MICROLOCAL ANALYSIS OF OPERATORS WITH ASYMPTOTIC
TRANSLATION- AND DILATION-INVARIANCES

PETER HINTZ

ABSTRACT. On a suitable class of non-compact manifolds, we study (pseudo)differential
operators which feature an asymptotic translation-invariance along one axis and an as-
ymptotic dilation-invariance, or asymptotic homogeneity with respect to scaling, in all
directions not parallel to that axis. Elliptic examples include generalized 3-body Hamil-
tonians at zero energy such as A, + Vo(z') + V(z) where A, is the Laplace operator on
R =R"” 1 %Ry, and Vp and V are potentials with at least inverse quadratic decay: this
operator is approximately translation-invariant in " when |z’| < 1, and approximately
homogeneous of degree —2 with respect to scaling in (z',2”) when |z’| 2 |z”|. Hyperbolic
examples include wave operators on nonstationary perturbations of asymptotically flat
spacetimes.

We introduce a systematic framework for the (microlocal) analysis of such operators
by working on a compactification M of the underlying manifold. The analysis is based on
a calculus of pseudodifferential operators which blends elements of Melrose’s b-calculus
and Vasy’s 3-body scattering calculus. For fully elliptic operators in our 3b-calculus, we
construct precise parametrices whose Schwartz kernels are polyhomogeneous conormal
distributions on an appropriate resolution of M x M. We prove the Fredholm property of
such operators on a scale of weighted Sobolev spaces, and show that tempered elements
of their kernels and cokernels have full asymptotic expansions on M.
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1. INTRODUCTION

Consider the wave operator

xj?
2

n—1
1
O =—D? + Aga-1, (t,z) eRX R P =R", Agn-1 = ZD2 D = -9,
j=1

on the Minkowski spacetime. We focus on two symmetries of [I:

(1) The operator [J is invariant under time translations ¢ — t+a, a € R. Therefore, one
can study it using the Fourier transform in ¢, which means analyzing the spectral
family Agn—1 — 0% and proving estimates for its inverse, the resolvent.

(2) The operator [J is also homogeneous of degree —2 under spacetime dilations (¢, z)
(At,Az), A > 1. (Equivalently, (#> + |z|*)0 is dilation-invariant.) Thus, one can
analyze it using the Mellin-transform in |(¢,z)|~! = (¢* + 22)~1/2.

There are many interesting classes of operators generalizing [J which retain time trans-
lation invariance. For the purposes of this introduction, we restrict attention to operators

P=0+V,

where V' = V (z) is a stationary potential (which is typically required to decay as |z| — c0).
Passing to the Fourier transform in ¢ gives the spectral family N;(P, o) = Agn-1+V -2
Precise information about the asymptotic behavior of solutions of P can then be deduced
from properties of the resolvent ]5(0')_1 via the inverse Fourier transform. (We mention
that wave operators on stationary asymptotically flat spacetimes, such as Schwarzschild or
Kerr black hole spacetimes, are also time-translation-invariant, and their analysis via the
Fourier transform has reached a rather refined state, see [Tat13, DSS11, Mor20, MW21,
Hin22a].) However, as soon as exact time translation invariance of P is broken (e.g. when
the spacetime metric or the potential depend on time, no matter how mildly), the Fourier
transform by itself is no longer sufficient for the analysis of P.

Generalizations P of OJ which retain ezact homogeneity under dilations in (¢, z), at least
for large |(¢,z)|, rarely appear in nature. (A somewhat artificial example would be P =
O+t=2W(x/t) int > 3|z|, where W is a smooth function.) The analysis of such P would be
most naturally effected by means of the Mellin transform in |(¢, )|, which transforms P into
a family of operators ]/V;(P, A), A € C, on the cross section {|(¢,z)| = 1} = S%L; the poles
of ]/V;(P, A)~! (acting on appropriate function spaces) then correspond to contributions
(¢, z)| " a(w) (with a € kerﬁg(P, A)) to the large scale asymptotics of solutions u of
Pu = f. Operators which are merely approximately homogeneous with respect to dilations
(roughly speaking, [t0; + x0,, P] = —2P plus an operator which is an error term in that its
coefficients decay relative to those of P) are quite natural: they arise e.g. as wave operators
on appropriate generalizations of Minkowski space, such as the Lorentzian scattering spaces
considered in [BVW15, BVWI18]|. A systematic framework for the analysis of operators
with approximate dilation-invariance is provided by Melrose’s b-analysis; in a nutshell, one
can control the regularity of solutions of P with respect to vector fields such as t0;, t0,,
270y, °0,; using symbolic analysis (i.e. high frequency analysis, involving estimates which
only use the principal or subprincipal symbol of P, such as elliptic estimates, propagation
of singularities [DH72], and radial point estimates), while the Mellin transform applied
to an exactly dilation-invariant (or -homogeneous) model Np(P) for P at |(¢t,z)|™! = 0
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provides sharp control of asymptotics. Note that time-translation-invariant operators such
as O+ V(z), for 0 # V € C(R" 1), behave well under dilations only in regions |z| > et,
€ > 0, but not globally on R".

A central aim of the present work is to lay the conceptual groundwork for a systematic
analysis of operators on R; x R?~! which feature both an approximate invariance under
time translations for |z| < 1 as well as an approximate invariance (or homogeneity) under
spacetime dilations in |z| 2 ¢, with an appropriate transition between these two in the
region 1 < |z| < t. As a concrete example, consider in |z| < ¢ the operator

P=0+V(},2,%2) = —Df + Agnr + V($,2,%), (1.1)

where V = V(T,z, X) is a smooth function of its arguments, \V(T z, X)| =0z > %), and
V(T,z,X) = |x|~ 2VO( ’Ix\’\ |,X) with Vg smooth down to |z|~! = 0. For |z| < 1, the
operator P is equal to a time-translation invariant operator,

up to decaying (in t) errors, whereas for |X| = |¥| > ¢, the operator P is equal to a
dilation-homogeneous operator,

P~ Np(P) =0+ |z]72V,(0,0, &, %) (1% > 1),

7|x|7t

up to decaying (in |(¢,x)|) errors. (As far as the transition between the two asymptotic
regimes is concerned, we note that these two model operators match up in their own as-
ymptotic regimes |z| — oo, resp. || — 0: there, they tend to the operator

—D} + Agn-1 + |2[7V5(0,0, 7, 0)

which is both translation-invariant and dilation-homogeneous.) The analysis of such oper-
ators thus involves both the spectral family N;(P, o) = —0%+ Agn-1 + V(0,2,0) as well
as the Mellin-transformed normal operator family’ N;(tQP, A) to control the asymptotic
behavior of solutions of Pu = f (for rapidly decaying f, say), and an appropriate symbolic
analysis to control their regularity.

Remark 1.1 (Geometric hyperbolic examples). Wave operators on spacetimes which, in a
certain sense, settle down to a Kerr spacetime at a rate t7¢ as t — oo provide, at least
in a region |z| < %t away from the light cone, further examples of operators with such
approximate invariances. Typically, on asymptotically flat spacetimes, a neighborhood
|x/t] = 1, [t| > 1, of null infinity has a yet different structure however. A singular geometry
perspective for this near-light-cone region is given in [HV20], and a fully microlocal point
of view is introduced in [HV23]. The 3b-perspective introduced in the present paper is then
only of importance in |z/t| < v < 1.)

One may similarly consider elliptic operators with approximate translation- and dilation-
invariances (e.g. those which arise from the Minkowskian examples above by switching the
sign of Df) The translation-invariant models are Schrodinger operators with potentials
that invariant under translations in one coordinate, i.e. Df + D?E + V(z); approximately

IThis is the formal conjugation of Np(|z|>P) by the Mellin transform in a homogeneous degree —1
function on R™, which in the region |z| < ¢t we are currently considering can e.g. be taken to be % The
rescaling of P by t? ensures the dilation-invariance of the resulting operator (rather than merely dilation-

homogeneity), as required for passing to the Mellin transform.
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dilation-invariant /-homogeneous examples are Laplace operators on R™ equipped with an
asymptotically Euclidean (or conic) metric. We note that the operator

D? + D2+ V(z) = Agn + 7'V, (1.2)
with : R, — R”~! the projection to a subspace, is an example of a (generalized) reduced
3-body Hamiltonian.? The study of the spectral and scattering theory of 3- (or more general
N-)body Hamiltonians at nonzero real energies has a long history. We refer the reader to
[Vas00, Vas01] for context and references. Here, we only note that the operator Agn +7*V —
¢, where 0 € ¢ € R, is a 3-body-scattering operator in the terminology of Vasy [Vas00], and
indeed Vasy gives a detailed description of the asymptotic behavior of outgoing solutions
of more general operators which in particular only feature an approximate translation-
invariance along the fibers of m. The 3-body-scattering analysis involves a symbolic part
to control regularity (and decay in |z| 2 |t|) of solutions, and a spectral family to control
asymptotics and decay for bounded |z| as |t| — oo. However, we stress that the presence of
¢ # 0 destroys the dilation-homogeneity in |z| = |t|, and indeed leads to entirely different
asymptotics of solutions there (oscillatory when ¢ > 0, Schwartz when ¢ < 0), cf. the
considerably different regularity and asymptotic properties of solutions of Agrnu = f as
compared to those of solutions of (Agrn — ¢)u = f when ¢ # 0.

The main novelty of the present paper is the introduction of algebras of 3b-differential
and 3b-pseudodifferential operators which are tailor-made to precisely capture approximate
translation- and dilation-invariances; here ‘3b’ is short for ‘3-body/b’. Correspondingly,
the analysis of a 3b-operator P uses three models:

(1) the T-normal operator N (P) of P which is an exactly translation-invariant oper-
ator on R; x R?~! and is thus analyzed via the Fourier transform in ¢;

(2) the D-normal operator Np(P) of P, which is an exactly dilation-invariant/-homo-
geneous operator on RY, (whose coefficients typically become singular at the axis
2 = 0) and is thus analyzed via the Mellin transform in |(t,z)|~;

(3) the principal symbol *’c(P) of P, which is a symbol on an appropriate uniform (as
|(t, z)| — o0) version of the cotangent bundle.

In this paper, we shall not prove any estimates for non-elliptic operators such as (1.1); in
the particular setting of wave operators on nonstationary asymptotically flat spacetimes, a
detailed analysis (which also takes into account the different structure at null infinity) is
instead given in [Hin23]. We do however develop a general and rather refined theory for
fully elliptic 3b-(pseudo)differential operators. In order to give the reader an impression of
this, we consider the example from the abstract (which is an elliptic version of a special
case of (1.1)). To wit, write z = (t,z) € R x R"™!, put

()= (2 2), (o) = (A )
(where |z| = (t2 4 |z|?)"/?), and consider
P = Agn + V(2) + Vi (z) = D} + Agn1 + V(t,2) + Vi (2),
V € C®(R?), Vye ™R,

(1.3)

2A reduced 3-body Hamiltonian on R” " would be the operator Agan-1y +Vi(y') +Va(y?) + Va(y' —9°)
where R2"™D = ¢ = (y*,y?), with y', resp. y* the relative position of the first and second, resp. first and
third particle. For Va, Vs = 0, writing # = 3!, and taking y? = ¢ to be a real variable—hence the qualifier
‘generalized’—this gives the operator (1.2).
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We allow for the potentials V', V3 to be complex-valued. Assume that [0,1) x S"~2 >
(p,w) + Vr(p~'w) is smooth and vanishes at least cubically at p = 0;* and that [0,1) x
S"1 3 (o, @) — V(o 'w) is smooth and vanishes at least quadratically at o = 0. Write

Vp := (072V)[p=0 € C(S" 1)
for the leading order part of V. We analyze P on weighted 3b-Sobolev spaces

_ —ar _ (z)\—ar
HEoPaT — (g)~m (@) = {@e(55) Twiue i, 14

3b <l’> <$> 3b (IL‘> <£U> uu 3b (> ( )
where HY (k € No) consists of all u € L*(R") so that ((z)0,)*u € L*(R") for all |a| < k.
Note that P: HggaD’O‘T — H?]fb_Q’aDJFQ’O‘T is a bounded linear operator.

Theorem 1.2 (An example of a fully elliptic 3b-differential operator). Let n > 4, and let

ap,ar € R be such that ap — ay € (—”T_l, ”T_l — 2). We make the following assumptions:

(1) The operator
N7 (P,0) = Agn-1 + 0> + Vi (1.5)
has no . (R"Y)-nullspace for 0 # o € R (here .#(R"™1) is the space of Schwartz
functions). Assume moreover that a smooth function uw = wu(x) which satisfies
lu] = O(|z|™¢) for some € > 0 as || — oo and which lies in kerﬁ;(P,O) or
ker J/V;(P,O)* = ker(Agn-1 + V) vanishes identically.*
(2) The operator’

No(072P,A) := A2 +i(n — 2)A + Agao1 + Vp: CO(S™1) — €°(S™ )

is invertible for all A € C with Im A = —ap — 5.

Under these assumptions, the operator
()2P: Hy P OT — HE 20POT (1.6)
is Fredholm. Any element u in the kernel or cokernel (orthogonal complement of the range)

of P is pointwise bounded by a constant times (x) P~z (%)_QT_%, as are all its derivatives

along any number of powers of (x)0, and (2)0;.° Finally, if u € .#'(R™) satisfies Pu = 0,
then u s necessarily smooth; and there exist ap,ar € R so that u and all its derivatives of
this type satisfy these pointwise bounds.

This is a special case of Theorem 6.15 and Corollary 6.16, as verified in Lemma 6.19 and
Remark 6.21. Our general machinery gives more still: elements of the kernel and cokernel
are polyhomogeneous on an appropriate compactification of R to a manifold with corners;
and the generalized inverse of P is an element of the large 3b-pseudodifferential calculus.
Furthermore, assumption (2) holds when ap € R\ D where D is a discrete subset of R;

30ne can also allow for Vi to have inverse quadratic decay; this however necessitates modifications of
the ranges of weights for which Theorem 1.2 below is valid.

4n the special case that Vi is real-valued, assumption (1) of Theorem 1.2 has an equivalent formulation
in terms of classical spectral theory; see Corollary 6.20.

5This is the conjugation by the Mellin transform in g of the dilation-invariant model operator o2 (Arn +
0*°Vp) = (0D,)? +i(n — 2)pD, + Agn-1 + Vp of g 2P.

Note that regularity, without loss of decay, of u under application of (z)0; is significantly stronger than

infinite order 3b-regularity in the region (z) < (t). Thus, we prove stronger regularity than what one might
naively expect from the structure of the operator.
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we show that when ap crosses a value a € D, then the index of (1.6) jumps by the sum

of the dimensions of the generalized nullspaces of N;(P, A) where ImA = —a — 5. See
Theorems 6.4 and 6.17. Finally, one can show that the operator (1.6) cannot be Fredholm
unless ap — a7 € [—25%, %1 — 2]; see Remark 6.18.

The remainder of the introduction is structured as follows: in §1.1, we give an overview
of 3b-geometry and 3b-analysis; in §1.2 we discuss elements of our detailed elliptic theory
in the 3b-setting. After giving pointers to the literature in §1.3, we end with an outline of
the rest of the paper in §1.4.

1.1. Overview of 3b-geometry and 3b-analysis. In the main part of this work, we
follow the time-honored tradition of doing analysis on non-compact spaces such as Ry X
R”~! by compactifying the space to a manifold M with corners; the operators of interest
then feature appropriate degenerations at the boundary hypersurfaces of M. A detailed
discussion that is fully based on this perspective is given in §3; see also §1.1.1 below. For
now, it is simpler to proceed in a more hands-on fashion. Thus, we work on M° := R; x R? !
and postpone the specification of its compactification M until the end of this section. In
|z| > 1, we introduce polar coordinates

X

||

on R?~1; we shall use the schematic notation 9, to denote a vector field on S*~2 (or the
collection (9,1, . ..,0,n—2) of coordinate vector fields), or its lift to Ry x (1, 00), xS"2 C M°.
The basic 3b-vector fields are then

r=|x|, w c S,

r0¢, 10p, Oy (1.7)

note indeed that they are invariant under ¢-translations and (t,r)-dilations (i.e. they Lie-
commute with d; and t9; + x0, = td + r0,). As coefficients, we allow functions

17 _

CL:CL(pr7pT7w) :CL(;vaw)a aecoo([O’ 1)PD x [O) 1)pT x S" 2); (18)
such functions will precisely be the elements of C*°(M), with [0,1),, x [0,1),, x S""% a
local coordinate chart near the boundary of M (which one should think of as the boundary
of M° at infinity). In (1.8), we write

-1 r

pPD =T -, T = ;

Note that such a function a can be restricted to p7 = 0 to give a smooth function a|y :=
a(r~—!,0,w) which is translation-invariant in ¢; and we can restrict a to pp = 0 and obtain a
smooth function a|p := a(0, 7, w) which is dilation-invariant in (¢,r). The space V3,(M) of
3b-vector fields consists of all vectors fields on M° which are of the form ard; + bro, + cd,,
where a, b, ¢ are smooth in the sense of (1.8); this is a Lie algebra. A typical element of the
space Diff5} (M) of m-th order 3b-differential operators is then locally of the form

1 r .
P = Z Ajka (;, g,w> (roy)’ (ro,)*a, Ajka € C(M). (1.9)
JjH+k+|al<m

For example, since Agypn-1 = — (02 + 9% + nT_zar +7r7292), we have (r)2A € Diff3, (M).
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Principal symbol. We define fiber-linear coordinates on T*M?° by writing covectors as
a% + 5% + 1 where 0,& € R, n € T*S"2; the principal symbol of the operator P given
by (1.9) is then

o™ (P)(pp, prowi o &m) = Y ajralpp, pr,w)o’ .
Jtk+lal=m
This is a polynomial in (o, &, n) with smooth coefficients all the way down to the boundary
of M° at infinity, and thus captures globally and in a nondegenerate manner the principal
part of P.

T-normal operator; spectral family. Restricting the coefficients of P (as a 3b-
operator) to p7 = 0 gives the translation-invariant operator

Nr(P) = Z aj/m(r_l,O,cu)(rﬁt)j(rar)k@g,
J+k+|a|l<m
which thus only involves the restrictions a;jio|7. Its spectral family is obtained by formally
replacing 0, by —io:

Nr(Po)= 3 ajral(r™,0,w)(~ior) (rd,)" L. (1.10)
j+k+|al<m

The zero energy operator N;(P, 0) (in which only those terms with j = 0 survive) is
itself approximately dilation-invariant in r, with exactly dilation-invariant model at r = co
given by No7(P) = > )4 jaj<m @jka(0, 0,w)(rd,)*0%. More precisely, the operator N;(P, 0)
is a totally characteristic, or in the terminology of Melrose [Mel93] a b-differential, operator
on T := R* 1, the radial compactification of R”"! to a closed ball; this means that it
is constructed from the vector fields ppd,, (where pp = r~!) and 9, with smooth (in
pp € [0,1) and w € S"2) coefficients. As a consequence, the asymptotic behavior of its
solutions is—at least in sufficiently nice, e.g. elliptic, settings, and ignoring the possibility
of higher multiplicities—controlled by the set

spec, (Ngr(P)) Cc C (1.11)

of complex numbers ¢ for which the operator ]Va\T(P, &) = Xkt |aj<m @0ka(0, 0,w)(—i&)ko
on C®(S"2) is not invertible (corresponding to the possibility of r~*u(w) asymptotics
where u € C*(S"~2) is in the kernel of ]Va\T(P, €)). Closely related to this is the fact
that the invertibility of ]/V?(P, 0) on appropriate (b-)Sobolev spaces requires an appropriate
choice of polynomial weight at r = oco.

For real o # 0 on the other hand, N\T(P, o) has a rather different character (much as the
Euclidean Laplacian A is quite different from A+a? for o # 0): it is a (weighted) scattering
differential operator in the terminology of [Mel94]. Indeed, the operator T_mN\T(P, o) is
constructed from 9,, 710, with smooth (in r~!,w) coefficients, or in Cartesian coordinates
r = rw from 9,.7 In elliptic situations such as (1.5), kernel and cokernel (on tempered
distributions) are automatically Schwartz, and the invertibility of N;(P, o), o # 0, on

"While the same is true when ¢ = 0, the b-perspective for the zero energy operator is not only more
precise, but analytically better behaved: the zero energy operator does not have good mapping properties on
scattering function spaces (which here are standard weighted Sobolev spaces on R”fl), and indeed typically
fails to have closed range, an example being A: H?(R™) — L*(R™).
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standard weighted Sobolev spaces is less delicate than for o = 0 in that it does not depend
on any choice of weight (or regularity). We briefly mention that when considering large real
o, one can regard || ! as a semiclassical parameter, and N7(P, o) becomes a semiclassical

scattering operator [VZ00].

In light to the disparate behavior of the spectral family at zero and nonzero energies, the
limit of N7(P, o) as o \, 0 is a singular one; roughly speaking, at a small nonzero frequency
o € R, the behavior of solutions changes from the b-regime to the scattering regime at the
scale r ~ |o|~!. Thus, in ¢ > 0 we introduce # = or in (1.10) and drop terms of size r—1;

this gives the operator

NieP) = Y ajal0,0,w)(—i) (70;)*02 (1.12)
Jt+k+|a|<m

governing the transition from positive to zero frequencies. (There is an analogous operator
N 4(P) for the other choice of sign of 0.) In the setting of Theorem 1.2, the operators
N%tf(P) are both equal to A + 1 where A is the Laplacian on the exact cone ([0,00); X
S"=2,d#? + #2ggn—2). One can define a general class of parameter-dependent operators
which contains +[0,1) > 0 — N;(P, 0): this is the scattering-b-transition-algebra defined
originally (under a different name) in [GHOS8| for detailed low energy spectral theory, and
used more recently in [Hin21b].

Altogether then, estimating solutions of P in the approximately translation-invariant
regime (r/t < 1) requires the inversion of N;(P, 0) as well as of N;(P, o), and also of the
transition model operators N%tf(P) for the purpose of uniform low energy control.

D-normal operator; Mellin-transformed normal operator family. In order to
exhibit the approximate dilation-invariance of P, we pass to coordinates T'=t"!, R = r/t,
w, with the dilation action given by scaling T'. Restricting the coefficients of P in (1.9) to
pp = 0 thus produces

Np(P)= > ajra(0, R,w)(~R(TOr + RIR))’ (ROR)"O3
jHk+|a|<m

= Y alRw)(RTOr) (ROR) 0
Jt+k+]al<m

(1.13)

for suitable @;q; this expression only involves the restrictions a;iqo|p. The operator Np(P)
is dilation-invariant (in 7') on [0,00)7 x [0,1)g x S"~2, and it degenerates at R = 0 as
an edge operator in the sense of Mazzeo [Maz91]: the basic vector fields RT0r, ROg, and
0, from which Np(P) is constructed are precisely those smooth vector fields which at
R = 0 are tangent to the fibers of the fibration R~1(0) = [0,00)7 x S*~2 — [0, 00)7, and
which are moreover tangent to 7' = 0. Thus, Np(P) is an edge-b-operator. This class of
operators appeared previously in [MVW13], where its analysis was restricted to exploiting
the principal symbol; in the present paper, we shall develop the fully elliptic theory in
detail.

Controlling solutions of P in the approximately dilation-invariant regime (r—! < 1)
requires the inversion of Np(P) on appropriate Sobolev spaces with polynomial weights in
T and R. The weight in T arises from Fuchsian (or b-) arguments: taking advantage of
the dilation-invariance of Np(P) in T, we define the Mellin-transformed normal operator
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family by formally replacing ROr by i, giving

Np(P,A) = Y ajka(R.w)(iRN(ROR)*0S, A€ C. (1.14)
JH+k+|al<m

This is a family of operators on (0, 1) xS"~2 (which is the set of endpoints at infinity of rays
r/t = const. > 0, ¢t / 0o, within our coordinate chart), each of which is a b-operator at (i.e.
approximately dilation-invariant near) R = 0. As such, its inversion on b-Sobolev spaces
requires a choice of weight in R which is informed by the set specy,(Ngr(P)) from (1.11).
Since the inversion of N;(P, A) is a global problem, our present local coordinate description
is inadequate; glossing over this issue, one can define the set

specy, (Np(P)) c C

of A € C for which ]/V;(P, A) is not invertible (acting between appropriate weighted b-
Sobolev spaces). As soon as NE(P, A) is invertible for all A € C on a line Im A = —a, one
can then invert Np(P) (via the inverse Mellin transform) on function spaces with T-weight
Te.

An interesting technical aspect is that the high energy (| Re A| > 1) behavior of ]/V;(P, A)
is somewhat delicate due to the competition of R (which may be small) and A (which may
be large). Analogously to the discussion of the low energy spectral family, one introduces,
say for large real A, the rescaling R = R\ and lets A — oo while keeping R fixed; this
produces

Ng (P) = Z doka (0, w) (iR) (ROR)"0S,
k+|a|<m
which is in fact the operator (1.12) but in different coordinates. As a family of b-differential
operators depending on the large parameter |\|, or equivalently on the small parameter
IA|7L, the family N;(P, A) is then a large parameter or semiclassical cone differential oper-
ator in the terminology of [Loy02, Hin22b]. In particular, in the elliptic setting, the problem
of constructing an operator @) with N;(Q, A) = N;(P, A)~! (thus Q is an element of the
large edge-b-pseudodifferential calculus, see §2.7.3), necessarily involves, despite its classical
appearance, ps.d.o. algebras which were developed only much after [Maz91, Mel93].

1.1.1. Compactification. 3b-analysis on R" takes on a particularly clean form on an ap-
propriate compactification of R® = R; x R?~! to a manifold with corners. We give the
general definition in §3, which in the present special case amounts to passing to the radial
compactification My = R™ of R™ to a closed ball and blowing up the north and south poles
(i.e. the end points at infinity of the t-axis), which produces the manifold M. We refer the
reader to §2 for a definition of these notions, and here only mention two coordinate charts
near M ; see Figure 1.1.

(1) One chart covers the compactification of (1,00); x B(0,79) where B(0,79) C R?~1
is the closed ball of radius rg, and is given by

[0,1)7 x B(0,70)z, T=1t""

The spectral family Z/V?(P, o) of the translation-invariant model of a 3b-operator P
then lives on the boundary hypersurface 7 C M which is locally given by T' = 0.
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(2) Another chart covers the compactification of r > 1, 0 < ¢/r < 1, and is given by

_ B r
0,1),, x[0,1),, x S" 2 pp=r"t pr= I

This was already introduced in (1.8). In this chart, 7 = p}l (0), while the Mellin-

transformed normal operator family N;(P, A) of the dilation-invariant model of P
lives on the boundary hypersurface D C M which is locally given by pp = 0.

The basic 3b-vector fields (1.7) can be replaced by T?0r, 0, in the first chart, and by
PTPDOps, PDOpp — PT0pr, Oy in the second chart. It is unavoidable that generators of
Vs (M) near the corner 7 ND include derivatives such as ppd,,, — p70,, which mix several
coordinates; this is a manifestation of the 3-body (i.e. non-product) nature of 3b-geometry.
Note moreover that near 7°, 3b-vector fields are, in the terminology of [MM99], the same as
cusp vector fields with respect to the boundary defining function 7'; however, the function
T is not a defining function of 7, but rather a joint defining function of 7 U D, which is
again a familiar feature of 3-body geometries. In particular, the 3b-algebra is markedly
different from the b-cusp algebra on M, with b-, resp. cusp behavior at D, resp. 7. See
also Remark 3.5.

Remark 1.3 (Geometry of the D-normal operator). The fact that D arises from the bound-
ary at infinity S"~! of My by blowing up points (the north and south pole) explains why
the operators NE(P, A) have a conic structure at 9D (i.e. R = 0 in the coordinates used
in (1.14)), and why the dilation-invariant operator Np(P) has a full line R = 0 of cone
points; see [MW04, MVWO08]| for more on the relationship between timelike lines of cone
points and edge analysis.

The principal symbol 3P6™(P) of P € Diffj (M) is a homogeneous polynomial on a
smooth vector bundle 3*T*M — M which over the interior M° = R” is identified with
T*R"; if 3° 6™ (P) vanishes, then P € Diff5} =" (M). Similarly, the spectral family captures
P to leading order at T in the sense that N\T(P, o) = 0 for all o € R implies that P €
p7Diff5} (M), i.e. the coefficients of P vanish at T likewise, N;(P, A) =0 forall A\ € C
implies that P € ppDiff5; (M). Thus, these three models associated with P € Diff5} (M)
are sufficient to capture P to leading order in all three asymptotic senses; ané\this is the
reason why control (in the elliptic setting meaning: invertibility, in the case of Np (P, \) for
A on a line of constant Im A) of all three models gives the invertibility of P up to compact
errors, i.e. the Fredholm property of P.

1.1.2. 3b-pseudodifferential operators. If one formally writes a 3b-differential operator P
inr >1as P =p(l/r,r/t,w;rDy,rD,,D,), then a 3b-pseudodifferential operator arises
by allowing the symbol p = p(pp, p7,w;0,&,7n) here to be an m-th order symbol (m € R)
in (0,£,n) rather than a polynomial. Following a long tradition in singular microlocal
analysis, starting with [Mel81, MM87, Maz91, EMM91, MM99], we make sense of this by
geometric microlocal means. We define an appropriate resolution Mgb (blow-up) of the
double space M x M, where M is the compactification of R™ introduced above, and define
the space W3, (M) of s-th order 3b-ps.d.o.s via their Schwartz kernels: they are distributions
on M2, which are conormal to the closure diags, C M3, of the diagonal diagyo C M®x M°
(whereas differential operators are those which are Dirac distributions supported at diagsy,).

The proof that (J,cp V5, (M) is an algebra, i.e. closed under composition, is based on the
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',r.

FIGURE 1.1. Relationship between coordinates (t,z) = (,rw) on Ry x R?~1
(on the left) and local coordinates pyr = r/t, pp = 1/r on its compactifi-
cation M to a manifold with corners and boundary hypersurfaces 7 and D
(on the right).

construction of a triple space and the application of pullback and pushforward theorems
[Mel92, Mel96].

One can furthermore define two exactly invariant normal operators N7 (P) and Np(P)
also for pseudodifferential P. The spectral family N;(P, o) of P € W5, (M) is a family of
weighted scattering ps.d.o.s [Mel94] on T for nonzero o (with semiclassical behavior [VZ00]
for large o), and a b-ps.d.o. at zero frequency [Mel93|, with uniform behavior near zero
energy captured by the sc-b-algebra introduced in [GHO8] (based on the unpublished note
[MSB]). Similarly, the Mellin-transformed normal operator family NE(P, A) is a holomor-
phic family of b-ps.d.o.s on D which, for large | Re )|, is a weighted semiclassical cone ps.d.o.
[Hin22b]. The precise definitions of M2, U5, (M), and of the various normal operators are
given in §4; the composition law is proved in §5.2.

One can also define 3b-ps.d.o.s (modulo the space W3 (M) of residual operators) as
bounded geometry pseudodifferential operators [Shu92] on M° relative to the covering of
M?® by unit balls with respect to a Riemannian 3b-metric (schematically: 4 —|— dr +dw?).
While this perspective immediately gives a composition law and suffices for the purposes of
symbolic analysis (i.e. anything concerned with the 3b-symbol), the leading order behavior
at 7 and D is no longer cleanly encoded in this manner. We do not pursue this point of
view further here.

1.2. Elliptic theory in the 3b-setting; overview of the main results. As an appli-
cation of the basic 3b-machinery developed in §§3-4, one can prove the Fredholm property
of a 3b-(pseudo)differential operator P € Wit (M) as a map between weighted 3b-Sobolev
spaces, provided P is fully elliptic with weights ap, . This notion is introduced in Defi-
nition 6.3; roughly speakmg7 it demands, besides the elhptlclty of the principal symbol of
P, the invertibility of NT(P o), o # 0, also that of NT(P 0) on a b-Sobolev space with
weight ap — a7, and also that of the operators NT,tf( ); finally, ND(P, A) is required to be

invertible for Im A = —ap. The validity of Theorem 1.2 is then due to the fact that (z)2P
is fully elliptic with weights ap, a7 (up to dimension-dependent shifts in ap, ar relative
to Definition 6.3, caused by a different choice of density).

A priori estimates. One proof of the Fredholm property proceeds via a priori estimates
on weighted 3b-Sobolev spaces; it is given in §7. We consider only L?-based spaces in this
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work. Weighted 3b-Sobolev spaces H3 "7 (M), s € Ny, were already introduced in (1.4);
they can be defined also for real s (or even for suitable variable orders) via testing with 3b-
pseudodifferential operators instead of 3b-vector fields. Corresponding to the translation-
invariant aspect of 3b-operators, one can express the Hgl’)o‘v’aT(M )-norm of a function u
with support in |z|/t < C in the special case a7 = 0 in terms of the L?(R,; H,)-norm of
the Fourier transform (o, x) of u(t,z) in t, where the H, are spaces of distributions with
a o-dependent norm matching the structural properties of the spectral family discussed
previously—namely, they are (semiclassical) scattering and scattering-b-transition Sobolev
spaces; see Proposition 4.24. Similarly, corresponding to the dilation-invariant aspect, one
can express the Hy"”“7 (M)-norm of u with support in 2| > C in terms of an L2-type
norm of its Mellin-transform in 7' (in the coordinates T', R,w used above) using b- and
semiclassical cone Sobolev spaces; see Proposition 4.26.

The a priori estimates are then proved in the standard fashion: one estimates ||u|| s.ap.er
3b

by ”PUHH;b—m,aD,aT plus an error term [[ul| s—cap—car— where Hap ™7y Hy 0P~

is a compact inclusion. Here, the gain in the three orders is obtained via symbolic elliptic
estimates (to control 3b-regularity) and estimates for the two normal operators (to control
u to leading order in the sense of decay at D and 7). Slightly more precisely, one controls
u near D, resp. T by passing to the Mellin, resp. Fourier transform and using estimates for
the (elliptic) Mellin-transformed normal operator family, resp. spectral family on the appro-
priate (b- and semiclassical cone, resp. semiclassical scattering and scattering-b-transition)
function spaces. See Theorem 7.2 and its proof. Similar estimates for the adjoint P* give
the Fredholm property.

This approach is attractive in that 3b-ps.d.o.s (and the pseudodifferential algebras related
to the 3b-algebra via the various normal operator maps) are only used as tools to deduce
precise mapping properties for a given 3b-operator P (which in applications is typically a
differential operator). In particular, it generalizes in a conceptually clear manner to non-
elliptic problems, as we discuss in detail in a wave equation context in [Hin23]. However,
it does not give much information on the structure of the (generalized) inverse of P.

Parametrix construction. A second proof of the Fredholm property of a fully elliptic
3b-operator P proceeds via the construction of very precise parametrices (approximate left
or right inverses of P). This approach gives much more information than just the Fredholm
property, but does not generalize easily to non-elliptic settings. To start, we enlarge the
3b-algebra to the large 3b-calculus by adding operators of class \I’;boo’g(M ), where & is a
collection of index sets associated with the boundary hypersurfaces of Mgb. Here, an index
set governs the asymptotic behavior of the Schwartz kernel at a boundary hypersurface;
roughly speaking, given A € \Ilgboo’g(M ), one index set governs the asymptotics of Au at
D when u € C(M?°), another one governs the asymptotics at T; yet another index set
describes the asymptotics of Au at 7 when u vanishes near 7 but has an expansion near
D; and so on. The large 3b-calculus is developed in §5. We then show in §6 that the
large 3b-calculus contains a right parametrix @), i.e. an operator so that PQ is equal to the
identity operator up to an error term which is smoothing and has range contained in the
space C>°(M) of functions vanishing to infinite order at 7 and D (this is equal to . (R")
when M is the compactification of R™ discussed in §1.1.1). We also construct a precise left
parametrix. See Theorem 6.4.
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Equipped with such parametrices, one can also show that the generalized inverse of P is
itself an element of the large 3b-calculus; see Theorem 6.15. One can moreover prove that
elements of the nullspace of P are automatically polyhomogeneous (have generalized Taylor
expansions) at 7 and D; see Corollary 6.16. It seems difficult to deduce this regularity
information from the estimate-based approach explained above. The relative index theorem
is stated as Theorem 6.17.

1.3. Related literature and future directions. The transformation of problems of uni-
form analysis on noncompact spaces to singular analysis on compact spaces (typically man-
ifolds with corners whose boundary hypersurfaces are equipped with additional structures)
has a long history, with [MM87, Maz91, Mel93, MM95, MM99] being among the early ex-
amples. Vasy [Vas00, Vas01] followed this approach in his treatment of (generalized) many-
body Hamiltonians, and the present work is closely related in particular to [Vas00]. For
example, the underlying manifold with corners defined in §1.1.1 is a special case of Vasy’s
construction; furthermore, spectral families associated with the collision planes (here: at
T) play a key role. However, since 3-body scattering geometry has an asymptotic full trans-
lation symmetry away from the collision planes, whereas 3b-geometry has an asymptotic
dilation symmetry, the setting studied here is fundamentally different from [Vas00].

Among the many pseudodifferential calculi developed over the years, we mention in
particular Loya’s work [Loy02] on resolvents on conic manifolds, including at high frequen-
cies; thi/s\ work is closely related to analysis of the Mellin-transformed normal operator
family Np(P,\) at high frequencies, although we opt here for the semiclassical version
[Hin22b]. Furthermore, we recall that Albin-Gell-Redman [AGR17] generalize the edge-
and b-calculi to the setting of manifolds of corners equipped with iterated fibration struc-
tures; they also develop a large calculus (as well as a heat calculus). Their setting in
particular includes edge-b-operators such as Np(P) in (1.13). The authors study Dirac-
type operators for which the normal operators, due to their special form, can be inverted
explicitly (see [AGR17, §4.2]). They can thus construct precise parametrices without having
to pass through the Mellin transform; in particular, they avoid the use of large parameter
or semiclassical cone calculi altogether.

As mentioned previously, the analysis of the spectral family /N?(P, o) at low energy
required for the Fredholm analysis of 3b-operators is easily performed using the scattering-b-
transition calculus [GHO8]. The low energy analysis of Guillarmou—Hassell [GH08, GH09b],
with [CCHO6] as a precursor, is used for the study of the Riesz transform as well as for
long-time asymptotics of solutions of Schrédinger and wave equations; see also [GS14,
SW20] for the case of the Hodge Laplacian, and [Hin22a, Hin21b] (based on [Vas21]) for
recent applications to wave equations. For work in the more general setting of fibered
cusp metrics, we mention [GTV20] (building on the pseudodifferential calculus developed
in [GHO09a, GH14]) and [KR22].

Remark 1.4 (Further directions I: uniform low energy analysis). One may attempt to mir-
ror the recent progress on uniform low energy resolvent estimates and study the uniform
behavior of (generalized) 3-body type Hamiltonians [Vas00] near zero energy. (Without
appropriate conditions on the Hamiltonian at zero energy, the behavior of the low en-
ergy resolvent is considerably more complicated than in the 2-body case, as studied e.g. in
[JK79, GHO9Db], due to the Efimov effect: an accumulation of eigenvalues at the bottom of
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the essential spectrum from below. See [Wan03, Wan04] and references therein for results
in this direction.)

Remark 1.5 (Further directions II: more general geometries). The compactified space for 3b-
analysis is the blow-up of a compact manifold with boundary (such as R™) at (a finite set of)
point(s). One may wish to study geometrically more complicated situations, e.g. blowing up
higher-dimensional boundary submanifolds (as in [Vas00]), or even families of intersecting
boundary submanifolds [Vas01, Geol8, AMN22]. The corresponding generalization of the
present paper would then be related to the study of (generalized) N-body Hamiltonians at
ZEro energy.

1.4. Guide to the paper. In §2, we collect background material on geometric singular
analysis and the various algebras and large calculi of differential and pseudodifferential
operators on manifolds with boundaries or corners which appear as models of 3b-operators.
The differential operator algebras are then used extensively in §3, the pseudodifferential
algebras in §4, and the large calculi in §5.

Next, §3 is required reading, as it introduces 3b-geometry and 3b-analysis (for differential
operators only) in detail. Even to the reader interested only in differential operators, we
recommend reading §4.4 on weighted 3b-Sobolev spaces. (We invite such a reader to prove
Proposition 4.24 and 4.26 for integer orders s only using differential operators.) One can
then jump to §7 and prove the Fredholm property of fully elliptic 3b-operators (upon
specializing to the case of differential operators there).

The algebra of 3b-pseudodifferential operators, introduced in §4, is the key tool in the
paper [Hin23] in which 3b-tools are applied to wave equations on non-stationary spacetimes.
We reiterate that if one uses the 3b-algebra solely as a tool, one does not need any of the
large calculi discussed in §2; see also §7.

Finally, the large 3b-calculus is defined in §5, and its main purpose is to contain precise
parametrices of fully elliptic 3b-operators. The elliptic parametrix construction is presented
in §6, and it is based on elliptic parametrix constructions in the various model algebras in §2.
The reader interested only in 3b-operators as tools, as in [Hin23], may skip these parts.
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2. MANIFOLDS WITH CORNERS, FOURIER TRANSFORMS, AND PSEUDODIFFERENTIAL
OPERATORS

We first recall elements of geometric singular analysis which are used throughout this
work, beginning with basic notions for manifolds with corners and real blow-ups; see also
[Mel96, Gri0l], and [MMO95, §2], [Hin21b, Appendix A}, [Maz91, §2A]. We then recall
the semiclassical (pseudo)differential operator algebras in 2.1, and continue with the b-
algebra in §2.2, the scattering algebra (including its semiclassical version) in §2.3, the
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scattering-b-transition algebra in §2.4, and the semiclassical cone algebra in §2.5. Following
an intermezzo on Fourier transforms of non-product type families of distributions in §2.6,
we finally discuss the edge-b-algebra in §2.7.

Some of the material in §§2.1-2.7 is a variation on a theme, e.g. the construction of
elliptic inverses in the scattering-b-transition algebra in §2.4, even if it was not available in
this form in the literature prior to the present work. Other material is new, in particular
in §§2.6-2.7. Lastly, some classical material (especially as far as the semiclassical algebras
in §§2.1 and 2.3.1 are concerned) is presented in a somewhat non-standard form in order
to fit the needs of the present paper.

Manifolds with corners; blow-ups. Let M be an n-dimensional manifold with cor-
ners; we require its boundary hypersurfaces to be embedded submanifolds. We write
M° = M \ oM for the manifold interior of M. By M;(M) we denote the collection of
boundary hypersurfaces of M; a boundary face of M is a non-empty intersection of bound-
ary hypersurfaces. Given H € M;(M), we say that p € C*°(M) is a defining function of
H if p > 0 on M, further H = p~1(0), and dp(p) # 0 for all p € H. We often write
pr € C®(M) for a defining function of H € M;(M). Given a collection H C M;(M), a
function p € C®(M) is a joint defining function of H if p = [[ycy pu; a total defining
function on M is a joint defining function of My (M). For p € M, we write TT,M C T,M
for the closed subset of (non-strictly) inward pointing tangent vectors. For a boundary
face F C M, we write YNF = *TpM/TF for the (non-strictly) inward pointing normal
bundle. We moreover write TSNF = ("NF \ 0)/Ry for the (inward pointing) spherical
normal bundle; here o C "INF is the zero section, and R acts by dilations in the fibers of
the (strictly) inward pointing normal bundle TN F' \ o.

A closed submanifold S C M is called a p-submanifold if around each point p € S there
exist local coordinates z = (z!,...,2%) € [0,00)% and y = (y*,...,y" %) € R % (with k
the codimension of the smallest boundary face containing p) such that S is locally given by
the vanishing of a subset of these coordinates. If S is given by the vanishing of a subset of
the y-coordinates (thus SN M° # (), we call S an interior p-submanifold, otherwise it is a
boundary p-submanifold. The blow-up of M along S is

[M;S]:=(M\S)U TSNS,

with S called the center of the blow-up; TSNS is the front face of the blow-up. The map
B:[M;S] — M, given by the identity on M \ S and by the base projection TSNS — S on
the front face, is called the blow-down map. The space [M; S] can be given a unique structure
of a smooth manifold with corners by declaring polar coordinates around S to be smooth
down to the front face. (The key example is [R™;{0}] = [0,00), x S~L, the blow-down
map being the polar coordinate map (r,w) — 7w, and the front face being r~1(0) = S*~1.)
If T C M is another p-submanifold, we define the lift 3*T of T to [M;S] as 371(T) when
T C S, and as the closure of 371(T \ 9) inside of [M;S] otherwise. If 3*T C [M;S] is a
p-submanifold (which in particular happens when at each point p € TN S there exists a
single coordinate system on M so that S and T are simultaneously given by the vanishing
of some subsets of these coordinates), then one can consider its blow-up [[M; S]; 5*T7; this
iterated blow-up is denoted [M;S;T]. The definition of more deeply iterated blow-ups is
analogous.
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It may happen that the identity map on M \ (S UT) extends, by continuity, to a diffeo-
morphism [M;S;T] — [M;T;S]; that is, the order of blow-ups is immaterial. In this case
we may simply write [M; {S,T}] or [M; S, T] for the iterated blow-up, and we say that the
blow-ups of S and T' commute. This happens in particular when S and 1" are transversal
(or disjoint), or when S C T or T' C S. For brevity, when commuting the blow-ups of two
adjacent submanifolds Sy, .52 in an iterated blow-up

[...580;...551;52;..1], (2.1)

we shall say that we can commute ‘Sy through S; (D; Sp)’ when S; D Ss, and Sy is the first
element blown up prior to S; which contains So but not S1; this commutation of blow-ups
is allowed when Sy C S; (and thus the second part of [Mel96, Proposition 5.11.2] applies),
and the Sy we write down will always satisfy this condition. We analogously say we can
commute ‘S through S; (C; Sp)’ when these conditions, with the roles of Sy, Se reversed,
are satisfied. When there is no submanifold Sy containing S; NSy (i.e. the smaller one of
Sp and S2) but not S1 US> (i.e. the bigger one of S; and S5), we write ‘(D) or {(C)’ simply,
i.e. we omit Sp. Moreover, we shall say that we can commute ‘So through S; (intersection
C Sp)’ when Sy is the first submanifold prior to S; that is blown up and contains S N So;
this commutation is allowed when Sy contains neither S; nor Sy (and thus the third part
of [Mel96, Proposition 5.11.2] applies).

b-vector fields and maps between manifolds with corners. We write V(M) =
C>®(M,TM) for the Lie algebra of smooth vector fields, and V(M) C V(M) for the Lie
algebra of b-vector fields, i.e. the space of all vector fields which are tangent to M. In
local coordinates z € [0,00)F and y € R"™* as above, V},(M) is spanned over C*°(M) by
270, (j=1,...,k) and Oyi (j =1,...,n —k); these vector fields are a local frame of the
b-tangent bundle "TM — M. In terms of the natural map PTM — TM, we therefore
have Vi, (M) = C>®(M;PTM). The dual bundle "T*M — M is the b-cotangent bundle,
with local frame %J (j=1,...,k)and dy/ (j = 1,...,n — k). For k € Np, we write
Difff (M) for the space of b-differential operators (of order k): these are locally finite sums
of up to k-fold compositions (for &£ = 0: multiplications by elements of C>°(M)) of b-vector
fields. We write Diffy,(M) = Pjep, Difff (M) for the algebra of b-differential operators.
The b-principal symbol of V. € V(M) is Pol(V) (&) = i&(V), € € PT*M; by linearity and
multiplicativity, this also defines the b-principal symbol of b-differential operators, with
bo™(A), A € Diff"(M), valued in the space P"™(PT*M) of smooth functions on PT*M
which on each fiber are homogeneous polynomials of degree m.

If M, M’ are two manifolds with corners, with boundary defining functions denoted pg

and py, for H € My(M) and H' € M;(M’), then we call a smooth map F: M — M’

an interior b-map if F*ply, = am Haernn p%H’H,) for some 0 < ap € C®(M) and

e(H,H') € Ny. Defining the b-differential ®F,: "T,M — bTF(p) M’ of an interior b-map by
continuous extension (from M°) of the differential Fi: T, M° — Trqy(M')°, we say that
an interior b-map F' is a b-submersion is the b-differential is everywhere surjective; this
is equivalent to the requirement that for any p € M, the restriction of F' in domain and
range to the interior of the smallest boundary faces of M and M’ containing p and F(p) is
a submersion (of open manifolds). A b-submersion F' which does not map any boundary
hypersurface of M into a codimension > 2 boundary face of M’ is called a b-fibration
(equivalently, for all H € M;(M), there is at most one H' € M;(M') with e(H, H'") # 0).
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We call F a simple b-fibration if e(H,H') € {0,1} for all H, H’; all b-fibrations arising
in the present paper will be simple b-fibrations, and we shall thus commit an abuse of
terminology and call them ‘b-fibrations’ simply. Finally, we say that an interior b-map
F: M — M’ is b-transversal to a p-submanifold S C M if for each p € S, the subspaces
ker(’F,|,) and PT,S C PT,M are transversal, where PT,S is the space of all b-tangent
vectors V(p) € PT,M where V € V,(M) is tangent to S. An equivalent definition is
that for all p € S, the restriction of F' to the interior of the smallest boundary face of
M containing p is transversal (in the standard sense) to the intersection of S with this
boundary face.

The b-density bundle on a manifold M with corners is the density bundle associated
with the b-tangent bundle; thus, in local coordinates =,y as above, a smooth positive

section of PQM — M is \%1 e ia;;k dy'---dy™*|. We then note the following relationship
between the b-density bundles on M and its blow-up [M;S] along a p-submanifold S: if
F C M denotes the smallest boundary face containing S, and if 8: [M;S] — M denotes

the blow-down map, then

ﬂ*bQM _ p?_deimFS bQ[M; S], (2'2)

in the sense that the C°°([M; S])-span of *C>(M; QM) is p&OdlmF SCOO([M; S); PQ[M; S]).
(Here codimp S = dim F' — dim S is the codimension of S inside of F', and pg € C*([M; S])
is a defining function of the front face.) For the proof, note that the subbundle of PTg M
given by the values of b-vector fields on M that are tangent to S has codimension codimpg S
(and these are exactly the vector fields that lift to smooth vector fields on [M; S]), whereas
the elements of a local frame of a complementary subbundle of PT'M, extended to an open
neighborhood of S, blow up simply at the front face when lifted to [M;S]. This gives (2.2).
(One can also check this directly in local coordinates.)

Conormality and polyhomogeneity at boundary hypersurfaces. We denote the
space of functions vanishing to infinite order at 9M by C>°(M) C C*°(M). Given a collection
a = (ag)gem, () of weights ay € R, we write

A% (M)

for the space of all conormal functions on M with weight ay at H: these are all smooth

functions u on M* for which Au € ([Tgensan P VLS (M) for all A € Diff,(M) (that
1

is, ([Tpy")u € LS (M)). Choosing the boundary defining functions so that pg < 3

loc
everywhere, we shall also consider the more general space

AXH(M), o= (am)gem () € RMM) g = (km)men () € Néwl(M),

consisting of all functions u for which Au € ([Igea, (ar) P 108 pr|FE)L (M).

loc
Next, an index set € is a subset £ C C x Ny so that (z,k) € £ implies (z + j, k') € € for
all 7 € Ng and k&’ < k, and so that for all C the set {(z,k) € £: Rez < C} is finite. Given a
collection € = (Em) genr, (ar) of index sets, we define the space Aghg(M ) of polyhomogeneous
conormal distributions via induction over the dimension of M to consist of all conormal
functions u on M which, in collar neighborhood [0,1),,, x H of H € M;(M), are asymptotic
sums

U(pH, Q) ~ Z p%| log pH|ka(z,k) (Q)a QA(z,k) € Aglljg(H)v (23)
(z,k)EEH
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where EH = (Egr: H' € My(M)\ {H}, H' N H # ()). We shall also consider mixed spaces

(€,0)
‘Aphg(H )(M)

which are polyhomogeneous (with index set £) at H € M;(M) but only conormal (with

weight (o, at H' € My (M) \ {H}) at the other boundary hypersurfaces; thus an element

of this space has an asymptotic expansion (2.3) at H but with a(, 3y € AY(H).
Given two index sets £, F C C x Ny, we set
E+F={(z+72k+kK): (z,k) €&, (¢,K)eF},
EUF =EUFU{(z,k+K +1): (2,k) €E, (2,K) € F},
E+j:={(z+4,k): (2,k) € E}.

