v > 0, this is a future timelike 1-form on the Schwarz-
schild spacetime (M°, gp,).) We then let

E=E(g;¢,7,7), 04, =70, p
We study the linearized modified gauge-fixed Einstein operator
Lgn = Lyg,E,

see (4.12), in detail §11; here, we focus on the operator arising via the second Bianchi
identity, d,GgLg 1= 204G40; ., 0 634Gy, and draw a few simple conclusions for L, .. Define

9%y
thus the (modified) gauge propagation operator
Py i=204Gy0, s Pory = Py, - (10.2)

So far, we worked with Lo = L, , thus P, o = Ly, 1 is the tensor wave operator.
10.1. Zero frequency improvements. We show that the kernel kerﬁb;(())ﬂﬁgo’*l/% =
(wp,s0) for v = 0 becomes trivial for small v # 0 upon choosing v in (10.1) suitably:

Proposition 10.3. Let v # 1. There exists vo > 0 such that for fized vy with 0 < |y| < 7o,
the following holds: for b sufficiently close to by,

ker P, (0) N A7 =0, ker Py, (0)* N H, " = 0. (10.3)
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. 3 1 3
Proof. Fix £ € (—5,—35), s > 5, and put
EN 7Sl . o irs—1,0+2
X" ={ueH": Ppy(0)u € Hy }.

Recall from (the proof of) Theorem 4.3 that 755,;(0) X oy B§—17£+2 is Fredholm of index

0 when v is small. Since Py~ (0) — Py 0(0) is a compactly supported, first order operator,
sl

the space X} does not depend on 7.

We first consider the Schwarzschild case b = bg. We split domain and target by writing
Xl;so’é — ICL @ ’C, IC = kerX;Ol Pbo,o(()) — <wb0,80>7

s 1,042 Phoo
Hli 2 _ReRt, R= ran s Pr,0(0) = ann CUZO’SOa
0

where ann denotes the annihilator, K1 is a complementary subspace to K, and R+ = (n)
is complementary to R inside of ﬁgfl’HZ; here we may choose n € C*°(X;5¢T*X), and we
may arrange (1, wy. ) = 1. The operator Py, -(0) takes the form

D, . Poo +7Pgo ’77)81>
Py - (0) = ( . 10.4
Oy’Y( ) FY,P?O 773%1 ( )
If we identify C = K via ¢ — cwy, 50, and further C = R*E via ¢+ e (thus R+ — C is
given by 1" — (', w}, o)), then P, is simply a number: indeed, one computes
b _ —_— —_—
Pii = (77 (Poy.(0) = Pry,0(0))wig, 50, Wi 0.
- <259G9(2c s Who,s0 — G(c, wb0780)9)7wgo,30> (10‘5)
=8m(b —1).
Suppose now kerﬁ,(;(O) S (wo,w1) € K+ @ K; then wy = —y(Poo + YP3) ™ 1 Pjywi, s0
(Pt = vPlo(Poo +7Pho) ™' Poy)wn = 0.

For v # 1 and small v, this forces w; = 0, thus wy = 0, proving the injectivity, and hence
00,—3/2+

invertibility, of 771);(0); it also implies that the adjoint has trivial kernel on Hb
Fixing such small non-zero v, the invertibility of @(O) implies that of 751,;(0) by simple
perturbation arguments as in [Vasl13, §2.7]. (]

This is sufficient to exclude quadratically growing zero modes of the operator Lgbom in
fact, we can now give a full description of the generalized zero energy nullspace of Lg, ., for
b near by:

Theorem 10.4. Let s > g, IS (—%,—%), and fix v as in Proposition 10.3. Then there
exists Cy > 0 such that for Kerr parameters b € R*, |b — by| < Cy, the operator Ly, ~ has
the following properties:

(1) the kernel of fg;(()) is 7-dimensional,
Ky := ker go.c fg;/(o) = Chy 50 ® hp,51(S1) ® hpw1(V1), (10.6)

where we use the notation of Proposition 9.1;
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(2) the generalized zero energy nullspace
Ky == {h € Poly(t.)H": Ly, ,h = 0} (10.7)

1s 11-dimensional. The quotient l@b/le is spanned by (the image, in the quotient
space, of ) Chy g0 © hy s1(S1), where we use the notation of Proposition 9.4.

Part (1) is proved like Proposition 9.1; the arguments there are in fact slightly simplified

since the 1-form operator Py ,(0), which controls whether a gauge potential has symmetric
gradient satisfying the linearized gauge condition, is injective. The proof of part (2) is more
subtle. In view of the role played by dual pairings such as (9.10), we first show that the
zero energy dual states can be chosen to be continuous in the parameters b, y:

Lemma 10.5. In the notation of Theorem 10.4, the 7-dimensional*®

K" :=ker Iig;(())* N Hb_oo’_l/z_
depends continuously on (b,7y) near (bo,0): there exist continuous (in b,~) families
hz:i;o’ hZ:Zl (S)? hz,zl (V) € Icz*7 S € 817 \% S Vla

linear in' S and V, which satisfy hg,*so = hy 40 hg,*s1(5) = h} 1 (S), and hg;l(V) = hy 1 (V).

space

Remark 10.6. Paralleling Remark 6.4, we note that the dual states are still necessarily
supported in r > 7, and smooth/conormal in r > 7. Their Sobolev regularity at the event
horizon r = ry, is —3 + O(||), as the constraint damping modification is non-trivial there
and may thus shift the threshold regularity; see [HV18b, §9.2].

Proof of Lemma 10.5. We use an argument by contradiction similar to that at the end
of §7.3. Namely, fix s > %, l e (—%, —%), and suppose there exists h} € ICZ;* with
B3] orer =1, where ' =1—s < =3,/ = =2 —{ € (-4, —3), and where (b;,7;) = (bo,0)
b .
as j — oo, but so that k7 stays a fixed distance away from IC?;‘; that is, there exists h € C*
such that b € ann Kp*, but |(h, h)| > ¢ > 0 for all j. Recall that we have uniform estimates

1o < € (HL/gl;(O)*h*HHE/,u/H + Hh*||H§0,eO)

for fixed sp < ¢, £y < ¢/, and for all (b,v) in a fixed small neighborhood of (bg,0). Applying
this to h} at (bj,7;) shows that [[h}| ;0.4 is bounded from below by a positive constant;
b

hence a weak limit h; — h* € Hﬁl’el, which automatically lies in ICO;*, is necessarily non-
zero. Since it also satisfies |(h, h*)| > ¢ > 0, this is a contradiction. This argument works
equally well when (bj,7;) — (b,7) for some (b, ) close to (bg,0), finishing the proof of the
continuity of K"

In order to construct hzZO’ fix elements hy1,...,hy7 € COO, which induce linear forms

* * * -1 7 -

by ; = (hy;,—) on K)"; we may arrange that {hg,so} =K N1 (1) Ny Ebv;(O), and that
the Ay, ;, £, ; depend continuously on b. We can then define 1), by {h)%,} = K" ne,1(1)N
0]7-22 E;} (0). One can similarly construct k)", (S) when S is an element of a fixed basis of
S1, and define ], (S) for general S as linear combination; similarly for 2" (V). O

9This is a consequence of Theorem 10.4(1) and the fact that L/gb\.y(O) has index 0.
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Remark 10.7. An alternative proof of Lemma 10.5 proceeds by constructing hzzo etc. di-

rectly by adapting the normal operator arguments from §86, 7 and 9; see the proof of
Lemma 10.8 for details.

Proof of Theorem 10.4(2). Recall that the choice of symmetric gradient does not affect the
existence of (generalized) mode solutions of the linearized gauge-fixed Einstein equations
which are solutions of the linearized Einstein equations and also satisfy the linearized gauge
condition; thus, for all these, the CD modification encoded by < is irrelevant.

We first study the case b = by and prove that the space I/C\bo is exactly 11-dimensional.
The arguments in the proof of Lemma 9.3 imply that there are no growing scalar or vector
type I > 2 zero energy modes for Lg, - Moreover, the non-existence of linearly growing
vector type [ = 1 modes follows from the non-degeneracy of the pairing (9.10) for v = 0;
this argument extends to nearby b and small v by replacing Lgbo, Ry 01, hZo,vl there by
Lgbo s Do o1 hZ:yUl, respectively. The non-existence of quadratically growing scalar [ = 1
modes of Lg,, follows from the non-degeneracy of the pairing (9.28), which persists by

similar arguments.

Lastly, the existence of quadratically growing scalar [ = 0 modes can be excluded for
small v # 0 as follows: following the arguments around (9.33) with 52170 replaced by ggﬁ, and
using constraint damping (which requires  to be non-zero) in the form of Proposition 10.3,

we conclude that a quadratically growing scalar [ = 0 mode h with non-zero quadratic (in
t.) term satisfies the linearized gauge condition 591)0 ngoh = 0 and is thus, by Lemma 9.8,
in fact only linearly growing—a contradiction. In terms of pairings, this means that

<[[Lgb0 ) tal, t*]hbo,so + 2[L9b0 o) t*](th,SO - t*hboyso)v hz:,so>’ (10.8)
which reduces to (9.29) for v = 0, does not vanish for small non-zero «. This completes the
argument for Ky, .

Fixing such ~, the pairing (10.8) remains non-degenerate for black hole parameters b
sufficiently close to by, likewise for the analogues of the pairings (9.10) and (9.28) for
L, ~. Thus, the arguments used around (9.10) and (9.28) show that the subspace of those
elements of K which arise as leading order terms of at least linearly growing zero modes is
4-dimensional, and the subspace consisting of those elements which are leading order terms
of at least quadratically growing zero modes is trivial. ([

We record the analogue of Lemmas 9.6 and 10.5 for generalized zero energy dual states.
Lemma 10.8. In the notation of Theorem 10.4, the 11-dimensional space
K}* = ker L, - (0)* N Poly(t,) H, /%

depends continuously on (b,v), v # 0, near (by,0); moreover, this space is continuous down
to v = 0. Furthermore:

(1) The quotient space I%;’*/Kg* is spanned by (the images in the quotient of ) continuous
families of generalized zero modes

Tk g i
hpsor 1 (S) € Ky,

linear in S € Sy, which satisfy ill?iso = IAZZ’SO and ﬁg:ksl(S) = AZ’Sl(S).
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(2) We may choose the continuous faAmz'liesA Ny s0r Mys1(S) in Lemma 10.5 so that by,
hy51(S) are the t.-coefficients of hy ', by (S), respectively.
(3) Putting by = hy o — tehy 5o and hy 5 (S) := by (S) =ty (S), we have

* * * b 700’1 2—
hZ,SO’ hz,sl(s)v hz,vl(v) € Hb / ) (109&)

7 y* Y vk 00 r—00,1/2—
B B (S) € pC + Hy o2, (10.9D)

where the pC> terms are supported in r > 4my.

Proof. The first statement is proved similarly to Lemma 10.5 and uses the non-degeneracies
exploited in the proof of Theorem 10.4.

The (generalized) zero energy dual states for Lg, - are again dual-pure-gauge states with
suitable 1-forms as potentials, as we demonstrate momentarily. The analysis for v = 0 in the
previous sections was simplified by the fact that some of the 1-form potentials themselves
were differentials of scalar generalized modes; since for v # 0, the exterior derivative d and
73;)"77 do not satisfy a useful commutation relation, we need to argue directly on the level
of 1-forms and 2-tensors in order to get more precise information on the dual-pure-gauge
potentials, as needed for the control of 717; <1 etc. as in the proof of Lemma 9.6. We recall the
space 1 from (9.21), and fix a cutoff x € C*°(R), x = 0 on (—o0, 3mg], x = 1 on [4my, c0).

o Construction of hj ;. We wish to set h), = Gg,0y wy o With w3y € kerﬁf,;(O)*,

96~ g
when v # 0. The key is

—1/2—

that we can now extend the 1-form 87 from r > 1 to an element Wty € kerﬁ;,(())* N

H—oo,—3/2—
b

but the kernel here is trivial when intersected with Hb_ o

, since the obstruction (7.35) coming from the non-triviality of ker i;(O) N

700,—3/2 .
Hgo =3/ +, disappears for small non-zero v: thus, we can set w;zo = X@E + w(), where

W € Hb_oo’_l/2_ solves 751:7(0)*w6 = —[751:7(0), X]9? € C2°(X°). Therefore, we can put (i.e.
re-define), for now,

* * * - r—00,3/2—
iy 50 = Gg, 99,99 50 € XT 20+ H, ™ 2 (10.10a)

where the structure of the leading order term again follows from the a priori membership
A= Hfoo,l/Qf
b,s0 b
e Construction of hj",;(S). Write b = (m,a) and by = (m,0). Set w}%(S) = xwp, 51(S) +
w], where wj € H];OO’_I/2_ satisfies 751,7\7(0)*% = —751)7\7(0)*(Xw;1781(5)) € Hgoo’5/2_, cf.
(9.22), hence lies in pC> + Hb_oo’l/Q_

by normal operator considerations.

. Thus, we can re-define, for now,

W7 (S) = Gy b,y (S) € xr ™20 + H, %%, (10.10b)

g~ gp

e Construction of )" (V). In order for the ansatz w}’ (V) = xr?V +w’ to produce an

element of kerﬁ,;(())*, we need 751),\7(0)*w’ = —751),\7(0)*()(7“2V) € Hb—oo,3/2—’ which can be

solved for w' € Hb_oo’_l/z_ in view of Proposition 10.3. (Note that this is stronger than
what we proved in Proposition 7.10.) Thus,

W, (V) o= Gy, 0% ] o08/2= (10.10¢)

9%y bZl(V) € xr 2 + Ht:
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1/2—

. . fr—00, .
as a consequence of the a priori H, membership.

e Construction of generalized dual states. We begin by constructing iLZ’;O using the ansatz

hZfso = tu (hz;o + hg,t;l(v)) + hZ,ZOv
which lies in ker Ly, ., provided
Ly 1 (0)*h) g = =Ly, ot ag = Ly, ot B0 (V). (10.11)
This can be solved if and only if the pairing of the right hand side with Xy is trivial. The

pairing with hy s0 and hp 51(S) automatically vanishes, since the latter are leading order
terms of linearly growing generalized zero modes of Lg, .. On the other hand, the pairing

Vi xVy3 (V7V/) = <[L;b,'y7t*]h’byjjl (V)7 hb,vl (V/)> = _<hz,j)1(v)7 [Lgb;}/at*]hb,vl (V/)>

is non-degenerate due to (9.10) and by continuity in (b,7). Thus, we can choose V € V;
such that (10.11) has a solution lvzzzo € Hgoo’fl/%. But then the arguments used in
the proof of Lemma 9.6 apply in view of (10.10a) and (10.10c) and imply that, in fact,
7125;0 € xpC>®+H, oo1/2= Replacing hg;o by hZ,’;oJthle (V) for this choice of V accomplishes
parts (2) and (3) of the lemma.

The arguments for Bzzl and 71221 are analogous, now using (10.10b) and (10.10c).

We have thus constructed an explicit basis of I/C\g* / ng*. By the already known continuity
of K)* in (b, ), we can then re-define 1), and 2], (S) to be suitable linear combinations of
this basis and elements of ICZ* to ensure the continuity in (b,7), in particular at vy =0. O

Remark 10.9. The linearly growing dual state iLZ:;O is mot dual-pure-gauge as soon as con-
straint damping is activated, i.e. as soon as v # 0. One can prove this by demonstrating
that a dual-pure-gauge ansatz Gg,oy (t*wg:;o + @*) is inconsistent due to the non-vanishing
of a certain pairing.

10.2. Mode stability of the gauge propagation operator in Imo > 0. Without
further on restrictions v,, it may happen that the zero energy state of Py is perturbed
into a resonance of Py, in the upper half plane. We now show that for v,~ with suitable
signs, this does not happen. We do this in two steps:

(1) we show in Lemma 10.11 that for v > 1 and for all sufficiently small v > 0, Py, 5
has no modes in a fized neighborhood of ¢ = 0 in the closed upper half plane.

(2) In Proposition 10.12, we combine this with high energy estimates, as well as with
perturbative (in 7) arguments in compact subsets of {Imo > 0, o # 0}, to prove
the mode stability of Py, , for sufficiently small v > 0. Fizing such v > 0, simple
perturbation arguments then imply the mode stability of P, for b close to by.

Let s > 2 and £ € (—3,—3). The domains
X 0) = {w € BYN(X;5T*X): Py, (0)w € HE V2 (X;5T X)), (10.12)

of the operators 751:7(0): X;’K(a) — EE_MH depend in a serious manner on o (but are
independent of 7). Thus, the first step of the perturbation argument is to pass to operators
with fixed domain and target spaces. This relies on:
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Lemma 10.10. Fiz v # 1, and fiz a value v; # 0 for which (10.3) (with  replaced by 1)
holds. Then Py, ~,(0): X,fo’é(a) — ﬁ§_1’€+2 is invertible for o € C with Imo > 0 and |o|

small. Moreover, m(a)_l is continuous (in o) with values in Eweak(f_lg_l’ﬁz, ﬁg’e) (the

space of bounded operators equipped with the weak operator topology), and is continuous

rrs—1+el+2+e frs—el—e
Hy, , Hy, )

with values in Lop( (norm topology) for any e > 0.

Proof. Let us write 73(0) = 775,(; (o) in this proof. The first statement follows from having
uniform semi-Fredholm estimates

. b
||wHH§,z < C’(||73(0)w||H§71,e+2 + HWHHEO’ZO)’ w e &y (o) (10.13)

for o € C, Imo > 0, with || small, together with the invertibility of P(0): this implies
by a standard contradiction argument, see e.g. [Vas20b, Proof of Theorem 1.1], that the
second, error, term on the right in (10.13) can be dropped for o near 0 (upon increasing the
constant C if necessary). This gives the injectivity of 7/5(0); since this operator is Fredholm
of index 0, its invertibility is an immediate consequence.

