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Abstract. On a suitable class of non-compact manifolds, we study (pseudo)differential
operators which feature an asymptotic translation-invariance along one axis and an as-
ymptotic dilation-invariance, or asymptotic homogeneity with respect to scaling, in all
directions not parallel to that axis. Elliptic examples include generalized 3-body Hamil-
tonians at zero energy such as ∆x + V0(x′) + V (x) where ∆x is the Laplace operator on
Rnx = Rn−1

x′ ×Rx′′ , and V0 and V are potentials with at least inverse quadratic decay: this
operator is approximately translation-invariant in x′′ when |x′| . 1, and approximately
homogeneous of degree −2 with respect to scaling in (x′, x′′) when |x′| & |x′′|. Hyperbolic
examples include wave operators on nonstationary perturbations of asymptotically flat
spacetimes.

We introduce a systematic framework for the (microlocal) analysis of such operators
by working on a compactification M of the underlying manifold. The analysis is based on
a calculus of pseudodifferential operators which blends elements of Melrose’s b-calculus
and Vasy’s 3-body scattering calculus. For fully elliptic operators in our 3b-calculus, we
construct precise parametrices whose Schwartz kernels are polyhomogeneous conormal
distributions on an appropriate resolution of M ×M . We prove the Fredholm property of
such operators on a scale of weighted Sobolev spaces, and show that tempered elements
of their kernels and cokernels have full asymptotic expansions on M .
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1. Introduction

Consider the wave operator

� = −D2
t + ∆Rn−1 , (t, x) ∈ R× Rn−1 = Rn, ∆Rn−1 =

n−1∑
j=1

D2
xj , D =

1

i
∂,

on the Minkowski spacetime. We focus on two symmetries of �:

(1) The operator � is invariant under time translations t 7→ t+a, a ∈ R. Therefore, one
can study it using the Fourier transform in t, which means analyzing the spectral
family ∆Rn−1 − σ2 and proving estimates for its inverse, the resolvent.

(2) The operator � is also homogeneous of degree −2 under spacetime dilations (t, x) 7→
(λt, λx), λ > 1. (Equivalently, (t2 + |x|2)� is dilation-invariant.) Thus, one can

analyze it using the Mellin-transform in |(t, x)|−1 = (t2 + x2)−1/2.

There are many interesting classes of operators generalizing � which retain time trans-
lation invariance. For the purposes of this introduction, we restrict attention to operators

P = �+ V,

where V = V (x) is a stationary potential (which is typically required to decay as |x| → ∞).

Passing to the Fourier transform in t gives the spectral family N̂T (P, σ) := ∆Rn−1 +V −σ2.
Precise information about the asymptotic behavior of solutions of P can then be deduced
from properties of the resolvent P̂ (σ)−1 via the inverse Fourier transform. (We mention
that wave operators on stationary asymptotically flat spacetimes, such as Schwarzschild or
Kerr black hole spacetimes, are also time-translation-invariant, and their analysis via the
Fourier transform has reached a rather refined state, see [Tat13, DSS11, Mor20, MW21,
Hin22a].) However, as soon as exact time translation invariance of P is broken (e.g. when
the spacetime metric or the potential depend on time, no matter how mildly), the Fourier
transform by itself is no longer sufficient for the analysis of P .

Generalizations P of � which retain exact homogeneity under dilations in (t, x), at least
for large |(t, x)|, rarely appear in nature. (A somewhat artificial example would be P =
�+t−2W (x/t) in t > 1

2 |x|, where W is a smooth function.) The analysis of such P would be
most naturally effected by means of the Mellin transform in |(t, x)|, which transforms P into

a family of operators N̂D(P, λ), λ ∈ C, on the cross section {|(t, x)| = 1} = Sn−1
$ ; the poles

of N̂D(P, λ)−1 (acting on appropriate function spaces) then correspond to contributions

|(t, x)|−iλa($) (with a ∈ ker N̂D(P, λ)) to the large scale asymptotics of solutions u of
Pu = f . Operators which are merely approximately homogeneous with respect to dilations
(roughly speaking, [t∂t +x∂x, P ] = −2P plus an operator which is an error term in that its
coefficients decay relative to those of P ) are quite natural: they arise e.g. as wave operators
on appropriate generalizations of Minkowski space, such as the Lorentzian scattering spaces
considered in [BVW15, BVW18]. A systematic framework for the analysis of operators
with approximate dilation-invariance is provided by Melrose’s b-analysis; in a nutshell, one
can control the regularity of solutions of P with respect to vector fields such as t∂t, t∂xi ,
xj∂t, x

i∂xj using symbolic analysis (i.e. high frequency analysis, involving estimates which
only use the principal or subprincipal symbol of P , such as elliptic estimates, propagation
of singularities [DH72], and radial point estimates), while the Mellin transform applied
to an exactly dilation-invariant (or -homogeneous) model ND(P ) for P at |(t, x)|−1 = 0
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provides sharp control of asymptotics. Note that time-translation-invariant operators such
as � + V (x), for 0 6= V ∈ C∞c (Rn−1), behave well under dilations only in regions |x| > εt,
ε > 0, but not globally on Rn.

A central aim of the present work is to lay the conceptual groundwork for a systematic
analysis of operators on Rt × Rn−1

x which feature both an approximate invariance under
time translations for |x| . 1 as well as an approximate invariance (or homogeneity) under
spacetime dilations in |x| & t, with an appropriate transition between these two in the
region 1� |x| � t. As a concrete example, consider in |x| . t the operator

P = �+ V
(

1
t , x,

x
t

)
= −D2

t + ∆Rn−1 + V
(

1
t , x,

x
t

)
, (1.1)

where V = V (T, x,X) is a smooth function of its arguments, |V (T, x,X)| = O(〈x〉−2), and
V (T, x,X) = |x|−2V0(T, 1

|x| ,
x
|x| , X) with V0 smooth down to |x|−1 = 0. For |x| . 1, the

operator P is equal to a time-translation invariant operator,

P ≈ NT (P ) := �+ V (0, x, 0) (|x| . 1),

up to decaying (in t) errors, whereas for |X| = |xt | > ε, the operator P is equal to a
dilation-homogeneous operator,

P ≈ ND(P ) := �+ |x|−2V0

(
0, 0, x|x| ,

x
t ) (|xt | & 1),

up to decaying (in |(t, x)|) errors. (As far as the transition between the two asymptotic
regimes is concerned, we note that these two model operators match up in their own as-
ymptotic regimes |x| → ∞, resp. |xt | → 0: there, they tend to the operator

−D2
t + ∆Rn−1 + |x|−2V0

(
0, 0, x|x| , 0

)
which is both translation-invariant and dilation-homogeneous.) The analysis of such oper-

ators thus involves both the spectral family N̂T (P, σ) = −σ2 + ∆Rn−1 + V (0, x, 0) as well

as the Mellin-transformed normal operator family1 N̂D(t2P, λ) to control the asymptotic
behavior of solutions of Pu = f (for rapidly decaying f , say), and an appropriate symbolic
analysis to control their regularity.

Remark 1.1 (Geometric hyperbolic examples). Wave operators on spacetimes which, in a
certain sense, settle down to a Kerr spacetime at a rate t−ε as t → ∞ provide, at least
in a region |x| < 1

2 t away from the light cone, further examples of operators with such
approximate invariances. Typically, on asymptotically flat spacetimes, a neighborhood
|x/t| ≈ 1, |t| � 1, of null infinity has a yet different structure however. A singular geometry
perspective for this near-light-cone region is given in [HV20], and a fully microlocal point
of view is introduced in [HV23]. The 3b-perspective introduced in the present paper is then
only of importance in |x/t| ≤ v < 1.)

One may similarly consider elliptic operators with approximate translation- and dilation-
invariances (e.g. those which arise from the Minkowskian examples above by switching the
sign of D2

t ). The translation-invariant models are Schrödinger operators with potentials
that invariant under translations in one coordinate, i.e. D2

t + D2
x + V (x); approximately

1This is the formal conjugation of ND(|x|2P ) by the Mellin transform in a homogeneous degree −1
function on Rn, which in the region |x| . t we are currently considering can e.g. be taken to be 1

t
. The

rescaling of P by t2 ensures the dilation-invariance of the resulting operator (rather than merely dilation-
homogeneity), as required for passing to the Mellin transform.
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dilation-invariant/-homogeneous examples are Laplace operators on Rn equipped with an
asymptotically Euclidean (or conic) metric. We note that the operator

D2
t +D2

x + V (x) = ∆Rn + π∗V, (1.2)

with π : Rnt,x → Rn−1
x the projection to a subspace, is an example of a (generalized) reduced

3-body Hamiltonian.2 The study of the spectral and scattering theory of 3- (or more general
N -)body Hamiltonians at nonzero real energies has a long history. We refer the reader to
[Vas00, Vas01] for context and references. Here, we only note that the operator ∆Rn+π∗V −
ς, where 0 ∈ ς ∈ R, is a 3-body-scattering operator in the terminology of Vasy [Vas00], and
indeed Vasy gives a detailed description of the asymptotic behavior of outgoing solutions
of more general operators which in particular only feature an approximate translation-
invariance along the fibers of π. The 3-body-scattering analysis involves a symbolic part
to control regularity (and decay in |x| & |t|) of solutions, and a spectral family to control
asymptotics and decay for bounded |x| as |t| → ∞. However, we stress that the presence of
ς 6= 0 destroys the dilation-homogeneity in |x| & |t|, and indeed leads to entirely different
asymptotics of solutions there (oscillatory when ς > 0, Schwartz when ς < 0), cf. the
considerably different regularity and asymptotic properties of solutions of ∆Rnu = f as
compared to those of solutions of (∆Rn − ς)u = f when ς 6= 0.

The main novelty of the present paper is the introduction of algebras of 3b-differential
and 3b-pseudodifferential operators which are tailor-made to precisely capture approximate
translation- and dilation-invariances; here ‘3b’ is short for ‘3-body/b’. Correspondingly,
the analysis of a 3b-operator P uses three models:

(1) the T -normal operator NT (P ) of P which is an exactly translation-invariant oper-
ator on Rt × Rn−1

x and is thus analyzed via the Fourier transform in t;
(2) the D-normal operator ND(P ) of P , which is an exactly dilation-invariant/-homo-

geneous operator on Rnt,x (whose coefficients typically become singular at the axis

x = 0) and is thus analyzed via the Mellin transform in |(t, x)|−1;
(3) the principal symbol 3bσ(P ) of P , which is a symbol on an appropriate uniform (as
|(t, x)| → ∞) version of the cotangent bundle.

In this paper, we shall not prove any estimates for non-elliptic operators such as (1.1); in
the particular setting of wave operators on nonstationary asymptotically flat spacetimes, a
detailed analysis (which also takes into account the different structure at null infinity) is
instead given in [Hin23]. We do however develop a general and rather refined theory for
fully elliptic 3b-(pseudo)differential operators. In order to give the reader an impression of
this, we consider the example from the abstract (which is an elliptic version of a special
case of (1.1)). To wit, write z = (t, x) ∈ R× Rn−1, put

(ρ, ω) :=
(
|x|−1, x|x|

)
, (%,$) :=

(
|z|−1, z|z|

)
(where |z| = (t2 + |x|2)1/2), and consider

P = ∆Rn + V (z) + VT (x) = D2
t + ∆Rn−1

x
+ V (t, x) + VT (x),

V ∈ C∞(Rnz ), VT ∈ C∞(Rn−1
x ).

(1.3)

2A reduced 3-body Hamiltonian on Rn−1 would be the operator ∆R2(n−1) +V1(y1) +V2(y2) +V3(y1−y2)

where R2(n−1) = y = (y1, y2), with y1, resp. y2 the relative position of the first and second, resp. first and
third particle. For V2, V3 ≡ 0, writing x = y1, and taking y2 = t to be a real variable—hence the qualifier
‘generalized’—this gives the operator (1.2).
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We allow for the potentials V , VT to be complex-valued. Assume that [0, 1) × Sn−2 3
(ρ, ω) 7→ VT (ρ−1ω) is smooth and vanishes at least cubically at ρ = 0;3 and that [0, 1) ×
Sn−1 3 (%,$) 7→ V (%−1$) is smooth and vanishes at least quadratically at % = 0. Write

VD := (%−2V )|%=0 ∈ C∞(Sn−1)

for the leading order part of V . We analyze P on weighted 3b-Sobolev spaces

Hk,αD,αT
3b = 〈x〉−αD

( 〈z〉
〈x〉

)−αT
Hk

3b =
{
〈x〉−αD

( 〈z〉
〈x〉

)−αT
u : u ∈ Hk

3b

}
, (1.4)

where Hk
3b (k ∈ N0) consists of all u ∈ L2(Rn) so that (〈x〉∂z)αu ∈ L2(Rn) for all |α| ≤ k.

Note that P : Hk,αD,αT
3b → Hk−2,αD+2,αT

3b is a bounded linear operator.

Theorem 1.2 (An example of a fully elliptic 3b-differential operator). Let n ≥ 4, and let
αD, αT ∈ R be such that αD −αT ∈

(
−n−1

2 , n−1
2 − 2

)
. We make the following assumptions:

(1) The operator

N̂T (P, σ) := ∆Rn−1 + σ2 + VT (1.5)

has no S (Rn−1)-nullspace for 0 6= σ ∈ R (here S (Rn−1) is the space of Schwartz
functions). Assume moreover that a smooth function u = u(x) which satisfies

|u| = O(|x|−ε) for some ε > 0 as |x| → ∞ and which lies in ker N̂T (P, 0) or

ker N̂T (P, 0)∗ = ker(∆Rn−1 + VT ) vanishes identically.4

(2) The operator5

N̂D(%−2P, λ) := λ2 + i(n− 2)λ+ ∆Sn−1 + VD : C∞(Sn−1)→ C∞(Sn−1)

is invertible for all λ ∈ C with Imλ = −αD − n
2 .

Under these assumptions, the operator

〈x〉2P : Hk,αD,αT
3b → Hk−2,αD,αT

3b (1.6)

is Fredholm. Any element u in the kernel or cokernel (orthogonal complement of the range)

of P is pointwise bounded by a constant times 〈x〉−αD−
n
2 ( 〈z〉〈x〉)

−αT − 1
2 , as are all its derivatives

along any number of powers of 〈x〉∂z and 〈z〉∂t.6 Finally, if u ∈ S ′(Rn) satisfies Pu = 0,
then u is necessarily smooth; and there exist αD, αT ∈ R so that u and all its derivatives of
this type satisfy these pointwise bounds.

This is a special case of Theorem 6.15 and Corollary 6.16, as verified in Lemma 6.19 and
Remark 6.21. Our general machinery gives more still: elements of the kernel and cokernel
are polyhomogeneous on an appropriate compactification of Rn to a manifold with corners;
and the generalized inverse of P is an element of the large 3b-pseudodifferential calculus.
Furthermore, assumption (2) holds when αD ∈ R \ D where D is a discrete subset of R;

3One can also allow for VT to have inverse quadratic decay; this however necessitates modifications of
the ranges of weights for which Theorem 1.2 below is valid.

4In the special case that VT is real-valued, assumption (1) of Theorem 1.2 has an equivalent formulation
in terms of classical spectral theory; see Corollary 6.20.

5This is the conjugation by the Mellin transform in % of the dilation-invariant model operator %−2(∆Rn +
%2VD) = (%D%)

2 + i(n− 2)%D% + ∆Sn−1 + VD of %−2P .
6Note that regularity, without loss of decay, of u under application of 〈z〉∂t is significantly stronger than

infinite order 3b-regularity in the region 〈x〉 � 〈t〉. Thus, we prove stronger regularity than what one might
naively expect from the structure of the operator.
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we show that when αD crosses a value a ∈ D, then the index of (1.6) jumps by the sum

of the dimensions of the generalized nullspaces of N̂D(P, λ) where Imλ = −a − n
2 . See

Theorems 6.4 and 6.17. Finally, one can show that the operator (1.6) cannot be Fredholm
unless αD − αT ∈ [−n−1

2 , n−1
2 − 2]; see Remark 6.18.

The remainder of the introduction is structured as follows: in §1.1, we give an overview
of 3b-geometry and 3b-analysis; in §1.2 we discuss elements of our detailed elliptic theory
in the 3b-setting. After giving pointers to the literature in §1.3, we end with an outline of
the rest of the paper in §1.4.

1.1. Overview of 3b-geometry and 3b-analysis. In the main part of this work, we
follow the time-honored tradition of doing analysis on non-compact spaces such as Rt ×
Rn−1
x by compactifying the space to a manifold M with corners; the operators of interest

then feature appropriate degenerations at the boundary hypersurfaces of M . A detailed
discussion that is fully based on this perspective is given in §3; see also §1.1.1 below. For
now, it is simpler to proceed in a more hands-on fashion. Thus, we work on M◦ := Rt×Rn−1

x

and postpone the specification of its compactification M until the end of this section. In
|x| > 1, we introduce polar coordinates

r = |x|, ω =
x

|x|
∈ Sn−2,

on Rn−1
x ; we shall use the schematic notation ∂ω to denote a vector field on Sn−2 (or the

collection (∂ω1 , . . . , ∂ωn−2) of coordinate vector fields), or its lift to Rt×(1,∞)r×Sn−2 ⊂M◦.
The basic 3b-vector fields are then

r∂t, r∂r, ∂ω; (1.7)

note indeed that they are invariant under t-translations and (t, r)-dilations (i.e. they Lie-
commute with ∂t and t∂t + x∂x = t∂t + r∂r). As coefficients, we allow functions

a = a(ρD, ρT , ω) = a
(1

r
,
r

t
, ω
)
, a ∈ C∞

(
[0, 1)ρD × [0, 1)ρT × Sn−2

)
; (1.8)

such functions will precisely be the elements of C∞(M), with [0, 1)ρD × [0, 1)ρT × Sn−2 a
local coordinate chart near the boundary of M (which one should think of as the boundary
of M◦ at infinity). In (1.8), we write

ρD := r−1, ρT :=
r

t
.

Note that such a function a can be restricted to ρT = 0 to give a smooth function a|T :=
a(r−1, 0, ω) which is translation-invariant in t; and we can restrict a to ρD = 0 and obtain a
smooth function a|D := a(0, rt , ω) which is dilation-invariant in (t, r). The space V3b(M) of
3b-vector fields consists of all vectors fields on M◦ which are of the form ar∂t + br∂r + c∂ω
where a, b, c are smooth in the sense of (1.8); this is a Lie algebra. A typical element of the
space Diffm3b(M) of m-th order 3b-differential operators is then locally of the form

P =
∑

j+k+|α|≤m

ajkα

(1

r
,
r

t
, ω
)

(r∂t)
j(r∂r)

k∂αω , ajkα ∈ C∞(M). (1.9)

For example, since ∆R×Rn−1 = −(∂2
t + ∂2

r + n−2
r ∂r + r−2∂2

ω), we have 〈r〉2∆ ∈ Diff2
3b(M).
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Principal symbol. We define fiber-linear coordinates on T ∗M◦ by writing covectors as
σ dt
r + ξ dr

r + η where σ, ξ ∈ R, η ∈ T ∗Sn−2; the principal symbol of the operator P given
by (1.9) is then

3bσm(P )(ρD, ρT , ω;σ, ξ, η) =
∑

j+k+|α|=m

ajkα(ρD, ρT , ω)σjξkηα.

This is a polynomial in (σ, ξ, η) with smooth coefficients all the way down to the boundary
of M◦ at infinity, and thus captures globally and in a nondegenerate manner the principal
part of P .

T -normal operator; spectral family. Restricting the coefficients of P (as a 3b-
operator) to ρT = 0 gives the translation-invariant operator

NT (P ) =
∑

j+k+|α|≤m

ajkα(r−1, 0, ω)(r∂t)
j(r∂r)

k∂αω ,

which thus only involves the restrictions ajkα|T . Its spectral family is obtained by formally
replacing ∂t by −iσ:

N̂T (P, σ) =
∑

j+k+|α|≤m

ajkα(r−1, 0, ω)(−iσr)j(r∂r)k∂αω . (1.10)

The zero energy operator N̂T (P, 0) (in which only those terms with j = 0 survive) is
itself approximately dilation-invariant in r, with exactly dilation-invariant model at r =∞
given by N∂T (P ) =

∑
k+|α|≤m ajkα(0, 0, ω)(r∂r)

k∂αω . More precisely, the operator N̂T (P, 0)

is a totally characteristic, or in the terminology of Melrose [Mel93] a b-differential, operator

on T := Rn−1, the radial compactification of Rn−1 to a closed ball; this means that it
is constructed from the vector fields ρD∂ρD (where ρD = r−1) and ∂ω, with smooth (in
ρD ∈ [0, 1) and ω ∈ Sn−2) coefficients. As a consequence, the asymptotic behavior of its
solutions is—at least in sufficiently nice, e.g. elliptic, settings, and ignoring the possibility
of higher multiplicities—controlled by the set

specb(N∂T (P )) ⊂ C (1.11)

of complex numbers ξ for which the operator N̂∂T (P, ξ) =
∑

k+|α|≤m a0kα(0, 0, ω)(−iξ)k∂αω
on C∞(Sn−2) is not invertible (corresponding to the possibility of r−iξu(ω) asymptotics

where u ∈ C∞(Sn−2) is in the kernel of N̂∂T (P, ξ)). Closely related to this is the fact

that the invertibility of N̂T (P, 0) on appropriate (b-)Sobolev spaces requires an appropriate
choice of polynomial weight at r =∞.

For real σ 6= 0 on the other hand, N̂T (P, σ) has a rather different character (much as the
Euclidean Laplacian ∆ is quite different from ∆+σ2 for σ 6= 0): it is a (weighted) scattering

differential operator in the terminology of [Mel94]. Indeed, the operator r−mN̂T (P, σ) is
constructed from ∂r, r

−1∂ω with smooth (in r−1, ω) coefficients, or in Cartesian coordinates
x = rω from ∂x.7 In elliptic situations such as (1.5), kernel and cokernel (on tempered

distributions) are automatically Schwartz, and the invertibility of N̂T (P, σ), σ 6= 0, on

7While the same is true when σ = 0, the b-perspective for the zero energy operator is not only more
precise, but analytically better behaved: the zero energy operator does not have good mapping properties on
scattering function spaces (which here are standard weighted Sobolev spaces on Rn−1), and indeed typically
fails to have closed range, an example being ∆: H2(Rn)→ L2(Rn).
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standard weighted Sobolev spaces is less delicate than for σ = 0 in that it does not depend
on any choice of weight (or regularity). We briefly mention that when considering large real

σ, one can regard |σ|−1 as a semiclassical parameter, and N̂T (P, σ) becomes a semiclassical
scattering operator [VZ00].

In light to the disparate behavior of the spectral family at zero and nonzero energies, the

limit of N̂T (P, σ) as σ ↘ 0 is a singular one; roughly speaking, at a small nonzero frequency
σ ∈ R, the behavior of solutions changes from the b-regime to the scattering regime at the
scale r ' |σ|−1. Thus, in σ > 0 we introduce r̂ = σr in (1.10) and drop terms of size r−1;
this gives the operator

N+
T ,tf(P ) :=

∑
j+k+|α|≤m

ajkα(0, 0, ω)(−ir̂)j(r̂∂r̂)k∂αω (1.12)

governing the transition from positive to zero frequencies. (There is an analogous operator
N−T ,tf(P ) for the other choice of sign of σ.) In the setting of Theorem 1.2, the operators

N±T ,tf(P ) are both equal to ∆̂ + 1 where ∆̂ is the Laplacian on the exact cone ([0,∞)r̂ ×
Sn−2,dr̂2 + r̂2gSn−2). One can define a general class of parameter-dependent operators

which contains ±[0, 1) 3 σ 7→ N̂T (P, σ): this is the scattering-b-transition-algebra defined
originally (under a different name) in [GH08] for detailed low energy spectral theory, and
used more recently in [Hin21b].

Altogether then, estimating solutions of P in the approximately translation-invariant

regime (r/t� 1) requires the inversion of N̂T (P, 0) as well as of N̂T (P, σ), and also of the
transition model operators N±T ,tf(P ) for the purpose of uniform low energy control.

