
QUASILINEAR WAVES AND TRAPPING: KERR-DE SITTER

SPACE

PETER HINTZ AND ANDRÁS VASY

1. The setup and the results

Kerr-de Sitter space (M◦, g0) is a Lorentzian space-time of 1 + 3 dimensions,
which solves Einstein’s equation with a cosmological constant. It models a rotating
(with angular momentum a) black hole (‘Kerr’) of mass M• in a space-time with
cosmological constant Λ (‘De Sitter’). In this talk, we will describe how to solve
globally, and describe the asymptotic behavior of, certain quasilinear equations on
M◦ of the form

�g(u,du) = f + q(u, du),

where g(0, 0) = g0, for small data f . The key advance is overcoming the normally
hyperbolic trapping by combining microlocal analysis and a Nash-Moser iteration.

To our knowledge, this is the first global result for the forward problem for a
quasilinear wave equation on either a Kerr or a Kerr-de Sitter background. We
remark, however, that Dafermos, Holzegel and Rodnianski [10] have constructed
backward solutions for Einstein’s equations on the Kerr background; for backward
constructions the trapping does not cause difficulties. For concreteness, we state
our results in the special case of Kerr-de Sitter space, but it is important to keep
in mind that the setting is more general, for details see [30].

To proceed we need to describe Kerr-de Sitter space more precisely. To get
started, we bordify M◦ to a smooth manifold with boundary, M , with M◦ as its
interior, and ∂M = X its boundary; see Figure 1, and also Figure 4 for a more
complete picture. Here one can take x = e−t∗ as a defining function of X, where
t∗ is a Kerr-star coordinate, see e.g. [16, 19, 46]. We work in a compact region Ω
in M of the form

Ω = t−1
1 ([0,∞)) ∩ t−1

2 ([0,∞)), Hj = t−1
j ({0}),

• with tj having forward, resp. backward, time-like differentials,
• with tj having linearly independent differentials at the common zero set,

and
• with H1 disjoint from X.

Here we want to impose vanishing Cauchy data at H1; general Cauchy data can
(essentially) be converted into this.
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Figure 1. The region Ω in the bordification M of Kerr-de Sitter space.

The framework we need on M involves totally characteristic vector fields, i.e.
vector fields V ∈ Vb(M) tangent to M . In local coordinates, with n = 4,

x, y1, . . . , yn−1, x ≥ 0,

these are linear combinations of

x∂x, ∂y1 , . . . , ∂yn−1 ,

with C∞ coefficients. The dual metric g−1 = G is then a smooth linear combination
of symmetric products of these vector fields

x∂x ⊗s x∂x, x∂x ⊗s ∂yj , ∂yi ⊗s ∂yj ,
so the actual metric is a smooth linear combination of

dx

x
⊗s

dx

x
,
dx

x
⊗s dyj , dyi ⊗s dyj .

In particular, the Kerr-de Sitter metric g0 is of such a form. Also write

bdu = (x∂xu)
dx

x
+

∑
j

(∂yju) dyj ;

thus, a(u, bdu) is a short and invariant notation for

a(u, x∂xu, ∂y1u, . . . , ∂yn−1
u).

We note here that analysis based on Vb(M) is sometimes called b-analysis, and
in the elliptic setting it was extensively studied by Melrose [37], though in fact it
originated in Melrose’s study of hyperbolic boundary problems [36].

More precisely then, we consider equations of the form

�g(u,bdu) = q(u, bdu) + f,

and we want a forward solution, i.e. for f supported away from H1 in Ω, the solution
should also be such. Here

q(u, bdu) =

N ′∑
j=1

aju
ej

Nj∏
k=1

Xjku,

with Xjk ∈ Vb(M), aj ∈ C∞(M).

Theorem 1 (H.-V. [30]). For α > 0, |a| � M•, with Nj ≥ 1 for all j, and with
f ∈ C∞c (M) having sufficiently small H14 norm, the wave equation has a unique
forward, smooth in M◦, solution of the form u = u0 + ũ, with x−αũ bounded,
u0 = cχ, χ ≡ 1 near ∂M .
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• For the Klein-Gordon equation

(�g(u,bdu) −m2)u = f + q(u, bdu),

m > 0 small, the analogous conclusion holds, without the u0 term, and
without the requirement Nj ≥ 1. This is due to the absence of a ‘0 reso-
nance’.
• The only reason |a| � M• is assumed is to exclude possible resonances in

Imσ ≥ 0, apart from the 0 resonance for the wave equation.
• The main constraint on solvability of the non-linear problem is thus reso-

nances, discussed below.
• The setup works equally well for vector bundles.