We prove the continuity of 73(0)*1 following the line of reasoning of [Vasl13, §2.7]. Sup-
pose o; — o, and suppose fj € ﬁgfl’@r? is a sequence converging to f € flﬁfl’ew; put
wj = P(0j) "L fj, which is bounded in fIi’é. Consider a subsequential limit w;, — w € A%
then ﬁ(a)w is necessarily equal to the weak limit limy_ o ﬁ(ajk)wjk = f, independently
of the subsequence. Therefore, the entire sequence converges weakly, w; — w, proving
continuity in the weak operator topology.

Suppose the continuity in the operator norm topology failed: then we could find § > 0, a
sequence 0; — 0, and a bounded sequence f; € H{jflﬁ’ﬂzﬁ such that for w; = P(aj)_lfj
and w; = P(o)~1f;, we have

i — W[ gs—ep—e = 6. 10.14
leog =l ga-ee-e > (10.14)

Passing to a subsequence, we can assume f; — f € ﬁ§_1+6’€+2+6, with norm convergence
in ﬂi_l’éw; in particular, w} — Plo) 'f = win ﬁg’g. On the other hand, by continuity
in the weak operator topology, we have w; — w in f_If)’é, hence w; — w in flg_g’é_g. But

s—el—e

this implies w; — w; — 0 in ﬂb , contradicting (10.14) and finishing the proof. O

The improvement of Proposition 10.3 on the Schwarzschild spacetime is:

Lemma 10.11. Let s > %, le (—%, —%), and v > 1. Then there exist v, > 0, Cy > 0 such
that for all 0 < v <) and 0 € C, Imo > 0, |o| < Cy, the operator 775(;(0): Xy y(0) =

Hﬁfl’ﬂz 1s tnvertible.

Proof. We abbreviate Py := Py, 5, X(0) := X;O’E(U)

e Formal argument. We first give a non-rigorous argument showcasing the relevant cal-
culation. Namely, split

X(0)=KtoKk, K=keryg) Po(0)= (wy,s0),
ﬁlf*u” =RORE, R= ran y o) 7/35(0),




LINEAR STABILITY OF KERR BLACK HOLES 89

where Kt Cc X (0) and Rt C FIS_MH are arbitrary but fixed complementary subspaces;
we can identify R+ = C via 1/ — (', wp, s0)- We then write

5 _ (Poo(v,0) Poi(y,0)
Pylo) = (7’(1)2(%0) 77(1)1(% U)) ’

where Pp1(0,0) = Pi10(0,0) = P11(0,0) = 0, and Pyo(0,0) is invertible. Suppose 7/9;(0)00 =
0, and write w = (wg,w1). Then wy = —Poo(7, ) Po1(7y, 0)w; and
(lpll(’y’ 0) - PlO(fYa U)POO(’Y’ 0-)717)01(77 U)il)wl = Oa (1015)

we want to show that w; = 0 (and thus wy = 0) for |o| + v small, v > 0. Now, the second
summand in parentheses is of size O((|y| + |o|)?) since P1o(7, ), Po1(7,0) = O(y +|a|); it
thus suffices to compute Pi1(7, o) modulo O(y? + |o|?):

Pii(v,0) = ,),73*171 + Upfl + 0+ |o]?), Pkl’l = 0,P11(0,0), 7751 = 0,P11(0,0). (10.16)
The calculations (7.38), (7.39), and (10.5) give
Phy=8m(v—1), Pl = (=i[Po, t]wsy 50, s0) = —4i, (10.17)
and therefore
Pi1(7,0) = 8r(vo — 1)y — 4mio + O(y* + |o]?). (10.18)
Fixing v > 1, this is non-zero in Imo > 0 for v + |o| < Cp, v > 0, as desired.
e Passage to fixed function spaces. The above formal argument is not rigorous since the

splitting of X'(0) does not give a splitting of X' (o) for o # 0. To remedy this, we use a
standard trick in scattering theory and consider, for v; # 0 as in Lemma 10.10, the operator

S ND (=1, Fs—1A+2 | prs—1,042
Py (0)Pyy (o)t HY V2 — m

which thus acts on a fized space. We split the target space as R & R1 as above, and the
domain as K+ @ IC, where

K =Py (00K = (@), & := Py (0)whg,0 = (Pry (0) — Po(0))wpg 50 € C(X°),

rrs—1,0+2
Hb

and K+ is any complement of K in . In these splittings, we write

5 5 -1 _ (Poo(1:0) Por(y,0)
Py (o) Py, (o) _<ﬁ10<%g) 7311(’)/,0)>’ 10:19)

which is Fredholm of index 0; moreover, Py;(0,0) = P1o(0,0) = Py11(0) = 0, and Pyo(0,0) is
invertible, and Fredholm of index 0 for small (v,0), Imo > 0, since the (1,2), (2,1), (2,2)
entries of (10.19) have rank < 1, hence are compact operators.

o Invertibility of Poo. We show that for |y| + |o| small, there exists a uniform bound

”ﬁOO(P%U)_lHR_ﬂEJ_ S C. (1020)

This is proved similarly to Lemma 10.10, and uses that the bound (10.13), with P, in place
of P, is uniform for small |y| 4+ |o|. Concretely, denote the projection onto R along R+
by II; assuming that (10.20) fails, we then find sequences (vyj,0;) — (0,0) and f; € KL,
”fj||g§71,l+2 =1 so that for w; = ﬁ;(aj)_lfj (which is bounded in I:IE’E by Lemma 10.10),

we have Hﬁ:j(aj)wj — 0 in ];_IS_MH. Therefore,

leogll e < € (01) + (T = TP, (o)l gemrese + ol gro ) (10.21)
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where sg < s, {9 < £. The second term on the right is bounded by a uniform constant times

[(Pay (03)ws i 0| = [(ws: (P () = Po(0)why )| =0, = o003 (10.22)

since (7/3;(@) - ﬁ(O))wg‘O s converges to 0 in norm in Hgs’fz. We thus conclude from

equation (10.21) that a weakly convergent subsequence w; — w has a non-zero limit w €

ﬁ]‘;’e. Since ﬁ?j(aj)wj — 7/%(0)01 in distributions, and since by assumption and using (10.22)

this limit is 0, we have w € K. Now, taking a weakly convergent subsequence f; — f in

ﬁs_lff thus f] — fin I:IS_I_E £+27¢ we have wj — 73;1( )*1f in ET{;_E’K_E, and therefore

f =P, 0w € K, and f # 0 because of w # 0 and since 7371(0) is injective. But this

contradlcts fj € KL indeed, choosing f* € Hb_s+1 =2 guch that K1 = ker f*, we have
= f*(fj) = f*(f) # 0. This proves (10.20).

o Differentiability of ﬁm and 7511. The next step is to show that the rank 1 operator

Pr(7,0) = Por(7,0) & Pri(v,0): K — HY 2, (10.23)
is once differentiable at (0,0). Writing
By (0)P (o)L = I+ (P (o) — Py (0)) Py (0) L, (10.24)

this amounts to proving the differentiability of the second summand at (0,0). We first
prove its continuity: since w € C°(X°), the 1-form 7/3;(0)_1& € ﬁl‘jl’el is continuous in o
for any s’ € R, ¢ € (—3,—3). But since P, V(o) — 73;(0') € Diff! has coefficients in C2°(X°)
and depends smoothly on (v, ), the continuity of 75;(0)7/3;(0)*1&7 € CX(X°) follows.

We also deduce that for proving differentiability at (0,0), it suffices to prove the differ-
entiability at ¢ = 0 of 737\1(0)*1@. To this end, we write (formally at this point)

(P (0) ™ = Py (0) )& = Py, (0) 1 (Poy (0) = Py (0)) Py (0) 10 (10.25)

The right hand side is well-defined since 7371( )10 = wpy 50 € pC °°+H 00,1/2—

modulo Hy" 3/2- , by the normal operator —20p(pD,+1) (cf. (4.6)) of 73,y1 (0) —7/3;(0); thus

is annihilated,

5(0) = (P (0) — Py (0)) Py (0) '@ € BT,

with smooth dependence on o, to which one can indeed apply P, (0)_1. With both sides

of (10.25) well-defined in ETEO 1/ 2_, the equality can be justified by a regularization argu-
ment as in [Vas20b, §4]. More precisely, let us write

B(0) = 0@ (0) + O(|of*),  &'(0) = —85 Py, (0)wpy 04
then Lemma 10.10 gives

(Pyy (o) —7371( ) o = (77371( R () —l—ng/,g:(!U!), o—0, (10.26)
that is, the remainder has H}‘jl’zl-norm o(|o]); here, s’ € R, ¢’ € (—3,—1) are arbitrary.

Since K is finite-dimensional, this proves the differentiability of (10.23) with error term of
the Taylor expansion of size o(|o|) in EOP(IC H s=1, ”2)

In view of in the formal argument above, we need to compute the Taylor expansion
of Pi1(v,0). To do this, write (o) = 0,P,(0); this is independent of v, and we have
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~

Py (0) = Poy(o ) (71 — 42)€ () for all 41,72 € R. Therefore, by (10.24) and (10.26),
(0)Pa (o)
=Py (0 >wa 50+ (7 = 1)) (Wh50 — P, (0) 785 Ps, () 0 + 0l|])
= (P5,(0) = Po(0 ))wbo 0~ w< Jbo.50 + YE(0)hg.s0

+ o7 (G )05 Py (0)why 0 — B0 (0) g s0) + Ollyer]) + o(|or])
= Y6 (0)whn,s0 + a((m <o> - %(o»@? (0)~1 (3P (0) + 7185 (0)) why 50

=~ 110,% ()50 ) + O(177]) + of |

= Y€ (0)who,50 + 705 Po(0)wiy 50 — PO (0) Py, (0) '35 Py (0)wn 50) + Ol|yer]) + ol o)),

with the error terms measured in H; " for any s, € R. Paired with wj  to get the

component in R*, the third summand gives 0, and hence we obtain, using the calculation
leading to (10.18),

Pi1(7,0) = vPi1 + 0P + 07| + |o]) = 8m(0 — 1)y — dmio + o(|ly| + |o]).  (10.27)

e Continuity of P1o. Next, we prove that ﬁlo(% o): K+ — Rt is continuous at (v,0) =

0,0), which follows a fortiori from the continuity of ﬁw, Pi1): H, s—L2 RE, thus from
( y b
that of the complex-valued map

A2 50 0 (P (0) Py (0) " w, Wi o) = (Poy (0) 1w, Pr(0)*wi, o),

n (v,0) at (0,0). In view of (10.20), its operator norm is bounded by a uniform constant

times H@(a)*w;;o soll gr—=—¢; the latter however is clearly continuous in (v, o), and equal to
2 b - -

0 at (y,0) = (0,0). (In fact, one can prove the differentiability of (P19, P11) at (0,0) by

means of arguments similar to those used above.)

e Conclusion of the proof. We now combine all the pieces: in view of (10.20), the proof

that 7/7;(0)737\1(0)*1 is injective for v > 0, Imo > 0, with |o] 4 |y| small, reduces, as
n (10.15), to the proof that the operator

Pi1(7,0) — Pio(y,0)Poo(v,0) Poi(v,0): K — RE (10.28)

is injective. But this follows from (10.27), the vanishing Po1(v,0) = O(|o| +7), as well
as the vanishing Pio(y,0) = o(1) as (y,0) — (0,0): indeed, the operator (10.28) is equal
to P11(7,0) + o(|y] + |o]). Surjectivity of 7/7;(0), which has index 0, is an immediate
consequence. O

We now show that robust high energy estimates and perturbation theory in compact
subsets of the closed upper half plane imply full mode stability, also on slowly rotating
Kerr spacetimes:

Proposition 10.12. Let v > 1, s > %, te (— % —%) Then there exists vg > 0 such

that for 0 < v < 79, there exists a constant C(y) > 0 such that the following holds: if
|b—bo| < C(v), then the operator Py~ (o): X;Z( ) — I:IE_MH
Imo > 0.

is invertible for all o € C,
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Proof. Consider first b = by. Then Lemma 10.11 provides us with 4 > 0 and Cy > 0 such
that the conclusion holds when 0 < v < 7{, and |o| < Cp. For these v, we have uniform
high energy estimates as in the proof of Theorem 4.3; in particular, there exists C7 > 1

such that for all v € (0,7), the operator 771)0\77(0) is invertible when Imo > 0, |o| > C4.

Suppose now o9 € C, Imog > 0, and Cy < |og| < Cy. Then @(ao) is invertible
by Theorem 7.1; a simple perturbation theory argument as in [Vasl3, §2.7] implies the
invertibility of ﬁ;y(a) for (7,0) in an open set around (0,00). A compactness argument
implies the existence of 0 < ~(/ such that 751,;,(0) is invertible for Cy < |o| < C1, Imo > 0,
and |y| < 7. The proposition thus holds for 7y := min(v(, () and b = by.

Perturbation arguments as in the proof of Theorem 6.1 imply, for any fized choice of

v € (0,7), the invertibility of 755,;(0) in Imo > 0 for b sufficiently close to by. The proof
is complete. O

Corollary 10.13. Let s > %, IS (—%,—%), and fix v € (0,7) as in Proposition 10.12.
Then mode stability holds for the operator Lgb0 ~ on the Schwarzschild spacetime: the op-

erator L/gb;(a): X;O’e(a) — HY2 s inwertible for o € C, Tmo >0, and o # 0.

Proof. It suffices to prove injectivity. But any h € ker L/gbo\,'y (o)N ﬁg’e satisfies

8y, Gay, 1t € ker Py, - (o) N H ™M = {0}
by Proposition 10.12, hence ngo Ric(h) = 0. The rest of the proof is the same as the proof

of the corresponding statement for L/gb;(a) in Proposition 9.1. O

In Proposition 11.3 below, we prove this for Kerr parameters b # by, the most delicate
input being a rather explicit description of the resolvent near zero energy; the latter will
rely on the non-degenerate structures used in the proof of Theorem 10.4.

Remark 10.14. Recall that besides the modified constraint propagation operator Py, =

204Gy 0 5~;‘7,Y, which controls the properties (in particular: absence of zero energy states) of
the gauge potentials of putative (generalized) zero modes of L, there is another 1-form
wave operator, 2D, Y odg, which we called the gauge potential wave operator, which controls
what gauge potentials satisfy the linearized gauge condition, and also, more generally, how
to add to a given linearized Kerr solution a pure gauge term so as to obtain a solution of
the gauge-fixed Einstein equations. A modification of the gauge condition thus affects the
latter wave operator, but not the former. Concretely then, we may modified the linearized
gauge condition to be N N N
097Ggh =0, b4~ = (65,)"

Correspondingly, the modified gauge potential wave operator is

204.,Gg 0 5; = 77;77,
that is, gauge and constraint damping modifications are formally dual to one another (but
not on the level of function spaces, as we need to work with extendible spaces for both
when studying modes of Ly, ). Using the same type of calculation as in §10.2, one can then
show that 25977Gg<5; does not have any modes in Imo > 0 (in particular, the zero energy
nullspace is trivial) when v > 2 and v > 0 is small. With the thus modified gauge, the
space of generalized scalar [ = 0 zero modes becomes 1-dimensional, spanned by a linearized
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Schwarzschild solution plus a pure gauge term (noting that the obstruction in (9.6) is now
absent). Ultimately, this leads to a reduction of the space of pure gauge solutions arising
in Theorem 1.1: it only consists of Lie derivatives along asymptotic translations, rotations,
and Lorentz boosts. In this sense, it is generated entirely by the asymptotic symmetries of
the spacetime at null infinity.

There is a minor conceptual subtlety making this work: for the linearized gauge-fixed
FEinstein operator with constraint damping, not all dual resonant states are dual-pure-gauge
anymore, see Remark 10.9, i.e. no longer lie in the kernel of both (D,Ric)* and P .; hence
the space of dual resonant states is sensitive to changes of the gauge condition, and may
indeed become smaller upon changing the gauge condition as above. On the other hand,

dual states which are dual-pure-gauge are not affected.

11. STRUCTURE OF THE RESOLVENT OF THE LINEARIZED MODIFIED GAUGE-FIXED
EINSTEIN OPERATOR

We now use Theorem 10.4 (and the non-degenerate structure of L, , going into its

proof) to show that its resolvent Iz,:y(a)_l exists for b close to bp and o € C, Imo > 0,
o # 0, see §11.1, in particular Proposition 11.3. This utilizes arguments similar to (but
more intricate, due to the more complicated generalized null space structure, than) those
used in the proof of Lemma 10.11. In §11.2, we give a precise description of the resolvent
near o = 0 as the sum of a finite rank operator which is meromorphic in ¢ with a double
pole at 0, and the ‘regular part’ which is continuous down to ¢ = 0. Subsequent sections
refine this further by establishing higher regularity of the regular part.

We remark that the results in this section imply the mode stability of slowly rotating
Kerr black holes under metric perturbations; we stress that this is due to our embedding
of the linear stability problem into an analytically non-degenerate framework, obviating the
need for arguments based separations of variables in the non-Schwarzschild black hole case.

We stress that from this point onwards, we only use structural information on L, ~
and its zero energy behavior from the previous sections (rather than explicit expressions
of (generalized) zero energy (dual) states): this is all one needs when using the general
perturbation stable Fredholm framework developed by Vasy [Vas20b, Vas20a] for the study
of resolvents on asymptotically conic spaces.