D-normal operator; Mellin-transformed normal operator family. In order to
exhibit the approximate dilation-invariance of P , we pass to coordinates T = t−1, R = r/t,
ω, with the dilation action given by scaling T . Restricting the coefficients of P in (1.9) to
ρD = 0 thus produces

ND(P ) =
∑

j+k+|α|≤m

ajkα(0, R, ω)
(
−R(T∂T +R∂R)

)j
(R∂R)k∂αω

=
∑

j+k+|α|≤m

ãjkα(R,ω)(RT∂T )j(R∂R)k∂αω
(1.13)

for suitable ãjkα; this expression only involves the restrictions ajkα|D. The operator ND(P )
is dilation-invariant (in T ) on [0,∞)T × [0, 1)R × Sn−2, and it degenerates at R = 0 as
an edge operator in the sense of Mazzeo [Maz91]: the basic vector fields RT∂T , R∂R, and
∂ω from which ND(P ) is constructed are precisely those smooth vector fields which at
R = 0 are tangent to the fibers of the fibration R−1(0) = [0,∞)T × Sn−2 → [0,∞)T , and
which are moreover tangent to T = 0. Thus, ND(P ) is an edge-b-operator. This class of
operators appeared previously in [MVW13], where its analysis was restricted to exploiting
the principal symbol; in the present paper, we shall develop the fully elliptic theory in
detail.

Controlling solutions of P in the approximately dilation-invariant regime (r−1 � 1)
requires the inversion of ND(P ) on appropriate Sobolev spaces with polynomial weights in
T and R. The weight in T arises from Fuchsian (or b-) arguments: taking advantage of
the dilation-invariance of ND(P ) in T , we define the Mellin-transformed normal operator
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family by formally replacing R∂R by iλ, giving

N̂D(P, λ) =
∑

j+k+|α|≤m

ãjkα(R,ω)(iRλ)j(R∂R)k∂αω , λ ∈ C. (1.14)

This is a family of operators on (0, 1)R×Sn−2 (which is the set of endpoints at infinity of rays
r/t = const. > 0, t↗∞, within our coordinate chart), each of which is a b-operator at (i.e.
approximately dilation-invariant near) R = 0. As such, its inversion on b-Sobolev spaces
requires a choice of weight in R which is informed by the set specb(N∂T (P )) from (1.11).

Since the inversion of N̂D(P, λ) is a global problem, our present local coordinate description
is inadequate; glossing over this issue, one can define the set

specb(ND(P )) ⊂ C

of λ ∈ C for which N̂D(P, λ) is not invertible (acting between appropriate weighted b-

Sobolev spaces). As soon as N̂D(P, λ) is invertible for all λ ∈ C on a line Imλ = −α, one
can then invert ND(P ) (via the inverse Mellin transform) on function spaces with T -weight
Tα.

An interesting technical aspect is that the high energy (|Reλ| � 1) behavior of N̂D(P, λ)
is somewhat delicate due to the competition of R (which may be small) and λ (which may
be large). Analogously to the discussion of the low energy spectral family, one introduces,

say for large real λ, the rescaling R̃ = Rλ and lets λ → ∞ while keeping R̃ fixed; this
produces

N+
D,tf(P ) =

∑
k+|α|≤m

ã0kα(0, ω)(iR̃)j(R̃∂R̃)k∂αω ,

which is in fact the operator (1.12) but in different coordinates. As a family of b-differential
operators depending on the large parameter |λ|, or equivalently on the small parameter

|λ|−1, the family N̂D(P, λ) is then a large parameter or semiclassical cone differential oper-
ator in the terminology of [Loy02, Hin22b]. In particular, in the elliptic setting, the problem

of constructing an operator Q with N̂D(Q,λ) = N̂D(P, λ)−1 (thus Q is an element of the
large edge-b-pseudodifferential calculus, see §2.7.3), necessarily involves, despite its classical
appearance, ps.d.o. algebras which were developed only much after [Maz91, Mel93].

1.1.1. Compactification. 3b-analysis on Rn takes on a particularly clean form on an ap-
propriate compactification of Rn = Rt × Rn−1

x to a manifold with corners. We give the
general definition in §3, which in the present special case amounts to passing to the radial
compactification M0 = Rn of Rn to a closed ball and blowing up the north and south poles
(i.e. the end points at infinity of the t-axis), which produces the manifold M . We refer the
reader to §2 for a definition of these notions, and here only mention two coordinate charts
near ∂M ; see Figure 1.1.

(1) One chart covers the compactification of (1,∞)t × B̄(0, r0) where B̄(0, r0) ⊂ Rn−1
x

is the closed ball of radius r0, and is given by

[0, 1)T × B̄(0, r0)x, T = t−1.

The spectral family N̂T (P, σ) of the translation-invariant model of a 3b-operator P
then lives on the boundary hypersurface T ⊂M which is locally given by T = 0.
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(2) Another chart covers the compactification of r > 1, 0 ≤ t/r < 1, and is given by

[0, 1)ρD × [0, 1)ρT × Sn−2, ρD = r−1, ρT =
r

t
.

This was already introduced in (1.8). In this chart, T = ρ−1
T (0), while the Mellin-

transformed normal operator family N̂D(P, λ) of the dilation-invariant model of P
lives on the boundary hypersurface D ⊂M which is locally given by ρD = 0.

The basic 3b-vector fields (1.7) can be replaced by T 2∂T , ∂x in the first chart, and by
ρT ρD∂ρD , ρD∂ρD − ρT ∂ρT , ∂ω in the second chart. It is unavoidable that generators of
V3b(M) near the corner T ∩D include derivatives such as ρD∂ρD −ρT ∂ρT which mix several
coordinates; this is a manifestation of the 3-body (i.e. non-product) nature of 3b-geometry.
Note moreover that near T ◦, 3b-vector fields are, in the terminology of [MM99], the same as
cusp vector fields with respect to the boundary defining function T ; however, the function
T is not a defining function of T , but rather a joint defining function of T ∪ D, which is
again a familiar feature of 3-body geometries. In particular, the 3b-algebra is markedly
different from the b-cusp algebra on M , with b-, resp. cusp behavior at D, resp. T . See
also Remark 3.5.

Remark 1.3 (Geometry of the D-normal operator). The fact that D arises from the bound-
ary at infinity Sn−1 of M0 by blowing up points (the north and south pole) explains why

the operators N̂D(P, λ) have a conic structure at ∂D (i.e. R = 0 in the coordinates used
in (1.14)), and why the dilation-invariant operator ND(P ) has a full line R = 0 of cone
points; see [MW04, MVW08] for more on the relationship between timelike lines of cone
points and edge analysis.

The principal symbol 3bσm(P ) of P ∈ Diffm3b(M) is a homogeneous polynomial on a
smooth vector bundle 3bT ∗M → M which over the interior M◦ = Rn is identified with
T ∗Rn; if 3bσm(P ) vanishes, then P ∈ Diffm−1

3b (M). Similarly, the spectral family captures

P to leading order at T in the sense that N̂T (P, σ) = 0 for all σ ∈ R implies that P ∈
ρT Diffm3b(M), i.e. the coefficients of P vanish at T ; likewise, N̂D(P, λ) = 0 for all λ ∈ C
implies that P ∈ ρDDiffm3b(M). Thus, these three models associated with P ∈ Diffm3b(M)
are sufficient to capture P to leading order in all three asymptotic senses; and this is the

reason why control (in the elliptic setting meaning: invertibility, in the case of N̂D(P, λ) for
λ on a line of constant Imλ) of all three models gives the invertibility of P up to compact
errors, i.e. the Fredholm property of P .

1.1.2. 3b-pseudodifferential operators. If one formally writes a 3b-differential operator P
in r > 1 as P = p(1/r, r/t, ω; rDt, rDr, Dω), then a 3b-pseudodifferential operator arises
by allowing the symbol p = p(ρD, ρT , ω;σ, ξ, η) here to be an m-th order symbol (m ∈ R)
in (σ, ξ, η) rather than a polynomial. Following a long tradition in singular microlocal
analysis, starting with [Mel81, MM87, Maz91, EMM91, MM99], we make sense of this by
geometric microlocal means. We define an appropriate resolution M2

3b (blow-up) of the
double space M ×M , where M is the compactification of Rn introduced above, and define
the space Ψs

3b(M) of s-th order 3b-ps.d.o.s via their Schwartz kernels: they are distributions
on M2

3b which are conormal to the closure diag3b ⊂M2
3b of the diagonal diagM◦ ⊂M◦×M◦

(whereas differential operators are those which are Dirac distributions supported at diag3b).
The proof that

⋃
s∈R Ψs

3b(M) is an algebra, i.e. closed under composition, is based on the
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D

Figure 1.1. Relationship between coordinates (t, x) = (t, rω) on Rt×Rn−1
x

(on the left) and local coordinates ρT = r/t, ρD = 1/r on its compactifi-
cation M to a manifold with corners and boundary hypersurfaces T and D
(on the right).

construction of a triple space and the application of pullback and pushforward theorems
[Mel92, Mel96].

One can furthermore define two exactly invariant normal operators NT (P ) and ND(P )

also for pseudodifferential P . The spectral family N̂T (P, σ) of P ∈ Ψs
3b(M) is a family of

weighted scattering ps.d.o.s [Mel94] on T for nonzero σ (with semiclassical behavior [VZ00]
for large σ), and a b-ps.d.o. at zero frequency [Mel93], with uniform behavior near zero
energy captured by the sc-b-algebra introduced in [GH08] (based on the unpublished note

[MSB]). Similarly, the Mellin-transformed normal operator family N̂D(P, λ) is a holomor-
phic family of b-ps.d.o.s on D which, for large |Reλ|, is a weighted semiclassical cone ps.d.o.
[Hin22b]. The precise definitions of M2

3b, Ψs
3b(M), and of the various normal operators are

given in §4; the composition law is proved in §5.2.

One can also define 3b-ps.d.o.s (modulo the space Ψ−∞3b (M) of residual operators) as
bounded geometry pseudodifferential operators [Shu92] on M◦ relative to the covering of

M◦ by unit balls with respect to a Riemannian 3b-metric (schematically: dt2

r2 + dr2

r2 + dω2).
While this perspective immediately gives a composition law and suffices for the purposes of
symbolic analysis (i.e. anything concerned with the 3b-symbol), the leading order behavior
at T and D is no longer cleanly encoded in this manner. We do not pursue this point of
view further here.

1.2. Elliptic theory in the 3b-setting; overview of the main results. As an appli-
cation of the basic 3b-machinery developed in §§3–4, one can prove the Fredholm property
of a 3b-(pseudo)differential operator P ∈ Ψm

3b(M) as a map between weighted 3b-Sobolev
spaces, provided P is fully elliptic with weights αD, αT . This notion is introduced in Defi-
nition 6.3; roughly speaking, it demands, besides the ellipticity of the principal symbol of

P , the invertibility of N̂T (P, σ), σ 6= 0, also that of N̂T (P, 0) on a b-Sobolev space with

weight αD−αT , and also that of the operators N±T ,tf(P ); finally, N̂D(P, λ) is required to be

invertible for Imλ = −αD. The validity of Theorem 1.2 is then due to the fact that 〈x〉2P
is fully elliptic with weights αD, αT (up to dimension-dependent shifts in αD, αT relative
to Definition 6.3, caused by a different choice of density).

A priori estimates. One proof of the Fredholm property proceeds via a priori estimates
on weighted 3b-Sobolev spaces; it is given in §7. We consider only L2-based spaces in this
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work. Weighted 3b-Sobolev spaces Hs,αD,αT
3b (M), s ∈ N0, were already introduced in (1.4);

they can be defined also for real s (or even for suitable variable orders) via testing with 3b-
pseudodifferential operators instead of 3b-vector fields. Corresponding to the translation-
invariant aspect of 3b-operators, one can express the Hs,αD,αT

3b (M)-norm of a function u
with support in |x|/t ≤ C in the special case αT = 0 in terms of the L2(Rσ;Hσ)-norm of
the Fourier transform û(σ, x) of u(t, x) in t, where the Hσ are spaces of distributions with
a σ-dependent norm matching the structural properties of the spectral family discussed
previously—namely, they are (semiclassical) scattering and scattering-b-transition Sobolev
spaces; see Proposition 4.24. Similarly, corresponding to the dilation-invariant aspect, one
can express the Hs,αD,αT

3b (M)-norm of u with support in |x| ≥ C in terms of an L2-type
norm of its Mellin-transform in T (in the coordinates T,R, ω used above) using b- and
semiclassical cone Sobolev spaces; see Proposition 4.26.

The a priori estimates are then proved in the standard fashion: one estimates ‖u‖Hs,αD ,αT
3b

by ‖Pu‖
H
s−m,αD ,αT
3b

plus an error term ‖u‖
H
s−ε,αD−ε,αT −ε
3b

where Hs,αD,αT
3b ↪→ Hs−ε,αD−ε,αT −ε

3b

is a compact inclusion. Here, the gain in the three orders is obtained via symbolic elliptic
estimates (to control 3b-regularity) and estimates for the two normal operators (to control
u to leading order in the sense of decay at D and T ). Slightly more precisely, one controls
u near D, resp. T by passing to the Mellin, resp. Fourier transform and using estimates for
the (elliptic) Mellin-transformed normal operator family, resp. spectral family on the appro-
priate (b- and semiclassical cone, resp. semiclassical scattering and scattering-b-transition)
function spaces. See Theorem 7.2 and its proof. Similar estimates for the adjoint P ∗ give
the Fredholm property.

This approach is attractive in that 3b-ps.d.o.s (and the pseudodifferential algebras related
to the 3b-algebra via the various normal operator maps) are only used as tools to deduce
precise mapping properties for a given 3b-operator P (which in applications is typically a
differential operator). In particular, it generalizes in a conceptually clear manner to non-
elliptic problems, as we discuss in detail in a wave equation context in [Hin23]. However,
it does not give much information on the structure of the (generalized) inverse of P .

Parametrix construction. A second proof of the Fredholm property of a fully elliptic
3b-operator P proceeds via the construction of very precise parametrices (approximate left
or right inverses of P ). This approach gives much more information than just the Fredholm
property, but does not generalize easily to non-elliptic settings. To start, we enlarge the

3b-algebra to the large 3b-calculus by adding operators of class Ψ−∞,E3b (M), where E is a
collection of index sets associated with the boundary hypersurfaces of M2

3b. Here, an index
set governs the asymptotic behavior of the Schwartz kernel at a boundary hypersurface;

roughly speaking, given A ∈ Ψ−∞,E3b (M), one index set governs the asymptotics of Au at
D when u ∈ C∞c (M◦), another one governs the asymptotics at T ; yet another index set
describes the asymptotics of Au at T when u vanishes near T but has an expansion near
D; and so on. The large 3b-calculus is developed in §5. We then show in §6 that the
large 3b-calculus contains a right parametrix Q, i.e. an operator so that PQ is equal to the
identity operator up to an error term which is smoothing and has range contained in the
space Ċ∞(M) of functions vanishing to infinite order at T and D (this is equal to S (Rn)
when M is the compactification of Rn discussed in §1.1.1). We also construct a precise left
parametrix. See Theorem 6.4.
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Equipped with such parametrices, one can also show that the generalized inverse of P is
itself an element of the large 3b-calculus; see Theorem 6.15. One can moreover prove that
elements of the nullspace of P are automatically polyhomogeneous (have generalized Taylor
expansions) at T and D; see Corollary 6.16. It seems difficult to deduce this regularity
information from the estimate-based approach explained above. The relative index theorem
is stated as Theorem 6.17.

1.3. Related literature and future directions. The transformation of problems of uni-
form analysis on noncompact spaces to singular analysis on compact spaces (typically man-
ifolds with corners whose boundary hypersurfaces are equipped with additional structures)
has a long history, with [MM87, Maz91, Mel93, MM95, MM99] being among the early ex-
amples. Vasy [Vas00, Vas01] followed this approach in his treatment of (generalized) many-
body Hamiltonians, and the present work is closely related in particular to [Vas00]. For
example, the underlying manifold with corners defined in §1.1.1 is a special case of Vasy’s
construction; furthermore, spectral families associated with the collision planes (here: at
T ) play a key role. However, since 3-body scattering geometry has an asymptotic full trans-
lation symmetry away from the collision planes, whereas 3b-geometry has an asymptotic
dilation symmetry, the setting studied here is fundamentally different from [Vas00].

Among the many pseudodifferential calculi developed over the years, we mention in
particular Loya’s work [Loy02] on resolvents on conic manifolds, including at high frequen-
cies; this work is closely related to analysis of the Mellin-transformed normal operator

family N̂D(P, λ) at high frequencies, although we opt here for the semiclassical version
[Hin22b]. Furthermore, we recall that Albin–Gell-Redman [AGR17] generalize the edge-
and b-calculi to the setting of manifolds of corners equipped with iterated fibration struc-
tures; they also develop a large calculus (as well as a heat calculus). Their setting in
particular includes edge-b-operators such as ND(P ) in (1.13). The authors study Dirac-
type operators for which the normal operators, due to their special form, can be inverted
explicitly (see [AGR17, §4.2]). They can thus construct precise parametrices without having
to pass through the Mellin transform; in particular, they avoid the use of large parameter
or semiclassical cone calculi altogether.

As mentioned previously, the analysis of the spectral family N̂T (P, σ) at low energy
required for the Fredholm analysis of 3b-operators is easily performed using the scattering-b-
transition calculus [GH08]. The low energy analysis of Guillarmou–Hassell [GH08, GH09b],
with [CCH06] as a precursor, is used for the study of the Riesz transform as well as for
long-time asymptotics of solutions of Schrödinger and wave equations; see also [GS14,
SW20] for the case of the Hodge Laplacian, and [Hin22a, Hin21b] (based on [Vas21]) for
recent applications to wave equations. For work in the more general setting of fibered
cusp metrics, we mention [GTV20] (building on the pseudodifferential calculus developed
in [GH09a, GH14]) and [KR22].

Remark 1.4 (Further directions I: uniform low energy analysis). One may attempt to mir-
ror the recent progress on uniform low energy resolvent estimates and study the uniform
behavior of (generalized) 3-body type Hamiltonians [Vas00] near zero energy. (Without
appropriate conditions on the Hamiltonian at zero energy, the behavior of the low en-
ergy resolvent is considerably more complicated than in the 2-body case, as studied e.g. in
[JK79, GH09b], due to the Efimov effect: an accumulation of eigenvalues at the bottom of



3B-CALCULUS 15

the essential spectrum from below. See [Wan03, Wan04] and references therein for results
in this direction.)

Remark 1.5 (Further directions II: more general geometries). The compactified space for 3b-
analysis is the blow-up of a compact manifold with boundary (such as Rn) at (a finite set of)
point(s). One may wish to study geometrically more complicated situations, e.g. blowing up
higher-dimensional boundary submanifolds (as in [Vas00]), or even families of intersecting
boundary submanifolds [Vas01, Geo18, AMN22]. The corresponding generalization of the
present paper would then be related to the study of (generalized) N -body Hamiltonians at
zero energy.

1.4. Guide to the paper. In §2, we collect background material on geometric singular
analysis and the various algebras and large calculi of differential and pseudodifferential
operators on manifolds with boundaries or corners which appear as models of 3b-operators.
The differential operator algebras are then used extensively in §3, the pseudodifferential
algebras in §4, and the large calculi in §5.

Next, §3 is required reading, as it introduces 3b-geometry and 3b-analysis (for differential
operators only) in detail. Even to the reader interested only in differential operators, we
recommend reading §4.4 on weighted 3b-Sobolev spaces. (We invite such a reader to prove
Proposition 4.24 and 4.26 for integer orders s only using differential operators.) One can
then jump to §7 and prove the Fredholm property of fully elliptic 3b-operators (upon
specializing to the case of differential operators there).

The algebra of 3b-pseudodifferential operators, introduced in §4, is the key tool in the
paper [Hin23] in which 3b-tools are applied to wave equations on non-stationary spacetimes.
We reiterate that if one uses the 3b-algebra solely as a tool, one does not need any of the
large calculi discussed in §2; see also §7.

Finally, the large 3b-calculus is defined in §5, and its main purpose is to contain precise
parametrices of fully elliptic 3b-operators. The elliptic parametrix construction is presented
in §6, and it is based on elliptic parametrix constructions in the various model algebras in §2.
The reader interested only in 3b-operators as tools, as in [Hin23], may skip these parts.
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2. Manifolds with corners, Fourier transforms, and pseudodifferential
operators

We first recall elements of geometric singular analysis which are used throughout this
work, beginning with basic notions for manifolds with corners and real blow-ups; see also
[Mel96, Gri01], and [MM95, §2], [Hin21b, Appendix A], [Maz91, §2A]. We then recall
the semiclassical (pseudo)differential operator algebras in 2.1, and continue with the b-
algebra in §2.2, the scattering algebra (including its semiclassical version) in §2.3, the
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scattering-b-transition algebra in §2.4, and the semiclassical cone algebra in §2.5. Following
an intermezzo on Fourier transforms of non-product type families of distributions in §2.6,
we finally discuss the edge-b-algebra in §2.7.

Some of the material in §§2.1–2.7 is a variation on a theme, e.g. the construction of
elliptic inverses in the scattering-b-transition algebra in §2.4, even if it was not available in
this form in the literature prior to the present work. Other material is new, in particular
in §§2.6–2.7. Lastly, some classical material (especially as far as the semiclassical algebras
in §§2.1 and 2.3.1 are concerned) is presented in a somewhat non-standard form in order
to fit the needs of the present paper.

Manifolds with corners; blow-ups. Let M be an n-dimensional manifold with cor-
ners; we require its boundary hypersurfaces to be embedded submanifolds. We write
M◦ = M \ ∂M for the manifold interior of M . By M1(M) we denote the collection of
boundary hypersurfaces of M ; a boundary face of M is a non-empty intersection of bound-
ary hypersurfaces. Given H ∈ M1(M), we say that ρ ∈ C∞(M) is a defining function of
H if ρ ≥ 0 on M , further H = ρ−1(0), and dρ(p) 6= 0 for all p ∈ H. We often write
ρH ∈ C∞(M) for a defining function of H ∈ M1(M). Given a collection H ⊂ M1(M), a
function ρ ∈ C∞(M) is a joint defining function of H if ρ =

∏
H∈H ρH ; a total defining

function on M is a joint defining function of M1(M). For p ∈ M , we write +TpM ⊂ TpM
for the closed subset of (non-strictly) inward pointing tangent vectors. For a boundary
face F ⊂ M , we write +NF = +TFM/TF for the (non-strictly) inward pointing normal
bundle. We moreover write +SNF = (+NF \ o)/R+ for the (inward pointing) spherical
normal bundle; here o ⊂ +NF is the zero section, and R+ acts by dilations in the fibers of
the (strictly) inward pointing normal bundle +NF \ o.