For a more precise version, and also for the proofs, we need appropriate Sobolev
spaces.

• Let L2
b be the L2 space relative to the density of any Riemannian or

Lorentzian b-metric, which is thus of the form

|dx dy1 . . . dyn−1|
x

.

• For s ≥ 0 integer, Hs
b consists of elements of L2

b with V1 . . . Vju ∈ L2
b for

V1, . . . Vj ∈ Vb(M), j ≤ s.
• The weighted Sobolev spaces are Hs,r

b = xrHs
b .

• We relax the requirements on the coefficients to

aj ∈ C∞(M) +H∞b (M), Xjk ∈ (C∞(M) +H∞b (M))Vb(M),

and the forcing to
f ∈ H∞,αb , α > 0.

Theorem 2 (H.-V., [30]). For |a| � M•, α > 0 sufficiently small, and for f ∈
H∞,αb of sufficiently small H14,α

b norm, the wave equation (with Nj ≥ 1 for all
j) has a unique forward, smooth in M◦, solution of the form u = u0 + ũ, with
ũ ∈ H∞,αb , u0 = cχ, χ ≡ 1 near ∂M .

The analogous conclusion holds for the Klein-Gordon equation, without the pres-
ence of the u0 term, without the requirement Nj ≥ 1.

As usual, H∞,αb can be replaced by Hs,α
b for s sufficiently large: for suitably

large C, s0, and for s ≥ s0, f ∈ HCs,α
b gives rise to a solution u ∈ Hs,α

b .

2. Previous results

In these expanded version of the lecture notes, we briefly discuss previous results
on Kerr-de Sitter space and its perturbations, roughly following the introduction of
[30]. The only paper the authors are aware of on non-linear problems in the Kerr-
de Sitter setting is their earlier paper [29] in which the semilinear Klein-Gordon
equation was studied. There is more work on the linear equation on perturbations
of de Sitter-Schwarzschild and Kerr-de Sitter spaces: a rather complete analysis
of the asymptotic behavior of solutions of the linear wave equation was given in
[46], upon which the linear analysis of [30], described here, is ultimately based.
Previously in exact Kerr-de Sitter space and for small angular momentum, Dyatlov
[20, 19] has shown exponential decay to constants, even across the event horizon; see
also the more recent work of Dyatlov [21]. Further, in de Sitter-Schwarzschild space
(non-rotating black holes) Bachelot [3] set up the functional analytic scattering
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theory in the early 1990s, while later Sá Barreto and Zworski [4] and Bony and
Häfner [7] studied resonances and decay away from the event horizon, Dafermos
and Rodnianski in [12] showed polynomial decay to constants in this setting, and
Melrose, Sá Barreto and Vasy [39] improved this result to exponential decay to
constants. There is also physics literature on the subject, starting with Carter’s
discovery of this space-time [9, 8], either using explicit solutions in special cases, or
numerical calculations, see in particular [49], and references therein. We also refer
to the paper of Dyatlov and Zworski [24] connecting recent mathematical advances
with the physics literature.

Wave equations on Kerr space (which has vanishing cosmological constant) have
received more attention; on the other hand, they do not fit directly into our setting;
see the introduction of [46] for an explanation and for further references. (See also
[16] for more background and additional references.) For instance, polynomial decay
on Kerr space was shown recently by Tataru and Tohaneanu [43, 42] and Dafermos,
Rodnianski and Shlapentokh-Rothman [15, 14, 17], while electromagnetic waves
were studied by Andersson and Blue [1] (see also Bachelot [2] in the Schwarzschild
case), after pioneering work of Kay and Wald in [33] and [47] in the Schwarzschild
setting. Normal hyperbolicity of the trapping, corresponding to null-geodesics that
do not escape through the event horizons, in Kerr space was realized and proved
by Wunsch and Zworski [48]; later Dyatlov extended and refined the result [22, 23].
Note that a stronger version of normal hyperbolicity is a notion that is stable under
perturbations.

On the non-linear side, Luk [34] established global existence for forward prob-
lems for semilinear wave equations on Kerr space under a null condition, and
Dafermos, Holzegel and Rodnianski [10] constructed backward solutions for Ein-
stein’s equations on Kerr space as already mentioned. Other recent works include
[35, 44, 18, 13, 11, 6, 25, 26].