Define ¢ by (10.1) with v > 1. Let

s>5, le(-3,-3). (11.1a)
With ~g9 > 0 as in Proposition 10.12, let us henceforth fix
~ € (0,70). (11.1b)
We then put
Ly:=Lgyr, E=E(gc¢7"7), (11.1¢)

where g = gp, |b — bg| < C(7) is a slowly rotating Kerr metric. We re-define
X;’E(U) ={he I_{E’E(X; S? SE\T*X) : Z;(a)h € Irfg_l’g'i_Q(X; S? SE\T*X)}.

Moreover, we recall the (generalized) zero modes hy, 50, h,51(S), hpv1(S), ilb,s(), iLb751(S) from
Propositions 9.1 and 9.4, and denote the (generalized) zero energy dual states of L; using
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the notation of Lemma 10.5 by
hhso =My bs1(S) == hi o (S),  hpui(V) =y (V);
we also write ﬁ; s0 = 71220 etc. in the notation of Lemma 10.8, and

hb,sO = hb,sO - t*hb,sOa hz,so = h’z750 - t*hasm
etc., which is the ‘same’ as in Definition 9.5, except here we use the dual states for the
modified operator. This constitutes an abuse of notation, as these dual states are not equal

to the dual states of Proposition 9.1; however, we henceforth only work with the modified
operator Ly, thus there is no ambiguity in meaning.

11.1. Existence of the resolvent; rough description near zero energy. The deter-
mination of the structure of the resolvent relies on perturbation arguments. As in §10.2,
we first perturb L, to a ‘reference operator’ which is invertible near ¢ = 0:

Lemma 11.1. There exist V € U=°(X°; S?T*X°), with compactly supported Schwartz
kernel, and a constant C1 > 0 such that

Eb(a) = Z;(O’) +V: X;’Z(U) — ﬁ]‘;_l’g"ﬂ

is invertible for o € C, Imo > 0, |o| < C1, and |b — by| < Cy. Moreover, Ly(c)™! is
continuous in o with values in Eweak(flﬁ_l’uz, ﬁg’z) N Eop(ﬁ§_1+€’£+2+€, ﬁg_e’g_e), e > 0.

Proof. It suffices to prove the invertibility for b = by, o = 0, since arguments as in the proof
of Lemma 10.10 then imply the invertibility and continuous dependence for (b, o) close to

(bo,0). In the splittings ;" (0) = Kt @ K with K = ker Ly, (0) and A """ = R@ R*
with R = ranl//b\o(O), write

F o Lo[) 0

o= (5 1),

The main input for the perturbation theory is the fact that X and R+ have the same (finite)
dimension, namely 7. Identifying K =2 C” by choosing a basis h, ..., h7, and identifying
R+ = C7 via f — ({f, h%))j=1,..7, where hi,... h} is a basis of ker Ly, (0)* N Hb—oo,—3/2+’
it suffices (by the same arguments as in the proof of Proposition 10.3) to construct V so
that the 7 x 7 matrix

((Vhi, h}))1<ij<r (11.2)
is invertible. To do this, select hf,...,h% € C2°(X°; S*T*X°) such that ((hf,h%)) = dij;
this is possible since the h; are linearly independent distributions. Likewise, the h; are

linearly independent; thus, we can select hj, ..., % € C°(X°; S2T*X°) with (h;, hg) = 0yj.

We then set V =317_, hi(—, h). O
To set up the low energy spectral theory, we define the spaces
K50 := Chy 50, Ks.50 = Chj 50,
K51 := hps1(S1), K51 = Ny, 50(S1),
Kb,s == K50 ® Kps1, Kps = Kps0 DKy s15 (11.3)
Kbw = hy1(V1), Kpo = 1 (V1),

Ky = ’Cb,s D ]Cbﬂ,, /CZ = ]C;;S D ’C;v.
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The reason for combining the scalar [ = 0 and scalar [ = 1 spaces is that f/\b(a) will be more
singular on both of them due to the existence of linearly growing solutions with leading
terms in Kp 5. For Ly(o) as in Lemma 11.1, we set

Kb, = Ly(0)Cys5 (j = 0,1),
/Eb,s = Ly (0) Ky s,
Kb = Ly(0)Kp0

Ky = /Eb,s D ]Eb,v-

(11.4)

By definition of L;(0), these are subspaces of C2°(X°; S?T*X°) which depend continuously
on b. We fix a b-independent complementary subspace K+ C H§_1’2+2 of Kp. (In §11.2
below, we will choose this complementary subspace more carefully.)

We decompose the target space ]E[E_l’eJr2 into the range of E)(O) and a complement. To
do this in a continuous (in b) manner, we prove a slight generalization of the procedure
used in the proof of Lemma 11.1:

Lemma 11.2. There exists a linear projection map Hf;: H§_1’€+2 — I:If;_l’e“ which is of
rank 7, depends continuously on b near by in the norm topology, and satisfies
(I-TH)f,R*) =0 Yh*eKk;.

The Schwartz kernel of HbL can be chosen to be independent of s, ¢ satisfying (11.1a).

Proof. Let hj,,...,h;, € Hg—s,—1/2— denote a basis of Kj which depends continuously on
b, and fix hti, cee hﬁ7 € C°(X°) for which the matrix A, = (.Ab’ij) = (<h§, hj, ;)) is invertible
for b = by, hence for nearby b. Therefore, there exists (p;f ), continuous in b, such that
EzzlpZ]Ab,ik = ;5. We then put II;- = pijh§<—, hg’j>, which satisfies all requirements. [

Defining the complementary projection

I = I —TIj: E§—1,4+2 — ranIl, = ann K = ran Ly (0),

x;4(0)
we then split domain and target according to
domain: E§—1,£+2 ~ Kl o i@s @ /Eb,v,

. (11.5)
target: H§—1,£+2 =~ ranIl, @ Ry © Ry,

where RSL, resp. Ri, is a space of dimension dim Ky, s = 4, resp. dim Ky, , = 3, chosen

such that the L2-pairing Ry x IC; s — C, resp. R x IC;W — C, is non-degenerate. (We can

choose Rj-/v to be a subspace of C2°(X°; S2T*X°).) Via these pairings, we can identify
Ry = (Kh.)' Ry = (KG)"

we shall use these identifications implicitly below.

We now prove that the resolvent at o # 0, Imo > 0, exists; in the course of the proof,
we will obtain a rough description of its structure near ¢ = 0, which we will successively
improve later on.
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Proposition 11.3. Fizs,{,v asin (11.1a)~(11.1b). For small Cy > 0 and Kerr parameters
b e RY |b—by| < Co, the operator Ly(o): X;’e(a) — .F_I]‘;_l’“z is invertible for o € C,
Imo >0, 0#0.

Proof. This is the content of Corollary 10.13 when b = by. The key facts we will use in the
proof for b near by when o is near 0 are:

(1) the zero energy nullspace K is 7-dimensional, and the generalized zero energy
nullspace I/C\b is 11-dimensional, with both depending continuously on b in the
Poly(t*)lflﬁo —1/2- topology, see Theorem 10.4; similarly for the spaces K; and I%Z
of (generalized) dual states at zero energy in view of Lemmas 10.5 and 10.8;

(2) suitable pairings, such as (9.10), between (generalized) zero energy states and dual
states are non-degenerate for b = by, which persists for b near bg; this was already
exploited in the proof of Theorem 10.4.

We recall that such pairings are closely related to properties of the Taylor expansion of E,(a)
at 0 = 0, as was already exploited in the proof of mode stability for the modified constraint
propagation operator in Proposition 10.12, see in particular equations (10.16)—(10.17).

Concretely then, we shall determine the structure of the operator
f/\b(a)fjb(a)_lz Hsfl,zw _ Hgfuﬂ
when (b,0), Imo > 0, lies in a neighborhood of (bg,0), and prove its invertibility for non-
zero o. Thus, there is a fized constant 6 > 0 such that for all Kerr parameters b close to
bo, Lp(o) is invertible for 0 < |o| < 4, Imo > 0. Given such § > 0, and using high energy

estimates as well as perturbative arguments (starting with the mode stability of Lj,) in
compact subsets of {Imo > 0, 0 # 0} as in the proof of Proposition 10.12, the operator

z\b(a) is invertible for |o| > § > 0 when |b— by| is sufficiently small, proving the proposition.

In the splittings (11.5) of ﬁg_l’éH, we write

L Loo Lot Lo2
Ly(o)Ly(o) ™ = [ Lo Lu Liz|, L= Lijb,o0); (11.6)
Lao Lot Lo

for instance, Loo(b, o) := Hbf/;(o)lv/b(a)\,@. Since the range of f/\b(a) is annihilated by X,
we have Lig(b,0) = Log(b,0) = 0; likewise, f};(g)mb = 0 implies that

Lo Loz
Lyer := | L11 L12
Loy Lo

satisfies Lie (b, 0) = 0. Lastly, Loo(bo, 0) is invertible.

o Uniform invertibility of (0,0) entry. The first step of our analysis of f/\b(o)lv)b(o)_l is
the analogue of (10.20) in the present setting (and proved in the same manner): there exists
a uniform constant C' < oo such that for (b, o) near (bg,0),

| Loo (b, 0’)_1HRH,@ <C. (11.7)

o Differentiability of Lij, (,7) # (0,0). The next step is the analogue of the differentia-
bility of (10.23), namely the differentiability of Ly, (b, O’)?L at 0 =0 for h = Ly(0)h, h € Ky,
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with uniform control of the error term of the Taylor expansion. The key is that

(Ly(0) ™" = Ly(0) )b = Ly(0) ™" (Ly(0) — L(0))h, (11.8)
as follows from a regularization argument as in [Vas20b, §4]. But
Ly(0) = Ly(0) = Ly(0) — Ly(0) = ~005Ly(0) — §0°95L(0), (11.9)

with 83@(0) € p?C>®(X;End(525T*X)) decaying quadratically in r. Thus, using the
continuity properties of Ly(c)~! proved in Lemma 11.1, we conclude that

Lo(@)Ly(o) ™ (La(0)h) = (I = VLy(0) ") (Lo(0)h)
= Ly(0)h — VLy(0) "1 (L(0) — Ly(o))h (11.10)
= oV Ly(0) "0, Ly (0)h + O(lo*)h,
where the error term (which in fact maps into C2°) is measured using the operator norm
on E(Kb,ﬂg_l’gﬁ). Now note that &,f/\b(O)h € .F_Igo’g/% since &,E(O) € pDiffl, and
heKy,CHS 127 4 quadratically decaying. Therefore,

Ly(0) " 0, Ly(0)h € O™ (11.11)
is continuous down to o = 0, and hence
Ly(0) Ly(0) " (Lp(0)h) = oV Ly(0) " 85 Lp(0) + of|o ), (11.12)

proving the desired differentiability. (The o(|o|) remainder here, as well as in subsequent
calculations, is uniform in b, and is in fact uniformly (in b) bounded in norm by C|o|!*®
for some o > 0 and for some uniform constant C' > 0; this follows from the fact that Ly(o)
is in fact Holder-a regular at ¢ = 0, with uniform Holder constant, when one strengthens
the domain or relaxes the target space, see Proposition 12.5 below.)

A crucial observation for subsequent arguments is that the continuity of (11.11) holds
provided merely h € pC>® + FISO 1/ 2_, i.e. an r~! leading term is acceptable too; this relies

on the fact that the normal operator of OUE;(O) is —2p(pD,+1) by Lemma 4.2, which maps
pC>® — p3C>, i.e. gains one more order of decay than a priori expected from an element of
pDiffy,. (This was already exploited in the proof of Lemma 10.11 around equation (10.25).)

Similar arguments give the differentiability of Lig & Log at 0 = 0. Indeed, for f € Kkt
and h* € K}, we need to compute
(Lo(0) Lo(0) 7 £, h%) = (f, (Lo(0) ™) Lo(0)*h*) = (£, h*) = (£, (Lo(0) )" VA7),
where we can rewrite the second term by means of

(Lo(0) ™) V™ = (Lp(0) ™) V" + ((Le(0) ™) = (Lo(0)™1)") Ly(0)* o (Lp(0) )" V™. (11.13)

Since V* has compactly supported (in (X°)?) smooth Schwartz kernel, we have

(Lp(0)"1)*V* = (Lp(0))"'V*: 2/(X°) — pC™ + H,, V7 (X). (11.14)
Therefore, we can rewrite the second term in (11.13) as
(Lo(0)1)* (L(0)* = Lp(0)*) o (Lp(0) ")V
by Taylor expansion as in (11.9) we conclude that

(Ly(0) ") V*h* = (Ly(0) ") VF*R* — o(Lp(0) 1) * 0y Lo (0)*(Lp(0) ") V*R* + o(|o|)h*.
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The error term here is measured in the norm topology on L(K}, I-'[b_sﬂ’_é_Q).
o Coefficients of o. We next compute the leading coefficient of some of the L;;. For
§ = 1,2, we rewrite (11.12) for h € K using V = Ly(0) — ZZ(O) as
Ly(0) Ly(0) " Ly(0)h = o (I — Ly(0) Ly(0))3s L (0)h + o([or]).
Pairing this against an element h* € K, the coefficient of o is
(05 Ly (0)h, h*) — (Ly(0) =0y Ly(0)h, Ly (0)*R). (11.15)

Consider this first for h = hy,1(V) € Ky, B* = hi (V') € K, V,V' € V1. Then the
second summand in (11.15) vanishes, and the first summand gives a non-degenerate pairing
on Ky, x K, = Vi x Vi by continuity from (9.10). Thus, 9,L22(b,0) is invertible, and so

0 Loy (b, o) is invertible for (b, o) near (bg,0). (11.16)

Taking h € Ky, still, but now h* = hj , € K}, the second summand in (11.15) still
vanishes, and now the first summand does, too; likewise for A* = h; 41(S). Indeed,

0o Lp(0)"hj g = =il L tu]hj g9 = —iLo (] 50 — B 0) = iL5(0) i 0, (11.17)
which gives
(Do Lp(0)h, 1*) = (h, 0 Ly(0)*h") = —i(h, Ly(0)* B y0) = —i{Lo(O)h, B ) = 0. (11.18)
For h € K s and h* € K}, the pairing (11.15) vanishes, too, since
(0 Ly(0) o0, h*) = ¢<Lb<o>7zb,so, W) = illn,s0, Lu(0)"h*) = 0.
We have thus proved that
0yL11(b,0) = 0,L12(b,0) = 0,L21(b,0) = 0. (11.19)
For h € Ky s, the conclusions for L1 and Lg; imply Hbl&,\UZO(EZ(U)Lb(U)_lLb(O)h) = 0;
therefore, on K 5, we have 0yLo1(b,0) = Oy (Ly(0) Ly(0) ™) |y=0, SO
0 Lo1(b, 0) (L (0)h) lo=0 = iV Lp(0) " Ly (0) (11.20)
=i(V = VLy(0)""V)h, where Ly(t,h+ h) = 0. '
(Note that the right hand side only depends on h mod Kp.) Similarly, using
(Ly(0) " V*h* = h* — (Ly(0) 1) *Ly(0)*h* = h*, h* € Kf, (11.21)
we have, for f € KL and h* € K s
(05 L10(b,0) f, ") o=0 = (£, (L5(0) ™) 0o Ly(0)*(L(0) 1) VA7)
= —i(f, (I — (Ly(0)"H)*V*)h*), where Li(t.h* +h*) =0
(The right hand side only depends on h* mod IC; by (11.21).)

(11.22)

e Leading order term of L11. In order to capture Lb( )Ly(0)~! in a non-degenerate man-
ner, we must compute more terms in the Taylor expansion of Li; at ¢ = 0. Consider thus
h € Ky and h* € Kj , then, in view of (11.10), (11.19), and (11.21),

(Ly() Ly(0) ~ (Ly(0)h), h*)
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= (VLy(0) " (005 Ly(0) + % 02Ly(0))h, 1Y) (11.23)
= (VLy(0) "G 02Lp(0)h, h*) + (V(Ly(0) ™ = Ly(0) )00y Ly (0)h, 1Y)
2(3(VLy(0) 1 02L4(0)h, h¥)
— (0 Lo(0)h, (Lo(0) ™) (Do Lo (0)" + $O2L4(0)") (Ly(0) ™) V*R") )
= 0> (L2 Ta(0)h, (Eal0) 1) VHY)
— (0, Lo(0)h, (Ly(o) ™) (Do L (0)" + SO2L4(0))1") ).

This is equal to o2 times a constant depending bilinearly on (h, h*), plus a o(|o|?) remainder.
To evaluate the constant, we introduce the pairing

Cys(h, 1) == =L ([[Lo, t], tu]h + 2[Ly, R, B7), (B, BY) € Ky x K. (11.25)

Recall from (9.28) that ¢ s(h, —) = 0 € (K} ,)* only if there exists a quadratically growing
generalized zero mode with leading coefficient h; thus, this is a non-degenerate pairing in
view of the absence of such modes, see Theorem 10.4. Then, with h,h* as in (11.20),
(11.22), and using (11.21) again to simplify the first pairing in (11.24) for o = 0, we have

(102L11(b,0)h, 1) = (102Ly(0)h — Dy Ly (0) Ly (0) ™ 05 Ly (0) A, *)

(=L, t.], t:]h — 105 Ly(0) Ly (0) " Ly(0)h, h*)

= —3([[Ly, t.), b+ 2[Lo, tu]h, h*) + (106 Ly (0) Ly(0) 'V I, h¥)
= b5 (h, ") + (V = VLy(0) V) A, B¥).