A closed submanifold S ⊂M is called a p-submanifold if around each point p ∈ S there
exist local coordinates x = (x1, . . . , xk) ∈ [0,∞)k and y = (y1, . . . , yn−k) ∈ Rn−k (with k
the codimension of the smallest boundary face containing p) such that S is locally given by
the vanishing of a subset of these coordinates. If S is given by the vanishing of a subset of
the y-coordinates (thus S ∩M◦ 6= ∅), we call S an interior p-submanifold, otherwise it is a
boundary p-submanifold. The blow-up of M along S is

[M ;S] := (M \ S) t +SNS,

with S called the center of the blow-up; +SNS is the front face of the blow-up. The map
β : [M ;S]→M , given by the identity on M \ S and by the base projection +SNS → S on
the front face, is called the blow-down map. The space [M ;S] can be given a unique structure
of a smooth manifold with corners by declaring polar coordinates around S to be smooth
down to the front face. (The key example is [Rn; {0}] ∼= [0,∞)r × Sn−1

ω , the blow-down
map being the polar coordinate map (r, ω) 7→ rω, and the front face being r−1(0) ∼= Sn−1.)
If T ⊂ M is another p-submanifold, we define the lift β∗T of T to [M ;S] as β−1(T ) when
T ⊂ S, and as the closure of β−1(T \ S) inside of [M ;S] otherwise. If β∗T ⊂ [M ;S] is a
p-submanifold (which in particular happens when at each point p ∈ T ∩ S there exists a
single coordinate system on M so that S and T are simultaneously given by the vanishing
of some subsets of these coordinates), then one can consider its blow-up [[M ;S];β∗T ]; this
iterated blow-up is denoted [M ;S;T ]. The definition of more deeply iterated blow-ups is
analogous.
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It may happen that the identity map on M \ (S ∪ T ) extends, by continuity, to a diffeo-
morphism [M ;S;T ]→ [M ;T ;S]; that is, the order of blow-ups is immaterial. In this case
we may simply write [M ; {S, T}] or [M ;S, T ] for the iterated blow-up, and we say that the
blow-ups of S and T commute. This happens in particular when S and T are transversal
(or disjoint), or when S ⊂ T or T ⊂ S. For brevity, when commuting the blow-ups of two
adjacent submanifolds S1, S2 in an iterated blow-up

[. . . ;S0; . . . ;S1;S2; . . .], (2.1)

we shall say that we can commute ‘S2 through S1 (⊃; S0)’ when S1 ⊃ S2, and S0 is the first
element blown up prior to S1 which contains S2 but not S1; this commutation of blow-ups
is allowed when S0 ⊂ S1 (and thus the second part of [Mel96, Proposition 5.11.2] applies),
and the S0 we write down will always satisfy this condition. We analogously say we can
commute ‘S2 through S1 (⊂; S0)’ when these conditions, with the roles of S1, S2 reversed,
are satisfied. When there is no submanifold S0 containing S1 ∩ S2 (i.e. the smaller one of
S1 and S2) but not S1∪S2 (i.e. the bigger one of S1 and S2), we write ‘(⊃)’ or ‘(⊂)’ simply,
i.e. we omit S0. Moreover, we shall say that we can commute ‘S2 through S1 (intersection
⊂ S0)’ when S0 is the first submanifold prior to S1 that is blown up and contains S1 ∩ S2;
this commutation is allowed when S0 contains neither S1 nor S2 (and thus the third part
of [Mel96, Proposition 5.11.2] applies).

b-vector fields and maps between manifolds with corners. We write V(M) =
C∞(M,TM) for the Lie algebra of smooth vector fields, and Vb(M) ⊂ V(M) for the Lie
algebra of b-vector fields, i.e. the space of all vector fields which are tangent to ∂M . In
local coordinates x ∈ [0,∞)k and y ∈ Rn−k as above, Vb(M) is spanned over C∞(M) by
xj∂xj (j = 1, . . . , k) and ∂yj (j = 1, . . . , n − k); these vector fields are a local frame of the

b-tangent bundle bTM → M . In terms of the natural map bTM → TM , we therefore
have Vb(M) = C∞(M ; bTM). The dual bundle bT ∗M → M is the b-cotangent bundle,

with local frame dxj

xj
(j = 1, . . . , k) and dyj (j = 1, . . . , n − k). For k ∈ N0, we write

Diffkb(M) for the space of b-differential operators (of order k): these are locally finite sums
of up to k-fold compositions (for k = 0: multiplications by elements of C∞(M)) of b-vector

fields. We write Diffb(M) =
⊕

k∈N0
Diffkb(M) for the algebra of b-differential operators.

The b-principal symbol of V ∈ Vb(M) is bσ1(V )(ξ) = iξ(V ), ξ ∈ bT ∗M ; by linearity and
multiplicativity, this also defines the b-principal symbol of b-differential operators, with
bσm(A), A ∈ Diffmb (M), valued in the space P [m](bT ∗M) of smooth functions on bT ∗M
which on each fiber are homogeneous polynomials of degree m.

If M,M ′ are two manifolds with corners, with boundary defining functions denoted ρH
and ρ′H′ for H ∈ M1(M) and H ′ ∈ M1(M ′), then we call a smooth map F : M → M ′

an interior b-map if F ∗ρ′H′ = aH′
∏
H∈M1(M) ρ

e(H,H′)
H for some 0 < aH′ ∈ C∞(M) and

e(H,H ′) ∈ N0. Defining the b-differential bF∗ : bTpM → bTF (p)M
′ of an interior b-map by

continuous extension (from M◦) of the differential F∗ : TpM
◦ → TF (p)(M

′)◦, we say that
an interior b-map F is a b-submersion is the b-differential is everywhere surjective; this
is equivalent to the requirement that for any p ∈ M , the restriction of F in domain and
range to the interior of the smallest boundary faces of M and M ′ containing p and F (p) is
a submersion (of open manifolds). A b-submersion F which does not map any boundary
hypersurface of M into a codimension ≥ 2 boundary face of M ′ is called a b-fibration
(equivalently, for all H ∈ M1(M), there is at most one H ′ ∈ M1(M ′) with e(H,H ′) 6= 0).
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We call F a simple b-fibration if e(H,H ′) ∈ {0, 1} for all H,H’; all b-fibrations arising
in the present paper will be simple b-fibrations, and we shall thus commit an abuse of
terminology and call them ‘b-fibrations’ simply. Finally, we say that an interior b-map
F : M → M ′ is b-transversal to a p-submanifold S ⊂ M if for each p ∈ S, the subspaces
ker(bF∗|p) and bTpS ⊂ bTpM are transversal, where bTpS is the space of all b-tangent

vectors V (p) ∈ bTpM where V ∈ Vb(M) is tangent to S. An equivalent definition is
that for all p ∈ S, the restriction of F to the interior of the smallest boundary face of
M containing p is transversal (in the standard sense) to the intersection of S with this
boundary face.

The b-density bundle on a manifold M with corners is the density bundle associated
with the b-tangent bundle; thus, in local coordinates x, y as above, a smooth positive

section of bΩM →M is |dx1

x1 · · · dxk

xk
dy1 · · · dyn−k|. We then note the following relationship

between the b-density bundles on M and its blow-up [M ;S] along a p-submanifold S: if
F ⊂ M denotes the smallest boundary face containing S, and if β : [M ;S] → M denotes
the blow-down map, then

β∗bΩM = ρcodimF S
ff

bΩ[M ;S], (2.2)

in the sense that the C∞([M ;S])-span of β∗C∞(M ; bΩM) is ρcodimF S
ff C∞([M ;S]; bΩ[M ;S]).

(Here codimF S = dimF −dimS is the codimension of S inside of F , and ρff ∈ C∞([M ;S])
is a defining function of the front face.) For the proof, note that the subbundle of bTSM
given by the values of b-vector fields on M that are tangent to S has codimension codimF S
(and these are exactly the vector fields that lift to smooth vector fields on [M ;S]), whereas
the elements of a local frame of a complementary subbundle of bTM , extended to an open
neighborhood of S, blow up simply at the front face when lifted to [M ;S]. This gives (2.2).
(One can also check this directly in local coordinates.)

Conormality and polyhomogeneity at boundary hypersurfaces. We denote the
space of functions vanishing to infinite order at ∂M by Ċ∞(M) ⊂ C∞(M). Given a collection
α = (αH)H∈M1(M) of weights αH ∈ R, we write

Aα(M)

for the space of all conormal functions on M with weight αH at H: these are all smooth
functions u on M◦ for which Au ∈ (

∏
H∈M1(M) ρ

αH
H )L∞loc(M) for all A ∈ Diffb(M) (that

is, (
∏
ρ−αHH )u ∈ L∞loc(M)). Choosing the boundary defining functions so that ρH < 1

2
everywhere, we shall also consider the more general space

Aα,k(M), α = (αH)H∈M1(M) ∈ RM1(M), k = (kH)H∈M1(M) ∈ NM1(M)
0 ,

consisting of all functions u for which Au ∈ (
∏
H∈M1(M) ρ

αH
H | log ρH |kH )L∞loc(M).

Next, an index set E is a subset E ⊂ C× N0 so that (z, k) ∈ E implies (z + j, k′) ∈ E for
all j ∈ N0 and k′ ≤ k, and so that for all C the set {(z, k) ∈ E : Re z < C} is finite. Given a
collection E = (EH)H∈M1(M) of index sets, we define the spaceAEphg(M) of polyhomogeneous
conormal distributions via induction over the dimension of M to consist of all conormal
functions u on M which, in collar neighborhood [0, 1)ρH×H of H ∈M1(M), are asymptotic
sums

u(ρH , q) ∼
∑

(z,k)∈EH

ρzH | log ρH |ka(z,k)(q), a(z,k) ∈ AE
H

phg(H), (2.3)
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where EH = (EH′ : H ′ ∈M1(M) \ {H}, H ′ ∩H 6= ∅). We shall also consider mixed spaces

A(E,α′)
phg(H)(M)

which are polyhomogeneous (with index set E) at H ∈ M1(M) but only conormal (with
weight (α′H′ at H ′ ∈M1(M) \ {H}) at the other boundary hypersurfaces; thus an element

of this space has an asymptotic expansion (2.3) at H but with a(z,k) ∈ Aα
′
(H).

Given two index sets E ,F ⊂ C× N0, we set

E + F := {(z + z′, k + k′) : (z, k) ∈ E , (z′, k′) ∈ F},
E ∪ F := E ∪ F ∪ {(z, k + k′ + 1): (z, k) ∈ E , (z, k′) ∈ F},
E + j := {(z + j, k) : (z, k) ∈ E}.

Furthermore, we write N0 for the index set {(z, 0) : z ∈ N0}, and similarly N = N0 + 1. For
(logarithmic) weights, we set

(αH , kH) ∪ (βH , lH) :=


(αH , kH), αH < βH ,

(βH , lH), αH > βH ,

(αH , kH + lH + 1), αH = βH ,

(2.4)

and we write αH for (αH , 0). (Thus, for example, 0 ∪ 0 = (0, 1).) Furthermore, we write

Re E = {Re z : (z, k) ∈ E};
and given α ∈ R, we say that Re E > α, resp. Re E ≥ α if Re z > α, resp. Re z ≥ α
for all (z, k) ∈ E . (We caution that, say, on a manifold M with boundary, the inclusion
AEphg(M) ⊂ Aαphg(M) requires Re E > α, whereas Re E ≥ α is sufficient if and only if k = 0

for all (z, k) ∈ E with Re z = α.)

Conormal distributions at interior submanifolds. When S ⊂ M is an interior
p-submanifold of codimension l, we denote by Is(M,S) the space of conormal distributions
of order s at S: its elements are smooth away from S, and in local coordinates x ∈ [0,∞)k,
y = (y′, y′′) ∈ Rn−k−l × Rl in which S is given by y′′ = 0, they are given as inverse Fourier
transforms

1

(2π)l

∫
Rl
eiy
′′η′′a(x, y′, η′′) dη′′

where a is a symbol of order s+ n
4 −

l
2 in η′′.

Radial compactification. Given a real vector bundle E → M , we write Sm(E) for
the space of symbols of order m on E, and Pm(E) for the space of fiber-wise polynomials

of order m; further P [m](E) ⊂ Pm(E) denotes the subspace of homogeneous degree m
polynomials. Finally, Ē → M denotes the (fiber-wise) radial compactification of E. This
is a closed ball bundle, defined on the level of an individual fiber Rk by

Rk :=
(
Rk t

(
[0,∞)ρ × Sn−1

))
/ ∼,

where a point x 6= 0, expressed in polar coordinates as x = rω, is identified with (ρ, ω) =
(r−1, ω). By SE → M we denote the Sk−1-bundle given fiber-wise by the boundary of
Ē →M at fiber infinity.

When E → M is a half-line bundle, with typical fiber [0,∞), we denote by E → M its
fiber-wise compactification to a [0,∞]-bundle; here [0,∞] ⊂ R is the closure of [0,∞). We
then have:
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Lemma 2.1 (Identification of compactified inward pointing normal bundles). Let M be a
manifold with corners, and suppose C = H1 ∩ H2 is a codimension 2 corner between two
embedded boundary hypersurfaces H1, H2 ⊂ M . Then a choice of total boundary defining
function ρ0 ∈ C∞(M) for H1 and H2 (that is ρ0 = ρ1ρ2 where ρj ∈ C∞(M), j = 1, 2, is a
defining function for Hj) induces an isomorphism of fiber bundles

φ : +NCH1
∼= +NCH2

as follows: given any defining function ρ1 ∈ C∞(M) of H1, the map φ maps the point

(dρ1)−1(s) ∈ +NpH1 (where p ∈ C and s ∈ [0,∞]), into (d( ρρ1
))−1(1/s) ∈ +NpH2, where

we set s−1 =∞, 0 for s = 0,∞, respectively.

Thus, φ is homogeneous of degree −1 in the fibers. See Figure 2.1.

C

H1

H2

+NpH2

dρ2

+NpH1

dρ1

graph(φ)

p

Figure 2.1. Illustration of Lemma 2.1.

Proof of Lemma 2.1. We need to prove that φ is well-defined. Thus, if ρ′1 = aρ1, 0 < a ∈
C∞(M), is another defining function of H1, then we obtain a map φ′ mapping (dρ′1)−1(s′)
into (d( ρ

ρ′1
))−1(1/s′). But at p ∈ C, we have dρ′1 = a(p)dρ1 : NpH1 → R, and similarly

d( ρ
ρ′1

) = a(p)−1d( ρρ1
) as a linear map on NpH2; thus (dρ′1)−1(s′) = (dρ1)−1(s′/a(p)) and

(d( ρ
ρ′1

))−1(1/s′) = (d( ρρ1
))−1(a(p)/s′), which shows that φ′ = φ, as desired.

A pictorial proof can be given as follows: consider the blow-up

M̃ :=
[
[0, 1)ε ×M ; {0} × C

]
The front face F ⊂ M̃ is naturally diffeomorphic to the radial compactification of +NC,
and the level set R := {ρ0 = ε2} ⊂ M̃ intersects the interior F ◦ = (+NC)◦ (i.e. the strictly
inward pointing normal bundle) in a smooth submanifold. Moreover, the natural map
TCH1 ⊕ TCH2 → TCM induces an isomorphism NCH1 ⊕NCH2

∼= NC. One can then check
that R∩ (+NC)◦ is the graph of the restriction (+NCH1)◦ → (+NCH2)◦ of the desired map

to the interiors of +NCH1 and +NCH2. �

2.1. The semiclassical algebra. Semiclassical analysis is treated in depth in Zworski’s
monograph [Zwo12]; see also [GS94, DZ19]. Here, we describe semiclassical operators in a
somewhat non-standard fashion. Given a closed (compact without boundary) manifold M ,
consider on

M~ := [0, 1)h ×M (2.5)
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the Lie algebra V~(M) of semiclassical vector fields, which consists of all smooth vector
fields which are horizontal (i.e. annihilate h) and vanish at h = 0. Thus, V~(M) is spanned
over C∞(M~) by hV where V ∈ V(M), and in local coordinates x = (x1, . . . , xn) on M by

h∂xj , j = 1, . . . , n.

These vector fields are a frame of the semiclassical tangent bundle

~TM →M~,

and their duals dxj

h , j = 1, . . . , n, are a frame of the semiclassical cotangent bundle ~T ∗M .

Thus, smooth (down to h = 0) fiber-linear coordinates on ~T ∗M → M~ are defined by
writing the canonical 1-form on T ∗M ∼= ~T ∗h0

M := ~T ∗M ∩ h−1(h0) as

ξ~ ·
dxj

h
(h = h0).

Since [V~(M),V~(M)] ⊂ hV~(M), the principal symbol of an operator P = (Ph)h∈(0,1) ∈
Diffm~ (M) (i.e. a finite sum of up to m-fold compositions of semiclassical vector fields) is a
well-defined element of (Pm/hPm−1)(~T ∗M). A semiclassical pseudodifferential operator

P ∈ Ψs,b
~ (M) of order (s, b) ∈ R × R is then a smooth family P = (Ph)h∈(0,1) of elements

of Ψs(M) whose Schwartz kernels, as distributions on (0, 1)×M2, are distributions on the
semiclassical double space

M2
~ :=

[
[0, 1)h ×M2; {0} × diagM

]
(with diagM ⊂ M ×M denoting the diagonal) which are conormal distributions of order
s − 1

4 at the lift diag~ ⊂ M2
~ of [0, 1) × diagM which vanish to infinite order at the lift of

{0}×M2, which are conormal with weight −b down to the front face, and which are valued
in the lift along [0, 1) ×M2 3 (h, p, p′) 7→ (h, p′) ∈ M~ of the density bundle ~ΩM → M~
associated with ~TM → M~. That is, in local coordinates x, x′ on M2, an element of

Ψs,b
~ (M) has Schwartz kernel Oph(a) = Oph(a)(x, x′) at the h-level set of M2

~ , where

Oph(a)(x, x′) := (2π)−n
∫
Rn

exp
(
i
x− x′

h
· ξ~
)
a(h, x, ξ~) dξ~

∣∣∣dx′1 · · · dx′n
hn

∣∣∣;
here a is a symbol of order s in ξ~ which is conormal of order b at h = 0, to wit,

|(h∂h)j∂αx ∂
β
ξ~
a(h, x, ξ)| ≤ Cjαβh−b〈ξ~〉s−|β| (2.6)

for all j ∈ N0 and α, β ∈ Nn0 . The principal symbol map is

0→ Ψs−1,b−1
~ (M) ↪→ Ψs,b

~ (M)
~σs,b−−−→ (h−bSs/h−(b−1)Ss−1)(~T ∗M)→ 0,

where Ss,b(~T ∗M) denotes the space of symbols of order s in the fiber variables which are
conormal with weight −b down to h = 0; and this map is multiplicative. For b = 0, we
write Ψs,0

~ (M) = Ψs
~(M).

There is a corresponding scale of Sobolev spaces

Hs,b
h (M), Hs

h(M) = Hs,0
h (M).

For each h > 0, we have Hs,b
h (M) = Hs(M) as sets, but the squared norm for s ≥ 0 is

‖u‖2Hs
h(M) := ‖u‖2L2(M) + ‖Au‖2L2(M), (2.7)
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where A ∈ Ψs
~(M) is any fixed operator with elliptic principal symbol. For s < 0, the

Hilbert space Hb
h(M) can be defined as the dual of H−sh (M) with respect to L2(M). For

s, b ∈ R, we then set ‖u‖
Hs,b
h (M)

= ‖h−bu‖Hs
h(M). Any P = (Ph)h∈(0,1) ∈ Ψs,b

~ (M) defines a

uniformly bounded (in h ∈ (0, 1)) family of operators Ph : Hs′,b′

h (M) → Hs′−s,b′−b
h (M) for

any s′, b′ ∈ R.

The ellipticity of the semiclassical principal symbol of an operator P ∈ Ψs,b
~ (M) implies,

via the usual elliptic parametrix construction (which only makes use of the principal symbol

map), the existence of Q ∈ Ψ−s,−b~ (M) so that PQ = I −R and QP = I −R′ with R,R′ ∈
Ψ−∞,∞~ (M), i.e. the Schwartz kernels of R,R′ are smooth right densities on [0, 1)h ×M2

which vanish to infinite order at h = 0. As such, Rh and R′h have small operator norms
on L2(M) for h ∈ (0, h0) with h0 > 0 sufficiently small, and therefore I − Rh and I − R′h
are invertible on L2(M). Therefore, Ph is invertible as a map Hs′(M) → Hs′−s(M) for

h ∈ (0, h0), and P−1 = (P−1
h )h∈(0,h0) ∈ Ψ−s,−b~ (M).

2.2. The b-algebra. For a detailed account of microlocal analysis in the b-setting, origi-
nating in the work of Melrose [Mel81] and Melrose–Mendoza [MM83], we refer the reader
to [Mel93]; see also [Gri01].

Let M be a compact n-dimensional manifold with (embedded, non-empty) boundary.
The b-double space of M is the real blow-up

M2
b := [M2; (∂M)2].

(When ∂M has more than one connected component, this is the ‘overblown’ b-double space;
typically one defines the b-double space in this case more economically as [M2;H] where
H = {H2 : H ∈M1(M)}.) We write lbb, ffb, rbb for the lifts of ∂M ×M , (∂M)2, M ×∂M ,
respectively. Furthermore, diagb denotes the lift of the diagonal diagM ⊂ M ×M ; it is a
p-submanifold. Recall the notation bΩM → M for the b-density bundle, i.e. the density
bundle associated with bTM →M ; write πR : M2

b →M for the lift of the right projection.
Then

Ψs
b(M)

is the space of all operators whose Schwartz kernels, as distributions on M2
b , are elements

of Is(M2
b , diagb;π∗R

bΩM) which vanish to infinite order at lbb and rbb. (For m ∈ N0, the
space Diffmb (M) ⊂ Ψm

b (M) is characterized as the subspace of Schwartz kernels which are
Dirac distributions at diagb.) Elements of Ψs

b(M) are bounded linear maps on C∞(M) and

Ċ∞(M), and Ψb(M) =
⊕

s∈R Ψs
b(M) is an algebra under composition; the principal symbol

map bσs : Ψs
b(M)→ (Ss/Ss−1)(bT ∗M) is multiplicative. With ρ denoting the left lift of a

boundary defining function on M , we also define the space of weighted operators

Ψs,α
b (M) := ρ−αΨs

b(M).

By Diffm,αb (M) = ρ−αDiffmb (M) ⊂ Ψm,α
b (M) we similarly denote the space of weighted

b-differential operators.

Remark 2.2 (Noncompact manifolds). In this section as well as in all pseudodifferential cal-
culi recalled below, one can allow the underlying manifold M to be noncompact. As long as
one requires the Schwartz kernels of pseudodifferential operators to be properly supported,
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the basic properties of the calculi (principal symbol, normal operators, composition) con-
tinue to hold. However, only local or compactly supported versions of Sobolev spaces are
well-defined then, and results on the invertibility of operators do not apply anymore.

Writing P ∈ Diffmb (M) in local coordinates x ≥ 0, y ∈ Rn−1 near a boundary point as

P =
∑

k+|α|≤m

akα(x, y)(xDx)kDα
y ,

the b-normal operator of P is defined by freezing coefficients at x = 0 as a b-operator, so

N(P ) :=
∑

k+|α|≤m

akα(0, y)(xDx)kDα
y .

This can be defined invariantly as a b-differential operator on +N∂M which is invariant
with respect to the R+-action by dilations in the fibers of +N∂M ; that is,

N(P ) ∈ Diffmb,I(
+N∂M).

The Schwartz kernel of N(P ) is invariant under the (lift to (+N∂M)2
b of the) joint dilation

action in both factors of +N∂M × +N∂M , and is indeed given by the unique dilation-
invariant extension of the restriction KP |ffb

of the Schwartz kernel KP of P to ffb. More
generally then, we can thus define the b-normal operator

N(P ) ∈ Ψs
b,I(

+N∂M)

also for pseudodifferential P ∈ Ψs
b(M). Given a choice of boundary defining function

ρ ∈ C∞(M) (which induces a trivialization +N∂M ∼= [0,∞) × ∂M via the fiber-linear
function dρ, which we immediately rename ρ by an abuse of notation), one can define the
Mellin-transformed normal operator family

N̂(P, λ) ∈ Ψs(∂M), λ ∈ C,

by setting N̂(P, λ)u := (ρ−iλN(P )(ρiλu))|ρ=0, u ∈ C∞(∂M). Equivalently, N̂(P, λ)u =

(ρ−iλP (ρiλũ))|∂M where ũ ∈ C∞(M) is any function with ũ|∂M = u.

The Schwartz kernel of N̂(P, λ) is the Mellin transform, in the projective coordinate
s := ρ/ρ′ on ffb, of the Schwartz kernel KP of P ; here ρ, resp. ρ′ is the lift to the left, resp.
right factor of M2

b of the chosen boundary defining function ρ ∈ C∞(M).