Furthermore, we write Ny for the index set {(z,0): z € Ny}, and similarly N = Ny + 1. For
(logarithmic) weights, we set

(am, k), an < B,
(cm ki) U (Buslu) := § (Bu, ), apg > PBu, (2.4)
(ag, kg +1lg +1), ag =P,
and we write ay for (apr,0). (Thus, for example, 0U 0 = (0,1).) Furthermore, we write
Re& ={Rez: (z,k) € £};

and given a € R, we say that Re£ > «, resp. Re€ > «a if Rez > «, resp. Rez > «
for all (z,k) € £. (We caution that, say, on a manifold M with boundary, the inclusion
.Aghg(M ) C Aby (M) requires Re& > a, whereas Re& > a is sufficient if and only if k=0
for all (z,k) € £ with Rez = «.)

Conormal distributions at interior submanifolds. When S C M is an interior
p-submanifold of codimension I, we denote by I°(M, S) the space of conormal distributions
of order s at S: its elements are smooth away from .S, and in local coordinates z € [0, oo)k ,
y=(y,y") € R"*! x Rl in which S is given by 3” = 0, they are given as inverse Fourier

transforms
1o 1

1 4
(2)! /Rl eV M a(x,y',n") dn”

where a is a symbol of order s 4 § — é inn”.

Radial compactification. Given a real vector bundle E — M, we write S™(FE) for
the space of symbols of order m on E, and P™(FE) for the space of fiber-wise polynomials
of order m; further P™(F) ¢ P™(E) denotes the subspace of homogeneous degree m
polynomials. Finally, £ — M denotes the (fiber-wise) radial compactification of E. This
is a closed ball bundle, defined on the level of an individual fiber R by

RF .= (Rk L ([0, 00), x S”—l))/ ~,

where a point x # 0, expressed in polar coordinates as x = rw, is identified with (p,w) =
(Z‘_l,w). By SE — M we denote the S*~!-bundle given fiber-wise by the boundary of
E — M at fiber infinity.

When E — M is a half-line bundle, with typical fiber [0, cio), we denote by B — M its
fiber-wise compactification to a [0, co]-bundle; here [0, 00] C R is the closure of [0,00). We
then have:
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Lemma 2.1 (Identification of compactified inward pointing normal bundles). Let M be a
manifold with corners, and suppose C = Hy N Hs is a codimension 2 corner between two
embedded boundary hypersurfaces Hi, Hy C M. Then a choice of total boundary defining
function pg € C*°(M) for Hy and Hy (that is pg = p1p2 where pj € C¥(M), j =1,2, is a
defining function for H;) induces an isomorphism of fiber bundles

qb: +NCH1 = +NCH2

as follows: given any defining function p1 € C>®°(M) of Hy, the map ¢ maps the point
(dp1)~Y(s) € TN,Hy (where p € C and s € [0,00]), into (d(p—pl))*l(l/s) € *N,H», where
we set s~ = 00,0 for s =0, 00, respectively.

Thus, ¢ is homogeneous of degree —1 in the fibers. See Figure 2.1.

dpa

C

FIGURE 2.1. Illustration of Lemma 2.1.

Proof of Lemma 2.1. We need to prove that ¢ is well-defined. Thus, if p| = ap1, 0 < a €

C%(M), is another defining function of Hj, then we obtain a map ¢’ mapping (dp})~1(s')

into (d(pﬁ,))_l(l/s’). But at p € C, we have dp} = a(p)dpi: NyH1 — R, and similarly
1

d(ﬁ) = a(p)_ld(p%) as a linear map on N,Hy; thus (dp})~"(s") = (dp1)~"(s'/a(p)) and

(d(p—’fl))*l(l/s’) = (d(pﬁl))*l(a(p)/s’), which shows that ¢/ = ¢, as desired.
A pictorial proof can be given as follows: consider the blow-up
M = [0, 1)e x M;{0} x C]

The front face F C M is naturally diffeomorphic to the radial compactification of T NC,
and the level set R := {pg = €2} C M intersects the interior F° = (T NC)° (i.e. the strictly
inward pointing normal bundle) in a smooth submanifold. Moreover, the natural map
TeH1 ® TeHy — Te M induces an isomorphism NeHq & NeHs = NC. One can then check
that RN (TNC)° is the graph of the restriction (T NeHy)° — (T NeHz)° of the desired map
to the interiors of T NeH; and t NeHs. O

2.1. The semiclassical algebra. Semiclassical analysis is treated in depth in Zworski’s
monograph [Zwol2]; see also [GS94, DZ19]. Here, we describe semiclassical operators in a
somewhat non-standard fashion. Given a closed (compact without boundary) manifold M,
consider on

My :=[0,1), x M (2.5)
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the Lie algebra V(M) of semiclassical vector fields, which consists of all smooth vector
fields which are horizontal (i.e. annihilate h) and vanish at A~ = 0. Thus, V(M) is spanned
over C*°(My) by hV where V € V(M), and in local coordinates = = (z!,...,2™) on M by

h(‘)xj, jzl,...,n.
These vector fields are a frame of the semiclassical tangent bundle

MM — My,

and their duals d%j, j=1,...,n, are a frame of the semiclassical cotangent bundle "T*M.
Thus, smooth (down to h = 0) fiber-linear coordinates on "T*M — M}, are defined by
writing the canonical 1-form on T*M = h’T;LkOM = "T*M N h=Y(ho) as

Sh'd—;] (h = hy).

Since [Vi(M), Vi(M)] C hVy(M), the principal symbol of an operator P = (Pp)ne(0,1) €
Diff7*(M) (i.e. a finite sum of up to m-fold compositions of semiclassical vector fields) is a
well-defined element of (P™/hP™ 1)("T*M). A semiclassical pseudodifferential operator
P e WZ’b(M) of order (s,b) € R x R is then a smooth family P = (P,)pe(0,1) of elements
of W(M) whose Schwartz kernels, as distributions on (0,1) x M?, are distributions on the
semiclassical double space

My = [[0,1), x M?; {0} x diag,,]

(with diagy; C M x M denoting the diagonal) which are conormal distributions of order
s — 1 at the lift diag, C M} of [0,1) x diagy, which vanish to infinite order at the lift of
{0} x M?, which are conormal with weight —b down to the front face, and which are valued
in the lift along [0,1) x M? > (h,p,p’) + (h,p’) € M} of the density bundle "QM — M}
associated with "T'M — Mj. That is, in local coordinates x,z’ on M?, an element of
\I/Z’b(M) has Schwartz kernel Opy,(a) = Opy,(a)(x,2') at the h-level set of M7, where

o x—a da't...dz'™
Opy(a)(a,) i= (2m) " | . T

here a is a symbol of order s in &, which is conormal of order b at h = 0, to wit,
|(hdh)? 0207 a(h, x,€)| < Cjagh™"(€h)* 1P (2.6)
for all j € Ny and «, 8 € Njj. The principal symbol map is

exp (z : §h>a(h, &) dep

n

O'S’b

0 — WM s WP (M) S (hhss /R D gy () — o,
where S*°("T*M) denotes the space of symbols of order s in the fiber variables which are
conormal with weight —b down to A = 0; and this map is multiplicative. For b = 0, we
write W30 (M) = W5 (M).
There is a corresponding scale of Sobolev spaces
s,b s s,0
Hy, (M), Hi, (M) =H, (M).
For each h > 0, we have H}‘j’b(M) = H*(M) as sets, but the squared norm for s > 0 is

lullzs (ary = Il T2ary + I AullZ2 (s (2.7)
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where A € V7 (M) is any fixed operator with elliptic principal symbol. For s < 0, the
Hilbert space H.(M) can be defined as the dual of H, *(M) with respect to L*(M). For

s,b € R, we then set Hu||HZ,b(M) = ||h_bU”H;(M)- Any P = (Pp)ne(o,1) € \Ifz’b(M) defines a

uniformly bounded (in h € (0,1)) family of operators Py, : HZ,’b,(M) — H,Sll_s’b/_b(M) for
any s, b € R.

The ellipticity of the semiclassical principal symbol of an operator P € \Ilg’b(M ) implies,
via the usual elliptic parametrix construction (which only makes use of the principal symbol
map), the existence of Q € \I/,;S’_b(M) so that PQ =1 — R and QP =1 — R with R, R’ €
W, °"(M), ie. the Schwartz kernels of R, R’ are smooth right densities on [0,1); x M?
which vanish to infinite order at h = 0. As such, Rj, and R) have small operator norms
on L?(M) for h € (0, hg) with hg > 0 sufficiently small, and therefore I — Rj, and I — R},
are invertible on L?(M). Therefore, P, is invertible as a map H® (M) — H®¥~%(M) for
h € (0,ho), and P~' = (P, Niciong) € 55 (M).

2.2. The b-algebra. For a detailed account of microlocal analysis in the b-setting, origi-
nating in the work of Melrose [Mel81] and Melrose-Mendoza [MMS83], we refer the reader
to [Mel93]; see also [Gri01].

Let M be a compact n-dimensional manifold with (embedded, non-empty) boundary.
The b-double space of M is the real blow-up

M = [M?% (OM)?].

(When OM has more than one connected component, this is the ‘overblown’ b-double space;
typically one defines the b-double space in this case more economically as [M?;H] where
H={H?: H < M(M)}.) We write lby, ff},, tby, for the lifts of OM x M, (OM)?, M x M,
respectively. Furthermore, diag;, denotes the lift of the diagonal diag,; C M x M; it is a
p-submanifold. Recall the notation PQM — M for the b-density bundle, i.e. the density
bundle associated with PT'M — M; write 7p: Mg — M for the lift of the right projection.
Then

W (M)

is the space of all operators whose Schwartz kernels, as distributions on M2, are elements
of I8(M, diagy; m%°QM) which vanish to infinite order at lby, and rby,. (For m € Ny, the
space Diff{' (M) C V(M) is characterized as the subspace of Schwartz kernels which are
Dirac distributions at diag;,.) Elements of ¥§ (M) are bounded linear maps on C*°(M) and
C(M), and U, (M) = D.cr Vi (M) is an algebra under composition; the principal symbol
map Po®: U§ (M) — (5%/5°7 1) (PT* M) is multiplicative. With p denoting the left lift of a
boundary defining function on M, we also define the space of weighted operators

WS (M) 1= p~ W3 (M),

By Diff;"“(M) = p *Diffj"(M) C ¥;"*(M) we similarly denote the space of weighted
b-differential operators.

Remark 2.2 (Noncompact manifolds). In this section as well as in all pseudodifferential cal-
culi recalled below, one can allow the underlying manifold M to be noncompact. As long as
one requires the Schwartz kernels of pseudodifferential operators to be properly supported,
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the basic properties of the calculi (principal symbol, normal operators, composition) con-
tinue to hold. However, only local or compactly supported versions of Sobolev spaces are
well-defined then, and results on the invertibility of operators do not apply anymore.

Writing P € Diff{"(M) in local coordinates z > 0, y € R"! near a boundary point as

P = Z aka($7y)($Dx)kng
k+|al<m

the b-normal operator of P is defined by freezing coefficients at x = 0 as a b-operator, so
N(P):= > al(0,y)(xD,)"D.
k+|a|<m
This can be defined invariantly as a b-differential operator on *NOM which is invariant
with respect to the R -action by dilations in the fibers of T NOM; that is,
N(P) e DiffgfI(J“NaM).

The Schwartz kernel of N (P) is invariant under the (lift to (" NOM)?2 of the) joint dilation
action in both factors of TNOM x TNOM, and is indeed given by the unique dilation-
invariant extension of the restriction Kp|g, of the Schwartz kernel Kp of P to ff;,. More
generally then, we can thus define the b-normal operator

N(P) e \Ilf),fﬁNaM)

also for pseudodifferential P € W{(M). Given a choice of boundary defining function
p € C®(M) (which induces a trivialization TNOM = [0,00) x M via the fiber-linear
function dp, which we immediately rename p by an abuse of notation), one can define the
Mellin-transformed normal operator family

N(P,\) € ¥5(OM),  AeC,
by setting N(P,A\u := (p~*N(P)(p*u))|,=0, u € C®(OM). Equivalently, N(P,\)u =
(p~P(p"1))|gar where @ € C*°(M) is any function with @|gy = w.
The Schwartz kernel of N (P, \) is the Mellin transform, in the projective coordinate

s:= p/p' on fIy,, of the Schwartz kernel Kp of P; here p, resp. p is the lift to the left, resp.
right factor of M? of the chosen boundary defining function p € C>(M).

Lemma 2.3 (Properties of the Mellin-transformed normal operator family). Fiz a boundary
defining function p € C*°(M). For P € Wi (M), the operator N(P, A) depends holomorphi-
cally on A € C. The principal symbol o° (]V(P, A)) is independent of A; it is equal to the pull-
back of ®o*(P) along the inclusion T*OM — PT%, M (dual to the map *Topr M — TOM ).
Moreover, for p € R, the family

(0,1) 3 h = N(P,£h~" —ip)
defines an element of \IJZ’S(OM) which depends smoothly on . A representative of its
principal symbol (i.e. an element of h=5S*("T*0M)) is given at h > 0 and ny, € hTf:aM by
Po*(P)(£h ™ L + h™lyp).

Proof. First, if P € ¥, °°(M) is residual, the restriction of its Schwartz kernel to the b-front
. . . INE:E . ’ . ..
face ffy, is a smooth right density Kp(s,,w,w’)[$ |v, where s, = p/p' € [0, 00] is a projective

coordinate on ff}, and w,w’ € OM, and 0 < v € C*°(IM;QIM) is a positive density on OM.
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The Schwartz kernel of N (P, A) is then N(P,\)(w,w’ =I5 sy SN (S, W, w )ds" This is
smooth in (w,w’) and rapidly vanishing as |Re | — oo when |Im )| remains bounded.
Therefore, the family (y, h) — N(P,+h™' — in) is a smooth family (in p) of elements of
h*>Ww > (OM).

For general operators P € W{ (M), we may modify P by a residual operator so as to
arrange that the Schwartz kernel of P € ¢ (M) is supported in any fixed neighborhood of
diag;,. With w,w’ € R*! denoting the lifts of local coordinates on M to the two factors
of OM x OM, the Schwartz kernel of P thus restricts to ff}, as

Kn(py(sp,w,w') = (2m)~ // siA M@= g(w, A, n) dAdn ‘dsb !
RxRn—1

where a € S%(R?1; 258 )) (in fact, a is entire in A € C, and a symbol of order s in (Re A\, n)
for each fixed Im \). Therefore,

NP N ) = @n) 0 [ o, x ) dy -]
Rn—1

is a ps.d.o. on OM. Its principal symbol is the equivalence class of (w,n) — a(w,\,n)
in (S%/55~Y)(T*OM), which is independent of A\ and indeed given by a|r«gnr: (w,n)
a(w,0,n).

For A = £h~! — iy (with 0 < h < 1 and bounded u € R), we have

N(P,+h™' —ip) = (27rh)_("_1)/ e W= R (o R — i, b ) dogg - [dw).
Rn—1

But |a(w, £h™  —ip, h )| S (1+h" 1 +h~ 1|77f\)5 < h™%(nx)®, and by direct differentiation
one finds that (h,w, np) — a(w, £h~ Y —ip, h='ny) is an element of S*("T*0M). Therefore,

(0,1) 3 h+— N (P, £h~! —ip) is a semiclassical ps.d.o. on M. The claim about its principal
symbol follows from this explicit description. O

Lemma 2.4 (Elliptic b-ps.d.o.s). Suppose that P € Wi (M) has an elliptic principal symbol.
Then N(P,\): C®(OM) — C(OM) is invertible for \ outside a discrete subset of C.
Moreover, for all ug > 0, there exists hg > 0 so that ]/\\T(P, +h™t —iu) is invertible for
n e [*,uo,uo] and h < hy.

Proof. The operator family N (P, \) is an analytic family of elliptic ps.d.o.s on M. The
ellipticity of the semiclassical principal symbol of P, := (h — N(P,+h~! — ix)) implies
that there exists Q € ¥, **(OM) so that QP, — I € h¥; ' (OM); for small h > 0, the
error here is small as an operator on L?(0M), and therefore Py I exists and is given by a
Neumann series and indeed lies in ¥, >~ *(9M) for small enough h (depending on ). An
application of the analytic Fredholm theorem completes the proof. O

We next discuss the scale of weighted Sobolev spaces corresponding to b-analysis. Name-
ly, fixing a smooth b-density 0 < v € C>(M;"QM), or more generally a weighted b-density
v = pPyy where B € R and 0 < vy € C®°(M;PQM), we can define H)(M,v) := L*(M,v).
We now drop v from the notation. For s > 0, we fix any A € W3 (M) with elliptic principal
symbol and let

HE(M) = {u e HX(M): Au € HY(M)}.
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This is a Hilbert space with squared norm [ul|3, + ||[Aul|3.. The space H, *(M) is, by
definition, its L?(M)-dual. (Equivalently, H, °(M) is the space of all distributions of the

form ug + Auy where ug,u; € HY(M) and A € \Il|bs|(M) is any fixed elliptic operator.
See [MVW13, Appendix B] for the relevant functional analysis.) Finally, for a € R, we let

HE (M) = p*Hiy(M) = {p®u: u € H{(M)}.

Using Hérmander’s square root trick (see e.g. [Hor71, Theorem 2.2.1]), one can show that
elements of U (M) are bounded linear maps on L*(M); and then any A € ¥, (M) defines

a bounded linear map Hg/’o‘,(M) — HSI_S’O‘/_O‘(M).
Fixing a collar neighborhood [0, 1), x OM of OM C M, and letting x € CZ°([0,1) x OM),

we moreover have an equivalence of norms
o ~ [ IO onn O (2.8)

where yu(\, x) fo Aeu(p, ) pp denotes the Mellin transform in p. That is, there
exists a constant C (only depending on the collar neighborhood as well as on x, s, «)
so that the left hand side of (2.8) is bounded by C' times the right hand side and vice
versa. One can reduce the proof of (2.8) to the case a = 0; for s = 0, it then follows from
Plancherel’s Theorem. To obtain (2.8) for general s, one can first establish the case s € N
via testing with dilation-invariant vector fields, and then use interpolation and duality to
get the full result; see [Vasl3, §3.1] for this approach. An approach that generalizes more
easily (and avoids the use of complex interpolation) proceeds for s > 0 (and o = 0 still) by
fixing an elliptic operator A € W (M) which near supp x is dilation-invariant,® and writing

Ixullzs (ary = IIxullzoary + 4O 000y

(2.9)
/ 1B 2 onn) + I (A DT, =) 2 gar) A

But by Lemma 2.3, R 3 A — N(A,)\) is an elliptic semiclassical ps.d.o. of order (s,s),
with semiclassical parameter (\)~!, and hence the integrand on the right is equivalent to
Ixu(A, —)||%{:;>-_1(8M), uniformly for A € R.

Finally, we turn to finer aspects of elliptic b-theory.

Definition 2.5 (Boundary spectrum). Let P € ¥} (M) be elliptic. The boundary spectrum
of P is then’

Specy,(P) := {(z,k) € C x Ny: (P/\) 1hasapoleat)\——zzoforder>k:+1}
C C x Ny,

8By this, we mean that the Schwartz kernel of A is equal to that of its normal operator N(A) near
Supp x X supp x-

9There exist other conventions for the definition of Specy (P); the most frequently used one omits the
factor of —i in the relationship of A and z, cf. [Mel93, Equation (5.10)]. The convention we use here has the
advantage that the relationship between Spec, (P) and index sets for Schwartz kernels of parametrices for
P does not involve factors of i; a disadvantage is that a factor of —i is now required when converting poles
of the Mellin-transformed spectral family to elements of Spec, (P).
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and we write spec, (P) = {z: (2,0) € Spec,(P)} C C for its projection to the first factor.
Moreover, for a € R with o ¢ Re Specy,(P), we denote by £ (P, a) C C x Ny the smallest
index sets'® with

ET(P,a) D {(z,k) € Specy,(P): Rez > al,

E(P,a) D {(—z,k) € Spec,(P): Rez < a}.

Approximate inverses of ‘fully elliptic’ b-operators (see Theorem 2.9 below) typically do
not lie in ¥y,(M), as their Schwartz kernels do not decay rapidly at by, and rby,. Thus, for
a collection & = (&, Ex, Ep) of index sets, and for index sets &, &1, we define

W00 (M) = AG (M, 7iPQM), w0y = 4SO (A M, PO,

where in the first expression £y is the index set at Hy, for H = lb, ff, rb, and in the second
expression &y, resp. &1 is the index set associated with OM x M, resp. M x M. (Note that
\I/goo’(@’@’gl)(M) = ¢—@E)(M).) The large b-calculus consists of operators in the space
UP (M) + \Ilgoo’g(M) for s € R and collections of index sets £.

Remark 2.6 (Mellin-transformed normal operator family in the large calculus). One typ-
ically only considers those collections £ of index sets for which Re(&y, + &1) > 0. In

this case, one can define the Mellin-transformed normal operator family of elements of

v oo’(glb’No’grb)(M ): the Mellin transform of the Schwartz kernel restricted to ff}, is then

well-defined when the Mellin-dual variable A satisfies Re &), > —Im A and Re &y, > Im A,
and extends from such a strip of A meromorphically to the entire complex plane.
Proposition 2.7 (Composition in the large b-calculus). Let P € Wi (M) + \Ifgoo’g(M)

and ) € \Ilf;/(M) + \IJEOO’F(M), where € = (&, &x, &) and F = (Fp, Fg, Frb) are two
collections of index sets. Suppose Re(&Ewp + Fip) > 0. Then the composition P o Q is
well-defined, and P o Q € ‘Iii+5l(M) + \I/goo’g(M), where G = (G, G, Grp,) with

G = & U (&x + Fin),
Gg = (&g + Fa) U (€ + Fin),
grb = (Srb +]:ff) G-7:'rb'
Furthermore, if the index sets Fo, F1 C C x Ny are such that Re(&yp + Fo) > 0, then the
composition of P € Vi (M) + ‘I/goo’g(M) and Q € U= 0F1) (M) is well-defined, with
PoQ e U ooEnbE+70).F) (£, (2.10)
Proof. See [Alb08, Theorem 4.20]. We merely remark that a geometric proof of the com-
position properties of the large b-calculus utilizes the b-triple space
M = [M?;(0M)3; (0M)? x M,0M x M x OM, M x (9M)?], (2.11)
and pullbacks and pushforwards along the lifts of the three different projections to Mg.
The proof of (2.10) uses the simpler triple space [M3; (OM)? x M] = M2 x M. O

Parametrix constructions in the polyhomogeneous category often involve a proliferation
of index sets; we thus make the following general construction:

10The existence of the index sets € *(P, ) is guaranteed by Lemma 2.4.
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Definition 2.8 (Index sets). Given an index set £ C C x Ny, we define £©0 := £ and
EOt1 .= £ T (£ 4 1) for j € Ny, and £©) := Ujen, £,

Theorem 2.9 (Elliptic parametrix/inverse). Let P € W{ (M) be elliptic, and suppose o € R
is such that o ¢ ReSpecy,(P). (We say that P is fully elliptic with weight «.) Write
ET .= EF(P,a) and put

£ =NouU (60O + £~ T (Ny +1)). (2.12)

Define the collection £ = (5+’(0),5(0),5_’(0)) of index sets, corresponding to the boundary
hypersurfaces lby, ffy,, rby, (in this order). Then there exist left and right parametrices

Qr,Qr € V(M) + U, % (M) with
PQr=1-Rn, Rpev 0 D),
QP =1-Ry, Ryecu>=E"0nn,

In particular, P: Hg/’a(M) — HSI_S’O‘(M) is Fredholm (where the underlying density is a
smooth positive b-density on M ). If P is invertible, then also

Pl e U5 (M) + W, F (M), (2.13)

Proof. This is standard, see e.g. [Mel93, §5.25] and [Alb08, Proposition 5.7] for (variants)
of this result (with slightly different notation). We sketch the construction of a right
parametrix Qr. (A left parametrix can be constructed as the adjoint of a right parametrix
for P*.) Let Qo € ¥, *(M) be a symbolic parametrix, i.e. Ry := I — PQy € ¥ *°(M).
Passing to Mellin-transformed normal operator families, we have N (P, )\)J/\? (Qo,\) =1 —
N(Ry, \), with the Schwartz kernel of N(Rg, \) (with holomorphic dependence on A € C)
being smooth, and rapidly decaying as | Re A\| — oo for bounded |Im A|. Lemma 2.3 then

007(6+,N0757) (M)

allows us to pick Q1 € ¥ whose normal operator has Schwartz kernel

Kq,(s,w,w’) given by
Ko, (s,w,w') = (2m) / sM(N(P,A) TN (R, ) (w, w') dA.
ImA=—«

(The claimed membership of N(Q1) follows from the residue theorem upon shifting the
integration contour.) We now have

The improvement of the Ibp-index set by 1 here is a consequence of the definition of Q1
combined with the fact that the b-normal operator at lby, of the lift of P to the left factor
of M? is equal to N(P) itself. One can then solve away the error Ry at lby to infinite
order in an iterative procedure using the (inverse) Mellin transform; this produces Q2 €

_ 5(
w oo ET N0 () ity

Ry =1~ P(Qo+ Q1+ Q) € ¥, " ), (2.14)

The desired right parametrix is then (Qo + Q1 + Q2)({ + Rg), where the operator Ry €
\I/—oo,((Z),Ng—i-l,S”(O))(M)
b

tion 2.7.)

is an asymptotic sum (at ff},) of R%, j € N. (Here one uses Proposi-
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When P is invertible, we have
P™'=Qr+QrRr+ RLP™'Rp, (2.15)
with the first two summands in the space (2.13); and the third summand lies in the space
W_OO’(5+’(O>’57’(O))(M), as can be checked by noting that Ry P~'Rp is given by fiber-wise
application (along the fibers of the left projection M2 — M) of (the smoothing operator)

R; on P7'Rp, with P 'Ry itself expressible as the fiber-wise application of P~! to the
Schwartz kernel of Rp. O

Remark 2.10 (Systematic procedure to solve away errors at the left boundary). In this proof,
solving away the error R; at the left boundary (i.e. the construction of ()2) is accomplished
by lifting P to the left factor of Mg and noting that the b-normal operator of this lift at lby,
can be identified with the b-normal operator of P itself; since the left projection lby, — OM
is a smooth fibration, solving away errors at lby, thus amounts to constructing (smoothly in
families) formal solutions on M with given asymptotics at M. An alternative method is
to solve away R directly using the composition properties of the large b-calculus: applying
a parametrix Qf, + @}, defined exactly like Qo + Q1 but for the weight o + 1 (or rather
a+1— e for some small € > 0 to avoid the set Re Specy,(P)), to the error R and adding the
result to Qo + @)1 gives a more precise parametrix, with error term vanishing to one order
more at ff, and lby, than Ry itself. Then, one applies a parametrix Q) + QY for the weight
a + 2, and so on. While the errors get successively better at Iby, and ffy,, naive accounting
of index sets yields insufficient control at rby, to allow for an asymptotic summation there.
Instead, one asymptotically sums this sequence of parametrices only at lby,, and is left with
an error Ry which is trivial at lby, (but which typically has a larger index set at ff}, than
in (2.14)). From there, one solves away the error Ry using an asymptotic Neumann series
as before. This alternative method does not require the left boundary to be the total space
of a smooth fibration, and thus is rather more robust. We shall use it in the 3b-setting; see
Lemma 6.13 and the discussion following it.

2.3. The scattering algebra. We continue to denote by M a compact manifold with
non-empty embedded boundary 0M; let p € C*°(M) denote a boundary defining function.
Then

V(M) := pVpo(M) ={pV:V € V,(M)}
is the Lie algebra of scattering vector fields; we have [Vsc(M),Vsc(M)] C pVsc(M). In
local coordinates x > 0, y € R""! the space Vy.(M) is spanned over C®°(M) by the
vector fields z20,, 20y (j = 1,...,m — 1), which are a frame of the scattering tangent

bundle T M — M; the dual 1-forms ;1—32”, d%] (j=1,...,n—1) are a frame of the scattering
cotangent bundle *¢T*M — M. The corresponding space of scattering differential operators
is denoted Diffl} (M), and we put Diff»" (M) = p~"Diff2(M). The principal symbol map
is

T

0 — D=L =L (M) < DIff™" (M) —Z25 (p~"P™/p~ =D pm=Ly(seT* Ay — 0.
In order to microlocalize Diffs.(M), we introduce the scattering double space
MZ = [Mf; 9 diagy,).
The lift of diagy, is denoted diag,., and the front face is denoted ffs.. Then the space
V(M)
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consists of all operators with Schwartz kernels which are conormal distributions on M2 of
order s at diag,., vanish to infinite order at all boundary faces of M2 except for ffy., and
are valued in the bundle 7}, QM , where 7R : M2 — M is the lifted right projection, and
S¢QM — M is the density bundle associated with **T'M — M. More generally, we define

V(M)
to consist of operators with Schwartz kernels which are conormal (with weight —r) down

to ffsc. (The space p™"W5 (M) is then the subspace of operators whose Schwartz kernels
are classical conormal down to ffs..) The principal symbol map is

0= Wi M) < W (M) =5 (S°7/8* 7T (T M) = 0,

where S*7(ST*M) = A=57"(sT*M) (with weight —s, resp. —r at fiber infinity, resp. at
S5y M); it is multiplicative.

A key example of the scattering algebra is Wi (R™), which is the same as the space
of standard left quantizations (27)~" [, e(#=2)Cq(z,¢) d¢ of functions a = a(z,¢) which
are symbols in z (of order 7) and ¢ (of order s), i.e. bounded by C(z)"(()® together with
all derivatives along 0.k, 270k, 9, and (;O,. In this form, the scattering algebra was
introduced by Cordes [Cor76] and Schrohe [CGWS86]; see [Vasl8] for a detailed exposition.
The general definition given here follows Melrose [Mel94].

Parametrices (with error terms in W™~ °°(M), which thus have smooth Schwartz kernels
on M? which vanish to infinite order at all boundary hypersurfaces)—or inverses when they
exist—of elliptic elements of W (M) are elements of Ws.> "(M). Therefore, there is no
need for the development of a ‘large scattering calculus’ here.

An associated scale of weighted scattering Sobolev spaces
H (M),

with the underlying L2-space defined with respect to any positive weighted b- or weighted
scattering density, can then be defined in the usual manner, and weighted scattering ps.d.o.s
are bounded linear maps between such weighted spaces.

2.3.1. Semiclassical scattering operators. We define a semiclassical version of the scattering
algebra by mimicking the definitions in §2.1; this first appeared in work by Vasy—Zworski
[VZ00]. Thus, on the space M} from (2.5), we consider the space Vi 5(M) of semiclassical
scattering fields, which is the space of all horizontal vector fields in hpV},(M). In local
coordinates z > 0, y € R"™!, this space is spanned over C*®(M;) by hx?0,, hxdy; (j =

1,...,n — 1); these vector fields are a frame of the semiclassical scattering tangent bundle
sShP M — My,
while the dual 1-forms %, C}L—Zﬁ (j =1,...,n —1) are a frame of S"T*M — Mj. The

corresponding space of differential operators is denoted

Diff ™ (M) = h=p "Diff? , (M),

sc,h sc,h

and since [Vse 5(M), Vsen(M)] C hpVse 5(M), the principal symbol map is
0 —Diff "M (M) < DIt (M)

sc,ﬁo_m,'r,b

(h—bp—rpm/h—(b—1)p—(r—1)Pm—1)(sc,hT*M) 0.
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For s,r,b € R, the space
qu,”",b(M)

sc,h

of semiclassical scattering ps.d.o.s consists of suitable smooth (in h € (0,1)) families of
elements of Ug' (M) whose Schwartz kernels are distributions on

MSQC,E, = [[Oa 1)h X MSQC; {0} X diagsc]

which are conormal (of order s — 1) to diag.  (the lift of [0,1);, x diag.) and conormal of
order —r, resp. —b at the lift of [0, 1), x ffs, resp. {0} x diag., which vanish to infinite order
at all other boundary hypersurfaces of Mszcﬁ, and which are valued in the lift 77, sShQM of
the semiclassical scattering density bundle S"QM — M along the lift mp: MSQCﬁ — My, of
the right projection (h, z,2") — (h, z’). The principal symbol map is now

0 _>\I/s—1,r—1,b—1(M> < \Ils,r,b(M)

sc,h sc,h

sc,ho.m,r,b

(Ss,r,b/ss—lm—l,b—l)(sc,hT*M> 0.
The associated scale of Sobolev spaces is denoted
b 7b .
HsscTh (M)7

as a set, this is equal to Hg' (M), but the h-dependent norm is given by testing with a fixed
elliptic operator A € \Ilz(’f;f’(M ) analogously to (2.7) for s > 0, and is defined by duality
for s < 0. For example, an explicit expression for this norm in local coordinates x > 0,

y € R" 1 in the case s =1 is
n—1
ull? i = 27" h w72 + 27 A2 Dol 7o + ) ™ h ™ e Dyl 7
sc,h
: =

where L? = L?(M) is defined with respect to any fixed (h-independent) weighted b- or
scattering density on M. Moreover, any P = (P,) € U™ (M ) defines a uniformly bounded

sc,h
(in h € (0,1)) family of linear operators Pj,: Hss;:zl’b/(M) — HZ ™" VP (M) for any
s’ b eR.

Lemma 2.11 (Inverse of elliptic semiclassical scattering operators). If P = (Py)pe(0,1) €
\I’S’T’b(M) is elliptic, then there exists hg > 0 so that for 0 < h < hg and for all s',7" € R, the

sc,h

operator Py: HS" (M) — H3 5" ~"(M) is invertible. Moreover, P~! = (P Yneony) €

—s,—7r,—b
\Ijsc,h (M) :
Proof. For a symbolic parametrix @Q € \I'S_Cf;l_r’_b(M ), we have PQ = I — R where the
Schwartz kernel of R = (Rp)ne(0,1) € Youp, (M) is a smooth right density on [0,1) x

M? that vanishes to infinite order at h = 0 and at [0,1) x 9(M?). Thus, R; has small
operator norm on L?(M) for small h > 0. Therefore, I — Ry, is invertible for sufficiently
small A > 0 by a Neumann series, with (I—R)™' = I+ R, R € ¥_7"°"°°(M). Therefore,
P'=Q( +R). 0
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2.4. The scattering-b-transition algebra. We next discuss a pseudodifferential alge-
bra and corresponding large calculus which already appeared in [GHOS8], though we will
use a slightly more descriptive (albeit more cumbersome) notation following [Hin21b]; the
underlying double space was introduced in the unpublished note [MSB]. In [GHO08], and
later in more general contexts in [GH09b], Guillarmou and Hassell construct the low energy
resolvent for Laplacians associated with scattering metrics in this calculus.

Let M denote a compact n-dimensional manifold with embedded boundary OM # (). Let
oo > 0, and denote I = [0,0¢) or I = (—0y,0]; for the sake of definiteness, we focus on the
former case. Define the resolved space

Moy, == [T x M;{0} x OM], (2.16)

which is equipped with a smooth map o: M., — I; we denote its boundary hypersurfaces
by scf (the lift of I x OM), tf (the front face), and zf (the lift of {0} x M), and we write
pr € C°(Msey,) for a defining function of H. (Thus, while M., depends on I, we omit
the interval I from the notation.) Consider then the Lie algebra

Vseb(M) :=A{V € pscetVb(Msep): V is tangent to the leaves of o}.

We call this the space of scattering-b-transition vector fields; much as in semiclassical
settings, an element of Vi, (M) is thus a family of vector fields on M. An element V €
Vse.b(M) can be restricted to a scattering vector field at o # 0, to a b-vector field at the
lift zf of ¢ = 0, and to a scattering-b vector field

V|tf € Vsc,b(tf) = pscfvb(tf)

on tf =2 YNOM, respectively, with scattering behavior at tf N scf and with b-behavior at
tf N zf. There is a natural vector bundle S*PTM — M.}, equipped with a bundle map to
DT Myep, so that Ve, (M) = C®(Mqep,; °PTM); the corresponding dual bundle

SC-bT*M N Msc_b

is the sc-b-transition cotangent bundle. The corresponding spaces of differential operators
are denoted o
1 1 a1l - -l _—b M
Dlﬁgg-b(M)’ Dlﬁ:&z (M) = pscqutf Pyt Dlﬁgg-b(M)a
and the principal symbol map is

cem—1,r—1,1,b e Lb
0— lef:;”_b " (M) — lefgz_rb (M)
sc-bo-m,r,l,b _ 1 —b —(r—1) —1 —p —1 b %
(pscgptf Pt Pm/pscgr )ptf Pyt pm >(SC T M) — 0.
The tf- and zf-normal operator maps fit into the short exact sequences

0 — Diff 7~ (M) < DIt (M) S5 DI 7 (tf) — 0,

0 — Diff™h =L () < D™ (ar) 2 D™ (M) — 0.

sc-b

In local coordinates > 0, y € R" ™! near a boundary point of M, we can take pgs =

ﬁhl’ pie = =+ |o|, and p,s = wf‘la' Then °PTM — M., has as a local frame the vector

fields

x x
v . _ T 4
z+lo|”" x4 o] Y’

Their tf-normal operators, in the coordinates & = ﬁ and y, are =2-10; and =20,

j=1,...,n—1). (2.17)

1 #1190y, While

the zf-normal operators are zd, and 0,;, respectively.
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The double space carrying Schwartz kernels of elements of Vi, (M) is defined with
reference to the b-double space M?Z = [M?;(9M)?] of M via

M2y, = [I x MZ; {0} x fp; {0} x Iby, {0} x by, I x 0 diagy], (2.18)

S

where lby, rby, ffy,, diag, C Mg denotes the left boundary, right boundary, front face, and
lifted diagonal, respectively. We denote its boundary hypersurfaces as follows: scfg.p, resp.
bfsep is the lift of I x 0 diagy, resp. I x ff},, while tfs.p, resp. zfs.p is the lift of {0} x ff},
resp. {0} x MZ; and lbg.p, and rbse.p, resp. tlbg.p, and trbe.p, are the lifts of I x 1by, and
I x rby, resp. {0} x by, and {0} x rby. Finally, we denote by diag,., the lift of I x diag,.
See Figure 2.2.

FIGURE 2.2. The sc-b-transition double space Mfc_b.

Lifts of elements of Vi.p(M) along the lift mr of the right projection I x M x M >
(0,2,2') = (0,z) are smooth vector fields on M2 | ; the lift of Vs.,(M) is transversal to

diag,.,,. Thus, N* diag,., = “PT*M. Denoting by PQM the density bundle associated
with S“PT M, we put

Son(M) = {k € 71 (M2, diag,.,; T (" POM))
K =0 at bfgep Ulbge, Urbge U tlbgep, U trbgep }-

Here, we require x to be merely conormal down to scfg.},, but smooth down to tfs., and
zfsc, (unless otherwise stated). We also define weighted versions

b 7l7b - _l _b
quc”:b (M) = psczsc—bptfsc—prfsc—b \I];TCL_b(M)
The principal symbol map is now

sc—bo-s,r,l,b

0— \I’:C__kl)’r_l’l’b(M) SN \I}:ig,b(M) (Ss,r,l,b/szl,rfl,l,b)(sc—bT*M) —0,
where S5mHb(SCPT* M) = pt_fic_bpz_fb ST (ST M), with §57(5“PT* M) denoting the space

sc-b

of symbols of order s at fiber infinity and r at the phase space over scf which are smooth
down to tf U zf.

Remark 2.12 (Notation). The spaces M2

SC:

1 and Wy (M) are denoted M, 2

k,sc

and ‘lfk(M )
in [GHOS], respectively.
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We may regard an element A € \I/z(’:igl’b(M ) as a parameterized family A(o) of ps.d.o.s

with appropriate behavior as ¢ — 0; and for [ = 0 = b, we have
A(0) € U (M); c#0 = A(o) € Vi.(M).

s,1,0,0

Moreover, the restriction of the Schwartz kernel of A € W'

Nit(A) € B2 (FNOM),

(M) to tfep is an element

i.e. a scattering ps.d.o. (with weight 7 in the base at the zero section of TNOM) near the
zero section, and a b-ps.d.o. near fiber infinity of TNIM. We have short exact sequences

0 — Um0 () My

sc-b

s,r,b
W (t) =0, (2.10)

0 — T h ) o O (an) 2wty o,

which are consequences of the natural diffeomorphisms zfg, = Mg and tfg., = (W@M )gc,b
(the blow-up of the b-double space of TNOM at the intersection of the b-diagonal with the
front face corresponding to the zero section).

For P € U55(M), the operators Ni(P) and N,¢(P) themselves have b-normal opera-
tors

Nyres(Neg(P)) € f 1 (7 Nyg (2 N t£)),
where t Nig(zf N tf) = Typneetf /T (2f N tf) is the normal bundle of zf N tf inside of tf, and
Noni(Ny(P)) € 14 ;(TNOM). These two normal operators carry the same information:

Lemma 2.13 (b-normal operator of Ny (P)). Let P € \Ils(’f_’é)’o(M). Using the above nota-
tion, denote by

Y: TNOM — T Nig(zf N tf)

the bundle isomorphism (homogeneous of degree —1) given by Lemma 2.1 with respect to
the joint defining function |o| of zf Utf. Then ¥*(Nnet(Neg(P))) = Nons(Nye(P)).

Proof. Fix local coordinates x > 0, y € R"~! near a boundary point of M; then z,y,6 :=
are local coordinates near zf C M., and using (the differentials of) x and & to trivialize
NOM and N (zf Ntf), respectively, the isomorphism 1 is given by (y,z) — (y,6) = (y,z~1).
For differential operators P, the claim then follows from the fact that sc-b-vector fields
are spanned (over the space of smooth functions of (z,y,5)) by 0y — 605 (which is the
expression for the o-independent lift of 20, € W,,(M) to Myep,) and 95, j = 1,...,n — 1;
but the 0M-normal operator of x0, — 605 is x0;, and the zf N tf-normal operator of its

tf-normal operator —40; is —0s, which indeed equals 20, upon identifying & = 2~ 1.

819

For general pseudodifferential operators P, we note that the normal operators of N (P)
and N, (P) in question are both dilation-invariant extensions of the restriction of the
Schwartz kernel of P to tfg.p, N zfsep; but while tlbg.y, is, from the perspective of zfg.y,
(and thus from the perspective of Ngps(N,(P))) the left boundary of the b-double space,
it is the right boundary of the b-double space of tf (note that the scattering behavior of
the tf-normal operator takes place at the other end tf N scf, which is irrelevant for present
purposes). This explains why the identification of the two normal operators involves a
homogeneous degree —1 map. The fact that ¢ is the correct such map is easily checked in
local coordinates; we leave the details to the reader. [l
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Inverses (if they exist) of elliptic elements of W (M) lie in a large calculus:

Definition 2.14 (Large sc-b-transition calculus). Let & = (Eby, Erby s Ett, Eat) be a collection
of index sets. Then

—0,E
Ve (M)

consists of all operators whose Schwartz kernels are polyhomogeneous sections of the bundle

(SC‘bQM ) with index set Eiy, Erby, Eit, Ex at the boundary hypersurfaces tlbgcp, trbseb,

tfsc by Zise, C MSc b, and with index set () at the remaining boundary hypersurfaces bfscp,
1bscb, I'bsc—by scfsep, of MSC_

The following composition result is proved in [GHOS8, §6]:

Lemma 2.15 (Composition in the large sc-b-transition calculus). Let A € ‘II;CC_’E’S(M )
and B € W07 (M) where € = (Eby, Exvgs Ert Ent) and F = (Fing, Frvo, Fits Fur).  Then

sc-b

Ao B e U, 9(M), where G = (Givys Grbo» Gits Gar) with

Giby = (& + Fur) U (&t + Finy )
Grby = (Eut + Frng) U (Empg + Fir),
Git = (Emy + Frvg) U (Ext + Fir),
Gut = (Eut + Fut) U (Exby + Finyg)-

Moreover, \IJSO(?]‘E(M) is a module over W, (M) for any m € R.

Proof. The correspondence of symbols between the present paper and the reference is:
Ibg, rbg, zf are the same in both places, while tf is denoted bfy in [GHO8]. Furthermore,
the reference uses b—%—densities on the double space; near the interior of those boundary
hypersurfaces of the double space where A or B do not vanish to infinite order, b—%—densities
are the same as sc—b—%—densities, and therefore the usage of sc-b-densities here makes no
difference. Finally, conjugating by any fixed positive smooth b-half density to pass between
functions or densities and %-densities does not affect any of the nontrivial index sets. [

To capture index sets for inverses of invertible sc-b-operators, we introduce:

Definition 2.16 (Index sets). Given index sets E7,E7,& C C x Ny with Re(ET+&7) >0
and Re & > 0, we set EHM1 .= £+ and EM1 .= £, and inductively for j € N

et (M)g+1 . = (&5 + g NT(E+ giv(l),j)’

gt = J (et +£7WA) T (£ 4 €M),
+

=| | ebMJ M .| | g
U : U

JjEN JjEN

We then put

Lemma 2.17 (Existence of index sets). The sets E5(1, €1 c C x Ny in Definition 2.16
are index sets; and for any C € R there exists jo € N so that ReEF17 Re EMI > C for

Jj = Jjo-
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Proof. Note that there exist « € R and € > 0 with ReEF = ReEFMW:1 > +a + € and
Re& = ReEW:! > ¢ An inductive argument gives Re E¥ (17 > +a + je and Re EMJ > je;
therefore, jo > (C + |a|)/e works. O

Definition 2.18 (More index sets). Given index sets £7,£~ C Cx Ny with Re(ET+E7) >
0, define £ via Definition 2.8 (relative to £F), define £ by (2.12), and set £ :=
EON{(0,0)} (so £OF = (£ 1. £7(0) T (Ng+1)). Let then further £5(1) ;= £5(0:(1) and
EW .= £ in the notation of Definition 2.16 (relative to £, £ £0))  Finally,
put

eE(2) . g0 g1 (gia(O) + g(l)) U (giy(l) + 5(0))’
Q.0 e U (5(0) + 5(1)) U (gi»(O) + g%(l))_
+

Theorem 2.19 (Inverses in the sc-b-calculus). Fix a positive sc-b-density on M, a positive
b-density on zf = M, and a positive (sc,b)-density on tf. Let s,r € R and I = £[0,1), and
suppose P = (Py)scr € \Il;’;i?’o(M) has an elliptic principal symbol. Let o € R be such that

a ¢ ReSpecy,(Py) (where Py = N,(P) € Wi (M) is elliptic). Suppose that

(1) Fo: HSI’Q(M) — HSLS’O‘(M) is invertible for some (thus all) s' € R, and
(2) Ng(P): HLp O (6F) — HE ™" "7 (tf) is invertible for some (thus all) s',r' € R.

sc,b sc,b
Then there exists o9 > 0 so that P,: Hssérl(M) — H:é_S’T/_T(M) is invertible for o €
+(0,00]. Moreover, the inverse P~! = (Pil)aei(om) is an element of the large sc-b-

g
calculus,
o0, (ET(2) £= () £(2) £(2))
sc-b

P lew 7000 + v (M), (2.20)
where the index sets are given by Definition 2.18 in terms of E* := ET(Py, ).

Remark 2.20 (Lower bounds on index sets). Setting a™ := 4 min Re £F, we have Re Ei2) >
+a® and Re(E@\ {(0,0)}) > min(a™ —a~,1) > 0.

Proof of Theorem 2.19. We first let @) € \IIS_;{)_T’O’O (M) be a symbolic parametrix of P, thus
PQ=I1-R,  ReU %0 =u_ 0000y

Next, by Theorem 2.9, we have

£1:(0) £(0) £-.(0))

Pyte Ut (M) + 0y (M). (2.21)

Similarly, a mild generalization of Theorem 2.9 applies also to the description of N (P):
symbolic arguments in the scattering calculus near tf N scf are sufficient to produce left
and right parametrices which produce trivial errors (in the sense of differential and decay
order) at the scattering end of tfy ., = tfi:,b» and near the b-end the arguments in the proof
of Theorem 2.9 (which are local apart from the global inversion of P there) apply without
change. Thus,

P _ —,(0) g(0) ,(0)
Nee(P) ™" € Wy 0(uh) + w5 E e g, (2.22)

sc,b
where the second space consists of polyhomogeneous right densities on tfgc’b with the stated

index sets at trbgep, zfscb, tlbsep in this order (recall the switch between left and right
boundaries from the proof of Lemma 2.13), and trivial index sets (corresponding to infinite
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order vanishing) at all other boundary hypersurfaces. Note here that the index set at the
left boundary trbg., of the b-end of tfsgb is g+’(0)(Nmetf(Ntf(P)), —a) in the notation
of Definition 2.8 (by Theorem 2.9), which, as a consequence of Lemma 2.13, is equal to
E-O(N4(P), o) = £ indeed; likewise for the index set at tlbgep.

We can then pick

—00,(ET:(0) £=.(0) £(0) £(0))
sc-b

Poe U 50 (M) + v (M)

so that Ny(P-) = Nyt(P)™! and N,(P-) = N, (P)™1, i.e. the restriction of the Schwartz
kernel of P_ to tfs., resp. zfy.p, is given by (2.22), resp. (2.21). By Lemma 2.15 then,

—00,(£+:(0) £=,(0) £(0) g£(0)
Q=P ReU 2t )(M),

and by the multiplicativity of the normal operator maps,
—00 1(0) £—,(0) g(0)r g(0)
Ry :=R - PQI =1- P(Q + Ql) € \I}sc—b7(51L ‘ e )(M)’
where £0 := £\ {(0,0)}; that is, R; vanishes to leading order at tf.p, and zf.p,. We
now define £+ and £MJ as in Definition 2.16 with respect to the index sets £5() and
EOV respectively; that is, £5(10:0 = £5:01(1).7 )7 = £0)n(1).7 Then Lemma 2.15 implies

i — +(1),5 g—(1),5 g(1),5 £(1).5 . .
Ri € \I/SC(_)S’(g TETIIETNE J)(M), j € N; by Lemma 2.17, we can asymptotically sum

these powers, producing (in the notation of Definition 2.18)
(o)

. , o,

Ry~> Rlev
j=1

(g+,(1>75—,(1>7g(1),g(1))(M)

with the property that
PQ+Q)U+R)=1-Ry, Ry v 3 )

The Schwartz kernel of Ry is a smooth right density on [0,1), x M? which vanishes to
infinite order at o = 0 and £[0,1) x d(M?); therefore I — (R2), can be inverted on L?(M),
for o € £]0,00) with o9 > 0 small enough, by means of a Neumann series, and we have

(I — Ry)~' = I+ Ry where the Schwartz kernel of Ry is of the same class as that of Ry, so
Ry € \I’;C_OS’(Q’@’@’@)(M). This implies that (Q + Q1)(I + Ry)(I + Ry) is a right inverse of P,

and using Lemma 2.15 one can show that it is of the class (2.20).