(11.24)

(11.26)

Now, if we were only considering the top left 2 x 2 minor of (11.6),%
Loo Loi\ _ (O(1) O(o)
Lo L1 O(o) 0O(0?))"
its invertibility near o = 0 would be guaranteed provided 0_2(L11 —L10L501L01) = %831111 —

OyL1g © Laol o OyLp1 induces a non-degenerate pairing on /Eb,s X ICZ,35 but the calcula-
tions (11.20) and (11.22) imply

<8JL10(b, O)Log(b, 0)7180[/01 (b, O)Lb(O)h, ]’L*> = —i<8JL01(b, O)Eb( )
= (V= VLy(0)'V)h, h").
In view of the non-degeneracy of (11.25), this implies that
L4, (b,0) := 072 (L11(b,0) — Lig(b, o) Loo(b, o) " Lo1 (b, o))

is invertible for (b, o) near (bo,0).

)

(11.27)

We also note that the calculation (11.24) works also for h € Iy 5, h* € K0 as well as
for h € Ky, h* € IC;S, implying that

Lia(b,0), Lai(b,0) = O(|a]?); (11.28)

20This in particular fully captures, on Schwarzschild spacetimes, the action of the operator Z\b(o)ib(o)_l
on symmetric 2-tensors which do not have a vector [ = 1 component, i.e. its invertibility for b = bg is necessary
for the invertibility of the full operator.
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in fact, they are equal to 02E12(b, o), a2i21(b, o), with L1s and Ls; continuous at o = 0.
Furthermore, for h € Ky, and h* € K, the calculation (11.24) is valid upon adding

the linear (in o) term (VLb(O)*laﬁgZ;(O)h, h*) (which we recall was zero when one of h, h*

lied in ICI()*S)) in each line after (11.23). This proves the following strengthening of (11.16):

0 Loy (b,0) = by + O(0]),  low(hy BY) = (—i[Ls, t]h, h*),

o (11.29)
as bilinear forms Ky, x K, — C.

e The inverse of Ly(c)Ly(c)~'. Equipped with the information from (11.7), (11.16),
(11.19), (11.27), and (11.28), we can now write

. Lo oLow Lo
Ly(0)Ly(o) ™! = oLig 0’Lu o°Lia |, (11.30)
oLy 0%Lyy  oLg

with tacit dependence on (b, o), and solve

Ly(o)Ly(o) h=f,  h=(hohi,ha), f=(fo.f1, o)

for small o # 0 by first solving the first component of this equation for Eo (using (11.7)),

then the third component for hy (using (11.16)), and then the second component for A
(using (11.27). This gives
~ —~ 1 éog 0_1}:201 EOZ
Ry(0) := (Lo(0)Lo(0)™") " = |07 'Rig 0 2Ri1 o0 'Ry (11.31)
Ryy o 'Ry o 'Ry

in the splittings (11.5), where the }Nﬁij = éij(b, o) are continuous in o. Explicitly, set

Zgj = zij—zioLaolioj, Eb] = zij—O'INJioLaolzoj, Eil = z§1—0z§2(zg2)_lzﬁ21, (1132)

(2

and recall from (11.7), (11.25), and (11.16) that Loo, E§1 (hence qu for small o), and Las
(hence L), for small o) are invertible. The singular terms in (11.31) are then given by

Ry = _(LEOIEOI - UL()_Olz()Q(ng)_lZgl)Ell’
Ryg = =R (LioLog — 0 Liy(L39) ™ LaoLyg ),

_ _ S (11.33)
R = (L), Rip = —RiLijy(Lap)
Ryy = —(Lyy) "' L%, Ry, Ry = (L)™' — o(Lby) 'L Rua.
Since Ly(o) is invertible, the expression (11.31), together with
Ly(0)™! = Ly(0) ™' Re(0), (11.34)

explicitly demonstrates the invertibility of E;(J) for 0 < |o| < Cp, Imo > 0, and |b — by| <
Cy, when Cy > 0 is sufficiently small. O
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11.2. Precise structure of the resolvent near zero energy. We continue using the
notation of the proof of Proposition 11.3. The formula (11.34) for the resolvent in terms
of (11.31) is not yet satisfactory for the purpose of solving the wave equation Lyh = f by
means of the inverse Fourier transform, h(o) = f}\b(a)_l f(0). Recall that the inverse Fourier
transform of a term o=, read as (o +i0)~%, has asymptotic behavior t>~1; the (1,0), (1,2),
(2,1), and (2, 2) entries are thus already acceptable since they produce stationary terms in
Kp. This is not the case for the (0, 1) term, as it produces a stationary term lying in an as of
yet uncontrolled subspace of ﬁ{:’z. Note also that the (1,1) term is only controlled modulo
o(|a|72) (or really O(|o|~2+®) for some a > 0), which is not precise enough to allow for a
useful description of the asymptotic behavior it produces (control of the time dependence
being the issue); some degree of conormal regularity would be sufficient to prove that it
produces a pure gauge solution modulo a decaying tail.?!

Rather than fixing these issues minimalistically for the purpose of obtaining a rather
weak linear stability result (as far as decay is concerned), we proceed to obtain a complete
description of the singular part of the resolvent. The two main ingredients are:

(1) a more careful choice of Ly(c) and of the splittings (11.5) ensures that the (1,0)
and (0,1) components of Ry(c) are regular at o = 0. This is set up in Lemma 11.7
and explained in the first step of the proof of Theorem 11.5;

(2) the r—! leading order behavior not only of zero energy states but also of the sta-
tionary parts of generalized (dual) zero energy states, see Lemmas 9.6 and 10.8,

enables us to Taylor expand certain components of Ly(o)Ly(c)~" to high order.
(The relevance of having such leading order terms was already indicated in the
second paragraph after equation (11.12).)

Definition 11.4. Recall the spaces K = Ky s @ Ky, and K from (11.3). For hy = hy 55 €
Kp,s, set hs = lvzb’sj in the notation of Definition 9.5, so that Ly(t.hs + ES) = 0. We then

define the non-degenerate (for b = by and thus for nearby b) sesquilinear pairing
ky: Ky X KZ —C

N y . (11.35)

ko ((hs, hy), h°) == (5 ([[Los ts], telhs + 2[Lo, tulhs) + [Lp, t]ho, K.

Theorem 11.5. For (b,0), Imo > 0, in a small neighborhood of (by,0) we have
Ly(0) "' = Py(o) + Ly (0): HEV2(X; 82T X) — HYY(X; §2%T* X).

Here, the regular part L, (o) has uniformly bounded operator norm, and is continuous with
values in Eweak(ﬁ§_1’£+2,ﬁg’€) N Eop(ﬁ§_1+e’£+2+e,ﬁl‘j_e’z_e), € > 0. The principal part
Py(0) is a quadratic polynomial in o~ with finite rank coefficients; explicitly,*

Py(o)f = (=0 2hs 4+ io ' hy) + io L (K, + hy), (11.36)
where hg, h, € Ky s and hy € Ky, are uniquely determined by the conditions

ko ((hs, ho), h*) = (f,h*)  for all B* € K, (11.37a)

21As an illustration, note that t1=*hy 50 — g, (ti™%wp s0) = O(t7 ).
22We take these signs and factors of i because of F~'(i(c+i0) ') = H(t.), F~ ' (—(04i0)~2) = t. H(t.).
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and
ko(h, %) = —(3[[Los ta], 1l (s + ho), BE) — (f, )
+ <§([[vat*]at*]hs + Q[Lb,t*]hs) + [Ly, ty]hy, 71;‘> for all b € Kj .
(11.37b)

Remark 11.6. If we ask only that the tensor A, be any stationary solution of Ly(t.hs + D ) =

0, then we can re-define hs as hg + h,, and subsequently set h, = 0. Keeping h, = 0, the
term hg is then only well-defined modulo K ; it is easy to check that changing hs to
hs + R, B! € Ky, changes R, to B, — h! according to (11.37a)~(11.37b). Therefore, the
description (11.36) of the principal part is well-defined independently of the choice of hs.
Similarly, the choice of FL: is immaterial.

We first show that that the (0,1) and (1,0) components of E(U)Lb(a)_l in (11.30) can
be made to vanish quadratically at ¢ = 0 by a more careful choice of the operator Eb(a)
and the space K+ in (11.5); this uses the explicit form (11.20) and (11.22) of 9, Ly, 8y Lo:
at 0 = 0. To this end, we refine Lemma 11.1 as follows:

Lemma 11.7. There exists Vi, € W=°(X°; S2T*X°) which is continuous in b with uni-
formly compactly supported Schwartz kernel, such that

Ly(0) = Ly(0) + Vy: X (0) — Hy M2
satisfies the conclusions of Lemma 11.1, and 50 that moreover for a suitably chosen (con-
tinuous in b) complementary subspace Ki- of Ky = Ly(0)Kp = V4(Ky), we have
Voh =0, h €Kp:=Chyso® hps1(S1), (11.38)
(f, (I = (Lo(0) )V )Ry =0, R* €Ky :=Chi @ hya(S1), feK;. — (11.39)
Proof. As argued around equation (11.2), the conclusions of Lemma 11.1 are satisfied pro-
vided Vj,: 2/'(X°) — C°(X°) induces an injective map
Wolie, : Ky — (Kp)* (11.40a)
Moreover, one can find I%g- such that (11.39) holds iff (I — (I:b(())*l)*Vb*)lé; Nann(K,) = 0,
which upon applying the invertible map L;(0)* is equivalent to
Ly(0)*K; N Ly(0)* ann(Vi(Kp)) = 0. (11.40D)
We proceed to arrange (11.38), (11.40a), and (11.40b). Fix bases {hp1,..., ks 7} of Ky
and {h; 1, ..., hj 7} of Kj which depend continuously on b. Fix moreover hg o hzﬂ- €CX(X°)
satisfying <h2’i, hp ;) = 6ij and (he;, hZ,j> = 0;;; we make the ansatz

7
Vo= Vii+ Vi, Vo= hi(— hp.);
i=1
if we choose V}, 5 such that ICy C ker V3 o, then (11.40a) holds.
Next, (11.38) holds if Ky C ker Vp2 and if we choose the hl;;,j to also satisfy hkl’),j 1 K for
j=1,...,7. The latter can be arranged iff

Ky N K, = 0. (11.41)
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This holds true for b = by by inspection of the expressions in Proposition 9.1. Indeed,
elements of K, are of size O(r—2) with non-zero r=2 coefficients, which implies that the
clements of K;, must have a non-vanishing ! leading term; see the proof of Lemma 9.6.
A better (in that it does not rely on any explicit calculations) perspective on (11.41) is
the following: if 0 # h € Ky, there exists a function F' € C°(X°) such that Ly(Fh) #

0; indeed, the space C2°(X°)h is infinite-dimensional, while ker Ly N Hy® —1/2-
dimensional. But

is finite-

Ly((ts + F)h + (h — Fh)) = 0;
this means that if we work with ¢, + F' instead of ¢, to define h and the spectral family
Ly(o) (note that Ly(0) is unaffected by such a change), then h changes by —Fh ¢ ker L(0).
Therefore, we can always arrange (11.41) upon changing ¢, in a compact subset of X° (by
an arbitrarily small amount). For later use, we also note that
KinK; = 0; (11.42)

this can again be either checked explicitly for b = by and the unmodified operator L9b0707
and thus holds by continuity for nearby b; or it can be arranged by slightly modifying t,.

It remains to arrange (11.40b) and the extra condition p & Ky, C Vb,2. Assuming the
latter, we have Vj(KCp) = Vp 1(Kp) =ran V4 1, and (11.40b) is then equivalent to

Ly(0)*Ks N (Lp(0) + Vo) * (ker Vi) = 0.

r—s+1,—042
C H,

We arrange the stronger condition in which ker V;*; is replaced by the full

SH’HQ; this is then equivalent to the requirement that

Ly(0)"K5 — (ker(Lp(0) + Vh2))"
be injective. (Note that in view of (11.42), the space on the left is 4-dimensional and depends

space Hl;

continuously on b.) To arrange this, choose a continuous (in b) basis {71;1, ol 7LZ 4} of I%Z;,
and continuously select hgﬂ, .+, by 4 € C° with the property that Hy := span{hgm by}
and Kj, @ K have trivial intersection, and such that @\b(O)*}ULZ,Z-, hy, ;) = 0ij. We then want
to define V} 2 so that h;m € ker(Ly(0) + Vp2) for j =1,...,4; this holds provided we define
Vp2 as a rank 4 operator which assigns hz,j — —Lb(O)hZJ, while on a complement of Hj

depending continuously on b and containing p & Iéb, we let V9 = 0. [l

Proof of Theorem 11.5. We continue where the proof of Proposition 11.3 ended, and in
particular use the notation (11.30)(11.33); however, now we use Ly(0) = E\b(O) +V, as well
as the complement lgbl of Izb defined by Lemma 11.7. Note that the arguments in the proof
of Proposition 11.3 are unaffected by our more careful choice of V} and l%b, IEbL

e Quadratic vanishing of Lg1 and Lig. Lemma 11.7 now gives
o 'Lo1(b,0), o Lig(b,0) = 0(1), o — 0.
This can be strengthened further: for h* € Ky ., we compute, using (11.17),
(Lo) 1Y Virh* = b* + ((Ly(o) )" = (Lo(0) ™)) Lo(0) R
= h* — (Ly(0) ™) (005 Lo (0)* + & OZLy(0)*) 1* (11.43)
= 1" —io(Ly(o0) ) Ly(0) R — 5 (Ly(0) ') 0Ly (0)"h"
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v

= h* —ioh* + io(Ly(o) ) ViRt + io(Ly(o) 1) * (Ly(o)* — Ly(0)*)h*
— 5 (Lo(0) ™) 5Ly (0) D"

= 1" —io(I = (Ly(0) ™) Vi)h* = o ((Lo(0) )" J02La(0) D"

) o N ) o (11.44)

— i(Ly(0) ™) (9o Lp(0)* + §7Ly(0)*)(I — (Lb(O)‘l)*%*)h*);

here, we used Lemma 10.8 to justify the rewriting of the fourth term in the penultimate
line when passing to the last line. Thus, for f € ICZJ;,

(L1o(b, 0) f, 1) = (f, (I = (Lo(o) ") V) h*) (11.45)

has a Taylor expansion in ¢ up to quadratic terms, with o(|o|?) remainder; in fact, the
calculation (11.44) and Lemma 11.7 show that Lig(b,o) = O(|o|?) in operator norm.

Similarly, for h € Ky 5, we have
Ly(0)Ly(0) " Ly(0)h
= Ly(0)h — Vi Ly(o) " Ly(0) R
= Vi Ly(0) " (005 Ly(0) + G 82Ly(0))h (11.46)
= ioVyLy(0) ' Ly(0)h + G Vi Ly (0) 192 Ly (0)
= io(Vy — VoLp(0) " Vi)h
+ 02V Ly(0) 7 (302Lp(0)h — i(05 Ly (0) + §02Ls(0))R)
= Vi Ly(0) 1 (302Lu(0)h — i(95 Ly (0) + 02L4(0))R), (11.47)

where we used Lemma 9.6 to justify the penultimate equality, and Lemma 11.7 for the final
one. Recall now that L1, and Lo vanish quadratically at ¢ = 0, and in fact have a Taylor
expansion with o(|o|?) error term, by (11.28). We thus conclude that

Loy (b, 0) Ly(0)h = Ly(0) Ly(0) " Ly(0)h — (L11.(b, &) + Lo (b, 0)) Ly (0)
has a Taylor expansion modulo o(|o|?), with vanishing linear (in o) term.
(

In summary, in the expression (11.30) for Ly(c')Ly(c) ™!, we now have

Loy = oLy, Lig=oL}, (11.48)

with Lj), and L/, continuous at o = 0 and of size O(1) in operator norm. In view of (11.33),
this immediately implies that the entries 0~ ' Rg; and 0! Ry of the inverse Ry(o) in (11.32)
are in fact regular (bounded and continuous) at o = 0.

For the remainder of the proof, to simplify notation, we shall denote by ‘O operators
which are ¢% times a o-dependent family of operators which is continuous at o = 0.

e Control of fin mod O2. This is the most delicate calculation; it requires calculat-

ing Egl mod 0? = ﬁll — aiﬁzigﬁgl. The factor l~}2_21 is already controlled modulo O!
by (11.29); it thus remains to control

Egl = Ell — 025’10L601E61 = ZH mod (92,

as well as

E§2 = Elg — JE&OLEOIEOQ = zm mod Ol, Zgl = Egl — UEQQLEOIE(H = Zgl mod Ol.
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— Control of EH modulo ©*. We wish to expand Zn two orders further than before,
requiring a fourth order Taylor expansion of the pairing

(Ly(0) Lo(0) " (Ly(0)h), h*), € Kys, h* €Kiy, (11.49)

see (11.23). As above, the relevant structure will be that &,z\b(())h = zi\b(O)FL, with A
having a r~! leading term by Lemma 9.6; recall that such a leading term (rather than, say,

r~Llogr) is key for a rewriting (11.8) (with A taking the role of h there) to be valid. This
allows the Taylor expansion to be taken one order further; using the same structure for
dual states, i.e. 0,Lp(0)*h* = iLy(0)*h* plus Lemma 10.8, gives another order.