Lemma 2.3 (Properties of the Mellin-transformed normal operator family). Fix a boundary

defining function ρ ∈ C∞(M). For P ∈ Ψs
b(M), the operator N̂(P, λ) depends holomorphi-

cally on λ ∈ C. The principal symbol σs(N̂(P, λ)) is independent of λ; it is equal to the pull-
back of bσs(P ) along the inclusion T ∗∂M ↪→ bT ∗∂MM (dual to the map bT∂MM → T∂M).
Moreover, for µ ∈ R, the family

(0, 1) 3 h 7→ N̂(P,±h−1 − iµ)

defines an element of Ψs,s
~ (∂M) which depends smoothly on µ. A representative of its

principal symbol (i.e. an element of h−sSs(~T ∗∂M)) is given at h > 0 and η~ ∈ ~T ∗h∂M by
bσs(P )(±h−1 dρ

ρ + h−1η~).

Proof. First, if P ∈ Ψ−∞b (M) is residual, the restriction of its Schwartz kernel to the b-front

face ffb is a smooth right densityKP (sb, ω, ω
′)|dsbsb |ν, where sb = ρ/ρ′ ∈ [0,∞] is a projective

coordinate on ffb and ω, ω′ ∈ ∂M , and 0 < ν ∈ C∞(∂M ; Ω∂M) is a positive density on ∂M .
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The Schwartz kernel of N̂(P, λ) is then N̂(P, λ)(ω, ω′) =
∫∞

0 s−iλb KN (sb, ω, ω
′)dsb
sb

. This is

smooth in (ω, ω′) and rapidly vanishing as |Reλ| → ∞ when | Imλ| remains bounded.

Therefore, the family (µ, h) 7→ N̂(P,±h−1 − iµ) is a smooth family (in µ) of elements of
h∞Ψ−∞~ (∂M).

For general operators P ∈ Ψs
b(M), we may modify P by a residual operator so as to

arrange that the Schwartz kernel of P ∈ Ψs
b(M) is supported in any fixed neighborhood of

diagb. With ω, ω′ ∈ Rn−1 denoting the lifts of local coordinates on ∂M to the two factors
of ∂M × ∂M , the Schwartz kernel of P thus restricts to ffb as

KN(P )(sb, ω, ω
′) = (2π)−n

∫∫
R×Rn−1

siλb e
iη·(ω−ω′)a(ω, λ, η) dλ dη ·

∣∣∣dsb

sb
dω′
∣∣∣,

where a ∈ Ss(Rn−1
ω ;Rn(λ,η)) (in fact, a is entire in λ ∈ C, and a symbol of order s in (Reλ, η)

for each fixed Imλ). Therefore,

N̂(P, λ)(ω, ω′) = (2π)−(n−1)

∫
Rn−1

eiη·(ω−ω
′)a(ω, λ, η) dη · |dω′|

is a ps.d.o. on ∂M . Its principal symbol is the equivalence class of (ω, η) 7→ a(ω, λ, η)
in (Ss/Ss−1)(T ∗∂M), which is independent of λ and indeed given by a|T ∗∂M : (ω, η) 7→
a(ω, 0, η).

For λ = ±h−1 − iµ (with 0 < h < 1 and bounded µ ∈ R), we have

N̂(P,±h−1 − iµ) = (2πh)−(n−1)

∫
Rn−1

eiη~·(ω−ω
′)/ha(ω,±h−1 − iµ, h−1η~) dη~ · |dω′|.

But |a(ω,±h−1−iµ, h−1η~)| . (1+h−1 +h−1|η~|)s . h−s〈η~〉s, and by direct differentiation
one finds that (h, ω, η~) 7→ a(ω,±h−1− iµ, h−1η~) is an element of Ss,s(~T ∗∂M). Therefore,

(0, 1) 3 h 7→ N̂(P,±h−1−iµ) is a semiclassical ps.d.o. on ∂M . The claim about its principal
symbol follows from this explicit description. �

Lemma 2.4 (Elliptic b-ps.d.o.s). Suppose that P ∈ Ψs
b(M) has an elliptic principal symbol.

Then N̂(P, λ) : C∞(∂M) → C∞(∂M) is invertible for λ outside a discrete subset of C.

Moreover, for all µ0 > 0, there exists h0 > 0 so that N̂(P,±h−1 − iµ) is invertible for
µ ∈ [−µ0, µ0] and h < h0.

Proof. The operator family N̂(P, λ) is an analytic family of elliptic ps.d.o.s on ∂M . The

ellipticity of the semiclassical principal symbol of Pµ := (h 7→ N̂(P,±h−1 − iµ)) implies

that there exists Q ∈ Ψ−s,−s~ (∂M) so that QPµ − I ∈ hΨ−1
~ (∂M); for small h > 0, the

error here is small as an operator on L2(∂M), and therefore P−1
µ exists and is given by a

Neumann series and indeed lies in Ψ−s,−s~ (∂M) for small enough h (depending on µ). An
application of the analytic Fredholm theorem completes the proof. �

We next discuss the scale of weighted Sobolev spaces corresponding to b-analysis. Name-
ly, fixing a smooth b-density 0 < ν ∈ C∞(M ; bΩM), or more generally a weighted b-density
ν = ρβν0 where β ∈ R and 0 < ν0 ∈ C∞(M ; bΩM), we can define H0

b(M,ν) := L2(M,ν).
We now drop ν from the notation. For s ≥ 0, we fix any A ∈ Ψs

b(M) with elliptic principal
symbol and let

Hs
b(M) = {u ∈ H0

b(M) : Au ∈ H0
b(M)}.
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This is a Hilbert space with squared norm ‖u‖2L2 + ‖Au‖2L2 . The space H−sb (M) is, by

definition, its L2(M)-dual. (Equivalently, H−sb (M) is the space of all distributions of the

form u0 + Au1 where u0, u1 ∈ H0
b(M) and A ∈ Ψ

|s|
b (M) is any fixed elliptic operator.

See [MVW13, Appendix B] for the relevant functional analysis.) Finally, for α ∈ R, we let

Hs,α
b (M) = ραHs

b(M) = {ραu : u ∈ Hs
b(M)}.

Using Hörmander’s square root trick (see e.g. [Hör71, Theorem 2.2.1]), one can show that
elements of Ψ0

b(M) are bounded linear maps on L2(M); and then any A ∈ Ψs,α
b (M) defines

a bounded linear map Hs′,α′

b (M)→ Hs′−s,α′−α
b (M).

Fixing a collar neighborhood [0, 1)ρ×∂M of ∂M ⊂M , and letting χ ∈ C∞c ([0, 1)×∂M),
we moreover have an equivalence of norms

‖χu‖2Hs,α
b (M) ∼

∫
Imλ=−α

‖χ̂u(λ,−)‖2Hs,s

〈λ〉−1 (∂M) dλ, (2.8)

where χ̂u(λ, x) =
∫∞

0 ρ−iλχu(ρ, x) dρ
ρ denotes the Mellin transform in ρ. That is, there

exists a constant C (only depending on the collar neighborhood as well as on χ, s, α)
so that the left hand side of (2.8) is bounded by C times the right hand side and vice
versa. One can reduce the proof of (2.8) to the case α = 0; for s = 0, it then follows from
Plancherel’s Theorem. To obtain (2.8) for general s, one can first establish the case s ∈ N
via testing with dilation-invariant vector fields, and then use interpolation and duality to
get the full result; see [Vas13, §3.1] for this approach. An approach that generalizes more
easily (and avoids the use of complex interpolation) proceeds for s > 0 (and α = 0 still) by
fixing an elliptic operator A ∈ Ψs

b(M) which near suppχ is dilation-invariant,8 and writing

‖χu‖2Hs
b(M) = ‖χu‖2H0

b(M) + ‖A(χu)‖2H0
b(M)

∼
∫
R
‖χ̂u(λ,−)‖2L2(∂M) + ‖N̂(A, λ)χ̂u(λ,−)‖2L2(∂M) dλ.

(2.9)

But by Lemma 2.3, R 3 λ 7→ N̂(A, λ) is an elliptic semiclassical ps.d.o. of order (s, s),
with semiclassical parameter 〈λ〉−1, and hence the integrand on the right is equivalent to
‖χ̂u(λ,−)‖2

Hs,s

〈λ〉−1 (∂M)
, uniformly for λ ∈ R.

Finally, we turn to finer aspects of elliptic b-theory.

Definition 2.5 (Boundary spectrum). Let P ∈ Ψs
b(M) be elliptic. The boundary spectrum

of P is then9

Specb(P ) :=
{

(z, k) ∈ C× N0 : N̂(P, λ)−1 has a pole at λ = −iz of order ≥ k + 1
}

⊂ C× N0,

8By this, we mean that the Schwartz kernel of A is equal to that of its normal operator N(A) near
suppχ× suppχ.

9There exist other conventions for the definition of Specb(P ); the most frequently used one omits the
factor of −i in the relationship of λ and z, cf. [Mel93, Equation (5.10)]. The convention we use here has the
advantage that the relationship between Specb(P ) and index sets for Schwartz kernels of parametrices for
P does not involve factors of i; a disadvantage is that a factor of −i is now required when converting poles
of the Mellin-transformed spectral family to elements of Specb(P ).
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and we write specb(P ) = {z : (z, 0) ∈ Specb(P )} ⊂ C for its projection to the first factor.
Moreover, for α ∈ R with α /∈ Re Specb(P ), we denote by E±(P, α) ⊂ C× N0 the smallest
index sets10 with

E+(P, α) ⊃ {(z, k) ∈ Specb(P ) : Re z > α},
E−(P, α) ⊃ {(−z, k) ∈ Specb(P ) : Re z < α}.

Approximate inverses of ‘fully elliptic’ b-operators (see Theorem 2.9 below) typically do
not lie in Ψb(M), as their Schwartz kernels do not decay rapidly at lbb and rbb. Thus, for
a collection E = (Elb, Eff , Erb) of index sets, and for index sets E0, E1, we define

Ψ−∞,Eb (M) := AEphg(M,π∗R
bΩM), Ψ−∞,(E0,E1)(M) := A(E0,E1)

phg (M ×M,π∗R
bΩM),

where in the first expression EH is the index set at Hb for H = lb,ff, rb, and in the second
expression E0, resp. E1 is the index set associated with ∂M ×M , resp. M ×∂M . (Note that

Ψ
−∞,(∅,∅,E1)
b (M) = Ψ−∞,(∅,E1)(M).) The large b-calculus consists of operators in the space

Ψs
b(M) + Ψ−∞,Eb (M) for s ∈ R and collections of index sets E .

Remark 2.6 (Mellin-transformed normal operator family in the large calculus). One typ-
ically only considers those collections E of index sets for which Re(Elb + Erb) > 0. In
this case, one can define the Mellin-transformed normal operator family of elements of

Ψ
−∞,(Elb,N0,Erb)
b (M): the Mellin transform of the Schwartz kernel restricted to ffb is then

well-defined when the Mellin-dual variable λ satisfies Re Elb > − Imλ and Re Erb > Imλ,
and extends from such a strip of λ meromorphically to the entire complex plane.

Proposition 2.7 (Composition in the large b-calculus). Let P ∈ Ψs
b(M) + Ψ−∞,Eb (M)

and Q ∈ Ψs′
b (M) + Ψ−∞,Fb (M), where E = (Elb, Eff , Erb) and F = (Flb,Fff ,Frb) are two

collections of index sets. Suppose Re(Erb + Flb) > 0. Then the composition P ◦ Q is

well-defined, and P ◦Q ∈ Ψs+s′

b (M) + Ψ−∞,Gb (M), where G = (Glb,Gff ,Grb) with

Glb = Elb ∪ (Eff + Flb),

Gff = (Eff + Fff) ∪ (Elb + Frb),

Grb = (Erb + Fff) ∪ Frb.

Furthermore, if the index sets F0,F1 ⊂ C × N0 are such that Re(Erb + F0) > 0, then the

composition of P ∈ Ψs
b(M) + Ψ−∞,Eb (M) and Q ∈ Ψ−∞,(F0,F1)(M) is well-defined, with

P ◦Q ∈ Ψ−∞,(Elb∪(Eff+F0),F1)(M). (2.10)

Proof. See [Alb08, Theorem 4.20]. We merely remark that a geometric proof of the com-
position properties of the large b-calculus utilizes the b-triple space

M3
b :=

[
M3; (∂M)3; (∂M)2 ×M,∂M ×M × ∂M,M × (∂M)2

]
, (2.11)

and pullbacks and pushforwards along the lifts of the three different projections to M2
b .

The proof of (2.10) uses the simpler triple space [M3; (∂M)2 ×M ] = M2
b ×M . �

Parametrix constructions in the polyhomogeneous category often involve a proliferation
of index sets; we thus make the following general construction:

10The existence of the index sets E±(P, α) is guaranteed by Lemma 2.4.
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Definition 2.8 (Index sets). Given an index set E ⊂ C × N0, we define E(0),0 := E and

E(0),j+1 := E ∪ (E(0),j + 1) for j ∈ N0, and E(0) :=
⋃
j∈N0
E(0),j .

Theorem 2.9 (Elliptic parametrix/inverse). Let P ∈ Ψs
b(M) be elliptic, and suppose α ∈ R

is such that α /∈ Re Specb(P ). (We say that P is fully elliptic with weight α.) Write
E± := E±(P, α) and put

E(0) := N0 ∪
(
(E+,(0) + E−,(0)) ∪ (N0 + 1)

)
. (2.12)

Define the collection E := (E+,(0), E(0), E−,(0)) of index sets, corresponding to the boundary
hypersurfaces lbb, ffb, rbb (in this order). Then there exist left and right parametrices

QL, QR ∈ Ψ−sb (M) + Ψ−∞,Eb (M) with

PQR = I −RR, RR ∈ Ψ−∞,(∅,E
−,(0))(M),

QLP = I −RL, RL ∈ Ψ−∞,(E
+,(0),∅)(M).

In particular, P : Hs′,α
b (M) → Hs′−s,α

b (M) is Fredholm (where the underlying density is a
smooth positive b-density on M). If P is invertible, then also

P−1 ∈ Ψ−sb (M) + Ψ−∞,Eb (M). (2.13)

Proof. This is standard, see e.g. [Mel93, §5.25] and [Alb08, Proposition 5.7] for (variants)
of this result (with slightly different notation). We sketch the construction of a right
parametrix QR. (A left parametrix can be constructed as the adjoint of a right parametrix
for P ∗.) Let Q0 ∈ Ψ−sb (M) be a symbolic parametrix, i.e. R0 := I − PQ0 ∈ Ψ−∞b (M).

Passing to Mellin-transformed normal operator families, we have N̂(P, λ)N̂(Q0, λ) = I −
N̂(R0, λ), with the Schwartz kernel of N̂(R0, λ) (with holomorphic dependence on λ ∈ C)
being smooth, and rapidly decaying as |Reλ| → ∞ for bounded | Imλ|. Lemma 2.3 then

allows us to pick Q1 ∈ Ψ
−∞,(E+,N0,E−)
b (M) whose normal operator has Schwartz kernel

KQ1(s, ω, ω′) given by

KQ1(s, ω, ω′) = (2π)−1

∫
Imλ=−α

siλ
(
N̂(P, λ)−1N̂(R0, λ)

)
(ω, ω′) dλ.

(The claimed membership of N(Q1) follows from the residue theorem upon shifting the
integration contour.) We now have

R1 := I − P (Q0 +Q1) ∈ Ψ
−∞,(E++1,N0+1,E−)
b (M).

The improvement of the lbb-index set by 1 here is a consequence of the definition of Q1

combined with the fact that the b-normal operator at lbb of the lift of P to the left factor
of M2

b is equal to N(P ) itself. One can then solve away the error R1 at lbb to infinite
order in an iterative procedure using the (inverse) Mellin transform; this produces Q2 ∈
Ψ
−∞,(E+,(0),N0+1,∅)
b (M) with

R2 := I − P (Q0 +Q1 +Q2) ∈ Ψ
−∞,(∅,N0+1,E−)
b (M). (2.14)

The desired right parametrix is then (Q0 + Q1 + Q2)(I + R̃2), where the operator R̃2 ∈
Ψ
−∞,(∅,N0+1,E−,(0))
b (M) is an asymptotic sum (at ffb) of Rj2, j ∈ N. (Here one uses Proposi-

tion 2.7.)
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When P is invertible, we have

P−1 = QR +QLRR +RLP
−1RR, (2.15)

with the first two summands in the space (2.13); and the third summand lies in the space

Ψ−∞,(E
+,(0),E−,(0))(M), as can be checked by noting that RLP

−1RR is given by fiber-wise
application (along the fibers of the left projection M2 → M) of (the smoothing operator)
RL on P−1RR, with P−1RR itself expressible as the fiber-wise application of P−1 to the
Schwartz kernel of RR. �

Remark 2.10 (Systematic procedure to solve away errors at the left boundary). In this proof,
solving away the error R1 at the left boundary (i.e. the construction of Q2) is accomplished
by lifting P to the left factor of M2

b and noting that the b-normal operator of this lift at lbb

can be identified with the b-normal operator of P itself; since the left projection lbb → ∂M
is a smooth fibration, solving away errors at lbb thus amounts to constructing (smoothly in
families) formal solutions on M with given asymptotics at ∂M . An alternative method is
to solve away R1 directly using the composition properties of the large b-calculus: applying
a parametrix Q′0 + Q′1, defined exactly like Q0 + Q1 but for the weight α + 1 (or rather
α+1− ε for some small ε > 0 to avoid the set Re Specb(P )), to the error R1 and adding the
result to Q0 +Q1 gives a more precise parametrix, with error term vanishing to one order
more at ffb and lbb than R1 itself. Then, one applies a parametrix Q′′0 +Q′′1 for the weight
α+ 2, and so on. While the errors get successively better at lbb and ffb, naive accounting
of index sets yields insufficient control at rbb to allow for an asymptotic summation there.
Instead, one asymptotically sums this sequence of parametrices only at lbb, and is left with
an error R2 which is trivial at lbb (but which typically has a larger index set at ffb than
in (2.14)). From there, one solves away the error R2 using an asymptotic Neumann series
as before. This alternative method does not require the left boundary to be the total space
of a smooth fibration, and thus is rather more robust. We shall use it in the 3b-setting; see
Lemma 6.13 and the discussion following it.

2.3. The scattering algebra. We continue to denote by M a compact manifold with
non-empty embedded boundary ∂M ; let ρ ∈ C∞(M) denote a boundary defining function.
Then

Vsc(M) := ρVb(M) = {ρV : V ∈ Vb(M)}
is the Lie algebra of scattering vector fields; we have [Vsc(M),Vsc(M)] ⊂ ρVsc(M). In
local coordinates x ≥ 0, y ∈ Rn−1, the space Vsc(M) is spanned over C∞(M) by the
vector fields x2∂x, x∂yj (j = 1, . . . , n − 1), which are a frame of the scattering tangent

bundle scTM →M ; the dual 1-forms dx
x2 , dyj

x (j = 1, . . . , n−1) are a frame of the scattering
cotangent bundle scT ∗M →M . The corresponding space of scattering differential operators
is denoted Diffmsc(M), and we put Diffm,rsc (M) = ρ−rDiffmsc(M). The principal symbol map
is

0→ Diffm−1,r−1
sc (M) ↪→ Diffm,rsc (M)

scσm,r−−−−→ (ρ−rPm/ρ−(r−1)Pm−1)(scT ∗M)→ 0.

In order to microlocalize Diffsc(M), we introduce the scattering double space

M2
sc := [M2

b ; ∂ diagb].

The lift of diagb is denoted diagsc, and the front face is denoted ffsc. Then the space

Ψs
sc(M)
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consists of all operators with Schwartz kernels which are conormal distributions on M2
sc of

order s at diagsc, vanish to infinite order at all boundary faces of M2
sc except for ffsc, and

are valued in the bundle π∗R
scΩM , where πR : M2

sc → M is the lifted right projection, and
scΩM →M is the density bundle associated with scTM →M . More generally, we define

Ψs,r
sc (M)

to consist of operators with Schwartz kernels which are conormal (with weight −r) down
to ffsc. (The space ρ−rΨs

sc(M) is then the subspace of operators whose Schwartz kernels
are classical conormal down to ffsc.) The principal symbol map is

0→ Ψs−1,r−1
sc (M) ↪→ Ψs,r

sc (M)
scσs,r−−−→ (Ss,r/Ss−1,r−1)(scT ∗M)→ 0,

where Ss,r(scT ∗M) = A−s,−r(scT ∗M) (with weight −s, resp. −r at fiber infinity, resp. at
scT ∗∂MM); it is multiplicative.

A key example of the scattering algebra is Ψs,r
sc (Rn), which is the same as the space

of standard left quantizations (2π)−n
∫
Rn e

i(z−z′)·ζa(z, ζ) dζ of functions a = a(z, ζ) which
are symbols in z (of order r) and ζ (of order s), i.e. bounded by C〈z〉r〈ζ〉s together with
all derivatives along ∂zk , zj∂zk , ∂ζk , and ζj∂ζk . In this form, the scattering algebra was
introduced by Cordes [Cor76] and Schrohe [CGW86]; see [Vas18] for a detailed exposition.
The general definition given here follows Melrose [Mel94].

Parametrices (with error terms in Ψ−∞,−∞sc (M), which thus have smooth Schwartz kernels
on M2 which vanish to infinite order at all boundary hypersurfaces)—or inverses when they

exist—of elliptic elements of Ψs,r
sc (M) are elements of Ψ−s,−rsc (M). Therefore, there is no

need for the development of a ‘large scattering calculus’ here.

An associated scale of weighted scattering Sobolev spaces

Hs,r
sc (M),

with the underlying L2-space defined with respect to any positive weighted b- or weighted
scattering density, can then be defined in the usual manner, and weighted scattering ps.d.o.s
are bounded linear maps between such weighted spaces.

2.3.1. Semiclassical scattering operators. We define a semiclassical version of the scattering
algebra by mimicking the definitions in §2.1; this first appeared in work by Vasy–Zworski
[VZ00]. Thus, on the space M~ from (2.5), we consider the space Vsc,~(M) of semiclassical
scattering fields, which is the space of all horizontal vector fields in hρVb(M). In local
coordinates x ≥ 0, y ∈ Rn−1, this space is spanned over C∞(M~) by hx2∂x, hx∂yj (j =
1, . . . , n− 1); these vector fields are a frame of the semiclassical scattering tangent bundle

sc,~TM →M~,

while the dual 1-forms dx
hx2 , dyj

hx (j = 1, . . . , n − 1) are a frame of sc,~T ∗M → M~. The
corresponding space of differential operators is denoted

Diffm,r,bsc,~ (M) = h−bρ−rDiffmsc,~(M),

and since [Vsc,~(M),Vsc,~(M)] ⊂ hρVsc,~(M), the principal symbol map is

0→Diffm−1,r−1,b−1
sc,~ (M) ↪→ Diffm,r,bsc,~ (M)

sc,~σm,r,b−−−−−−→ (h−bρ−rPm/h−(b−1)ρ−(r−1)Pm−1)(sc,~T ∗M)→ 0.
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For s, r, b ∈ R, the space

Ψs,r,b
sc,~ (M)

of semiclassical scattering ps.d.o.s consists of suitable smooth (in h ∈ (0, 1)) families of
elements of Ψs,r

sc (M) whose Schwartz kernels are distributions on

M2
sc,~ :=

[
[0, 1)h ×M2

sc; {0} × diagsc

]
which are conormal (of order s− 1

4) to diagsc,~ (the lift of [0, 1)h × diagsc) and conormal of
order −r, resp. −b at the lift of [0, 1)h×ffsc, resp. {0}×diagsc, which vanish to infinite order
at all other boundary hypersurfaces of M2

sc,~, and which are valued in the lift π∗R
sc,~ΩM of

the semiclassical scattering density bundle sc,~ΩM → M along the lift πR : M2
sc,~ → M~ of

the right projection (h, z, z′) 7→ (h, z′). The principal symbol map is now

0→Ψs−1,r−1,b−1
sc,~ (M) ↪→ Ψs,r,b

sc,~ (M)

sc,~σm,r,b−−−−−−→ (Ss,r,b/Ss−1,r−1,b−1)(sc,~T ∗M)→ 0.