3. Non-linearities

As usual, the main part of solving small data problems for a non-linear PDE
is solving linear PDE. However, the kind of linear PDE one needs to be able to
handle depends on the non-linearity, and how it interacts with properties of the
linear PDE. Here we run the solution scheme globally, on modifications as needed
for the spaces Hs,r

b . The modifications add support conditions, as well as allow for
terms corresponding to resonances of a linear equation, such as constants for the
actual wave equation:

X s,r = Hs,r
b (Ω)•,− ⊕ C.

Here • denotes the distributions supported in t1 ≥ 0 (the ‘correct side’ of H1),
while − denotes the restriction of distributions to t2 > 0 (again, the correct side
of H2), following Hörmander’s notation [32, Volume 3, Appendix B]. (Thus, these
distributions are ‘supported’ at H1 and ‘extendible’ at H2.) Here C is identified
with Cχ, χ ∈ C∞c (M) supported in t1 > 0, identically 1 near Ω ∩X.

In order for X s,r to be closed under multiplication, one needs r ≥ 0 and s > n/2.
In terms of derivatives, the best case scenario for �−1

g is the loss of one derivative
relative to elliptic estimates (which happens even locally). The other main linear
obstacle is trapping for a linear equation, to be discussed later, which causes further
losses of derivatives.

We now give some examples:
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• For de Sitter space, due to the 0 resonance, the best estimate one can get
is

�−1
g : Hs−1,r

b (Ω)•,− → X s,r

for suitable r > 0 small.
• For the Klein-Gordon equation on de Sitter space there is no resonance in

the closed upper half plane:

(�g −m2)−1 : Hs−1,r
b (Ω)•,− → Hs,r

b (Ω)•,−

for suitable r > 0 small.
• For Kerr-de Sitter space, due to trapping and resonances, the best estimate

one can get is

�−1
g : Hs−1+ε,r

b (Ω)•,− → X s,r

for suitable r > 0, ε > 0 small. (For K-G, ε remains, but the summand C
in X can be dropped.)

The simplest setting for an equation like

�g(u,bdu)u = q(u, bdu) + f

is if g is actually independent of u, i.e. � = �g is fixed, so the equation is semilinear,
for then

u = �−1
g (q(u, bdu) + f).

Then the contraction mapping principle/Picard iteration can be used provided �−1
g

and q are well-behaved:

uk+1 = �−1
g (q(uk,

bduk) + f).

As �−1
g loses a derivative relative to elliptic estimates even in the best case scenario,

one cannot simply replace �g(u,bdu) by its linearization and put the difference on
the right hand side. If the trapping causes further losses of derivatives, one would
need q = q(u)! We refer to [29] for more detail.

For quasilinear equations,

�g(u)u = q(u, bdu) + f,

without trapping losses and g depending on u only, one can instead run a modified,
Newton-type at the second order level, solution scheme

uk+1 = �−1
g(uk)(q(uk,

bduk) + f).

This still gives well posedness in the sense that (ignoring modifications due to

resonances) for small f ∈ Hs−1,r
b the solution u of small Hs,r

b -norm is unique,

and in Hs−1,r
b it depends continuously on f in the Hs−1,r

b norm. This approach
requires providing a (global) linear theory for operators with Hs,r

b -type coefficients,
with estimates that are uniform in the Hs,r

b coefficients when they are bounded
by appropriate (small) constants; this was achieved by Hintz [27] building in part
on earlier work of Beals and Reed [5]. At the level of a multiplication operator
(multiplication by u here), this corresponds to

‖uv‖Hs,rb ≤ C‖u‖Hs,rb ‖v‖Hs,rb ,

which is valid for s > n/2, r ≥ 0.
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For quasilinear equations on Kerr-de Sitter space, due to the trapping losses, we
use a Nash-Moser iterative scheme. Here for simplicity we use X. Saint Raymond’s
version [41]: one solves

φ(u; f) = 0, φ(u; f) = �g(u,bdu)u− q(u, bdu)− f,

by using the solution operator ψ(u; f) for the linearization φ′(u; f) of φ in u:

ψ(u; f)φ′(u; f)w = w,

and letting u0 = 0,

uk+1 = uk − Sθkψ(uk; f)φ(uk; f),

where θk →∞, Sθk is a smoothing operator X s,r → X s,r.
Again, this needs the linear theory for Hs,r

b -coefficients. Further, one needs tame
estimates. At the level of a multiplication operator, this corresponds to

‖uv‖Hs,rb ≤ C(‖u‖Hs0,rb
‖v‖Hs,rb + ‖u‖Hs,rb ‖v‖Hs0,rb

),

which is valid for s ≥ s0 > n/2, r ≥ 0. Here s is a ‘high’ (regularity), s0 a ‘low’
norm; what one does not want is the product of high norms, i.e. one wants an
estimate with a linear bound in high norms. For further details, including more
sophisticated tame bounds, we refer to [30].