Concretely then, starting with (11.23), we wish to calculate
(VoLy(0) 18, Ly (0) o, ) + Z (Vo Lp(0) ' 02Ly(0)h, h*)  mod OP. (11.50)

Let us begin with the second term, which, for later use, we expand further than necessary
at this point. Write fo = §2Ly(0)h € H,° 5/2= (which gains two orders of decay relative to

h e ﬁﬁo’lm_ by Lemma 4.2) and hy = Ly(0) "' fo € pC™ + E[ﬁo’lﬂ_, then 20~ times the
second term in (11.50) is

(VoLo() ™ o, h*) = (VoL (0) " fo, ") = (Vo L(0) "' 005 Ly (0) 2, h*) (11.51)
— (VoLp(0) "1 % 02Lp(0) ha, h*).

In the last term, we can integrate by parts and expand (Lb(a)_l)*Vb*h* up to O? errors
using (11.44), contributing a o? leading order term and a 0% remainder to (11.51). The
second term of (11.51) times o~! on the other hand is, modulo O?, equal to (using (11.21))

— (95 Lp(0)ha, (Ly(0) ™) Vi h™)
= — (0o Ly(0)ha, 1) + (05 Ly(0)ha, (Lo() ™) 00, Ly (0)*h*),
with the second term equal to
— 1005 Ly (0)ha, (Ly(0) 1) Ly(0)"R)
= i0(0y Ly(0)ha, (Ly(0) ") Vi h*) — i0(0, Ly (0) by, h*)
— (05 Ly (0)ha, (Lo(o) )" = (Ly(0) 7)) Ly(0)*h¥).
Using Lemma 10.8, the last summand can be re-parenthesized to
i0(0 Ly(0)ha, (Ly(0) ™) (Ly(0) = Ly(0))h*) = O,

Altogether, we have shown that (11.51) has a Taylor expansion at ¢ = 0 up to a O3 error.
Thus, the second term in (11.50) is controlled modulo O%.

The analysis of the first term of (11.50) is similar: it equals
i(VoLy(0) " Ly(0) R, h*) = —i(ViyLy(0) " (Voh), h*) + i (Vi Ly () " Lo (0) R, h*):;

the first term has an expansion modulo O3 just like (11.51), while the second one has a
leading term (V3 h, h*) plus an error (again using Lemma 9.6)

i(VoLy(0) " (005 Ly (0) + G O2Ly(0))h, h*) = i{(005Ly(0) + G 02Ly(0)h, (Lu(0) ™) Vi ).
Using (11.44), this has an expansion modulo O3.
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— Cmyffol of Elg and E21 modulo O'. For Elg, we need to compute, modulo O3, the
pairing (Ly(0)Ly(0) "1 Ly(0)h, h*) for h € Ky and h* € K3+ Using (11.47), we need
102 (VyLp(0) " 02 Ly (0)h, h*) — ia? (Vo Ly(0) " 85 Lyp(0)h, h*) mod O,
Integrating by parts in each term, and using the equality (11.43) (which _is valid also for

h* € ICZJ)) gives a o2 leading term plus a @3 remainder. The argument for Lo; is analogous,
now using the full strength of (11.47) but only the expansion (11.46) for h € Iy .

e Control of fﬁlg, fﬁgl, Egg modulo O'. We now use the explicit formulas (11.33). The ex-

pansion for Ezg follows from that of E%Q = Egz mod O!, which was already proved in (11.29)
(where an inspection of the argument shows that the error term is indeed o times a family

of operators which is continuous at o = 0). For Elg and }Aégl on the other hand, we use the
expansion modulo O! of ng and Lis, resp. Loy, together with that of Ry;.

We have thus established
_ o . Roo Ry Roy
Ry(0) = (Ly(o) (o)1) = Rig o Pu+Ry o 'Pia+ Ry, (11.52)
Ry 0'_1P21 + R/21 O'_1P22 + R/QQ,
where the éij = Eij(b, o) and E;j = Egj(b, o) have uniformly bounded operator norm for
(b, o) near (bo,0) (and are in fact continuous at o = 0), while P11 = Pyy(b,0) is linear in o,
and for (i,7) = (1,2),(2,1),(2,2), P;j = P,;j(b) is o-independent.
e Expansion with O° errors for Z/\b(a)*l. We now compute E\b(a)*l = Ly(o) " Ry(0). To

get the desired expansion, we merely need to show that Ly(c) ™| %, s resp. Ly(o)7Y %, has

a Taylor expansion modulo O? remainder, resp. O'. But for h € Ky,

Ly(0) ' Ly(0Vh = h — 0 Ly(0) 10y Ly(0)h + O = h + O, (11.53)
For h € Ky s, we can expand further: using Lemma 11.7, we have
Ly(0) " Ly(0)h = h —ich + io Ly(0) " (Ly(o) — Ly(0))h = h — ich + O, (11.54)

o Ezxplicit form of the singular part of z}\b(a)_l. The calculations (11.53)—(11.54) imply
-1

that the range of the singular coefficients of f/\b(a) is contained in K + Kp. We proceed
to determine their full structure. This can be done by keeping track of the terms in the
above Taylor expansions, or using a simple matching argument which we proceed to explain.
Thus, let f € ﬂiil’”Z, and consider

h(o) = E(J)_lf = —0 2h_y+ioc "h_y + ho + h(0),
where h(c) = o(1) in P_Ig_e’z_e, € >0,as 0 — 0. Then
f=Ly(0)h(0) = o 2Ly (0)h_»
+ 07" (~05 Ly(0)h—2 + iLy(0)h_1)
+ (—102L5(0)h_g + iy Ly(0)h_1 + Lp(0)ho) (11.55)
+ Ly(0)h(0) + 0 (502L(0)h—1 + 05 Ly (0)ho)
+ (Ly(0) = Lo(0)) hl0) + G2 Lp(0)ho.
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Therefore, h_s € Kp and GJE\b(O)h_Q = ii\b(O)h_l; this implies
hog=hs€Kys, h_1=hs+h,+h,,

for some R/, € Ky 5, hy € Ky, which proceed to determine.

Consider the equality of constant coefficients,

Ly(0)ho = f + 302Ly(0)h_s — i85 Ly(0)h_y

(11.56)
= f + Ly(0)R, + 202Ly(0)hs — 10y Ly(0) s — 105 Lp(0) e

where R, is defined relative to b/, as in Definition 11.4. Pairing this with h* € IC; (which
annihilates ran L(0)), we get

(fo ") = (A ([[Loy t), tulhs + 2[Lp, tils) + [Ly telho, h*) = Kp((hsy ho), hY)  (11.57)

using the pairing k;: Ky x Kj — C from Definition 11.4. Since this is non-degenerate, we
can uniquely determine h, (thus hs) and h, from (11.57).

Consider again (11.56); on the right hand side, the only term not yet determined by f is
R in the second term. Let us drop this term and consider the PDE

Ly(0)ho = f + $02Ly(0)hs — 05 Ly(0)hs — 105 Ly(0) (11.58)

it can be solved for BQ_E .F_Ig’Z because of (11.57); since the right hand side is uniquely
determined by f, so is hg mod Kp. By (11.56), we have

B = BQ — (h() — 71/8) € Kp.

Considering then the fourth line of (11.55) and pairing with A} € K , the term involving

E(a) does not contribute; we obtain, upon multiplication by —i and writing ko = ho+h,—h",
= —i(302Lp(0)h—1 + 05 Ly(0)ho, 1)
= (302 Lp(0) (hy + W, + hy) — 105 Ly(0)R, — 105 Ly(0)ho + i, Ly(0)h", h).

Integration by parts of the fourth term, using 9,Ly(0)*h = iLy(0)*h?, and integrating by
parts again, one gets zero since Ly(0)h” = 0. Therefore,

<%<[[Lb>t*] ]h, + 2 Lba ) > = _< Lb7 7 h +h ) [Lbat*]]_l()v h’:>’ (1159)
which uniquely determines h). We can simplify this by noting that
([Los talho, h3) = (0, Ly(0)ho, 1) = —(ho, 106 Ly (0)*h) = (ho, Ly(0)"h%)

= (Ly(0)ho, h3)
= <f7 ﬁ:) - <%([[Lb7t*],t*]hs + 2[Lb7t*]77/5) + [Lbyt*]hva E:>7

where we used (11.58) in the last line. Plugging this into (11.59) completes the proof of
Theorem 11.5. U
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12. REGULARITY OF THE RESOLVENT IN THE SPECTRAL PARAMETER

We continue using the notation from §11, so Ly = Ly, g is given by (11.1c), with v fized

—

as in (11.1b). We now study in detail the regular part L, (o) of the resolvent L(c) defined
in Theorem 11.5. In §12.1, we prove that its derivatives of order one, resp. two are bounded
by small inverse powers of || when acting between slightly relaxed function spaces; see
Theorem 12.1 and Corollary 12.3. Away from ¢ = 0, the regular part is smooth, as we
show in §12.2, together with quantitative high energy estimates for its derivatives. In §12.3
finally, we show that L, (o) is conormal at o = 0, i.e. satisfies the same bounds as L, (o)
(and its up to second derivatives) after any number of applications of ¢d,.

12.1. Regularity at low frequencies. By Lemma 4.2, and using that our constraint

damping is compactly supported, we have (omitting the bundle 52 seT* X from the notation)
Ly(0) = 20p(pD, + i) + Ly(0) + Ra(0), 121
Ry(0) € op*DiffL (X) + 0p2C®(X) + 02p2C=(X), Ly(0) € p*Diff2(X).

The operator Ly(c) = i\b(a) +V}, differs from this by the o-independent smoothing operator
V4 with Schwartz kernel of compact support in X° x X°, see Lemma 11.7

Theorem 12.1. Let £ € (—3,-1), e € (0,1), {+e€ (—3,3), and s —e > L.
or o , Imo > 0, the operator O,L; (o) maps HS > s oottt o
1) F 0, I > 0, th perat 5) Lb_ » Hks) 1,042 H{: el+e—1 F
0 < lo| <oo, Imo >0, and oo sufficiently small, we have a uniform estimate
||60'Lg(0-)||H§—1,Z+2_)H§76,Z+671 S ’U|_€. (122)
or o mo > 0, the operator ~(o) maps H> ™" — gSTiTetTe Ll por
2) F 0, I > 0, the op O2L; ps H; 1,642 i l-cfte-l p
0 <|o| <og, Imo >0, and o sufficiently small, we have a uniform estimate

Hang_(O—) s—1—e,l+e—1 S ’U’_l_€ (123)

Hﬁifl’eﬁﬁflb

Remark 12.2. In §12.3, we will see that the estimate (12.3) is a special case of the conormal
regularity at ¢ = 0 of the resolvent and its first o-derivative.

Corollary 12.3. Let {,¢e, s be as in Theorem 12.1. Then
Lb— c H3/2757((_0_070_0);c(H£—1,£+2?Flg—max(e,l/Z),f—i-e—l))‘ (12‘4)

The proof of the corollary uses an interpolation argument, a translation of (12.2)—(12.3)
into memberships of L, in weighted b-Sobolev spaces on the half-lines [0, 00) and (—oo0, 0],
and the relationship of these spaces with standard Sobolev spaces on the real line. Let us
denote by H([0,0¢)) the completion of C2°((0, o)) with respect to the norm

k
e = > 1000) ull 2 140

=0

Hardy’s inequality gives o®H([0,00)) = H"([0,00)), the latter space consisting of all re-
strictions to [0, 0p) of elements of H*(R) with support in [0, 00). Interpolation thus gives

c“H ([0, 00)) € H™™*2)([0,00)), a,a’ >0. (12.5)
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Proof of Corollary 12.3, assuming Theorem 12.1. Integration of the estimate (12.2) for the
operator d,L, (o) from o = o¢ to 0 implies

Ly (0) — L (0) € |o/>= HL([0,00); £(H: 42 m7 70079, (12.6a)

the arbitrarily small but positive loss in the |o|-weight due to the switch from the L*-based
(in o) estimate (12.2) to the L%-estimate (12.6a). Similarly, the estimate (12.3) (together
with (12.2)) implies

— —e— (75— rs—1—el—(1—e¢
(00,)°Ly (0) € lo**=HY ([0, 00); £(H; 2, ;7 707,
Since 00, L, (o) vanishes at o = 0, this implies 9, L; (o) € |o[>/2~*"H}, and therefore
— — —e— irs—1,0+2 s—1l—el—(1—¢
L; (o) — L; (0) € |o¥> HE([0, 00); L(HE™H2 B (=), (12.6b)

The advantage of working with weighted b-Sobolev spaces in the spectral parameter
o is that interpolation is immediately applicable. Thus, if € € (0, %], we interpolate be-
tween (12.6a) and (12.6b), giving
Lg(a) - Lg(O) e ’U|3/2—6—Hé+0([0’0_0);E(ﬁgfl,@rQ’Hgfefe,éf(lfe)));

in the context of (12.5), this is optimal for 6§ = % — €, giving o-regularity % — €, and b-
regularity s — % in the range. We now recall the following general fact: given two functions
uy € H5(Ry), s > 0, s ¢ %+ N, the function u(z) given by uy (z) for 2 > 0 lies in H*(R)
provided that &u (0) = u_(0) for all j € Ny, j < s — %. (This holds for s € [0,1) by
[Tay11, &4, Proposition 5.3], and follows inductively for larger s.) Since L, (o) — L, (0) as
o — =£0, this implies (12.4).

If € € [3,1), the membership (12.6b) does not give any information over (12.6a) as far
as the final o-regularity obtained from (12.5) is concerned. Thus, in this case we simply
obtain (12.4) by applying (12.5) to (12.6a). O

The proof of Theorem 12.1 will occupy the rest of this section. To simplify the book-

keeping of powers of |o| below, we introduce the following notation:

Definition 12.4. Let XY denote two normed spaces. Suppose A(c): X — Y is a family
of operators which depends on a parameter 0 # o € C. Let «, 8 € R. Then we write

Alo): |o|°X = |o|PY
if and only if there exists a constant C' > 0 such that ||A(c)||x_y < C|o|?~ for all o.
We start by studying the reference operator Ly (o), which is invertible near o = 0 with
uniformly bounded operator norm by Lemma 11.1.

Proposition 12.5. Let £ € (—3,—3), e € (0,1), L+ e € (—3,3), s > % For 0 < |o| < oy,
Imo >0, with o9 > 0 small, we have

&Tﬁb((j)fl: ﬁg—1,€+2 N |U‘felf[§—e,£+e—1’ (12.7&)

2Ly(o) 7 s HE VT s || Tireg et (12.7b)

Formally, we have 0, Ly(0) ™! = —Ly(0) " (5 Lp(0)) Ly (o)™, where
95 Ly(0) € 2p(pD, + i) + p°Diff} + p*C™ + 7 p*C*. (12.8)
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We thus in particular need to study the composition of f/b(a)_l with the b-normal operator
2p(pD, +i). Since the r~! leading order terms produced by L;(0)~! are annihilated by
pD, + i, we have an improvement in the decay rate produced by the composition:

Lemma 12.6. Let { € (-3 —%), 0<e<1, s> % Then |o| < o, o9 > 0 small,

27
p(pD, +i)Ly(o) ™' HETVH2 s || AT e (12.9a)
Ly(0) " p(pD, +i): HETOHC o~ H" (12.9b)

Proof. We have p(pD,+1)Ly(c) 7! _ifl’”Q — ﬁiil’zﬂ. On the other hand, we can write
20p(pD, + i) = Ly(0) — Lp(0) + R, R € ap®Diffy + 0pC> + o*p*C>;
since Ly(0), R: H’S’e — I:IS_MH, this gives
p(pD, +i)Ly(0) ™! = o M (I + (=Ly(0) + R)Ly(0) ) : Hy V2 — |o| 7 Hy 22,
Interpolation gives (12.9a). To get (12.9b), one interpolates between Ly(o)~'p(pD, +
i): HYY = BYY and oY1+ Ly(o) " (=Ly(0) + R)): B — |o| L HS 0

Proof of Proposition 12.5. Let ' denote a derivative with respect to o, so
(Lo(0)™") = —Ly(o) "' Ly(0) Lo(o) "

We first consider the term Lj(c)~'p(pD, + i)Ly(c)~ . The hypotheses of the Proposition
allow us to apply Ly(c)~! on the left in (12.9a), giving

Lb(U)*l: ‘U’*GETS—I—E,H—H—I s ‘U’—eﬁg—el—i—e—l

)

with uniformly bounded operator norm. The error terms in (12.8) lie in p?Diff}, and
—s—1,042 Ly(0)™t =s¢ PPDIff}  —o 110 Ly(0)t =y
b O, gt PO gt @7, g (12.10)
is uniformly bounded. This proves (12.7a). We record for further use below that
Li(o)Ly(o) ™ H7 V2 s Jo| e fp 7ottt (12.11)

We next compute the second derivative:

(Lo(o) 1) = 2Ly(0) " Ly(o) Lo(0) "' Li(0) Ly(0) ™" = Ly(o) ™ Ly (o) Ly(0) ™
=11 + Is.
Since Lg’(a) € p?C*>, the term I is bounded just like (12.10). In order to study L;, we put

§ = 1+€ € (3,1). Using (12.11), we find, using s — 6 > 5 and £ — 1 +6 € (=3, -1),

Fs— Lj(o)Ly(o)~? S s—1—
s 1,642 = |0_| 5H5 1-6,04+6+1
b b
Lj(o)Ly(o)~? o5 Fe_1_ o
b |0_| 26H§ 1 25,€+25: ’O’| eH}j 1—el+e

P (-1
Ly(o)

)

’0_’76[—{5—1—6,6—&-6—1

proving (12.7b). O
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_ The proof of Theorem 12.1 requires a precise analysis of the regular part of the inverse
Ry(0) defined in equations (11.31) and (11.52). We begin by studying the entries of the
normalized spectral family

- LO(] J2z61 O'EOQ

Ly(o)Lo(0) ™' = | 0Ly 0’Lu o®Laa |

oLy 0%Ly1  oLa

see (11.30) and (11.48). For simpler bookkeeping, we define, in the notation of (11.5),

,EO = ’Eﬁ', IEl = ﬁb,s: IEQ = Eb,vv

12.12
Ro =ranll,, Ri=RZ, Ro =R . ( )

Definition 12.7. (1) We say that an operator L(o) is e-regular at zero if for o € C,
Imo > 0, |o| small, it satisfies uniform estimates

1Lk, =, S 1 (12.13a)
105 L(o)lg, m, S lol™° (12.13b)
105 L(0) I, e, S ol (12.13¢)

(2) We say that Eij has an e-regular expansion at zero in ¢ up to order one if
Lij =LY% + oLg(0) (12.14)
where z%: IEJ- — R is o-independent and Efj (o) is e-regular.
(3) We say that L;; has an e-regular expansion at zero in ¢ up to order two if
Lij = LY + oL} + 0°L;(0), (12.15)

where L9

i Egj: IEj — R; are o-independent and Efj (0) is e-regular.