The associated scale of Sobolev spaces is denoted

Hs,r,b
sc,h (M);

as a set, this is equal to Hs,r
sc (M), but the h-dependent norm is given by testing with a fixed

elliptic operator A ∈ Ψs,r,b
sc,~ (M) analogously to (2.7) for s ≥ 0, and is defined by duality

for s < 0. For example, an explicit expression for this norm in local coordinates x ≥ 0,
y ∈ Rn−1 in the case s = 1 is

‖u‖2
H1,r,b

sc,h

= ‖x−rh−bu‖2L2 + ‖x−rh−bx2Dxu‖2L2 +

n−1∑
j=1

‖x−rh−bxDyju‖2L2 ,

where L2 = L2(M) is defined with respect to any fixed (h-independent) weighted b- or

scattering density on M . Moreover, any P = (Ph) ∈ Ψs,r,b
sc,~ (M) defines a uniformly bounded

(in h ∈ (0, 1)) family of linear operators Ph : Hs′,r′,b′

sc,h (M) → Hs′−s,r′−r,b′−b
sc,h (M) for any

s′, r′, b′ ∈ R.

Lemma 2.11 (Inverse of elliptic semiclassical scattering operators). If P = (Ph)h∈(0,1) ∈
Ψs,r,b

sc,~ (M) is elliptic, then there exists h0 > 0 so that for 0 < h < h0 and for all s′, r′ ∈ R, the

operator Ph : Hs′,r′
sc (M) → Hs′−s,r′−r

sc (M) is invertible. Moreover, P−1 = (P−1
h )h∈(0,h0) ∈

Ψ−s,−r,−bsc,~ (M).

Proof. For a symbolic parametrix Q ∈ Ψ−s,−r,−bsc,~ (M), we have PQ = I − R where the

Schwartz kernel of R = (Rh)h∈(0,1) ∈ Ψ−∞,−∞,−∞sc,~ (M) is a smooth right density on [0, 1)×
M2 that vanishes to infinite order at h = 0 and at [0, 1) × ∂(M2). Thus, Rh has small
operator norm on L2(M) for small h > 0. Therefore, I − Rh is invertible for sufficiently

small h > 0 by a Neumann series, with (I−R)−1 = I+R̃, R̃ ∈ Ψ−∞,−∞,−∞sc,~ (M). Therefore,

P−1 = Q(I + R̃). �
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2.4. The scattering-b-transition algebra. We next discuss a pseudodifferential alge-
bra and corresponding large calculus which already appeared in [GH08], though we will
use a slightly more descriptive (albeit more cumbersome) notation following [Hin21b]; the
underlying double space was introduced in the unpublished note [MSB]. In [GH08], and
later in more general contexts in [GH09b], Guillarmou and Hassell construct the low energy
resolvent for Laplacians associated with scattering metrics in this calculus.

Let M denote a compact n-dimensional manifold with embedded boundary ∂M 6= ∅. Let
σ0 > 0, and denote I = [0, σ0) or I = (−σ0, 0]; for the sake of definiteness, we focus on the
former case. Define the resolved space

Msc-b := [I ×M ; {0} × ∂M ], (2.16)

which is equipped with a smooth map σ : Msc-b → I; we denote its boundary hypersurfaces
by scf (the lift of I × ∂M), tf (the front face), and zf (the lift of {0} ×M), and we write
ρH ∈ C∞(Msc-b) for a defining function of H. (Thus, while Msc-b depends on I, we omit
the interval I from the notation.) Consider then the Lie algebra

Vsc-b(M) := {V ∈ ρscfVb(Msc-b) : V is tangent to the leaves of σ}.
We call this the space of scattering-b-transition vector fields; much as in semiclassical
settings, an element of Vsc-b(M) is thus a family of vector fields on M . An element V ∈
Vsc-b(M) can be restricted to a scattering vector field at σ 6= 0, to a b-vector field at the
lift zf of σ = 0, and to a scattering-b vector field

V |tf ∈ Vsc,b(tf) = ρscfVb(tf)

on tf ∼= +N∂M , respectively, with scattering behavior at tf ∩ scf and with b-behavior at
tf ∩ zf. There is a natural vector bundle sc-bTM →Msc-b, equipped with a bundle map to
bTMsc-b, so that Vsc-b(M) = C∞(Msc-b; sc-bTM); the corresponding dual bundle

sc-bT ∗M →Msc-b

is the sc-b-transition cotangent bundle. The corresponding spaces of differential operators
are denoted

Diffmsc-b(M), Diffm,r,l,bsc-b (M) = ρ−rscfρ
−l
tf ρ
−b
zf Diffmsc-b(M),

and the principal symbol map is

0→ Diffm−1,r−1,l,b
sc-b (M) ↪→ Diffm,r,l,bsc-b (M)

sc-bσm,r,l,b−−−−−−−→ (ρ−rscfρ
−l
tf ρ
−b
zf P

m/ρ
−(r−1)
scf ρ−ltf ρ

−b
zf P

m−1)(sc-bT ∗M)→ 0.

The tf- and zf-normal operator maps fit into the short exact sequences

0→ Diffm,r,−1,b
sc-b (M) ↪→ Diffm,r,0,bsc-b (M)

Ntf−−→ Diffm,r,bsc,b (tf)→ 0,

0→ Diffm,r,l,−1
sc-b (M) ↪→ Diffm,r,l,0sc-b (M)

Nzf−−→ Diffm,lb (M) → 0.

In local coordinates x ≥ 0, y ∈ Rn−1 near a boundary point of M , we can take ρscf =
x

x+|σ| , ρtf = x+ |σ|, and ρzf = |σ|
x+|σ| . Then sc-bTM →Msc-b has as a local frame the vector

fields
x

x+ |σ|
x∂x,

x

x+ |σ|
∂yj (j = 1, . . . , n− 1). (2.17)

Their tf-normal operators, in the coordinates x̂ = x
|σ̂| and y, are x̂

x̂+1 x̂∂x̂ and x̂
x̂+1∂yj , while

the zf-normal operators are x∂x and ∂yj , respectively.
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The double space carrying Schwartz kernels of elements of Vsc-b(M) is defined with
reference to the b-double space M2

b = [M2; (∂M)2] of M via

M2
sc-b :=

[
I ×M2

b ; {0} × ffb; {0} × lbb, {0} × rbb, I × ∂ diagb

]
, (2.18)

where lbb, rbb,ffb, diagb ⊂ M2
b denotes the left boundary, right boundary, front face, and

lifted diagonal, respectively. We denote its boundary hypersurfaces as follows: scfsc-b, resp.
bfsc-b is the lift of I × ∂ diagb, resp. I × ffb, while tfsc-b, resp. zfsc-b is the lift of {0} × ffb,
resp. {0} ×M2

b ; and lbsc-b and rbsc-b, resp. tlbsc-b and trbsc-b, are the lifts of I × lbb and
I × rbb, resp. {0} × lbb and {0} × rbb. Finally, we denote by diagsc-b the lift of I × diagb.
See Figure 2.2.

x

x′

σ
diagsc-b

tfsc-b

zfsc-b

scfsc-b bfsc-b

rbsc-b

trbsc-b

lbsc-b

tlbsc-b

Figure 2.2. The sc-b-transition double space M2
sc-b.

Lifts of elements of Vsc-b(M) along the lift πR of the right projection I × M × M 3
(σ, x, x′) 7→ (σ, x) are smooth vector fields on M2

sc-b; the lift of Vsc-b(M) is transversal to

diagsc-b. Thus, N∗ diagsc-b
∼= sc-bT ∗M . Denoting by sc-bΩM the density bundle associated

with sc-bTM , we put

Ψs
sc-b(M) :=

{
κ ∈ Is−

1
4
(
M2

sc-b,diagsc-b;π∗R(sc-bΩM)
)

:

κ ≡ 0 at bfsc-b ∪ lbsc-b ∪ rbsc-b ∪ tlbsc-b ∪ trbsc-b

}
.

Here, we require κ to be merely conormal down to scfsc-b, but smooth down to tfsc-b and
zfsc-b (unless otherwise stated). We also define weighted versions

Ψs,r,l,b
sc-b (M) = ρ−rscfsc-b

ρ−ltfsc-b
ρ−bzfsc-b

Ψm
sc-b(M).

The principal symbol map is now

0→ Ψs−1,r−1,l,b
sc-b (M) ↪→ Ψs,r,l,b

sc-b (M)
sc-bσs,r,l,b−−−−−−→ (Ss,r,l,b/Ss−1,r−1,l,b)(sc-bT ∗M)→ 0,

where Ss,r,l,b(sc-bT ∗M) = ρ−ltfsc-b
ρ−bzfsc-b

Ss,r(sc-bT ∗M), with Ss,r(sc-bT ∗M) denoting the space
of symbols of order s at fiber infinity and r at the phase space over scf which are smooth
down to tf ∪ zf.

Remark 2.12 (Notation). The spaces M2
sc-b and Ψsc-b(M) are denoted M2

k,sc and Ψk(M)

in [GH08], respectively.
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We may regard an element A ∈ Ψs,r,l,b
sc-b (M) as a parameterized family A(σ) of ps.d.o.s

with appropriate behavior as σ → 0; and for l = 0 = b, we have

A(0) ∈ Ψs
b(M); σ 6= 0 =⇒ A(σ) ∈ Ψs

sc(M).

Moreover, the restriction of the Schwartz kernel of A ∈ Ψs,r,0,0
sc-b (M) to tfsc-b is an element

Ntf(A) ∈ Ψs,r,0
sc,b (+N∂M),

i.e. a scattering ps.d.o. (with weight r in the base at the zero section of +N∂M) near the

zero section, and a b-ps.d.o. near fiber infinity of +N∂M . We have short exact sequences

0→ Ψs,r,−1,b
sc-b (M) ↪→ Ψs,r,0,b

sc-b (M)
Ntf−−→ Ψs,r,b

sc,b (tf)→ 0,

0→ Ψs,r,l,−1
sc-b (M) ↪→ Ψs,r,l,0

sc-b (M)
Nzf−−→ Ψs,l

b (M) → 0,
(2.19)

which are consequences of the natural diffeomorphisms zfsc-b
∼= M2

b and tfsc-b
∼= (+N∂M)2

sc,b

(the blow-up of the b-double space of +N∂M at the intersection of the b-diagonal with the
front face corresponding to the zero section).

For P ∈ Ψs,r,0,0
sc-b (M), the operators Ntf(P ) and Nzf(P ) themselves have b-normal opera-

tors

Nzf∩tf(Ntf(P )) ∈ Ψs
b,I(

+Ntf(zf ∩ tf)),

where +Ntf(zf ∩ tf) = Tzf∩tftf/T (zf ∩ tf) is the normal bundle of zf ∩ tf inside of tf, and
N∂M (Nzf(P )) ∈ Ψs

b,I(
+N∂M). These two normal operators carry the same information:

Lemma 2.13 (b-normal operator of Ntf(P )). Let P ∈ Ψs,r,0,0
sc-b (M). Using the above nota-

tion, denote by

ψ : +N∂M → +Ntf(zf ∩ tf)

the bundle isomorphism (homogeneous of degree −1) given by Lemma 2.1 with respect to
the joint defining function |σ| of zf ∪ tf. Then ψ∗(Nzf∩tf(Ntf(P ))) = N∂M (Nzf(P )).

Proof. Fix local coordinates x ≥ 0, y ∈ Rn−1 near a boundary point of M ; then x, y, σ̂ := σ
x

are local coordinates near zf ⊂ Msc-b, and using (the differentials of) x and σ̂ to trivialize
N∂M and N(zf∩tf), respectively, the isomorphism ψ is given by (y, x) 7→ (y, σ̂) = (y, x−1).
For differential operators P , the claim then follows from the fact that sc-b-vector fields
are spanned (over the space of smooth functions of (x, y, σ̂)) by x∂x − σ̂∂σ̂ (which is the
expression for the σ-independent lift of x∂x ∈ Vb(M) to Msc-b) and ∂yj , j = 1, . . . , n − 1;
but the ∂M -normal operator of x∂x − σ̂∂σ̂ is x∂x, and the zf ∩ tf-normal operator of its
tf-normal operator −σ̂∂σ̂ is −σ̂∂σ̂, which indeed equals x∂x upon identifying σ̂ = x−1.

For general pseudodifferential operators P , we note that the normal operators of Ntf(P )
and Nzf(P ) in question are both dilation-invariant extensions of the restriction of the
Schwartz kernel of P to tfsc-b ∩ zfsc-b; but while tlbsc-b is, from the perspective of zfsc-b

(and thus from the perspective of N∂M (Nzf(P ))) the left boundary of the b-double space,
it is the right boundary of the b-double space of tf (note that the scattering behavior of
the tf-normal operator takes place at the other end tf ∩ scf, which is irrelevant for present
purposes). This explains why the identification of the two normal operators involves a
homogeneous degree −1 map. The fact that ψ is the correct such map is easily checked in
local coordinates; we leave the details to the reader. �
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Inverses (if they exist) of elliptic elements of Ψm
sc-b(M) lie in a large calculus:

Definition 2.14 (Large sc-b-transition calculus). Let E = (Elb0 , Erb0 , Etf , Ezf) be a collection
of index sets. Then

Ψ−∞,Esc-b (M)

consists of all operators whose Schwartz kernels are polyhomogeneous sections of the bundle
π∗R(sc-bΩM) with index set Elb0 , Erb0 , Etf , Ezf at the boundary hypersurfaces tlbsc-b, trbsc-b,
tfsc-b, zfsc-b ⊂M2

sc-b, and with index set ∅ at the remaining boundary hypersurfaces bfsc-b,
lbsc-b, rbsc-b, scfsc-b of M2

sc-b.

The following composition result is proved in [GH08, §6]:

Lemma 2.15 (Composition in the large sc-b-transition calculus). Let A ∈ Ψ−∞,Esc-b (M)

and B ∈ Ψ−∞,Fsc-b (M) where E = (Elb0 , Erb0 , Etf , Ezf) and F = (Flb0 ,Frb0 ,Ftf ,Fzf). Then

A ◦B ∈ Ψ−∞,Gsc-b (M), where G = (Glb0 ,Grb0 ,Gtf ,Gzf) with

Glb0 = (Elb0 + Fzf) ∪ (Etf + Flb0),

Grb0 = (Ezf + Frb0) ∪ (Erb0 + Ftf),

Gtf = (Elb0 + Frb0) ∪ (Etf + Ftf),

Gzf = (Ezf + Fzf) ∪ (Erb0 + Flb0).

Moreover, Ψ∞,Esc-b (M) is a module over Ψm
sc-b(M) for any m ∈ R.

Proof. The correspondence of symbols between the present paper and the reference is:
lb0, rb0, zf are the same in both places, while tf is denoted bf0 in [GH08]. Furthermore,
the reference uses b-1

2 -densities on the double space; near the interior of those boundary

hypersurfaces of the double space where A or B do not vanish to infinite order, b-1
2 -densities

are the same as sc-b-1
2 -densities, and therefore the usage of sc-b-densities here makes no

difference. Finally, conjugating by any fixed positive smooth b-half density to pass between
functions or densities and 1

2 -densities does not affect any of the nontrivial index sets. �

To capture index sets for inverses of invertible sc-b-operators, we introduce:

Definition 2.16 (Index sets). Given index sets E+, E−, E ⊂ C×N0 with Re(E+ + E−) > 0

and Re E > 0, we set E±,(1),1 := E± and E(1),1 := E , and inductively for j ∈ N

E±,(1),j+1 :=
(
E± + E(1),j

)
∪
(
E + E±,(1),j

)
,

E(1),j+1 :=
⋃
±

(
E± + E∓,(1),j

)
∪
(
E + E(1),j

)
.

We then put

E±,(1) :=
⋃
j∈N
E±,(1),j , E(1) :=

⋃
j∈N
E(1),j .

Lemma 2.17 (Existence of index sets). The sets E±,(1), E(1) ⊂ C× N0 in Definition 2.16

are index sets; and for any C ∈ R there exists j0 ∈ N so that Re E±,(1),j, Re E(1),j ≥ C for
j ≥ j0.
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Proof. Note that there exist α ∈ R and ε > 0 with Re E± = Re E±,(1),1 > ±α + ε and
Re E = Re E(1),1 > ε. An inductive argument gives Re E±,(1),j > ±α+ jε and Re E(1),j > jε;
therefore, j0 ≥ (C + |α|)/ε works. �

Definition 2.18 (More index sets). Given index sets E+, E− ⊂ C×N0 with Re(E+ +E−) >

0, define E±,(0) via Definition 2.8 (relative to E±), define E(0) by (2.12), and set E(0)′ :=

E(0)\{(0, 0)} (so E(0)′ = (E+,(0)+E−,(0)) ∪ (N0+1)). Let then further E±,(1) := E±,(0),(1) and

E(1) := E(0)′,(1) in the notation of Definition 2.16 (relative to E+,(0), E−,(0), E(0)′). Finally,
put

E±,(2) := E±,(0) ∪ E±,(1) ∪
(
E±,(0) + E(1)

)
∪
(
E±,(1) + E(0)

)
,

E(2) := E(0) ∪ E(1) ∪
⋃
±

(
E(0) + E(1)

)
∪
(
E±,(0) + E∓,(1)

)
.

Theorem 2.19 (Inverses in the sc-b-calculus). Fix a positive sc-b-density on M , a positive
b-density on zf ∼= M , and a positive (sc,b)-density on tf. Let s, r ∈ R and I = ±[0, 1), and

suppose P = (Pσ)σ∈I ∈ Ψs,r,0,0
sc-b (M) has an elliptic principal symbol. Let α ∈ R be such that

α /∈ Re Specb(P0) (where P0 = Nzf(P ) ∈ Ψs
b(M) is elliptic). Suppose that

(1) P0 : Hs′,α
b (M)→ Hs′−s,α

b (M) is invertible for some (thus all) s′ ∈ R, and

(2) Ntf(P ) : Hs′,r′,−α
sc,b (tf)→ Hs′−s,r′−r,−α

sc,b (tf) is invertible for some (thus all) s′, r′ ∈ R.

Then there exists σ0 > 0 so that Pσ : Hs′,r′
sc (M) → Hs′−s,r′−r

sc (M) is invertible for σ ∈
±(0, σ0]. Moreover, the inverse P−1 = (P−1

σ )σ∈±(0,σ0) is an element of the large sc-b-
calculus,

P−1 ∈ Ψ−s,−r,0,0sc-b (M) + Ψ
−∞,(E+,(2),E−,(2),E(2),E(2))
sc-b (M), (2.20)

where the index sets are given by Definition 2.18 in terms of E± := E±(P0, α).

Remark 2.20 (Lower bounds on index sets). Setting α± := ±min Re E±, we have Re E±,(2) ≥
±α± and Re(E(2) \ {(0, 0)}) ≥ min(α+ − α−, 1) > 0.

Proof of Theorem 2.19. We first let Q ∈ Ψ−s,−r,0,0sc-b (M) be a symbolic parametrix of P , thus

PQ = I −R, R ∈ Ψ−∞,−∞,0,0sc-b (M) = Ψ
−∞,(∅,∅,N0,N0)
sc-b (M).

Next, by Theorem 2.9, we have

P−1
0 ∈ Ψ−sb (M) + Ψ

−∞,(E+,(0),E(0),E−,(0))
b (M). (2.21)

Similarly, a mild generalization of Theorem 2.9 applies also to the description of Ntf(P ):
symbolic arguments in the scattering calculus near tf ∩ scf are sufficient to produce left
and right parametrices which produce trivial errors (in the sense of differential and decay
order) at the scattering end of tfsc-b = tf2

sc,b, and near the b-end the arguments in the proof
of Theorem 2.9 (which are local apart from the global inversion of P there) apply without
change. Thus,

Ntf(P )−1 ∈ Ψ−s,−r,0sc,b (tf) + Ψ
−∞,(E−,(0),E(0),E+,(0))
sc,b (tf), (2.22)

where the second space consists of polyhomogeneous right densities on tf2
sc,b with the stated

index sets at trbsc-b, zfsc-b, tlbsc-b in this order (recall the switch between left and right
boundaries from the proof of Lemma 2.13), and trivial index sets (corresponding to infinite
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order vanishing) at all other boundary hypersurfaces. Note here that the index set at the

left boundary trbsc-b of the b-end of tf2
sc,b is E+,(0)(Nzf∩tf(Ntf(P )),−α) in the notation

of Definition 2.8 (by Theorem 2.9), which, as a consequence of Lemma 2.13, is equal to

E−,(0)(Nzf(P ), α) = E−,(0) indeed; likewise for the index set at tlbsc-b.

We can then pick

P− ∈ Ψ−s,−r,0,0sc-b (M) + Ψ
−∞,(E+,(0),E−,(0),E(0),E(0))
sc-b (M)

so that Ntf(P−) = Ntf(P )−1 and Nzf(P−) = Nzf(P )−1, i.e. the restriction of the Schwartz
kernel of P− to tfsc-b, resp. zfsc-b is given by (2.22), resp. (2.21). By Lemma 2.15 then,

Q1 := P−R ∈ Ψ
−∞,(E+,(0),E−,(0),E(0),E(0))
sc-b (M),

and by the multiplicativity of the normal operator maps,

R1 := R− PQ1 = I − P (Q+Q1) ∈ Ψ
−∞,(E+,(0),E−,(0),E(0)′,E(0)′)
sc-b (M),

where E(0)′ := E(0) \ {(0, 0)}; that is, R1 vanishes to leading order at tfsc-b and zfsc-b. We

now define E±,(1),j and E(1),j as in Definition 2.16 with respect to the index sets E±,(0) and
E(0)′, respectively; that is, E±,(1),j = E±,(0),(1),j , E(1),j = E(0)′,(1),j . Then Lemma 2.15 implies

Rj1 ∈ Ψ
−∞,(E+,(1),j ,E−,(1),j ,E(1),j ,E(1),j)
sc-b (M), j ∈ N; by Lemma 2.17, we can asymptotically sum

these powers, producing (in the notation of Definition 2.18)

R̃1 ∼
∞∑
j=1

Rj1 ∈ Ψ
−∞,(E+,(1),E−,(1),E(1),E(1))
sc-b (M)

with the property that

P (Q+Q1)(I + R̃1) = I −R2, R2 ∈ Ψ
−∞,(∅,∅,∅,∅)
sc-b (M).

The Schwartz kernel of R2 is a smooth right density on [0, 1)σ ×M2 which vanishes to
infinite order at σ = 0 and ±[0, 1)× ∂(M2); therefore I − (R2)σ can be inverted on L2(M),
for σ ∈ ±[0, σ0) with σ0 > 0 small enough, by means of a Neumann series, and we have

(I −R2)−1 = I + R̃2 where the Schwartz kernel of R̃2 is of the same class as that of R2, so

R̃2 ∈ Ψ
−∞,(∅,∅,∅,∅)
sc-b (M). This implies that (Q+Q1)(I + R̃1)(I + R̃2) is a right inverse of P ,

and using Lemma 2.15 one can show that it is of the class (2.20).

A left inverse of P can be constructed as the adjoint of a right inverse of P ∗. A standard
(group theory) argument then shows that the right and left inverses agree. �

Fix now a smooth positive sc-b-density ν on Msc-b (i.e. a smooth positive section of
sc-bΩM → Msc-b), or a weighted version thereof. (Examples include σ-independent b- or
scattering densities on M .) We then define for σ 6= 0

Hs,r,l,b
sc-b,σ(M,ν) = Hs,r

sc (M,νσ)

as a set, where νσ is the restriction of ν to the level set σ (thus νσ is a weighted scattering

density on M), but equipped with the following norm for s ≥ 0: fix any A ∈ Ψs,0,0,0
sc-b (M)

with elliptic principal symbol, then

‖u‖2
Hs,r,l,b

sc-b,σ (M,ν)
:= ‖ρ−rscfρ

−l
tf ρ
−b
zf u‖

2
L2(M,νσ) + ‖ρ−rscfρ

−l
tf ρ
−b
zf Au‖

2
L2(M,νσ).

For s < 0, the norm on Hs,r,l,b
sc-b,σ(M,ν) is defined via duality relative to L2(M,νσ).
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A slight variant of the following result already appears in [Hin21b, Appendix A.4]:

Proposition 2.21 (Relationships to Sobolev spaces at tf and zf). Fix a positive sc-b-
density on Msc-b, a positive (sc,b)-density on tf, and a positive b-density on M . Let
s, r, l, b ∈ R.