4. Linear problems

We now discuss the linear analysis in more detail. As already present in elliptic
problems [37], there are two aspects of the linear analysis:

• b-regularity analysis: provides estimates for the PDE at high b-frequencies,
i.e. estimates of the form

‖u‖Hs,rb ≤ C(‖Lu‖
Hs
′,r
b

+ ‖u‖H s̃,rb )

with s̃ < s (in many cases arbitrary). This provides no additional decay, and

is thus not sufficient for global Fredholm-type properties since Hs,r
b → H s̃,r̃

b

compact needs s > s̃ and r > r̃.
• Normal operator analysis: provides a framework for understanding decay

and asymptotic properties of solutions.

The normal operator of L =
∑
|α|≤2 aj,α(x, y)(xDx)jDα

y is obtained by freezing

coefficients at x = 0:

N(L) =
∑
|α|≤2

aj,α(0, y)(xDx)jDα
y ,

so it is dilation invariant in x. Mellin transforming in x gives

L̂(σ) =
∑
|α|≤2

aj,α(0, y)σjDα
y .

Now, the b-regularity analysis gives uniform control of L̂(σ) in strips | Imσ| < C

as |σ| → ∞. However, L̂(σ)−1 may have finitely many poles σj in such a strip;
these are the resonances. For Fredholm theory, we need weights r (for Hs,r

b ) such
that there are no resonances σj with Imσj = −r. In an elliptic setting, with a
global problem on X = ∂M for simplicity,

L̂(σ) : Hs(X)→ Hs−2(X).
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(Examples: cylindrical ends, asymptotically Euclidean spaces.) In our setting

L̂(σ) : {u ∈ Hs(Ω ∩X)− : L̂(σ)u ∈ Hs−1(Ω ∩X)−} → Hs−1(Ω ∩X)−.

Here the principal symbol of L̂(σ) is independent of σ, and thus so is the space on
the left hand side. It is a first order coisotropic space.

In an elliptic setting on M , with r as above,

L : Hs,r
b → Hs−2,r

b

is Fredholm. Adding to this spaces of resonant states, such as in X s,r above,
maintains Fredholm properties, and if done correctly, can give invertibility.

In our non-elliptic settings one loses at least a derivative. The typical scenario
is

L : {u ∈ Hs,r
b : Lu ∈ Hs−1,r

b } → Hs−1,r
b

being Fredholm. This works for all r with no resonances with Imσj = −r if either
there is no trapping, or even with normally hyperbolic trapping if r < 0.

• For L = �g, with or without trapping, the forward solution satisfies

L−1 : Hs−1,r
b → Hs,r

b

if r < 0.
• Adding resonant state spaces, one gets invertibility even for r > 0. For
r > 0 small, no trapping,

L−1 : Hs−1,r
b → Hs,r

b ⊕ C;

in general all the resonant states with Imσj > −r should be added to the
right hand side.
• The trapping losses are all as |σ| → ∞, so

L̂(σ) : Hs−1 → Hs

is still a meromorphic Fredholm family, but its high energy behavior of the
inverse is lossy in Imσ ≤ 0.

In order to see where such statements come from we need to discuss microlocal
analysis.

5. Microlocal analysis

In our discussion of microlocal analysis let’s start with the boundaryless setting,
such as X.

• The theory is microlocal, i.e. one works with A ∈ Ψ0(X) to microlocalize.
• Recall that the principal symbol a = σ0(A) is a function on S∗X = (T ∗X \
o)/R+ (with R+ acting by dilations in the fibers of the cotangent bundle),
and the wave front set WF′(A) is a subset of S∗X.
• The characteristic set Char(A) of A is the zero set of a; the elliptic set is

its complement.
• For general order A the situation is similar, except the principal symbol is

a homogeneous object on T ∗X \ o, or the section of a line bundle on S∗X.