Proposition 12.8. The entries of i;(o')[:b(a)_l have the following reqularity:

(1) Loo, Ly, Lig, Loz, Lao are e-regular;
(2) Lia, Lo, Loo (and Lo1, L1p) have an e-regular expansion up to order one;
(3) Li11 has an e-regular expansion up to order two.

Proof. We make fully explicit some of the calculations already present in the proof of
Theorem 11.5; there, we showed that various entries have a Taylor expansion in o to a
certain order by using the resolvent identity multiple times, the point being that all terms

arising in this manner are either polynomials in o, or involve Lj(c)~! acting on an element

of flgl"g/ > with ¢ > %, which gives an e-regular expression by Proposition 12.5. We

demonstrate this in detail for a number of entries.
e Analysis of leo- Using (11.44)—(11.45) and (11.39), we have for f € K-, h* € K5t
(Lhof 17 = (£, 305L(0)"h")
= i( Ly(@) ™", (8, Lo(0)" + §O2L(0)*) (1 = (Lo(0) ™) Vi) ).
—3/2-v—,1/2—

Recall that (Ly(0)*)~': C°(X°) — pC>®+ H, , where the first term is supported
in r > 4mg, and where v = v(|b — by|,7y) is a small constant, continuous in (b,7) with
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v(0,0) = 0. (The output is singular only at the conormal bundle of the event horizon,
and the presence of v permits small deviations from the threshold regularity —% for the
linearized unmodified gauge-fixed Einstein operator on Schwarzschild spacetimes, see the
Proof of Theorem 4.3.) Using Lemma 10.8, we thus have

(1= (Ly(0) ) V)R € peoe o 1, 271,
which gets mﬁPped into Hg5/271”3/27 by &,E\b(O)* (using that &,EZ(O): pC>® — p3C™) as
well as by 92L(0)* € p>C®. On the other hand, Proposition 12.5 gives
Ly(o) Y f e HYY, 9 T Ly(o) M f € |o| IO = 0,1, (12.16)

The pairings above are thus well-defined since £+ ¢ > —% (which holds by assumption) and
s —€> 1 + v (which is satisfied for s —e > 7 when (b, 7) is close to (b, 0)).

e Analysis of Loo. Let fe IEL, h* € ICZ,U. Then we have

oM (Lo(0) Lo(0) " £, 1) = (Ly(0) " . (0, Lo(0)" + GE2L4(0) ). (12.17)

By (12.16), and using that 802/\1,(0)*11*, 83,@(0)%* € H];E)/Z*V’g/% (which for the former
tensor follows again from the fact that the normal operator of 9,Ly(0)* annihilates r—1),
we see that this is e-regular.

e Analysis of Ly, Lis. Let h € Kb,s, h* € Kf,,. Using the calculations (11.47) (for h)
and (11.43) (for h*), as well as using (11.21), we find that Lis(h, h*) equals
o (Lo(0)Lo(0) "' Ly(0)h, 1)

<%Lb< )" (G070 (0)h — (05 Ly(0) + §OZLo(0) A, 1)

= (305L5(0)h — 10, Ly (0)h, (Ly(0) ™) Vi h*) — 8 (Vi Ly(o) ™ 93 Ly(0)h, ")

= (2 82Lb( 0)h — i, Ly (0)h, 1)
— o (Lo(0) " (302Lp(0)h — 10, Ly (0))h, (95 Ly (0)* + 02L4(0)*)")
— 5 (B Ly(0) 5 Ly(0)h, 1),

We need to show that the o-coefficient of the last two lines is e-regular, which holds because

Ly(0)~tv is eregular for any v € Hy" /2= Note here that indeed 8(,@(0)71, 83@(0)% €

Hgo 3/2= in view of Lemma 9.6.

Let now h € Ky, h* € K .. Then (11.46) (for h) and (11.44) (for h*) give
o~ H(Ly(0) Ly(o) "L Ly (0)h, h*)
(@6 Lp(0) + GO2Ly(0)h, (Ly(o) ") Vb
M0 Lu(0)h, h*) + 1(*Ly(0)h, h*)
— (05 Ly(0) + §O2L4(0))h, i(T — (Lp(0) 1) Vg )R* + §02Ly(0)*h")
+z’a<Lb(a)*1(ang() "82Lb(0))h,
(B Ly (0)* + GO2Lp(0)*) (I — (Ly(0) 1) Vy)R*).
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The first summand vanishes by the calculation (11.18). The second and third summand
are polynomials in 0. The o-coefficient of the final term is e-regular by the same argument
as before. This shows that Lo; has an e-regular expansion up to order 1.

e Analysis of Los. For h € Ko,v, h* € K}, we compute, using (11.43) and (11.46),

“(Lo(o) Lo(o) ™ Ly (0)h, 1¥)
= (B Ly (0) + $O2Lp(0))h, (Ly(0) ™) Vi h*)
= (95 Ly(0) + §05L4(0))h, h¥)
— 0 (Ly(0) (95 Ly(0) + §OZLu(0), (9 Ln(0)" + §OZLy(0))").
The o-coefficient of the last line is e-regular by the same arguments as before.

o Analysis of Li1. The calculations in the proof of Theorem 11.5 which show that L
has a Taylor expansion to order 2 immediately imply, by means of Proposition 12.5, that
the O(o ) coefficient of L11 is e-regular; thus, Li; has an e-regular expansion up to order
two, as desired.

e Analysis of E{H. For h € Ky, s, we have

L0, Ly(0)h = 02Ty (o) Ly(0) " Ly (0)h — (L11 + Lo1) Ly (0)h.

Using (11.47) as well as the results on Ell, Lot proved already, we see that this is e-regular.
(Note here that the first operator V4 in (11.47) maps into C2°(X°).)

o Analysis of Lo2. In a similar manner, we write, for h € Ky ,,

LoaLy(0)h = 0 Ly(0) Ly(0) " Ly(0)h — (0 Lya + Lao) Ly(0)A.

In view of (11.46), the first term is regular at o = 0, and in fact is e-regular; for the second
term, e-regularity was proved above. The proof is complete.

e Analysis of Lyg. For f € K, we have
Loof = Lo(o)Ly(0) ' f = o(L1o + Lao) f
= f = ViLy(0) 7 f — o(L1o + Lao) f.

The third term was treated above. Differentiating in o, only the second term remains, and
it maps into C°(X°). Using Proposition 12.5, we see that Lgg is e-regular. ([

We next study the entries éij of Ry(c) in (11.31) and (11.52). As a preparation, we note:

Lemma 12.9. Let s,¢,¢ be as in Theorem 12.1. Let j, k € {0,1,2}. Suppose that L(o) has
an e-regular expansion up to order two of the form

L(o) = Lo + oLy + 0% La(0),

where Ly: /Ej — R; is invertible, Ly, Lo(0): /Ej — R; are bounded uniformly in o, and
Lo(o) is e-reqular. Then for o sufficiently small, L(o) is invertible, and its inverse L(o)™"
has an e-reqular expansion up to order two, in the sense that

L(a)_1 =I°+oLl' + JQLz(O'),
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where the operators L°, L': R; — lzj are bounded, and L?(o) is e-reqular in the sense
that L*(0): R; — Kj, 0,L*(0): Ri — |o|~K;, and 92L*(0): R; — |o| 17°K; (using the
notation of Definition 12.4).

Similarly, if L(c) only has an e-reqular expansion up to order one, then so does L(c)~!.
Lastly, if L(o) is e-reqular and has uniformly bounded inverse, then L(c)~" is e-regular.

Proof. Write L(c) = Lo(1+ 0Ly (L1 +0La(0))). Now ||oLy* (L1 + O'LQ(O'))H”C]__)Ej < Co,

hence L(o) is invertible for sufficiently small o by means of a Neumann series:

(Lo(1 4 oLy (L1 + 0 La(0)))) "
=Lyt — oLy L1 Lyt — 0*Ly ' La(0) Lyt

+ 02 (i(_l)kgk—2(L01(L1 + JLQ(U)))kLO1) (12.18)

k=2
= Ro+0oR; + U2R2(0).
Now, Ry(0): Ri — IE]- is bounded, and Ly'La(0)Ly"! is e-regular since Lo(o) is. Tt remains
to consider the infinite series. Differentiating it once produces terms of the form
(Lo ' (L1 + 0La(0))™ o Ly (La(o) + 0Ly(0))) o (Ly (L1 + 0La(0))) ™2 Ly
where ’ denotes differentiation in o. The third factor is bounded R; — /@, which the second
factor further maps into Ly *(R; + |o|'~“R;) C K;, and the first factor then produces K;.

Differentiating the series twice produces two types of terms: the first type is of the form
(Lo ' (L1 + 0L2(0))™ o Ly H(o Ly (o) + 2Ly(0)) o (Ly ' (L1 + o L2(0)))* Ly
mapping R; — IE]- (third factor), then into Ly'(|o|~*R; + |o|'™*R;) C |0’|_EI€]- (second

factor), and then into |o|7“kC; (first factor). The second type is of the form
(LM (L1 + 0La(0))" o Ly (La(o) + oLy (a)) o (L3 (Ly + 0 La(0)))"
o Ly (La(0) + 0Ly(0)) o (Ly ' (L1 + o La(0)))* Ly ™,
which maps R; — Ej, as desired.
The proof of the final two statements is analogous (and in fact simpler). O
Proposition 12.10. The entries of
_ . (B By R
Ry(0) = (Ly(o)Ly(o) ™) = Ry 0_2511 0_11312
Ry o 'Ry o 'Ry
have the following regqularity:
(1) Eoo, Rgl, E’lo, Eog, Ryg are e-reqular (in the sense of Lemma 12.9);

(2) Ri2, Ra1, Raa have e-reqular expansions up to order one;
(3) Ry1 has an e-reqular expansion up to order two.

Proof. First, combining Lemma 12.9 and Proposition 12.8, we see that Laol is e-regular.
Next, recall that ng = Lij—LioLaongj. By Proposition 12.8, Llil has an e-regular expansion
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up to order two, and L127 L21 have e-regular expansions up to order one. Furthermore,
L22 ng aLgoLOO Log has an e-regular expansion up to order one. Thus, hl = L’il —
aL%z(LQQ) 1Lﬁ21 has an e-regular expansion up to order two.

The e-regularity of Rj, = 0 Ro1 and R}, = 6 'Ryg follows from the explicit formu-
las (11.33) (recalling (11.48)), Proposition 12.8, and Lemma 12.9. Similarly, R1a, Ro1, Rao
have e-regular expansions up to order one by inspection of (11.33), and Ri1 has an e-regular
expansion up to order two. We calculate the remaining, regular, coefficients of Eb(o) as

Roo = Ly (I — Loy Rio — o Loa Rao),
Ros = Lgg (—Loi Ri2 — Loz Ran),
§20 = *(Egz)_l(iglﬁlo + EQOLaol);
they are thus e-regular as well. ([

We can now prove the main theorem of this section.

Proof of Theorem 12.1. We split Eb(a) into its regular and singular parts, to wit
Eb(a) = ﬁb,reg(‘j) + Eb,sing(a)y

B fioo E{n éoz N 0 0 0
Rb,reg(‘7> = ~/1() ~111 ~/12 , Rb,sing(a) =10 0_2611 0_1{)12
Roy Ry Rb, 0 07 Py o 'Py

By Theorem 11.5, we can write
2
Ly(o) =Y 0 P+ Ly (0), Pyy: BV oV (12.19)
7=1
Combining
Ry reg(U) + Rb,sing(a) = Lb(a)(Pb(U) + L, (0)),
with Ly(0) = Ly(0) + 00, Ly(0) + %Zagﬁb(O), we thus obtain
Ryreg(0) = Li(0) Ly (0) + (95 Lo (0) + §02L4(0)) Poy + 302 L1 (0) P2,
and therefore
Lb_ (O’) = Lb(U)ilngeg(O’) — Lb<0)71 ((&,ﬁb(o) + %63&,(0))3,71 + %83.&,(0)3,72). (12.20)

By Lemma 9.6, the compositions 8§f)b(0) oP, ; for j,k = 1,2 are bounded from ﬁg_l’Hz —

Hgo’3/2_. By Proposition 12.5, the second term satisfies the estimates (12.2)—(12.3). For
the first term, we compute

O (L(0) ™" Ry reg(0)) = B Liy(0) ™" © Riyyeg(0) + Li(0) ™1 0 8y Rpy e (0),
02(Ly(0) ™" Roreg(0)) = 03 Lo(0) ™" © R rea(0)
+ 205 L (0) ™! 0 0y Rpyreg(0) 4+ Li(0) ™ 0 92 Ry reg (0).
Using Propositions 12.10 and 12.5, we obtain the estimates (12.2)—(12.3). O
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12.2. Regularity at intermediate and high frequencies. We next prove the regularity

of i\b(a)*l at non-zero o in the closed upper half plane, which is significantly easier. We
recall from Theorem 4.3(2) that

Ly(o)™ " B = HYy, b= o7

is uniformly bounded for o in the closed upper half plane, away from zero. (For o restricted
to any compact set of the punctured (at zero) closed upper half plane, this simply means

uniform estimates Ly(o)™!: H{?”l — Hg’e.)

Proposition 12.11. Let £ < —%, and s > %, s+10> —% +m, m € N. Let o9 > 0. Then

forImo >0, |o| > o0, the operator
T —1. gps,t+1 —m fyps—m,l
O Ly(o) :Hli,h —h me)’hm
s uniformly bounded.

Proof. We have agf/\b(a)_l = —E\b(a)_l o aafb(a) o EZ(O’)_l, which, in view of E)oz\b(a) €
pDiff} + op?C>® C hilpDiffé’h, maps

s, 041 i’\b(a)71 75,0 ng/\b(a) —1 s—1,0+1 z/\b(o')71 —1s—1,4
e Y s AN D s,

Control of ﬁg(i\b(a)_l) requires another application of f)\b(a)_lﬁgf/;(a) to this, which the
assumptions on s, ¢ for m = 2 do permit (producing h*Qﬁgf’e); in addition, we need to
use 83@(0) € p’C™, so

—sbl Lo(0)7 msg 92Lu(0) msi+2 _ mshtl Luy(@) Tt sy
Hyy, > Hy, » Hy,' T C Hyy, > Hyp
An inductive argument based on these calculations proves the proposition. [l

12.3. Conormal regularity of the resolvent near zero. Asopposed to full o-derivatives
of the regular part L, (o) of the resolvent, of which we can only control two in a useful
manner, we can control any number of 00,-derivatives. (On the inverse Fourier transform
side, this means that repeated applications of ¢, Dy, preserve the decay rate of a wave.)

Theorem 12.12. With L, (o) denoting the regular part of the resolvent z\b(a)*l as n
Theorem 11.5, define
£,"(0) = (00,)" Ly (0).

Let L€ (—3,-3), e (0,1), L+e€ (—3,2), ands—m—e—% >0, m € N. Then for
0 < |o| < o9, Imo >0, with o9 > 0 small, we have uniform bounds

£, ™ (o) BTV 5 g, (12.21a)
0,L, ™ (o) HITVH? o o e e e (12.21b)
02L, ™ (o) TV o g le g ime e (12.21c)

As in §12.1, we first prove the analogous result for the reference operator Ly(c). Writing

00, Ly(0) = Ly(0) — Ly(0) — & 02 Ly(0),
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with the second and third terms lying in p2Diffﬁ, we have
005 (Ly(0) ™) = —Ly(0) L 00, Ly(0) Ly(0) ™' € Ly(o) ™! + Ly(0) 2 0 p?Difff o Ly(o) L.

By induction, this gives
. (12.22)

where Ry j(0) € p?Diff7.

Proposition 12.13. Let s > % +e L€ (—%,—%), e€(0,1),l+ee€ (—%, %), and s + £ >
%—i— m, m € N. Then for 0 < |o| < 09, Imo > 0, with o9 > 0 small, the conclusions of
Theorem 12.12 hold for ﬁgm) (0).

Proof. Since 92L, ™ = 0,(00, + 1),L, ™ = 0,L, "™ + 0,L, ™ (0), it suffices to
establish the bounds (12.21a)—(12.21b), as (12.21c¢) is then a direct consequence.

Consider first the case m = 1. Let us write
005 (Ly(0) ™) = Ly(o) ™t + Ly(0) 'R (o) Ly(0) 7L, R(o) € pDiff?.