A left inverse of P can be constructed as the adjoint of a right inverse of P*. A standard
(group theory) argument then shows that the right and left inverses agree. O

Fix now a smooth positive sc-b-density v on M. (i.e. a smooth positive section of
sbQM — My.y,), or a weighted version thereof. (Examples include o-independent b- or
scattering densities on M.) We then define for o # 0

HEWMo (M v) = HS (M, v,)

sc-b,o
as a set, where v, is the restriction of v to the level set o (thus v, is a weighted scattering

density on M), but equipped with the following norm for s > 0: fix any A € \Il:é(_]i)o’o(M )
with elliptic principal symbol, then

A —r 1 b
HUHJZLIS’T{)Z’:(M,V) = | Psct Pes Pas “H%%M,u,) + lpetPis P AUH%Q(M,VU)'

For s < 0, the norm on H*""*(M, v) is defined via duality relative to L2(M, v, ).

sc-b,o
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A slight variant of the following result already appears in [Hin21b, Appendix A.4]:

Proposition 2.21 (Relationships to Sobolev spaces at tf and zf). Fiz a positive sc-b-
density on Mgy, a positive (sc,b)-density on tf, and a positive b-density on M. Let
s,r,l,beR.

(1) Fiz a collar neighborhood [0,1),x OM of OM C M, and consider the family of maps
do: (pyw) = (|o]p,w) € M for0# o €l. Let x € C°(I, x [0,1), x OM). Then we
have a uniform equivalence of norms

=1 %
HXUHHSS(;S;Z,f(M) ~ 0o |’¢U<XU)”H§C*TI;I’7Z(tf)

That is, there exists C > 0 (which is independent of o and u) so that the left hand
side is bounded by C' times the right hand side, and vice versa.
(2) Fiz x € C°(Msep \ scf). Then we have a uniform equivalence of norms

b
”XUHH:(;T{)I’:(M) ~a ||XUHHIS)J—”(M)' (2.23)

One can use weighted volume densities on Mg, if one changes the weights on the right
hand sides appropriately. Typical choices for the cutoff functions are x = ¥(p+ |o|) for the
first part, and x = ¥(|o|/p) for the second part, where 1 € C°([0,¢€)).

Proof of Proposition 2.21. This is easily checked for L?-spaces, i.e. for s = 0. For s > 0
then, one exploits the existence of the normal operator maps (2.19) and the fact that the
normal operators of an elliptic operator are themselves elliptic. Thus, in part (2), one
fixes an elliptic operator Ag € W{ (M) = ¥ (zf), and defines an operator A € V?_, (M) by
extending the Schwartz kernel of Ag to a o-independent distribution on I x Mg which one
subsequently lifts to MSZC_b, followed by cutting off to a neighborhood of zfy. 1, by means of a
cutoff which is identically 1 near supp x X supp x; thus A is elliptic on supp x. Expressing the
sc-b-norm on the left of (2.23) via testing with A, and the b-norm on the right via testing
with Ag, the equivalence (2.23) follows. The proof of part (1) is completely analogous. [

2.5. The semiclassical cone algebra. The class of semiclassical cone pseudodifferential
operators which we shall recall next was introduced in [Hin22b]; there it was also shown that
fully elliptic semiclassical cone differential operators have inverses in the large semiclassical
cone calculus. (See [Che22] for a parametrix construction in the significantly more involved
hyperbolic case.) Closely related ps.d.o. algebras were introduced by Loya [Loy02]; see also
[GKMO06, Sch94].

Let M be a compact n-dimensional manifold with embedded boundary OM # (). We
denote by
Mep, == [[0,1), x M;{0} x OM]
the semiclassical cone (or ch-) single space, with boundary hypersurfaces denoted cf (the
lift of [0,1) x OM), tf (the front face), and sf (the lift of {0} x M).'* With py € C® (M)
denoting a boundary defining function for H = cf, tf, sf, the Lie algebra of ch-vector fields
is

VCH(M) = {V S psfvb(MCh): Vh= 0}.

HThe notation tf clashes with the notation used for the transition face of Msc,. However, not only will
the context always make clear whether we are working with sc-b or chi-operators, but also the two transition
faces are the same in that they are naturally diffeomorphic to tNOM.
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In local coordinates = > 0, y € R"! near a boundary point of M, the space Vu(M) is

spanned by
h h

) v

TR0 x+h

Since Ver(M), Ver(M)] C pstVer(M ), we have for the corresponding space of ch-differential
operators Diff(} (M), or more generally for its weighted version

1 7l’ 7b - - - 1
lefg;i UM = pcflptfapsfblef’g}i(M),

Oy (J=1,...,n—1).

a principal symbol map “"o™b%0 with

0 —Diff7 b= Ay < Diffh (M)

ch ym,l,a,b 7 _ 7 —(b—1 -
~ ? (pcflptfapsfbpm/pcflptfapsf( )Pm 1)(ChT*M) — 0,
where “"T*M — M. is the ch-cotangent bundle; this bundle is the dual bundle of the

ch-tangent bundle “"TM — M, the smooth sections of which are precisely the elements
of Ver(M). We remark that h-independent lifts of b-vector fields on M satisfy

Vo(M) C pZ Ven(M) € Diff 5%t (M). (2.24)

Besides the principal symbol, ch-operators P without weights at tf have a (multiplicative)
tf-normal operator Nt (P), with

0 — Diff™b 1 () < DI P (Ar) S DI (ef) — 0,

where the target space consists of operators which near tf Ncf, resp. tf Nsf are weighted b-
differential operators (with weight ), resp. weighted scattering differential operators (with
weight b). Furthermore, there is a family of b-normal operators at cf, parameterized by
h €10,1),

Neg: Dty (M) — h=2C> ([0, 1); Diff"; (T NOM)).

When N (P) is independent of h € (0,1) up to multiplication by an h-dependent constant,
we shall say (by a mild abuse of language) that P has an h-independent b-normal operator;
this will be the case for all ch-operators which appear in the present paper.

The definition of semiclassical cone pseudodifferential operators requires the introduction
of the ch-double space

M2, = [[0,1), x M2;{0} x ffy,; {0} x diagy],

C

with boundary hypersurfaces denoted ff.j (the lift of [0, 1) x ff},), Ibes (the lift of [0, 1) x 1by,)
and rbey (the lift of [0,1) x rby,), further tf.; (the front face), sfen (the lift of {0} x M2),
and dfy (the lift of {0} x diag,); and we write diag., for the lift of [0,1) x diag,,. Then

on(M)

consists of all operators whose Schwartz kernels are elements of 1 =1 (M3, diag.y, ﬂ'EChQM )
(with 7g the lift of the right projection [0,1) x M x M 3 (h, z,2') + (h, 2') and “"QM —
M.y, the density bundle associated with ShPM — M ) which vanish to infinite order at all
boundary hypersurfaces except ffop, tfen, and df.;. We also consider spaces of weighted
operators

v ),
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where we demand classical conormality down to cf., (with weight —[) and tf.; (with weight
—a), but allow for mere conormality down to df.; (with weight —b). Analogously to the
case of differential operators, the principal symbol map is

chs,l,a,b

0— \I/igl’l’a’b_l(M) N \I/i}f’a’b(M) o (Ss,l,a,b/szl,l,a,bfl)(chT*M) -0,
where %L (AT* M) is the class of symbols which are classical conormal down to (the
ch-cotangent bundle over) cf and tf, but merely conormal down to sf and fiber infinity.
The normal operator homomorphisms are

0 — WS M) o U0 () T wthier) — 0

(where we take advantage of the required smoothness of Schwartz kernels down to tf.;) and
Neg: U524 (M) — h=oC™ ([0, 1)n; U5, (TNOM)).

For precise elliptic theory, we also need the large ch-calculus: for €& = (&, Ex, Eb, Eit),
we put
— 76‘
\I/choo (M) = Aghg(Mczh)a
where the index set £ is assigned to the boundary hypersurface H.j; for H = 1b, ff, rb, tf,
while the trivial index set () is assigned to the remaining boundary hypersurfaces sf and df.

Proposition 2.22 (Composition in the large ch-calculus). Let P € W5, (M) + \Ifghoo’g(M)
and Q € W5, (M) + V27 (M), where & = (&, Eg, &, E¢) and F = (Fip, Fit, Fun, Fir) are

two collections of index sets. Suppose Re(Ew, + Fip) > 0. Then the composition P o Q is
well-defined, and P o Q € \IJ?L‘S/(M) + \I’C_;OQ(M), where G = (G, G, Gub, Gie) with

G = & U (&x + Fib),

Gg = (&g + Fu) U (&b + Fib),
Grb = (&b + Fip) U Frp,s

Gir = &t + Fir-

Furthermore, when the index sets .7:9,.7:1 C C x Ny are such that Re(&yp + Fo) > 0, the
composition of P as above and Q € C®([0,1); U=°F0F1) (M) is well-defined, with

PoQ e C([0,1),; 0o EmUErt+Fo)F) (pr)), (2.25)

Proof. See [Hin22b, Proposition 3.9] for the first part. The proof of (2.25) reduces to the
last part of Proposition 2.7 by noting that the product of the Schwartz kernel of P with any
function in €>([0,1)) is an element of ([0, 1); Wi (M) 4 W, O EREED) (A1) (e, the,
and df.; C M2 can be blown down, leaving one with a Schwartz kernel on [0,1), x M2,
conormal to [0,1) x diagy,, which vanishes rapidly at h = 0). O

Theorem 2.23 (Inverses in the ch-calculus). Fiz a positive ch-density on M and a positive
(b,sc)-density on tf. Let s,b € R and suppose P = (Pp)pe(o,1) € \Ilz}?’o’b(M) has an elliptic
principal symbol and h-independent cf-normal operator Neg(P). Let a € R be such that

a ¢ ReSpecy, (Net(P)). Suppose that
Ni(P): HE 2V (t8) — Hy Y70 (tf)
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is invertible for some (thus all) ;b € R. Then there exists hg > 0 so that Py: Hgl’a(M) —

HSI_S’Q(M) is invertible for h € (0, hq]. Moreover, the inverse P~1 = (P; ' )pe(ony) 45 an
element of the large ch-calculus,

_ _ _ — +:(0) £(0) £—,(0)
P 1 6 \IJCES,O,O, b(M) _I_‘IICEOO,(g ,g ,g ’NO)(M),

where the index sets are as in Theorem 2.9, i.e. E¥(0) is given by Definition 2.8 for £+ =
EF(N4(P), ), and EO) is defined by (2.12).

Proof. This is a simple generalization of [Hin22b, Theorem 3.10]. We shall thus be brief.
Let Qo € \Ilc_hs’o’o’_b(M ) be a symbolic parametrix with error term

Ry =1—PQy € U %">°(M).
On the level of tf-normal operators, we have

50— _ ,(0) £(0) £—,(0)
Ntf(P)fl e s,0, b(tf) + \Ilb7oo7(€+ 0) £(0) g—,(0 )(tf>7

b,sc sc

where the index sets refer to the boundary hypersurfaces at the b-end of the (b,sc)-
double space of tf (and at all other boundary hypersurfaces the index sets are trivial);
and N (Ro) € \I/_OO’O’_OO(M). Thus, we can pick

b,sc

oo (£+:(0) £(0) g—,(0) _
Q) € W ETTERETINI (A N (Q1) = Nig(P) ™ Neg(Ro);

.. — +,(0) g(0) g—,(0) .
the remaining error Ry = I — P(Qo+ Q1) € \Ilchoo’(g T ’N°+1)(M) vanishes at tf.y,.

By inverting Ncs(P) (via the Mellin transform), one can then solve away the error
at ff.; to leading order as in the elliptic b-setting; subsequently one solves away the
remaining error to infinite order at lb.;. The remaining error can be solved away us-
ing an asymptotic Neumann series argument; altogether, this argument produces @} €

w00y \I';hoo’(F+’F’f7’N°)(M), where F+, F, F~ are index sets with Re F* > +a
and ReF > 0, so that R =1 — PQ € \IJ(:EOO’(@’@’f_’m(M); this has small operator norm on
L*(M 2 for sufficiently small & > 0, and therefore I — R is invertible via a Neumann series,
with R in (I — R)~! = I + R of the same class as R. This proves the invertibility of P, for

such small h; that the index sets of P~ at lbes, o, and rbey, are £, £0) and £,
respectively, follows from Theorem 2.9. O

Finally, upon fixing a weighted ch-density on M.y to define the space Hg’h(M ) for h €
(0,1) as L?(M) with respect to the restriction of the chosen density to the level set of h,

we can define weighted ch-Sobolev spaces

bl 7l’b
HI (M) = pleplepbeHE (M)

C,

in the usual fashion; and ch-ps.d.o.s are then uniformly (in h) bounded linear operators
between such spaces. We recall from [Hin2lc, Corollary 3.7] the following analogue of
Proposition 2.21, for simplicity stated for a particular choice of density (for other choices
of densities, one merely needs to shift the weights appropriately):

Proposition 2.24 (Relationships of Sobolev spaces). Fiz a positive ch-density on My, and
a positive (b,sc)-density on tf. Fiz a collar neighborhood [0,1), x OM of OM C M, and
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consider the family of maps ¢p: (p,w) — (hp,w) € M for h € (0,1). Let x € C°([0,1)p x
[0,1), x OM). Then we have a uniform equivalence of norms

—1
HXUHH:’}‘:N)(M) ~h ”¢Z(XU)”HS:;»b—l(tf)'

Proof. This is true in the L?-case s = 0 by a change of variables calculation, and then
follows for general s as in the reference. O

2.6. Fourier transforms of non-product type families of distributions. In the in-
version of normal operators in the edge-b- and 3b-calculi, we will encounter the following
situation: we are given a conormal function not on [0, 1), x Ry (which would be a param-
eterized family of symbols on Ry), but on its blow-up at {0} x R, and need to control
its Fourier transform in A. Since [[0,1) x R;{0} x OR] — [0,1) is not a smooth fibration
anymore, this is a nontrivial task; see Proposition 2.28. We also encounter similar situa-
tions where [0,1) x R is instead resolved at {(0,0)} (see Proposition 2.29). Special cases of
the last type of result were used in [Hin22a, §3.2] to compute inverse Fourier transforms of
distributions on what is called the scattering-b-transition single space in §2.4.

In this section, for functions a = a(z, \), where x is a parameter (or absent altogether),
we write

a(x,y) :/Rei’\ya(:x,)\) dA.

(This is the inverse Fourier transform in A up to a factor of 2w. Since in this section
signs in oscillatory exponentials as well as factors of 27 will be irrelevant, we shall talk
about a — a as the ‘Fourier transform’ for brevity.) The following two auxiliary results
are classical (except for the notation—we write A*(R) = S~*(R) for the space of Kohn—
Nirenberg symbols of order z). We include proofs for the sake of completeness, and also as
a template for proofs later in this section. We use the notation (2.4).

Lemma 2.25 (Fourier transform of symbols: conormal case). Let z € R.

(1) Let a € A*(R). Then

AE=129) (1[0, o0]), 2 <,
a € § AN (4]0, o0]) + ALV (1[0, 00]), z €N,
AN (&[0, 00]) + A1) (£[0,00]), 1<z gN.

(2) Suppose z > —1, and extend a € A2 (£]0,00]) by 0 to F(0,00) as an L'(R)-
function. Then a € A*T1(R).

Proof. For the first part, when |y| > 1 we have |[yNa(y)| = | [ e?oYa(\)d\| < Cy when
N > z+4 1. For |y| < 1, we split the Fourier transform into a low and a high frequency
part, according to the relative size of |A| and |y|~!. For the low frequency part, we have
‘—1 1, z > 17

' ly
/ eMa(y) dA) <1 +/ ATFAA S { [loglyl, 2 =1,
IA<lyl 1 >t 2 <,

which is the L>-bound required for membership in A*~DY0(£[0,1),). On the other hand,
in fp\|2|y\—1 e™a(N)dX one can write e = ((iy)710\)VeY and integrate by parts N
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times, obtaining

ly| =Y

[ oo dA] Sl [T A g
[A[>]y| 1 ly|—1

for N > 1 — z, while the boundary terms are < \)\|_Z_k|y|_k_1|‘)\|:|y‘_1 = |y|*~! for k =
0,...,N — 1. The observation (y9,)Ya(y) = ((—0xA\)Va)"(y) finishes the proof in the case
z < 1. For z > 1, we take N € N with z — N < 1 and apply what we have shown to

D?JJV a = MVa, with \Na € A*~N(R), followed by N-fold integration from 3 = 1 towards
y=0.

For the second part, it suffices to consider the case that a is supported in [0,1]. We
then note that for |y| > 1, we can estimate the low frequency contribution to the Fourier
transform by fo‘yrl A dX < |y|7*7 1, whereas in the high frequency part we can integrate
by parts N times and obtain an upper bound by |y|= flzl/\*l N NdX < |y7*! when
z— N < —1. (|

Corollary 2.26 (Fourier transforms of symbols: polyhomogeneous case). Let £ C C x Ny
denote an index set.

(1) Let a € A5 (R). Then e AL D (&[0, o).

(2) Suppose Re&E > —1, and let a € Aéig)(:t[o, oa|); extend a to an L'(R)-function via

extension by 0 to F(0,00). Then a € Ag}fgl R).

Proof. In the first part, we only need to consider the region |y| < 1. Given 1 < C' ¢ N, and
setting Ec 1= {(z,k) € £: Rez < C}, the Fourier transform of ([](, jyee (—A0\ — 2))a €

AC(R) is
(T @w-=)a=( II a-c-1)a
(z,k)e€C (z,k)EEC
€ AN (£[0,1)) + AYH (£[0, 1))
by Lemma 2.25. Integration from y = 1 towards y = 0 shows that a € ANU(E-1(£[0,1)) +
A (£[0,1)) for any ¢’ < C — 1. Since C is arbitrary, we are done.

For the second part, we may assume that a is supported in [0,1]. Given C > 1 and
defining £ as before, the Fourier transform of ([], jyee, (AOx — 2))a € A€ (]0,1)) is then

( 11 (—yay—(z+1)))>aeAC+1(R).

(ka)egc
This can be integrated from y = 41 towards y = oo and thereby implies a € A‘SH(R) +
A (R) for any C' < C + 1. The proof is complete. O
We now turn to non-product type parameterized setting. We work with the resolved
spaces
My = [[0,1) x R; {0} x IR],

My = [[0,1) x R; {0} x {0}]. (2.26)
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We denote by ff, and ffy the respective front faces, by ifs, and ify the lifts of [0,1) x IR,
and by bf,, and bfg the lifts of {0} x R. The lift of the coordinate in the first factor will
be denoted = € [0, 1); the lift of the second coordinate will be denoted y or A, depending
on the context. See Figure 2.3.

Notation 2.27. For e = 00,0, we write .Al(i’gf’g)(M.) for the space of polyhomogeneous
functions on M, with index set £, F, and G at ff,, bf,, and if,, respectively. We simi-
larly write A(®A7)(M,) (and AU@K)(B:D.(rm)(M,)) for spaces of conormal functions (with

logarithmic weights).

bf

Tify

FIGURE 2.3. Tllustration of (2.26). On the left: the space My (a resolution
of [0,1); x Ry). On the right: the space My (a resolution of [0,1), x R,).
The dashed blue curves are level sets of = (along which we are Fourier
transforming). We shall also consider situations with the labels A and y
interchanged.

Proposition 2.28 (Fourier transform and resolution at infinite frequencies). Let z,w € R,
and let £, F C C x Ny be index sets. Let a = a(x,\).

(1) (Conormal case.) Let a € AW (M,). Then a € Allw=1Uz200) (Mp).
(2) (Polyhomogeneous case.) Let a € AFED (M), Then a € Aé(}f;_l)ug’g’w) (Mp).

Proof. We restrict attention to z < 3 (so |logz| 2 1).

e Part (1). Note that the Fourier transform commutes with multiplication by z=%; there-
fore, we may replace (w,z) by (0,z — w), and we shall then simply consider the case
w = 0. Consider first the case that |A| is bounded on suppa (so suppa N (ffo Uifs) = 0);
then a € A*®) (M) = A*([0,1),;.7(Ry)) and therefore @ lies in the same space,
which is contained in A(*#°°) (M) as claimed. Similarly straightforward is the case when
|zA| > ¢ > 0 on suppa (so suppa N bfs = 0): then

~

a(x,y) —/ eMa(z,\)d\ = 27! / eij‘y/xao(x,j\) dA,
IA[zc/z IA|>c
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where ag € A°([0,1)5, 7 (R;)) (in fact, Al > ¢ on suppag). The Fourier transform of ag
lies in the same space, and therefore za(x,y) is bounded conormal in z and Schwartz in
y/x; this gives a € A1) (Mfp).

It remains to consider the case that ¢ < |A\| < C/z on suppa. Note that we have the

bound |a| < |zA|?, similarly for derivatives of a along b-vector fields. Firstly, then, we have
the estimate

c T, z < -1,
iz, y)| g/ la(z, )| dA gx—l/ dd < d o logal, 2= 1,
<\<LC/z cx 21 s> 1

where we introduced A = z\. For ly| > 1, we can strengthen this using y~VeV = Dive“‘y
and integration by parts to

C
) S [ AVAYDYa@ ) e Y [ AN ak gty
c<IN\LC/x cr
for any N > z 4+ 1. These two estimates, together with the analogous estimates for b-
derivatives of a, prove the claim, except near the corner ffy N bfy to which we now turn.

We shall work in the region |y| < min(3,c¢™!) and 5] < C. We split the A-integral into

a low and a high frequency part, according to the relative size of |\| and |y|~'. The low
frequency part is bounded by

z z
-1
z —1 /vl 1z 13 N -1 (‘y|) |y‘ —1 1 °C 7
Lot s e [T A s fattonl = ()l leg . 2= -1,
< Yy cxr
z*[y| = 1= (|y\) |~ L z>—1.

In the high frequency part we integrate by parts N > z + 1 times, as above, and get an
upper bound by

C
N [ Sk gl = ()
z/y

plus contributions from the boundary terms at |\| = |y|~! which obey the same bound.
Similar estimates for b-derivatives of a finish the proof of part (1).

e Part (2). Fix w < ReF. We first only require a € Angeb?o))(Moo)_ Let C € R,
C>w—1,put E¢ ={(z,k) € £: Rez < C}, and set

ac = Pa € AWC) (M), P = H (x0y — 2).
(z,k)e€c
Then by what we have just shown, Pa = ac € AW~1C%)(My). Fix ¢ € C([0, 5),) with
¥ =1on [0, %] Since @ is, a fortiori, conormal and vanishes to infinite order at ify, we then
have
P(pa) = f = ac + [P,¢la € AW~1C2) (M)

Inverting the operator P by integrating from z = % towards x = 0, one obtains

i€ AGED (Mg) + Al 62 (M) + AW C (M), W <w—1, C'<C. (227)
We leave the details of the direct proof to the reader, and instead sketch a geometric proof of
this fact using b-analysis. The inverse of P used here is an element of the large b-calculus
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on [0,1),, to wit, P~! € \II_N (&:No/0 )([O, 1);) where N = |Ec|. In order to analyze P~!

acting on the distribution f = f(z,y) on the space My = [[0,1), x R,;{(0,0)}], note first
that the y-independent extension K’ = K'(xz,2’,y) of the Schwartz kernel K = K (x, ') of
P~ lifts to the total space

My, = [[0,1); x [0,1)2 x Ry; {(0,0)} x R;{(0,0,0)};[0,1) x {0} x {0}]
= [[0,1)f x Ry; ff, x {0};1by, x {0}]
to have a conormal singularity at diag;, xR, while it is polyhomogeneous with index set & at
Iby, x R, with index set Ny at the lifts of ff;, xR and ff, x {0}, and with index set ) at all other
boundary hypersurfaces. The lift 7p: My g — My of the right projection (x, 2’ y) — (2, y)
is a b-fibration.'> We then have (P~!f)(z,v) fo (@', y) = (7p)«(K'm}, f). But
K'my, f is a right b-density, conormal with weights w — 1 and C at the lift of ff}, x {0} and at
ff}, x R, respectively, polyhomogeneous with index set £ at lby, x R, and vanishes to infinite
order at all other boundary hypersurfaces. Thus, we may blow down rby, x {0}; and upon
then blowing up lby, x {0}, we find that K'x}, f is conormal with weights w —1 and C' at the
lift of ff, x {0} and at ff}, xR, respectively, and polyhomogeneous with index set £ at the lifts
of Ib, x {0} and by, x R. The conclusion (2.27) then follows from [Mel92, Theorem 5], since
the lift of the left projection (z,2’,y) — (x,y) to Ma,r = [[0,1)% x Ry; ff, x {0}; by, x {0}] —
My is a b-fibration.
Now recall that in (2.27), the number C' was arbitrary. We thus conclude that

E.E,0) w’ &, 00
Al(jhg ( ) + Aphg(bfo : (MO) (228)

In order to prove the polyhomogeneity of & at ffy when a € Apigg m(MOO), define F¢ :=
{(w,l) € F: Rew < C} and

a®(z,\) == ( H (x0p — N0y — w)) (x,\) € Apiggb(}o))(MOO)'
(w,))eFo

Then from what we have already shown,

(H ($31;+y3y—(w—1)))&($ay)= Cla,y) € AT (Mo) + A4 (M),

(w,h)eFe

for any C’ < C' — 1. But this in turn gives

( I (0. +yo, - z)> < I (0. +yo,—(w- 1))) (z,y) € Apigégg)(Mo).

(z,k)e€c (w,))eFe

Since C' and thus C’ are arbitrary, this implies @ € AEY—D:E0 (M), (The extended
union here takes into account the multiplicity of factors x0, + y9y — ¢ when { = z and
¢ =w — 1 for some (z,k) € £ and (w,l) € F.) The proof is complete. O

Proposition 2.29 (Fourier transform and resolution at zero frequency). Let z,w € R, and
let £,F C C x Ny be index sets. Let a = a(x, \).

IQIndeed, under the b-fibration [0,1) x R — [0,1) x R, defined as the product of the right projection
[0,1)2 — [0,1) with the identity map on R, the preimage of {(0,0)} is the union of ff;, x {0} and rby, x
{0}. Therefore, its lift to 7r: M2 r = [[0,1)2 x R;ff, x {0};1by, x {0}] — My is a b-fibration by [Mel96,
Proposition 5.12.1].
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(1) (Conormal case.) Let a € A™*°°)(My). Then a € A(“’H’ZU(“’H)’OCL) (Moo).
(2) (Polyhomogeneous case.) Let a € AV S0 (My). Then a € ATHLETFHDN (M ).

Proof. We denote coordinates on My by x, A, and on My, by z,y.

e Part (1). The proof is similar to that of Proposition 2.28(1). First of all, it suffices to

consider the case z = 0, as multiplication by z** commutes with the Fourier transform in
A. When suppa N ffy = () (so w is arbitrary), then a € A°([0,1);.7(R,)) C A2 (M,).
When supp a N bfg = 0, then a(z, \) = 2% ag(z, \/x) where ag € A°([0,1),C°(R)), and

a(x,y) = 2 ay(z, zy), ap(x,y) = /eij‘gao(x, A)dA e A°([0,1), #(R)).  (2.29)

Since zy is a projective coordinate along (the two components of) ff,, we therefore conclude
that a € AWFLw+Loo)(pr ).

It remains to consider the case that cx < |A\| < C on suppa where ¢,C > 0. We work in
z < 5. For bounded |y|, we then estimate

C $w+l, w < —1,
az, )| s/ xdr< dlogal, w= 1.
“ 1, w > —1.

When |y| > 271 on the other hand, integration by parts (i.e. non-stationary phase) and
0V a(z,\)| < [A[“~Y imply for N > w + 1 the estimate

C
R R I
CcT

Finally, when 1 < |y| < min(%,c a2~

2
transform of a by

1 we estimate the low energy part of the Fourier

I~ gt = [y ey, w < -1,
/ AV dX S < Jlog |z, w=—1,
“ ly|~ 1, w > —1.

For the high energy part on the other hand, we use integration by parts and obtain, for
N > w + 1, the bound

C
Iy!_N/| A [y
-

The same pointwise bounds also hold for conormal derivatives of a; this proves part (1).

(F:220) (11). Let C € R, C+1> z,

e Part (2). Fix z < Re£. We first only require a € Aphg(ffo)

put Fo = {(w,l) € F: Rew < C}, and set
ac = Pac A9 (M), P:= [[ (20:+ 20, —w).
(w,l)eFe
Then part (1) implies that

(
P = ap e A(C+1’Z’°°)(Moo)7 P .= H (0y — Y0y — (w+1)).
(w,l)eFo
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Switching to the coordinates = and g := xy, the vector field 0, — y0, becomes xJ,. Note
also that y is an affine coordinate on the front face of the blow-up of [0,1) x R; at {(0,0)};

therefore, we are in the same setting as in the proof of (2.27). Therefore, upon integrating
P from z = % (where a is Schwartz in y and also in ¢), and switching back to (z,y)

coordinates, we obtain

ae ATy 4 AUFLE ) (Y A (A, O < O+ 1, 2 < -

phg phg(ffoo)
Since z < Re& and C > z — 1 were arbitrary, we conclude that
~ (F+1,F+1,0) (F+1,2z,00)
a € Aphg (M) + Aphg(ﬁm) (Moo). (2.30)
Set now ¢ = {(2,k) € £: Rez < C} and
F,C 00
o= J[ (20.- w)>a € A9 (My).
(w,l)e€c

Then (2.30) implies

(

for any C' < C. Since C is arbitrary, integration of this equation starting from x = %

implies a € -’41(3{1:; 1’SG(]:JFI)’(B)(MOO), as claimed.

T F+1,7+1,0 F+1,C" 00
H (x0y — w))a =aC € A;h; * )(Moo) + Aéh;(ffoo) )(Moo)
(w,l)eEc

O

2.7. The edge-b-algebra. Edge (pseudo)differential operators were introduced by Mazzeo
[Maz91] on manifolds with boundary whose boundary is the total space of a fibration. The
underlying Lie algebra of edge vector fields is the subalgebra of M}, consisting of all vector
fields which are tangent to the leaves of the fibration. On a manifold with corners M with
more than one boundary hypersurface, one can consider edge-b-vector fields corresponding
to the fibration of a single boundary hypersurface of M; the corresponding small (i.e. with-
out boundary terms) pseudodifferential algebra was developed in [MVW13, Appendix B|.
Here, we discuss a very special case of this general edge-b-setup, but for this setup go be-
yond [MVW13] in that we describe the b-normal operator and its inverse in detail, as well
as Sobolev spaces and their interaction with the Mellin transform. (We do not, however,
discuss parametrices of fully elliptic edge-b-operators here.)

2.7.1. Differential operators. Let M be an n-dimensional manifold with corners, with n > 2;
we assume that the set M;(M) = {D, R} of boundary hypersurfaces of M has only two
elements which intersect in the closed manifold Y := DNR. We assume that D is compact
(with boundary 0D = D NR). We moreover assume that R is the total space

Y - R % [0,00)

of a fibration, with ¢=%(0) = DN R. (Thus, R and therefore also M are noncompact,
although one can consider similar setups with compact R, M.) See Figure 3.5 for an example
of such a setup. We then consider the Lie algebra of edge-b-vector fields

Vep(M) ={V € V,(M): V is tangent to the fibers of R}.

We denote the corresponding tangent and cotangent bundles by *PTM — M and “*T*M —
M, respectively. Furthermore, pp and pr € C*°(M) denote defining functions of D and
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R, respectively. Spaces of differential operators are denoted Diffg?b (M), and the principal
symbol map is

e,bo.m

0 — Diff™ "} (M) < Diff™ (M) —— P (“PT*M) — 0.

In local coordinates T > 0 (defining function of D), R (defining function of R), and
y € R"2 (coordinates along Y), in which the fibration of R is given by (T,y) + ¥, the
space Ve1,(M) is spanned over C*°(M) by

RTOr, ROR, 0y (j=1,...,n—2). (2.31)

Thus, regarding an element P € Diff}, (M) (thus its coefficients are smooth down to D)
as a b-differential operator P € Diff}'(M), it has a dilation-invariant normal operator
Np(P) € Difff!;(* ND), given in local coordinates by freezing the coefficients of P at
T = 0; in light of (2.31), Np(P) is then itself an edge-b-differential operator on * ND with
respect to the fibration *NypD — [0,00) = *Nypy[0,00) induced by the differential of ¢.
That is, we have a short exact sequence

0 = ppDIffT, (M) — Difi7y, (M) 22 Diff7, ,(*ND) — 0,

where Diffe 1, ; (T ND) is the space of edge-b-differential operators which are invariant under
the dilation action in the fibers of TND. As such, Np(P) is naturally analyzed via the
Mellin transform in the fiber variables.

In local coordinates as above, we can write

Np(P)= > aja(R,y)(RTDrY (RDR)*Dy,  ajhe € C([0,00)r x Ry~™?),

JH+k+|a|l<m
(2.32)
and therefore the Mellin-transformed normal operator family (defined with respect to a
choice of boundary defining function of D, here T)) is

Np(P,A) = Y aja(R.y)(RN(RDR)*DS,  XeC. (2.33)
jtk+|al<m

For bounded A, this is an analytic family of elements of Difff*(D). When A\ = —ipu 4 h~1
however, with 4 € R and h > 0, then

— ) _ /R J
(0,1) 3 h s Np(P,—ipth ) = 3 ajka(R,y)(:tl)J(ﬁ:FwR> (RDR)* DS (2.34)
J+k+|a|<m

is a smooth (in p) family of elements of Diff:%’o’o’m(D), cf. (2.24). As discussed in §2.5, its

normal operator at the transition face tf = W@Dpf Dep, is given in the rescaled coordinate
R = R/h by taking the limit h N\, 0 for bounded R, so

NFe(P):= > ajral(0,y)(E1)Y RI(RDy)* Dy € Diff.>"™ (FNOD), (2.35)

JH+k+|al<m
where the weights 0 and m of the b, sc-space refer to the weight at the b-end tf Ncf (where

R =0) and the scattering end tf Nsf (where R~! = 0), respectively. This normal operator
is independent of y as long as p remains bounded.
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Remark 2.30 (Edge-b and semiclassical cone algebras). A simple instance of the relationship
between the present edge-b setup and semiclassical cone analysis was already hinted at in
[Hin22b, Remark 3.4].

Without passing through the chi-calculus, one can directly freeze the coefficients of Np(P)
in (2.32) at R = 0, which produces the edge normal operator

Npe(P)= > ajra(0,9)(RTDr) (RDR)*DY € Diff, 1([0,00)7 x [0,00)g x V).
Jtktlal<m
(2.36)
One then exploits the dilation-invariance of Np(P) in T' by passing to the Mellin trans-
formed normal operator family, and one then exploits the invariance under (R,\)
(cR,\/c) for ¢ € Ry (with A denoting the Mellin-dual variable to T') by passing to R = R|\[;
this produces N% i¢(P), where the choice of sign ‘%’ is now identified with the choice of
point at infinity in Ry = {#o00}. Thus, A = +o0 N%tf(P) is the reduced edge normal
operator, in analogy with the reduced normal operator in the 0-setting [Lau03, Hin21a].
The dilation-invariance of Np(P) in T implies the fact (which also follows directly by
inspection of (2.33)) that the b-normal operator of Np(P,\) at 9D is independent of J; it
is denoted
Nop(P) := Nop(Np(P,0)) € Diff}";(* NoD), (2.37)

where TNOD is the (non-strictly) inward pointing part of the normal bundle of 9D C D.
Equivalently, Ngp(P) can be defined as the b-normal operator of Nl:)t’tf(P) at tf Ncf. In

terms of (2.32), we have Nop(P) = 3 41 aj<m aoka(0,y)(RDR)*DS.

We proceed to relate the principal symbols of P € Diff{}, (M) and Np(P) (and related
operators). We use two facts: firstly, P7*D is naturally a subbundle of P77 (* ND), and
also of PT#%(*ND), where D in the subscript on the right denotes the zero section of
TND. Secondly, a choice of boundary defining function pp € C*°(M) induces a product
decomposition

d
PLE(FND) = PT*D xR, P s (0,1) € PT*D x R. (2.38)
PD

Lemma 2.31 (Relationships between principal symbols). Let P € Diffgy,(M).

(1) The principal symbol of Np(P) is the dilation-invariant extension to “PT*(T ND)
of the restriction ©Po™(P) to ®PTHM = ¢PT5%(TND).

(2) The principal symbol of ]/\TE(P, A) is independent of A, and it is given by the restric-
tion of ™ (Np(P)) to PT*D C PT}(TND).

(3) The principal symbol ®*0™ (Nap(P)) is the dilation-invariant (in the fibers of *NOD)
extension of its restriction to the b-cotangent bundle over 0D C TNOD, where it is
given by the restriction of ©°o™(Np(P)) to *TjpD.

(4) Given p € R, the ch-principal symbol of (0,1) > h +— N;(P, —ip+ h7Y) is equal to
that of Np(P) at :l:hfld;% + P,

(5) In terms of the isomorphism (2.38), the principal symbol of Ngtf(P) is given by the
restriction Ofbo-m(ND<P))|bTE(+ND) to the front face of [PT*D xR; PT},D x {£oc}].
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Proof. These statements follow directly from the local coordinate descriptions of the various
normal operators given above. For the final part, note that if we write the canonical 1-
form on PT*D in the coordinates R,y near 0D as §b% + np, - dy, then local coordinates
on PT*D x R;PT3,D x {+o0}] away from the lift of PT*D x {+oo} are R = R|\| (where
Al = £A), vy, &, m, with the front face defined by |A|~! = 0; comparison with (2.33) and
(2.35) proves the claim. O

2.7.2. Pseudodifferential operators and Sobolev spaces. Following [MVW13, Appendix B],
we set:

Definition 2.32 (Edge-b-double space). The edge-b-double space of M is
2 2. 12. 2
Mgy, = [M ;D ,R¢],
where Ri =R XxsR={(2,7) € RxR: ¢(z) = ¢(2')} is the fiber-diagonal. (The lift of
Ri to [M?;D?] is a p-submanifold.) We denote the boundary hypersurfaces of M. e27b by

ffy, (the lift of D?),
ff. (the lift of R),
Iby, resp. rby, (the lifts of D x M, resp. M x D),
1be, resp. rbe (the lifts of R x M, resp. M x R).

Furthermore, the edge-b-diagonal is the lift diag,, C M, eQb of diag,.

The double space that arises as a model for the 3b-calculus in §4.2 turns out to be a
resolution of M2, (for a particular choice of M):

Definition 2.33 (Extended edge-b-double space). The extended edge-b-double space of M
is the resolution

M%b,ﬁ = [MZ2,,; R?). (2.39)

e

We denote by ffy, 4 the lift of ff},, likewise for the lifts of ffe, lby, rby, lbe, rbe, diag&b. The
front face of (2.39) is denoted ff;.

We note that MeQ,b,jj is naturally diffeomorphic to [Mg; Ri] The terminology is taken
from an analogous construction in the 0-calculus by Lauter [Lau03].

The space of s-th order edge-b-pseudodifferential operators
eb(M)

then consists of all operators with Schwartz kernels in I°(M, e%b’ diag, 1, THROPQM) (with 7g
the lift M e2,b — M of the right projection, and “PQM — M the density bundle associated
with ®PTM — M) which vanish to infinite order at all boundary hypersurfaces of M. 2
except for ff,, and ff.. (Since the lift of R? to Mgb is disjoint from diag, ;,, we can equivéL—
lently define Vg, (M) via their Schwartz kernels on M, éb’ﬁ in exactly the same manner upon
replacing ffy,, ffe, diag, ), by ff, 3, ffe s, diage 1, 4.) The (multiplicative) principal symbol map
is

e,b s
0— wg;}(M) < WS (M) 25 (8%/85 H(¢PT* M) — 0,



3B-CALCULUS 51

and the normal operator homomorphism at D, which on the level of Schwartz kernels is
given by restriction to ff}, and subsequent dilation-invariant extension to (" ND)2, | fits into
the short exact sequence

0 = ppWs, (M) — WSy (M) 22 w8, (*ND) - 0.

Given P € W5, (M), the operator Np(P) has itself a model operator at T NypD gener-
alizing (2.36): upon fixing a collar neighborhood [0,1)7r x [0,1)r X Y of DNR, we define

Npe(P) € Ve, (M),  Mp:=1[0,00)7 x [0,00)r x Y,

as the operator whose Schwartz kernel is the extension of the restriction of the Schwartz
kernel of P to ff}, N ff, by invariance under an action of the group R x Ry on (M I)g,b given
by (y,s) - (T, R,w, T',R',w'") = (T%eY, sR,w, T"eY, sR,w'). (Note that in the coordinates
T = logT', R ,w,w', A = logj’;z%, R = % on (Mj)ib—the significance being that
log R and A are affine coordinates on the intersection of the b- and edge front faces—this
action takes the form (y,s) - (7", R,w,w’, A, R) = (sT' + y,sR',w,w’, A, R); cf. [Hin21a,
§2.2] where w,w’ are absent, and (1", R/, A, R) are denoted (¢, %', y;,y/, %))
We shall generalize (2.33)—(2.37) to the pseudodifferential setting:

Proposition 2.34 (Properties of N(P, —)). Fiz a boundary defining function pp € C°°(M)
of D. Write TND = D x [0,00) for the trivialization of the inward pointing normal

bundle determined by dpp, and write the fiber-linear coordinate dpp as pp simply. Let
P e (M). Then:

(1) the Mellin-transformed normal operator family NE(P, A), A € C, defined by
Np(P,A) = (pp* Np(P)(ppu))|p=0,  u € C¥(D), (2.40)
is a holomorphic family of elements of W3 (D);
(2) the b-normal operator Nyp(P) € \I’f)jl(WE)D) of Np(P, \) is independent of A;
(3) for p € R, the operator family
(0,1) 3 h — Np(P, —ip £ h™") (2.41)

s,0,0,s

defines an element of W

(D) which depends smoothly on p.

The principal symbols of these operators, as well as of the tf-normal operator N%tf(P) €
\I/Z’fs)f (FNOD) of (2.41), are given in terms of the principal symbol of P as in Lemma 2.31.

An equivalent definition of N;(P, \) is u > (ppP(pRa))|p where @ € C®(M) is a
smooth extension of u € C*°(D).

Proof of Proposition 2.34. Denoting by R and R’ the right and left lift of the chosen defining
function of D to M x M, respectively, the front face of [M?; D?] is diffeomorphic to [0, 0o]s, %
D? where s, = R/R'. Therefore,

ff, = [[0, 005, x D% {1} x (9D)?]. (2.42)

The intersection diag,j, Nff}, is given by the lift of {1} x diaggp. See Figure 2.4. Denote
by K = K(sp, 2, 2') the restriction of the Schwartz kernel of P to ff},, where z, 2’ € D.
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Iby, 4

FIGURE 2.4. On the left: illustration of the b-front face ffy,, see (2.42);
only the coordinates R, R’ (left and right lifts of defining functions of 9D C
D) are shown, whereas the coordinates w,w’ in the left and right factor of
0D x 9D C D x D are suppressed. The boundary hypersurface labeled 1by, is
the intersection of lby, with ff},, likewise for the other boundary hypersurface
labels. On the right: the b-front face ff}, 4 of the extended edge-b-double
space.

Consider first the case that K(sp, z,2") vanishes identically near {1} x (9D) (i.e. near
ffo). Then ff;, Nsupp K = ([0, c]s, x D?) Nsupp K is a subset of the front face of [M?; D?];
therefore the Mellin transform of K(sp,z,2’) in s, can be analyzed as in the case of b-
ps.d.o.s, see in particular Lemma 2.3. Thus, the Schwartz kernel K of N;(P, A) is an
element of U¥(D\JD) for bounded A, and of ¥;*(D\JD) in the high frequency regime (2.41).
Replacing K by its cutoff away from the diagonal singularity, the resulting distribution
(which we still denote by K) is a smooth right edge-b-density which vanishes to infinite
order at sp = 0 (i.e. Iby,), sp = oo (i.e. rby), as well as at [0,00] x (9D x DUD x 9D) (i.e.
lIbe U ffe Urb,). Therefore, K is an analytic family (in A € C) of smooth right densities on
D x D which vanish to infinite order at 0D x D and D x 0D, and which as such also vanish
to infinite order at h = |A|~! when |Im )| is bounded while |Re A\| — co. This means that
Ky € U, °">(D), and the high energy family (2.41) is an element of ¥_>>~""">">(D).

It remains to analyze K when K is supported near ff,. We switch to the coordinate 7, =
log s, € [—00, 00] on the front face of [M?; D?]; moreover, we work in a collar neighborhood
[0,1)g x D of 9D C D, and correspondingly denote points on R, x D? by (m,, R, w, R',w’).
In these coordinates, ffy, is the product of [R x [0,1) x [0,1); {(0,0,0)}] (with points labeled
(1, R, R')) with (9D)? (with points labeled (w,w’)). The right edge-b-density bundle is

trivialized by

d7’ dR’
R'T" R

/
= R’—l‘dfb%dw’

dsp A

do'|.
sbR’w

dw’

(2.43)

— R/—l‘

We first consider the case that P € W_p°(M). We express K in terms of the coordinates

R T log s
R>0, = €0,), T:Eb/: i/beR, w, W (2.44)
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in ff}. (On the extended edge-b-double space, these are valid coordinates near ff. 3 N1be 4 if
we extend the domain of definition of 7 to also include the points £00.) We then have

dr %dw’

K = k(R up, 7,w,w)
u,

, (2.45)

where £ is smooth in R’ uy,,w,w’, vanishes to infinite order as uy, — 0 or |7| — oco; and R'T

is bounded on supp «. The Schwartz kernel K of J/V;(P, A) is then, in view of s, = eR'T,

K (R up,w,w') = /(eR/T)_i’\/{(R’,ub,T,w,w') dr ‘—dubdw'
R Up
~ d
=R(R up, R\, w,w’) %dw' ,
b

where K denotes the Fourier transform in the third argument. Since e®'7 lies in a com-

pact subinterval of (0,00) on supp K, we conclude from this expression (and an analogous

expression near ffoy N rbey) that Np(P,A) is analytic in A with values in ¥, *°(D). To

analyze the high frequency regime, let us write A = —iu + Ao where u, Ay € R, and write

Ku(R' up, T,w,w’) = e BTl (R up, T, w,w'), which is a smooth family (in g, R', up, w,w’)

of Schwartz functions in 7 which vanishes rapidly at up = 0; then
R _/ R =

K_i4x (:I:—,ub,w,w/> = kpu (:I:—,ub,R/,w,w/) ‘

Ao Ao

is, for £X¢ > 1, a smooth function of h = |A\o|™! = i)\al (down to h = 0), p € R, and

(R, up,w,w") which is Schwartz in R’. This shows that (2.41) is a smooth family (in p € R)

—00,0,0,—00
of elements of W (D).

%dw/

Ub

Finally, we consider P € W, (M); it remains to analyze NE(P, A) in the case that on the
support of the restriction of the Schwartz kernel of P to ff},, expressed similarly to (2.44)—
(2.45) as

K = ko(R,u, 7,w,w’) |dr du du'|, u := log up,
the coordinates u, 7 € R are bounded; and moreover we use local coordinates w,w’ € R*~2
on 9D, with |w — «'| bounded as well. (That is, K is supported in a neighborhood of
diag,, Nffe.) Thus, kg is a conormal distribution,

Ro(Ryu,70,0) = (20) / / / NG (R R €, ) dAde d,
RxRxRnr—1

where a is a symbol of o~rder s in (5\, &,n); in fact, due to the support properties of kg, the
symbol a is analytic in A, and satisfies symbolic bounds in (Re A, {,n) locally uniformly in
Im \. In the coordinates R, u,w,w’, the Schwartz kernel of Np(P, \) is then

KA\(R  u,w,0') = (2m) "1 / / el W) N (R w, R'A €,n) dEdn - |du dw’].
RxRn—1

For bounded A € C, this is the Schwartz kernel of an element of W{(D), with analytic
dependence on A; this follows from the aforementioned symbolic bounds on a and the fact
that R’ lies in a bounded subset of C.

For A = —iu + Ao with +£Xg > 1, we study K)(R',u,w,w’) as a distribution on the
semiclassical cone single space D.j, where h := \)\0|*1 is the semiclassical parameter. We
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first work away from the semiclassical face sf C D.p, and use the coordinates h = £y 1
R = R'/h, u,w,w’, in which K takes the form

(h, R’ u,w,w’)
— (2m) = // e (WR w4+ R — ihR p, €, n) d¢ dn - |dudw'|.
RxRn—1

This verifies the membership in \I/i}iO’O’S(M ) of (2.41) in this coordinate chart. Away from
cf C D.j, on the other hand, we use the coordinates

1 u w—w

h= >0, R == PR RP2
R 2 , U 7 w, w 4 S )
on Dgy, in which K\ = K_;, 1), is given by
(h, R 1,0, @)

— (2m) (1) //R . eiﬂ'ﬁfeia'ﬁ”a(}%’,w,iﬁ_l — iR, €,n)dédn - A" da do|
X n

—n D [ e v L) dEdi - dadal,
RxRn—1
(2.46)
where o 3 o
a(R,w, b, €)= a(R,w, £h~" — iR, '),
Note that h is a defining function sf C D¢;. The symbolic estimates for a imply
0305 (hop)*Opofal < (L+ A + A HE D) < 1RI7*(E )"

Therefore, (2.46) is the Schwartz kernel of an element of %”%*(M). The proof is complete.
U

Using edge-b-ps.d.o.s, we can define, as usual, the full scale of weighted edge-b-Sobolev
spaces
HEP ™ (M) = pp? p Hey (M),
with underlying L?-space defined with respect to any fixed weighted positive edge-b-density.

Proposition 2.35 (Edge-b-Sobolev spaces and the Mellin transform). Fiz a collar neigh-
borhood [0,1),, x D C M, and let x € A®9([0,1),, x D) be a bounded conormal cutoff
with pp < 1 on supp x. Write the Mellin transform of u = u(pp,q), g € D, with support in

pp < 1, as u(\, q) fo pDu D, q) pD Fiz a weighted positive b-density v, on D, and fix

the weighted edge-b-density | p”DD vp| on M, use vy, also as the density for defining ch-Sobolev
spaces on D. Let s,ap,ar € R. Then

HXUHHS DR (1) Z/ Ixu(No — iap, — )Hili’aR(D) dXg
(2.47)
+A[1 - lIxu(Ao — iap, — )HHMR aRs (p) dXo.

S lAol™

That is, there exists C' > 1 so that for all u, the left hand side is bounded by C times the
right hand side, and vice versa.
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Proof. 1t suffices to consider the case ap = ag = 0. For s = 0, the equivalence (2.47)
follows from Plancherel’s Theorem. For s > 0, we argue analogously to (2.8)—(2.9) and pick
an operator A € W2, (M) which has an elliptic principal symbol and which near supp x is
dilation-invariant. Then

eullzs , ar /leu 2oy + IND(A, VXA, =) |72y AN

Split the integral into three pieces according to R = (—oo0, —1] U [-1,1] U [1,00). For
A € [—1,1], note that N;(A \) € (D) is elliptic, and for A = £h~!, the operator family
(0,1)  h — Np(A,£h~1) is an elliptic element of \I/SOOS(D). Thus, (2.47) follows from
the definition of b- and ch-Sobolev norms. For s < 0, use duality. O

2.7.3. Inversion of the D-normal operator. While we will not give a full elliptic parametrix
construction here, we do encounter elements of the large edge-b-calculus in the parametrix
construction for fully elliptic 3b-operators:

Definition 2.36 (Large edge-b-calculus). The large edge-b-calculus is defined as the sum

of the algebra W, (M) and the spaces

—00,(Eby, &ty Erby, Elbe Ette Erbe)
Yo (M)

of operators whose Schwartz kernels are polyhomogeneous on Mezb, valued in w}‘%e’bQM ,

and with index set £ C C x Ny at the boundary hypersurface H C M7 2. We furthermore
define the large extended edge-b-calculus as the sum of ¥, (M) and the spaces

—00,(E1by, &ty 1Erby, E1be »Ette Erbe Eiy)
#
Vens (M)

of operators with polyhomogeneous Schwartz kernels on M 2b e valued in 7} ebOM, with
index set &y at the lift of the boundary hypersurface H C M 2b to M? bt and with index

set & at ffy.
We note that pullback along the blow-down map M, e2bji - M 3b shows that

—00,(E1by, &y, Exby, b 1M e xErbe ) —00,(E1by, sy, Erby, E€1be sE M 6 1Erbe 1E1be HErbe )
Yeb (M) \IJe,b7ﬁ (M). (2.48)

One can define the Mellin-transformed normal operator family of elements of the large
(extended) calculus provided Re(&p, + &p,,) > 0, cf. Remark 2.6.