(1) Fix a collar neighborhood [0, 1)ρ×∂M of ∂M ⊂M , and consider the family of maps
φσ : (ρ̂, ω) 7→ (|σ|ρ̂, ω) ∈M for 0 6= σ ∈ I. Let χ ∈ C∞c (Iσ × [0, 1)ρ× ∂M). Then we
have a uniform equivalence of norms

‖χu‖
Hs,r,l,b

sc-b,σ (M)
∼ σ−l‖φ∗σ(χu)‖

Hs,r,b−l
sc,b (tf)

.

That is, there exists C > 0 (which is independent of σ and u) so that the left hand
side is bounded by C times the right hand side, and vice versa.

(2) Fix χ ∈ C∞c (Msc-b \ scf). Then we have a uniform equivalence of norms

‖χu‖
Hs,r,l,b

sc-b,σ (M)
∼ σ−b‖χu‖

Hs,l−b
b (M)

. (2.23)

One can use weighted volume densities on Msc-b if one changes the weights on the right
hand sides appropriately. Typical choices for the cutoff functions are χ = ψ(ρ+ |σ|) for the
first part, and χ = ψ(|σ|/ρ) for the second part, where ψ ∈ C∞c ([0, ε)).

Proof of Proposition 2.21. This is easily checked for L2-spaces, i.e. for s = 0. For s > 0
then, one exploits the existence of the normal operator maps (2.19) and the fact that the
normal operators of an elliptic operator are themselves elliptic. Thus, in part (2), one
fixes an elliptic operator A0 ∈ Ψs

b(M) = Ψs
b(zf), and defines an operator A ∈ Ψs

sc-b(M) by
extending the Schwartz kernel of A0 to a σ-independent distribution on I ×M2

b which one
subsequently lifts to M2

sc-b, followed by cutting off to a neighborhood of zfsc-b by means of a
cutoff which is identically 1 near suppχ×suppχ; thus A is elliptic on suppχ. Expressing the
sc-b-norm on the left of (2.23) via testing with A, and the b-norm on the right via testing
with A0, the equivalence (2.23) follows. The proof of part (1) is completely analogous. �

2.5. The semiclassical cone algebra. The class of semiclassical cone pseudodifferential
operators which we shall recall next was introduced in [Hin22b]; there it was also shown that
fully elliptic semiclassical cone differential operators have inverses in the large semiclassical
cone calculus. (See [Che22] for a parametrix construction in the significantly more involved
hyperbolic case.) Closely related ps.d.o. algebras were introduced by Loya [Loy02]; see also
[GKM06, Sch94].

Let M be a compact n-dimensional manifold with embedded boundary ∂M 6= ∅. We
denote by

Mc~ :=
[
[0, 1)h ×M ; {0} × ∂M

]
the semiclassical cone (or c~-) single space, with boundary hypersurfaces denoted cf (the
lift of [0, 1)× ∂M), tf (the front face), and sf (the lift of {0} ×M).11 With ρH ∈ C∞(Mc~)
denoting a boundary defining function for H = cf, tf, sf, the Lie algebra of c~-vector fields
is

Vc~(M) := {V ∈ ρsfVb(Mc~) : V h = 0}.

11The notation tf clashes with the notation used for the transition face of Msc-b. However, not only will
the context always make clear whether we are working with sc-b or c~-operators, but also the two transition
faces are the same in that they are naturally diffeomorphic to +N∂M .
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In local coordinates x ≥ 0, y ∈ Rn−1 near a boundary point of M , the space Vc~(M) is
spanned by

h

x+ h
x∂x,

h

x+ h
∂yj (j = 1, . . . , n− 1).

Since [Vc~(M),Vc~(M)] ⊂ ρsfVc~(M), we have for the corresponding space of c~-differential
operators Diffmc~(M), or more generally for its weighted version

Diffm,l,α,bc~ (M) := ρ−lcf ρ
−α
tf ρ

−b
sf Diffmc~(M),

a principal symbol map c~σm,l,α,b with

0→Diffm−1,l,α,b−1
c~ (M) ↪→ Diffm,l,α,bc~ (M)

c~σm,l,α,b−−−−−−→ (ρ−lcf ρ
−α
tf ρ

−b
sf P

m/ρ−lcf ρ
−α
tf ρ

−(b−1)
sf Pm−1)(c~T ∗M)→ 0,

where c~T ∗M → Mc~ is the c~-cotangent bundle; this bundle is the dual bundle of the
c~-tangent bundle c~TM → Mc~, the smooth sections of which are precisely the elements
of Vc~(M). We remark that h-independent lifts of b-vector fields on M satisfy

Vb(M) ⊂ ρ−1
sf Vc~(M) ⊂ Diff1,0,0,1

c~ (M). (2.24)

Besides the principal symbol, c~-operators P without weights at tf have a (multiplicative)
tf-normal operator Ntf(P ), with

0→ Diffm,l,−1,b
c~ (M) ↪→ Diffm,l,0,bc~ (M)

Ntf−−→ Diffm,l,bb,sc (tf)→ 0,

where the target space consists of operators which near tf ∩ cf, resp. tf ∩ sf are weighted b-
differential operators (with weight l), resp. weighted scattering differential operators (with
weight b). Furthermore, there is a family of b-normal operators at cf, parameterized by
h ∈ [0, 1),

Ncf : Diffm,0,α,bc~ (M)→ h−αC∞
(
[0, 1); Diffmb,I(

+N∂M)
)
.

When Ncf(P ) is independent of h ∈ (0, 1) up to multiplication by an h-dependent constant,
we shall say (by a mild abuse of language) that P has an h-independent b-normal operator;
this will be the case for all c~-operators which appear in the present paper.

The definition of semiclassical cone pseudodifferential operators requires the introduction
of the c~-double space

M2
c~ :=

[
[0, 1)h ×M2

b ; {0} × ffb; {0} × diagb

]
,

with boundary hypersurfaces denoted ffc~ (the lift of [0, 1)×ffb), lbc~ (the lift of [0, 1)× lbb)
and rbc~ (the lift of [0, 1) × rbb), further tfc~ (the front face), sfc~ (the lift of {0} ×M2

b),
and df2 (the lift of {0} × diagb); and we write diagc~ for the lift of [0, 1)× diagb. Then

Ψs
c~(M)

consists of all operators whose Schwartz kernels are elements of Is−
1
4 (M2

c~, diagc~, π
∗
R

c~ΩM)

(with πR the lift of the right projection [0, 1)×M ×M 3 (h, z, z′) 7→ (h, z′) and c~ΩM →
Mc~ the density bundle associated with c~TM → M) which vanish to infinite order at all
boundary hypersurfaces except ffc~, tfc~, and dfc~. We also consider spaces of weighted
operators

Ψs,l,α,b
c~ (M),
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where we demand classical conormality down to cfc~ (with weight −l) and tfc~ (with weight
−α), but allow for mere conormality down to dfc~ (with weight −b). Analogously to the
case of differential operators, the principal symbol map is

0→ Ψs−1,l,α,b−1
c~ (M) ↪→ Ψs,l,α,b

c~ (M)
c~σs,l,α,b−−−−−→ (Ss,l,α,b/Ss−1,l,α,b−1)(c~T ∗M)→ 0,

where Ss,l,α,b(c~T ∗M) is the class of symbols which are classical conormal down to (the
c~-cotangent bundle over) cf and tf, but merely conormal down to sf and fiber infinity.
The normal operator homomorphisms are

0→ Ψs,l,−1,b
c~ (M) ↪→ Ψs,l,0,b

c~ (M)
Ntf−−→ Ψs,l,b

b,sc(tf)→ 0

(where we take advantage of the required smoothness of Schwartz kernels down to tfc~) and

Ncf : Ψs,0,α,b
c~ (M)→ h−αC∞

(
[0, 1)h; Ψs

b,I(
+N∂M)

)
.

For precise elliptic theory, we also need the large c~-calculus: for E = (Elb, Eff , Erb, Etf),
we put

Ψ−∞,Ec~ (M) := AEphg(M2
c~),

where the index set EH is assigned to the boundary hypersurface Hc~ for H = lb,ff, rb, tf,
while the trivial index set ∅ is assigned to the remaining boundary hypersurfaces sf and df.

Proposition 2.22 (Composition in the large c~-calculus). Let P ∈ Ψs
c~(M) + Ψ−∞,Ec~ (M)

and Q ∈ Ψs′
c~(M) + Ψ−∞,Fc~ (M), where E = (Elb, Eff , Erb, Etf) and F = (Flb,Fff ,Frb,Ftf) are

two collections of index sets. Suppose Re(Erb + Flb) > 0. Then the composition P ◦ Q is

well-defined, and P ◦Q ∈ Ψs+s′

c~ (M) + Ψ−∞,Gc~ (M), where G = (Glb,Gff ,Grb,Gtf) with

Glb = Elb ∪ (Eff + Flb),

Gff = (Eff + Fff) ∪ (Elb + Frb),

Grb = (Erb + Fff) ∪ Frb,

Gtf = Etf + Ftf .

Furthermore, when the index sets F0,F1 ⊂ C × N0 are such that Re(Erb + F0) > 0, the

composition of P as above and Q ∈ Ċ∞([0, 1)h; Ψ−∞,(F0,F1)(M)) is well-defined, with

P ◦Q ∈ Ċ∞([0, 1)h; Ψ−∞,(Elb∪(Eff+F0),F1)(M)
)
. (2.25)

Proof. See [Hin22b, Proposition 3.9] for the first part. The proof of (2.25) reduces to the
last part of Proposition 2.7 by noting that the product of the Schwartz kernel of P with any

function in Ċ∞([0, 1)h) is an element of Ċ∞([0, 1)h; Ψs
b(M) + Ψ

−∞,(Elb,Eff ,Erb)
b (M)) (i.e. tfc~

and dfc~ ⊂ M2
c~ can be blown down, leaving one with a Schwartz kernel on [0, 1)h ×M2

b ,
conormal to [0, 1)× diagb, which vanishes rapidly at h = 0). �

Theorem 2.23 (Inverses in the c~-calculus). Fix a positive c~-density on M and a positive

(b, sc)-density on tf. Let s, b ∈ R and suppose P = (Ph)h∈(0,1) ∈ Ψs,0,0,b
c~ (M) has an elliptic

principal symbol and h-independent cf-normal operator Ncf(P ). Let α ∈ R be such that
α /∈ Re Specb(Ncf(P )). Suppose that

Ntf(P ) : Hs′,α,b′

b,sc (tf)→ Hs′−s,α,b′−b
b,sc (tf)
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is invertible for some (thus all) s′, b′ ∈ R. Then there exists h0 > 0 so that Ph : Hs′,α
b (M)→

Hs′−s,α
b (M) is invertible for h ∈ (0, h0]. Moreover, the inverse P−1 = (P−1

h )h∈(0,h0) is an
element of the large c~-calculus,

P−1 ∈ Ψ−s,0,0,−bc~ (M) + Ψ
−∞,(E+,(0),E(0),E−,(0),N0)
c~ (M),

where the index sets are as in Theorem 2.9, i.e. E±,(0) is given by Definition 2.8 for E± =
E±(Ncf(P ), α), and E(0) is defined by (2.12).

Proof. This is a simple generalization of [Hin22b, Theorem 3.10]. We shall thus be brief.

Let Q0 ∈ Ψ−s,0,0,−bc~ (M) be a symbolic parametrix with error term

R0 = I − PQ0 ∈ Ψ−∞,0,0,−∞c~ (M).

On the level of tf-normal operators, we have

Ntf(P )−1 ∈ Ψ−s,0,−bb,sc (tf) + Ψ
−∞,(E+,(0),E(0),E−,(0))
b,sc (tf),

where the index sets refer to the boundary hypersurfaces at the b-end of the (b, sc)-
double space of tf (and at all other boundary hypersurfaces the index sets are trivial);

and Ntf(R0) ∈ Ψ−∞,0,−∞b,sc (M). Thus, we can pick

Q1 ∈ Ψ
−∞,(E+,(0),E(0),E−,(0),N0)
c~ (M), Ntf(Q1) = Ntf(P )−1Ntf(R0);

the remaining error R1 = I −P (Q0 +Q1) ∈ Ψ
−∞,(E+,(0),E(0),E−,(0),N0+1)
c~ (M) vanishes at tfc~.

By inverting Ncf(P ) (via the Mellin transform), one can then solve away the error
at ffc~ to leading order as in the elliptic b-setting; subsequently one solves away the
remaining error to infinite order at lbc~. The remaining error can be solved away us-
ing an asymptotic Neumann series argument; altogether, this argument produces Q ∈
Ψ−s,0,0,−bc~ (M) + Ψ

−∞,(F+,F ,F−,N0)
c~ (M), where F+,F ,F− are index sets with ReF± > ±α

and ReF ≥ 0, so that R = I − PQ ∈ Ψ
−∞,(∅,∅,F−,∅)
c~ (M); this has small operator norm on

L2(M) for sufficiently small h > 0, and therefore I −R is invertible via a Neumann series,

with R̃ in (I −R)−1 = I + R̃ of the same class as R. This proves the invertibility of Ph for

such small h; that the index sets of P−1 at lbc~, ffc~, and rbc~ are E+,(0), E(0), and E−,(0),
respectively, follows from Theorem 2.9. �

Finally, upon fixing a weighted c~-density on Mc~ to define the space H0
c,h(M) for h ∈

(0, 1) as L2(M) with respect to the restriction of the chosen density to the level set of h,
we can define weighted c~-Sobolev spaces

Hs,α,l,b
c,h (M) = ραcfρ

l
tfρ

b
sfH

s
c,h(M)

in the usual fashion; and c~-ps.d.o.s are then uniformly (in h) bounded linear operators
between such spaces. We recall from [Hin21c, Corollary 3.7] the following analogue of
Proposition 2.21, for simplicity stated for a particular choice of density (for other choices
of densities, one merely needs to shift the weights appropriately):

Proposition 2.24 (Relationships of Sobolev spaces). Fix a positive c~-density on Mc~, and
a positive (b, sc)-density on tf. Fix a collar neighborhood [0, 1)ρ × ∂M of ∂M ⊂ M , and
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consider the family of maps φh : (ρ̂, ω) 7→ (hρ̂, ω) ∈ M for h ∈ (0, 1). Let χ ∈ C∞c ([0, 1)h ×
[0, 1)ρ × ∂M). Then we have a uniform equivalence of norms

‖χu‖
Hs,α,l,b

c,h (M)
∼ h−l‖φ∗h(χu)‖

Hs,α,b−l
b,sc (tf)

.

Proof. This is true in the L2-case s = 0 by a change of variables calculation, and then
follows for general s as in the reference. �

2.6. Fourier transforms of non-product type families of distributions. In the in-
version of normal operators in the edge-b- and 3b-calculi, we will encounter the following
situation: we are given a conormal function not on [0, 1)x × Rλ (which would be a param-
eterized family of symbols on Rλ), but on its blow-up at {0} × ∂R, and need to control
its Fourier transform in λ. Since [[0, 1) × R; {0} × ∂R] → [0, 1) is not a smooth fibration
anymore, this is a nontrivial task; see Proposition 2.28. We also encounter similar situa-
tions where [0, 1)×R is instead resolved at {(0, 0)} (see Proposition 2.29). Special cases of
the last type of result were used in [Hin22a, §3.2] to compute inverse Fourier transforms of
distributions on what is called the scattering-b-transition single space in §2.4.

In this section, for functions a = a(x, λ), where x is a parameter (or absent altogether),
we write

â(x, y) =

∫
R
eiλya(x, λ) dλ.

(This is the inverse Fourier transform in λ up to a factor of 2π. Since in this section
signs in oscillatory exponentials as well as factors of 2π will be irrelevant, we shall talk
about a 7→ â as the ‘Fourier transform’ for brevity.) The following two auxiliary results
are classical (except for the notation—we write Az(R) = S−z(R) for the space of Kohn–
Nirenberg symbols of order z). We include proofs for the sake of completeness, and also as
a template for proofs later in this section. We use the notation (2.4).

Lemma 2.25 (Fourier transform of symbols: conormal case). Let z ∈ R.

(1) Let a ∈ Az(R). Then

â ∈


A(z−1,∞)(±[0,∞]), z < 1,

A(N0,∅)
phg (±[0,∞]) +A((z−1,1),∞)(±[0,∞]), z ∈ N,
A(N0,∅)

phg (±[0,∞]) +A(z−1,∞)(±[0,∞]), 1 < z /∈ N.

(2) Suppose z > −1, and extend a ∈ A(z,∞)(±[0,∞]) by 0 to ∓(0,∞) as an L1(R)-
function. Then â ∈ Az+1(R).

Proof. For the first part, when |y| > 1 we have |yN â(y)| = |
∫
eiλy∂Nλ a(λ) dλ| ≤ CN when

N > z + 1. For |y| ≤ 1, we split the Fourier transform into a low and a high frequency
part, according to the relative size of |λ| and |y|−1. For the low frequency part, we have∣∣∣∣∫

|λ|<|y|−1

eiλya(λ) dλ

∣∣∣∣ . 1 +

∫ |y|−1

1
λ−z dλ .


1, z > 1,

| log |y||, z = 1,

|y|z−1, z < 1,

which is the L∞-bound required for membership in A(z−1)∪0(±[0, 1)y). On the other hand,

in
∫
|λ|≥|y|−1 e

iλya(λ) dλ one can write eiλy = ((iy)−1∂λ)Neiλy and integrate by parts N
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times, obtaining

|y|−N
∣∣∣∣∫
|λ|≥|y|−1

eiλy∂Nλ a(λ) dλ

∣∣∣∣ . |y|−N ∫ ∞
|y|−1

λ−z−N dλ . |y|z−1

for N > 1 − z, while the boundary terms are . |λ|−z−k|y|−k−1||λ|=|y|−1 = |y|z−1 for k =

0, . . . , N − 1. The observation (y∂y)
N â(y) = ((−∂λλ)Na)̂(y) finishes the proof in the case

z < 1. For z ≥ 1, we take N ∈ N with z − N < 1 and apply what we have shown to

DN
y â = λ̂Na, with λNa ∈ Az−N (R), followed by N -fold integration from y = 1 towards

y = 0.

For the second part, it suffices to consider the case that a is supported in [0, 1]. We
then note that for |y| > 1, we can estimate the low frequency contribution to the Fourier

transform by
∫ |y|−1

0 λz dλ . |y|−z−1, whereas in the high frequency part we can integrate

by parts N times and obtain an upper bound by |y|−N
∫ 1
|y|−1 λ

z−N dλ . |y|−z−1 when

z −N < −1. �

Corollary 2.26 (Fourier transforms of symbols: polyhomogeneous case). Let E ⊂ C× N0

denote an index set.

(1) Let a ∈ AEphg(R). Then â ∈ A(N0∪(E−1),∅)
phg (±[0,∞]).

(2) Suppose Re E > −1, and let a ∈ A(E,∅)
phg (±[0,∞]); extend a to an L1(R)-function via

extension by 0 to ∓(0,∞). Then â ∈ AE+1
phg (R).

Proof. In the first part, we only need to consider the region |y| < 1. Given 1 < C /∈ N, and
setting EC := {(z, k) ∈ E : Re z ≤ C}, the Fourier transform of (

∏
(z,k)∈EC (−λ∂λ − z))a ∈

AC(R) is ( ∏
(z,k)∈EC

(∂yy − z)
)
â =

( ∏
(z,k)∈EC

(y∂y − (z − 1))

)
â

∈ AN0(±[0, 1)) +AC−1(±[0, 1))

by Lemma 2.25. Integration from y = 1 towards y = 0 shows that â ∈ AN0∪(E−1)(±[0, 1)) +

AC′(±[0, 1)) for any C ′ < C − 1. Since C is arbitrary, we are done.

For the second part, we may assume that a is supported in [0, 1]. Given C > 1 and
defining EC as before, the Fourier transform of (

∏
(z,k)∈EC (λ∂λ − z))a ∈ AC([0, 1)) is then( ∏

(z,k)∈EC

(−y∂y − (z + 1)))

)
â ∈ AC+1(R).

This can be integrated from y = ±1 towards y = ±∞ and thereby implies â ∈ AE+1(R) +

AC′(R) for any C ′ < C + 1. The proof is complete. �

We now turn to non-product type parameterized setting. We work with the resolved
spaces

M∞ :=
[
[0, 1)× R; {0} × ∂R

]
,

M0 :=
[
[0, 1)× R; {0} × {0}

]
.

(2.26)
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We denote by ff∞ and ff0 the respective front faces, by if∞ and if0 the lifts of [0, 1)× ∂R,
and by bf∞ and bf0 the lifts of {0} × R. The lift of the coordinate in the first factor will
be denoted x ∈ [0, 1); the lift of the second coordinate will be denoted y or λ, depending
on the context. See Figure 2.3.

Notation 2.27. For • = ∞, 0, we write A(E,F ,G)
phg (M•) for the space of polyhomogeneous

functions on M• with index set E , F , and G at ff•, bf•, and if•, respectively. We simi-
larly write A(α,β,γ)(M•) (and A((α,k),(β,l),(γ,m))(M•)) for spaces of conormal functions (with
logarithmic weights).

bf∞

ff∞

if∞

ff∞

if∞

λ

xλ
λ−1

x
ff0

bf0

bf0

if0

if0

y
x

x

y

x
y

Figure 2.3. Illustration of (2.26). On the left: the space M∞ (a resolution
of [0, 1)x × Rλ). On the right: the space M0 (a resolution of [0, 1)x × Ry).
The dashed blue curves are level sets of x (along which we are Fourier
transforming). We shall also consider situations with the labels λ and y
interchanged.

Proposition 2.28 (Fourier transform and resolution at infinite frequencies). Let z, w ∈ R,
and let E ,F ⊂ C× N0 be index sets. Let a = a(x, λ).

(1) (Conormal case.) Let a ∈ A(w,z,∞)(M∞). Then â ∈ A((w−1)∪z,z,∞)(M0).

(2) (Polyhomogeneous case.) Let a ∈ A(F ,E,∅)(M∞). Then â ∈ A((F−1)∪E,E,∅)
phg (M0).

Proof. We restrict attention to x < 1
2 (so | log x| & 1).

• Part (1). Note that the Fourier transform commutes with multiplication by x±w; there-

fore, we may replace (w, z) by (0, z − w), and we shall then simply consider the case
w = 0. Consider first the case that |λ| is bounded on supp a (so supp a ∩ (ff∞ ∪ if∞) = ∅);
then a ∈ A(∞,z,∞)(M∞) = Az([0, 1)x; S (Rλ)) and therefore â lies in the same space,

which is contained in A(z,z,∞)(M0) as claimed. Similarly straightforward is the case when
|xλ| ≥ c > 0 on supp a (so supp a ∩ bf∞ = ∅): then

â(x, y) =

∫
|λ|≥c/x

eiλya(x, λ) dλ = x−1

∫
|λ̂|>c

eiλ̂y/xa0(x, λ̂) dλ̂,
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where a0 ∈ A0([0, 1)x,S (Rλ̂)) (in fact, |λ̂| ≥ c on supp a0). The Fourier transform of a0

lies in the same space, and therefore xâ(x, y) is bounded conormal in x and Schwartz in

y/x; this gives â ∈ A(−1,∞,∞)(M0).

It remains to consider the case that c ≤ |λ| ≤ C/x on supp a. Note that we have the
bound |a| . |xλ|z, similarly for derivatives of a along b-vector fields. Firstly, then, we have
the estimate

|â(x, y)| ≤
∫
c≤|λ|≤C/x

|a(x, λ)|dλ . x−1

∫ C

cx
λ̂z dλ̂ .


xz, z < −1,

x−1| log x|, z = −1,

x−1, z > −1,

where we introduced λ̂ = xλ. For |y| & 1, we can strengthen this using yNeiλy = DN
λ e

iλy

and integration by parts to

|â(x, y)| . |y|−N
∫
c≤|λ|≤C/x

λ−N |λNDN
λ a(x, λ)| dλ . x−1+N |y|−N

∫ C

cx
λ̂z−N dλ̂ . xz|y|−N

for any N > z + 1. These two estimates, together with the analogous estimates for b-
derivatives of a, prove the claim, except near the corner ff0 ∩ bf0 to which we now turn.
We shall work in the region |y| < min(1

2 , c
−1) and |xy | < C. We split the λ-integral into

a low and a high frequency part, according to the relative size of |λ| and |y|−1. The low
frequency part is bounded by

∫
c≤|λ|≤|y|−1

|xλ|z dλ . x−1

∫ |x/y|
cx

λ̂z dλ̂ .


xz =

(
x
|y|
)z|y|z, z < −1,

x−1| log y| =
(
x
|y|
)−1|y|−1| log |y||, z = −1,

xz|y|−z−1 =
(
x
|y|
)z|y|−1, z > −1.