We compute the derivative (denoted by ’) of the second summand in o (the first term being
handled by Proposition 12.5 directly). We have

(Ly(0) "' R(o) Ly(0) ™) = (Ly(0)~") R(o) Ly(o) !
+ Ly(0) "R (0) Lo(0) " + Lo(0) T R(o) (Ly(0) 1)
=: L1+ Ly + Ls.
Using Proposition 12.5, we have uniform bounds

- Ly(o)™t  — R(o),R' () —o_ Ly(o)~ 1) = 1— _
L17 LQZHS 1,042 b(o) \Hg,é (o) (o) HS 2,0+2 (Lp(o)™h) ’U’ GHS 1—el+e—1

bl

— o Lbo_l’ = _1 R(o = e
L3: Hg 1,642 (Lp(o)™h) |0_’ EHS el+e—1 (o) |O" EHS 2—e l+1+¢€

Ly(o)~? e rrs—1—el—
(o) |O’| €H§ 1—ed l—i—e'

Suppose now that the proposition holds for m € N; we want to show it for m + 1. It is
sufficient to prove the proposition for an operator of type

£ (o) = £ (@)R(0)Ly(0) ™!, R(0) € p*Diff},
where £~1(7m) (o) satisfies the same estimates as ﬁém)(a), ie. (12.21a)—(12.21c). Let us com-

pute the derivative of ﬁl()mﬂ)(a):

(L5 (@) R(a) Ly(o) ™Y = (£5™(0)) R(@) Ly(o) ™"
+ L (@R (o) Ly(0) " + £ (0)R(0) (Lo() Y
=: 11+ Lo+ Ls.
Using Proposition 12.5 and the inductive hypothesis, we have

7 — F(m) ’
C ms—1,042 Lp(o) o= sl R(O')\ rrs—2,0+2 (L () —e rs—1—-m—el+e—1
Ly: 0} iy e 2 0 e

)
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= _ F(m)
C ms—1,042 Lp(o) o= st R(0)  7s—20+42 Ly (o) = s—1—-m,¢
Lo: Hy H, » Hy — H,

)

L3: Hg—l,f—‘rQ (Lb(a) ‘ ’ eHs €,l+e—1 R(U ‘ ‘ eHS 2—ef+14¢€
~(m
Ly )(”) ‘U’—eﬁg—m—l—e,é—l-‘re‘
This finishes the proof of the proposition. O

Using the conormal regularity of Eb(a)*l, we can now proceed as in §12, but we have to

keep track of the loss of regularity when commuting with 0d,. We claim that for m € N,
(005)™L;; has an e-regular expansion up to the same order as L;;. Since 00, (") = ko*,
k = 0,1, the only interesting terms are commutators with the non-polynomial (in o) terms
Efj (0); but the eregularity of (00,)™L§;(0) can be proved in the same way as thaﬁ of
ij, now using Proposition 12.13 instead of Proposition 12.5. For example, consider Lo,

computed in (12.17): for f € Kit, h* € K, we have

b,v?
(005)™ Lao(f, h*) = ((605)™ Li(0) " £, (95 Lp(0)* + Z82Ly(0)*)h*) + similar terms,

where the ‘similar terms’ arise when some of the o0, -derivatives fall on the second sum-
mand in the pairing. The e-regularity of this is thus indeed an immediate consequence of
Proposition 12.13. The argument for the other L;; is completely analogous.

In order to analyze the entries R;; of fﬁb(a), we need a result similar to Lemma 12.9.

Lemma 12.14. Let s,{,e,m be as in Theorem 12.12. Suppose that L(c) has an e-regular
expansion up to order two of the form

L(U) = LO +ol4 +02L2(J),

where Ly: lzj — R; is invertible, L1, La(0): lzj — ﬁz are bounded uniformly in o, and
(00,)*Lo(0) is e-reqular for k = 0,...,m. Then for o sufficiently small, L(c) is invertible,
and (00,)™L(0)~! has an e-regular expansion up to order two, in the sense that

(U&,)kL(a)_1 =LK 4 gp1k) 4 5212(k)

for k =0,...,m, where L°®) LR . R, — IEJ- are bounded, and L*®) (o) is e-regular (in
the sense explained in Lemma 12.9).

Proof. We write L(c)™! as a Neumann series as in (12.18), with o2 term Ry (o) satisfying

00, Ry(0) = —Ly (00, La(0)) Ly "

0o k—1
+ ) (—1)kok? (Z(Lol(Ll +0Ly(0))) Ly (0La(0) + 0(00,La(0)))
k=2 Jj=0

x (Lg ' (L1 +0La(0)) 1 + (k= 2)(Lg ' (L1 + aLz(U)))k> Ly

Induction over m gives:

(005)" Ra(0) = —Lg ' ((005)™ La(0)) Ly
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0o k
+ 3 (=DM P [T ai(Lg " (BiLa + 0L2,(0))) Ly,
k=2

j=1
where «;, ; are constants and Lo ; satisfies the same hypotheses as Lo(o). The end of the
proof is then the same as in Lemma 12.9. O

This applies in particular to Lgg(c). Using Lemma 12.14, we obtain the following ana-
logue of Proposition 12.10:
o (00,)™ Roo, (005 )ngl, (00, )leo, (085)™ Rz, (085)™ Ry are e-regular;
o (00,)™ ng, (00,)™ R21, (00s)™ Roy have e-regular expansions up to order one;
o (00,)™ Ry has an e-regular expansion up to order two.

Proof of Theorem 12.12. Recall the expression (12.20) for L, (c); we thus have to consider
terms of the form
(aaa)be(a)*l(aa,,)lﬁb,reg - (aﬁg)qﬂb(a)’l((aaglv)b( )+ 6‘782 (0))Py1 + vﬁgfjb(O)Pm)

for numerical constants «, 3,7y. All these terms behave like the corresponding terms for
j,1,q equal to zero, except for the increased requirement on the b-regularity. We then
conclude as in the proof of Theorem 12.1. O

13. DECAY ESTIMATES

We continue using the notation of the previous section, so Ly is the linearized gauge-fixed
modified Einstein operator. We shall study the decay of the solution of

Lbh - f7 f € Cgo((oa Oo)t*;H}?g-i_z)? (131)
in t,. In fact, we shall allow more general f lying in spacetime Sobolev spaces
~sl  Trslk
HY", H;C ) (13.2)

equal to L2(t;1([0,00)); |dgp,|) for s,£,k = 0. The index £ € R is the weight in p = r~1,

ie. H - eHg, likewise for the second (conormal) space. The index s € R measures
regularlty with respect to J;, and stationary b-vector fields on X. The index k € Ny

measures regularity with respect to (t.)Ds,, so u € flﬁ’ﬁ’k if and only ({t«)Dy, ) u € ﬁ[g’é,
j=0,...,k. We stress that all elements of these spaces are supported in ¢, > 0. (The value
0 here is of course artificial; the point is that ¢, has a finite lower bound on the support.)

Theorem 13.1. Let { € (—3,—1), e € (0,1), f+e€ (—3,3), and s > L +m, m € Ny. Let

h denote the solution of equation (13.1). Then there exists a genemlzzed zero mode h € I/C\b
(see Theorem 10.4) such that

h=h+h,
and so that the remainder h obeys the decay
HiLH £\ —3/2+e 5 2.L+He—1,m S HfH LN=T/2+e o tH2m . (13.3&)
( *) b,c < *> b,c
If m > 1, then we also have
1({t) De. )™ 0]l

t*> 2+€L°°(Rt s 2—m L+te— 1) ~ HfH(t*> 7/2+€Hs£+2m (133b)
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In particular, form >1, Ng>j <s— (% +m), we have pointwise decay
_ i _ —1/2—p—
|((£) Do, )™ VIR| S () 212 UFl g y=r/2e gtz (13.3¢)

where V7 is any up to j-fold composition of Oy, , r0,, and rotation vector fields.

In the notation of (11.3) and Definition 11.4, the leading order term h can be expressed
in terms of f in the following manner: we have

h = (tehs + hs) + B+ hy + B, he, by B € Kbgy o € Kpo,

where hg, hl,, h, are determined by (11.37a)—(11.37b) for th f(ts) dts in place of f, and
hY is the unique element in Ky s for which there exists h), € Ky, with ky((RY, hY),—) =
- th* t«f(t«) dt, as elements of (Kj)*.

For any fixed ¢ € (—%, —%), one has a range of choices € € (—% — 1, 1); smaller values of €
give stronger t,-decay at the expense of r-growth. It is thus useful to resolve the asymptotic
regimes (1) t, — oo, r bounded, (2) r — o0, t, bounded. This is accomplished by lifting to

the blow-up [R¢, x X;{oco} x 9X]; see Figure 13.1. Its boundary hypersurfaces are:

(1) the lift of R;, x 0X, called (by a mild abuse of notation) null infinity .#*, with
interior parameterized by t, € R and the polar coordinate w € S?;

(2) the front face, denoted ¢, with interior parameterized by r/t. € (0,00) and w € S?;
this is a resolution of future timelike infinity;

(3) the lift of {oo} x X, called the ‘Kerr face’ K, with interior parameterized by r €
(r_,00) and w € S

The estimate (13.3¢) then implies pointwise decay at the inverse polynomial rate % +/— at
K (taking € = —% — (+), 3 +(— at .+, and 2 + (— at #T (taking e = 1-), so

11747 5/2—0+ (ts) B/
(@D ViRt £ @) (ST s
(r) + (t+)
One can similarly condense the estimates (13.3a)—(13.3b); for instance, the former implies
3 L ) 32—
he(t) > (<> oy 2o, 13.5
N R be 1)

Remark 13.2. Even for f with compact spacetime support, Theorem 13.1 only assures
pointwise t 21 time decay for bounded r. Price’s law for scalar waves on the other hand
asserts ¢t decay [Pri72a, Tat13]. (For gravitational perturbations, Price’s law predicts
even faster decay rates [Pri72b], which one cannot expect to hold however in the general
setting of Theorem 13.1, as it concerns general symmetric 2-tensor valued waves, not merely
those satisfying the linearized Einstein equations.) A comparison as far as the relevant low
frequency behavior of the resolvent is concerned (though in a simpler setting) is [GHS13,
Corollary 1.3]: it asserts t 3 asymptotics for scalar waves on a space asymptotic to a cone
with cross section the standard 2-sphere, i.e. to Euclidean space, while upon perturbing this
cross section, one can only expect t~21¢; the latter is what we prove here. The asymptotic
behavior here being the better one, a proof of ¢t~ decay in Theorem 13.1 would require
expanding the resolvent at ¢ = 0 to one order more, showing that one has a term linear in o
(which we just barely fail to capture in Theorem 12.1), and obtaining a O(|o|?) remainder.
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K

Eﬁn : H+

FIGURE 13.1. The part of the blowup [R;, x X; {oo} x X] on which ¢, > 0.
Shown are the front face ¢+, (the lift of) null infinity .# T, and the ‘Kerr face’
K, as well as the event horizon H* and the final hypersurface g, beyond
the black hole event horizon, see (3.10).

Remark 13.3. Estimates in which one has a degree m > 2 of conormal regularity in t, do
not give stronger pointwise decay estimates. We state them here merely to demonstrate the
simplicity with which such strong regularity follows from the conormality of the resolvent
at 0 = 0. It is likely however that conormal regularity plays an important role in nonlinear
applications; this will be discussed elsewhere.

Proof of Theorem 13.1. As in equation (1.6), we start with the integral representation

% /Imac 7T (o) f(0) do (13.6)

for any C' > 0. Two important observations are: (1) different values of C' produce the same

h(t*) =

result since the integrand is holomorphic in ¢ with values in FIS’Z, and with norm decaying
superpolynomially as | Re 0| — oo with Im o > 0 bounded; (2) the tensor h defined by (13.6)
has support in ¢, > —Tj for some ( f-independent) Ty, which follows from the Paley—Wiener

-1

theorem and the fact that the large parameter (in o) estimates of Ly(c)~! are uniform as

Imo — +00.23
We shift the contour by letting C' — 0+. Fixing a frequency cutoff x € C°(R) with
x =1 on [—1, 1], we split

f(0) =x(Rea)f(o) + (1 = x(Re0)) f(0) =: fi(0) + fa(0).
Then for o # 0, and using Theorem 11.5, we write
W0) = Preg(0) + hsing(0),
ﬁreg(g) = L;(U)fl(a) + E(U)_1f2(0)7 iLsing(U) = Pb(O')fl(O');
therefore, h(ty) = hreg + hging, Where

. ~ 1 . N
hr6g = e_ZUt* hreg(U) dO', hsing = lim — / €_Zat* hsing (O’) dO'.
R+iC

2 Jr C—0+ 27

2‘riAlternatively, by varying C' > 0, one sees that (13.6) defines a solution of Lyh = f which decays
superexponentially at ¢, — —oo; this implies its vanishing for large negative ¢, by a simple energy estimate.
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e Decay of the regular part. A fortiori, we have fi(0) € H3/2 ¢(Ry; H’S’“Q) for any € € R.
Since H3/2~¢(R) is an algebra for € < 1, we have

Ly (0)fi(0) € H¥?7¢((-2,2); HEJrl*maX(E,l/Q),KJrefl)

by Theorem 12.1, with norm bounded by || <t*>3/27EfHLz(Rt g=t+2)- This can be generalized
Lx ) b
by means of Theorem 12.12, which gives, for k < m,

(005)" (L (0) fi(0)) € H¥>~((=2,2); Hy 7 THmme/20ehy - 137
with norm bounded by 3, [|(£+Dx, )j<t*>3/2_efHL2(Rt*;Hg—j,l+2) S ||f|]<t*>,3/2+eﬁ§:ﬁ+z,k.
Turning to the high frequency part of ﬁreg(a), we note that Proposition 12.11 implies

Ly(o)™ € W (R L(HY S20 (o)™ Hy 05)), o eR\[=1,1], m <k

Therefore, for € € (0,1), and taking m = 2, we have
T -1z — — irs—2,0
Ly(0) " falo) € HYP7“(R; (o) **2H 2
with norm bounded by a constant times

||f2HH3/2—€(R;(a)*sﬁif;al) S Hf‘|<t*>—3/2+eﬁ§’e+2'

More generally, we have

(005)" (Lo(0) " falo)) € HY>~¢(R; (o) =20 Hy 2785, (13.8)

with norm bounded by >~ [|(£+Dx, )ij<t*>—3/2+6Hls)—j,é+2 S ||f||<t*>,3/2+5ﬁg,e+z,k.

Upon taking the inverse Fourier transform, the memberships (13.7) and (13.8) imply
HhregH(t*>73/2+eﬁ§;272+6*17k S HfH<t*>73/2+eﬁ§:£+2»k~ (13.9)

Note that for m = 1, we can integrate Dy, hyeg = t;l(t*Dt*hreg) from t, = oo to recover

hreg; this gives a % improvement of the L> decay rate since for b’ € L?(Ry, ), we have

00 1/2
< ( | ds) 12 < (6) 2+
[

for t, > 0; therefore, we have stronger (by %) t.-decay

| sy ds

(L) Dy ) hyeg € (B)T2HLO(R,; HE 2R 1 <k <m, (13.10)
with norm bounded by the right hand side of (13.9).
o Asymptotic behavior of the singular part. Turning to hging, we write
hi(@) =x(@)(fO —io V) + o f3(0). (13.11)
where f(O = £1(0) and f) = 9, f1(0) satisfy, in view of H32+(R) — C(R),

1D gses S 1 y-sa-ngo, cagersy 3= 0.1, V>0
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furthermore, f3 (o) is compactly supported in o, has the same regularity in o as fl(a) away

from o = 0, while near o = 0 it loses 2 derivatives:**

Hf3||Hr(R;I:I§,Z+2) 5 HleHT‘"?(R;HEJ*?) VT‘ > —%.

Let us write Pb(O')A: 0 2Py + 07 Py as in (12.19), with P, ;: }7[}‘;71’“2 — ﬁgo’_lﬂ_.
The contribution of f3 to hging is then
Py(0) (02 fa(0)) € H3>~(R; B>~ V/?7)
when f, € H7/27¢. More generally, we have (cf. the estimate following (13.7))
1000 (P(0) (0% (00 oy S 15l yrrmecpnssas (13.12)
It remains to analyze the first term in (13.11). We have
éiglo % /R+i6’ ey (Reo)o Fdo = F(x(0)(0 +i0)7"),

which equals F~1((o+i0) %) plus a term which is Schwartz as |t,| — co. Therefore, modulo

—1/2—

a Schwartz function in ¢, with values in E[ﬁo ’ , we have

F (Pb(o' +i0) (x (o) (FO — iaf(l)))) = (tohs + hg) + b+ hy + B =: b,

where hg, b, h, are given by (11.37a)~(11.37b) with f(©) in place of f, while h € K, is the
unique element for which ky((hZ, h), —) = f1), as elements of (K;)*, for some h! € Ky,

ERE)

Altogether, we thus have, for any k € Ny,
Hhsing - h”<t*>—3/2+5g§°(;—1/2—7k 5 HfH<t*>—7/2+eﬁ§:£+2’k-

Together with (13.9), and using the argument leading to (13.10) for improved pointwise (in
t«) decay, this proves the theorem. (For the pointwise decay estimate (13.3c), recall that

H{?f s (r) 73270 for 5 > % by Sobolev embedding, cf. (2.4).) U

14. PROOF OF LINEAR STABILITY

We continue to denote the linearized modified gauge-fixed Einstein operator on the Kerr
spacetime (M°, gp) by Ly as in (11.1b)—(11.1c).