Theorem 2.37 (Inverse of the D-normal operator). Let P € W7, (M) be elliptic. Fiz a
positive b-density on D, and a positive (b,sc)-density on tf C De. Let ap,ar € R, and
consider the conditions

(1) ar ¢ ReSpec,(Nyp(P)),
(2) for all X € C with Im A\ = —ap, the operator

Np(P,\): HE “®(D) — HS ~*°®(D) (2.49)

is invertible for some (hence all) s € R;
(3) the tf-normal operator

NE o (P): ngij’ (tf) — Hg CSORTS () (2.50)

(see Proposition 2.34) is invertible for some (hence all) s',r" € R.
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(We say that P is fully elliptic at the weights ap, ar if all three conditions are satisfied.)
Only assuming conditions (1) and (3), the operator Np(P,\), as a map (2.49), is an
analytic family of Fredholm operators which is invertible outside discrete set; and putting

Specy, (Np(P)) := {(z,k): ]/V;(P, A)~! has a pole of order > k+1 at A= —iz}, (2.51)

we have |Re z| — oo along any sequence (z,k) € Specy,(Np(P)) with |z] — co. Assuming
now in addition that condition (2) is valid (thus P is fully elliptic), define, in the notation
of Definition 2.5, the index sets

&5 = EX(Np(P),ap), &% :=EF(Nop(P), ar).
Define 2O 4 terms of E& via Definition 2.8, and Y in terms of 2O 45 in (2.12)
R R s R R : :
Then there exists an operator

Q € U= (M) 4+ w20 E3 N0 £0 & T NoDER 1.8 1) )
e,b e,b

so that Np(Q, A) = ]/V;(P, N1 for all X € C with X ¢ —ispec, (Np(P)).

(2.52)

The conclusion about @ can equivalently be phrased as the statement that Np(Q) is the
inverse of Np(P) as an operator between weighted edge-b-Sobolev spaces

! ap,ap—i s’ —s.ap,am— %
Np(P): H;]; PORTE(ND) — H, PR (PND)

for any s" € R. Here, He, is defined via testing by dilation-invariant edge-b-ps.d.o.s, and
with respect to a positive dilation-invariant edge-b-density. (The choice of density causes
the shift by %; if one were to use a b-density instead, the weight at R would be ar. Cf.
[Hin21a, Corollary 3.3].)

Remark 2.38 (Weights at R). Since the Fredholm index of NE(P, A) in (2.49) jumps when
the weight ag crosses an element of ReSpecy,(Ngp(P)) (by the relative index formula
[Mel93, §6.2]), the interval of weights ar for which (2.49) is invertible is an open (possibly
empty) interval; the invertibility of the operator (2.49) is then independent of the particular
choice of ag inside this interval. Thus, Spec, (Np(P)), when it is defined, is independent
of aR.

Proof of Theorem 2.37. Assume conditions (1) and (3). We begin by analyzing NE(P, A)
in the high frequency regime. Thus, we consider

N .= Np(P,—ip£h™")
for p € [-C,C]. But leituh € \I/i’hf)’o’s(D) has an elliptic principal symbol, and its tf-
normal operator (2.50) is invertible. Therefore, Theorem 2.23 shows that there exists
ho = ho(C) > 0 so that N%#h is invertible for h € (0, ho) and for all u € [-C, C], and the
inverse satisfies
TE -1 —5,0,0,~ —o0,(& £ €@ No)
((ND,u,h) >he(0,hg) € W P07 (D) 4 W SR TR TR (D),

with smooth dependence on p. Since N;(P, A) € UP(D) is fully elliptic with weight ax, it

is an analytic family of Fredholm operators between the spaces (2.49) by Theorem 2.9. The
analytic Fredholm theorem thus implies the discreteness of Spec, (Np(P)); and the high
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frequency analysis shows that for all C' € R the number of elements (z, k) € Specy,(Np(P))
with |Re z| < C is finite.

Theorem 2.9, together with Proposition 2.34(2), give the description

_ o (50 0 g=(0)
Np(P,A) € 0p5(D) + @, = Er 5 () (2.53)

for all A € C with (iA,0) ¢ Specy(Np(P)). Both summands can be chosen to depend
meromorphically on A. Indeed, denote by @y € \I/;g(M ) a symbolic parametrix of P, so
PQo=1—Ro, RoeWV (M).
Passing to D-normal operators, this gives
Np(P)Np(Qo) = I — Np(Ro). (2.54)

The construction of the parametrices Qr,, Qg for N;(P, A) (in the notation of Theorem 2.9)
can be performed with holomorphic dependence on A € C, and the formula (2.15) then

shows that N;(P, A)~! is a meromorphic family of operators of class (2.53).
e Construction of QQ; non-sharp control. From now on, we require the validity of all three

conditions (1)—(3). We first present a simple but slightly lossy way to solve away the error
term in (2.54). Passing to Mellin-transformed normal operator families, define

Qi1(\) == Np(P,\)'Np(Ro,), AeC.

. . . . —00,(5©) £l0) =0y .
In view of (2.53), this is a meromorphic family of elements of ¥, """ "R "® /(D) with
the following properties: it has no poles for Im A\ = —ap by condition (2); its divisor (poles,
multiplied with ¢, with multiplicity) is contained in Specy,(Np(P)); for fixed C' > 0, it has
no poles with 4y = —Im A € [~C, C] and |Re \| > hy' for sufficiently small hg > 0; and for
such u, hg, we have

. _ _ _ oo (£ £(0) =)
(Qi(—in+h 1))h€(0,h0) € U o007(D) + \Ifchoo( ROTROTR 0)(2)).
The inverse Mellin transform of the Schwartz kernel of @\1()\) on the line Im A = —ap can

then be evaluated on the b-front face ff}, 4 in the extended edge-b-double space M, ez,b,w noting
that a neighborhood of (ff; Uff4) Nff}, 4 is diffeomorphic to the product of [0, c0l,, x (D)3
and [[0,00]s, % [0,1)R,;{(1,0)}] where w, = %, sp = %, and R, = R+ R’ in local
coordinates as in the proof of Proposition 2.34, with the Mellin transform taken in the
variable sp. Since the Mellin transform is the same as the Fourier transform in log s, we
can apply Proposition 2.28 and conclude that @\1()\) is the Mellin-transformed D-normal
operator of an element

0 € \I’;g?ﬁ,(gg,m,gg,57;7“”,NOU(5§§>+1),5;(°>+1,5§§)+1) (
The shifts by 1 in the index sets at ffo 4, rbey, and ff arise from passing to right b-densities
to right edge-b-densities, cf. the factor R'~! in (2.43).

M). (2.55)

Since ]/V;(Qo +Q1, ) is a right inverse of J/V;(P, A), and since one can similarly construct
a left inverse (which then necessarily agrees with the right inverse), we have succeeded in
proving Theorem 2.37 with a slightly less precise description of @ than in (2.52). (This
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description is sufficient for the application of Theorem 2.37 to the elliptic theory of 3b-
operators in §6.2; therefore, the reader not interested in the sharp edge-b-result here may
skip the remainder of the proof.)

e More careful construction. Consider again (2.54). Rather than passing to the Mellin

transform and inverting N;(P, A) directly, we first pass to the normal operator Np ((P) at
ffo N ffy,. This operator can be inverted by adapting [Hin2la, Proposition 3.1] to the edge
setting (which requires only notational changes); the key ingredient is the invertibility of
the reduced normal operator, which in the present setting is precisely condition (2.50) (for
both choices of signs), cf. the discussion following (2.36).

Using the inverse of Np (P), one can now solve away Np(Ry) to leading order at ffo Nffy,;
while one can ensure that the remaining error vanishes rapidly at lby, and rby, it has
nontrivial index sets 5%, resp. £ + 1 at Ibe, resp. rbe. (The shift by n — 1 of the index
set at the right boundary in [Hin2la, Proposition 3.1} is a shift by 2 — 1 = 1 here, as n
in the reference, generalized to the edge setting, is the codimension, in the manifold M,
of the fibers of the boundary fibration—which in the present setting is 2.) The error at
Ibe (where R = 0) can be solved away using a b-normal operator argument as in [Hin21a,
Proof of Theorem 1.5]; the relevant normal operator is thus Npp(P). Solving away the
remaining error (rapidly vanishing at ff, N (Ibe U 1by U rby,), vanishing simply at ffy, N ffe)
using an asymptotic Neumann series yields an error which vanishes rapidly at all boundary
hypersurfaces of ff}, except for rbe. This is completely analogous to [Hin21a, Theorem 1.5];
applying the resulting parametrix to Np(Ryp), we conclude the existence of an operator

—00,(0,No, 0,65 &) £ 11
Q2 € w, MR IR IR D

with the property that

—00,(0.No,0,0.0,65" P +1
P(Qo+ Q2) = I — Ry, Np(R2) € Np (‘I’e,b (0o R )(M));

here £ = £ PO T (£ 4 1) and £ 1= Ny T (600 1 £ 1 1) (which,

for good measure, contain the sets & and Sg in the notation of the reference)

Only now do we pass to Mellin-transformed D-normal operators; this gives
Np(P,\)Np(Qo + @1, A) = I = Np(Ry, A). (2.56)
In view of the expression (2.43) for a positive right edge-b-density, the Schwartz kernel
of Np(R1, ) can be written as Ry y(R,w, R',w’) dlft/ dw’| where R; ) is analytic in A, and

uniformly (for bounded Im A\) Schwartz in Re A\ with values in the space \II*OO’(Q)’EE(S))(D)
of fully residual operators.

Define then

Q3(A) := Np(P,A)""Np(Ry, A).
Using (2.53) and the composition property (2.10), this is a meromorphic family of elements

of \II*OO’@;M)’&_Z’M))(D), for some index sets E%’(Ll) which we shall not write out explicitly,
with the following properties: it has no poles for Im A = —ap; its divisor (poles, multiplied
with 4, with multiplicity) is contained in Spec, (Np(P)); for fixed C' > 0, it has no poles
with g = —Im A € [~C,C] and |Re\| > hy! for sufficiently small hg > 0; and for such
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i, ho, using the composition property (2.25), we have
-~ . _ : _ +,(4) ¢—,(4)
(Qs(=in £ h™) 0.0y € C([0:ho)ps W& 5 7)(D)).
Therefore, the inverse Mellin transform of the Schwartz kernel of @;()\) on the line Im A =

—ap is an element of

PUE
phg

0,00l x D x D:rPOD) @ | %2
b R

Sb
where 7g: [0,00] X D x D — D is the right projection. This is, a fortiori, the D-normal
operator of an element

—o0, 5+7N 7877€+»(4>7€+7(4)+€*»(4>_,'_178*7(4)_;'_1
QgE\I/eEO(D 0,¢preR R R R )(M)

The right inverse NE(QO + Q2+ Q3,\) of NB(P, A) is necessarily equal to ]/V;(Q, A) con-
structed before, and therefore also Qo + Q2 + @3 = @ (as these operators are defined as

inverse Mellin transforms along the same contour Im A = —ap). Combining the thus es-
tablished fact that @ lies in the non-extended edge-b-calculus with the index set bounds
from (2.55) finishes the proof. O

Remark 2.39 (Parametrices). The construction of precise parametrices of general (i.e. not
dilation-invariant) fully elliptic edge-b-pseudodifferential operators requires, in addition to
Theorem 2.37, the inversion of the normal operator at R, which is of edge type; see [Maz91,
MV14] (and [Alb08, §5], [Hin2la]) for details on edge (or, as a special case, uniformly
degenerate) normal operators and their inverses. As we shall not need edge-b-parametrices
in this general setting, we do not work out the details here.

3. GEOMETRIC SETUP AND BASICS OF 3B-ANALYSIS

We are now set to turn to the main objective of the present paper: the detailed geometric
and analytic description of vector fields and operators with approximate translation- and
dilation-invariances.

Let My denote a smooth compact connected n-dimensional manifold whose boundary
OM) is a non-empty embedded hypersurface. Fix a point p € 0Mp.

Definition 3.1 (3b-single space). The 3b-single space (associated with My and p € I M)
is defined as the real blow-up
M = [My; {p}].

We denote by D C M (called dilation face) the lift of 9My and by T C M (called translation
face) the lift of {p} (i.e. the front face of the blow-up); we denote by pp,pr € C>(M)
defining functions of D, T C M. The blow-down map is denoted : M — My. Finally,
po € C*°(Mpy) denotes a boundary defining function, and thus B*py € C>*°(M) is a total
boundary defining function on M.

See Figure 3.1.

Remark 3.2 (Several boundary points). We shall occasionally work on 3b-single spaces
defined via the blow-up of several boundary points. We leave it to the reader to spell out
all details of this generalization. In this section, this requires only notational changes, and
the definitions of (large) 3b-pseudodifferential calculi in subsequent sections require only
minor adaptations.
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FIGURE 3.1. The 3b-single space M as a blow-up of Mj.

3.1. Vector fields, differential operators, bundles. We proceed define the class of
vector fields on the 3b-single space M from Definition 3.1 which will be the center of
attention in this work:

Definition 3.3 (3b-vector fields). The space Vs, (M) of 3b-vector fields is the span over
C>°(M) of all smooth vector fields V' € V(M) which are of the form

V=pp'BW, W € Vie(Mo). (3.1)

(Thus, in the notation of [Vas00], Vi, (M) = pp'Visc(M), where the space Vssc(M) of
3-body-scattering vector fields is the C°°(M )-span of *Vs.(Mp).)

Since the quotient of any two defining functions of D C M is a smooth function on M,
this definition of Vs, (M) is independent of the choice of pp.

The first part of the following Lemma clarifies the formula (3.1); the remaining parts
elucidate the structure of Vs,(Mp). By an abuse of notation, we denote by po0,, € Vi,(Mo)
a b-normal vector field on Mj; this vector field is well-defined if one chooses a collar neigh-
borhood of My, and as a b-vector field it is independent modulo pgVy(Mj) of the choice
of collar neighborhood.

Lemma 3.4 (Basic properties of Vs (M)). (1) Let W € Vse(My). Then pp'W extends
from the interior M5 = M?° to a smooth b-vector field on M.

(2) The space Vs,(M) is a Lie subalgebra of Vo (M), and pmVe (M) C Vap(M).

(3) Let V € V3,(M). Then V is approximately dilation-invariant at D in the sense
that [B*po0p,, V] € ppVan(M) vanishes at D as a 3b-vector field. Furthermore, V
is approzimately translation-invariant (with respect to pgl) at T in the sense that
[B*p20,y, V] € prVsn(M) vanishes at T (in fact, this lies in prppVsn(M)).

(4) Let V e Vo (M). Then V € Vs (M) if and only if V(B*po) € (B*po)p7C>°(M).

Proof. Since W € Vyo(Mp) = poVp(Mp) vanishes (as a smooth vector field) at the point
p, its lift B*W to M lies in Vy(M); but as a b-vector field, the restriction of B*W to
M\ T = M\ {p} vanishes at the boundary, and therefore B*W € ppWV,(M). This
shows (1).

For part (2), suppose V; = pBIB*Wj with W € Vs.(Mp) for j = 1,2, then
Vi, Va] = pi2 B W1, Wal + pp' [B* Wi, ' 1B* W2 — pp' [B*Wo, pp' 1B Wi

But [W1,Wa] € poVsc(Mp), so the first term on the right lies in p51p7V3SC(M). In the
second and third terms, we note that the commutator of 3*W; € ppVp (M) with p51 lies
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in C>°(M). Thus [Vi, V2] € V3,(M). More generally, if f1, fo € C*°(M), then also

1V1, Vo] = fife[Vi, Vo] + fi(Vif2)Va — fo(Vafi) V1 € Vs (M)
since Vs (M) is, by definition, a C*°(M)-module. This proves that Vs, (M) is a Lie alge-
bra. Lastly, the claim p7V, (M) C Vs, (M) is easily verified in local coordinates (see the
discussion after equation (3.6) below).
To prove part (3), consider f € C*(M) and W € Vi.(Mp). Since po0,, vanishes as a
smooth vector field at p and indeed on OMy, its lift to M satisfies B*po0p, € Vp(M) N
ppV(M). Therefore,

[B* 0000, £ B W] = 000y, [P B*W + f1B poDpg, o' B WV .
Since [B*po0py, f] € ppC>°(M), the first summand on the right lies in V3. (M) = ppVap(M).
The commutator in the second summand can be expanded into the sum of the vector field
[B* 000y pp)|B*W (which lies in pp 1 Vaee(M) = Va(M)) and pg! B[00, W] (which due
to [,OoapO,W] € [pﬂapo’pOVb(MO)] - pOVb(MO) = VSC(MO) lies in p{)lV:gSC(M) = V3b(M)
as well). But since p'B*W € V,(M), we also have f[B*pod,,, pp B*W] € ppVu(M) C
p7 ppVan(M) (using part (2)). This gives, for V = fpp' B*W € Vs,(M), the membership

[B*P00p, V] € Van (M) N p7 ppVsn (M) = pp Vb (M).
This proves the approximate dilation-invariance.

The approximate translation-invariance follows from the calculation

[B*05800, V] = (B*p0)[B*208pg, V] = [V, B*p0]p08po -
Indeed, the first summand lies in pr%ng(M ) by what we have already shown. The second
summand, for V = fpglﬁ*W with W € Vs.(Mp), is equal to

—fpp B*[W, po] P00y

but since [W, po] € pdC®(M), this lies in pp' (B*po)C=(M)B*p20, C (B*po)Van(M) =
p7ppV3L(M). The proof of part (3) is complete.

Finally, we turn to part (4). In one direction, we observe that for V = pBIB*W,
W € Vse(My), we have V(B*po) = pp'B*(Wpo), which due to Wpy € p2C>(M) lies in
p7(B*po)C>°(M) indeed. The converse is easily checked in local coordinates; see the dis-
cussion following (3.7b) below. O

We remark that the commutator of two 3b-vector fields typically does not vanish, as
a 3b-vector field, at D or 7. This foreshadows the fact that 3b-vector fields, or more
generally (pseudo)differential operators, have two normal operators capturing their leading
order behavior at D, resp. T.

Remark 3.5 (3b vs. b and cusp). Lemma 3.4 implies that prV,(M) C Vsp(M) C V,(M),
which directly shows that Vs, (M) and V(M) agree away from T (i.e. xVap(M) = xVp(M)
for any x € C°°(M) which vanishes in a neighborhood of 7). On the other hand, in M \ D,
a 3b-vector field is a cusp vector field [MM99] with respect to the defining function $*pg of
T°. The terminology ‘3-body’ (rather than ‘cusp’) adopted in the present paper refers to
the fact that f*pg is a total boundary defining function of M, not the defining function of
the single boundary hypersurface 7 C M. (This is related to the fact that V(M) is not
of ‘product type’ near 7 ND, i.e. the space of restrictions of elements of Vs1,(M) to a collar
product neighborhood of 7 ND C M is not spanned by the horizontal lifts of Lie algebras
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of vector fields on 7 and D. Cf. the local frame (3.7b) below.) Note that any two boundary
defining functions of My lift to total boundary defining functions of M which over T are
constant multiples of each other; this is directly related to the independence of the space
of cusp vector fields on the choice of boundary defining functions related in this manner.

Let us now consider the above structures in local coordinates. Consider a neighborhood
0,1)r x BYY,  Byl={XeR"':|X| <1}, (3.2)

of the point p inside of My, with dMy, resp. p given by T' = 0, resp. (T, X) = (0,0). The
space Vsc(Mp) is then spanned by the vector fields 7207, Tdx; (j =1,...,n—1). In terms
of the coordinates

t:=T"1 z:== (3.3)

in (0,1)7 x B’;(_l, these vector fields are equal to —0; — $0;, 0,5, and therefore (noting
that § = X) elements of Vs.(Mp) can equivalently be written as linear combinations of 9y,

i with coefficients in C>([0,1)7 x B% ). Note also that py = T is a (local) boundary

X
defining function. In particular,

poapo = T@T = —(t@t + x@x)

is the scaling vector field up to an overall sign; its lift to the 3b-single space M is, at the
lift D of the original boundary, still the scaling vector field. This explains the terminology
in the first half of Lemma 3.4(3).

On the 3b-single space M, we may continue to use the coordinates (¢, z) away from T UD.
Moreover, the coordinates T'=t~! € [0,1) and = € R"~! cover a neighborhood of 7° (and
indeed they cover the intersection of a neighborhood of 7 with M \ D). Since z is an affine
function on 7°, the function (z)~! € C>°(M) is a defining function of D, and we conclude
that Vs, (M) is spanned over C*°(M) by the vector fields

()0, (x)0y (j=1,...,n—1). (3.4)
For bounded z, i.e. in | X| < T, we can equivalently use
T?0r, TOy; (j=1,...,n—1).
As an aside, note that
p0p = T*0r = =0, — S0, = —0; mod py Vi (M);
thus the second half of Lemma 3.4(3) implies that near 7° we have [0;, V] € t~1V3, (M) for

V € V3, (M), explaining the terminology ‘translation-invariance’.

In |z| > 1, we can pass in (3.4) to polar coordinates = = rw, r > 1, w € S*2, and use as
a spanning set the vector fields (in local coordinates w = (w',...,w""2) on S"~2)

Oy, 10, O, (j=1,...,n—2) (t>1, r<t); (3.5)
these were mentioned already in §1.
Returning to the coordinates (7', X') on M, and using polar coordinates X = Rw, we can,

in |X| > 7T (ie. [z] 2 1) where (F)~1 ~ % is a local defining function of D, equivalently

use as a spanning set of V(M) the vector fields
\X\T@T, ’X’(?XJ or RT@T, R@R, 8wj (] = 1, ey — 2) (36)
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(We remark that in this region, V(M) is spanned over C*°(M) by T0r, ROR, 0,,;; multi-
plying this vector fields by R thus gives smooth 3b-vector fields. Since R is a local defining
function of 7, this implies p7V, (M) C Vsp(M). Note here that upon replacing X by
X — T for any fixed v € R"™!, the regions | X| > ¢T for various values of v but fixed ¢ > 0
cover a full neighborhood of T C M.)

Finally, we record a spanning set of V3,(M) expressed in the local coordinates
T
pr =R, pp= 7w esn? (3.7a)
near DN T the second set of vector fields (3.6) takes the form

prpapDa pTapT - p’Dap‘Dv awj (.] = 1’ sy 2) (37b)
This description of Vs, (M) allows for an easy proof of Lemma 3.4(4). Indeed, write an
arbitrary b-vector field as
n—2

V= ap’DapD + b(pTapT - ppapp) + Z Cjawj
j=1
where a,b, ¢; are smooth functions of pp > 0, p7 > 0, and w € S"=2. Since for pg = T we
have 3*po = p7pp, the condition V (B*pg) € (B*po)p7C>(M) is equivalent to

aprpp € prppC™(M),

so a € prC>(M), and thus to the membership V' € Vs,(M) in view of (3.7b). (Working
with X — oT for any fixed v € R*!, the regions R > ¢T for various values of v but fixed
¢ > 0 cover a full neighborhood of T C M, and hence this argument is sufficient for proving
Lemma 3.4(4). One can alternatively work directly with the coordinates 7',z near 7°.)

The space Vs (M) is in a natural manner the space of smooth sections of a vector bundle:

Definition 3.6 (3b-tangent bundle and related bundles). The 3b-tangent bundle 3°T M —
M is the smooth rank n vector bundle with local frames given by (3.4), (3.5), (3.6), (3.7b)
in the respective coordinates. Invariantly, for ¢ € M, the fiber 3quM is the quotient
V(M) /ZyVan (M) where Z, C C>°(M) is the ideal of functions vanishing at ¢. The 3b-
cotangent bundle 3PT*M — M is the dual bundle of 3T M. By 3*T*M — M we denote the
radially compactified 3b-cotangent bundle, and 3P S* M is its boundary at fiber infinity. For
a € R, the 3b-a-density bundle 3PQ*M — M is the bundle of a-densities corresponding to
3BT M. For a = 1, we write 3PQM = 3"QI M for the 3b-density bundle.

In local coordinates (¢,x) as in (3.4), an example of a smooth positive 3b-density is
(x)™dtdat - - dz™ Y. (3.8)

Definition 3.7 (3b-differential operators). For m € N, we define Diff5} (M) as the space of

finite sums of up to m-fold compositions of 3b-vector fields; for m = 0 we set Diff3, (M) =

C*>°(M), regarded as multiplication operators. For weights ap, a7 € R, we furthermore set
pp o T DI, (M) = {pp o7 P: P € Difi(M)}.

If B9y — My and Fy — My are smooth vector bundles over My and E = 3*Ey, F' = B*Fy

denote their pullbacks to M, then Diff5} (M; E, F) and pp*® p7*7 Diff3} (M; E, F') denote

the corresponding spaces of 3b-differential operators acting between sections of £ and F.



64 PETER HINTZ

The union of all spaces of weighted 3b-differential operators is an algebra under composi-
tion, with the differential order m and the weights ap, cer behaving additively under com-
position; this uses that for V' € Vs, (M) C Vi,(M) we have p3P p57 [V, pp P p727] € C®(M).
We also note that the fact that Vs, (M) is a Lie algebra implies that elements P € Diff%; (M)
have a well-defined principal symbol

3bom (M) e PMET M) ¢ ¢ (3PT* M), (3.9)
i.e. it is a homogeneous polynomial of degree m in the fibers of 3PT*M. The principal

symbol captures P modulo operators of one order lower (in the differential sense); that is,
we have a short exact sequence

sorm—1 sorm bgm [m] (3br=
0 — Diff5; " (M) — Diff3} (M) —— P"™(*°T"M) — 0.

In §3.2, we discuss the leading order behavior of 3b-operators in the sense of decay at T,
and in §3.3 the leading order behavior at D. In particular, the approximate invariances at
T and D recorded in Lemma 3.4(3) are related to the existence of ezactly invariant normal
operators.

We end this section by discussing the relationship of 3°T'M and PTT, PTD. Restriction
to T gives a restriction map Vs, (M) — V,(7T); this map is surjective since in the affine
coordinates x € R"! on T°, the space V,,(T) is spanned over C*(T) by (2)8,; € Van(M),
see (3.4). Similarly, the restriction map Vs, (M) — V(D) to D is surjective, as follows from
the description (3.7b) of 3b-vector fields. Thus, we get corresponding surjective maps of
tangent bundles, and by duality inclusions of cotangent bundles,

STEM - PTT,  PTT < 3P TrM,

3.10
TP M —PTD,  PT*D < 3P T M. (3.10)

3.2. Model at the translation face 7. Due to the close relationship between 3b-vector
fields and cusp vector fields near 7°, the normal operator at 7T is closely related to the cusp
normal operator; thus, we show here how to adapt some of the arguments of [MM99, §4]
to the present 3b-setting. As a first step, we prove:

Proposition 3.8 (Existence of the 0-energy operator). Let P € Diff5; (M). Then the
operator

N7(P,0): C¥(T) = C¥(T),  C®(T) 3 uws (Pa)lr,
where @ € C°(M) satisfies |7 = u, is well-defined (i.e. independent of the choice of ).
Moreover, N;(P,O) € Diffp(T), and the map Diff5; (M) > P +— N;(P,O) € Diffp!(T) s
surjective.

Proof. If 4|7 = 0, then using only that P € Diff'(M) we also have (Pu)|r = 0; this
proves that N7 (P,0) is well-defined. For the second part, we work in the coordinates (¢, x)
from (3.4); thus

P= 3" ajal{@) Do ((#)Ds)°, (3.11)
Jtlel<m
where aj, € C®°(M). Since z: T° — R"! is an affine coordinate system, the O-energy
operator

Nr(P,0) = > (agal7)((@) D) (3.12)

laj<m
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is indeed an m-th order b-differential operator, as claimed. Since any b-differential operator
on 7 can be written as on the right hand side in (3.12) for suitable coefficients agq|7 €

C(T), the surjectivity of P — N;(P, 0) onto Diff*(T) follows from the surjectivity of the
restriction map C>° (M) — C*°(T). O

Definition 3.9 (07-normal operator). For P € Diffs} (M), we denote by Napr(P) €
Diffgfl(*N@’T) the b-normal operator of N7(P,0) at 97 .

In order to capture P as a 3b-operator to leading order at T, we also need to take the
Dy-terms of (3.11) into account.

Proposition 3.10 (Existence of the spectral family). Fiz a boundary defining function
po € C®°(My). Let P € Diff§ (M) and o € R. Then the operator'?

Nr(P.o): C(T) = C(T),  CX(T) 3 uws (/P 0p(eio/Fma))|r,

where @ € C*°(M) satisfies |7 = u, is well- deﬁned Moreover, NT(P o) € pp"DHtL(T);
and for any fized o # 0, the map Diff5} (M) 5 P — NT(P, o) € Dftl™(T) = pp " Diff 32 (T)
1S surjective.

Proof. In terms of the local coordinate description (3.11), and with py = ¢t~!, we have

ei7/B*po pe—io/B*po _ Z ajo((x)(Dy — o)) ((x)Dq)",

Jt+lal<m
and therefore - ‘
Nr(Po) = > (ajalr)(=(z)o) ((x)Ds)". (3.13)
Jtlal<m

Since (z)~! € C*°(T) is smooth (and vanishes simply at 97, this implies that the rescaling
(x)"™ Ny (P, o) is indeed a smooth coefficient scattering operator on 7.

Conversely, when o # 0, one can rewrite any operator
pp"DIHfZN(T) 5 B=(x)™ > bgDi, b€ C™(T),
|8]<m

in the form

B= " bsla)"({z) (z)D,)"

|B|<m

= > b > (@™ P fap((@)Dy)” (fag € C™(T))
|B]I<m  a<p

m—|a| '

= (Z > fagbmxw)«xwx)a

im0 e,

3" bjal—()o) ((2)D,)",

JHlal<m

13The choice of signs in the exponents is a matter of convention; the present s1gns are chosen for compat-
ibility with the convention that the inverse Fourier transform of a function f (o) f e ' f(o)do.
This convention is unusual in Fourier analysis, but it is rather standard in the theory of wave equatlons
where t is a time coordinate.
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where bj, = D B>a, j+|8l=m fapbs(—c)™7 € C(T). Since the restriction map C*°(M) —
C>(T) is surjective, this proves the surjectivity of N\T(—, o) for o # 0 in view of (3.13). O

Definition 3.11 (Spectral family). Fix a boundary defining function pg € C*°(Mj). Then
the spectral family of P € Diff5} (M) is the family of operators

N\T(P, o), o €R,
defined by Proposition 3.10 for o # 0, and by Proposition 3.8 for o = 0.
We proceed to relate the principal symbols of elements of the spectral family to the
principal symbol of P itself. First, we consider the relationship between phase spaces. We

will use the fact that a choice of boundary defining function py € C*°(M)) fixes a bundle
isomorphism

PTreM = TT° @ *T}[0,1) -
(In local coordinates as in (3.4), and with ¢ = py*, this map takes ()9, +— (0, (z)0;) =

(0, —(x)p20,,) and (z)8,; — ((2)0,4,0).) Identifying *Toy [0,1) 2 R, via o% =—odt—
0
o, the adjoint is the isomorphism
T*T° &R, — 3T M,  (da!,0) — —odt +da’. (3.14)
Lemma 3.12 (Phase space identifications). (1) (Zero energy.) The adjoint of the sur-

jective bundle map 3*T7M — PTT (given by restriction of vector fields) is the injec-
tive map vo: PT*T — 3bT}M , with range equal to the annihilator ann(**TrM —
PTT) (see also (3.10)).

(2) (Nonzero energies.) For a fixed defining function pg € C*°(M)), and for oy # 0, the
restriction of the map (3.14) to T*7° x {og} extends by continuity to a fiber-wise
affine map

Loo: SST*T — pp' 3P TEM (3.15)
which is a diffeomorphism onto its image. (Here p51 3'°T7’"—M — 7T is the vector
bundle for which the space of smooth sections is p5'C>(7;3PT5M).)

In local coordinates, we can use the duals ppdt, ppdx (where pp = (z)7!) of the
local frame (3.4) of V3,(M) and thus introduce smooth fiber-linear coordinates os, € R,
&3 € R" ! on 3PT* M near T by writing the canonical 1-form on 3PT*M as

—ogppp dt + &3 - pp dz.

Then Lemma 3.12(1) is the isomorphism PT*7 2 {o3, = 0} C 3"+ M; using as fiber-linear
coordinates on PT*T the coordinates &, € R"~! defined by writing the canonical 1-form as
&p - pp da, this isomorphism is given fiber-wise by &, — (0, &p).

Using fiber-linear coordinates &. € R™ ! defined by writing the canonical 1-form as
&se - dx (so & = p51§SC), the map (3.15) is given fiber-wise by

Loyt Esc (p{)lao, p51§SC). (3.16)

The factor pBl in the first component arises from dt = p{)l - pp dt.

Proof of Lemma 3.12. Part (1) is elementary linear algebra. Part (2) is a consequence
of (3.16). O
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FIGURE 3.2. The ranges of the maps ¢y (on the left) and ¢, where o > 0 (on
the right) inside of the radial compactification of 3*T* M in the notation of
Lemma 3.12. Only the coordinates pp, o3p, and &3;, are indicated.

See Figure 3.2 for an illustration.

Proposition 3.13 (Relationships between principal symbols). Fiz a boundary defining
function py € C*°(My). For P € Diff5y (M), the principal symbol ofo\r(P, o) (as an element
of PlI(PT*T) for ¢ = 0, and as an element of mePm(SCT*T)/p{D(mfl)Pm_l(SCT*T) for
o #0) is equal to the pullback of 3°c™(P) along the map 1, from Lemma 3.12.

Proof. This follows from an inspection of (3.13). Indeed, for ¢ = 0 the conclusion is
immediate. For o # 0 on the other hand, terms in (3.13) with j + || < m — 1 are
subprincipal in p5"Diff(.(7), and therefore the scattering principal symbol of Ny(P,0) is
given by
Y (agalT) (@)oY ((2)6s),

jtlal=m
which indeed equals

Po(P) = Y aja(—om)ES,

jtlal=m

at (o3p, &) = ()0, (2)€s) (cf. (3.16)). O

We remark that the geometric reason behind the fact that we can characterize the scatter-
ing symbol of N;(P, o), 0 # 0 at base infinity in the manner described in Proposition 3.13
is that the image of ‘T 7T under (,, or more precisely under the continuous extension of
L to a map between radially compactified bundles, is contained in fiber infinity 3bS§TM
(which is contained in the locus of the 3b-principal symbol of P).

Regarding N;(P, o) as a family of operators, we first consider the uniform behavior near
low frequencies:

Proposition 3.14 (The spectral family as a scattering-b-transition operator for low fre-
quencies). Fiz a boundary defining function py € C>°(My). Let oo > 0. For P € Diff%; (M),
the family

+[0,00) > 0 — Np(P,0) (3.17)

defines an element of Diff:Zf’O’O(T) in the notation of §2.4. Conversely, given an operator
family A = (As)setiooy) € Diff " 00(T), then there exists P € Difts} (M) with A(o) =

sc-b

]/V;(P, o) if and only if A(c) is a polynomial of degree m in o, and 95A(0) € Diﬂ“{)n_j’j(T) =
pp DIffy" (T for j=0,...,m.
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Proof. Write Nf\r(P, o) in (3.13) using inverse polar coordinates = = pp'w, pp = |z|71, in
pp < 1 in the form

NrPo) = Y anal-0p P (poDp) D2 ajia € C7([0,1)pp x S12). (3.15)
Jt+k+]al<m

The membership (NT(P 0))oet(0,0

o L e Dift®L0L(T) ¢ Diff L0 (T

sc-b sc-b

€ lef;zgloo('T) then follows from the facts that

0)
T) an
D, € Dift51007),
pD+IU\) pDHUIPD po € Diffyc ()

cf. (2.17); likewise D,, € Diff ;20 (7).
We prove the converse only near 07, where we can write
0AW0)=pp D ajralppDyy) DS,
ktla|<m—j

Therefore, A(o) =37, ‘;f 9L A(0) is the spectral family of

P:= Y da(—pp D) (ppDpy) "D € DIl (M);
j+kHal<m

ppDpp = (

here, Gjiq € C*°(M) is an extension of ajiq € C(T). O

Definition 3.15 (7-tf-normal operator). Fix a boundary defining function py € C*°(My).
Let P e Diff5} (M). Then the T -tf normal operator
0
N7 (P) € Diff 7" (FNOT)

is the tf-normal operator of the sc-b-operator (3.17).

Explicitly, one introduces for +0 > 0 the variable pp = pp/|o| in the expression (3.18)
and takes the limit |o| — 0 for bounded pp > 0. Thus,

+ AN N—G (A
N7 (P):= > (ajralor)(Fhp) 7 (ppDpy)" DS (3.19)
J+k+|a|<m

n [0,00]5, X S"72; here the coefficients are ajrolor € C(S"2?). The b-normal op-
erator of NT’tf(P) at pp = oo selects the terms with j = 0, and hence is given by
Zk+\a|gm(ajka’6T)(ﬁDDﬁD)kDaa which is equal to the b-normal operator Ny7(P) of the
zero energy operator N;(P, 0) at pp = 0 (obtained from (3.18) by keeping only the terms
with j = 0 and restricting coefficients to 97) upon identifying pp and pp. (Note that
pp = 0 corresponds to the far end pp = 0 from the perspective of the b-normal operator
of NT ¢ (P) at /351 = 0; in this sense, the map pp = (ﬁgl)_l is homogeneous of degree —1,

matching Lemma 2.13.)

Proposition 3.16 (Relationship between principal symbols at low energy). Fiz a boundary
defining function py € C*°(My). Denote by psc € C*°(TNOIT) a defining function of the zero
section. The principal symbol of N7i—tf( ) (i-e. a representative of the equivalence class in

(pSCum/psC m=1) pm— D(EePT*(TNAT))) is the pullback of 3°6™(P) along the map
LT’th sebT*(FNOT) — 3bT6*7-M
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defined as follows: fiving a defining function pp of 0T C T, and setting pp := pp/|o]|,
identify bT*(+N8’T) = bT* )7' c b (p)M where w: TNOT — T is the base projection.
(Thus, we identify dﬁ’f wzth dp’g’ .) Write (sc,b)-covectors on *NOT, resp. 3b-covectors

over OT as
PD +1

Gse,bs resp. —0o3ppp db + C3p,
where Csep € PTH(FNOT) and (3 € PT*T C 3bT7*—M. Then

U gt SPTH(ENOT) 3 (pp,w; Gep) = (w5 03b, Gan) = (w; 145", (14 pp )eep) € Ty M.

Proof. The choice of pp gives a diffeomorphism +*NOT = [0, o0 pp X OT. Let us write
(sc, b)-covectors, resp. 3b-covectors (in a collar neighborhood of 97 C T) as

dpp dw dpp dw
fsc,b PPD + nsc,bﬁiD = (PD + ‘UD (gsc b—5 1+ Msc,b 7)
o+ P & P (3.20)

dw
resp. —ogpppdt + pp <§3b7 + 773b7)
PD PD

In terms of the map (3.16), with (pp + |0])(§sc,bs Mse,b) = (|]pD + |0]) (§se-bs Tse-b) in place
of &, the principal symbol of N%tf(P) at (&scbs Mseb) in the fiber of the sc-b-cotangent

bundle over (pp,w) € TNIT is then the limit of the restriction of 3*¢™(P) to the point
over (|o|pp,w) € T with 3b-momentum

La‘(\a\ﬁp,w) ((|U|K3D + |O—D(£Sc,ba nsc,b)) = (iﬁ517 (1 + pABI)ésc,by (1 + ﬁ’Bl)nsc,b)
as =0 N\, 0. Indeed, consider again the expression (3.18) of N7(P,0), with P having 3b-
principal symbol 3. p 11012 Ajka(—03p) 5 NS, where we write 3b-covectors as in (3.20);
the sc-b-principal symbol of ]\77jE ¢(P) in (3.19) in the coordinates (3.20) is then (the equiv-
alence class of)

Z (ajkala’T)(prT» (( +pD )gscb) (( +1551)nsc,b)a-
Jjt+Ek+|al<m

This proves the claim. U

See Figure 3.3.

Next, we have the following result on the large o behavior of ]/V\T(a), in which we use
the semiclassical scattering cotangent bundle ¢"T*T — [0,1) x T, see §2.3.1. Recall that
for each h > 0, the restriction S"TT — {h} x T = T of this bundle to the h-level set is
naturally isomorphic to the scattering cotangent bundle 5¢T*7T — T.

Proposition 3.17 (Spectral family at high energy). Fiz a boundary defining function
po € C°(My). Let P € Diff§},(M). For o € R, |o| > 1, set h = |o|™! € (0,1) and define

N, (P) = Np(P,£h™"). (3.21)
Then N%h(P) € Dlﬁnz (T, Its semiclassical principal symbol

sc -m ,—mpm /p —(m— —(m—1) pm—1\/sc «
(N7, (P)) € (W g™ P =) = prty e
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ESC,b =cC

FiGure 3.3. Illustration of the map L,—7i_-7tf from Proposition 3.16; we only
show the coordinates (pp, &scp) and (osp, &3p) from (3.20). The shaded grey
area is the range of L?tf. The dashed red, resp. solid blue lines are the
images of lines of constant pp, resp. & p.

is given by the restriction of 3°c™(P) to the image of the map toj,-1: SC’hT,;"T — p{)l 3'OT7*—M
in the notation of (3.15).

In local coordinates, the semiclassical principal symbol thus maps &g s to the 3b-principal
symbol of P at (o3p,&3p) = (:l:hflpgl, h*1p51§SC7ﬁ). In other words, the principal symbol

of N7j5h(P) is the composition of {Sc,ﬁdﬁ" = W e - da € 5CT*T with typ—1.

Proof of Proposition 3.17. This is most directly seen in local coordinates starting from the
expression (3.13), and with pp = (x)~!. Indeed, we have

Nr(P,£RY) = 07" Y () ™)™ ajalr)(F1) (2) 71 (hiz) D2
Jtlal<m
Thus, only those terms with j + |a| = m contribute to the principal symbol of this oper-

ator (as an element of A~ pp""Diff L ;(T)); its semiclassical scattering principal symbol is
therefore

o™ Y (el ) (FLIEL , = 0™ (P)(£h ™ ppt, ™ o ésen)
JHlal=m

where we used that 3°0™ (P) is homogeneous of degree m. O

Finaﬁ;i we assemble the spectral family into a single object. Note that the spectral
family Ny (P, o) is the conjugation by the Fourier transform in ¢ of the translation-invariant
operator

Nr(P):= Y (ajalr)((2)De)’ ((x) Da)*; (3.22)

Jt+lel<m
i.e. Ny (P) arises from P simply by freezing its coefficients (as a 3b-operator) at 7. The
operator (3.22) is a 3b-operator on the 3b-single space arising from the blow-up of R; x RE!

at the ‘north’ and ‘south’ poles {#00} x {0}. Since we are really only interested in Ny (P)
as a model of P for large ¢, let us observe that the subset of this 3b-single space where
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t > —oo is naturally diffeomorphic to the blow-up of (—oc0,00]; x R¥™ ! at {co} x dR?—1L.
We phrase this more invariantly:

Definition 3.18 (Model space for the 7T-normal operator). The model space for the T -
normal operator (or T -model space) is defined as

N3, T := [(—00,00]s x T;{oc} x OT].

We denote by 7 the lift of {00} x T, and by D the front face. The space Nap,7T is equipped
with a translation action given by the lift of the R-translation action on the second factor

of 7° x R.

See Figure 3.4. Since T° is an affine space, we can equivalently define N3, 7T as the set
t > —oo inside the blow-up of the radial compactification of Ry x 7° at {(co0,z¢)} for any
fixed xg € T°; therefore, we can define 3b-vector fields and associated classes of operators
on N3, 7. Note then that a choice of local coordinates (T, X) on My near p and of (¢, x)
on M° near T induces an embedding of a neighborhood of T C N7 into a neighborhood
of T C M via continuous extension of the map R x 7° > (t,x) — (t,x) € M°; under this
embedding, T and T get identified, and so do the 3b-tangent bundles on M and N3, 7.

FIGURE 3.4. The T-model space N3, 7. Also shown are two orbits of the
translation action (dashed, blue), as well as a level set of ¢ (dashed, red).

Definition 3.19 (7-normal operator). Let P € Diff5} (M). Then the T -normal operator
of P is the operator

NT(P) S Diffg]g’l(Nng)
(where the subscript ‘I’ restricts to the space of operators which are translation-invariant)
which is uniquely determined by the requirement that it have ]/V;(P, o) (defined with respect
to a choice of boundary defining function pg € C®(My)) as its spectral family at 7~ (defined
with respect to t71).

See (3.22) for the expression in local coordinates. We shall not carry out an analysis
of the dependence of N7 (P) on the choice of py and thus do not provide a fully invariant
definition of Ny (P) (or of the 7T-model space); see [MM99] for a discussion in the closely
related cusp calculus.

The T-normal operator gives rise to a multiplicative short exact sequence
0 — pDiff3p(M) — Diffs, (M) 2L Diffsy s (N3pT) — 0 (3.23)

and thus captures, in a precise manner, a 3b-differential operator to leading order at 7.
The analysis of N7(P) of course takes advantage of the translation-invariance, i.e. the main

part of its analysis is based on the study of ]/V;(P, o).
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The principal symbol 3P 6™ ( N7 (P)) is translation-invariant and thus uniquely determined
by its restriction to 3bT}‘r(N3bT), where it is equal to 3P o™ (P) \3bT; ar under the isomorphism

3ijfr(N3bT) = 3bTE .

Remark 3.20 (Normal operator at the corner DN 7). For P € Diff5; (M), the translation-
invariant operator N7 (P) has itself a dilation-invariant model at D C N3, 7. Concretely,
in the coordinates (f,7,w) from (3.5) and in ¢,r 2 1, let us write

Nr(P)= Y ajra(r " w)(rDy) (rD,)" DY;
JH+k+|a|l<m
then we have
Np(P) := Np(N7(P)) = Z ajka(O,w)(rDt)j(rDr)kDg. (3.24)
J+k+|a|<m

This operator is both translation-invariant in ¢ and dilation-invariant in (¢,7). The T-tf-
normal operators can be defined in terms of Nx(P) by exploiting the invariances succes-
sively: first by passing to the spectral family in ¢ (effectively replacing D; by —o) and then
by rescaling ¥ = 4+ro in £ > 0; this gives
N7w(P) = > agra(0,w)(=7)(7D)" D5 (3.25)
Jtk+lal<m

Thus, one can equivalently regard Nx(P) or N7j5 «¢(P) as the model operator(s) connecting
the two asymptotic regimes (approximate dilation- and approximate translation-invariance)
of 3b-operators.

3.3. Model at the dilation face D. Since Diffg, (M) C Diffy, (M), one can use the normal
operator homomorphism at D from the b-calculus to capture the leading order behavior of
3b-differential operators at D:

Npy: Diff,(M) — Diff,, ;(TND).

While this map Np}y, is surjective, its restriction to Diffs, (M) is not surjective anymore
due to the fact that 3b-vector fields degenerate in a particular manner (relative to b-vector
fields) at 0D, cf. (3.7b). In order to describe a more precise normal operator map on
Diffs, (M), note first that we have a canonical isomorphism * NpeD = * Nypz\ (1 0Mo of
half line bundles.

Definition 3.21 (Model space for the D-normal operator). The model space for the D-
normal operator (or D-model space) is defined as

T NapD = [T NOMy; * N,0My)|.

This is a half line bundle over [0My;{p}] = D, and it is equipped with an R,-dilation
action on its fibers (given by the lift of the dilation action on TNOMj). We denote its zero
section by D (by an abuse of notation) and the front face of ™ N3, D by R. We fix on R the
fibration R — T N,dM given by restriction of the blow-down map; the typical fiber is thus
S"—2. By Ve b.1(T N3, D) we denote the space of smooth vector fields which are tangent to
D and to the fibers of R, and which are moreover invariant under the dilation action on
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the fibers; by Diffg?h 1 (T N3, D) we denote the corresponding space of m-th order differential
operators. Finally, we define
+ N3 D = [T NOMo; T NydMo; 0], (3.26)

where o, C N,0Mj is the zero section over p.

The usage of the notation ‘D’ for a boundary hypersurface of T N3, D is justified since
the lift of the zero section is diffeomorphic to [0My;{p}] = D. See Figure 3.5.

Note that we can identify a collar neighborhood of 0My C My with a neighborhood of
the zero section o0 C NOMjy, and then [t NOMoy; op] is a model for M near DUT. As far as a
neighborhood of D is concerned, there exists a diffeomorphism from a neighborhood of the
lift of D (i.e. of the zero section of "NIMy) in [T NIMy;0p] to a neighborhood of D C M
which is the identity on D and whose differential at each point of D is also the identity
(using the natural identifications of the respective tangent spaces). The lift of *N,0M) to
[t NOMoy; op] is disjoint from a sufficiently small such collar neighborhood of D, and thus
blowing it up does not affect this statement (but this blow-up is performed in (3.26) so that

+ N3, D is a resolution of * N3, D).

g

0 D
7 7
) (—\ h
e |\_.//| e
’ ’
7 | ] ’
e ____ e S—=<) \__ 7
R
K +N3bD

FIGURE 3.5. The D-model space TNz, D. Shown are also the boundary

hypersurfaces D and R as well as the fibers of R. The space + N3,D in (3.26)
is the blow-up at R ND (solid circle).

Proposition 3.22 (D-normal operator). Let P € Diffs,(M). If Npy(P) denotes its

b-normal operator at D, then its restriction Npy(P)|+np.p evtends by continuity to a

dilation-invariant edge-b-operator on T NgyD. This defines a surjective homomorphism'

Np: Diffs, (M) — Diffey, (T N3pD). (3.27)
Moreover, there is a multiplicative short exact sequence

0 — ppDiffsy (M) — Diffg, (M) 225 Diff, p, ; (T N3 D) — 0.

Colloquially, the map Np is given by freezing coefficients at D. The normal operator
Np(P) for P € Diffs, (M) thus captures, in a precise manner, a 3b-differential operator to
leading order at D by means of a dilation-invariant normal operator.

Proof of Proposition 3.22. It suffices to analyze Np on vector fields; since away from T
3b-vector fields and b-vector fields are the same, we only work near 7. We use polar
coordinates X = Rw in dMj around p as in (3.2), and hence 3b-vector fields are spanned,

lgee equation (3.28) below for the expression in local coordinates in the case of vector fields.
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in T < |X]|, by the vector fields in (3.6). Note furthermore that smooth functions near
D C M are precisely those functions which are smooth in T/R € [0,1), R € [0,1), and
w € S"2. Therefore, we can restrict a smooth 3b-vector field
n—2
V =a(T/R,R,w)RTOr + b(T/R,R,w)ROr + » ¢;(T/R,R,w)d,; (I <R)
j=1

to T/R = 0 as a b-vector field and extend it by dilation-invariance in 7', thus obtaining

n—2
Np(V) = a(0, R,w)RTOr + b(0, R,w)ROr + » _ ¢;(0, R,w)d, ;. (3.28)
j=1

But this is not merely a dilation-invariant b-vector field on
[0,00)7 % [0,1)g x S"72, (3.29)

but indeed an edge-b-vector field, where the edge structure is defined using the fibration
[0, 00) xS"™2 — [0, 00). This shows that, in this description, Np(V') € Ve 1([0,00) x [0, 1) x
S"=2). On the other hand, the space (3.29) is also a local coordinate description of * N3p, Mj.
Note indeed that T NOMj is isomorphic (via a choice of boundary defining function, such
as T in our local chart) to [0,00) x My, and hence T N3, My =2 [0,00) x [0Mp; {p}]; and
(R,w) are smooth coordinates near the front face of [0Mp; {p}] = D.