In the high frequency part we integrate by parts N > z + 1 times, as above, and get an
upper bound by

x−1+N |y|−N
∫ C

|x/y|
λ̂z−N dλ̂ . xz|y|−z−1 =

( x
|y|

)z
|y|−1.

plus contributions from the boundary terms at |λ| = |y|−1 which obey the same bound.
Similar estimates for b-derivatives of a finish the proof of part (1).

• Part (2). Fix w < ReF . We first only require a ∈ A(w,E,∞)
phg(bf∞)(M∞). Let C ∈ R,

C > w − 1, put EC = {(z, k) ∈ E : Re z ≤ C}, and set

aC := Pa ∈ A(w,C,∞)(M∞), P :=
∏

(z,k)∈EC

(x∂x − z).

Then by what we have just shown, P â = âC ∈ A(w−1,C,∞)(M0). Fix ψ ∈ C∞c ([0, 1
2)x) with

ψ = 1 on [0, 1
4 ]. Since â is, a fortiori, conormal and vanishes to infinite order at if0, we then

have
P (ψâ) = f := ψâC + [P,ψ]â ∈ A(w−1,C,∞)(M0).

Inverting the operator P by integrating from x = 1
2 towards x = 0, one obtains

â ∈ A(E,E,∅)
phg (M0) +A(w′,E,∞)

phg(bf0) (M0) +A(w′,C′,∞)(M0), w′ < w − 1, C ′ < C. (2.27)

We leave the details of the direct proof to the reader, and instead sketch a geometric proof of
this fact using b-analysis. The inverse of P used here is an element of the large b-calculus
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on [0, 1)x, to wit, P−1 ∈ Ψ
−N,(E,N0,∅)
b ([0, 1)x) where N = |EC |. In order to analyze P−1

acting on the distribution f = f(x, y) on the space M0 = [[0, 1)x × Ry; {(0, 0)}], note first
that the y-independent extension K ′ = K ′(x, x′, y) of the Schwartz kernel K = K(x, x′) of
P−1 lifts to the total space

M2,R :=
[
[0, 1)x × [0, 1)x′ × Ry; {(0, 0)} × R; {(0, 0, 0)}; [0, 1)× {0} × {0}

]
=
[
[0, 1)2

b × Ry; ffb × {0}; rbb × {0}
]

to have a conormal singularity at diagb×R, while it is polyhomogeneous with index set E at
lbb×R, with index set N0 at the lifts of ffb×R and ffb×{0}, and with index set ∅ at all other
boundary hypersurfaces. The lift πR : M2,R →M0 of the right projection (x, x′, y) 7→ (x′, y)

is a b-fibration.12 We then have (P−1f)(x, y) =
∫ 1

0 K(x, x′)f(x′, y) = (πL)∗(K
′π∗Rf). But

K ′π∗Rf is a right b-density, conormal with weights w−1 and C at the lift of ffb×{0} and at

ffb×R, respectively, polyhomogeneous with index set E at lbb×R, and vanishes to infinite
order at all other boundary hypersurfaces. Thus, we may blow down rbb × {0}; and upon
then blowing up lbb×{0}, we find that K ′π∗Rf is conormal with weights w−1 and C at the

lift of ffb×{0} and at ffb×R, respectively, and polyhomogeneous with index set E at the lifts
of lbb×{0} and lbb×R. The conclusion (2.27) then follows from [Mel92, Theorem 5], since
the lift of the left projection (x, x′, y) 7→ (x, y) to M2,L = [[0, 1)2

b×Ry; ffb×{0}; lbb×{0}]→
M0 is a b-fibration.

Now recall that in (2.27), the number C was arbitrary. We thus conclude that

â ∈ A(E,E,∅)
phg (M0) +A(w′,E,∞)

phg(bf0) (M0). (2.28)

In order to prove the polyhomogeneity of â at ff0 when a ∈ A(F ,E,∅)
phg (M∞), define FC :=

{(w, l) ∈ F : Rew ≤ C} and

aC(x, λ) :=

( ∏
(w,l)∈FC

(x∂x − λ∂λ − w)

)
a(x, λ) ∈ A(C,E,∞)

phg(bf∞)(M∞).

Then from what we have already shown,( ∏
(w,l)∈FC

(
x∂x + y∂y − (w − 1)

))
â(x, y) = âC(x, y) ∈ A(E,E,∅)

phg (M0) +A(C′,E,∞)
phg(bf0) (M0).

for any C ′ < C − 1. But this in turn gives( ∏
(z,k)∈EC

(x∂x + y∂y − z)
)( ∏

(w,l)∈FC

(
x∂x + y∂y − (w − 1)

))
â(x, y) ∈ A(C′,E,∞)

phg(bf0) (M0).

Since C and thus C ′ are arbitrary, this implies â ∈ A(E∪(F−1),E,∅)(M0). (The extended
union here takes into account the multiplicity of factors x∂x + y∂y − ζ when ζ = z and
ζ = w − 1 for some (z, k) ∈ E and (w, l) ∈ F .) The proof is complete. �

Proposition 2.29 (Fourier transform and resolution at zero frequency). Let z, w ∈ R, and
let E ,F ⊂ C× N0 be index sets. Let a = a(x, λ).

12Indeed, under the b-fibration [0, 1)2
b × R → [0, 1) × R, defined as the product of the right projection

[0, 1)2
b → [0, 1) with the identity map on R, the preimage of {(0, 0)} is the union of ffb × {0} and rbb ×

{0}. Therefore, its lift to πR : M2,R = [[0, 1)2
b × R; ffb × {0}; rbb × {0}] → M0 is a b-fibration by [Mel96,

Proposition 5.12.1].
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(1) (Conormal case.) Let a ∈ A(w,z,∞)(M0). Then â ∈ A(w+1,z∪(w+1),∞)(M∞).

(2) (Polyhomogeneous case.) Let a ∈ A(F ,E,∅)(M0). Then â ∈ A(F+1,E∪(F+1),∅)(M∞).

Proof. We denote coordinates on M0 by x, λ, and on M∞ by x, y.

• Part (1). The proof is similar to that of Proposition 2.28(1). First of all, it suffices to

consider the case z = 0, as multiplication by x±z commutes with the Fourier transform in
λ. When supp a ∩ ff0 = ∅ (so w is arbitrary), then â ∈ A0([0, 1); S (Ry)) ⊂ A(∞,0,∞)(M∞).
When supp a ∩ bf0 = ∅, then a(x, λ) = xwa0(x, λ/x) where a0 ∈ A0([0, 1), C∞c (R)), and

â(x, y) = xw+1â0(x, xy), â0(x, ŷ) =

∫
eiλ̂ŷa0(x, λ̂) dλ̂ ∈ A0([0, 1),S (R)). (2.29)

Since xy is a projective coordinate along (the two components of) ff∞, we therefore conclude

that â ∈ A(w+1,w+1,∞)(M∞).

It remains to consider the case that cx ≤ |λ| ≤ C on supp a where c, C > 0. We work in
x < 1

2 . For bounded |y|, we then estimate

|â(x, y)| .
∫ C

cx
λw dλ .


xw+1, w < −1,

| log x|, w = −1,

1, w > −1.

When |y| & x−1 on the other hand, integration by parts (i.e. non-stationary phase) and
|∂Nλ a(x, λ)| . |λ|w−N imply for N > w + 1 the estimate

|â| . |y|−N
∫ C

cx
λw−N dλ . |y|−Nxw−N+1 = xw+1|xy|−N .

Finally, when 1 . |y| < min(1
2 , c
−1)x−1, we estimate the low energy part of the Fourier

transform of a by

∫ |y|−1

cx
λw dλ .


xw+1 = |y|−w−1|xy|w+1, w < −1,

| log |xy||, w = −1,

|y|−w−1, w > −1.

For the high energy part on the other hand, we use integration by parts and obtain, for
N > w + 1, the bound

|y|−N
∫ C

|y|−1

λw−N dλ . |y|−w−1.

The same pointwise bounds also hold for conormal derivatives of â; this proves part (1).

• Part (2). Fix z < Re E . We first only require a ∈ A(F ,z,∞)
phg(ff0) (M0). Let C ∈ R, C+ 1 > z,

put FC = {(w, l) ∈ F : Rew ≤ C}, and set

aC := Pa ∈ A(C,z,∞)(M0), P :=
∏

(w,l)∈FC

(x∂x + λ∂λ − w).

Then part (1) implies that

P̂ â = âC ∈ A(C+1,z,∞)(M∞), P̂ :=
∏

(w,l)∈FC

(x∂x − y∂y − (w + 1)).
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Switching to the coordinates x and ŷ := xy, the vector field x∂x − y∂y becomes x∂x. Note

also that y is an affine coordinate on the front face of the blow-up of [0, 1)×Rŷ at {(0, 0)};
therefore, we are in the same setting as in the proof of (2.27). Therefore, upon integrating
P from x = 1

2 (where â is Schwartz in y and also in ŷ), and switching back to (x, y)
coordinates, we obtain

â ∈ A(F+1,F+1,∅)
phg (M∞) +A(F+1,z′,∞)

phg(ff∞) (M∞) +A(C′,z′,∞)(M∞), C ′ < C + 1, z′ < z.

Since z < Re E and C > z − 1 were arbitrary, we conclude that

â ∈ A(F+1,F+1,∅)
phg (M∞) +A(F+1,z,∞)

phg(ff∞) (M∞). (2.30)

Set now EC = {(z, k) ∈ E : Re z ≤ C} and

aC :=

( ∏
(w,l)∈EC

(x∂x − w)

)
a ∈ A(F ,C,∞)

phg(ff0) (M0).

Then (2.30) implies( ∏
(w,l)∈EC

(x∂x − w)

)
â = âC ∈ A(F+1,F+1,∅)

phg (M∞) +A(F+1,C′,∞)
phg(ff∞) (M∞)

for any C ′ < C. Since C is arbitrary, integration of this equation starting from x = 1
2

implies â ∈ A(F+1,E∪(F+1),∅)
phg (M∞), as claimed. �

2.7. The edge-b-algebra. Edge (pseudo)differential operators were introduced by Mazzeo
[Maz91] on manifolds with boundary whose boundary is the total space of a fibration. The
underlying Lie algebra of edge vector fields is the subalgebra of Vb consisting of all vector
fields which are tangent to the leaves of the fibration. On a manifold with corners M with
more than one boundary hypersurface, one can consider edge-b-vector fields corresponding
to the fibration of a single boundary hypersurface of M ; the corresponding small (i.e. with-
out boundary terms) pseudodifferential algebra was developed in [MVW13, Appendix B].
Here, we discuss a very special case of this general edge-b-setup, but for this setup go be-
yond [MVW13] in that we describe the b-normal operator and its inverse in detail, as well
as Sobolev spaces and their interaction with the Mellin transform. (We do not, however,
discuss parametrices of fully elliptic edge-b-operators here.)

2.7.1. Differential operators. Let M be an n-dimensional manifold with corners, with n ≥ 2;
we assume that the set M1(M) = {D,R} of boundary hypersurfaces of M has only two
elements which intersect in the closed manifold Y := D∩R. We assume that D is compact
(with boundary ∂D = D ∩R). We moreover assume that R is the total space

Y −R φ−→ [0,∞)

of a fibration, with φ−1(0) = D ∩ R. (Thus, R and therefore also M are noncompact,
although one can consider similar setups with compactR,M .) See Figure 3.5 for an example
of such a setup. We then consider the Lie algebra of edge-b-vector fields

Ve,b(M) = {V ∈ Vb(M) : V is tangent to the fibers of R}.

We denote the corresponding tangent and cotangent bundles by e,bTM →M and e,bT ∗M →
M , respectively. Furthermore, ρD and ρR ∈ C∞(M) denote defining functions of D and



48 PETER HINTZ

R, respectively. Spaces of differential operators are denoted Diffme,b(M), and the principal
symbol map is

0→ Diffm−1
e,b (M) ↪→ Diffme,b(M)

e,bσm−−−→ P [m](e,bT ∗M)→ 0.

In local coordinates T ≥ 0 (defining function of D), R (defining function of R), and
y ∈ Rn−2 (coordinates along Y ), in which the fibration of R is given by (T, y) 7→ y, the
space Ve,b(M) is spanned over C∞(M) by

RT∂T , R∂R, ∂yj (j = 1, . . . , n− 2). (2.31)

Thus, regarding an element P ∈ Diffme,b(M) (thus its coefficients are smooth down to D)
as a b-differential operator P ∈ Diffmb (M), it has a dilation-invariant normal operator
ND(P ) ∈ Diffmb,I(

+ND), given in local coordinates by freezing the coefficients of P at

T = 0; in light of (2.31), ND(P ) is then itself an edge-b-differential operator on +ND with
respect to the fibration +N∂DD → [0,∞) = +N{0}[0,∞) induced by the differential of φ.
That is, we have a short exact sequence

0→ ρDDiffme,b(M) ↪→ Diffme,b(M)
ND−−→ Diffme,b,I(

+ND)→ 0,

where Diffe,b,I(
+ND) is the space of edge-b-differential operators which are invariant under

the dilation action in the fibers of +ND. As such, ND(P ) is naturally analyzed via the
Mellin transform in the fiber variables.

In local coordinates as above, we can write

ND(P ) =
∑

j+k+|α|≤m

ajkα(R, y)(RTDT )j(RDR)kDα
y , ajkα ∈ C∞([0,∞)R × Rn−2

y ),

(2.32)
and therefore the Mellin-transformed normal operator family (defined with respect to a
choice of boundary defining function of D, here T ) is

N̂D(P, λ) =
∑

j+k+|α|≤m

ajkα(R, y)(Rλ)j(RDR)kDα
y , λ ∈ C. (2.33)

For bounded λ, this is an analytic family of elements of Diffmb (D). When λ = −iµ ± h−1

however, with µ ∈ R and h > 0, then

(0, 1) 3 h 7→ N̂D(P,−iµ±h−1) =
∑

j+k+|α|≤m

ajkα(R, y)(±1)j
(R
h
∓iµR

)j
(RDR)kDα

y (2.34)

is a smooth (in µ) family of elements of Diffm,0,0,mc~ (D), cf. (2.24). As discussed in §2.5, its

normal operator at the transition face tf ∼= +N∂D of Dc~ is given in the rescaled coordinate
R̃ = R/h by taking the limit h↘ 0 for bounded R̃, so

N±D,tf(P ) :=
∑

j+k+|α|≤m

ajkα(0, y)(±1)jR̃j(R̃DR̃)kDα
y ∈ Diffm,0,mb,sc (+N∂D), (2.35)

where the weights 0 and m of the b, sc-space refer to the weight at the b-end tf ∩ cf (where

R̃ = 0) and the scattering end tf ∩ sf (where R̃−1 = 0), respectively. This normal operator
is independent of µ as long as µ remains bounded.
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Remark 2.30 (Edge-b and semiclassical cone algebras). A simple instance of the relationship
between the present edge-b setup and semiclassical cone analysis was already hinted at in
[Hin22b, Remark 3.4].

Without passing through the c~-calculus, one can directly freeze the coefficients of ND(P )
in (2.32) at R = 0, which produces the edge normal operator

ND,e(P ) =
∑

j+k+|α|≤m

ajkα(0, y)(RTDT )j(RDR)kDα
y ∈ Diffme,b,I([0,∞)T × [0,∞)R × Y ).

(2.36)
One then exploits the dilation-invariance of ND,e(P ) in T by passing to the Mellin trans-
formed normal operator family, and one then exploits the invariance under (R, λ) 7→
(cR, λ/c) for c ∈ R+ (with λ denoting the Mellin-dual variable to T ) by passing to R̃ = R|λ|;
this produces N±D,tf(P ), where the choice of sign ‘±’ is now identified with the choice of

point at infinity in Rλ = {±∞}. Thus, λ̂ = ±∞ 7→ N±D,tf(P ) is the reduced edge normal

operator, in analogy with the reduced normal operator in the 0-setting [Lau03, Hin21a].

The dilation-invariance of ND(P ) in T implies the fact (which also follows directly by

inspection of (2.33)) that the b-normal operator of N̂D(P, λ) at ∂D is independent of λ; it
is denoted

N∂D(P ) := N∂D
(
N̂D(P, 0)

)
∈ Diffmb,I(

+N∂D), (2.37)

where +N∂D is the (non-strictly) inward pointing part of the normal bundle of ∂D ⊂ D.
Equivalently, N∂D(P ) can be defined as the b-normal operator of N±D,tf(P ) at tf ∩ cf. In

terms of (2.32), we have N∂D(P ) =
∑

k+|α|≤m a0kα(0, y)(RDR)kDα
y .

We proceed to relate the principal symbols of P ∈ Diffme,b(M) and ND(P ) (and related

operators). We use two facts: firstly, bT ∗D is naturally a subbundle of e,bT ∗D(+ND), and

also of bT ∗D(+ND), where D in the subscript on the right denotes the zero section of
+ND. Secondly, a choice of boundary defining function ρD ∈ C∞(M) induces a product
decomposition

bT ∗D(+ND) ∼= bT ∗D × R,
dρD
ρD
7→ (0, 1) ∈ bT ∗D × R. (2.38)

Lemma 2.31 (Relationships between principal symbols). Let P ∈ Diffme,b(M).

(1) The principal symbol of ND(P ) is the dilation-invariant extension to e,bT ∗(+ND)
of the restriction e,bσm(P ) to e,bT ∗DM

∼= e,bT ∗D(+ND).

(2) The principal symbol of N̂D(P, λ) is independent of λ, and it is given by the restric-
tion of e,bσm(ND(P )) to bT ∗D ⊂ e,bT ∗D(+ND).

(3) The principal symbol bσm(N∂D(P )) is the dilation-invariant (in the fibers of +N∂D)
extension of its restriction to the b-cotangent bundle over ∂D ⊂ +N∂D, where it is
given by the restriction of e,bσm(ND(P )) to bT ∗∂DD.

(4) Given µ ∈ R, the c~-principal symbol of (0, 1) 3 h 7→ N̂D(P,−iµ± h−1) is equal to

that of ND(P ) at ±h−1 dρD
ρD

+ bT ∗D.

(5) In terms of the isomorphism (2.38), the principal symbol of N±D,tf(P ) is given by the

restriction of bσm(ND(P ))|bT ∗D(+ND) to the front face of [bT ∗D×R; bT ∗∂DD×{±∞}].
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Proof. These statements follow directly from the local coordinate descriptions of the various
normal operators given above. For the final part, note that if we write the canonical 1-
form on bT ∗D in the coordinates R, y near ∂D as ξb

dR
R + ηb · dy, then local coordinates

on [bT ∗D × R; bT ∗∂DD × {±∞}] away from the lift of bT ∗D × {±∞} are R̃ = R|λ| (where
|λ| = ±λ), y, ξb, ηb, with the front face defined by |λ|−1 = 0; comparison with (2.33) and
(2.35) proves the claim. �

2.7.2. Pseudodifferential operators and Sobolev spaces. Following [MVW13, Appendix B],
we set:

Definition 2.32 (Edge-b-double space). The edge-b-double space of M is

M2
e,b :=

[
M2;D2;R2

φ

]
,

where R2
φ := R×φ R = {(z, z′) ∈ R ×R : φ(z) = φ(z′)} is the fiber-diagonal. (The lift of

R2
φ to [M2;D2] is a p-submanifold.) We denote the boundary hypersurfaces of M2

e,b by

• ffb (the lift of D2),
• ffe (the lift of R2

φ),

• lbb, resp. rbb (the lifts of D ×M , resp. M ×D),
• lbe, resp. rbe (the lifts of R×M , resp. M ×R).

Furthermore, the edge-b-diagonal is the lift diage,b ⊂M2
e,b of diagM .

The double space that arises as a model for the 3b-calculus in §4.2 turns out to be a
resolution of M2

e,b (for a particular choice of M):

Definition 2.33 (Extended edge-b-double space). The extended edge-b-double space of M
is the resolution

M2
e,b,] := [M2

e,b;R2]. (2.39)

We denote by ffb,] the lift of ffb, likewise for the lifts of ffe, lbb, rbb, lbe, rbe, diage,b. The
front face of (2.39) is denoted ff].

We note that M2
e,b,] is naturally diffeomorphic to [M2

b ;R2
φ]. The terminology is taken

from an analogous construction in the 0-calculus by Lauter [Lau03].

The space of s-th order edge-b-pseudodifferential operators

Ψs
e,b(M)

then consists of all operators with Schwartz kernels in Is(M2
e,b,diage,b, π

∗
R

e,bΩM) (with πR

the lift M2
e,b → M of the right projection, and e,bΩM → M the density bundle associated

with e,bTM → M) which vanish to infinite order at all boundary hypersurfaces of M2
e,b

except for ffb and ffe. (Since the lift of R2 to M2
e,b is disjoint from diage,b, we can equiva-

lently define Ψs
e,b(M) via their Schwartz kernels on M2

e,b,] in exactly the same manner upon

replacing ffb, ffe, diage,b by ffb,], ffe,], diage,b,].) The (multiplicative) principal symbol map
is

0→ Ψs−1
e,b (M) ↪→ Ψs

e,b(M)
e,bσs−−−→ (Ss/Ss−1)(e,bT ∗M)→ 0,
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and the normal operator homomorphism at D, which on the level of Schwartz kernels is
given by restriction to ffb and subsequent dilation-invariant extension to (+ND)2

e,b, fits into
the short exact sequence

0→ ρDΨs
e,b(M) ↪→ Ψs

e,b(M)
ND−−→ Ψs

e,b,I(
+ND)→ 0.

Given P ∈ Ψs
e,b(M), the operator ND(P ) has itself a model operator at +N∂DD gener-

alizing (2.36): upon fixing a collar neighborhood [0, 1)T × [0, 1)R × Y of D ∩R, we define

ND,e(P ) ∈ Ψs
e,b,I(MI), MI := [0,∞)T × [0,∞)R × Y,

as the operator whose Schwartz kernel is the extension of the restriction of the Schwartz
kernel of P to ffb ∩ ffe by invariance under an action of the group RoR+ on (MI)

2
e,b given

by (y, s) · (T,R, ω, T ′, R′, ω′) = (T sey, sR, ω, T ′sey, sR′, ω′). (Note that in the coordinates

T̂ ′ := log T ′, R′, ω, ω′, ∆ = log T−log T ′

R′ , R̂ = R
R′ on (MI)

2
e,b—the significance being that

log R̂ and ∆ are affine coordinates on the intersection of the b- and edge front faces—this
action takes the form (y, s) · (T̂ ′, R′, ω, ω′,∆, R̂) = (sT̂ ′ + y, sR′, ω, ω′,∆, R̂); cf. [Hin21a,

§2.2] where ω, ω′ are absent, and (T̂ ′, R′,∆, R̂) are denoted (ỹ′, x̃′, ỹ−ỹ
′

x̃′ ,
x̃
x̃′ ).)

We shall generalize (2.33)–(2.37) to the pseudodifferential setting:

Proposition 2.34 (Properties of N̂(P,−)). Fix a boundary defining function ρD ∈ C∞(M)
of D. Write +ND = D × [0,∞) for the trivialization of the inward pointing normal
bundle determined by dρD, and write the fiber-linear coordinate dρD as ρD simply. Let
P ∈ Ψs

e,b(M). Then:

(1) the Mellin-transformed normal operator family N̂D(P, λ), λ ∈ C, defined by

N̂D(P, λ) =
(
ρ−iλD ND(P )(ρiλDu)

)
|ρ=0, u ∈ Ċ∞(D), (2.40)

is a holomorphic family of elements of Ψs
b(D);

(2) the b-normal operator N∂D(P ) ∈ Ψs
b,I(

+N∂D) of N̂D(P, λ) is independent of λ;

(3) for µ ∈ R, the operator family

(0, 1) 3 h 7→ N̂D(P,−iµ± h−1) (2.41)

defines an element of Ψs,0,0,s
c~ (D) which depends smoothly on µ.