Microlocal elliptic estimates for an operator P ∈ Ψm(X) are of the form

‖B1u‖Hs ≤ C(‖B3Pu‖Hs−m + ‖u‖H s̃)
if Bj ∈ Ψ0(X), B3 elliptic on WF′(B1), WF′(B1) disjoint from Char(P ), s, s̃ arbi-
trary.
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Figure 2. The wave front set of the operators Bj for real princi-
pal type estimates, i.e. propagation of singularities. Here B3 has
slightly larger wave front set than WF′(B1) ∪WF′(B2).
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Figure 3. A submanifold of radial points L which is a sink in the
normal directions. The figure should be understood as one in the
cosphere bundle, S∗X = (T ∗X \ o)/R+.

Real principal type estimates correspond to propagation of singularities: one can
control u microlocally somewhere in terms of control on it at another point on the
bicharacteristic through it, and of course of Pu:

‖B1u‖Hs ≤ C(‖B2u‖Hs + ‖B3Pu‖Hs−m+1 + ‖u‖H s̃);

here s, s̃ arbitrary, B3 elliptic on WF′(B1), and the bicharacteristic of P from
every point in WF′(B1) ∩Char(P ) reaches Ell(B2) while remaining in Ell(B3); see
Figure 2. These are typically proved by positive commutator estimates, which are
essentially microlocal energy estimates, see [31].

This real principal type estimate means that one has control of u if one con-
trols it somewhere else – but one needs a starting point. One way this works is
for Cauchy problems, where one works with spaces of supported distributions; one
propagates estimates from outside the support. Another way this works is if the
bicharacteristics approach submanifolds L which are normally sources or sinks for
the bicharacteristic flow (see Figure 3), and at which one has estimates without the
B2 term. In this case there is a threshold regularity s0, and the result depends on
whether s > s0 or s < s0. Here s0 depends on the principal symbol of 1

2i (P − P
∗);

if P − P ∗ ∈ Ψm−2(X), then it is s0 = (m− 1)/2.

• For s > s̃ > s0, the estimates are of the form

‖B1u‖Hs ≤ C(‖B3Pu‖Hs−m+1 + ‖u‖H s̃),

i.e. one has control without having to make assumptions on u elsewhere.
Here B1 is elliptic on L, B3 elliptic on WF′(B1), and all bicharacteristics
from WF′(B1) ∩ Char(P ) tend to L in either the forward or backward
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direction (depending on sink/source) while remaining in the elliptic set of
B3.
• For s < s0,

‖B1u‖Hs ≤ C(‖B2u‖Hs + ‖B3Pu‖Hs−m+1 + ‖u‖H s̃);

where now WF′(B2) is disjoint from L, B1 elliptic on L, so one propagates
estimates from outside L to L, B3 elliptic on WF′(B1), and all bicharacter-
istics from (WF′(B1) ∩ Char(P )) \ L tend to Ell(B2) in either the forward
or backward direction (depending on source/sink) while remaining in the
elliptic set of B3.

These statements are again proved (under the appropriate assumptions) by pos-
itive commutator estimates; see [46, Section 2] and also [45].

This structure happens in X = ∂M for Schwarzschild-de Sitter space (P = L̂(σ)
is the Mellin transformed normal operator), via radial sets, where the Hamilton
vector field Hp is tangent to the dilation orbits in T ∗X \ o. Note that there is no
dynamics within the radial set. (Asymptotically Euclidean scattering theory has
similar phenomena, see especially Melrose’s work [38].) In X for Kerr-de Sitter
space there is non-trivial dynamics within the radial set (rotating black hole), but
the normal dynamics is again source/sink. In both cases, L = SN∗(Y ∩X), where
Y is the event horizon of the black hole or the cosmological horizon of the de Sitter
end; see [46] and Figure 4. Furthermore, s0 = (m − 1)/2 + βr, r = − Imσ, where
β arises as the negative of the ratio of the eigenvalues of the linearization of the
Hamilton flow normally to L within M , namely the eigenvalue corresponding to
the defining function of fiber infinity in the cotangent bundle and the eigenvalue
corresponding to the boundary defining function of M (see [29, Section 2] for a
discussion of this perspective).

Figure 4. A more complete picture of Kerr-de Sitter space with
L± the projection of the radial sets (from the cotangent bundle),
and Γ the projection of the trapped set.

With

P : {u ∈ Hs(Ω ∩X)− : Pu ∈ Hs−m+1(Ω ∩X)−} → Hs−m+1(Ω ∩X)−,
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and

P ∗ : {u ∈ Hs′(Ω ∩X)• : P ∗u ∈ Hs′−m+1(Ω ∩X)•} → Hs′−m+1(Ω ∩X)•,

s > (m− 1)/2 + βr, s′ < (m− 1)/2− βr, we get the required Fredholm estimates;
here we want s′ = −s+m−1 for duality. (Here r = − Imσ as above.) The a priori
control for P comes from L; for P ∗ it comes from the Cauchy surface H2 ∩X.