An alternative, more geometric and invariant, proof—which in particular explains how
the edge structure arises from the 3b-structure on M-—proceeds as follows. Let V ¢
Vo (M) D Vs,(M), and consider Vp := Npp(V) € W, ;(TND). Note that a global triv-
ialization of TND is given by the fiber-linear function dpp for any fixed defining function
pp of D. Letting pr = B*po/pp where py € C>®(Myp) is a boundary defining function,
another trivialization is defined over D° = D\ T by dpy = prdpp (note though that
this trivialization does not extend smoothly down to 0D). Now, the stronger membership
V € V3 (M) is equivalent to Vpg € pop7C>(M) by Lemma 3.4(4) (where we now drop the
blow-down map (3 from the notation), which implies

Vp(dpo) = fp7 dpo (3.30)

for some f € C®°(D) (regarded as a fiber-constant function on * ND). Conversely, for any
V € V(M) so that Vp = Np (V) has the property (3.30), there exists V' € Vs, (M) so
that Np (V') = Vp, as is easily checked in local coordinates.

Now, the positive level sets of dpg inside of T ND escape to fiber infinity as one approaches
0D in the base. We thus consider the resolution

[+ND; " SNypD] (3.31)

of the radial compactification of " ND at fiber infinity (identified with the inward pointing
spherical normal bundle) over 9D; denote the front face of (3.31) by ef. The level sets of
dpo = prdpp = p7r/(dpp)~! are transversal to ef (note here that (dpp)~! is a defining
function of fiber infinity inside T N'D). Moreover, dpgles: ef — [0, 00] is a smooth fibration;
the condition (3.30) is equivalent to the tangency of Vp of the fibers of this fibration. (We
remark that a different choice of the boundary defining function p, of My leads to the same
fibration of ef up to post-composition by scaling [0, co] via z + Az where A = (p}/po)(p) >
0.)
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We wish to ‘blow down’ the lift of the lateral boundary +*NapD of (3.31). To this end,
a calculation in local coordinates shows that the identity map on TND° = TN(OMy \ {p})
extends by continuity to a diffeomorphism

[TND; *SNopD] = [TNOMy; TN;0Mo; {(p,0)}] = + Ngp D (3.32)

which is equivariant for the lifts of the R -dilation actions on "ND and *NOMy. See
Figure 3.6. Moreover, ef on the left in (3.32) corresponds to the lift of *N,0My on the
right, and the lateral boundary on the left corresponds to the lift of {(p,0)} (the zero section
of *Ny,0M)) on the right. Blowing down the lateral boundary is thus effected by omitting
the final blow-up on the right in (3.32); this gives (3.27) for 3b-vector fields and thus (by

multiplicativity) finishes the proof. O
[FND; *SNppD] NauD = [FNOMo; N, 0Mo; {(p, 0)}]

1

TSND

FIGURE 3.6. Illustration of the diffeomorphism (3.32) (here 0My = (—1,1),
so D = (—1,0]U[0,1), and we only show the component [0,1)). Also shown
are corresponding fibers of *ND and *NOM, (blue, dashed) as well as
corresponding level sets of dpg (red, dashed) and dpp (green, dashed).

Corollary 3.23 (Phase space identification). The restriction of the bundle isomorphism
P Tant, Mo = PTopg, (T NOMo) (where we identify OMoy with the zero section of *NOMy) to
OMy \ {p} extends by continuity to an isomorphism

SOTE M = ©PTH (T Ny, D), (3.33)
and likewise for the tangent bundles.

Corollary 3.24 (Principal symbol). Fiz a boundary defining function py € C°(My). Let
P € Diff§} (M). Under the isomorphism (3.33), we have *°0™(Np(P)) = 3b0m(P)|3bT;3M.

Having placed Np(P) in the edge-b-algebra, the definitions and results of §2.7 become
applicable. We stress that in view of the dilation-invariance of the D-normal operator in
the fibers of ™ N3, D we analyze it by means of the Mellin-transform in the total boundary
defining function pg, not in the boundary defining function pp of D.

Definition 3.25 (Mellin-transformed D-normal operator family, and related operators).
Fix a boundary defining function pg € C*°(My). Denote, by an abuse of notation, the
fiber-linear function dpg on "NOMy by po as well; this induces a trivialization * Nz, D =
D x [0,00),,- Let P € Diffg} (M). Following (2.33), the Mellin-transformed D-normal

operator family N;(P, A) € Difff"(D), A € C, is defined by
Np(P.Nu = (py " No(P)(piu))[pp=0,  u € C¥(D). (3.34)
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Mirroring (2.35), we moreover denote by
N3 (P) € Diff,>"™ (FNOD)
the tf-normal operator of the smooth (in u € R) operator family
(0,1) 3 h — Np(P, —ip+h™Y),
which defines an element of Diff:%’o’o’m(D) (see (2.34)). Finally, we denote by
Nap(P) € Difff;(* NoD)

the b-normal operator of N;(P, 0) at 9D (or equivalently that of Ngtf(P) at tf N cf),
see (2.37).

Remark 3.26 (Normal operator of Np(P) at R). The operator Np(P) has a normal operator
Np (P) at R, obtained by freezing its coeflicients there (as an edge-b-operator); see (2.36).
In terms of t = T~ ! and r = %, we note that RT Dy = —rD; — %’I“Dr and RDr = rD,;
in particular, —rD; is the unique 3b-vector field which is equal to RT' Dy at DN T (as
a 3b-vector field) and invariant under translations in ¢ and dilations in (¢,r). One can
then show that the translation- and dilation-invariant extension of Np .(P) is equal to the

D-normal operator Np(P) of Ny (P).

Remark 3.27 (Mellin-transformed normal operator in a special case). In some applications,
the operator under consideration is a 3b-operator only near 7, whereas far from 7 it
has a different structure, and D may have additional boundary hypersurfaces. One such
situation arises in [Hin23] where D can be identified with the dilation face D C N3, T
of the T-model space, and the D-normal operator is equal to the operator Nx(P) in the
notation of Remark 3.20. In this special setting, we proceed to explain the relationship of
the Mellin-transformed normal operator family of Ns(P) and the 7-tf-normal operators.
It is most convenient to use the coordinates

in which the operator (3.24) takes the form

Np(P) = Z ajka(0,w) DY (~vDy — pD,)* DS,
Jt+k+|al<m

(The dilation action is generated by td; + rd, = —pd,, and the translation action by
Oy = p0y.) We pass to the Mellin transformed normal operator family with respect to
p; this is a singular multiple of the total defining function t=! = v=!p, and thus the
Mellin-transformed normal operator families are related via conjugation by v, That is,
we consider the operator p~** Ny (P)p™* acting on functions of u(v,w) only, which takes the
form
p P Np(P)p* = Y ajra(0,w)Di(—vD, — N)FDE.
Jt+k+|al<m

We then exploit a vestige of the translation-invariance by conjugating this operator by
the Fourier transform in v with the same unusual sign convention as for the t-Fourier
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transform, so 4(#,w) = [ e u(v,w)dv. This amounts to replacing D, and v by —# and
Dy, respectively, and thus gives, in view of Dpr = 7Dy — 1,

NpPA) = Y aja(0,w)(—7) (7Ds — (A +14)) D2,
jtk+lal<m

Finally, we conjugate this operator by #{A 1) = pid—1

PTMING(PNFT = N e (0,w)(—7) (7D5)" DS

w
JH+k+|al<m

This, finally, is the expression (3.25) for N .(P).

3.4. Summary of symbols, normal operators, and their interrelationships. At this
point, we have introduced a number of multiplicative symbol and normal operator maps.
Given a 3b-differential operator P € Diff5} (M), these are:

(1) the 3b-principal symbol 3°c™(P) € P (3PT* M) (see (3.9));

(2) the T-normal operator N7 (P) and the corresponding spectral family ]/V;(P, o),
o € R (see Definitions 3.11 and 3.19).

(3) the D-normal operator Np(P) and the corresponding Mellin-transformed normal

operator family NE(P, A), A € C (see Proposition 3.22 and Definition 3.25).

Moreover, the low energy spectral family +[0,1) 3 o N;(P, o) defines an element
of Diffgz_’{)n’o’o(T) (see Proposition 3.14), and the high energy Mellin-transformed normal
operator family R x (0,1) 3 (u, h) — Np(P, —iph~1) defines an element of Diffg;l’o’o’m(l))
(see Definition 3.25).

The principal symbols of N;(P, o) as a b-differential operator for o = 0 or a weighted
scattering differential operator for o # 0 (including in the high energy, or semiclassical, sense
as |o| — 00) can be expressed in terms of the principal symbol of P; see Propositions 3.13
and 3.17. Likewise for the principal symbols of N;(P, A) as a b-differential operator, or in
the high energy sense as a semiclassical cone operator; see Corollary 3.23 and Lemma 2.31.
Geometrically, the principal symbols of the various normal operators are obtained by pulling
back the principal symbol of P to appropriate subsets of (the radial compactification of)
3bT*M which are the images under maps which embed the (radially compactified) phase
spaces corresponding to the model algebras (e.g. PT*T for the zero energy operator, or
SCT*T for elements of the spectral family at nonzero energies) into 3PT* M.

There are further normal operators related to Ny (P), namely N7 (P) (see Defini-

tion 3.9), N;Eh(P) (see Proposition 3.17), and N7i— «¢(P) (see Definition 3.15); and normal
operators related to Np(P), namely Nyp(P) and Ngtf(P) (see Definition 3.25). The T-

tf-normal operator N7i- o (P) of N;(P, o) near ¢ = 0 and 07 and the D-tf-normal operator
N{)ttf(P) of ]/V;(P, A) near |A| = oo and 9D carry the same information:

Proposition 3.28 (Identification of N3 .(P) and N;Etf(P)). Let P € Difty} (M). Fiz a
boundary defining function py € C>(My) to define N7i- ¢ (P) and N% t¢(P). Denote by

¢: *NOT — +*NOD (3.35)
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the isomorphism (homogeneous of degree —1 in the fibers) given by Lemma 2.1. Then
qb*N%,tf(P) = N7i‘,tf(P)'

In this sense, the low frequency behavior of the spectral family at 7 near 7T is the same
as the high frequency behavior of the Mellin-transformed normal operator family at D near

oD.

Proof of Proposition 3.28. We check this in the coordinates T' = pg, R, w from (3.6), and
for the basic operators P, = RT Dy, P, = RDpg, and P3 = D_;. Thus, N;(Pl, A) = R,
NE(PQ,)\) = RDpg, and NE(P;;,)\) = D,,;; taking the limit as Re A\ — foo (for bounded
Im \) with R = R|\| bounded, we get

Np . (P) = £R, Np (P2) = RDp, Np (P3) =D, (3.36)

In the coordinates t = T~ p = (R/T)~! = T/R, w, thus with p|7 a defining function
of T, we have P, = —p~'D; + t_le, Py = —pD,, and P3 = D, therefore N7 (Pi,0) =
p~lo, Nr(Py,0) = —pD,, and N7 (Ps3,0) = D,,;, and thus, with p := p/o,

N7y(P)=+p"", Ny (P)=—pDs, N (Ps) =D,y (3.37)

Using the identifications of R and p with the fiber-linear coordinates dR and dp on
+NOD and T NOT respectively, the isomorphism ¢ takes the form ¢(R,w) = (R™!,w), i.e.
p = R~'. (Note here that R-p = T = py indeed.) This identifies (3.36) and (3.37), as
desired. O

Note that Nyp(P) is the b-normal operator of N%tf(P) at ¢f C D¢ in the notation

of §2.5, using the identification of TNOD and the inward pointing normal bundle of tf N cf
inside of tf C Dgj;. Furthermore, Proposition 3.28 implies that this b-normal operator can
be identified (via ¢) with the b-normal operator szmtf(N7:|-:7tf(P)) of N%tf(P) at zf Ntf C
tf C Tseb, Where zf = T is the zero face of the sc-b-single space Tge.p.

Proposition 3.29 (Relationship of Nyp(P) and Ny (P)). Let P € Diff5 (M). Fiz a
defining function py € C®(My). Let 1p: TNOT — TN (zf N tf) denote the isomorphism

(homogeneous of degree —1) of Lemma 2.13. Let ¢ be as in (3.35). Then ¢*¢p*Nyp(P) =
Na1(P), where we identify ¢* Nop(P) = szﬂtf(N% #(P)), as explained above.

Note here that under the (homogeneous degree —1) identification of the inward pointing
normal bundles of zf Ntf C tf C Ts.,—which is the inward pointing normal bundle at fiber
infinity of TNOT—and of 97 C T, the composition

pot: TNOT — TNOD (3.38)

is an isomorphism and homogeneous of degree —1.

Proof of Proposition 3.29. For the operators P;, P>, P3 from the proof of Proposition 3.28,
we have
Nor(P1) =0, Nor(P2) = —pDp,  Nor(Ps3) = D,;.
In terms of the defining function # = p=1 = o/p of zf Ntf C tf, we deduce from (3.37) that
Nogrut (N7 (P1)) =0, Nygrus(NF ((P1) = 7Dz, Ny (NF ((Ps)) = Dy

L w). O

It then remains to note that the isomorphism ¢ takes the form (7,w) = (p~
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See Figure 3.7 for an illustration of the various normal operators.

Nop () Np(P)

Nor(P) r

—

NT(Pa U)

NP
- (o)
N7 (P)

NoT(P)

FIGURE 3.7. The normal operators of a 3b-differential operator (with the
semiclassical regimes not explicitly indicated); some relationships are indi-
cated with matching colors.

3.5. An example. We consider the example from Theorem 1.2. Thus, on R™ with coor-
dinates (t,z), t € R, z € R"~!, consider the Euclidean Laplacian A = D? + Z;:ll Dij and
potentials V € ((t,2)) "2C>°(R") and V7 € (z)3C°°(R"~1). Consider then

P={(x)?Py,  Py:=Apn+V(t,z)+ Vr(z). (3.39)
In polar coordinates © = rw, r = |z|, w € S*2, this is

P = (r)Q(Df + D2 —i(n—2)r7 D, 4+ r 2 Agn-2 + Vy(rw) + V (1, rw)). (3.40)

On M = [R"; {(£00,0)}] and in r > 1, the vector fields (r) Dy, (r)D,, and D, are 3b-vector
fields, and therefore we have P € Diff3, (M), and indeed the 3b-principal symbol 3b¢?(P)
is elliptic. As defining functions of the lift D of OR” and the front face (which has two
connected components), we can take pp = (x)~! and pr = %, respectively; note that

pppr = ((t,z))"! is a boundary defining function of R™. The zero energy operator (at
either front face) is

N7 (P,0) = ()% (Agn-1 + Vi) € Diff2(R7-1), (3.41)
while -
() 2N (P,0) = Agn-1 + Vi + 02 € Diff2 (Rn-1). (3.42)

1

Passing to inverse polar coordinates z = p~'w on R"~! with p = |z|™!, w € "2, one then

finds that, for p = p/o,
P°NF (P) = p*((pDp)? +i(n — 3)pDp + Agn-2) + 1.

This is the spectral family (at a spectral parameter off the continuous spectrum) of the
Laplacian on an exact cone, with p = 0, resp. p = oo being the large, resp. small end of the
cone. Proposition 3.28 (or direct computation using the expressions for Np(P, A) below)
gives

R7Np (P) = R™*((RDp)* —i(n — 3)RDj + Agn—2) + 1, (3.43)
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now with R = 0, resp. R = 0o, being the small, resp. large end of the cone. Furthermore,

No7(P) = (pD,)? +i(n — 3)pD, + Agn—2, Nap(P) = (RDg)* —i(n —3)RDp + Agn—2.
(3.44)

The D-normal operator can be computed in the coordinates 7' =t~!, R = r/t, w, to be
(in t > 0, |z| < t, with similar expressions in t < 0, |z| < —t)

Np(P) = (RT Dy + R*Dg)* + (RDg)? — i(n — 3)RDg + Agn—2 + W (Rw)
— Np(P,\) = (RDg)? —i(n — 3)RDp + Agn—2 + (RA + R2Dg)? + W(Rw),

where W(R,w) = limp_,o({R/T)?V (T, Rw/T)) (which is expression for the restriction
of (x)2V to OR™ in local coordinates). A simpler description can be given in inverse polar
coordinates o = |(t,2)|"!, @w = o0 (t,) € S !: then p}QND(P) is the b-normal operator
of 072 Agn + Vp where Vp := (072V)|yzw € C°(S% 1), and therefore

Np(P) = (p7]gn)* (D) +i(n — 2)0Dy + Agas + Vp), (3.45)

regarded as a dilation-invariant (in o) b-differential operator on [0,00), x [S"~; {N, S}]
where NV, S € S*"~! are the north and south pole (where p7 = 0), respectively.

4. THE SMALL 3B-CALCULUS

We use the notation My, p, M = [Mo;{p}] of §3, see Definition 3.1. We now mi-
crolocalize the algebra Diffs, (M) of 3b-differential operators (see Definition 3.7) on the
3b-single space M to an algebra Wsy, (M) of 3b-pseudodifferential operators. We accom-
plish this by defining a suitable resolution of the space Mg so that the Schwartz kernels
of 3b-differential operators are precisely the nondegenerate Dirac distributions at the lifted
diagonal, and then generalizing the class of Schwartz kernels to conormal distributions. See
e.g. [MM87, Maz91, Mel93, Mel94, MM99] for earlier instances of this procedure.

Loosely speaking, we want elements of Ws,(M) to act like b-ps.d.o.s near D°; and like
cusp ps.d.o.s (with respect to the lift of a defining function of My) near 7°. Recall here
that if we were to consider the cusp calculus on My, with respect to a fixed boundary
defining function py € C*(Mp), we would introduce on the b-double space (M)} the

smooth function s = % € [—1,1] where we write (by an abuse of notation) pg and pf, for
0

the lifts of pg along the left and right projections (Mo)% — Mpy, respectively; and we would
then define the cusp double space of My by

(Mo)2, := [(Mo)3; ff, N s~ (0)],

where ff}, C (Mp)? is the front face. The (small) cusp calculus then consists of distributional
right cusp densities on (Mg)?, which are conormal to diag,, (the lift of diag;) and vanish to
infinite order at the boundary hypersurfaces of (Mg)?, which are disjoint from diag.,. (The
corresponding large calculus permits nontrivial, typically conormal or polyhomogeneous,
behavior of Schwartz kernels at all boundary hypersurfaces.)

Roughly speaking then, to construct the 3b-double space of M, we wish to blow up the
b-double space of My similarly to the definition of the cusp double space, but now only
at the point (p,p). The following minimalistic definition suffices to capture 3b-differential
operators:
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Lemma 4.1 (Tiny 3b-double space). Let p3y, := m, 1 ({p}) N diag, (which is a subset of
(Mo)? containing only one point). Put

M3, iny = [(Mo)3; pp)-

Then lifts of elements of Vs, (M) to the left factor of M??b tiny € smooth b-vector fields, and
the lift of Vs,(M) is transversal to the lift diaggy, 3,y of diagy, to M2, tinys Toreover, this
lifted diagonal is a p-submanifold. That is, the fiber-linear subspaces of Tdiaggb,tinyMsz,tiny
gwen by T diaggy, i, on the one hand, and by the restrictions to diagsy, yiny of the lifts of

elements of Vs, (M) to the left factor, are transversal. This induces a canonical isomorphism
N diaggy, tiny = 3bTM.

Proof. Note that the diagonal inclusion Mo — diagy;, C (Mo)? lifts to a diffeomorphism
My = diagy, and then further to a diffeomorphism M = [My;{p}] — [diagy; {(p,p)}] =
diaggy, 1iny- We shall write (g, q) € diaggy, 3, for the point corresponding to ¢ € M under
this diffeomorphism.

Denote by mp: M??b tiny M the lift of the left projection. By dimension counting, we

merely need to prove that the lift 77V to M§b7tiny of an element V' € V3,(M) with V(q) #

0 € 3T, M is nonzero at (g,q) € diagg, tiny- (The desired bundle isomorphism then arises
by identifying V(q) € *T,M with [(77V)(q,q)] € Tuiagy, ;,, /T diagsp tiny = N diagsy, iny-)

We only give details near the preimage of (p,p) € My x My under the total blow-down
map M?%b,tiny — Mg. With coordinates T, X on My as in (3.2) (so p = (0,0)), we commit a
standard abuse of notation and denote by T, X and T”, X’ the lifts of T\, X to the left and
right factor, respectively. Near diag,, C (My)?2, we have smooth coordinates

T-1T
T7 X7 Sb = T/ )

with diag,, defined by s, = 0, X}, = 0. The scattering vector fields 7?07 and T'0y; on My

thus lift to 7207 + T'(1 + s,)0s, and TOx; +T8,.;. Upon passing to the blow-up of (Mp);
b

at psp = {(0,0,0,0)}, we first consider the region where T' 2> max(| X/, sp, | Xp|); there, we

have smooth coordinates

Xp=X - X/,

X Sh Xp
4 _ b X =
T ) S3b T ) 3b
and thus 7207 and Ty lift to the vector fields (1 + T's31)0sq, + T (TOr — 0y — 835054, —
X3b0x,,) and 0,5 + Oy, , which at the 3b-diagonal s3;, = 0 = X3}, are equal to Js,, +
3b
T%0r — Tx0, and 0,; + Oyi , and hence linearly independent. Note that the weight (z) is
3b

bounded in this region.

In the region where | X| 2 max(T, sp, | Xp|), we split X = (X1, X2) where X; € R and
X, € R 2, and after relabeling coordinates we may assume that X; = |X3|. We likewise
write Xy, = (Xp 1, X}, 2). We then introduce coordinates

T, x=

T . X
pr=X1, pp=- Xo=22,
X1 X1 (4.1)
St T-—T Xb,l_Xl—X{ Xb2_X2—Xé '

= — = X — —
TN T X, 31T Ty X, 27 X X,



82 PETER HINTZ

The 3b-vector fields X;70r, X10x,, and X109y, (cf. (3.6)) lift, respectively, to
2

(1 =+ pTS3b)853b + prDapDa
(1= Xsb,1)0x50,1 + Ty — PDOpp — X20, — 83005y, — X3b,20%4,.2-

3b,2
At the diagonal where s3;, = X311 = 0 = X3y, 2, these vector fields are linearly independent.

The lifted diagonal diagyj, iy is disjoint from the regions where [X3,| or sy, are relatively
large compared to | X’|, 7', and hence we do not need to consider these regions here. The
proof is complete. O

Thus, the space given by the lifts to M32b7tiny of Schwartz kernels of elements of Diffs;, (M)
is equal to the space of Dirac distributions at diaggy, iy, with values in the lift of 3bQM to
the right factor. In order to microlocalize Diffs, (M), we need to refine the space M§b7tiny
considerably; indeed, loosely speaking, we need to separate D and 7T in either factor so
as to ensure, among other things, that we obtain a class of operators which act sensibly
on spaces of functions encoding weights at D and T (i.e. that they preserve weights and

conormality).'® Thus:

Definition 4.2 (Small 3b-double space). Let prar, pr, pr denote the lifts to (Mg)% of
{(p,p)}, {p} x OMy, and OMy x {p}, respectively; let p3;, = prarNdiag, (which is the same
singleton set as in Lemma 4.1). Then the small 3b-double space is defined as

M3, == [(Mo)p; ps; PLAR; PL, PR) - (4.2)

We denote the lift of p3p, by ff),, and the lift of the front face of (Mp)? by ffp,. The lift
of diagy, C (Mp)3 is the 3b-diagonal, denoted diagg, .

(See §5 for figures illustrating the (full) 3b-double space, which is a further resolution of
M2 . at the lifts of {p} x My and My x {p}.) Denoting by mr: M2 , — M the lifted right
projection, we then define:

Definition 4.3 (3b-pseudodifferential operators). For m € RU{—o0}, we define the space
m
35 (M)

to consist of all operators (mapping C°(M°) — 2'(M°)) with Schwartz kernels lying in the
space [ m(M:,?b’b, diagsy, ,; 75, ** QM) of conormal distributions (valued in right 3b-densities)
which vanish to infinite order at all boundary hypersurfaces of M3y, |, except at ff., and ffp ,;
unless otherwise noted, we require the Schwartz kernels to be smooth down to ff, Uffp .
More generally, if Ey, Fo — My are two vector bundles and F = B*Ey, F = *Fy — M

denote their pullbacks along the blow-down map $: M = [My; {p}] — My, we define
(M3 E,F)

to consist of all operators whose Schwartz kernels lie in I "‘(M??hb7 diaggy,»; B3 (Fo X Ef) ®

TR 3bQM) and vanish to infinite order at all boundary hypersurfaces of Msy, ), except at

ff7, and ffp,; here PBo: M??b,b — M3 is the blow-down map and Fy ® Ej is the bundle

o Fo @ mypEy — MO2 where mgr, ToR Mg — My are the left and right projections.

15Flements of the large 3b-calculus, which will be shown to include (approximate) inverses of fully elliptic
3b-operators, will not be local in this manner anymore.
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We shall restrict our discussion to the case of scalar ps.d.o.s, unless adding vector bundles
requires more than just notational modifications. Lemma 4.1 and the fact that diagsy, i, is
disjoint from the lifts of prngr, pr, and pr imply that Diff5} (M) C Wi (M) is characterized
as the subspace having Dirac distributional Schwartz kernels. Similarly, Lemma 4.1 gives a
natural isomorphism PT*M = N* diagg}, ,- Therefore, the principal symbol of the conormal
Schwartz kernels at diaggy, |, gives rise to the symbol short exact sequence

m—1 m 3bgm m m—1\ /3bpx
0— Wi (M) — Vg (M) —— (S™/S™ ) (°°T*M) — 0.

One can also consider weighted versions p,*® p*7 W (M), with pp, pr denoting lifts to
the left factor of defining functions of D, T C M. More generally still, one can allow for
the coefficients of 3b-ps.d.o.s to be polyhomogeneous at ff, and ffp }, or merely conormal;
spaces of such operators are denoted

EpE ,
Ahe T U (M),  ATPOTU (M),
where the index sets £p, &7 C € x Ny capture the exponents of expansions at ffp ) and
ff7,. Since in §5 we shall consider yet more general classes of operators, we shall however
only study the space Wi} (M) in this section.

Proposition 4.4 (Basic mapping and composition properties). (1) Any element P €
W3, (M) defines a bounded linear map on the spaces (M), C*(M), and on the
dual spaces 2(M°), Q(M) of extendible and supported distributions, respectively.

(2) Let P; € Wyl (M), j =1,2. Then Py o Py € W3 **(M). The principal symbol map

3bo is multiplicative.

Proof. See Propositions 5.6 and 5.10 for more general results in the large 3b-calculus. [

Remark 4.5 (Bounded geometry perspective on 3b-ps.d.o.s). Fix any Riemannian 3b-metric
g € C>®(M; S?3PT*M) on M. Then by the transversality statement of Lemma 4.1, for € > 0,
the closure A. of the set {(g,q') € M° x M°: dy(q,q') < €} in M2, (with dy denoting the
metric induced by g) contains an open neighborhood of diags,, and as € N\, 0, the set
N, converges to diags,. Furthermore, g endows M° with the structure of a manifold with
bounded geometry [Shu92]; this follows from the fact that in the coordinates ssp,, Xap 1, Xap 2
from (4.1) near a point (77, X{, X5) on M° with |X{| 2 T",|X%|, the metric tensor g and
its inverse ¢g—! are, essentially by definition, uniformly bounded in the smooth topology,
and similarly in other coordinate systems covering M. One can then regard 3b-ps.d.o.s
on M with Schwartz kernels supported in N, for some small € > 0 as bounded geometry
ps.d.o.s on M°. (The converse is true only under additional regularity hypotheses on
the Schwartz kernel of the bounded geometry ps.d.o.; the standard definition of the latter
typically gives operators whose coeflicients only enjoy infinite 3b-regularity, which is weaker
than b-regularity.)

4.1. Normal operator at the translation face 7. The 7-normal operator of a 3b-
ps.d.o. P will be defined in terms of the restriction of its Schwartz kernel of P to ff1,. We
first describe this boundary hypersurface in some detail:

Lemma 4.6 (Structure of ff,). The boundary hypersurface ff1), C M32bb 1s diffeomorphic
to T2 xR, where T2 = [T?; (0T )?] is the b-double space of T. The isomorphism is explicitly
gwen as follows: denoting by t,x and t',x’ the lifts to the left and right factor of M32bb of



84 PETER HINTZ

the coordinates t,x on M introduced in (3.3), the functions 7 :=t —t' and x,2’' give affine
coordinates on the interior (ff1)°; and the map

fir, € (r,z,2") — ( T3, 2,2’ ) € R x T2, (4.3)

T ) =i (
((@,2))""
defined via continuous extension from (ff1,)°, is a diffeomorphism. Via this diffeomor-

phism, the intersection ffr, Nffp ), is equal to R x ff7 ), where ff71, C T2 denotes the front
face (i.e. the lift of (OT)?).

See Figure 4.1.

FIGURE 4.1. Structure of ff7}, when dMj is 1-dimensional.

Proof of Lemma 4.6. Fix local coordinates T, X on My near p as in (3.2), and denote their
lifts under the left, resp. right projection to (My)? by T, X, resp. T', X’. Local coordi-
nates near ps, C (Mp)? are then 77 > 0, X € R"!, X' € R"!, and s = % € (0,00),
with pg;, given by (77, X, X’,s) = (0,0,0,1). Since p3}, is thus contained in the bound-
ary hypersurface 7" = 0, affine coordinates on the interior of the front face ff7 tiny of
[(Mo)2; psp] = M§b7tiny are %, %’, and 57?,1 = %(%)2 — % But T'/T =1 at the front face,
and therefore we can equivalently use

X ., X 11 ,

T U= T T:f—ﬁzt—t

as affine coordinates (here t = 7% and ¢ = T'71, cf. (3.3)). Thus, ff7 tiny is the radial
compactification of R, x R?~1 x R”1.

xTr =

When blowing up M32b7tiny to obtain M??b, we shall now track the corresponding blow-ups
of ff7 tiny. The intersection of the lift of pr~r (which in local coordinates on (Mo)zb is given
by (T',X,X’,s) = (0,0,0,s), s € (0,00)) with ff7 s, is given by the endpoints of the
compactified T-axis, i.e. by the points (7,z,2") = (+00,0,0) in ff7 tiny. Upon blow-up, the
lift of py, (given by (T, X, X’,s) = (0,0, X', 5)) intersects Off 7 tiny at the closure of z = 0;
similarly, the lift of pg intersects Off 7 tiny at the closure of 2/ = 0. Altogether,

I, - [RT X R x R {(+00,0,0)};
’ ’ (4.4)
IR, xR M) x {z=0},0(R, x RE') x {2/ = 0}]
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The front face of the blow-up of (00, 0,0) is naturally diffeomorphic to R~ x R~ 1 with

the subsequent blow-ups in (4.4) resolving {0} x OR”, " and R} x {0}. Thus, the lift of
{(£00,0,0)} to ffr) is

R—T x R*=1; {0} x 9R*—1, R 1 x {o}} = {R”*l x R-T;9R7=T x 9R*1|.  (4.5)

(This diffeomorphism is the continuous extension of the identity map on R"~! x R?~1))
Invariantly put, this is the b-double space 7,2 = [T2;(9T)%.'® The space ff7, fibers over
7.2 by means of the flow along the vector field 0, where 73, = 7/((z,2')) is a rescaled
time coordinate (the scaling by ((x, ")) being necessitated by the fact that ff;), in (4.4) is
a resolution of the radial compactification in all variables 7, z,z’). Moreover, |73,| 7! is a
local defining function of the lifts of {(£00,0,0)}. This shows that the map (4.3) is indeed
a diffeomorphism.

The intersection of ff7, with ffp , is given by the lift of (R, x R RZ,_I); this is the
product of R, with the front face of (4.5), the latter being the front face of 7,2. O

T3b

Let now P € W3 (M), and denote by'™ K7, € I (ff1,; diagsy,, N ff7p; 75 SPQM) the
restriction of its Schwartz kernel ff',; thus K7, vanishes at all boundary hypersurfaces of
ffr ), except for i, Nfp,.

Definition 4.7 (7-normal operator; spectral family). Recalling Definition 3.18, the T-
normal operator of P € Wi} (M) is the operator

N7 (P) € Wi, [ (N3pT)

with Schwartz kernel given by the partial convolution kernel (¢, z,t',2") — Ky, (t—t', z,2').
Here, the subscript ‘I’ restricts to the subspace of 3b-operators which are translation-
invariant in ¢ (i.e. precisely to the space of operators with such partial convolution kernels).
The spectral family

N7 (P,o), o€R,
is defined via the Schwartz kernels of their elements as follows: the Schwartz kernel of
N7(P,0) is equal to (z,2') = [ €T K7 ,(7,2,2)."® Finally, we define

Nor(P) € U ,(*NOT)

as the b-normal operator of N7 (P,0) at dT. (The membership N (P,0) € U(T) is part
of Proposition 4.8(1) below.)

One can equivalently define ]/\ff\r(P, o) via the action on functions on 7 times an expo-
nential in ¢t = py ! with frequency o just as in Proposition 3.10. One can likewise give a
testing definition of N7 (P,0) as in Proposition 3.8.

We aim to show the following analogue of Propositions 3.8, 3.10, and 3.17:
Proposition 4.8 (Membership of N;(P, 0)). Let P € Wiy (M).

161 the case dim M = 2, s0 T = R, this is the ‘over-blown’ double space, with all four corners of R x R
resolved.

17The increase in the order follows the standard convention for conormal distributions [Hor71].

18This is well-defined since for any x,z’ € T° the kernel K7, (7, z,2') is a rapidly decreasing density on
R, (tensored with a density in z’).
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(1) (Fixed frequencies.) We have Nf\r(P, 0) € W(T). Moreover, for o # 0, we have

N;(P, o) € Vg™ (T), with smooth dependence on o € R\ {0}.
(2) (High frequencies.) The semiclassical rescaling

NZ,(P)=Nr(P£h7"),  he(0,1), (4.6)

defines an element of \Iigz’;bn’m(T), with conormal dependence on h down to h = 0.

The principal symbols of these operators are given in terms of °c™(P) as in Proposi-
tions 3.13, 3.17.

Part (1) follows directly from Proposition 4.9 below; we will prove part (2) after the
proof of Proposition 4.9. We remark that the statement Ny (P,0) € U (T) is a direct
consequence of the push-forward theorem; the proofs of the remaining claims require more
work. The following result is the pseudodifferential analogue of Proposition 3.14:

Proposition 4.9 (Membership of ]/V;(P,—)). Let P € W3 (M) and o9 > 0. Then, us-
ing the notation of §2.4, the operator family £[0,00) > o — Ny (P,0) is an element of
\DQZ:?’O’O(T), with principal symbol given in terms of that of P as in Proposition 4.8. (Re-
call here that the principal symbol of a sc-b-ps.d.o. is uniquely determined by the principal

symbols of the individual operators for all values of 0.)

As a consequence, we can define the 7T-tf-normal operators (cf. Definition 3.15)

NF (P) € WO (FNOT)

sc,b

also in the ps.d.o. setting.

Proof of Proposition 4.9. We only consider the behavior of N;(P, o) for o € [0,00), the
analysis for o € (—0oy,0] being completely analogous. In the coordinates (73p, 2z, 2’) intro-
duced in (4.3), we have

K7, = Kvay, (4.7)

where K = K (731, 2, ') is conormal (of order m+ 1) at {0} x diags 1, and vanishes rapidly
as |mgp| — oo or as |z|/|2'| = 0,00; here diagr, C 7,2 denotes the b-diagonal, and vg, =
| dr M] is the right lift of the 3b-density (3.8). Thus, the Schwartz kernel of

<I/> <x/)n71

N7 (P,o) is

<(l‘, J}/)> P ' d.’L‘ll . dx/nfl
() Ko(o)w, Vp 1= ‘W‘a (4.8)
where I/(\()(U) is given by

—~ H\—1 ’ T dr

R = (LE20) [ o N dr

o) = (C0r) L (e ™) @
= / ei«x’w,»”i*bK(Tgb,m,$') dTsp,. (4.9)

R

Consider first the case m = —oo, i.e. P € W °°(M) is residual and thus K is smooth.

When either z or 2/ vary over a compact subset of 7°, then I/(\()(O',:L',l'/ ) is smooth in all
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arguments. Consider thus a neighborhood of ff11,; letting p = lz|7t, w = I%I and likewise

o=zt W = %, we work with the coordinates
p—r
=p+p >0, s:= cl-1,1], w, o, = 4.10
pi=p+p P [—1,1] 3b (4.10)

on ff,. Denote by K’ = K'(73p, i1, s,w,w’) the kernel K in these coordinates, so K’ is
smooth and vanishes to infinite order as s — +1 or 73, — Fo00. Then, writing

prot 1= (@, 2)) ™ = (14 (Rp(1 + )72 + (3u(1 — 5))72) 7/

for the total boundary defining function of 7,2, the expression for I/(\o(a) in the coordinates
’ s
S, w, W is

(4.11)

(o5 1, 8, w,W') /eiT3bU/pt°tK'(7'3b,u,s,w,w') drsp = (.7-"1K’)<L,,u,s,w,w'), (4.12)

Ptot
where F; denotes the Fourier transform in the first argument (in which, as usual in this
paper, we use the opposite of the ‘standard’ convention).

When s lies in a fixed compact subset of (—1,1), then o, resp. ptot = prot/o lifts to
a defining function of tf..,, resp. total defining function of scfg..p, U bfge, C Tset, away
from zfs. p; moreover, u = u(s, prot) is a smooth function of pyoy and s in this range which

vanishes simply at pior = 0. Thus, I/(\o is given by

(0, Prots 8, w,w') = (FLK") (Prots 1(5, 0hrot), 5, w, '),
This vanishes rapidly as piot N\ 0 and is smooth in the remaining variables, as required
for membership of N7 (P, —) in \IIS_C_OE’_OO’O’O(T) = Pt Voo (T). Near zfsc1, on the other
hand, and with s still lying in a fixed compact subset of (—1,1), we can use &/\: o/ptot > 0
and pior > 0 as local defining functions of zfy. , and tfs. 1, respectively, and K is given by

(8, prots S, w,w’) = (FLK") (6, (s, prot ), $,w,w') (4.13)
which is smooth in all variables.

It remains to consider the case when s is near —1 (the case when s is near +1 being

completely analogous), thus we need to study I/(\O near lbg.p, U tlbge,. Away from zfg.p, U
tlbsep, then, o, ft = p/o, and § := s + 1 are defining functions of tfs.p, bfs.p, and Ibg.p,
respectively. In this region, we can write pior = a(p, $)us = a(ofp, §)ons where 0 < a is a
smooth function. Thus, K takes the form
(01 8,0,) = (FUE) (= ot 5 = L),
a(ofi, 8)s
and therefore vanishes rapidly as s — 0, i.e. at bfg.p U lbge,. Near zfg.p U tlbgep, on

the other hand, we can use'® & = o/u, p, and 8 = s + 1 as local defining functions of

Zfset, U tlbgepy, tfseb, and lbge 1, U tlbgep, and I/(\o takes the form

(&,u,é,w,d)H(]—]KU( 85— 1w, W

PP )

a(u, 8)s ’

which thus vanishes rapidly at § = 0 (i.e. at Ibgcp U tlbgep,) and is smooth down to 6 = 0
and p = 0. This completes the proof of the Proposition when P € W3 >°(M).

19ywe recycle old symbols here with new definitions.
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For P € Wi (M), m € R, it suffices to consider de-densitized kernels K (see (4.7)) which
are supported in an arbitrary but fixed neighborhood of {0} x diagy . We only consider a
neighborhood of the boundary {0} x (diags, Nff7 ) of the diagonal, the arguments near
the interior being similar (and indeed simpler). Thus, we work with the coordinates piot, S,
w, W', T3, from (4.10)—(4.11); recall here that po/p is smooth and varies over a compact
subset of (0,00) when s is restricted to a compact subset of (—1,1). In these coordinates
then, K is given by an oscillatory integral

(TSb7 Ptoty S, W, w/)

. o , 4.14
— (271‘)_” /// e—w3b7'3belfse’”7'(w—w )G(Ptota w; o3p, &, 17) dogp, d€ d?], ( )
RxRxRn—2

where a is a symbol of order m in (o3, &, 7). Recalling formula (4.9), .f(\o(a; x,2') is given
in these coordinates by

(0, prot, $,w,w') = (27) —(n—1) // eis i (w=u') (Ptot, w; af 77) df¢dn.  (4.15)
RxR?—2 Pto

Near scfg.p, we introduce coordinates o > 0, piot = prot/0 > 0, § = s/ptot € R, w, and
&' = (w — w')/prot, in which K is given by

(J, ﬁtota éa“:":)/)

1 5 7 (4.16)
(27['ptot // ngcs msc & (O’ptoty W=, > = ) dfsc dnsc
RxRr—2 Ptot ptot Prot

~(n—1)

The factor p., combines with v, in (4.8) to give a right sc-b-density; and the rescaling

~ A ~ 1 £SC nSC
(PtotvUJ;fsc;nsc) = p%ta(aptot,w; ~ v A~ =~ )
Ptot  Ptot  Ptot

can easily be checked to be a symbol of order m in (§s,Nsc) which is bounded conormal
in pot > 0 and as such depends smoothly on ¢ down to ¢ = 0. Therefore, its inverse
Fourier transform in (4.16) is a conormal distribution at § = 0 = &', vanishes rapidly as
|5] + |&'| — oo (thus at bfgs.p), and is conormal with weight p. " at scfs.1, smoothly down
to o = 0.

In order to finish the proof that Ny (P, —) € o 00(T) it remains to study Ko in the

coordinates & = o/ pior, and pyor near the diagonal of zfy. 1, as in (4.13); in these, I/{\O is given
by

(6, prots S, w,w') > (QW)_(n_l) //R - eigsei”'(w_”/)a(ptot,w;6’,5,7]) d¢ dn, (4.17)
X n

which is thus conormal of order m at the diagonal s = 0, w = w’ with smooth dependence
on prot > 0 and 6 > 0. O

Proof of Proposition 4.8. It remains to prove part (2). We do this first in the case that
P € U3 >°(M) is residual. We use the notation from the proof of Proposition 4.9. Consider

again the expression (4.12) for I/(\[)(O') with o = h~1, 0 < h < 1: since 0/por = (hptot) +
oo as either h N\, 0 or pot N\, 0, we conclude that indeed N7 (P,h71) € p% Dhev (T) =
pph>U 7 (T) in this case.
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It remains to study operators P € Wi (M) whose Schwartz kernels are localized near

the diagonal. In local coordinates near ff7; C Tf, the Schwartz kernel of I/(\O is then
given by the expression (4.15) with ¢ = h~!. Corresponding local coordinates on the
interior of the semiclassical scattering front face are then h, piot, § := s/(hptot), w and

&= (w—w)/(hptot), and I/{\o is given by

(h, prots 8,w, &) > (2mhpior) Y // ei8seinS g, e’
RxR™—2

w: 1 gsc,h Tsc,h
’ hPtot7 hPtot7 hptot

X a (ptot7 ) dgsc,h dnsc,h-

Multiplying the positive b-density 1, in (4.8) with the weight (hpiot)~ 1) gives a positive
right semiclassical scattering density, while the oscillatory integral itself is a conormal dis-
tribution of order m at the diagonal § = 0, @' = 0 which vanishes rapidly as ||+ |&'| = oo;
sc,h  Tlsc,h

Prot? hptot
of order m in (& py Nsc,n), With bounded conormal regularity as h — 0 or pgo — 0.

indeed this follows from the observation that h™ p a(ptot, w; hpltot’ 3 ) is a symbol

The statements about the principal symbols can be checked by inspection of the explicit
calculations in the proof of Proposition 4.9 as well as the present proof. U

Proposition 4.10 (Algebraic properties of N7). (1) (Multiplicativity.) The maps as-
signing to P € W, (M) the normal operator N7(P) € Way, 1(N3pT), or the spectral
family (£[0,00) 3 0 = N7(P,0)) € U, er ‘IJZZf’O’O(T), or any individual element

N;(P, o) € U™ (T) of the spectral family, are multiplicative.
(2) (Short exact sequence.) The map Nt gives a short exact sequence

m m N m
0 — prU5 (M) — V5 (M) —L U (N3 T) — 0.

Proof. The multiplicativity of N;(—, o) follows from its testing definition, see the comment
after Definition 4.7. The multiplicativity of Ny is a direct consequence of this. O

4.2. Normal operator at the dilation face D. We now turn to the D-normal operator,
which on the Schwartz kernel level captures the restriction to ffp .

Lemma 4.11 (Structure of ffp,). Denote by DE = [D?;(0D)?] the b-double space of D,
and by ffpy, its front face. Then

ffp, 2 [[0,00] x DE; {1} x ffpy]. (4.18)

This diffeomorphism is explicitly given as follows: fix a boundary defining function py €
C*(Mp) and a collar neighborhood [0, €),, x OMy of My, and consider the corresponding
product collar neighborhood [0, €),, % [0,€),r x OMy x OMy of (OMo)? C MZ. Then the map
(po, P:a:4') > (po/ply a4, q') extends by continuity from (Mg)?* and upon restriction to fip),
to the diffeomorphism (4.18).

See Figure 4.2.

Proof of Lemma 4.11. The front face ff C (M2)y, is diffeomorphic to [0, oo]s x (0Mp)? where
s = 2. In the following, we use that [0My;{p}] = D, and we work entirely inside of

0

ff = [0, 00] x (OMp)2.
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' T po/ po
‘ PT

FIGURE 4.2. Structure of ffp},. We only show a single coordinate in the left
and right factor of D x D, namely the defining function pr, resp. p4- of 0D
in the first, resp. second factor.

Consider the resolution (4.2), restricted to ff; then
fipy, = [F;psp N5 prar N pr N, pr N

Using the terminology introduced after (2.1), we can now commute p3, Nff through prrr N
(D), and then further through p; Nff and pr N ff (D; prar). In the resulting naturally
diffeomorphic space ffp, = [ff;prar N pr N AE, pr N fF;pg, N ], we may then commute
prnr N through py, Nff and pr N ff (D). In summary, we have a natural diffeomorphism

fip, = [F;pr N, pr N prar N pay, N 1]

But the first two blow-ups produce [0, oc] x D x D, to which prnrNfF lifts as [0, o0] x (9D)2.
Therefore, fip, is the blow-up of [0, 0o] x D at {1} xfip, (the lift of pg,Nff), as claimed. [

Recall from Definition 2.33 the extended edge-b-double space of [0,00) x D with edge
structure given by the fibration [0, 00) x 9D — [0, 00),

([0, 00) x D):b,ﬁ = [[0,00)* x D*{(0,0)} x D*; diag)y o) X (8D)*; [0,00)* x (9D)?].

The b-front face ff}, 4 (the lift of {(0,0)} x D?) is diffeomorphic, via restriction of the map
(pos Pb, 4, q'") + (po/pb,a,q'), to the blow-up of [0,00] x D? at its intersection {1} x (9D)?
with the fiber diagonal (see (2.42)) and at [0, 0o] x (9D)?. Identifying [0, 00) x D = + N3, D
(see Definition 3.21) by means of a choice of boundary defining function py € C*°(Mj), we
have thus proved the following result:

Proposition 4.12 (Relationship of ffp;, and the extended edge-b-double space of ¥ N3, D).
The boundary hypersurface fip) is diffeomorphic to the b-front face ffy, 3 C (+N3bD)2’b’ﬁ.
Via the choice of a boundary defining function pg € C>°(My), both are diffeomorphic to
[[0,00] x D2; {1} x ffpp] (in the explicit manner described above as well as in Lemma 4.11).

Definition 4.13 (D-normal operator). The D-normal operator of P € Wi (M) is the
edge-b-pseudodifferential operator

Np(P) € ¥, (T N3pD)
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whose Schwartz kernel is the unique dilation-invariant (with respect to the dilation action
in the fibers of T N3, D—hence the subscript ‘I’) extension of the restriction K p]fbe of the

Schwartz kernel Kp of P to ffp ), (identified with ffy, 3 C (J“]\fng)g’b,jj via Proposition 4.12).

Proposition 2.34 then gives the following analogue of Definition 3.25:

Definition 4.14 (Mellin-transformed D-normal operator family). Fix a boundary defining
function pg € C*°(Mjy). For P € Wi} (M), the Mellin-transformed D-normal operator family

Np(P,A) € 97/(D),  A€C,

is defined by (2.40). Equivalently, the Schwartz kernel of ]/V;(P, A) is the Mellin-transform,
in the first factor of (4.18), of the restriction of the Schwartz kernel of P to ffp ;. Moreover,
we define

Nop(P) € \I/gfI(JFNé?D)

as the b-normal operator of J/V;(P, 0) at 9D. Furthermore,
)07 AT
Np (P) € U™ (FNOD)
is the tf-normal operator of the family
((0, 1) 5 h — Np (P, —ip + h—1)> e g00m (D) (4.19)
for any p € R.
We recall also that the operator family (4.19) depends smoothly on p € R.

Remark 4.15 (Principal symbols). The principal symbols of N;(P, A), N{)t(P,,u, h), and
N% «¢(P) are related to the principal symbol of P in the manner described in Corollary 3.24
and Lemma 2.31.

Proposition 4.16 (Algebraic properties of Np). (1) (Multiplicativity.) The maps as-
signing to P € W3, (M) the normal operator Np(P) € Uey, 1(YNapD), or a Mellin-

transformed normal operator ]/V;(P, A) € Uy (D), X € C, are multiplicative.
(2) (Short exact sequence.) The map Np gives a short exact sequence

N
0 — ppV5 (M) — U5 (M) =2 v (T N3, D) — 0.

Proof. The definition of N;(P, A) in terms of (3.34) implies the first part. In the second
part, only the surjectivity of Np requires an argument; but this follows directly from
Proposition 4.12. O

4.3. Summary of symbols, normal operators, and their interrelationships. The
discussion in §3.4 applies also in the general case of 3b-ps.d.o.s, with minor notational
changes. The analogue of Proposition 3.28 is:

Proposition 4.17 (Identification of N3 (P) and N;Etf(P): pseudodifferential case). Let
P e Wi (M). In the notation of Proposition 3.28, we then have

0" Np 4(P) = N7 (P), (4.20)

where the operators are defined with respect to the same fized choice of boundary defining
function on My, and where ¢p: *NOT — T NOD is the isomorphism (3.35).
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Proof. By definition of N%tf( ) and N;Etf( ), the equality (4.20) certainly only depends
on the restriction of the Schwartz kernel Kp of P to an arbitrarily small neighborhood of
(ffp, NfE7,)°.% Via a partition of unity, we may work in the coordinate system (4.1), i.e.