Theorem 1.1 concerns the initial value problem for the linearized Einstein equations for
which the Cauchy surface is equal to t~!(0) for large r. We now show, using arguments
from [HV20, §4], how to reduce this problem to Theorem 13.1. In fact, we shall first consider
initial value problems for the operator L;, see Theorem 14.1, and reduce the linear stability
of the Kerr metric to a special case of this, see Theorem 14.6.

We denote by t € C>°(M°) a function of the form t = ¢, + F(r) which satisfies t = t for
r > 4mg, and so that dt is future timelike on M° with respect to gy, hence for g, when b
is close to by. We define
5= t(0),

24This follows from the following observation: if f € H*(Rs), a > % +k, k € Ng, and f(0) = --- =
f(k)(O) =0, then o™ "f € Ha*k(R). This in turn follows from the elementary case k = 0 by induction.
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which is a (spacelike with respect to gp) Cauchy surface. Identifying the region r > 4my
in X3 with the corresponding subset of R3, we can compactify Yo at infinity to the man-
ifold (with two boundary components) ¥. We denote by S¢T*¥, = °T*¥, & Rdt the
spacetime scattering cotangent bundle, which for large r is spanned over C*° (%) by dt and
dt, dx?, dz3, with (2!, 22 2%) denoting standard coordinates on R3.

Theorem 14.1. Let oo € (0,1) and s > L2 +m, m € Ny. Suppose
hgy € ﬁﬁ’_1/2+0‘(20; S? S/CTT/*EO), hi € ﬁ§_1’1/2+a(20; 5?2 S/C?/*Eo).

Then the solution h of the initial value problem
Lyh =0, (hlso, (Loh)lsy) = (ho, ha).
has the following asymptotic behavior:

(1) in t. > 0, we can write h = h + h, where h € l@, is a generalized zero mode of
Ly, (see Theorem 10.4), and where the remainder h satisfies the following decay in
te > 0: for e € (0,1) with o+ ¢ > 1, we have

7l y-sraeege-s-srzrasem S Mol ge-syera + Il gesavara (14.1a)
For m > 1, we moreover have the L bound
||((t*>Dt*)m_1hH<t*>—2+eLoo(Rt*;HE*Sfm,*S/%aﬂ) 5 Hh0||g§fl/2+a + ||h1HH§7171/2+a~ (14~1b)

For Ng>j <s— (% +m), we have the pointwise bound

147 1 (t)  \"
|((t:) D, )" WIh(ty,r,w)| < (t) 17T ( , (14.1c)
() + (r)
where V7 is any up to j-fold composition of the vector fields 0;,, r0,, and rotation
vector fields.

(2) int>0, t, <0, we have |h| < (1 4 [t]) .

The estimates (14.1a) and (14.1b) can be condensed by working on a blow-up of R;, x X
at the corner {t, = co} x 04X as in (13.5).

Remark 14.2. Since 1 € FIEO’_g/2_(EO) and, conversely, Hgo,—3/2+(20) — L>(Xy), one sees
that the decay for hg, as well as for its r0, and spherical derivatives, is (almost) equivalent
to pointwise 71~ bounds.?” Likewise, the assumptions on h; are essentially pointwise
r~27% bounds.

Remark 14.3. The asymptotic behavior in ¢, < 0 can be described in great detail, see [HV20)]
for results in the nonlinear setting; the results for linear waves here are straightforward to
obtain using energy methods (see also Lemma 14.5 below), and the statement (2) above is
merely the simplest pointwise bound one can prove. As in [HV20], one can moreover show
that h in fact has an r—! leading order term at null infinity .#*, viewed as a boundary
hypersurface of a suitable compactification of M° (which in r/t,, > € > 0 is given by ™M
in the notation of the reference); we recall the argument in the proof of Lemma 14.5 below
when restricting to the region ¢, < C for any fixed C € R.

25The ‘almost’ is due to the small (disregarding derivative losses due to Sobolev embedding) difference
of L and weighted L? control.



LINEAR STABILITY OF KERR BLACK HOLES 125

Remark 14.4. While we work almost at the sharp level of decay, we do not strive to opti-
mize the regularity assumptions here; the extra regularity assumed on hg, h; comes from
a loss of regularity in an argument below on the integration along approximate (radial)
characteristics of L used to get a sufficiently precise description of h at .#T.

Lemma 14.5. Let a,b, s, ho, hi, h be as in Theorem 14.1. Let Ty < Ts, and let x € C*°(R)
be such that supp x C [T1,00) and supp(l — x) C (—o0,Ts]. Then Ly(xh) € Hg;3—k,l/2+a,k
for all k € Ny.

Proof. Since Ly(xh) = [Ly, x|h has support in ¢; ([T}, T3]) (so regularity with respect to
(t«)Dy, and Dy, is equivalent), it suffices to prove the conclusion for £k = 0. Moreover,
local (in spacetime) existence and regularity theory for the wave equation imply h € H*
for t > 0, t, < C, r < C for any C; this implies that [Ly, ] € H*! in such compact sets.
Therefore, it suffices to work in an arbitrarily small neighborhood r > Ry > 1 of infinity,
which we shall do from now on.

Aiming to apply certain results of [HV20, §§3-5], write b = (m,a), and let by = (m,0);
put 7. =7+ 2my log(r — 2my). As in [HV20, §2.1, §3.1], we introduce the null coordinates

xO:t—i—r*, z! =1 -7y,
with respect to which we have g, = (1 — 221 )d20 dz! — r?¢, and

200 = 20,0 = Oy + (1 — 221)9,, 20 = 20,1 = 0, — (1 — )9,

r

Let 22,23 denote local coordinates on S?, and denote spherical indices by ¢, d = 2,3; let
Oc = Oge. Considering then the Kerr metric, we compute using the form (3.12) of g, in
r> 1 and on X (the compactification of ¢, (0))

95(90,00), (96 — 96,)(00,01), gp(30,77'00),
gb(ah 81)7 gb(alu 7“_180), (gb - gbl)(r_lalﬂ T_lac> € pQCOO

Thus, in the language of [HV20, Definition 3.1], g; differs from g, by a correction g — gs,
(which is denoted h in the reference, but which is different from A here) that has vanishing
leading order terms. Therefore, by [HV20, Lemma 3.8], and recalling that in the present
paper we do not have constraint damping for large r (thus v = 0 in the formulas in the
reference), the operator Lj is equal to the scalar wave operator for the Schwarzschild metric
g, , tensored with the identity, plus error terms,

p*Lyp = —2p 20001 — A+ R,

where R € pDiffZ + Diff{ (acting on sections of seT* X ), where, roughly speaking, Diff{j
consists of up to k-fold products of the vector fields x¢0y ~ (9 + 0y, ), 101 ~ (r« —t)(0 —
Or,), and rotation vector fields 9,. (Switching to p~3Lyp is related to the Friedlander
rescaling for the scalar wave equation [Fri80], cf. [HV20, §1.1.1].)

At this point, the conclusion of the lemma can be seen as follows: the asymptotic behavior
of smooth solutions h of p~3Lyp(p~th) = 0 at .#T (meaning: for bounded ¢, and as r — oo)
is given by pC> = r~1C>, just like for scalar waves on Minkowski or Schwarzschild/Kerr
spacetimes, plus terms with more decay, namely O(r~'~%). Now, Lemma 4.2 implies that

[Ly, x(t:)] = 2px'(t:) (00, — 1) + p*Diffl, + p*C>0,,; (14.2)
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but this maps pC> into p>C>, the leading order term r~! being annihilated by the first
summand in (14.2); and O(r~17%) gets mapped to O(r~27%), hence the stated decay rate
for Ly(xh).

More precisely, [HV20, Proposition 4.8] with ag = o and a; < 0 arbitrary (in the present
setting it suffices to use the simplest form of the energy estimates there, namely one can use
the vector field multiplier of [HV20, Lemma 4.4]) shows that near ., h lies in ﬁg’_l/ -
(permitting r~! asymptotics); rewriting the PDE for h := pu as p~20p0hu = (A — R)u €

Hgfz’fl/ > and integrating along the approximate characteristics dy and 0, as in [HV20,
§5.1] (see also the discussion around [HV20, Equation (1.16)]) shows that in fact

h=pH* (R, x §?) + HS 71>,
Thus, Ly(x(t«)h) € f_jg—?;,l/Q—i—a’ as claimed. O

Proof of Theorem 14.1. With x as in Lemma 14.5, note that

Ly((1 = x)h) = Lyh — Ly(xh) = —Ls(xh).
Since s —3 > %+m, the estimates (14.1a) and (14.1b) now follow from Theorem 13.1, with
(+2=1+4a,s0l=—3+a. The pointwise estimate (14.1c) then follows from (13.4). O

For the linear stability statement, recall that the constraint equations for a Riemannian
metric v and a symmetric 2-tensor k on X take the form

C(v, k) := (Ry + (try k) — |kI2, 0yk +d try k) =0. (14.3)
Given a Lorentzian metric g of signature (+,—, —, —) on M°, denote its initial data by
7(g9) = (v, k),

where 7 is the pullback of —g to ¥f (the minus sign making v into a positive definite
Riemannian metric), and k is the second fundamental form of ¥§ C (M°,g). Let us in
particular denote the initial data of the Kerr metric g;, with b near by, by

(9, k) := 7(8)-
Recall the gauge 1-form Y;(g) := Y(g; ¢») in the notation of Definition 4.1.

Theorem 14.6. Let a € (0,1), and let s > % +m, m € Ny. Suppose that the tensors

= H§7_1/2+a(20;52 SCT*EO), k e g§—171/2+a(20;s2 SCT*EO)

satisfy the linearization of the constraint equations around the initial data (vp, kp) of a Kerr

metric: Dy, 1,)C(¥,k) = 0. Then there exists a solution h of the initial value problem

Dy, Ric(h) =0, Dy, 7(h) = (¥, k),
satisfying the gauge condition Dy, Yy(h) = —d4,Gg,h = 0, which has the asymptotic behavior
stated in Theorem 14.1.

Theorem 1.1 is an immediate consequence of the estimate (14.1c) when we take s = 8 >
% + m with m = 1, in view of the explicit description of h as a generalized zero mode of

Ly as described by Theorem 10.4: h is a linearized Kerr metric plus a pure gauge term.
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Proof of Theorem 14.6. We claim that there exist
ho € HY VY py e mr b (14.4)
such that

Dy, 7(ho 4 thy) = (%, k), Dy Yp(ho+th1) =0  at t=0. (14.5)
For the solution A of the initial value problem Lgh = 0, (h|s,, Loh|s,) = (ho,h1), as

described by Theorem 14.1, we then have Dy, 7(h) = (¥, k) and Dy, Tp(h) = 0 at Xg. Now,
recall (e.g. from [HV18b, §2.2]) that the linearized constraint equations are equivalent to the
vanishing of Dy, Ein(h)(N, —) where N is the unit normal to £§ and Ein(g) = Ric(g) —3gR,
is the Einstein tensor. Since

Dy, Ein(h) — G, 8% (Dg, To(h)) = 0,

9b~guyY
this implies that Ly (Dg, Ys(h)) = 0 at Xg as well. Finally, since by the linearized second
Bianchi identity, Dy, T(h) satisfies the wave equation

,va’Y(ngTb(h» = Qégngbégb,y(ngTb(h)) =0,
we conclude that Dy, Ty(h) = —d4,Gg,h = 0 and thus also Dy, Ric(h) = 0, as desired.

Thus, in order to complete the proof of linear stability, it suffices to arrange (14.4)—(14.5).
This is accomplished by a minor modification of the arguments of [HV18b, Proposition 3.10
and Corollary 3.11]. We present the details, following the reference, mainly in order to

demonstrate that the decay rates of (hg, h1) can be arranged to match those of (¥, k). The
task at hand has nothing to do with the constraint equations. Hence, it suffices to solve
the following nonlinear (but geometrically simpler) problem: given (v, k) close to (vp, kp)

and with (v,k) — (1, kp) € ﬁg’_l/2+a ® ﬁg_l’l/ﬂ‘l, find Cauchy data (go,g1) close to
: s, —1/2 rs—1,1/2
(95,0, 96,1) := (gb]539,0) and with (go — 0,91 — gp1) € Hy /2o g Hy ™ /272 such that
T(90 +tg1) = (v, k), Tolgo+tg1) =0  at t=0. (14.6)

Our construction will give a smooth map i: (v,k) — (go,g1) which takes 7(gp) into
(9,05 gv,1), thus its linearization at 7(gp) takes (7, k) into the desired Cauchy data (ho, h1).

Define ¢p € 14 pC>°(Xy) and wy, € pQCOO(EO;SCT*EO) by gy =: ¢p d% +2dt @5 wp — Yp; We
then define the component gy of iy(y, k) = (90, 91) by

go = ¢pdt® +2dt @4 wp — .

Let Ny, resp. N}, € TxgM® denote the future timelike unit vector field with respect to g,
resp. Np; then Ny — N, € Flg’_l/QJra. To make 7(go + tg1) = (7, k), we need to find g; with
9o (VT = V)Y, No) = k(X,Y) — o(VEY, No), XY € TS,

with V9 the Levi-Civita connection of g. This is equivalent to
—(Not)g1(X,Y) = 2(k(X,Y) — go(VRY, No)).
But Not = 14 pC>® + O(p'*®), and Nyt # 0 on Y5 since dt is timelike for g (as go is close
to gy in C°); hence this determines g1(X,Y) for X, Y € TS, with g1]g2 sey, € ﬁ§_1’1/2+a
by assumption on k and since the second term on the right loses one order of regularity but
gains an order of decay, by the same arguments as given before equation (3.34).
Finally, we need to arrange Y4(g0 + t91) — To(g0) = —Lo(g0) € ﬁ§_1’1/2+a at t=0, so

(Ggogl)(vgot7 V) = _Tb(g())<v), Ve SCTE().



128 DIETRICH HAFNER, PETER HINTZ, AND ANDRAS VASY

Since V9t L T'%§ is a multiple of Ny, more precisely V9t = (14 pC> +FI§’_1/2+Q)N0, this
determines (Ggyg1)(No, X) = g1(No, X) for X € *°T'Yy. But then we have g1(Ny, No) =
2(Ggog1)(No, No)+(trg, g1—91(No, No)), with both summands on the right hand side known;

HS—LI/Q—i—a
b

this determines g;(No, Ny), and we have g1 € . The proof is complete. O

Remark 14.7. We explain why fast decay of (¥, k) implies the decay of h to zero as t, —
oo in our chosen gauge, thus recovering the decay proved in [ABBM19] in the outgoing
radiation gauge. Thus, let us assume that 4 and k decay rapidly as r — oo (sufficiently fast
polynomial decay would suffice). Denote by h the solution of the initial value problem for
Lyh = 0 constructed in Theorem 14.6, and denote by x = x(t) a smooth cutoff, x = 1 for
t<1,x=0fort>2 Then h = xh+ L', where t > 1 on supp//, and Lyh' = —[Lp, x]h is
supported in t71([1,2]) and decays rapidly as r — co. We can solve this using the Fourier
transform in t; the resolvent of L; with respect to t is obtained from E;(O’) via conjugation
by et (t=t+) (which maps sufficiently fast decaying tensors into any fixed b-Sobolev space).
To give a flavor of the argument, let us now pretend that the t-resolvent only has a simple
pole at o = 0, with singular part given by a finite sum of terms ho(-, ), where hg € Ky,
hiy € Kj (the full argument is only more involved algebraically); then we need to show that
(([Lo, x]h)™(0), h$) = 0. Since Dy, Ric(h) = 0 and Dg,Tp(h) = 0, and since hf = G, d;, w*
is dual-pure-gauge by Proposition 9.1, this is equivalent to the vanishing of the spacetime
pairing (extending h{ to spacetime by stationarity)

([Lo, x1h, hg) = ([Lv, x]h, Gg, 65,w")
5gbG9b [Lba X]hv W*>
595 ngLb(Xh)7 w*>

—26,,Gg,07 Dy, To(xh),w*)

9b~ g,y
_Pgba'Y[ngTba X]hv w*>

= _<[ngTb7 X]hv P;b;yw*)
= 0.

Here, the fast spatial decay of h is used to justify the integrations by parts in the second
and the penultimate equalities.

{
{
{
{

We reiterate that this argument only applies to solutions of the linearized Einstein equa-
tions Dy, Ric(h) = 0, Dy, Tp(h) = 0, but not to general solutions of the linearized gauge-fixed
Einstein equations Lyh = 0; indeed, even for generic smooth initial data (hg,h;) in Theo-
rem 14.1 with compact support, the solution h does not decay to zero, i.e. the asymptotic
leading order term h is non-zero.

Remark 14.8. Compared to the functional analytic setup in the proof of the stability of
Minkowski space in [HV20], we note that the regularity we prove here is weaker than what
we prove in [HV20]; and even for solutions of the scalar wave equation, the spectral analysis
performed here gives a significantly weaker result if applied on the Minkowski spacetime.
Concretely, here we only have stable regularity/decay under repeated application of the
spatial vector fields 0, (x = rw), which is the best one can hope for in spatially compact
sets since the metric coefficients of Kerr metrics, or stationary asymptotically flat metrics
in general (with the exception of ezact Minkowski space), have this type of regularity. By
contrast, for solutions of the wave equation on Minkowski space, one has stable regular-
ity /decay under repeated application of tJ, in the forward timelike cone, as explained in
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detail in [HV20] and traced back to the fact that the Minkowski metric is conformal to a
smooth b-metric on the radial compactification of R*; more prosaically, for the Minkowski
metric, or any metric suitably asymptotic to it, Lorentz boosts are (approximate) Killing
vector fields in the entire forward timelike cone, which implies this improved regularity.
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