Turning to L ∈ Ψm
b (M), where Ψm

b (M) is the b-pseudodifferential algebra (cor-
responding to Vb(M) and the Sobolev spaces Hs,r

b (M)), the situation is similar,
except one has to use Ψb(M) to microlocalize; see [46] and especially [29].

• In particular, microlocal elliptic and real principal type estimates are un-
changed.
• From the perspective of M , the normal sources/sinks L within X are ac-

tually saddle points, with the normal direction to X having the opposite
stable/unstable nature relative to X. (This corresponds to the red-shift
effect.)
• In this case, on Hs,r

b , one can propagate estimates through L from outside
X into X (to L and beyond) if s > (m− 1)/2 + βr, and from inside X (a
punctured neighborhood of L) to L and to outside X if s < (m−1)/2+βr: β
being a scale relating s and r due to the linearization eigenvalues mentioned
above.
• If all bicharacteristics, except those within components of the generalized

radial set go to H1, resp. H2 in the two directions, as in de Sitter space,
this gives estimates

‖u‖Hs,rb (Ω)•,− ≤ C(‖Lu‖Hs−m+1,r
b (Ω)•,− + ‖u‖H s̃,r(Ω)•,−),

‖u‖
Hs
′,r′
b (Ω)−,•

≤ C(‖L∗u‖
Hs
′−m+1,r′
b (Ω)−,•

+ ‖u‖H s̃′,r′ (Ω)−,•),

s′ = −s+m− 1, r′ = −r.
If this non-trapping assumption is not satisfied, these estimates need not hold.

• In Kerr-de Sitter space, the trapped set Γ is in bS∗XM , and corresponds to
the photon sphere of Schwarzschild-de Sitter space.
• It can be considered as a subset of T ∗X, and then shows up in high energy,

or semiclassical, estimates for L̂(σ).
• It is normally hyperbolic: there are smooth transversal stable/unstable sub-

manifolds Γ± with intersection Γ.
• Further, normally hyperbolic trapping is the only trapping: outside L ∪ Γ,

in both the forward and the backward directions, all bicharacteristics need
to tend to either Hj or to L or to Γ, with tending to Γ is only allowed in
one of the two directions.
• In this case, the estimates above are valid for r < 0 only! (Growing spaces.)

However, the estimates are valid for rough coefficients, and indeed they are
tame estimates. (There are actually some estimates valid for r = 0; see
[28].)

However, for r > 0 small (with a precise dynamical bound), Dyatlov [23] (earlier
results are due to Wunsch and Zworski [48], and more general results are due
to Nonnenmacher and Zworski [40]; for us Dyatlov’s version is convenient) has
shown for the Mellin transformed normal operator the lossy estimates (in terms
of derivatives relative to non-trapping), which in turn give the lossy estimates for
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N(L). This is valid for L = �g or �g −m2, g the Kerr-de Sitter metric, or smooth
perturbations.

Since our linearized operator Lu depends on (the rough!) u, this is not enough.
But, as the coefficients of Lu are in C⊕Hs,r

b with r > 0, one can treat the second
term as a perturbation: one can combine Dyatlov’s decaying estimates for L−1

c

(c ∈ C) with the rough coefficient estimates on Hs,r′

b , r′ < 0; once the coefficients

of Lu − Lc have sufficient decay, they map Hs,r′

b to Hs−m,r
b . Notice that there are

no tameness issues for Lc (c has only a ‘low regularity’ part).
Altogether this gives a tame estimate for the solution operator S for s0 > n/2 +

1/2, α > 0 small, s > n/2 + 2, 0 < r ≤ α,

‖Sf‖X s,r ≤ C(s, ‖u‖X s0,α)(‖f‖Hs+3,r
b (Ω)•,− + ‖f‖Hs0,rb (Ω)•,−‖u‖X s+4,r ).

This then plugs into the Nash-Moser framework and gives the global solvability and
asymptotics (decay to constants) result stated at the beginning of these notes.

References

[1] L. Andersson and P. Blue. Uniform energy bound and asymptotics for the maxwell field on
a slowly rotating kerr black hole exterior. Preprint, arXiv:1310.2664, 2013.

[2] A. Bachelot. Gravitational scattering of electromagnetic field by Schwarzschild black-hole.
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