T Xo T-T X, —X| XQ—Xg)

’ 7X y 7X ’X - (X ’ ’
(P, pDs X2, $3b, X3b,1, X31,2) PXUXDTXDT X, X1

where T > 0 and X = (X1, X2) € R x R" 2, with X; 2 | Xo|, T, L2, | X — X'|, are local
coordinates on My lifted to the left factor, and 7" and X' = (X7, XQ) denote their lifts to
the right factor. Moreover, ff, and ffp ), are defined by p7 = 0 and pp = 0, respectively.
In these coordinates, and letting

L X X

tl = ?7 f]?l = F, xz - W, (421)
a positive right 3b-density is given by 2} ~"|d¢’ da) daf|, and therefore we have
Kp = K(pr, pp, X2, 36, X3p,1, X3b,2) - ¥} "[dt’ da} da), (4.22)

where on supp K we have pyr > 0, pp > 0, while the remaining coordinates X, € R?2
s3p €R, X3p1 € R, X3p2 € R"2 are bounded.
Consider first the 7-tf-normal operator of P; thus we work in p7 = 0. Introduce the
(singular) coordinates
1 X, Xo

t:T, xlz?, xQZ? (423)
and (4.21) on M3bb’ thus
A 1 x5 t—t x1 — L/x' To — L/x'
(pp> X2, 830, X3b,1, X3b,2) = (*,*, ) e L 2)-
xr1 r1 T X1 €1

The Schwartz kernel of ]/Vf\r(P, o) (which only depends on K at ¢/t' = 1) is then given by
(0,21, T2, 77, T3)

_ 1 29 7T x1—2) 19— 2! o
) 1/ Z(”K<O — =, -, L 2>dT-x'1 (n 1)|dx'1dx'2\.
R $1 1 X1 1 T

(4.24)

In order to compute the Schwartz kernel of N;f o¢(P), we introduce

-1 /—1 /

Loox 1 T2 _xp m )

g, P= =— W=— §=—— =7, W=7
g ox1 il T xl CEl

as coordinates near tfg , C 72, . Expressing (4.24) in these coordinates, changing variables
via T =0opT = 071’ and then taking o N\ 0 gives

. 1 / d
Nf 4(P)(p, s, w,0) = s/Re”/ﬂK(o, 0,0, —7,1— —,w— %) as - —de (4.25)

20The explicit calculations in the original definitions of these operators, and also the explicit expressions
in equations (4.25) and (4.26) below, show that these operators in fact only depend on the restriction
KP|HD,bmHT,b'
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On the other hand, the D-tf-normal operator of P is defined in terms of the restriction
of (4.22) to pp = 0. Working in the (singular) coordinates
A Xo A X}
==, X1, Xo=2", X|, Xj=2
2 T 1, 2 )(1 ) 1 2 X{

on ffp}, the right density factor in (4.22) is

X/
QY da dah| = X1 d“d 1
I

dX2

Therefore, the Schwartz kernel of N;(P, A) is given by
(A7X17X27X17Xé)

p-1 X1 -X| o X )

oo
t—)X/_l/ _MK<X .0, Xo, :
1 . 2 1 2 X; X; X,

We wish to compute (the Schwartz kernel of) N .(P). To this end, we introduce in this
expression the coordinates

- Xy X

X .
-1 2 1 / /
h )\ ) R h 9 W = Xl 27 S X17 w 2
and obtain, upon changing variables via u = e‘hRf,
—hR? _ 1 d
Np 4 (P) = lim 7 ”RK<hR 0w, “——=—1-5w- Sw’> ds - )*de'
: hN\O R hR 5 (4.26)
ds
— 5" /erKOOw 1— 8w =) di - |

The identiﬁcatign ¢: TNOT = +{V8D in the coordinates used in (4.25) and (4.26) maps
(p,s,w,w) = (R, S,w,w') where R = p~! and S = s~!; pullback along ¢ thus indeed maps
Nj +(P) to N}ftf( ). The case of Np, ((P) and N (P) is completely analogous. O

Proposition 3.29 remains valid as well, mutatis mutandis:

Proposition 4.18 (Relationship of Nop(P) and Ny7(P): pseudodifferential case). Fiz a
boundary defining function py € C*°(My). Let P € Wi (M). Denoting by ¢ op: TNOT —
TNOD the isomorphism (3.38) (homogeneous of degree —1), we then have 1*¢* Nop(P) =
Not(P).

Proof. This follows from Proposition 4.17 followed by the identification of the b-normal
operators of Nf,jEtf(P) (i.e. the restriction of Ny(P,—) to tf C Tgep) at zf Ntf C tf C Teep
and of N;(P, 0) (which is the same as the restriction of N;(P —) to zf C Tsep) via . The
latter identification is valid for any sc-b-operator by Lemma 2.13. O

Lemma 4.19 (3b-operators with elliptic principal symbols). Let m € R and P € Wi (M);
suppose that the 3b-principal symbol 3°c™(P) of P is elliptic. Then all normal operators
have elliptic principal symbols. That is, the following operators are elliptic:

(£[0,00) 3 0 = N7 (P,0)) € W™m00(T) o4 >0, (4.27)
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and thus also N7(P,0) € WP(T), further N7(P,0) € Vo™ (T) for o # 0, and N3 ;(P) €
v OFNIT); and also N?Eh(P) € U(T) is elliptic. Furthermore,

sc,b sc,h
Np(P,\) € U7(D),  Ae€C,
is elliptic, as is NZ ;(P) € \Ilglé?:’m(mﬁp) (related to N7j5 ot (P) wia Proposition 4.17) and

NZ, (P u,h) € \I/Z%’O’O’m(D). Finally, the operators Npr(P) € W7 ("NOT) and Npp(P) €
U (Y NOD) are elliptic (and related via Proposition 4.18).

Proof. The relationships of the principal symbols of the normal operators of P and the oper-
ator P itself are discussed for differential operators in Propositions 3.13, 3.17, and 3.16, and
Corollary 3.23 and Lemma 2.31 by means of the phase space identifications of Lemma 3.12
and Corollary 3.23. These relationships hold without changes in the pseudodifferential set-
ting as well, as can be checked using the explicit constructions in Propositions 4.9 and 4.10
for the T-normal operators, and Proposition 2.34 for Np(P, \). See also Remark 4.15. Note

that the ellipticity of N%tf(P) and N\T(P, 0) implies that of (4.27) for small o9 > 0, and
the ellipticity of (4.27) for arbitrary og uses that of N;(P, o) for o # 0. O

4.4. Weighted 3b-Sobolev spaces. We define Lgb(M ) as the L2-space on M with respect
to any positive smooth 3b-density on M.

Lemma 4.20 (L?-boundedness). Let P € U, (M). Then P defines a bounded linear map
on L3, (M).

Proof. Using Hormander’s square root trick, it suffices to prove the claim for P € W5 >(M).
Fix any positive 3b-density v on M, and write the Schwartz kernel of P as K7y where
K e COO(MSQb’b) vanishes to infinite order at all boundary hypersurfaces except for ffp),
and ff7,. It then suffices to show that [, |K(—,q)|v is uniformly bounded for ¢ € M;
by symmetry, also [, |K(q, —)|v is uniformly bounded then. The key observation then is
that the lift of v to the left factor, as a density on M32b,b7 is smooth down to ffp), and ff7,

(as a consequence of the calculations in Lemma 4.1) and has at most inverse polynomial
conormal singularities at the other hypersurfaces which are canceled by the infinite order
vanishing of K at those. U

Definition 4.21 (Weighted 3b-Sobolev spaces). For s > 0, fix an operator A € W$, (M)
with elliptic principal symbol. We define

Hi, (M) 1= {u € L3, (M): Au € L3,(M)}.
For s < 0, we fix A € W *(M) with elliptic principal symbol, and let

HS, (M) = {uy + Aug: uy,ug € L3, (M)}
For weights ap, a7 € R, we finally set

Ha '™ (M) = {pp’p7 u: u € Hy,(M)}.

(For s € Ny, one can equivalently define H, (M) to consist of all u € L2, (M) so that
Au € L3, (M) for all A € Diff§,(M).) Thus, Hy ™7 (M) is a Hilbert space with dual
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space relative to L3, (M) given by Hy > P~ %7 (M); and (weighted) 3b-ps.d.o.s act in the
expected manner, for instance

APPETGI (M) 5 A: HEPOT (M) — Hyy, ™o~ PooT=01 (0p),

When Ey — My is a vector bundle and F = 3*Ey — M its pullback along the blow-down
map : M — My, one can similarly define spaces H3 (M; E) of E-valued distributions to
consist, in local trivializations of F, of (rank F)-tuples of elements of Hj (M); likewise
for weighted spaces. Elements of Wi} (M; E, F') (or more general spaces of operators with
conormal coefficients) act boundedly between such weighted 3b-Sobolev spaces.

Instead of a positive smooth 3b-density, one can also define L?(M) and weighted 3b-
Sobolev spaces with respect to a weighted positive density v = p/r” p?TVO where 0 < vg €

C>®(M;3PQM) and up, ur € R; if the need arises to make the density v explicit, one writes
L*(M,v) and Hi*® 7 (M, v).

Remark 4.22 (Bounded geometry perspective on 3b-Sobolev spaces). We continue Re-
mark 4.5 and fix any Riemannian 3b-metric ¢ on M; denote the Riemannian distance
function associated with g by dgy: M° x M° — [0,00). One can then, for any fixed € > 0,
find a countable collection {p;: i € I} C M° of points so that the e-balls B(p;,€) (with
respect to dg) cover M°, and so that there is a finite number J so that any intersection
of more than J balls B(p;,3¢€) of thrice the radius is empty. (See [Shu92, Appendix A].)
Using the exponential map (with respect to g) to identify the balls B(p;, 2¢) with open balls
on R” of radius 2¢, and denoting by {x;: ¢ € I}, supp x; C B(pi,€), a bounded partition
of unity on M° subordinate to the balls B(p;,€) (i.e. in these local coordinate charts, the
family {x;} is uniformly bounded in C*°(R"™)), we then have an equivalence of norms

HUH%{gb(M) ~ Z ||XiU||%{s(Rn)a (4.28)
i€l

where we fix a positive 3b-density on M to define 3b-Sobolev spaces. (To obtain an anal-
ogous statement for weighted spaces Hy"”**7 (M), one multiplies the term corresponding
to i € I by supg, (pp Ppy" "), or equivalently by infp, (pp " p7*7), the ratio of the two
quantities being uniformly bounded.) The proof of (4.28) is elementary for s € Ny; for
negative integer s one can use a duality argument. For real s finally, one uses the fact that
one can compute 3b-Sobolev norms via testing with any elliptic 3b-ps.d.o. of order s, which
one can thus choose to have Schwartz kernel supported in an § neighborhood of diagg,,.
Expressing this Schwartz kernel in local coordinates on the balls B(p;, 2¢), and localizing
to an §-neighborhood of B(p;,€) x B(p;, €) using a cutoff which in the aforementioned local
coordinates is i-independent, one obtains a uniformly bounded family of (uniformly) elliptic
ps.d.o.s on R™. Using this family to compute the H*(R™)-norm of y;u gives (4.28).

Lemma 4.23 (Rellich-type compactness). Let s, s, ap, o/, a7-,loz:7- € R, and suppose s >
s', ap > alp, ar > oy. Then the inclusion Hy P T (M) < Hy “P“T (M) is compact.

Proof. This is most easily proved using the characterization (4.28). Given a bounded
sequence u; € Hyi"™“T(M), which we may assume to converge weakly to some u €
H3P T (M), we can extract a subsequence (via a diagonal argument), which we denote by
u; still, so that for all i € I, the distribution y;u; converges in H* (R") (with the limit nec-
essarily being x;u). But upon computing |lu; —ull* , , : using (the weighted version

NeY
b D ’T(M
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of) (4.28), the fact that for any fixed 6 > 0, one has suppg(,, o (pga/D p;a/T X pPp37) > & only

for at most finitely many ¢ € I, implies the desired convergence u; — win H ;b’aD’aT(M ). O

Corresponding to the normal operators at the transition face 7 related to the spectral
family, and the operator algebras in which the spectral family lives, we have the following
result for weighted 3b-Sobolev spaces:

Proposition 4.24 (3b-Sobolev spaces and the Fourier transform near 7). Fiz local coor-
dinates po =T >0 and X € R"! near p € My, with (T, X) = (0,0) at p, and put t = T~1
and x = 3 as in (3.3). Let x € C°([0,00)r x RE ™), with support in the coordinate chart.
Write the Fourier transform of v = v(t,z) int as 0(o,z) = [ e'tv(t,z) dt. Fiz any v € R,

and fir the weighted 3b-density (x)Y|dt dz| on M and the density (x)7|dz| on T = RZ L.
Let s,ap € R. Then

Il smayy ~ 3 [ IO oo, do
3b + j:[(],l] sc-b,o
(4.29)
+ / 10, 2 wrvape, do
:t[l,OO) I{sc,|:’7'_|7Dl (T)

in the sense that there exists a constant C' > 0 which is independent of w so that the left
hand side is bounded by C times the right hand side, and vice versa. (In particular, one
side is finite if and only if the other side is.)

Remark 4.25 (Fourier transform of weighted 3b-Sobolev spaces). In the case s = ap =
~v = 0, the Fourier transform in ¢ gives an equivalence of the Hg}’ao’aT (M)-norm of yu with
the HT (R,; L?(T))-norm of Yu. In particular, the norm on Yu is no longer local in o,
unlike (4.29), and in particular it is involves differentiation across o = 0; it is not clear how
to capture such o-regularity at the same time as the sc-b-behavior near zero frequency. In
short, we do not have any norm equivalences such as (4.29) when the T-weight is nonzero.
See §6.4 for workarounds in the context of sharp Fredholm theory for fully elliptic 3b-
operators.

Proof of Propsoition 4.24. Since the Fourier transform commutes with multiplication by
powers of (x), it suffices to consider the case ap = v = 0; thus, we work with the densities
|dt dz| on M and |dz| on 7. For s = 0 then,

HXUHH;)I;O*O(M) = ||XUHH§b(M) = HXUHLz(Rt;Lz(Rg*l)) ~ ”@HLQ(RU;L%RZ*I))

by Plancherel’s Theorem, and the norms on Ho0"(T) and H>®Y_ (T) are (by definition)

sc-b,o sc,|o| 1

equal to the L?(7)-norm; this proves (4.29) for s = 0.

Before proving (4.29) for general s, we discuss the case s = 1 for the sake of exposition.
On the left, we test xu with 1 (identity operator), (z)D;, and (z)D,, which upon passing to
the Fourier transform amounts to testing yu(o) with 1+ (z)|o| and (x)D,. Let us restrict
attention to pp := |z|~! < 1, and write w = é—‘ For 0 <o <1, resp. h:=o0"! € (0,1], this
can be written as testing with

o pp \ L pp \"Y/ pp pp \"Y/ pp
=) () D) () (S 50w),
PD pp+o pp+o PD+O'pD e pp+o pp+o ¥
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resp. h_lpgl, h_lpgl(hp%DpD) h~1 _1(hpprg) But pD+Up98pD and oo +U .7 Span the
space of sc-b-vector fields near pp = o = 0, while hp%0,, and hppd,,; span the space of

semiclassical scattering vector fields near pp = h = 0. This implies (4.29) for s = 1.

For general s > 0 (and still with ap = v = 0), we argue as around (2.9). Fix an operator
A € W35, (M) with elliptic principal symbol. Then

Iculi3s, oy ~ Ixulig (any + 1AGA g (ar

We shall in fact arrange for A to be t-translation-invariant on supp x; that is, upon identi-
fying a neighborhood of 7 C M containing supp y with a neighborhood of 7 22 7 C Na, T
in a way compatible with the 3b-structures on M and N3,7 (as discussed after Defini-
tion 3.18), the Schwartz kernels of A and Ny (A) are equal near supp x X supp . The
advantage is that then, by definition of the spectral family of A, we have

IAC 1 Fo ary ~ [ INT(A, o) xu(o, =) 1727 (4.30)
3b( ) R
But by Lemma 4.19, the operator family (£[0,1] 3 ¢ + Ny (A,0)) € \I'gcstO(T) has an

elliptic principal symbol as a sc-b-operator, and so does ((0,1] > h — NT(A, +h71)) €
\Il:(’f}f(T) as a semiclassical scattering operator. Therefore, upon splitting the right hand
side of (4.30) into (—oo, —1]U[—1,0]U]0, 1]U[1, 00), the equivalence of norms (4.29) follows
from the definition of the sc-b- and semiclassical scattering norms.

For s < 0, the norm equivalence (4.29) follows by duality from the case that the 3b-

differential order is —s. U

We stress that the equivalence of norms (4.29) only requires as an input the inheritance
of ellipticity when passing from a 3b-operator to its various normal operators; this in turn
is a testament to the high degree of precision with which, say, the sc-b-algebra captures the
range of the low energy spectral family P +— ([0,1) > 0 — N(P,0)). However, we caution
that the map P +— N(P,—) into the space of sc-b-ps.d.o.s is not surjective, nor is even just
its composition with the sc-b-principal symbol map (cf. the final part of Proposition 3.14).

Proposition 4.26 (3b-Sobolev spaces and the Mellin transform near D). Fiz a boundary
defining function py € C®(My). Fiz a collar neighborhood U := [0,1),, x D where pp is
boundary defining function of D C M, and identify U with a collar neighborhood of the

lift of D to * N3pD (see Definition 3.21). Fiz x € CSO(U). Write the Mellin transform of
v = v(po,z) (where z € D) in py as O(A,z) = [3° o P (po, )dpo. Let pp,pur € R and
0 < v3p, € C®(M;3PQM), and ﬁx on M the weighted 3b- denszty v = pp’ o4 v, Fiz on

D the weighted b-density U := plf 72Dy, where 0 < 1y € C°(D;POD) and i € R. Let

s,ap,ar € R. Then

2
HXUHH;;D‘D’O‘T(MW)
- ) 17%5 2
~ Ao — _ KDy H o A
/[11 HX“( 0 Z(“” 2 ) ) BT () 0 (4.31)
1245}
DY)

2
u)\ —z<oz _7),—H o ALl dXo.
L {1.00) ‘X 0 D 2 ) HC’,l/\Z‘_leruTﬂ Tap+ig, (D,7) 0
Here, we regard xu as a distribution on * N3, D, obtained by blowing down o, in (3.26).
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Note here that y e A©0) (U) is, a fortiori, a bounded conormal function on * N3, D with
support disjoint from the lift of T N,0Mjy, and its pushforward to T N3, D is thus a bounded
conormal function, i.e. y € A0 (+ N3, D), with support contained in the image of 2/ under

the blow-down map *+ N3, D — T N3, D. See Figure 4.3.

D D

M +]\]'3})'1) +N3bD

FI1GURE 4.3. Illustration of Proposition 4.26. From left to right: the mani-

fold M, the D-model space T N3, D, and its resolution + N3, D. The support
of the cutoff function x is the shaded area; the dashed blue lines are level
sets of the function pg in which we take the Mellin transform.

Proof of Proposition 4.26. Near DN T and in the coordinates pp = I pr =R, weR"2,

dT dR

g dwl, and therefore

the 3b-density v3}, is a smooth positive multiple of ]%?—Jdm = |%
T

v is a smooth positive multiple of

THD RPT—kD—1 —dw‘.
T R
Thus, v = ,0“ b p“ ThD= l/b where 14, is a smooth positive b-density on T N3, D. Note then
that
9 _a,D_i_i _C“T"';
Il oonor y,, = lloo xlz2arm)

_ L,
:H pr’T aD+MDpTaT+aD+ KD uHiQ(M7Vb)

_aT"FOCD_MT_H/\ . ,ul 2
Xu{Ao —i{ap — 2 T

this is the case s = 0 of (4.31). For general s, the equivalence (4.31) follows from Pro-
position 2.35 in conjunction with Proposition 4.16. (The connection between 3b-Sobolev
spaces on M and edge-b-Sobolev spaces on T N3,D is given explicitly via Definition 4.13:
we can extend an elliptic edge-b-operator on * N3, D by dilation-invariance in py (in both
factors on the Schwartz kernel level), followed by cutting off to a collar neighborhood of D,
to a 3b-operator which then has an elliptic principal symbol near D. Such an operator can
then be used to measure 3b-regularity on M and edge-b-regularity on ™ N3, D at the same
time.) O

dAo;

L2(D,plyT 2Dy,

4.5. Operators and Sobolev spaces with variable order. While not used in the
present paper, ps.d.o.s and Sobolev spaces with variable orders play important roles in hy-
perbolic problems, in particular in settings in which scattering theory enters, cf. the radial
point estimates in [Mel94] as described in [Vas18, Proposition 4.13], [BVW15, §5] or [Hin21c,
§4]. The 3b-framework is used in [Hin23| to analyze the propagation of 3b-regularity for
waves on appropriate asymptotically flat spacetimes through 7, and scattering behavior
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occurs at certain conic submanifolds (radial sets) of 3bT, a7 M. We thus indicate here the
minor modifications needed to deal with ps.d.o.s or weighted Sobolev spaces with variable
3b-differential orders; this is analogous to the discussion in [BVW15, Appendix A], and
goes back to [Unt71].

We need to use the symbol class Sf_675(3bT*M) where § € (0,3). Letting ps €
C>(3*T*M) denote a boundary defining function of 3*S*M (so puo, resp. pz} is a clas-
sical symbol on 3PT*M of order —1, resp. +1), this is equal to the space A3(3PT*M) of
functions u € C(3*T* M) for which Vi ... Vyu € pz5~™0L>®°(3bT*M) for all m € Ny and
all vector fields V; € V(3PT*M) which are tangent to 3>S* M. For s € C*°(3PT* M) then, we
then define the space S°(**T*M) to consist of all psSag where ag € (5= 5’?_5’5(3bT*M).

We remark that when slsvg.p; = 0, then pZf € Ny, S?_576(3bT*M), and therefore the

oo
class S(3®T*M) only depends on the restriction of s to 3°S*M. Moreover, if we let
S0 = Mminssg. s s, then SSCPT*M) C Nyag S0 545CCPT*M).

We then define, for § € (0,3) and s € R, the class U§, ;_s,(M) of 3b-ps.d.o.s as in
Definition 4.3, except we only demand that their Schwartz kernels be conormal distributions
of class (1 — §,0) (see [Hor71]). The principal symbol of P € W5 | 55(M) is then an
element o5 | ss(P) € (5/S5 12)(3>T* M), and the normal operators are elements of
31557 (NapT) and \I’;b71757571(+N3bD) (defined analogously). Given a variable order

function s € C*®°(3PT*M) and sy = minsbgs; s, we then define
(M) C [ W50 1_s5(M)
>0
as the space of operators whose Schwartz kernels are conormal distributions of variable
order s (identified with a variable order function on N*diags,), i.e. in local coordinates
near diags, they are given as quantizations of elements of S5(3*T*M). Directly from the
definitions, we have:

Lemma 4.27 (Symbols and normal operators of variable order ps.d.o.s). Denote by s €

C®(3PT*M) a variable order function. Then the principal symbol gives a short exact se-
quence

3b s
0— () U5, T22(M) = T5,(M) — <SS/ N Ss‘l+25> (**T*M) — 0.
6>0 6>0
Moreover, the T - and D-normal operators give rise to short exact sequences

0 = prUg, (M) = U3 (M) °5 W5 (NspT)  — 0,
0 — ppW5,(M) = U3 (M) 22 W2 (*Ny,D) — 0,

where st is the translation-invariant extension of S|3bT7*_ M> and sp s the dilation-invariant

extension of s|svps y € C (PTH (T NapD)).

Defining variable order versions of all other model ps.d.o. algebras in an analogous fashion
to the 3b-case just discussed, we also have:

Lemma 4.28 (Spectral family and Mellin-transformed normal operator family). Let s €
C®(3PT*M) and P € U3 (M). Then:
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(1) Let og > 0. The family £[0,00) > o — Ny (P,c) is an element of ‘IJZETI’DSSC’O’O(T).
Here, the variable order functions s € C*°(*PS*T) and sy € C®(5PT*.T) are
the restrictions (to the stated boundary hypersurfaces of SST*T ) of the pullback of s
along the family of maps (t5)sect(0,00) from Lemma 3.12.

(2) The family (0,1) > h N;(P,:l:h_l) is an element of W25 (T), where so €

sc,h
C®(5NS*T), s € COO(SC’E’T[BJ)X@TT), and sy, € COO(SthTfh:O}T) are the restric-
tions (from W’T} of the pullback of s along the family of maps t4p,-1.

(3) For X € C, the operator /N;(P, ) is an element of U3 (D), where ss € C*(PS*D)
is the restriction to PS*D — ©PSx(* N3, D) of Slabsx as under the identification
given in Corollary 3.23.

(4) For p € R, the family (0,1) > h — N;(P, —ip+h7L) is an element of ‘I’i‘;”ﬂ’o’sh (D)
where s € C®("'S*D) and s € C®("TAD) are restrictions (from "T*D) of
5’3135;,1\/[ in the manner described in Lemma 2.31(4).

The principal symbols of Nf\r(P, —) and N;(P, —) in the stated algebras are given in terms
of that of P via analogous pullbacks, as discussed in §3.4.

Proof. Upon localization of Schwartz kernels away from diags,, any 3b-ps.d.o. becomes a
residual operator, whose normal operator families are thus already controlled. Therefore, it
suffices to study the near-diagonal contributions to the normal operator families. Part (1)
then follows as in the proof of Proposition 4.9. Concretely, one starts with the oscillatory
integral expression (4.14), where now a is a variable order symbol in (o3p, &, n7); the explicit
expressions (4.15), (4.16), and (4.17) of the spectral family in coordinate charts covering the
support of its Schwartz kernel inside of 7;%_]0 then imply the claimed relationships between
P and N\T(P, —) as regards the variable orders as well as the principal symbols. Part (2)
similarly follows by inspecting the proof of Proposition 4.8(2). The remaining parts likewise
follow by an inspection of the part of the proof of Proposition 2.34 concerned with the near-
diagonal behavior, applied to the operator Np(P). The smoothness of the variable orders
induced by s is a consequence of these arguments as well; we leave it to the reader to check
this via direct computations in local coordinates. O

We next define variable order 3b-Sobolev spaces
H3™ T (M) = pp” pi” H3, (M);
here, given s € C®(3PT*M), we fix any A € WS, (M) with elliptic principal symbol, and
set, for sp < minsngs /s,
HS, (M) = {u € H(M): Au € L*(M)}.

Using the 3b-symbol calculus, it then standard to show that variable order 3b-ps.d.o.s are
bounded linear maps between such weighted variable order 3b-Sobolev spaces. Moreover,
Lemma 4.23 can be generalized to the statement that the inclusion

H30P T (M) — Hy“PT (M)

is compact if ' <'s (both of which can be variable) holds in the pointwise sense, o/, < ap,
and o/ < a7. (This can be proved similarly to Lemma 4.23; indeed one reduce it locally to
a constant order result by using that for a sufficiently small radius € > 0 of the balls B(p;, 3¢)
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used to cover M°, one can squeeze two constant orders supp,, o) s’ < s < s <infpp, 208
in between s and s’. We leave the details to the reader.) We finally record the following
variable order analogues of Propositions 4.24 and 4.26:

Proposition 4.29 (Variable order 3b-Sobolev spaces and the Fourier and Mellin trans-
form). Lets € C*°(3PT*M) denote a variable order function, and let € > 0.

(1) We use the notation po =T, X, t =T, 2 = X/T, and we fix densities on M and
T as in Proposition 4.24. Then there exists § > 0 so that for x € C2°([0,00)r xR 1)

with T + | X| < 6 on supp x, and for any ap € R, there exists a constant C > 0 so
that

C 5 ¢(xu) < lIxull sap.0 < CT°(xu), (4.32)

(M)

where we set

—~ 2
= u\o, — S00,SsCTAD D da
DY I ICIC e

sc-b,o
— N2
L PGS

Here, sso, Ssc in the first, and seo, Ssc, Sk in the second line are defined as in
Lemma 4.28(1) and (2), respectively.

(2) We use the notation py, U = [0,1),, X D, and the weights and densities from
Proposition 4.26. Then there exists 6 > 0 so that for x € C°(U) with pp < § on
supp x, and for any ap,at € R, there exists a constant C > 0 so that

071\75%0{“) < HXUHH;O‘D’QT(M) < CjS+E(XU)7

where we set

_ . D 2
S(h) e Ao —ifap—HPY — H - dx
J?(u) /[11]”Xu< 0 Z(aD 5 ) ) T aD+#2i(D’ﬂ) 0
+Z/

Here, so in the first, and s, sy, in the second line are defined as in Lemma 4.27(3)
and (4), respectively.

2
UD X )
’Xu 0— z( ap — o ;=) st*af—aw#vw—am#,sn(D’f/) dXo.
£[1,00) elrgl~1

If s is translation-invariant (with respect to t-translations in the (t,z)-coordinates) in a
collar neighborhood U of T, resp. dilation-invariant (with respect to dilations in py in some
collar neighborhood of OMy) in a collar neighborhood U of D, then one can take e = 0 in
part (1), resp. (2) provided supp x C U.

Proof. When s is translation-invariant, part (1), with e = 0 (and thus a fortiori for € > 0),
follows by the same proof as in for Proposition 4.24. For general s, one chooses § > 0 so
small that the pointwise difference between s and the translation-invariant extension s; of
slst;M is less than e for T'+ | X| < . One can then apply (4.32) with s;,0 in place of s, ¢;
the estimate (4.32) as stated then follows from Z° ¢(xu) < Z° (yu) < Z57¢(xu). The proof
of part (2) is completely analogous. O
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5. THE LARGE 3B-CALCULUS

We continue using the notation My, p, M = [Mo; {p}] of §3. The small 3b-calculus intro-
duced in §4 is sufficient for the (symbolic) phase space analysis of 3b-(pseudo)differential
operators; moreover, in combination with the function space isomorphisms related to the
Fourier transform at 7 and the Mellin transform at D developed in §§4.4-4.5, the small
calculus is a sufficiently powerful tool for asymptotic analysis at 7 and D; see §7 for a
demonstration in the elliptic setting. However, as is already familiar from the b- [Mel93],
edge [Maz91], or O-calculi [MMS87], precise parametrices or (generalized) inverses of fully
elliptic 3b-operators (a notion we will define in §6) do not lie in the small 3b-calculus, but
in an appropriate large 3b-calculus which incorporates boundary terms. In this section, we
define this large 3b-calculus and prove its basic mapping and composition properties.

5.1. Basic properties of the large 3b-calculus. We begin with the definition of the
resolution of M x M which will carry the Schwartz kernels of elements of the large 3b-
calculus:

Definition 5.1 (3b-double space). Denote by py, and ppr the lifts of {p} x My and Mo x {p}
to the small 3b-double space M3, , from Definition 4.2. Then the (large) 3b-double space is

M3, = [Mgzb,b;ﬁL,ﬁR] = [(Mo)3; psbi PLAR; PLs PR; PL, PR], (5.1)
where psp, PrAR, P, and pr are as in Definition 4.2. We denote the boundary hypersurfaces
of M??b as follows:

o ff7 is the lift of ff), C M??b,w i.e. the lift of pgp, C (MO)%;

ffp is the lift of ffp, C M2 |, i.e. of the front face of (My)?;

If, resp. rf is the lift of py, fesp. PR;

Ibp, resp. rbp is the lift of the left, resp. right boundary of (MO)%;

Ib7, resp. rby is the lift of py, resp. pg;

if 7, resp. if g is the connected component of the lift of p;ngr which intersects lbp,
resp. rbp nontrivially. We shall also write if := if;, U if g.

Finally, diags;, denotes the lift of the diagonal in (Mp)? to M32b.

Lemma 5.2 (Relationship of M2 and M?). The space M3, is a resolution (iterated blow-
up) of M?.

Proof. ITn M? = [M2;{p} x Mo; My x {p}], we blow up (the lift of) {(p,p)}; this can be
commuted through My x {p} (D; {p} x My) and {p} x My (D). Next, we blow up the lift of
{p} x OMpy; this can be commuted through My x {p} (intersection C {(p,p)}) and {p} x My
(D); similarly, we can blow up My x {p}. Thus, M? can be blown up to

[M3; {(p, p)}; {p} x Mo, 0My x {p}; {p} x Mo, Mo x {p}].
Next, we blow up (0M;)?; this can be commuted through My x {p} (intersection C dMy x
{p}) and {p} x My (intersection C {p} x IMy), as well as through OMy x {p}, {p} x OMy,

and {(p,p)} (C for all three). Using the notation of Definition 5.1, we have thus shown
that M? can be blown up to

[MZ; (0Mo)%; {(p.p)}; {p} x OMo, 0Mo x {p}; {p} x Mo, Mo x {p}]
= [(Mo)}; pLrr; L, PR; PL, PR
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Finally, we can blow up p3;, and commute it through py and pg since pgyp, is disjoint from
them, and we can then further commute it through p;, and pgr (intersection C prnr) and
through prar (D). This completes the proof. O

Remark 5.3 (Small 3b-calculus and bundles). In view of Lemma 5.2, we can define spaces
U5 (M; E,F) of 3b-ps.d.o.s acting between sections of smooth bundles E,F' — M via
tensoring the space of Schwartz kernels of elements of W§, (M) with C*°(M2,, 7hF @7} E*),
where 77, and 7g: M??b — M are the left and right projection, respectively. This is only
a minor generalization of the setting of Definition 4.3 since any vector bundle £ — M is
isomorphic (albeit not in a canonical manner) to the pullback of a vector bundle over Mjy;
this follows from the fact that E|; — T is trivial (the base 7 = R"~1 being contractible).

Figure 5.1 shows two slices of M. ??b given by level sets of the coordinate X’ € R”~!, where
we denote by T, X and T’, X’ local coordinates on the left, resp. right factor of (MO)%.

FIGURE 5.1. On the left: the lift of X’ = 0 inside of M??b' On the right: the
lift of X’ = X{ # 0 inside of M23,.

Definition 5.4 (Large 3b-calculus). Let £ = (Eg,, &1, &it, &ty Elbp s Exbp s Ebys Exbr, Eif) be
a collection of index sets. With 7p: M:%b — M denoting the right projection, the space of
restdual 3b-ps.d.o.s is
- 78 «— .
‘113b00 (M) T Aghg(Miizbv Tr;? BbQM)’
where the index set £ is associated to the hypersurface H (in the case H = if to both ify,
and ifg). The large 3b-calculus consists of all operators in Wi (M) + \I’;bOO’S(M). We also
define for £ = (€1.p, €17, ER,D, ER,T) the space of fully residual operators®!
— * £+(0,0,0,1 *
W (M) = A (M2 PaM) = ASH 00D (2, ) (5.2)

which are polyhomogeneous kernels on the (unresolved) product space M x M with index
set Eppat Dx M, 7 at T x M, Egp at M x D, and Eg7 at M x T.

In particular, if all index sets in & are trivial (i.e. the empty set) with the exception of
Eip = —Pp + No and Ex, = —B7 + Ny, then W5, 20% (M) = ppP p 7705 (M) lies in the
small weighted 3b-algebra.

21We use right b-densities here for simpler bookkeeping; see Lemma 5.8 below regarding the relationship
between the b- and 3b-density bundles used here.
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Notation 5.5 (Index sets). To assist the reader with keeping track of which index set is
assigned to which boundary hypersurface of Mgb, we shall also write

WO (M) = Wy (M fp[Eqp ], 7 [Ein, ], U[Ex], v [Exe],
Ibp[Eby ], b [Eby |, IbT [Eb, ], thT [En ], i [Ei]).
We also note that by (5.2) and Lemma 5.2, we have
\Ilfoo’s(M) C \Ifg_boo (M; fip [8L,D + SR,D], HT[gL,T + gR,T + 1],
lf[SL,T + 5R7p],rf[5L,p + 5R77’ + 1], Ibp [8L,D]a rbp [5379], (5.3)
(€7, tbrlErT + 10, if[EL.T + ErT + 1]).

Proposition 5.6 (Basic mapping properties). Let £ be a collection of index sets as in
Definition 5.4.

(1) Let P € Vi (M) + \Ifgboo’g(M). Let F = (Fp, Fr) be a pair of index sets. Suppose
that Re(Emyp, + Fp) > 0 and Re(Ew + Fr) > 1. Then

P: Ay (M) — A% (M) (5.4)
where G = (Gp, G1) 1is given by

Gp = &y U (Erp + Fp) U (& + Fr — 1),

G =&, U (& + Fp) U (& + Fr— 1) U (&g, + Fr).
In particular, if P € W5 (M) is an element of the small 3b-algebra, then G = F.

(2) Let ap,ar € R, and define weighted 3b-Sobolev spaces on M with respect to a
positive b-density. Suppose that Re(Ew,y, + ap) > 0 and Re(Ew,, + ) > 1. Then

P: H?‘;v)OAD,aT(M) — AT (M), P HS’O‘D’O‘T(M) — AT (M),

(5.5)

for any
¥p < fy% = min(Re &y, Re&x, + ap, Re &y + a7 — 1),
yr < ’y%)— = min(Re 51]07_, Re & + ap,Re & + a7 — 1, Re gffT + OéT).

The boundedness of Wi} (M) as a map between weighted 3b-Sobolev spaces was already
noted in §4.4, and hence we do not repeat it here. We shall prove Proposition 5.6 using
pullback and pushforward results for polyhomogeneous distributions. The key geometric
input is:

Lemma 5.7 (Projection to the single space). The left, resp. right projection Mg — My
lifts to a smooth map 7, : M32,D — M, resp. TR: Mgb — M which is a b-fibration. The
preimage under 7y, of D, resp. T is lbp Uffp Urf, resp. Iby Ulf Uif Uffy. The preimage
under wr of D, resp. T is rbp Uffp UL, resp. rby Urf Uif U fi7.

Proof. We use the lifting results of [Mel96, Chapter 5]. Consider the left projection; the
case of the right projection is completely analogous. We start with the lifted left projection
(Mo)? — My, which is a b-fibration. This map is b-transversal to pg (which gets mapped
diffeomorphically to 9Mp), and hence lifts to a b-fibration

[(Mo)2; pR] — Mo.
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The preimage of {p} under this map is the union of the lifts of pyng, pr, and pr, and by
[Mel96, Proposition 5.12.1] this map lifts to a b-fibration

[(Mo)Z; priprarspripr] — [Mo: {p}] = M. (5.6)
Since pr D prnr, we can commute the first two blow-ups on the left. Moreover, the
map (5.6) is b-transversal to the lifts of ps, and pr, and hence lifts to a b-fibration

[(Mo)%;PLmR;PL,PR;ﬁL,ﬁR;Pgb] — M. (5.7)

The blow-up of ps3p, can be commuted all the way to the front since pgy, is disjoint from py,
and pr, and since p3p, Npe C pragr for ¢ = L. R (so [Mel96, Proposition 5.11.2] applies).
Thus, the domain of the map (5.7) is M32b, and the proof is complete. O

Pushforward and pullback results [Mel92] are most conveniently applied to b-densities;
hence, we record:

Lemma 5.8 (3b- and b-densities). We have 3PQM = ,0}1 POM = pF"B*POMy where
p1 € C®(M) is a defining function of T. Moreover,

w1 POM @ 7EPQM = (py piepst Pt prvrpie) ' QUM (5.8)
where py € C°(M2,) is a defining function of H C M2,.

Proof. Away from 7, b- and 3b-densities are the same, and near 7° and in the coordi-
nates T, X and ¢,z from (3.2) and (3.3), a positive section of 3PQM is |dtdz| = |%d$| =
T_1|d7de|; near the corner 7 N D, the claim follows from the fact that |%%dw| (in the
coordinates (3.6)) is a positive 3b-density, with R a local defining function of 7. This es-
tablishes 3PQM = pfrl POM. The second equality follows from the general observation (2.2)
since {p} has codimension n — 1 inside of dMj.

For the proof of (5.8), we note that the bundle on the left is

o7 () B QM (5.9)
where Po: M:S?b — Mg is the blow-down map and p7 and p/- are the left and right lifts of
a defining function of 7 C M. Repeated application of (2.2) gives

*b 2 _ 2n—1 2n—2 n—1 n—1 n—1 n—1b 2
B2 M =Prr Pt Pt Prt Plor Prbr QMs;,,

while Lemma 5.7 implies p7 = pg,pitpib,rpi and p- = pg., piepreprby- Plugged into (5.9),
this gives (5.8). O

Proof of Proposition 5.6. We only consider the case m = —oo. (Since 7y, is transversal to
the 3b-diagonal, the diagonal singularity for finite m is easily handled.) For part (1), fix
a b-density 0 < vy, € C>®°(M;3PQM), and denote the Schwartz kernel of P by Kp. For

u € Aﬁlg(M), we then have

Pu = V?;)l(WL)*(Kp TRU - TLV3D).

The distribution in parentheses is a section of 7} bOM @ Th 3bQM. By Lemma 5.8, we
thus have
Kp - mRu - Tpv3p € A;{hg(Mgb;bQMgb)7
H=(Ekp +Fp. &k + Fr — L&+ Fp — 1,Es + Fr — 1,

Ebp s Ebp + FDs by — 1, Ey + Fr — 1,E¢ + Fr — 2).
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The pushforward along (7). is well-defined provided the index sets &y, + Fp and &, +
F1 —1 at the hypersurfaces rbp and rby (the image of which intersects the interior of M)
are positive; and using Lemma 5.7, the pushforward then lies in
(Gp,G7—-1) .b
Aphg 77X PQM)

where Gp, Gy are defined by (5.5). Division by v}, € p}ICOO(M :PQM) increases the T-
index set by 1; this gives (5.4).

For part (2), we conjugate P by pp™? p}aT to reduce to the case ap = a7 = 0, and then

divide P on the left by p%%_epyr%_e where 0 < € < £ min(v% — vp,7% — 7). This reduces
our task to the proof of the boundedness of P: HS, (M) — A~“"¢(M) for P € \II;bOO’S(M)
under the assumptions Re ErbD > 0, Re 5rb7— > 1, and Re gﬁ‘D, Re gﬁ‘T, Re ElbD, Re Ele >0
and Re &, Re & > 1. Under these assumptions, the boundedness P: HY (M) — HY(M),
i.e. the L?-boundedness of P, follows from Schur’s Lemma. The desired result is then
a consequence of the fact that also APB € \Il?:boo’g(M) for any A € Diff,(M) and B €
Diffy,(M) (or B € Diffs,(M)), since every element of H (M) (or Hj (M)) is a finite sum
of derivatives of suitable elements of L?(M) along b- (or 3b-)differential operators. O

We end this section with a description of the boundary hypersurfaces of M2, :

Lemma 5.9 (Structure of the boundary hypersurfaces of Mgb). Fiz a boundary defining
function py € C°(My), and denote by po = T and pj, = T’ its lifts to the left and right
factor of Mgb, respectively. Introduce local coordinates T > 0, X € R, resp. T' > 0,
X" € R"1 on the left, resp. right factor of My x My near OMy; put s = T/T' € [0,00]. If
(T, X) are local coordinates near p, with p given by (T, X) = (0,0), then put (t,z) = (F, %),
likewise for the primed coordinates. When p = (0,0) in both coordinate systems (T, X) and
(T",X"), set T =t —1t'. Then:

(1) ffr = R x 7,2, with the diffeomorphism given in local coordinates by continuous
extension of (1,x,x') — (m,m,x’). (See Figure 5.2.)

(2) fip 2 [[0,00] x DE; {1} x ffpy), with the diffeomorphism given by (s, X, X'). (See
Figure 5.3.)

(3) Ibp = [D x M;90D x T;9D x D], with the diffeomorphism given by (X,T’, X").
Similarly, rtbp = [M x D; T x 9D; D x D], with diffeomorphism given by (T, X, X').
(See Figure 5.4.)

(4) by = T x M, with the diffeomorphism given by (x, T, X'). Similarly, tby = M xT
via (T, X, 2'). (See Figure 5.5.)

(5) If =2 [[0,00] X T x D;{1} x 0T x D;{0} x T x ID], with the diffeomorphism given
by (s,z, X"). Similarly, rf 2 [[0,00] x D x T;{1} x D x T;{occ} x D x 9T| via the
coordinates (s, X, x').

(6) ifr, = [[0,1] x T2;{0} x OT x T;[0,1] x (0T )?], with the diffeomorphism given by
(s,2,2"). Similarly, ifg = [[1,00] x T2 {0} x T x T;[0,1] x (0T)?].

Parts (1)—(3) have been used in the definition of model operators in §4 or will be used
in the parametrix construction in §6. Parts (4)—(6) are included only for completeness.

Proof of Lemma 5.9. We introduce the functions p = T+T" as well as X = % (when X =0

at p) and X' = X7/ (when X' =0 at p).
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| ifg, ) 7/{(x,2"))
X | | /
l ! ! T
| ! !
| ! rf] T
X //-———ﬂ—‘—— i
l Phe N
-7 D
R ST
I

FIGURE 5.2. Structure of ff; this is a variant of Figure 4.1. The intersec-
tion of ff with a boundary hypersurface * C M??b is labeled *. We note
that the family left, resp. right boundary R x lby, resp. R x rby, of R x ’Tg
is given by the lift of z7! = 0, resp. 2/~ = 0, which is rf, resp. If.

rbp
If

rf

Ibp

FIGURE 5.3. Structure of ffp in the case dim My = 1; this is a variant of
Figure 4.2. We only show the part of fip on which X, X’ > 0.

Ty xv

FIGURE 5.4. Structure of lbp in the case dim dMy = 1; we only show the
part of Ibp on which X > 0.

Since pz, and pp lift to be disjoint from ff+, and ffp ;,, we have ff7 = ff, and fip = fip .
Part (1) is therefore the same as Lemma 4.6, and part (2) is the same as Lemma 4.11.
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—00 +o00

FIGURE 5.5. Structure of lby.

Turning to part (3), the left boundary of (M)} is the lift of My x My, and indeed
(naturally) diffeomorphic to it; local coordinates are X, 7, X’. Among the submanifolds
blown up in (5.1), only prar, PL, PR, and py, lift to be not disjoint from it, and indeed their
lifts intersect OMy x My in {(p,p)}, {p} x OMoy, OMy x {p}, and {p} x My, respectively.
Since the lifts of 9My x {p} and {p} x My to [0Moy x Mo; {(p,p)}] are disjoint, we can blow
up {p} x My before 9My x {p}; and then we can move the blow-up of {p} x M all the
way to the front (since {(p,p)}, {p} x My, {p} x My is a chain of p-submanifolds). Thus,
Ibp is the blow-up of [0My x My;{p} x My] =D x My at 9D x {p}, 9D x My, D x {p}.
The lift of the latter two manifolds to the blow-up of the first are disjoint, and we can then
move the blow-up of D x {p} to the front, obtaining

Ibp = [D x My; D x {p}; 0D x {p}; 0D x OMy| = [D x M;0D x T;0D x D],

as claimed. The case of rbp is completely analogous.

For part (4), let us work in local coordinates s > 0, X', 77 > 0, X near the left boundary
of (MO)%; we only consider a neighborhood of p in each factor, i.e. with p given in the left and
right factor by X = 0 and X’ = 0, respectively. Then upon blowing up prnr = {(s,0,0,0)}
and pr, = {(s,X’,0,0)} (which can be done in either order), the lift of pr = {(s,0,0, X)}
is disjoint from the lift of p;, = {(0, X’,77,0)}. Now, blowing up p;, produces, locally,

0,1) xRy x M/, M = [[0,1)7 x R 15 {(0,0)}].

Near the interior of the front face, we thus have smooth coordinates s, X', T, X := %
R"~! and the lift of prnr and py, is given by [0,1) x {0} x {0} x R*~! and {0} x R*~! x
[0,1) x {0}, respectively. Blowing up prnr thus gives [0,1)s x Mg xr X R’;{l. The front
face of the blow-up of the lift of pr, i.e. of s = X =0, is diffeomorphic to T x M, with
local coordinates X/s = X/T = x and T', X', as claimed.

For part (5), note that the blow-up of py, in (5.1) can be commuted to the first place. Since
in local coordinates s, p, X, X’ on (Mp)Z, with X = 0 at p, we have pr, = {(s,0,0, X")}, the
front face of [(My)2; pz] is diffeomorphic to [0, 0o]s XR?{I xR’ !. Blowing up its intersection
with the lifts of prnr (given by [0, 00] x R~ x {0}) and pg}, (given by {1} x R*~1 x {0}) in
either order, and subsequently blowing up the lift of p7, (given by {0} x {0} x R"~!) gives
[[0,00] x D; {1} x 0D] x R?{l (with local coordinates s, X', X) blown up at {0} x D x {0}.

The lift of pg is disjoint from 1f. Thus, the coordinates s, X', X provide a local coordinate
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description (in the interior of If) of the diffeomorphism
If = [[0,00] x D x R*~1; {1} x 0D x R"~1;{0} x D x {0}] (5.10)

Now for s > 1, where p and T are equivalent (in the sense that p/T is bounded away from
0 and oo0), we can use X/T = z instead of X = X/p; for s < 2, we can use X/T" = xs.
On the fibers of the map blowing down {0} x D x {0} in (5.10), we therefore have affine
coordinates given by (zs)/s = x, and hence the lift of {0} x D x {0} is diffeomorphic to
D x T (with local coordinates X', z). But this means that we have a diffeomorphism

If 2 [[0,00] x D x T;{1} x 9D x T;{0} x D x 0T |,

in local coordinates given by (s, X/, z). Switching the order of D and T (i.e. of X’ and x)
gives the description in the statement of the Lemma.

Finally, to prove part (6), we start with the front face of [(Mo)2; prnr]; it is diffeomorphic
to [0, 0] x R2("—1) via the coordinates s € [0,00] and Z := (X, X')/p € R2»~1). The blow-
up of pgp, creates two connected components; if; is a resolution of the component with
s € [0,1]. There, we may replace p by 7', i.e. use (X, X")/T" = (xs,2") =: (Z,2') as affine
coordinates on the interior of [0, 1]s X ]Rgfl X Rgfl. The lift of p;, and ppr is given by
[0,1] x {0} x OR?~1 and [0, 1] x OR"~! x {0}, respectively. Blowing these up thus produces
0,1] x [RZ7! x R 9R?=1 x 9R?~1], cf. (4.5). Upon blowing up the lift of pz, which is
given by {0} x {Z = 0}, we obtain if,. In if;, near the interior of the front face of this
final blow-up, we have local coordinates s, Z/s = x, 2’. Thus, we can equivalently describe
if;, as the resolution of [0,1] x 7 x T (with coordinates (s,xz,z’)) at {0} x 9T x T (with
s/(1/x) = & a smooth coordinate on the interior of the resulting front face) and then at
the lift of [0,1] x (97)2. This finishes the proof. 0

5.2. Composition. Our goal is to show that the large 3b-calculus is indeed a calculus, i.e.
closed under composition of appropriate pairs of operators:

Proposition 5.10 (Compositions). Let £, F C (C x Ng)? denote two collections of index
sets, and write £ = (Egp,...), F = (Fap,---) as in Definition 5.4. Let A € V5, (M) +
\Ilgboo’g(M) and B € ‘Ifglb(M) + \Ilgboo F(M), and suppose that Re(&bp + Fibp) > 0 and
Re(&my + Fin,) > 1. Then Ao B is well-defined, and we have
Ao B e Wt (M) + w3209 (M),
where G = (Ggp, G, Git, Grt, Gibp s Grbp s Giby s Grby» Gir) is given by
Grp = (Eap + Fip) U (Ebp + Frbp) U (Exf + Fir — 1),
G, = (Exp + Far) U (& + Fir — 1) U (& + For) U (S + Fibr ),
Gir = (&g + Fit) U (&t + Fie — 1) U (& + Frrp) U (Eby + Frbp),
Gt = (&t + Frp) U (Exe + Fir — 1) U (Erp + For) U (Ebp + Fiby)s
Gibp = Ebp U (Etp + Finp) U (& + Fiby — 1), (5.11)
= (grbp + Fap) U Frbp U (&b + Fie — 1),
Oy = &by U (€ + Finy) U (it + Fior — 1) U (&1 + Finp),
grbT = (5rbT + Far) U Fiby U (Eoy + Fir — 1) U (Erpp + Frt)s
= (& + Fie — 1) U (Eryp + Fie) U (& + Far) U (& + Fop) U (Eby + Frby)-
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Definition 5.11 (Composition of 3b-index sets). Given collections £, F of index sets as in
Proposition 5.10, we write G = € o F for the 9-tuple consisting of the index sets (5.11).

This yields the composition result in the small 3b-calculus:

Proof of Proposition 4.4. The only difference between Proposition 4.4 and Proposition 5.10
is that in the latter, 3b-ps.d.o.s are defined via their Schwartz kernels on M32]O rather than
on M32b ,- But the Schwartz kernels of elements of W5, (M) are rapidly vanishing at the left
and right boundaries, i.e. the lifts of dMy x My and My x dMy; hence they can equivalently
be characterized via their lifts to M§b as being rapidly vanishing at lbp, lby, rbp, and

rbr. ([

The remainder of this section is concerned with the proof of Proposition 5.10. We proceed
geometrically via pullback and pushforward theorems involving a suitable 3b-triple space
of M. This 3b-triple space will be a resolution of the b-triple space

(Mo)y = [M§; (0Mo)?; 0Mo x OMo x Mo; OMy x My x dMo; Mo x OMy x OMo)

of My; we denote the front faces by ffy, 3, ff1, p, ffy, o, ff, 5 in this order (with ‘F’, ‘C’,
‘S’ standing for ‘First’, ‘Composition’, ‘Second’, respectively), and we moreover denote by
Hlfb7F, mfb75, and mfb,C the lift of My x My x OMy, OMy x My x My, and My x My x My,
respectively. We write m, p, 7, 5, and m, ¢ for the lifts, as maps (Mo)% — (MO)Qb =
[Mg; (0Mp)?], of the projections Mg — Mg to the first two, last two, and first and last
factors of Mg’ , respectively. See Figure 5.6.

T/l

F1GURE 5.6. The b-triple space (Mo)% and its boundary hypersurfaces; we
only show the lifts of a boundary defining function of My to the first (T),
second (7”), and third factor (T"). We also indicate the three lifted projec-
tions (Mp); — (Mp)? by blue arrows.

For O = F, S,C, the preimages under 7, o of the submanifolds blown up in the defini-
tion (5.1) of M2, are unions of two p-submanifolds of (My); each; we introduce the following
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notation for them:

W;b(lﬂ:sb) = P3b,0 U P3b,0, pab,o C iy 3, Pav.o C fivo,

T 0(PLnR) = Prrro UPLnro,  PLrro C flus,  Praro C fivo,
m.o(PL) = proUpLo, pro C fips, Pro Cfino,
WQIO(PR) =pro UPRo0, pro C fip3, ProO C fNfb,o,
W}I,lo(ﬁL) =proU ﬁﬂL,O’ ProC 0, ﬁﬁLvo C mfy, o,
T,6(FR) = Bro UPho: Pro Cfbor,  Pro Cmivor,

where for O = F, S, C, we write O’ = C, F, F and O” = S,C, S. There are some redundan-
cies in these definitions, since

PL.F="PLC, PrL.s = PR,F, PR,S = PR,C;

PLF = f'bL,a Prs = ﬁ%,F, bro = ﬁbL,Fa

5 S S (5.12)
PrRF = P15 PR,s = PRr,cs PR,C = PR,s;

o o v S |

Prr=PLo Prs =Prr Prs =Prc-

With O still ranging over F, .S, C, we finally set

P3b,3 = ﬂ P3b,0, PLNR3 = ﬂ PLNR,O; PLAR3,0 = PLNR,3 N P3b,0-
o o

(It suffices to take the intersection over two distinct values of O.) We introduce the short-
hand notation

P3b,r/s = {Psb,Fs Pab,st

similarly ps}, 5/c, etc. As a special case, pr, g/ is the singleton set {py, r} by (5.12).
Definition 5.12 (3b-triple space). The 3b-triple space of M is the resolution

M3, = [(Mo)i; p3bsi Prorsi {Prars.0}; {Psvo}i {Praro}: (Pr.os PrO};

) ) o o (5.13)
{Psb,0} {PLaro}i {PLoPrOY: (P 0 PR o}

We write psp3 € C”(Mg’b) for a defining function of the lift of pay, 3, similarly prng 3,
prarso (O=F,SC), ..., ﬁ%o; and we write py, 3, pp,0, and pp 0 € COO(Mg’b) for defining
functions of the lifts of ffy, 3, Eb,07 and mfy, o C (Mo)ﬁ, respectively.

Lemma 5.13 (Projections to 3b-double spaces). The three projection maps Mg — Mg

given by (¢,¢,4") = (¢,4), (¢,4',4") = (¢,4"), and (¢,¢',¢") — (¢, q") lift to b-fibrations
TE,TC,TS: Mgb — M32b.

Proof. Since any two projections can be intertwined by a cyclic permutation of the factors
of M§—which induces a diffeomorphism of Mg’b—it suffices to prove the claim for 7p.
The reader may find a local coordinate description of the various submanifolds blown up
in (5.13) helpful: we write T, X, T", X', T", X" for the three lifts of the coordinates (3.2)
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to Mg; tllen in~the coordinates T = %, T = TT/, and T, X, X', X" on (Mo)} \ (mfp p U
mfy, g Uffy, g Uty o)—so T'=T =T’ = 0 is the corner ff}, 3 N mf}, ¢ N ff, p—, we have
mp: (T, 7, 7" X, X' X" — (T, 1", X, X") (T =T1T"),
rs: (T, T, 7" X, X", X" — (T, 7", X', X"y (T =TT,
(T, T, 7", X, X', X") = (T, 7", X, X"),
where on (MO)% and for mp, we use coordinates T, TT/ away from the left boundary Iby,

of (Mp)%; for mg we use %,T” away from rby; and for m¢, we use 17, T" away from rby,.
Correspondingly,

P3b,3 = {(17 17Oa 07010)}> pLﬂR,3 = {(Tv T/,O;0,0,0)},
psp,r = {(7,1,0;0,0,X")}, Pav.r = {(0,1,77;0,0, X"},
pr,S = {(%7T,70;X7070)}a P3b,C = {(17T,7O;01X,70)}7

prorr = {(T,T',0;0,0, X"}, Prarr = {(0,7',7";0,0, X")},

PLnR,s = {(Ta T170§X7 0,0)}, PLARC = {(T, T',O;O,X',O)}, (5.14)
prr=prc=1{(T11,0,0,X" X"}, prr=ppc=1{0,T,7"0X X"},
prs=prr={(1,7,0;X,0,X")},  brr=0,s={071,7"X,0,X")},
pR,S = pR,C - {(Tu Tlvo;Xv X/70)}7
B =Pl p = (1,0, X,0,X")},

and furthermore
prarsr = {(T,1,0;0,0,0)},
PLAR3.S = {(%,T/, 0;0,0,0)},
prorsc = {(1,77,0;0,0,0)}.

(The submanifolds not listed here are not contained in the local coordinate chart.)

We begin the proof with the b-fibration m, p: (M)} — (Mp)2. We immediately blow up
PR = Pprc in the domain; the map m, p restricts to a fibration pr g — ffy, (the front face
of (Mp)?), and therefore 7, p lifts to a b-fibration

[(Mo)i;pr.s/c] — (Mo)p. (5.15)

The preimage of pgy, is the union of the lifts Ofpgbyp, ﬁgbyF, and pap, FOPR,S = P3b,FNPLAR3 =
prar3,F. Using [Mel96, Proposition 5.12.1], the map (5.15) thus lifts to a b-fibration

[(Mo); pr.s/c3 PR3, F; P3b,rs Pab,p] — [(Mo)R; pap)- (5.16)

Recalling the terminology regarding the commutation of blow-ups from §2, we can commute
Pr,s/c through prag 3 F (C), and then further through psp, r (intersection C prag 3 rF), thus
in total moving the blow-up of pg g/c in (5.15) from first to third place. Furthermore, the
map (5.16) is b-transversal to the lift of pgp, 3, and therefore we can blow up psj, 3 in the
domain, and commute its blow-up all the way to the front: through pay, r (disjoint), pg, s/c
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and psp. p (D; Prars r for both), and finally through prars r (D). Thus, we obtain a
b-fibration

[(Mo)2; psb,3; PLOR3, F3 Pab, i PR.s/C Pav,r] — [(Mo)d; Pab)- (5.17)

Next, we blow up pragr in the range of (5.17); its preimage under the map (5.15) is the
union of the lifts of prar F NPR.S = PLR3, PLARF, and Prag F, and we blow these up in
this order. We commute prnr 3 through pap,  (intersection C prars r), Pr.s/c (D), P3b,F
(intersection C prar3 r), and pragrs,r (C) to the second spot. We furthermore commute
prar,r through ps, ¢ (intersection C prag3,F) and PRr,s/C (intersection C prag3). Thus,

[(Mo)}; p3b,33 PLAR,3; PLARS,F; P3b, i PLAR,FS PR,5/C Pab, i Pror,r] — [(Mo)i; Pav; PLag).

is a b-fibration. We may now restore some symmetry in the domain by blowing up the
lifts of prar3,s and prars.c (which m,  maps diffeomorphically to prng); we can then
commute prap 3 .s/c through pragr r and pap p (disjoint), pr g/ and prar r (D5 pragr,3 for
both), and psp, r (intersection C psp, 3), and we obtain the b-fibration

[(Mo)2; psb,3; pLars; {PLARS.0}: Pab.ri PLAR,F; PR,5/C; P3b.Fi PLAR,F]
— [(Mo)3; Pab; PLAR]
where O = F, S, C as usual.

The next step is the blow-up of pr in the codomain, and correspondingly the lifts of
pr.r N PRr,s/c = PLnR,Cs PL,F = PL,C, and ﬁL,F in the domain. We can commute PLNR,C
through prngrr and p3, p (intersection C prag3 for both) and pg g/c (D); and we can
commute pr, p/c through prarF (intersection C prag,r) and pap ¢ (intersection C psp, 7).
We obtain a b-fibration

[(Mo)2; psb,3; PLR3; {PLAR3,0}: P3b,Fi PLAR.F/C PLF/Cy PR.S/C Pab, i PLOR, P PLF]

— [(Mo)2; pav; pLag; P
(5.18)

Note that the order of pr g/c and pr, r/c is arbitrary (intersection C prar,c). Now, since
b, maps Ppap ¢ diffeomorphically to pr,, the map (5.18) lifts to a b-fibration

[(Mo)%; P3b,3: PLNR,3: {PLAR,3,0}; Pav,F/CciPLAR,F/CPL.F/CsPR,S/C) P3b, 73 PLAR,F; ﬁL,F]
— [(Mo)}; Psv; Prog; PL-

Here, we commuted psp, ¢ through pr p, prar,rF, Psbr (disjoint), pr.r/c and pr g (D;
Prar,F/c for both), prar F (intersection C prarsc), and prarc (D). By completely
analogous arguments, we can blow up pg in the codomain and prr N pp, s/C = PLNR,S;
PRF = PL,s, and pgr p in the domain, and we can then also blow up psp ¢ in the domain
and obtain, after commuting blow-ups, the b-fibration

[(Mo)2; pabs; Prors; (Prars.0}: {(Pavots (Praro}; {PL.os PROY: P3b.ri PLar,Fi P PR, F]
— [(Mo)p; P3b; PLAR: PL; PR].
Using [Mel96, Proposition 5.11.2] again, we next blow up the disjoint submanifolds py,

and pp in the codomain (which gives M2, ) and their preimages ﬁbL o ﬁﬁL I ]53% 7, and ﬁ% P
in the domain, giving the b-fibration

[(Mo)P; pab3; Prars; {Prars,0t; {Pavo}i {Praro}; {Pr.o, PrO};
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Bt o TN S S N S 2
Psb,FiPLARF; PL.FsPRF:PL F: PR F; PL,F,PR,F] — Mg,

The order of the blow-ups pr r, PR F, ﬁbLF, andNﬁ%vF is aNrbitrary: the only two of these
four submanifolds that intersect nontrivially are py, r and pgr r, whose intersection prngr r
is blown up earlier.

Now, the projection 7, 7 maps psp, g diffeomorphically to pr; we can thus blow up psp, s
in the domain, and commute it through ﬁ%’F, ﬁﬁLF (disjoint), 15321? (D), and ﬁl}J?F, PR.F,
pr.F, Prar,r (disjoint). Analogous arguments apply to the blow-up of ps, ¢. Note next
that 7, p restricts to a fibration prngrs — pr, and the blow-up of prags in the domain

can then be commuted through ﬁ%F = ﬁﬁL ¢ (intersection C pr g = ﬁ%}F), ﬁﬁL  (disjoint),
P =pLs (D), P} p (disjoint), and pr r = ]33—45 and pr, p (disjoint). Arguing similarly for
the blow-up of prnr.c, we have a b-fibration

[(Mo)i; psb,s; PLars; {PLnrs.0}: {Psbo}i {praro}i {pr.o. PrO}:

. R L o L (5.19)
{P3b.o}; {PLmR,o};PL,F,PR,F,PbL,F,PE,F;PﬁLF,P%,F] — Mg,

In view of (5.12), it remains to blow up prg, pr,c, and ﬁﬁRﬁ in the domain. Note that
these submanifolds get mapped by m, g to tby, lby, and (My)32, respectively; and pr s can
be commuted through ﬁ% 7 (intersection C prng,s) and ﬁﬁL 7 (disjoint), similarly for pr c.
Thus, the map (5.19) lifts to a b-fibration which is the desired map M3, — M2, . O

We also need the following variant of Lemma 5.8:

Lemma 5.14 (3b- and b-densities on the triple space). Denote by w1, w2, and w3 : Mgb — M
the lifts of the projections M3 — M to the first, second, and third factor, respectively. Then

3PQM @ 153POM @ m33POM

1 1
_ 3 2 2 2 3
= (Psb,sPLmR,3 H PLNR,3,0P3b,0PLNR,0PL 0PR,0
O=F,5,C (5.20)

-1
> PO

D=

~ ~ ~ ~ ~ 1
X P3b,op%mR,oPL,OPR,O(PﬁL,o) 2 (sz,o)

The factor % in the exponents of pr, 0, pr,0, ﬁﬁL o> and ,52% o counteracts double counting
the boundary hypersurfaces in (5.12).

Proof of Lemma 5.14. By Lemma 5.8, the bundle on the left in (5.20) is

7 (o) T () T B QUME), (5.21)
where f33: Mg’b — MS’ is the blow-down map, and p7, p’, pi- are the pullbacks along
71,72, 3 of a defining function of 7 C M. Repeated application of the relation (2.2),
and reading off the codimensions of the submanifolds of interest in (5.13) from the explicit

expressions (5.14), gives

nfl n—1

*b 3n—1 3n—3 3n—2 2n—1 2n—2
3 Q(Mo) = P3b,3 PLAR,3 H PLmR30P3bOPLmROPLOPRO
O=F,5,C
ﬁ n—1 n—1

o) T (o) T

~2n—1 ~ ~n—1~n—1

X P3p.0 pLﬂR o0Pr.0Pro(PL
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On the other hand,

1 1
N/ 3 3 3 2 2 2 2
PTPTPT = P3b,3PLNR,3 | | PLﬂR,3,Op3b,OpLﬂRy0pi,OpIQ%,O

O=F.5,C
2 2 S PR VAT
x p3b,OPLmR,OPL,OpR,O(PL,o) (PR,o) .
Plugged into (5.21), this proves (5.20). O
Proof of Proposition 5.10. We only consider the case s = s/ = —oo. Fix a positive 3b-

density v € C>®°(M;3"QM); then the Schwartz kernel K 405 of Ao B is
Kpop - 71V = (Wc)*IN(AoB, IN(AoB =mv-mpKa-m15Kp,

where 7, : M??b — M is the left projection, 7p, mg, and m¢o are as in Lemma 5.7, and 7y
is as in Lemma 5.14. We have K 4op € Ayhg(Mg’b; PQMS,), for a collection H of index sets
which we proceed to describe. Write Hgay, 3 for the index set associated with the lift of p3y, 3
to Mg’b, similarly for the other index sets, and write Hj, 3, 7—~lb70, Hy, o for the index sets
associated with the lifts of the boundary hypersurfaces ff}, 3, Eb,& mfy, o of (MO)%; then
Lemma 5.14 implies

Hap 3 = &g +Fg,—1, Hrnrz = &E+Fir—3, Hy 3 = Ep+Ftp,
Hrinrs,F = Ex+Fir—2, Hinrga,s = E+Fr,—2, Hinrg,c = Est+Fir—2,
Hap,r = Eg, +Fi—1, Hab,s = Ept+Frr—1, Hap,c = Ept+Fp—1,
Hinrr = Eet+Fi—2, Hinr,s = Ee+Fir—2, Hinrc = Ep+Fr—2,
Havr = Ex +Fn,—1, Hans = EnrtFir—1, Hane = Emr+tFby—1,
Hiorr = Ei+Fin,—2, Hinrs = Eny+Fit—2, Hinre = Enr+Fbr—2,
Hr F = &Et+Fibp—1, Hr.s = Ep A1, Hr.c = &+ Frbp—1,
Hr F = &+ Fin,—1, Hrs = Empp+Fre—1, Hp.c = Epp+Fbr—1,
Hy F = Frbps Hy, s = &by, Hy,c = EbptFlbps
7'~lb,F = Ep+Fibps 7'~lb,s = Ebp +Ffp, ﬁb,C = Ebp+Frbps
and

Hrr=Hrco = E+Fp—1, 7:1%7}7‘ = flﬁL,(; =&, —1,
Hrs = Hrr = Est+Fie—1, flﬁL,S = ﬂ%,p = &t 1,
Hps =Hro = EaptFu—1,  Hipg=Hyo=Fo, 1.
(For example, for 7:[3b,F = &, + Fin, — 1, we use that 7p maps the lift of p3}, p to M:;?’b

to the boundary hypersurface ff+ C M??b which contributes ., whereas mg maps it to
Ibr which contributes Fip,; the shift by —1 arises from the factor gy - in (5.20).) The

pushforward of K 405 along 7¢ is well-defined provided the index sets at those boundary
hypersurfaces of Mg’b which get mapped by 7m¢ to an interior b-submanifold of M??b have

positive real part; these boundary hypersurfaces are the lifts of ﬁﬁL g = ﬁ% p and mfy, o,

corresponding to the index sets ﬂﬁL g = 7—23% r and Hy, o. This gives the conditions stated
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in Proposition 5.10. When they are satisfied, the pushforward theorem [Mel92] gives

% ¢—(0,1,1,1,0,0,1,1,2 2 .b 2
(mc)«KaoB € Aphg( J(M3,;PM3,).
where the collection of index sets G = (G, Gty s Gits Got, Gibp > Grbp > Giby > Grby» Git) is given
in (5.11). (For example, for the index set at ff7 we use that the hypersurfaces of M3, which
get mapped to ff by mc are the lifts of pap 3, Prar,3.cs P3b,cs Pab,c.) By Lemma 5.8, this
now implies
Kaop € A%, (M mi ™0 © 757Q) @ (riv) ™,

which completes the proof. [l

5.3. Range of the 7T-normal operator. While the D-normal operator map relates a 3b-
operator P to an operator in the more readily analyzable (product-type) edge-b-algebra,
the same is not true for the 7-normal operator; note that Ny(P) in Definition 3.19 is still
a 3b-operator. Absent a practical characterization of the range of the full spectral family
o — Ny (P,o), we show here that the range of Ny contains spectral families consisting of
operators with appropriate behavior at large, intermediate, or low frequencies (but without
diagonal singularities). These results are needed in §6.2.

Lemma 5.15 (Rapidly decaying spectral families). Suppose P(g) € C®(Ry; U™ (7))
is such that (0,1) 5 h v P(£h™") is an element of W 3""">(T). Then there exists
P e Wy (M) with N7 (P,o) = P(0) for all o € R.

Proof. The assumptions on P imply that P € C.OO(@ X 7']32;77}}'097'), where mpg is the lift
of the projection from R x 7?2 to the second factor of 7. The inverse Fourier transform
of this from o to 7 lies in C®(R, x 7;2; 75°QT @ *°QR;), the pushforward of which along
the map (4.3) is an element K € C®(R,,, x 7;%; 7% 3P QM). Thus, there indeed exists an
operator P € W;>°(M) so that the restriction of the Schwartz kernel of P to ff1 is equal
to K. (In fact, the Schwartz kernel of P can be chosen to vanish to infinite order at all
boundary hypersurfaces of M2 except ff7.) O

Proposition 5.16 (Polyhomogeneous spectral family at low energy). Let &, E, Ett, Ext C
C x Ng denote index sets, and suppose Re&,; > —1. Let o9 > 0, and suppose that, for one
choice of sign, we are given an operator family

(£[0,00) 3 0 — P(o)) € w2 G bunlar) (1) (5.22)
with P(c) = 0 for |o| > 300. Then, using Notation 5.5, there exists an operator
P € Wy (T fip[Ey], i [No, E[Er], xf[Ep + 1],
1bp[0], tbp[0], b7 (0], tbr (0], if (€, + 1])
with N;(P,O‘) = P(0) for o € £[0,00), and N;(P,a) =0 for o € R\ (%[0, 09)).

For the proof, we need the following technical result:

Lemma 5.17 (A diffeomorphism related to the sc-b-double space). Let T denote a manifold
with embedded and connected boundary OT # 0. Denote by pior € C*°(T2) a total defining
function of T2. Then the map

¢:[0,00) X T° X T° 3 (0,2,2') = (0,2,2') := (ﬁ,z,z’) (5.23)
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extends (by continuity and density) to a diffeomorphism
= [[0, 0]y x T {0} x fF,; {0} x Iby, {0} x rby]

ir (5.24)
T2 = [[0, 0] x TiZ; {00} x Ibp, {00} x rby; {oo} x ff},].

inz <

Proof. This is easily checked in local coordinates; see also [Hin21b, Proof of Proposition
2.27], in particular [Hin21b, Equation (2.36), Figure 2.5] for the case of 7 = [0,1) (with
pr, > 0, s € [0,00] in the reference playing the roles of local coordinates on 7;2 near ffy,
here, and & and 2/~! in the reference playing the roles of o and ¢’ in present notation) from
which the general result easily follows. U

Corollary 5.18 (Polyhomogeneity 0n~7~'02) We use the notation of Lemma 5.17. If one
denotes by tfy, tlbg, trbg, and zfy C 702 the lifts of {0} x ffy,, {0} x 1by, {0} x rby, and
{0} x T2, respectively, then the map ¢ in (5.23) induces an isomorphism

o pél'llg Erb,Eits A)(TZ) A(51b7 ErbEits Lf)([o OO]U/ % 7;) (5.25)

where the index sets E, v, Etf, Eu are assigned to the boundary hypersurfaces tlbg, trby,
tfo, and zfo on the left, and to [0,00] X lby, [0, 00] x rby, [0,00] x ff1,, and {0} x T;2 on the
right, while the index sets at all other boundary hypersurfaces are trivial (i.e. equal to ().

Proof. The main reason behind the validity of the Corollary is that o/pit is a defining
function of zfy. In more detail, since elements u € Apﬂg’&b’gtf’gﬁ)(ﬁ) vanish to infinite
order at the lifts of [0, co] x ffp,, [0, 00] x by, [0, 00] X by, and {co} x 7;2, their pushforwards
¢+, as polyhomogeneous distributions on 72 (see (5.24)), vanish to infinite order at the lifts
of {oo} xff, {00} x1by, {o0} xrbyp, and {oc} x ;2. Therefore, ¢.u remains polyhomogeneous
on the manifold given on the right hand side in (5.24) but without performing the blow-ups;
this gives (5.25). O
Proof of Proposition 5.16. We only consider the ‘4’ sign, the treatment of the ‘—’ sign
being completely analogous. We work in the coordinates (73p,x,2’) from (4.3), and 7 =
<($7$/)>7-3b~ Now,

|d7|73p, Ugp, = (@)

i

. dx’l . _dx/nfl
’ <$/>n—l

is a positive right 3b-density on M2 4, near ff7. On the other hand, a positive right sc-b-

density on 7;%_,3 is given by

Vo = <m>_(n_l)IW‘:(<x/>1)1<U’<_|:f/z;/1>—1>_(n_1)53b~

Now, (z/)~1 € C>(T2,) is a joint defining function {trbsc.b, tfse-b, bse-bs Scfseb, bfsep }, and

S
lo| + (/)71 is a joint defining function of {trbs..p, tfsc,}. Thus, we can write

n—1y—1 ()7 —n)
@D (o) = Pebenfitn

where a is a product of integer powers of defining functions of rbg.p, scfgep, bfgep, only.
Therefore, the Schwartz kernel of P(o)—which is a polyhomogeneous right sc-b-density



118 PETER HINTZ

with the index sets specified in (5.22) at tlbgep, trbsep, tfsch, zfsep (in this order) and
vanishes to infinite order at all other boundary hypersurfaces—is of the form

~ ~ (b —1,E:—1,E4¢)
K[)(O',ZU,ZL‘/)V?,b, KO S Aphlg b ! (7;C b)

The restriction of the Schwartz kernel of the sought-after operator P to ff+ must be
Ky|dr|g, where

70 y / A
Ko(rsp, 7, 2") = (27T>_1/ e~ @ o (0, 2, 27) dor
0

oo
_ _ — o 03b /
= (2n) H(wa) [ e i (T ) do,
0 ((z,2"))
(This in particular ensures that N;(P, o) =0 for o < 0.) Since ((z,2'))"! € C>®(T?) is a
total boundary defining function, Corollary 5.18 implies that the function
5 > O3b ’
Kogab: (o3p,z,2") = Ko (7, 90,93)
((z,2"))
glbygrb717£tf71’ng)

phe ([0, 004, X T2); equivalently put,

6 EbyEer—1,Em—1
Koo € A5 ((0, 00]5,,; AGE =D (72))

is an element of A

where the boundary hypersurfaces of [0,0c] are ordered {0}, {oc}, and those of 7 are
ordered in the usual manner (left boundary, front face, right boundary). By Corollary 2.26,

o0
Ko(m3p, 2,2) = (27T)_1<(90a90’)>_1/ "7 Ko 30 (03b, 2, 2') dogy,
0

Ept+1 (Ep+1,E¢,Er
S (RwAphlg W) (72)),

The proof is complete. (See also Figure 5.2.) O

6. FULLY ELLIPTIC 3B-OPERATORS AND THEIR PARAMETRICES

In this section, we discuss the notion of full ellipticity for 3b-(pseudo)differential opera-
tors; besides the ellipticity of the principal symbol, this involves the invertibility of various
normal operators which were introduced in §3, resp. §4 in the case of differential, resp.
pseudodifferential 3b-operators. The main theorem of this work is the existence of precise
parametrices of fully elliptic 3b-ps.d.o.s in the large 3b-calculus, see Theorem 6.4; after
some preparations in §6.2, the proof of Theorem 6.4 is completed in §6.3. Applications of
the parametrix construction are collected in §6.4; these are the Fredholm property of fully
elliptic 3b-ps.d.o.s, a precise description of their generalized inverses, the polyhomogeneity
of elements of the (co)kernel, and a relative index theorem. An alternative proof of the
Fredholm property, which only uses the (small) 3b-algebra, is given in §7.

Notation 6.1 (Densities). We shall denote fixed smooth positive sections of the density
bundle corresponding to a Lie algebra V, of vector fields on some manifold with corners by
V. Thus, when working on 7, the symbol v denotes a smooth positive scattering density
(such as |dz| in the coordinates (3.3), or a smooth positive multiple thereof); when working
on Tseb, the symbol vy, is, in terms of local coordinates |o|, p = |z|™' >0, w = Iiil €S2

a smooth (on Tg.1,) positive multiple of (—5-)~ (”*1)\‘1—;de; and so on. We use for the

ptlo]
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underlying L?-space of Sobolev spaces H, the density v,, unless otherwise specified. For
example, we write Hy“(T) = ppHE (T, w).

6.1. Full ellipticity. Utilizing Lemma 4.19, we first record a number of consequences of
the ellipticity of the 3b-principal symbol.

Lemma 6.2 (N\T(P, o) at nonzero energies). Let P € Wi (M) be elliptic. Then for o # 0,
the operator Ny (P,c): H3' (T) — Hi ™ ~™(T) is Fredholm of index 0 for all s,r € R,
with kernel and cokernel (L?-orthogonal complement of the range) contained in C(T).
There exists o9 > 0 so that N;(P, o) is invertible for |o| > og.

Proof. For fixed nonzero o, the Fredholm property of ]/V;(P,a) follows from its symbolic
ellipticity in the scattering calculus; that it has index 0 is then a consequence of the fact

that the Fredholm index is independent of o, and equal to 0 for large |o| since N7j5 n(P) is
invertible for sufficiently small A~ > 0 by Lemma 2.11. O

Next, the normal operators Ny7(P) and Nyp(P) are elliptic b-operators. By Proposi-
tion 4.18, their boundary spectra (see Definition 2.5) are related via

Specy,(Nop(P)) = {(=2,k): (2, k) € Specy,(Nor(P)) }-

The sign switch arises from the fact that the isomorphism ¢ o ¢ in Proposition 4.18 is
homogeneous of degree —1. Elliptic b-theory then implies that for § € R so that 8 ¢
Re Spec,, (No7(P)), the operators

N7 (P,0): HX(T) — H™™5(T), (6.1)
NE((P): HSY P(FNOT) — HE ™ P (FNOT), 62)
NZ (P): HY 27 (FNOD) — Hy 7" ™ (¥ NoD) ‘

are Fredholm for any s, € R (with index, or invertibility if it holds, independent of s, ). In
the case that the operators (6.2) are invertible (in view of Proposition 4.17, the invertibility
of one is equivalent to the invertibility of the other), Theorem 2.37 implies that

Np(P,\): H> (D) - HE™P(D),  AeC, (6.3)

is an analytic family of Fredholm operators of index 0 which is invertible outside a discrete
set, and the boundary spectrum Spec, (Np(P)) is then well-defined via equation (2.51).
(Recall from Remark 2.38 that the invertibility of (6.3) holds for an open and connected
interval of values of 8 which, by Theorem 2.37, is non-empty if Nﬁtf(P) is invertible.)

With this context, we can now introduce:

Definition 6.3 (Full ellipticity). Let P € Wi (M) have elliptic principal symbol. Let
ap, a7 € R. We say that P is fully elliptic with weights ap, o if the following conditions
are satisfied for 8 := ap — ar:

(1) B ¢ ReSpecy,(Ngr(P))—equivalently, —3 = a — ap ¢ Re Spec,(Nop(P));
(2) one of the operators in (6.2) is invertible (and thus both are);

(3) ap ¢ ReSpec, (Np(P));

(4) N7(P,0): HY®(T) — HZ™P(T) is invertible for some s € R;
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(5) for all o # 0, the operator N7 (P,¢): H3'(T) — He ™ "™ (T) is injective for some
s, 7 € R.

Furthermore, we denote by (5, ﬁ;r—) the largest interval of values of /3 for which condition (1)
is satisfied. We write B?F(P) = 6? when we need to make the dependence of these quantities
on P explicit.

Conditions (2) and (4) are independent of 3 in the interval (87, 8%); moreover, invert-
ibility for some s € R implies invertibility for all s by ellipticity. Next, by Lemma 6.2,
condition (5) is equivalent to the invertibility of ]/V;(P, o) for all o # 0 and s,r € R. More-
over, conditions (2) and (4) together imply the invertibility of J/\T\T(P, o) in (5) for small |o]|
by Theorem 2.19; in view of the invertibility for large |o| proved in Lemma 6.2, the purpose
of condition (5) is thus to exclude the possibility that N;(P, o) has non-trivial nullspace
for the remaining set of bounded nonzero o which are not covered by the automatic high
and low energy invertibility results.

The main result of this paper in the elliptic setting concerns the construction of very
precise parametrices of fully elliptic 3b-operators in the large 3b-calculus:

Theorem 6.4 (Parametrices of fully elliptic 3b-operators with smooth coefficients). Let
P c Vi (M) be a 3b-pseudodifferential operator which is fully elliptic with weights ap,ar.

Then there exist a right parametriz Q € V3" (M) + \Ifgboo’g(M) and a left parametriz
Q' € U™ (M) + 032 (M) with

PQ — I o R, R c \I/—OO,(@,wvgrbeagrbT_l) (M)’

;e (6.4)
Q/P — I _ R/, R/ c \IJ_OO’(Elb'D’Sle’@’@) (M),
where the index sets comprising £ obey the lower bounds
Re(&ap, \ {(0,0)}) > €, Re(&g, \ {(0,0)}) = 1,
Re & > —B7, Re & > 1+ 67,
Re 51bD > ap, Re grbp > —ap, (65)
Re &, > ap — Bz, Re &, >—ap+BF+1—¢
Re gif > 14 €,

for some € > 0 which satisfies € < %ﬁ% = %min(ﬂ;ﬁ — B, 1) and e < b:= min(ﬁ? —-B,8—
—). The index sets comprising E' obey the same lower bounds, except Re &, > ap—LB+—¢
T Thy T
and Re E;bT > —ap + ﬁ;'— +1.

The index sets of the parametrices in Theorem 6.4 are defined in the course of the proof,
see (6.30)—(6.31) for the case of the right parametrix and the subsequent discussion for the
case of the left parametrix. The lower bounds (6.5) can likely be sharpened at lbp, resp. rbp
to ap(ap), resp. —ap(ap), and at 1br, resp. rby to af(ap) — B+, resp. —ap(ap) —&—ﬁ;ﬁ +1
in the notation of Definition 6.9 below, via more careful accounting of index sets in §6.3;
we shall not pursue this here.

Remark 6.5 (More general 3b-operators). Theorem 6.4 remains true with purely notational
changes for fully elliptic operators acting between sections of vector bundles over M. With
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modifications to the index sets, it also remains true when the coefficients of P are polyho-
mogeneous down to 7 and D (i.e. the Schwartz kernel of P is polyhomogeneous conormal
down to fip and ff7) with the index sets minus (0,0) having positive real parts. When
the subleading terms (in the sense of decay) of P at D and 7 are merely conormal, then
Schwartz kernels of parametrices or generalized inverses have only conormal lower order
terms themselves; see e.g. [Lau03] and [Hin21a, §3.2] for such results in the uniformly de-
generate (0-)setting. We leave the detailed statements and proofs to the interested reader.

The starting point of the proof of Theorem 6.4 is to take Qo € V5, (M) to be a symbolic

parametrix of P, so
PQy=1— Ry, Ry € \Ifgboo(M) (6.6)

Improving the error term Ry requires the inversion of the D- and 7-normal operators
(see §6.2). The conclusion of the parametrix construction, and thereby the proof of Theo-
rem 6.4, is given in §6.3.

For later use, we record three results regarding the choice of weights for which full
ellipticity holds.

Lemma 6.6 (Weights for full ellipticity). Suppose P € Wit (M) is fully elliptic with weights
ap, ar. Let of, € R\ ReSpec,(Np(P)). Then P is fully elliptic with weights o/, o/ =
ar + (ap — ap).

Proof. The assumption on o/, ensures part (3) of Definition 6.3; parts (1), (2), and (4) only
depend on the difference o/, — ozir = ap — a7 = (8 and thus remain valid; and part (5) does
not depend on the weights at all. O

Lemma 6.7 (Full ellipticity and conjugation). Let pp, pr € C>°(M) denote defining func-
tions of D, T. Let P € Wi (M) and ap,ar € R, and let yp,y7 € R. Then P is fully
elliptic with weights ap, ar if and only if Py, = pp P p7 " PpiT ply € Wit (M) is fully
elliptic with weights ap — yp, g — Y.

Proof. Fix a total defining function py € C*°(Mp) to define spectral families and Mellin-
transformed normal operators. Since conjugation by a positive smooth function on M
preserves full ellipticity (for the same weights), we may assume that py = ppp7. Set
B = ap — a7, and note that §— (yp —y7) = (ap —yp) — (g — 7). The principal symbols
of P and

Pypny = p;)(’YD*'YT) pa’YT P pgT p%D*’YT

are equal. The 7T-normal operator of Py, -, depends on (yp,~y7) only through yp — v7;
indeed, writing T', resp. T” for the lift of p7 to the left, resp. right factor of M:,?b, the function
(T"/T)77 is equal to the constant function 1 on ff7. Thus,

N(Pyp iy 0) = pp ® " NF(P,0)pp? 7. (6.7)
This gives
Specy (Nor(Pypr)) = Lz = (0 —47). k): (2, k) € Specy (Nar(P)) }:

thus, 8 — (yp — v7) ¢ ReSpecy,(No7(Pyp,vr)) if and only if 5 ¢ Re Specy, (N7 (P)). (This
takes care of Definition 6.3(1).) Moreover, the invertibility of

N’/i‘,tf (Pyprr) (yp—77) N%,tf (P)p2 T Hsséj’b* (yo—y7),—B+yD—T (FNOT)

Pp
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_ Hs—m,r+m—(vp—vf)y—ﬂﬂv—w(WOT)

sc,b

(where pp = pp/|o|) is equivalent to that of (6.2) since multiplication by pf’ "7 is

an isomorphism H_'\~ O=7) =BT (TN AT — H;;q;_ﬁ (*NOT). (This takes care of
Definition 6.3(2).) Similarly, (6.7) implies that the invertibility of the zero energy op-

erator Z/V?(P’YDKYT?O): HS”B_(WD_WT)(T) — Hg_m’ﬁ_(VD_W)(T) is equivalent to that of

N7 (P,0): Hg’ﬂ(T) — Hgfm’ﬁ(T). For nonzero o, the invertibility of N;(P.YD,VT,U) on
scattering Sobolev spaces is independent of yp, ¥7 (cf. the independence of Definition 6.3(5)

on the values of s,r). (This takes care of Definition 6.3(4) and (5).)

Finally, upon writing

Py = pf—r(w—w) po P PpyP oy P,
we see that - ( —
N'D(P’YD,VTa )‘) = PR e N'D<P7 A— i’YD>p72T_’YD

where pr := pr|p € C*(D) is a defining function of 9D. Therefore, ap — vp # Rez
for all z so that N;(P’Y‘DKYT’ —iz) is not invertible if and only if ap # Rez for all z so
that N;(P, —iz) is not invertible. (This takes care of Definition 6.3(3).) The proof is
complete. O
Lemma 6.8 (Full ellipticity and adjoints). Use a positive smooth 3b-density vsy, on M
to define formal adjoints. Let P € W3 (M) be fully elliptic with weights ap,ar. Then
P* e Wi (M) is fully elliptic with weights —ap, —(a7 — 1). Moreover, we have B (P*) =
—B;C(P*) —1 and ﬁ;(P*) = —B7(P) — 1. If instead we define formal adjoints with respect
to a positive b-density, then P* is fully elliptic with weights —ap, —a.

Proof. Near T and in the coordinates ¢,z from (3.2), we can write v, = a(zr) "|dt dz|
where 0 < a € C*°(M). Thus, N;(P*, 0) = N;(P, 0)*, where the adjoint on the right hand
side is taken with respect to the volume density a|7(z)~"|dz| on T; this density is equal
to (z)~'v, where v, = a|7(z)~("V|dz| is a positive b-density on 7. Making the density
with respect to which adjoints are defined explicit, we then note that

N7(P,0) &7 = () N7 (P,0)"" ()" = pp' N7 (P,0)*pp,  pp = ()"

Now NBT(N;(P, 0), z) = N@T(N\T(P, 0),z)*"2, where 0 < vy € C*°(9T;Q0T) is defined
via v, = ‘%‘I/@ at 0T in a collar neighborhood of 07 C 7. Altogether, we conclude that
Specy, (No7(P*)) = {(—=Z — 1,k): (2, k) € Specy,(Nor(P))},
and N7 (P*,0): H;Ser’_ﬁ_l(T) — Hb_s’_ﬁ_l('r), with 8 = ap — ar, is invertible (assum-

ing Definition 6.3(4)).

Similarly then, the invertibility of ]/V;
Np(P*,\): Hy PPN (D) — Hy *P (D
Specy, (Np(P*)) = {(~2,k): (z,k) € Spec,(Np(P))}.

(There is no shift here since vs}, is, away from 7, an unweighted positive b-density.) We
conclude that P* is fully elliptic with weights —ap and (—ap) — (=5 — 1) = — (a7 — 1).

P,\): HY?(D) — H™™ %(D) implies that of
, and

The final claim follows from P*fTV3b = p}lP*’”?’pr and Lemma 6.7 with vp = 0,
7 =1 O
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We use the following notation for index sets arising in the parametrix construction:

Definition 6.9 (Index sets). Let P € W5 (M) be fully elliptic with weights ap,ar. Put
B8 = ap — a7. In the notation of Definition 2.5, let

EF = EX(Nor(P), ) = ET(Non(P), =),
define 57%’(0) using Definition 2.8, and set
eP = NoU (&5 + &7 T (Ng + 1)).
Define 87%’(2) and 57(—2) as in Definition 2.18 (with respect to 8;5,5%), and put 57(-2), =
Eg) \ {(0,0)}. For a ¢ Re Specy,(Np(P)), define moreover
&L (a) = EX(Np(P),a), a}(@) = + minRe &3 (a).
Thus, min Re 8;5 = j:/BEF and min Re 8%(04) > +a5(a). We also recall from Remark 2.20
that &2 = No U €P" with
Re & > g2 .= min(8F — B7,1) > 0; (6.8)
and Re 57%’(2) > :|:,6’7i-
6.2. Inversion of the 7- and D-normal operators. For the inversion of the 7-normal
operator, we only need conditions (1), (2), (4), and (5) of Definition 6.3.

Proposition 6.10 (7-normal operator inverse). Let P € Wi (M) be fully elliptic with
weights ap, ay. Put

£2 = (P No,&7®, 7P +1,0,0,0,0,62" +1),
&R = €% +(0,1,0,0,0,0,0,0,0).
Then there exists an operator
—-m —00,E8
Qr e Vi (M) + Wy 7 (M)
— W;(M) 4+ U5 (M; Ep[EP)), i [No), 16 (€72, e €5 P 4 1], (6.9)
tbp (0], rbp[0], Ib7 (8], rb7 {0, it (€7 + 1))
with N;(QT, o) = N;(P, o)~ for all 0 € R, and so that
Coo.ER
Ry :=1—PQr € 0, % (M). (6.10)
(In particular, the Schwartz kernel of Rt vanishes at ffr.)

Proof. The main task is to show that the individual inverses ]/V;(P,O')_l, which exist by
the full ellipticity assumption, can be assembled to the spectral family of an element in
the range of the 7T-normal operator map. To get started, recall (6.6) and pass to spectral
families. Then - - -

N7 (P,0)N7r(Qo,0) =1 — N7 (Ro,0).
Here, the normal operators are described by Proposition 4.9 for low and bounded frequen-
cies, and by Proposition 4.8(2) for high frequencies.
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By Lemma 2.11 and the definition (4.6) of Nf,i-h(P), we have

ew " T(T) (6.11)

sc,h

(NT(P’ ih_l)_l)he(o,ho)

for some hg > 0. In view of the invertibility of N;(P,O‘) for all nonzero o, the mem-

bership (6.11) in fact remains valid for any hy < oo, and for fixed finite values of h it
simply states N;(P, +h 1™t € U 7™(T). Note moreover that N;(P, o)~! is smooth
in 0 # 0 as an element of W™ ™(T); indeed this follows by direct differentiation of
N;(P, o) o N;(P, 0)~! = I and using that N;(P, o) is smooth in o # 0 as an element of

U™ (T). Applying the operator (6.11) to N;(RU, +h~1) € W_%7°7°(T) thus produces

sc,h
Q1 € C% (R \ {0} 0™ (T)
with the property that Q1(h~1) € W57 "°(T). Fix any g > 0. If x € C>°((—00, 00))

sc,h

is identically 1 on [—%, 2], then we can apply Lemma 5.15 to (1 — x(0))Q1(0) to conclude

that there exists Q1 € ¥5,.°(M) so that
N7 (P,0)Nr(Q1,0) = Nr(Ro,0), o] > Lao.
Thus, for Qo + Q1 € V3" (M) we have
P(Qo+Qi)=1—-Ri, R €V3®*(M), Ny(Ri,0)=0 Vo, o] >300. (6.12)

In order to solve away the remaining error N;(Rl, o) for |o| < 300, we use Theorem 2.19;
this gives

— _ +,(2) o—(2) o(2) £(2)
(£(0,00] 3 0+ Np(P,o) ™) € w00y 4w 07 5 EE ) () (6.13)

sc-b

Applying this to J/\f;(Rl,—) € \I/S_C‘_)S’_OO’O’O(T) = \I/;C?E(Q’Q’NO’NU)(T) using Lemma 2.15
produces an operator family

- — R ~ _ooy(g;g@)75;v(2)75§?)7g§_2))
Q2(0) := Ny (P,0)  "Ny(Ry,0), (:I:(O, oo €0 — QQ(O’)) ev, (T),

with QQ(U) = 0 for |o| > %Uo. An application of Proposition 5.16 shows that Qy =
]/V\T(QQ,O') for an appropriate operator @9, with Q7 = Qo + Q1 + Q2 being the desired
inverse of class (6.9). Regarding the index set at if = if;, U ifg, the reason why one can
exclude (0,0) from 5(T2 ) is the following: the restrictions to zf of the operators (6.13) to

o = 0 agree: they are both equal to Z/V?(P, 0)~!. Thus, the element (0,0) € 8%-2) of the
zf-index set corresponds to a smooth (across o = 0) term when combining the contributions
for positive and negative o, and the inverse Fourier transform in ¢ of this term therefore
gives a rapidly decaying contribution. ([

Next, for the inversion of the D-normal operator, we only use conditions (1), (2), and
(3) of Definition 6.3.

Proposition 6.11 (D-normal operator inverse). Let P € Wi (M) be fully elliptic with
weights ap, . Put

E9(ap) == (No,No U (€ +1),670 b 4
£h(an),Ep(ap), &7 + Ef (ap), 0,67 + 7 + 1),
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EB(ap) = E2(ap) + (1,0,0,0,1,0,0,0,0).

Then there exists an operator
—m foo,SQ a
Qplap) € U5 (M) + U3, P) () (6.14)
so that Np(Qp(ap), A) = Np(P,A)~! for all A € C with A ¢ Re Specy,(Np(P)), and so that

—00 B (0%
Rp(ap) =1 — PQp(ap) € ¥y, o D)(M)'

(In particular, the Schwartz kernel of Rp(ap) vanishes at ffp.)

Proof. We first claim that we can find
Qp(ap) € Uz (M) + U3 (M; fip[No), 7 [No U (€Y + 1)),1816 O], o[£ 4 1],
Ibp (€7 (ap)], thp €5 (ap)], Ibr[0], thr (0], if 5@ + £ 1))

with ]/V;(Qp(ap), A) = /N;(P, A)~L. Indeed, this is a consequence of the full ellipticity of
Np(P) as an edge-b-operator with weights ap and ag := a7 —ap = —f (in the notation of
Definition 6.3) and Theorem 2.37. Specifically, conditions (1), (2), and (3) of Theorem 2.37
are satisfied in view of conditions (1), (3), and (2) in Definition 6.3, respectively. Moreover,
the sets 57% in Theorem 2.37 are equal to 57% in the notation of Definition 6.9. Finally, the
relationship between the small edge-b-result (2.52) and the extended edge-b-double space
(cf. Proposition 4.12) is given in (2.48). (For an illustration of the boundary hypersurfaces
of the b-front face ffp C M§b and the b-front face of the extended edge-b-double space of
T N3, D, recall Figures 5.3 and 2.4, respectively.)

The remainder term I — PQD(O@) does vanish to leading order at fIp, but its index set
at Ibp is only equal to £ (ap) unless we exercise more care. Thus, in order to construct
Qp(ap), we need to make an appropriate choice of extension of K := Qp(ap)|g, (i.e. the
restriction of the Schwartz kernel of QD(O@) to fip) to a neighborhood of 1bp. To wit,
with T, resp. T” denoting the left, resp. right lift of a boundary defining function of My,
the distribution K has, at the left boundary ffp Nlbp, a polyhomogeneous expansion into
terms of the form

k .
T\= T
a, = Z(ﬁ) log 77| Uz); (6.15)
J=0
where (z, k) € £} (ap) and
£ g(0) 4
ag €AnL T (DX D),

where the index sets refer to 9D x D and D x 0D in this order; this follows from (2.52)
and the above identifications, see also Figure 2.4. Furthermore, we have Np(P)a, = 0.
Recalling from Lemma 5.9(3) that lbp is a resolution of D x M and thus of D x My, fix
now a collar neighborhood [0, €),, x My of dMy C My and define the projection maps
m: D x [0,€) x (OMo\ {p}) 2 (¢,T',q') — q € D (where we write ¢, ¢ for points on D and
OMo\{p} = D°) and 7’': DxM — M; denote furthermore by x € C([[0, €) x 9 Mp; {(0,p)}])
(the domain here being a neighborhood of DU T C M) a cutoff function with support in
a collar neighborhood of the lift D of {0} x dMj, and identically 1 near D. Define then

by = ((7)*x) - (T aq. ;).
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(In terms of Figure 5.4 and the local coordinates used there, the function b, ;) is obtained
by extending a(. j) = a.;(X, X’) to be T'-independent, followed by cutting it off with a
cutoff depending only on (77, X’); one may think of a smooth version of the characteristic
function of {T"/|X’| < 1}.) Thus, b, ;) extends from D° x M° as a polyhomogeneous

function on lbp, with index set 87_-’(0) at If and by, with index set 5;’(0) + 1 at rf, and

with index set 5;5’(0) + 5%’(0) + 1 at if,. On the other hand, the prefactor (%)zl log %P
in (6.15) lifts to M2, to a polyhomogeneous function with index set £ (ap) at Ibp U lby.
We can then take the Schwartz kernel of Qp(ap) to be equal to K at ffp and to have a
polyhomogeneous expansion at lbp into the terms (6.15) but with a(..;) replaced with b, j);
this can be done consistently with the membership (6.14).

It remains to show that for such @Qp(ap), the Schwartz kernel of the error Rp(ap) =
I — PQp(ap) not only vanishes at ffp (by construction), but also gains one power at 1bp
relative to Qp(ap). To prove this, let x € C*°(M) denote a cutoff to a collar neighborhood
of D, with x =1 near D; then P — xNp(P)x € ppVi (M). Write

I — PQp(ap) =1 — xNp(P)o (xQp(ap)) — (P — xNp(P)x)Qp(ap).

Near 1bp the Schwartz kernel of the second term on the right vanishes by construction, and
so does the Schwartz kernel of the identity operator. Since the third term has index set
&S (ap) +1 at Ibp, we are done. O

The operator Q, resp. @p(ap) is unique modulo the space of operators with vanishing
T-, resp. D-normal operator. Furthermore:

Lemma 6.12 (Equality of normal operator inverses at ffp N ff7). The restrictions of the
Schwartz kernels of Q7 in (6.9) and of Qp(ap) in (6.14) to fip Nffr are equal.

Proof. Denote by K7 and Kp the restrictions of the Schwartz kernels of Q7 and Qp(ap)
to fip Nff7. We then claim that their Fourier transforms in the coordinate 73y, from (4.3),
restricted to positive or negative frequencies, are the Schwartz kernels of the inverses of
N%tf(P) and N;tf(P), respectively (with the absolute value of the frequency variable
being the reciprocal of a fiber-linear coordinate on TNAT and T NID, respectively). Recall
here the expressions (4.25) and (4.26), which relate the Schwartz kernels of N%tf(P) and

Ng ¢¢(P) to that of P in a similar manner. The Lemma then follows from the identification
of the two tf-normal operators via Proposition 4.17.

The claim follows for the Fourier transform of K7 directly from the construction of the
T-normal operator of Q7 via an inverse Fourier transform, with K7 being comprised of
the inverse Fourier transforms of the Schwartz kernels (a distribution on tfs.;, C 7)) of
the inverses of N;f’tf(P) and Nz ;(P); see also the proof of Proposition 5.16. For Kp, one
can argue similarly: by an inspection of the first part of the proof of Theorem 2.37 (and
of Proposition 2.28), Kp is comprised of the inverse Fourier transforms of the Schwartz
kernels of the inverses of Ng,tf(P) and Np, (P) (with respect to the fiber-linear coordinate
on (N 8D)%, the blow-up of which at the boundary of the b-diagonal at fiber infinity is
tfen C Dgh). (Equivalently, one can use Proposition 2.29 to show that the Mellin transform
of the restriction of the Schwartz kernel of @p(ap) to fip is polyhomogeneous, with its
leading order term at tf., C D2 —cf. Proposition 2.34(3)—one the one hand necessarily
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being the inverse of Ngtf(P), and on the other hand being the Fourier transform of Kp
restricted to positive or negative frequencies.) O

6.3. Parametrix construction: proof of Theorem 6.4. It will be useful to have rough
right parametrices available not just for the D-weight ap, but for a range of D-weights.
Recall here that if o/, ¢ ReSpec,(Np(P)), then P is fully elliptic with weights o/, and
o/ = at + (o — ap) by Lemma 6.6.

Using Lemma 6.12, we can construct a symbolic parametrix and invert the 7- and D-
normal operators in one go: we denote by

—m —00,E9 (o
Qi(alp) € U™ (M) + Wy 2 (ar),

E9(alp) == EL U EL (alp)
= (EP N U (EP +1), 677, 65® 41,
(), Ep(alp), 70 + £ (alp), 0,€P + 1)

(6.16)

an operator whose Schwartz kernel is equal to that of Q7 (from Proposition 6.10) at ff7, to
that of Qp(a/p) (from Proposition 6.11) at fip and in a neighborhood of 1bp, and to that
of a symbolic parametrix of P in a neighborhood of diags;,. We can make this choice so
that the index set of

Ri(alp) :=1—PQ:(ap) € ¥y (M),
ef(ap) = (P, (N +1) T (P +1),67P, 7P 11, (6.17)

Eb(ab) +1,€p (ap). &)+ Ef (0), 0, €7 + 1)

inherits the improvements of both Proposition 6.10 and Proposition 6.11 (i.e. the index sets
at ff and ffp do not contain (0,0), and the index set at lbp is one better than that of

Q1(ap))-

Specializing to the case o/, = ap, the next step is to solve away the error R;(ap) at
IbpUlby to infinite order. This is not straightforward for a number of reasons; for example,
Ibp does not fiber smoothly over D via the left projection (see also Figure 5.4), and moreover
for 3b-pseudodifferential operators P it is difficult to interpret the operator N;(P, 0) as the
b-normal operator of P at 7 due to an incompatibility of ps.d.o. algebras (putting aside
the mild complication that N\T(P, 0) acts on the leaves only of the singular fibration of a
neighborhood of 7 by level sets of T'). Thus, rather than solving R;(ap) away by hand, we
take full advantage of the large 3b-calculus and exploit the fact that Q1(a/,) (for suitable
choices of o) is already a sufficiently precise parametrix to aid in solving away the lbp-
and lby-error terms; see also Remark 2.10.

Lemma 6.13 (Solving away the error at the left boundary). Set Q(lo) = Q1(ap) and
Rgo) = Ri(ap). With B2 € (0,1] defined in (6.8), let € € (0,182] be such that ap + je ¢
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Re Specy, (Np(P)) for all j € No.?* Then we can inductively define two sequences of 3b-
ps.d.o.s by setting

QY 1= Qi + Qufap + jORY,
RY .= 1 - PQY) = Ry(ap + jo) RV,

for j € N. Moreover, if, in the notation of Definition 5.11, we set RO .= ER(ap) and
ERWD .= eR(ap + je) o ERU-D),

EQUMA .= £9(ap + je) 0 ERUD),

(6.18)

(6.19)

then ng) — gj_l) € \Ilgboo’gQ(j)'A(M) and jo) € \Il?jboo’gR(j)(M), and
min Re(£9U)2),, minRe(£80)), = 00,  j — 00, = fp, i, If,1f, Ibp, Ibr, if.

Proof. From Definition 6.9 and the comments following it, we have

Re&%ah) > (0, 0,-B7,BF + Laplah), —aplap),ap(ap) — By 00,1+ BF),
Re&f(ahp) > (87,1, —B7, BF + 1,a}(ap) + 1, —ap(ah), ap(ap) — Br. 00,1+ BF);
(6.20)

by this we mean that Re £9(al)ip, > 0, ReE9(ak)i, > 0, ReE9(ak)r > —B7, etc., and
E(cp) by = 0, similarly for £%(a’,). We shall prove by induction that
R € wy ),
ReERD > ((j + 1)e, 1+ je, —B7 + je, BF + je + 1,
ap + (74 1)e, —ap,
ap — B +je,—ap+ BF+1—€1+ (j+1)e),
with (6.20) implying the base case j = 0. Now, if (6.21) holds for j—1 in place of j € N, then

by Proposition 5.10, the compositions Q1(ap + je)jo_l) and Ry(ap + je)jo_l) in (6.18)
are well-defined since

Re(E9(ap + j€)mp + (ER"DY,) > —ap(ap + je) + (ap + je)
> —(ap + je) + (ap + je) = 0,

(6.21)

where we used that ap + je ¢ ReSpec,(Np(P)) to get the strict inequality. From the
+

expressions (5.11), using (6.20) for oy, = ap + je as well as ap(ap) > L(ap + je), and
noting that B — 87 > B2 > 2, we find that RY) € W% (M) with
Re &gy, > min(B2 + je, je + 1,85 — Br + (j — 1)) > (j + 1)e,
Re&g, > min(2+ (j — e, B2 + 1+ je, —B7 + BF + (j — e + 1,
je—Br+BE+1—€) > 1+ je,
Re & > min(1 — 87 + (j — )¢, 87 — B7 + (j — e, =By + je, je — Br) = —BF + je,
Re& > min(BF +2+ (j — D)e, BF +je+ 1,88 + BF + (j — e+ 1,
je+1+pBE+1—¢€) =pE+je+1,

22Guch € exist since the set of € € (0, B2) for which this condition is not satisfied is countable.
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Re &by, > min(ap + je + 1, 87 + ap + je, fF + ap — B+ (j — 1)e) > ap + (j + L)e,
Re &y > min(—ap — je+ Je, —ap) = —ap,
Re &y, > min(ap + je — 7,1+ ap — 7 + (§ — D),
B +ap = B + (j — Ve, —fr +ap + je) = ap — 7 + je,
Re&w, > min(—ap—i-ﬁ;"——}-l—6,—0@—]’6—!—5?—1—(]’—1)64—1) = —ap—{—ﬁ;r——l—l—e,
Re & > min (B + 14 je,2 + je, 1 + B2 + 1+ (j — 1)e,
—Br+ B+ (- Vet+1l,je=Br+Br+1—€) >1+(+ e
This implies (6.21).
In particular, the infima of the real parts of the index sets of jo ) at fip, fi, If, rf, 1bp,
Ib7, and if tend to +o0o0 as j — oo.

Recall also from (6.20) that the infima of the real parts of the index sets of Q1(ap + je)
at Ibp and Ibs tend to +00 as ap + je — oo. Moreover, the real parts of the index sets of
jo ) at rbp and rby are uniformly bounded from below, as are the real parts of the index
sets of Q1(ap + je) at fip, fir, If, rf, and if. The claim about the index set collection
£QU)A now follows from Proposition 5.10. U

We continue using the notation of Lemma 6.13; we impose on € the additional constraint

e <min(8 - B, BZF — (). While the index sets of ng ) _ ng ~U have uniform lower bounds
at the right boundaries (rbp and rby), the rough accounting of index sets afforded by
Proposition 5.10 cannot exclude the possibility that the total set (J;cy, (E9WA) s no

longer an index set (e.g. due to an accumulation of elements with real part near —ap(ap)),

similarly at rby. Thus, we only use the ng ) away from rbp Urby: if x € C“(Mgb) denotes
a cutoff which vanishes near rbp Urbs but is identically 1 near Ibp Ulby, then we can take

—00,E8 > ; i
Qe U (M), Qa~ Y x- (@Y —QVY),
j=1

where the asymptotic sum is taken at Ibp Ulbs, and
552 = (gffpagffTaélfagrfvglbpa(baglea@aéif)y go = U ((S‘Q(])’A). (622)
jeN
Proposition 5.10, applied to ng) - ng_l) = Qi(ap + je)jo_l) (7 € N) using (6.20) (for

o = ap + je) and (6.21) (for j — 1 in place of j), implies that for (eQQ). = min Re(SQQ).,
we have

(eg‘?)ﬁ'D = € (eg)HT 2 ]‘7 (eg)lf > _6’7_‘7 (€2Q)rf > 1+ /8’—]’:7
€y > ap+e, (e, > ap — b7, ()i >1+e.
Let now J € N and define the partial sum Q[QJ} = Z;Ll X‘(ng) —ngfl)) = X.(Qg") _ng));

then the index sets of ()9 — Q[Zﬂ are contained in those of ()5, but with the minimum of the
real parts of the index sets at Ibp and Iby tending to co as j — co. Consider then

Ro:=1-— P(Ql(ap) + QQ)
= Ri(ap) — PQ2

(6.23)
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—1-PQ” + QY + (@, — Q")
=1 - PR + P(1- )@ - Q")) - P(Q: — Q)
=R 4+ P((1 - 0@ - Q) — P(Q2 — QY.

The minima of the real parts of the index sets at lbp and 1bs of the first and third term
on the right tend to co as J — oo; for the second term, these index sets are trivial (()). On
the other hand, from the expression for Ry in the second line, the index sets of Ry at the
other boundary hypersurfaces of M3 can be bounded by the union of those of Ry (ap) and
Q2. Recalling the notation (6.17), we have thus shown that

Ry € Wy (M),
&3 = (E%(an)ip U (E9)p, €™ (an)i, U (€)1,
ER(ap)ir U (ED ), ER(ap)er U (EX)us,
0,8 (D)t 0,0, E%(ap)ie U (E5)ir).

In view of (6.16) and (6.23), the quantities (el?), := min Re(E£)s for @ # Ibp, Iby, rby (for
which one may define them as +00) satisfy

(ef)rp > €, (ef)e, > 1, (e > —B7, (ef) > 1+ BF,

(emp > —ap,  (el)i>14e

(6.24)

(6.25)

Noting that
P(Qi(ap) + Q2) =1 — Ra, (6.26)

we now solve away the error Ry, which is trivial at the left boundary lbp U lbs, using an
asymptotic Neumann series as in the b-setting (see the proof of Theorem 2.9).

Lemma 6.14 (Asymptotic Neumann series). Let Ry be as in (6.24)—(6.25). Then the j-fold
. . _ R(J)
composition R} is well-defined for all j € N, and we have R} € \113]:0’52 (M) with
efV gl gfU) .—gRogfUTY, (6.27)

The values min Re(ER(j)) for o = fip i If xf rbp,if satisfy the bounds (6.25), and we
have Re(c‘:R( ))I"bT > —ap + ﬁT + 1 and (ERU Jo = 0 for @« = lbp,Iby. Moreover, for
o = ffp, fiiy, If, rf, if, we have Re(&, R0 )) — 00 as j — 0o. Finally,
e = &) (6.28)
JEN
is an index set for all boundary hypersurfaces o of Mgb, and it satisfies the bounds (6.25)
and Re(Ef), > —ap + BF + 1.

Proof. We show by induction that

Re &y > (je, 1+ (j = )6, =B + (j — Ve, 1+ B + ( — D,

(6.29)
oo,—ozp—}-é,oo,—ap—i-ﬂ:;-i-l,l—f—je)



3B-CALCULUS 131

for some 6 > 0. For j = 1, this follows from (6.25), and we in fact have (52}%(1))](1)7 = 0.
Assuming (6.29) for j — 1, the definition (6.27) and Proposition 5.10 imply (for the same
J>0)

(e+(j—1)e, BF—BFr+(j—2)¢) = je,
in(2+(j—2)e, e+ 14+(j—1)e, = Br+14+B8E+(—2)e) > 1+(j—1)e,
(

Re(gf(j))ﬁrp >m

Re(& m

(&) = min(1-B7+(j—2)e, e=Br+(i—2)e, —Ar+(j—1)e) = —Br+(i—1)e,
m
1

-
( 2 (]))HT >
Re 1
Re(E3 V)t > min (1+B5+1+(j~2)e, 1+BE+(j—1)e, e+ 1+5F+(j—2)e)

&
=
I
= B

in(—ap+BF+1+1+(j—2)e, —ap+Bi+1) = —ap+BF+1,
in(e+1+(j—1)e, 1+1+(j—1)e, Ihe+1+(j—2)e,

—BrH14B8F+(j—2)€) = 1+je,
which completes the inductive step. The lower bound (6.29) implies the bounds (6.25) for

min Re(£5Y)),, o = fip, ffy,If, 1f, tbp, if, as well as the fact that minRe(£17)), — oo as
j — oo for @ = ffp, fi7,If, 1f,if. For these o, this also implies that (£F), is an index set.

It remains to show that (1), and (££),, are index sets. To this end, it suffices to
note that

e = (€ oy U (e + (6 ).
(& = (€3 by O ((Ef v + (€5 ),

with minRe((é’QR)rbD + (Ef(jfl))ﬁp) — oo and minRe((Ef)rbD + (52R(j71))rf) — 00 as
j — oo by what we have already shown. ([l

_ R
With &£ given by (6.28), let now R3 € \Il3b°°’53 (M), with Schwartz kernel equal to the

asymptotic sum (at 1bp Ulby U fip U i Ulf Urf U if) of R% over j € N. Then we can
compose (6.26) with I + R3. We obtain

PQ=1-R,
Q = (Qi(ap) + Q2)(I + Rs) € W™ + W " (M), (6.30)
R:=1— (I - Ry)(I + R3) € W; >R (M),

where using the notation (6.16), (6.22) (based in turn on Lemma 6.13), and (6.28), we have
£q = (E9ap) UED) U ((E%(ap) U ER) 0 £1Y),

6.31
ER = (wuwuwuq)v@v (g:?)rbp7@) (gSR)rbTvq))~ ( )
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For the index set collection of R, we use that for any J, and setting RéJ] = Z‘jjzl R%, we
have

R=1~(I-R)(I+R") ~ (I - Ry)(Rs — R
= RJ™ = (1= Ra)(Rs — By,

where the index sets (RQJ +1). at 1bp, Ib7 are trivial and at ffp, ff., If, rf, if have real part ex-
ceeding any fixed number when J is large enough, while (Ry ™)e C (E4)s for @ = rbp, rh.

The same is true for the index sets of Rs — RgJ], and therefore also the real parts of the

index sets F of (I — Ry)(Rs—RY)) = (Rs— RY)) — Ry(Rs— RY)) at fp, 7, 1, 1f, Ibp, by, if
exceed any fixed number, while Proposition 5.10 shows that the subsets of the index sets
at rbp, resp. rby with real part less than any fixed number are contained in (E4%),,,, resp.
(E4Y)wp,- for sufficiently large J. This gives (6.31) and finishes the proof of the construction
of the right parametrix of Theorem 6.4; note indeed that

\Ijs_boong (M) — \I,—OO,(V),@,(gR)rbD 7(8R)rb7—_1) (M)7

the shift by —1 arising from (5.2). The bounds (6.5) on the index sets follow from (6.16),
(6.23), and from the bounds for (6.28) stated in Lemma 6.14.

We construct a left parametrix for P as follows: fix a positive 3b-density 0 < vg, €
C>®(M;3PQM) on M; by Lemma 6.8, the adjoint P* is fully elliptic with weights —ap,
—(a7 — 1). Denote by Q4 € W " (M) + \If;boo’f(M) a right parametrix of P*; the index
sets comprising F satisfy the lower bounds (6.5) with ﬁ%c— and ap replaced by — B;E —1 and
—ap, respectively (again by Lemma 6.8). But then Qf € W3 ™(M) + \II;bOO’F*(M) is the
desired left parametrix of P, where

f§D = Tffpv J:I;T = TﬁT7
Fit = Fut; Fie =Tt
ﬂ%p = J1bps f:bp = ﬁbpa
I_T{)T = Jrbrs F:bT = ﬁlﬂﬂ
it = Fir;

here we write Fg, = {(Z,k): (2,k) € Fg,}, etc. The proof of Theorem 6.4 is complete.

6.4. Consequences: Fredholm theory and generalized inverses. The existence of
the parametrices in Theorem 6.4 gives precise information on the mapping properties of
fully elliptic 3b-operators:

Theorem 6.15 (Fredholm theory and (generalized) inverses). Let P € Wit (M) be fully
elliptic with weights ap, a1 ; see Definition 6.3. Define 3b-Sobolev spaces on M with respect
to a positive b-density v, so Hy »*T (M) = Hy T (M,w,) in terms of Notation 6.1.
Then:

(1) For all s € R, the map
P: HOPOT (M) — H ™7 (M) (6.32)
is Fredholm. We have ker P C Hyy "7 (M) and ker P* C Hyy' ™ “P T (M).
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(2) Denote the orthogonal projection (with respect to Hg{)O‘D’aT(M)) to ker P by II,
and the orthogonal projection to (ran P)‘ by II'. Write G: Hy ™7 (M) —
H3"P T (M) for the generalized inverse of P (i.e. Gf = u when f € ranP and
Pu=f,ul kerP, and Gf =0 when f L ran P). Then

mew (), Wev =0, Gew M)+ (),

where, in the notation of Theorem 6.4,

M= (&, s vy — 2ap, &, — 2a7), (6.33)
gH/ = (grbp + 2OZD, gI‘bT -1 + 20[7’7 grbea ErbT - 1)7
and g = (gffpa gﬁTa glfy grfu glbD7 grbpa glb7~7grb7*) gif) is a collection Of index sets
with
Re(Grp, \ {(0,0)}) >0, Re(Gr \ {(0,0)}) > 1,
ReGi > —08+b—c¢, ReGi > B+b+1—c¢,
Re G, > ap, Re G, > —ap, (6.34)
ReG, > a7 +b—¢, ReGm, > —ar +b+1—c¢,
ReGir > 1;

here, we recall B = ap—ar, b=min(8—B7,8F—B) >0, and € € (O,min(%ﬁ%, b)).
(3) The kernel and cokernel of P consist of polyhomogeneous distributions on M, with

(&) X (Exboy Exbr—1)
ker P C .Aph“gOD T (M) and (ran P)* = ker P* C Apth "T (M),

Proof. In the notation of Theorem 6.4, part (1) follows from the compactness properties
of the errors R, R". To wit, R is a compact operator on Hy "7 (M); note that it is
bounded on this space since Re &, +ap > 0 and Re&, — 1+ a7 > a7 —ap + B;C —€=
(6?— B)—e > 0, and the range of R consists of elements of C°°(M), which includes compactly
into Hy "7 (M). Similarly, R’ is a compact operator on Hy”**7 (M), since its range
is contained in AP *%ep=Br (M) C A*P+0T+I(M) for some small § > 0, and this space
embeds compactly into Hy ™7 (M).

For part (2), denote by uq,...,uy € Hgk’)aD’O‘T(M) an orthonormal basis of ker P. Then

/ / / (E{bb’g{bT)
uj = (QP+Ruj = Ruj € A, (M), and therefore

N N
— . . _ . —2ap —2a7-—
1= g UJ<—,U]>H;)1;aD,aT(M) = E uj @ pp T pr U
j=1 j=1

is of the stated class. The claim for I’ follows from an analogous description of the L?(M)-
adjoint (IT')*, using the fact that any v € ker P* N Hgl’)_aD’_aT(M) satisfies v = (Q*P* +

R*)v = R*v € .AS;;D’STW_I)(M ). Finally, the generalized inverse G satisfies PG = I — II

and GP = I — II', and hence
G =G(PQ+ R)
=(I-T)Q+ (QP+R)GR
=Q-II'Q+QR—-QUR+ R'GR. (6.35)
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Note then that the boundedness of G: Hg ™ “P T (M) — Hy*™ 7 (M) implies R'GR €

A / _ 11
g g ’gle’grbD’g“bT_l)(M ). The relationship (5.3) moreover gives I € \Ifgboo’g% (M) and

H/
—00,E4,

e ¥, (M) (with (E)g, = 2(&},,, — ap) ete. from (6.33)), with the lower bounds
recorded in Theorem 6.4 implying

Re(ggl}))ﬁ“p >0, Re(Sgl}))ffT >2(8 - By —€) +1,
Re(&3 )i > —B7 — €, Re(&3h)et > —B7 +28+1—¢,

Re(E4)bp > ap, Re(E3)rbp > —ap,

Re(&3)b, > ap — Br — ¢, Re(E3 )by > —a7+ B — Br +1—¢,

Re(E5)ie > 2(8 — Br —€) + 1,

and also
Re(€5,)mp > 0. Re(E5y)m, > 2(0F =B — ) +1,
Re(3h )it > =28+ BF — ¢, Re(E3h it > B +1—¢,
Re(S?fg)lbD > ap, Re(E?lg)rbD > —ap,
Re(ngIb')le >ar+pBF—-B—c¢ Re(E%,]g)rbT > —ap+ff+1—¢

Re(E30)ie > 2(6F — B —¢) +1,

Thus, we have G € V3"(M) + \I’;boo’g(M), where the index set § can be computed
from (6.35) by means of Proposition 5.10; and the lower bounds (6.34) follow from (5.11)
using the lower bounds on the index sets for IT, IT" (recorded above) and R, @, Q" (recorded
in Theorem 6.4).

Part (3) follows from the description of II and IT'. O

Corollary 6.16 (Tempered nullspace). Suppose u € 9'(M°) satisfies Pu = 0. Then u is
polyhomogeneous.

Proof. The intersection of all weighted 3b-Sobolev spaces on M with values in densities is
equal to C°(M;QM). By duality, the union of all weighted 3b-Sobolev spaces on M is
therefore equal to the dual space 2/(M°). (This is Hérmander’s notation [H6r07, Appen-
dix BJ; another common notation for this space is C™*°(M) [Mel96]. In the case My = R”,
this is the space .#/(R™) of tempered distributions.) Therefore, u € H?;DN’(_N’_N) (M)
for some . Since the full ellipticity assumption for P is verified for any weights ap, ar
provided the difference ap — a7 lies in the fixed interval (57, 5;5) and ap avoids the dis-

crete set ReSpec, (Np(P)) C R, we can choose weights ap,ar so that u € H:;]DMQD’O‘T

and P is fully elliptic with weights ap, a7. The polyhomogeneity of u then follows from
Theorem 6.15(3). O

While we do not develop an index formula for fully elliptic 3b-operators, we do record
the following relative index theorem, which is the 3b-analogue of [Mel93, §6.2]:

Theorem 6.17 (Relative index theorem). Let P € Wi (M), and suppose P is fully elliptic
with weights ap,ar and also with weights o, o'y, where ap < op. Put f = ap — a7.
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Write ind(ap, oer) for the Fredholm index of P: Hy ™7 (M) — Hy "™ *T (M) (which
is independent of s € R), and define ind(a/y, o'y) analogously. Then

ind(a’p, o7) — ind(ap, ar) = Z mp(A),

ap<Re<al,

where mp(\) is the rank of a pole @(P, ¢)~! at ¢ = —iA: that is, mp(\) = 0 unless
(A, 0) € Specy,(Np(P)), in which case mp(A\) = dim Fp(P, \), where

7
Fp(P,)\) = {u = Zpé(log po)u;: J € Ny, uj € H?’_B(D), Np(P)u = O}. (6.36)
=0

Remark 6.18 (Fredholm property and weights at D and 7). (1) Theorem 6.17 implies
that Theorem 6.15 is sharp as far as the D-weight is concerned: P is not Fredholm
as a map (6.32) for ap € ReSpecy,(Np(P)) since the index is not constant when
ap crosses Re Specy, (Np(P)).

(2) As far as the relative weight § = ap — a1 is concerned, note that Theorem 6.15
applies whenever 8 € (87, B;); we claim that this condition is also almost neces-
sary, in the following sense. If P € Wi (M) has an elliptic principal symbol and
is Fredholm as a map (6.32), then necessarily ap — oy € I := [B7, BF] where
B+, resp. B;C is the infimum, resp. supremum of all weights g € R for which

—

N+(P,0): HS’B(T) — H{:*m"B(T) is injective, resp. surjective; if B > BF, we
set I = (). Ignoring the borderline case when By = BF, the interval [B7, B}] is
the closure of the (possibly empty) largest open interval (3, BZF) of weights 3 for

which N\T(P, 0) is invertible. To prove the claim, we use material from §7 below:
the Fredholm property of P implies the validity of an estimate (7.1). One then
plugs us = pg‘THuo into (7.1) where ug € A*?~27:%(M) is supported near 7 and
smooth down to 7, with up|7 € A*?~*7T(T); using the testing definition (Propo-
sition 3.8) of N;(P, 0), simple bounds for both sides of (7.1) imply, upon taking
0\, 0, that N;(P, 0)(ug|7) cannot vanish unless ug|7 does. Thus, ap — ar > B
One similarly shows ap — ar < B; via consideration of the adjoint P*.

Proof of Theorem 6.17. We may split the interval (ap, o/,) into a finite number of subin-
tervals so that each interval contains only one element of Re Specy,(Np(P)); we may thus
assume that (ap, ) N ReSpecy, (Np(P)) consists of a single real number og. When ap
varies in R\ Spec,, (Np(P)), the Fredholm index ind(ap, a7) remains constant; therefore, we
may then further assume that ap = ap — 6 and o/, = ap + 0 for an arbitrarily small 6 > 0.
Finally, the full ellipticity condition is open in the relative D- and T-weights; therefore,
upon taking § > 0 sufficiently small, we may assume that P is fully elliptic with weights
ap = ag — 0, a7 and oy, = ag + 0, a7; in particular, (g £ 0) — ay € (ﬁ;—,ﬁj—) in the
notation of Definition 6.3.

The proof is now a largely notational adaptation of the arguments in [Mel93, §§6.1-6.2].
The main ingredient is, for A\, \ € spec, (Np(P)) with Re A = Re N = «y, the sesquilinear
pairing

Fp(p,N) x Fp(P*,=)\) 3 (u,v) — i1 /D P(xu)xv — (xu)P*(xv) dw, (6.37)
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where we extend u,v to a collar neighborhood & C M of D, and x € C*(U) is a cutoff
which is identically 1 near D; furthermore, Fp(P*,—) is defined as in (6.36) but using
the weight +3 at 0D. The integral over D converges since the coefficients u; in (6.36)

necessarily lie in Hso ’76;76(13) for all € > 0 by elliptic b-theory for N;(P, A) near 9D, and

similarly the coefficients of elements of Fp(P*, ) lie in HEO h ;76(2)) for all € > 0. Following
the proof of [Mel93, Proposition 6.2] then, the pairing (6.37) is identically 0 for A # X,
and nondegenerate when A = ). The proof of [Mel93, Lemma 6.4] goes through as well,
and shows that the subspace of Fp(P, \) consisting of those elements which are the leading
order terms of elements of ker P is the annihilator of the subspace of Fp(P*, —)) consisting
of those elements which are the leading order terms of elements of ker P*. This implies the
Theorem by the same arguments as in [Mel93, Proof of Theorem 6.5]. O

6.5. An example. We consider again the operator from Theorem 1.2, rescaled as in §3.5;
thus,
Py = (2)*(D} + D2+ V(t,2) + Vr(z)),
teR, e R Ve ((tz)2C®°RY), Vre (z)3C®Rn1),

satisfies Py € Diff3, (M), where M = [R"; {(—00,0), (+00,0)}], and has an elliptic 3b-
principal symbol. We moreover let P € Diff;’(fl’fl)(M) = ((t,x))"'Diff% (M) and assume
that 3
P := Py + P € Diff3, (M)

has an elliptic 3b-principal symbol. (This is true for any P in a sufficiently small neighbor-
hood of M this assumption thus excludes the possibility of characteristic set in M °.) We
work with positive b-densities on M, D (the lift of OR™) and 7 (the union of the two front
faces), unless otherwise noted.

Lemma 6.19 (Properties of P). Let n =dim M > 4. Then

Specy(Nor(P)) = [ {(=1,0), (1 +n = 3,0)},
1eNp

and the T-tf-normal operators in (6.2) are invertible for any B = (87, %) := (0,n — 3).
Let Vp := ({(t,2))*V)|sgw € C°(S"1), and let D C R be the (discrete) set consisting of
all a € R for which there exists A € C, Im A = —a, so that \* +i(n — 2)A + Agn-1 + Vp is
not invertible on C*°(S"~1). Then conditions (1)—(3) of the Definition 6.3 of full ellipticity
(with weights ap, ot ) are satisfied for P if and only if

ap ¢ D, ap —ar € (0,n —3). (6.38)

For V=0, we have D = {—l,l +n —2:1 € No}, and Spec,(Np(P)) = Uy, 1(=1,0), (I +
n—2,0)}.

Proof. The normal operators

Np(P) = Np(Py), N7 (P)=Nr(R)
are independent of P. Since the spectrum of Agn—2 is equal to {£(£ +n — 3): £ € Ny}, the
operator Ny7 (P, —i) = —£2 + (n — 3)€ + Agn—2 on S 2 (see (3.44)) is invertible unless
€ e {0, l+n—-3: ¢ € Ny}, and at these values of £ its inverse has a pole of order 1. Consider
next the operator Nj (P) from (3.43); its invertibility as a map (6.2) for 8 € (0,n — 3)
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is standard, see e.g. [Hin22b, Proof of Theorem 6.1] (where the dimension is shifted by
1 relative to here). Next, for Vp = 0, the boundary spectrum of the rescaled Laplacian
((t,z))2(D?+ D2?) on R™ is the set {(—1,0), (I+n—2,0): [ € Ny}, as follows via separation
into spherical harmonics on S*~! C R"™; the Mellin-transformed normal operator family of
Np(P) is related to this via (3.45). But since the weight at 9D of the b-Sobolev space
on which we need to study the invertibility of ]/V;(P, A) (see (6.3)) is —8 > —n + 3, every
element of the nullspace of ]/\TE(P, A) is necessarily bounded at 0D and thus has a removable
singularity at 9D (i.e. it is the lift from OR™ = S"~! of a smooth function on S*~!). The
same arguments (except for the explicit calculation of D and Spec,(Np(P))) apply also
when Vp # 0. The proof is complete. O

Whether or not conditions (4) and (5) hold depends on the potential V7. For real-valued
V7, these conditions are directly related to classical spectral theory:

Corollary 6.20 (P as a fully elliptic 3b-operator). Suppose Vi is real-valued. For n > 4
and ap,ar as in (6.38), the operator P is fully elliptic with weights ap,at if and only
if Agn—1 + Vi has no negative L*-cigenvalues and 0 is neither an L?-eigenvalue nor a
resonance (the latter only being a possibility for n = 4,5); here, we use the standard norm
on L2(R"Y). In particular, P is fully elliptic when V3 > 0.

This produces a class of examples of operators P to which Theorems 6.4 (precise para-
metrices), 6.15 (Fredholm properties, structure of nullspace, and structure of generalized
inverses), and 6.17 (relative index theorem) apply. For a more general result, see Theo-
rem 1.2, and also Remark 6.21 below.

Proof of Corollary 6.20. The absence of negative L?-eigenvalues of Agn—1+ V7 is equivalent
to condition (5) of Definition 6.3. The zero energy operator

N7(P,0) = (2)(Apn1 + Vi) : HY(T) — H2P(T) (6.39)

is Fredholm (as discussed in §6.1). Since the standard density on R"! is (x)"~! times
a positive b-density, the L?(R"~!)-adjoint of (6.39) is (up to conjugation by a positive
smooth function) given by (Agn-1 + V7 )(z)2: Hg8+2’_ﬁ+n_l(T) — H];S’_’B+n_1(T), the
conjugation of which by (z)? is the operator N;(P, 0) as a map Hb_s+2’_ﬁ+n_3(7') —
Hb_s’_BJ“”_s(’T), with —3 + n — 3 lying in the same interval (0,n — 3) as 3 itself; but
since its nullspace is independent of the choice of § within this interval (and also on the
choice of s), we conclude that (6.39) has index 0. Any element u € H[;’ﬂ (T) Nker N;(P, 0)

automatically lies in A"~3(R"~1); for n = 4,5, such u are thus decaying, and for n > 6,
such v automatically lie in L?(R"~1).

For V3 > 0, the absence of negative L2-eigenvalues and of a zero energy resonance or
bound state follows via an integration by parts argument. ([l

Remark 6.21. For general Vi, the full ellipticity of P with weights ap,ar as in (6.38)
is equivalent to condition (1) of Theorem 1.2. Indeed, the condition on the zero energy
operator in Theorem 1.2 ensures the absence of a kernel and cokernel of (x)2(Agn-1 + V7)
on HS’B(T) and Hg’_6+"_3(7'), respectively, for some (and thus all) 8 € (0,n—3). We also
note that the weights in Theorem 1.2 which for clarity we denote ap, &7 here correspond,

upon passing from the density |d¢ dz| there to a b-density prplh|dt dz| (where pr = %
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and pp = (x)~ 1), to the weights ap = ap +5 and a7 = d7-+% in present notation. Thus,
the conditions ap — a7 € (—25%, %51 — 2) and ap + 2 ¢ D = Re Specy,(Np(P)) (which is
condition (2) in Theorem 1.2) are equivalent to the conditions (6.38).

7. FULLY ELLIPTIC 3B-OPERATORS: FREDHOLM THEORY VIA ESTIMATES

While the parametrix construction in §6 gives very precise information about fully elliptic
3b-operators P (see Definition 6.3) and their (approximate, generalized, or true) inverses, it
is rather involved, and rests on similarly precise descriptions of inverses of elliptic operators
in the various model calculi that were discussed in §2. In this section, we show how to
prove the Fredholm property (Theorem 6.15(1)) only using small ps.d.o. calculi (i.e. without
boundary terms), by exploiting the spectral characterizations of 3b-function spaces given
in Propositions 4.24 and 4.26.

Remark 7.1 (Outlook and motivation: non-elliptic theory). The main reason for including
this section is that it allows us to demonstrate how to use the 3b-algebra as a tool, which
is a more flexible point of view when studying non-elliptic equations. This is discussed in
detail in [Hin23].

Theorem 7.2 (Semi-Fredholm estimate). Let P € Wi (M) be fully elliptic with weights
ap,ar. Let s, N € R with —N < s. Then there exist ¢ >0 and C > 0 so that

||’U/HH;{)O‘DYO‘T(M) S C(HPUHH;;W%OLD,QT(M) + ||UHH?;DN,arD—e,aT—E(M)). (71)
Here, the 3b-Sobolev spaces on M are defined with respect to a positive b-density.

(The final, error, term in (7.1) can be weakened to ”UHHS—bN,—N,—N( using an interpola-

M)
tion inequality.) At the end of §7.3, we show how Theorem 7.2 and an analogous estimate
for P* imply the Fredholm property of P acting between weighted 3b-Sobolev spaces, cf.

Theorem 6.15(1).

The estimate-based proof of Theorem 7.2 requires estimates for the various models, which
we proceed to state and prove only using the various small calculi. We use b-densities on
T, D, and M throughout, unless otherwise noted.

7.1. Estimates for the spectral family. With P as in Theorem 7.2, we record estimates

for N;(P,O’) in all frequency regimes: high (Lemma 7.3), bounded (Lemma 7.4), and low
(Lemma 7.5).

Lemma 7.3 (Uniform bounds at high frequencies). Let s,r,b € R. There exist cg > 0 and

C > 0 so that
HUHHs,rl,b‘il(T) < C||N7(P, a)uHHsflm‘ lo| > oo. (7.2)

,iIm,bfm(T),

Proof. Recall the semiclassical rescaling J/V;(P, +h~1) of the spectral family from (4.6).
This is an elliptic element of U™ (T). Pick a parametrix Q € V_""""""(T) with

sc,h sc,h

QuNT(P,£h™") =1 — Ry, R = (Rp)ne(o) € Uo7 >(T); then

sc,h

”“”HS;,T(T) = C("thh“”HSgT,;b<T> + ”“”H;,Nh’*N**Wﬂ)
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for any fixed N and some constant C. Since Qp: HS ™ ™™ (T) — H*"P(T) is uni-

sc,h sc,h
formly bounded, and using that for N > max(—s,—r, —b) we have C||UHH_N,_N,_N(T) <
sc,h

Lol s for all sufficiently small h > 0, we obtain (7.2). O
2 Hsc,h (T)

Lemma 7.4 (Uniform bounds at bounded frequencies). Let ¢ € (0,1) and s,r € R. Then
there exists C' > 0 so that

lull gzir 7y < CIINT(P,o)ull ggmmamy, e <ol <e™h (7.3)

Proof. Exploiting the ellipticity of the principal symbol of N;(P, o) for nonzero o, we obtain
lullzsr () < CUNTP, )l gy + llgenn ) c<lol <y (7.4)

for any fixed N which we take to be larger than max(—s,—7r). We can drop the er-
ror term in this estimate, upon enlarging C, as a consequence of the full ellipticity and
the compactness of Hg' (T) — HSZN’_N(T). Indeed, if this were not possible, then
we could find a sequence u; € He'(T) with [lujlgzry = 1 and N7 (P, oj)uj — 0
in He ™" ™(T), where |o;| € [¢,c!]; upon passing to a subsequence, we can assume
that the limit 0o := limj_, 0 exists. Applying the estimate (7.4) to this subsequence,
one obtains liminf;_, ||u;l| HZNN () 2 C~! > 0. Therefore, any subsequential weak
limit us € Hgl' (T) of uj, which is a strong limit with respect to the norm topology on
HSEN’fN(T), is nonzero; but N;(P, Ooo)Uoo = 0, contradicting the full ellipticity assumption
(concretely, Definition 6.3(5)). O

Lemma 7.5 (Uniform bounds at low frequencies). Put 8 = ap — ay. Let s,r € R. Then
there exist oy > 0 and C' > 0 so that

llizzzypogr < CINT(P,o)ullyznromso ). (7.5)

for all o € £]0,09).

Proof of Lemma 7.5. The proof is conceptually analogous to (but due to the elliptic nature
of the problem simpler than) the uniform low energy estimates on the spectrum proved by
Vasy [Vas21]; see also [Hin21b, §3.5]. We work in o > 0, the case 0 < 0 being completely

analogous. Since N7 (P, —) is elliptic as a sc-b-operator, there exists a symbolic parametrix
Q € U ™O(T) with I = QN7(P,—) + R where R € U °%(T). This gives for
any fixed N > max(—s, —r) a constant C' > 0 so that

Jull 2007y < C(INT Pl gy + lull g xsogp)- - (76)
e Improving the error at tf. Let now [0,1),, x dT be a collar neighborhood of 0T inside

of T. Let x € C°([0,1), x [0,1),, x OT) be identically 1 near ¢ = pp = 0. Aiming to
improve the error term in (7.6) at tf C 7gep, we write

HUHHS_C_IY):;N’B’O(T) < HXUHHS_C_]X’;N’B’O(T) + (1 - X)UHHS_C_IE:;N’E’O(T)

< HXU”HS_C_Nb:;N”B’O(T) + CHUHHS_C_N})’,;N’_N’O(T)
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for some C' (depending on x and N). Write ¢,: (p,w) — (op,w) € T for o € (0,1). By
Proposition 2.21(1), we can then estimate the first term by

PD
pp+o

N -8
) (,OD + U) XuHHfN,o,o,o

sc-b,o

Peull gy —nsoer) = H( (71222 4u)
D

0 N
= Gog) ) enan A
) (Gr3) @ a0 o
= 05 ) - -o ey

Using Definition 6.3(2) (turned into a quantitative estimate in a manner completely anal-
ogous to the proof of Lemma 7.4), this is bounded from above by a constant times

0 2 INF 4t (PO () -y

(Note that spaces of smooth sc-b- and b-densities on tf coincide away from tf Nscf.) Since
N7(P,=) = XNF ((P)x € Wit~ H(T) for any cutoff ¥ € C([0, 1), x [0,1),,, x IT) which
is identically 1 near supp x, we then further have

7 NF e (P63 () v
< [[xN7(P, J)UHH;_JZ;mﬁme,B,O(T) + CHUHH;C_J\Q;N,BA,O(T),
where the second term on the right bounds the contributions from N;(P, —) = XNF (P)x

and the commutator ||[N;(P, o), X]UHH—N—m,—N—m,ﬁ(T). Plugging these estimates into (7.6)
sc-b,o

gives (with a new constant C)
lell g0y < C(”NT(P 0Vl =m0y + H“”H;ﬁ’,;N’ﬂ‘l’OU))‘ (7.7)

e Improving the error at zf. Next, we improve the error term at zf C T, by using the
invertibility of the zero energy operator. Thus, let x, x € C°(Tscp \scf) be two cutoff which
are identically 1 near zf, and with ¥ = 1 near supp x. Then Proposition 2.21(2) gives

HUHHS_C_]Z’,;N”B_LO(T) < ”Xu”HS_C_AI;;N’ﬁ_LO(T) + (1 - X)UHHS—C_A&;MB—LO(T)
< C(H(XU)<U)HH1:N,5—1(T) + ”UHHS—C_I\Q;N,B—L—N(T))-

We increase 8 — 1 to 8 — ¢, where € € (0,1] is so small that 8 — € € (B},,B;C) still, i.e. the

invertibility of Nf\r(P, 0) in Definition 6.3(4) also holds with S — € in place of 3; then we can
estimate

1) (@)« oy < CINTP, 0 () (@) | ==

< C(IXNT (P, 0)ull g v-mi-v-ma=coy + lull g -vs-co1 ()

since ]/Vf\r(P, o) — )ZN\T(P, 0)x vanishes simply at zf, and a fortiori [Z/V?(P, o), x] does, too.
(The weights at scf in the final line are arbitrary, but chosen to match the weights appearing
earlier.) Altogether, we can now improve (7.7) to

lll s < C(HNT(P,U)uHHSS;g?!fm,a,o(T) + HuHH;_ﬁ:;N,Hflm). (7.8)
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Since N > max(—s, —r), note then that the error term

H(pb + U)epDO—FUuHHS_C_]E:;N’ﬁ’O(T) S CUG”“”H;_IY);;N’B’O(T)

is small and can therefore be absorbed into the left hand side of (7.8) for all o € [0, 00)
when oy > 0 is sufficiently small. This gives (7.5) and completes the proof. O

7.2. Estimates for the Mellin-transformed normal operator. With P as in The-
orem 7.2, we next turn to estimates for Np(P,A) when A € C, ImA = —ap. We put
8 = ap — a7 as usual.

Lemma 7.6 (Uniform bounds for bounded \). Let s € R and \g > 0. Then there exists
C >0 so that

)< Ol Np (P, \ul| ysm. s ImA = —ap, |[Re)| < Ao.
b

lull s (D)’

Proof. This is standard elliptic b-theory. The details are as follows: the symbolic ellipticity
of Np(P, \) implies the estimate

HUHHS’_B(D) < C(”ND(P, )\)UHHg_m’_’a(D) + HuHHb_N’_B(D))’ ImA=—ap, |Re )\| < Xo.

(7.9)
Fix a collar neighborhood [0, 1), x 0D of 9D C D and cutoffs x,x € C([0,1),, x D)
which are identically 1 near p7 = 0, and with ¥ = 1 near supp x; then

HuHHb*Nv*B(D) < HXuHHb*Nv*B(D) + C”(l - X)UHH;Nv*N(D)' (7'10)
Denote the Mellin transform in p7 by a hat, and the Mellin-dual variable by &; then

”XUH?LI;N’_B(D) <C ||>/<1\L(£7 _)HH(EAEIN(‘?D) df

Imé=p )
by (2.8). But by assumption (see Definition 6.3(1)), the Mellin-transformed normal operator
family Nop(P, &) of Ngp is invertible for Im¢ = —(—f) = 3, and we have elliptic estimates

(including at large | Reé|)

”@(fa _)HH(_&;V_’;N((‘)D) < CHNaD(Pv 6)@(57 _)”Héiv—_lm’_N_m(aD)’ Im¢ = g,

cf. Lemma 2.3. Thus,
HXuHHb*Nv*B(D) < CHN('?D(P)(XU)HHb*N*ma*ﬁ(D)' (7'11)

Since /N;(P, A) = XNop(P)x € p7YP (D), and since []/V;(P, A), x| a fortiori lies in the same
space, we obtain from (7.9)—(7.11) the estimate

HUHHS»*B(D) < C(HND(Pa )‘)UHHS*W*B(D) + |’uHHng*5*1(D))'

Taking N > —s, the inclusion Hg’_B(D) — Hb_N’_ﬁ_l(D) is compact, and therefore we can
drop the error term here by the same argument as in the proof of Lemma 7.4 by virtue of
the injectivity of Np(P, \) for Im A = —ap. O

Lemma 7.7 (Uniform bounds for large \). Let s € R. There exist \g > 0 and C > 0 so
that

Hu”Hj";ng’S(D) < C||Np(P, )\)uHHcslalea,fg,sfm(D), ImA = —ap, |[ReA| > Xp. (7.12)
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Proof. The ellipticity of N;(P, —iap + h™!) as a semiclassical cone operator of order
(m,0,0,m) (see Definition 4.14) gives the estimate (7.12) but with an additional term

CHUHH—I];\T‘,:f,—B,—N(,D) on the right hand side.

Next, fix a collar neighborhood [0, 1), x 9D of 9D C D, and fix a cutoff x € C°([0, 1), x
[0,1),, x OD) which is identically 1 near h = p7 = 0. Then supp(l — x) N tf = () where
tf C Dey is the transition face, and therefore, identifying h = |\~

N,BNN(,D)

— —N,—8,—B,— <
(0 = )l sy < Clul

On the other hand, we estimate yu using Proposition 2.24; to wit, for pp = |/<"731 and
+Re) >0,
1
HX“”H*W* ~OND| LR aw)) T oo + A7) xull - CTEO TN (D) SR dw)

< C|)‘| /BH(IO'D + 1) XUHH*N»*/&*N(tf |df37de|)
N

= Il

dbp dw\)

+
< CIAI™ ﬁHND,tf(XU)HHb*N*mﬁB»*Nfﬁfm&f 192D gy
,5C ) D

+
S CHNDJ,f(XU‘)HH*N*WV*&*B,*N*W(ID ‘dPD dw\)'
c,|A|— 1L ' pp

Here, by an abuse of notation, we write N% «¢ for any fixed operator in \I/Z%’O’O’m (D) with the

tf-normal operator given by the D-tf-normal operator of P. Since @(—iapihfl) —N% of €

\Pg’o’fl’m(D), we can estimate this further by a constant times

||XND()\)UHH;‘Ij\"ithﬁ,fﬁ,fN—m(D) + ||u||H;‘]/\\7":f’7571’7N(D)'

We obtain

HuHHs,fﬁ;Iﬁ,S(D) < C(HND(P, /\)UHH:JATLIBﬁB,sfm(D) + HU;HH—N,ff,fﬁ—l,—N(D)). (7.13)

S| PN

Since for N > —s + 1 we have |ul| ;- ~8,-8-1-N () < Chllul| s.—s. o we can, for

(D)’

o, |AIT c, | AT
sufficiently small h > 0, absorb the ﬁnal term in (7.13) into the left hand side. The proof
is complete. [l

7.3. Proof of Theorem 7.2; Fredholm property. We now use the Lemmas proved
in §§7.1-7.2 in combination with the relationships (Propositions 4.24 and 4.26) between
3b-Sobolev spaces on M and those Sobolev spaces on 7 and D which are used in these
Lemmas.

Proof of Theorem 7.2. Denote by pr € C*°(M) a defining function of 7. In terms of ug :=

ot L
pTaT+2u, the estimate (7.1) is equivalent to

1 1
U < C( TR p ATy, + [Jw )
|| 0||HS,OLD,%(M) — HPT pT OHHS—m,aD,%(M || O”H—N,QD ef—e(M)

3b 3b ) 3b
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But by Lemma 6.7, the operator Py := p}a7+%Pp§-77% € Wi (M) is fully elliptic with
weights ap, % It thus suffices to prove the estimate (7.1) for ap € R under the assump-
tion that P is fully elliptic with weights ap, % The relevance of % here is that (using
Notation 6.1) Proposition 4.24 applies to the space

S:CYI%% s,ap,0
Hyp 772 (M, vy,) = Hyp PP (M, vsp);

for this equality, note that vgp, := p}lub is a positive 3b-density.

The proof of (7.1) then proceeds via the combination of elliptic estimates with normal
operator estimates, much as in the proofs of Lemmas 7.5 and 7.7 above. The elliptic
estimate is

). (7.14)

< C([[Pull I
) H ) H (M)

s—m,ap,5
3b (

—N,a’D7%

[l cap.1

3b

e Improving the error at T. Fix a cutoff y € C>([0, 00)r x R% ') as in Proposition 4.24,
with x = 1 near (T, X) = (0,0). Then for any N’,

(T —

<lbxull —~oap.3
. H N,ap 5

+ C||lul| . - _
svend gy O e

(M) (M)

since T Nsupp(l — x) = 0. Passing to the weighted 3b-density (z)vs, = (z)~(~1|dt dz|
(which is a positive element of pBl p}lcoo (M;>QM)) and correspondingly working with the
unweighted b-density (z)~("~D|dz| on T, we then have, in terms of 8 := ap — 3, and using
Lemmas 7.3, 7.4, and 7.5 as well as Proposition 4.24,

T

_ 2
3b (M) a HXUHH?N}BYO(MK )

3b X V3b)

H@(U,_)Hz —N,—N+8,8, d0+/ ||)/(ﬂ(0', _)HZ N NAsN do
o Hia ™) +[1,00) H_ N

< c(Z L o INT (B 00O )y 4o
=+ )

sc-b,o

N == 2
+ /i e e da>

se,fo| =1

< C\INT(P)(XU)\Iqu;me,a,o ) = CINT(P)(xu)|?

1 9
R (Man)
where we identify a neighborhood of 7 C M with a neighborhood of T C Na,T (see
Definition 3.18 and the subsequent discussion), and we write N7(P) also for an operator
of class Wi} (M) which has N7(P) as its T-normal operator. Using that P — Ny (P) €
pr¥h5 (M), and that also [P, x] lies in this space, we obtain from (7.14) the improved
estimate

(M, (z)vsn

U < C(||Pu
ul| oap1 < C(]l HH

i1 7.15
Hy, 772 (M) ) (7.15)

- 1 + Juf| _ 1_
;bm,aD,%(M) || ||H3bN,aD,% e(M)

for e = 1, and a fortiori also for any smaller €; we fix € > 0 so that P is fully elliptic with
weights ap, % — e still.

e Improving the error at D. We further improve the error term in (7.15) at D. Fix a
cutoff xy € C>°(M) as in Proposition 4.26, so x has support in a collar neighborhood of D,
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and is equal to 1 near D. Write a7 := % — €. Then

ol gt ey, < Iy omar () + Clull oo

Hyy (M)
for any fixed N’ since D Nsupp(1 — x) = 0. Application of Proposition 4.26 (with positive
unweighted b-densities on M and D, corresponding to up =0, ur =1, 1 = —1) gives

2
HXuHH?;)NvD‘DvdT(M)

<C xu(Ao —iop, )% sar—an . dX
< (/[L”qu(o iop )HHb’T D (p) A0

— . 9
i zi: /:I:[l,oo) HXU(AO T _)HH_N’&T—QD,&T—QD,—N(D) d)\()) .

c,[xl 1

Due to the full ellipticity of P with weights ap, &7, we can apply Lemmas 7.6 and 7.7 (with
B in the Lemmas equal to ap — &7) in order to bound the integrands in this expression;
applying Proposition 4.26 again, we deduce

HXUHH?)_bN’aD’&T(M) S C”ND(P)(XU)||H3—bN—m,aD,&7—(M).

Extending Np(P) to an element of Wi} (M), we have P — Np(P) € ppV% (M), and also
[P, x] is of this class, and therefore we can now improve (7.15) to

<O(PUl e mapd 100, 3y, )

u ;
. - -

3b
which is the desired estimate. O

The estimate (7.1) (with N > —s) implies, in view of the compactness of the inclusion
HEOPOT (M) < Hy VP~ 9%T~¢(M) (see Lemma 4.23), that

P: HEOPOT (M) — HE ™7 (M) (7.16)

has finite-dimensional kernel and closed range. In the same manner, one can prove an
analogous estimate for the adjoint P* (defined with respect to the L?-inner product on M
for a positive b-density),

llly-smi-emar gy < CUIP Ul ysrmepar )+ [l vepear—e). - (717)

Here, we use Lemma 6.8, which shows that P* is fully elliptic with weights —ap, —ar.
The estimate (7.17) implies that P* has finite-dimensional kernel, and hence P has finite-
dimensional cokernel. This completes our estimate-based proof that the operator (7.16) is
Fredholm.
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