The principal symbols of these operators, as well as of the tf-normal operator N±D,tf(P ) ∈
Ψs,0,s

b,sc (+N∂D) of (2.41), are given in terms of the principal symbol of P as in Lemma 2.31.

An equivalent definition of N̂D(P, λ) is u 7→ (ρ−iλD P (ρiλD ũ))|D where ũ ∈ C∞(M) is a

smooth extension of u ∈ Ċ∞(D).

Proof of Proposition 2.34. Denoting by R and R′ the right and left lift of the chosen defining
function of D to M×M , respectively, the front face of [M2;D2] is diffeomorphic to [0,∞]sb×
D2 where sb = R/R′. Therefore,

ffb =
[
[0,∞]sb ×D

2; {1} × (∂D)2
]
. (2.42)

The intersection diage,b ∩ffb is given by the lift of {1} × diag∂D. See Figure 2.4. Denote
by K = K(sb, z, z

′) the restriction of the Schwartz kernel of P to ffb, where z, z′ ∈ D.
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diage,b

lbe

rbe

rbb

lbb

ffe
R

R′

sb

0

∞

diage,b,]
lbe,]

rbe,]

rbb,]

lbb,]

ffe,]

ff]

Figure 2.4. On the left: illustration of the b-front face ffb, see (2.42);
only the coordinates R,R′ (left and right lifts of defining functions of ∂D ⊂
D) are shown, whereas the coordinates ω, ω′ in the left and right factor of
∂D×∂D ⊂ D×D are suppressed. The boundary hypersurface labeled lbb is
the intersection of lbb with ffb, likewise for the other boundary hypersurface
labels. On the right: the b-front face ffb,] of the extended edge-b-double
space.

Consider first the case that K(sb, z, z
′) vanishes identically near {1} × (∂D) (i.e. near

ffe). Then ffb ∩ suppK = ([0,∞]sb ×D2)∩ suppK is a subset of the front face of [M2;D2];
therefore the Mellin transform of K(sb, z, z

′) in sb can be analyzed as in the case of b-

ps.d.o.s, see in particular Lemma 2.3. Thus, the Schwartz kernel Kλ of N̂D(P, λ) is an
element of Ψs(D\∂D) for bounded λ, and of Ψs,s

~ (D\∂D) in the high frequency regime (2.41).
Replacing K by its cutoff away from the diagonal singularity, the resulting distribution
(which we still denote by K) is a smooth right edge-b-density which vanishes to infinite
order at sb = 0 (i.e. lbb), sb =∞ (i.e. rbb), as well as at [0,∞]× (∂D ×D ∪D × ∂D) (i.e.
lbe ∪ ffe ∪ rbe). Therefore, Kλ is an analytic family (in λ ∈ C) of smooth right densities on
D×D which vanish to infinite order at ∂D×D and D× ∂D, and which as such also vanish
to infinite order at h = |λ|−1 when | Imλ| is bounded while |Reλ| → ∞. This means that

Kλ ∈ Ψ−∞,−∞b (D), and the high energy family (2.41) is an element of Ψ−∞,−∞,−∞,−∞c~ (D).

It remains to analyze Kλ when K is supported near ffe. We switch to the coordinate τb =
log sb ∈ [−∞,∞] on the front face of [M2;D2]; moreover, we work in a collar neighborhood
[0, 1)R×∂D of ∂D ⊂ D, and correspondingly denote points on Rτb×D2 by (τb, R, ω,R

′, ω′).

In these coordinates, ffb is the product of [R× [0, 1)× [0, 1); {(0, 0, 0)}] (with points labeled
(τb, R,R

′)) with (∂D)2 (with points labeled (ω, ω′)). The right edge-b-density bundle is
trivialized by ∣∣∣ dT ′

R′T ′
dR′

R′
dω′
∣∣∣ = R′−1

∣∣∣dτb
dR′

R′
dω′
∣∣∣ = R′−1

∣∣∣dsb

sb

dR′

R′
dω′
∣∣∣. (2.43)

We first consider the case that P ∈ Ψ−∞e,b (M). We express K in terms of the coordinates

R′ ≥ 0, ub =
R

R′
∈ [0,∞), τ =

τb

R′
=

log sb

R′
∈ R, ω, ω′ (2.44)
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in ff◦b. (On the extended edge-b-double space, these are valid coordinates near ffe,] ∩ lbe,] if
we extend the domain of definition of τ to also include the points ±∞.) We then have

K = κ(R′, ub, τ, ω, ω
′)
∣∣∣dτ dub

ub
dω′
∣∣∣, (2.45)

where κ is smooth in R′, ub, ω, ω
′, vanishes to infinite order as ub → 0 or |τ | → ∞; and R′τ

is bounded on suppκ. The Schwartz kernel Kλ of N̂D(P, λ) is then, in view of sb = eR
′τ ,

Kλ(R′, ub, ω, ω
′) =

∫
R

(eR
′τ )−iλκ(R′, ub, τ, ω, ω

′) dτ
∣∣∣dub

ub
dω′
∣∣∣

= κ̂(R′, ub, R
′λ, ω, ω′)

∣∣∣dub

ub
dω′
∣∣∣,

where κ̂ denotes the Fourier transform in the third argument. Since eR
′τ lies in a com-

pact subinterval of (0,∞) on suppK, we conclude from this expression (and an analogous

expression near ffe,] ∩ rbe,]) that N̂D(P, λ) is analytic in λ with values in Ψ−∞b (D). To
analyze the high frequency regime, let us write λ = −iµ + λ0 where µ, λ0 ∈ R, and write
κµ(R′, ub, τ, ω, ω

′) = e−R
′τµκ(R′, ub, τ, ω, ω

′), which is a smooth family (in µ,R′, ub, ω, ω
′)

of Schwartz functions in τ which vanishes rapidly at ub = 0; then

K−iµ+λ0

(
±R̃

′

λ0
, ub, ω, ω

′
)

= κ̂µ

(
±R̃

′

λ0
, ub, R̃

′, ω, ω′
) ∣∣∣dub

ub
dω′
∣∣∣

is, for ±λ0 > 1, a smooth function of h = |λ0|−1 = ±λ−1
0 (down to h = 0), µ ∈ R, and

(R̃′, ub, ω, ω
′) which is Schwartz in R̃′. This shows that (2.41) is a smooth family (in µ ∈ R)

of elements of Ψ−∞,0,0,−∞c~ (D).

Finally, we consider P ∈ Ψs
e,b(M); it remains to analyze N̂D(P, λ) in the case that on the

support of the restriction of the Schwartz kernel of P to ffb, expressed similarly to (2.44)–
(2.45) as

K = κ0(R′, u, τ, ω, ω′) |dτ dudω′|, u := log ub,

the coordinates u, τ ∈ R are bounded; and moreover we use local coordinates ω, ω′ ∈ Rn−2

on ∂D, with |ω − ω′| bounded as well. (That is, K is supported in a neighborhood of
diage,b ∩ffe.) Thus, κ0 is a conormal distribution,

κ0(R′, u, τ, ω, ω′) = (2π)−n
∫∫∫

R×R×Rn−1

eiτ λ̃eiuξei(ω−ω
′)·ηa(R′, ω, λ̃, ξ, η) dλ̃ dξ dη,

where a is a symbol of order s in (λ̃, ξ, η); in fact, due to the support properties of κ0, the

symbol a is analytic in λ̃, and satisfies symbolic bounds in (Re λ̃, ξ, η) locally uniformly in

Im λ̃. In the coordinates R′, u, ω, ω′, the Schwartz kernel of N̂D(P, λ) is then

Kλ(R′, u, ω, ω′) = (2π)−(n−1)

∫∫
R×Rn−1

eiuξei(ω−ω
′)·ηa(R′, ω,R′λ, ξ, η) dξ dη · |dudω′|.

For bounded λ ∈ C, this is the Schwartz kernel of an element of Ψs
b(D), with analytic

dependence on λ; this follows from the aforementioned symbolic bounds on a and the fact
that R′λ lies in a bounded subset of C.

For λ = −iµ + λ0 with ±λ0 > 1, we study Kλ(R′, u, ω, ω′) as a distribution on the
semiclassical cone single space Dc~, where h := |λ0|−1 is the semiclassical parameter. We
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first work away from the semiclassical face sf ⊂ Dc~, and use the coordinates h = ±λ−1
0 ,

R̃′ = R′/h, u, ω, ω′, in which Kλ takes the form

(h, R̃′, u, ω, ω′)

7→ (2π)−(n−1)

∫∫
R×Rn−1

eiuξei(ω−ω
′)·ηa(hR̃′, ω,±R̃′ − ihR̃′µ, ξ, η) dξ dη · |dudω′|.

This verifies the membership in Ψs,0,0,s
c~ (M) of (2.41) in this coordinate chart. Away from

cf ⊂ Dc~ on the other hand, we use the coordinates

h̃ =
1

±λ0R′
≥ 0, R′, ũ =

u

h̃
, ω, ω̃ :=

ω − ω′

h̃
∈ Rn−2,

on Dc~, in which Kλ = K−iµ+λ0 is given by

(h̃, R′, ũ, ω, ω̃)

7→ (2π)−(n−1)

∫∫
R×Rn−1

eiũ·h̃ξeiω̃·h̃ηa(R′, ω,±h̃−1 − iR′µ, ξ, η) dξ dη · h̃n−1|dũdω̃|

= (2π)−(n−1)

∫∫
R×Rn−1

eiũ·ξ̃eiω̃·η̃ã(R′, ω, h̃, ξ̃, η̃) dξ̃ dη̃ · |dũdω̃|,

(2.46)

where

ã(R′, ω, h̃, ξ̃, η̃) = a(R′, ω,±h̃−1 − iR′µ, h̃−1ξ̃, h̃−1η̃).

Note that h̃ is a defining function sf ⊂ Dc~. The symbolic estimates for a imply

|∂jR′∂
α
ω (h̃∂h̃)k∂l

ξ̃
∂βη̃ ã| .

(
1 + |h̃|−1 + |h̃|−1|(ξ̃, η̃)|

)s
. |h̃|−s

〈
(ξ̃, η̃)

〉s
.

Therefore, (2.46) is the Schwartz kernel of an element of Ψs,0,0,s
c~ (M). The proof is complete.

�

Using edge-b-ps.d.o.s, we can define, as usual, the full scale of weighted edge-b-Sobolev
spaces

Hs,αD,αR
e,b (M) = ραDD ραRR Hs

e,b(M),

with underlying L2-space defined with respect to any fixed weighted positive edge-b-density.

Proposition 2.35 (Edge-b-Sobolev spaces and the Mellin transform). Fix a collar neigh-

borhood [0, 1)ρD × D ⊂ M , and let χ ∈ A(0,0)([0, 1)ρD × D) be a bounded conormal cutoff
with ρD ≤ 1

2 on suppχ. Write the Mellin transform of u = u(ρD, q), q ∈ D, with support in

ρD < 1, as û(λ, q) =
∫∞

0 ρiλDu(ρD, q)
dρD
ρD

. Fix a weighted positive b-density νb on D, and fix

the weighted edge-b-density |dρDρD νb| on M ; use νb also as the density for defining c~-Sobolev

spaces on D. Let s, αD, αR ∈ R. Then

‖χu‖Hs,αD ,αR
e,b (M) ∼

∑
±

∫
[−1,1]

‖χ̂u(λ0 − iαD,−)‖2
H
s,αR
b (D)

dλ0

+

∫
±[1,∞)

‖χ̂u(λ0 − iαD,−)‖2
H
s,αR,αR,s
c,|λ0|−1 (D)

dλ0.

(2.47)

That is, there exists C > 1 so that for all u, the left hand side is bounded by C times the
right hand side, and vice versa.
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Proof. It suffices to consider the case αD = αR = 0. For s = 0, the equivalence (2.47)
follows from Plancherel’s Theorem. For s > 0, we argue analogously to (2.8)–(2.9) and pick
an operator A ∈ Ψs

e,b(M) which has an elliptic principal symbol and which near suppχ is
dilation-invariant. Then

‖χu‖2Hs
e,b(M) ∼

∫
R
‖χ̂u(λ,−)‖2L2(D) + ‖N̂D(A, λ)χ̂u(λ,−)‖2L2(D) dλ.

Split the integral into three pieces according to R = (−∞,−1] ∪ [−1, 1] ∪ [1,∞). For

λ ∈ [−1, 1], note that N̂D(A, λ) ∈ Ψs
b(D) is elliptic, and for λ = ±h−1, the operator family

(0, 1) 3 h 7→ N̂D(A,±h−1) is an elliptic element of Ψs,0,0,s
c~ (D). Thus, (2.47) follows from

the definition of b- and c~-Sobolev norms. For s < 0, use duality. �

2.7.3. Inversion of the D-normal operator. While we will not give a full elliptic parametrix
construction here, we do encounter elements of the large edge-b-calculus in the parametrix
construction for fully elliptic 3b-operators:

Definition 2.36 (Large edge-b-calculus). The large edge-b-calculus is defined as the sum
of the algebra Ψe,b(M) and the spaces

Ψ
−∞,(Elbb

,Effb
,Erbb

,Elbe ,Effe ,Erbe )

e,b (M)

of operators whose Schwartz kernels are polyhomogeneous on M2
e,b, valued in π∗R

e,bΩM ,

and with index set EH ⊂ C×N0 at the boundary hypersurface H ⊂M2
e,b. We furthermore

define the large extended edge-b-calculus as the sum of Ψe,b(M) and the spaces

Ψ
−∞,(Elbb

,Effb
,Erbb

,Elbe ,Effe ,Erbe ,Eff] )
e,b,] (M)

of operators with polyhomogeneous Schwartz kernels on M2
e,b,], valued in π∗R

e,bΩM , with

index set EH at the lift of the boundary hypersurface H ⊂ M2
e,b to M2

e,b,], and with index
set E] at ff].

We note that pullback along the blow-down map M2
e,b,] →M2

e,b shows that

Ψ
−∞,(Elbb

,Effb
,Erbb

,Elbe ,Effe ,Erbe )

e,b (M) ⊂ Ψ
−∞,(Elbb

,Effb
,Erbb

,Elbe ,Effe ,Erbe ,Elbe+Erbe )

e,b,] (M). (2.48)

One can define the Mellin-transformed normal operator family of elements of the large
(extended) calculus provided Re(Elbb

+ Erbb
) > 0, cf. Remark 2.6.

Theorem 2.37 (Inverse of the D-normal operator). Let P ∈ Ψs
e,b(M) be elliptic. Fix a

positive b-density on D, and a positive (b, sc)-density on tf ⊂ Dc~. Let αD, αR ∈ R, and
consider the conditions

(1) αR /∈ Re Specb(N∂D(P )),
(2) for all λ ∈ C with Imλ = −αD, the operator

N̂D(P, λ) : Hs′,αR
b (D)→ Hs′−s,αR

b (D) (2.49)

is invertible for some (hence all) s′ ∈ R;
(3) the tf-normal operator

N±D,tf(P ) : Hs′,αR,r
′

b,sc (tf)→ Hs′−s,αR,r′−s
b,sc (tf) (2.50)

(see Proposition 2.34) is invertible for some (hence all) s′, r′ ∈ R.
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(We say that P is fully elliptic at the weights αD, αR if all three conditions are satisfied.)

Only assuming conditions (1) and (3), the operator N̂D(P, λ), as a map (2.49), is an
analytic family of Fredholm operators which is invertible outside discrete set; and putting

Specb(ND(P )) :=
{

(z, k) : N̂D(P, λ)−1 has a pole of order ≥ k + 1 at λ = −iz
}
, (2.51)

we have |Re z| → ∞ along any sequence (z, k) ∈ Specb(ND(P )) with |z| → ∞. Assuming
now in addition that condition (2) is valid (thus P is fully elliptic), define, in the notation
of Definition 2.5, the index sets

E±D := E±(ND(P ), αD), E±R := E±(N∂D(P ), αR).

Define E±,(0)
R in terms of E±R via Definition 2.8, and E(0)

R in terms of E±,(0)
R as in (2.12).

Then there exists an operator

Q ∈ Ψ−se,b(M) + Ψ
−∞,(E+

D ,N0,E−D ,E
+,(0)
R ,N0∪(E(0)

R +1),E−,(0)
R +1)

e,b (M) (2.52)

so that N̂D(Q,λ) = N̂D(P, λ)−1 for all λ ∈ C with λ /∈ −i specb(ND(P )).

The conclusion about Q can equivalently be phrased as the statement that ND(Q) is the
inverse of ND(P ) as an operator between weighted edge-b-Sobolev spaces

ND(P ) : H
s′,αD,αR− 1

2
e,b (+ND)→ H

s′−s,αD,αR− 1
2

e,b (+ND)

for any s′ ∈ R. Here, He,b is defined via testing by dilation-invariant edge-b-ps.d.o.s, and
with respect to a positive dilation-invariant edge-b-density. (The choice of density causes
the shift by 1

2 ; if one were to use a b-density instead, the weight at R would be αR. Cf.
[Hin21a, Corollary 3.3].)

Remark 2.38 (Weights at R). Since the Fredholm index of N̂D(P, λ) in (2.49) jumps when
the weight αR crosses an element of Re Specb(N∂D(P )) (by the relative index formula
[Mel93, §6.2]), the interval of weights αR for which (2.49) is invertible is an open (possibly
empty) interval; the invertibility of the operator (2.49) is then independent of the particular
choice of αR inside this interval. Thus, Specb(ND(P )), when it is defined, is independent
of αR.

Proof of Theorem 2.37. Assume conditions (1) and (3). We begin by analyzing N̂D(P, λ)
in the high frequency regime. Thus, we consider

N̂±D,µ,h := N̂D(P,−iµ± h−1)

for µ ∈ [−C,C]. But N̂±D,µ,h ∈ Ψs,0,0,s
c~ (D) has an elliptic principal symbol, and its tf-

normal operator (2.50) is invertible. Therefore, Theorem 2.23 shows that there exists

h0 = h0(C) > 0 so that N̂±D,µ,h is invertible for h ∈ (0, h0) and for all µ ∈ [−C,C], and the

inverse satisfies((
N̂±D,µ,h

)−1
)
h∈(0,h0)

∈ Ψ−s,0,0,−sc~ (D) + Ψ
−∞,(E+,(0)

R ,E(0)
R ,E−,(0)

R ,N0)

c~ (D),

with smooth dependence on µ. Since N̂D(P, λ) ∈ Ψs
b(D) is fully elliptic with weight αR, it

is an analytic family of Fredholm operators between the spaces (2.49) by Theorem 2.9. The
analytic Fredholm theorem thus implies the discreteness of Specb(ND(P )); and the high
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frequency analysis shows that for all C ∈ R the number of elements (z, k) ∈ Specb(ND(P ))
with |Re z| ≤ C is finite.

Theorem 2.9, together with Proposition 2.34(2), give the description

N̂D(P, λ)−1 ∈ Ψ−sb (D) + Ψ
−∞,(E+,(0)

R ,E(0)
R ,E−,(0)

R )

b (D) (2.53)

for all λ ∈ C with (iλ, 0) /∈ Specb(ND(P )). Both summands can be chosen to depend
meromorphically on λ. Indeed, denote by Q0 ∈ Ψ−se,b(M) a symbolic parametrix of P , so

PQ0 = I −R0, R0 ∈ Ψ−∞e,b (M).

Passing to D-normal operators, this gives

ND(P )ND(Q0) = I −ND(R0). (2.54)

The construction of the parametrices QL, QR for N̂D(P, λ) (in the notation of Theorem 2.9)
can be performed with holomorphic dependence on λ ∈ C, and the formula (2.15) then

shows that N̂D(P, λ)−1 is a meromorphic family of operators of class (2.53).

• Construction of Q; non-sharp control. From now on, we require the validity of all three
conditions (1)–(3). We first present a simple but slightly lossy way to solve away the error
term in (2.54). Passing to Mellin-transformed normal operator families, define

Q̂1(λ) := N̂D(P, λ)−1N̂D(R0, λ), λ ∈ C.

In view of (2.53), this is a meromorphic family of elements of Ψ
−∞,(E+,(0)

R ,E(0)
R ,E−,(0)

R )

b (D) with
the following properties: it has no poles for Imλ = −αD by condition (2); its divisor (poles,
multiplied with i, with multiplicity) is contained in Specb(ND(P )); for fixed C > 0, it has
no poles with µ = − Imλ ∈ [−C,C] and |Reλ| ≥ h−1

0 for sufficiently small h0 > 0; and for
such µ, h0, we have(

Q̂1(−iµ± h−1)
)
h∈(0,h0)

∈ Ψ−∞,0,0,−∞c~ (D) + Ψ
−∞,(E+,(0)

R ,E(0)
R ,E−,(0)

R ,N0)

c~ (D).

The inverse Mellin transform of the Schwartz kernel of Q̂1(λ) on the line Imλ = −αD can
then be evaluated on the b-front face ffb,] in the extended edge-b-double space M2

e,b,], noting

that a neighborhood of (ff]∪ffe,])∩ffb,] is diffeomorphic to the product of [0,∞]ub
× (∂D)2

and [[0,∞]sb × [0, 1)Rb
; {(1, 0)}] where ub = R

R′ , sb = T
T ′ , and Rb = R + R′ in local

coordinates as in the proof of Proposition 2.34, with the Mellin transform taken in the
variable sb. Since the Mellin transform is the same as the Fourier transform in log sb, we

can apply Proposition 2.28 and conclude that Q̂1(λ) is the Mellin-transformed D-normal
operator of an element

Q1 ∈ Ψ
−∞,(E+

D ,N0,E−D ,E
+,(0)
R ,N0∪(E(0)

R +1),E−,(0)
R +1,E(0)

R +1)

e,b,] (M). (2.55)

The shifts by 1 in the index sets at ffe,], rbe,], and ff] arise from passing to right b-densities
to right edge-b-densities, cf. the factor R′−1 in (2.43).

Since N̂D(Q0 +Q1, λ) is a right inverse of N̂D(P, λ), and since one can similarly construct
a left inverse (which then necessarily agrees with the right inverse), we have succeeded in
proving Theorem 2.37 with a slightly less precise description of Q than in (2.52). (This
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description is sufficient for the application of Theorem 2.37 to the elliptic theory of 3b-
operators in §6.2; therefore, the reader not interested in the sharp edge-b-result here may
skip the remainder of the proof.)

• More careful construction. Consider again (2.54). Rather than passing to the Mellin

transform and inverting N̂D(P, λ) directly, we first pass to the normal operator ND,e(P ) at
ffe ∩ ffb. This operator can be inverted by adapting [Hin21a, Proposition 3.1] to the edge
setting (which requires only notational changes); the key ingredient is the invertibility of
the reduced normal operator, which in the present setting is precisely condition (2.50) (for
both choices of signs), cf. the discussion following (2.36).

Using the inverse of ND,e(P ), one can now solve away ND(R0) to leading order at ffe∩ffb;
while one can ensure that the remaining error vanishes rapidly at lbb and rbb, it has
nontrivial index sets E+

R, resp. E−R + 1 at lbe, resp. rbe. (The shift by n − 1 of the index
set at the right boundary in [Hin21a, Proposition 3.1] is a shift by 2 − 1 = 1 here, as n
in the reference, generalized to the edge setting, is the codimension, in the manifold M ,
of the fibers of the boundary fibration—which in the present setting is 2.) The error at
lbe (where R = 0) can be solved away using a b-normal operator argument as in [Hin21a,
Proof of Theorem 1.5]; the relevant normal operator is thus N∂D(P ). Solving away the
remaining error (rapidly vanishing at ffb ∩ (lbe ∪ lbb ∪ rbb), vanishing simply at ffb ∩ ffe)
using an asymptotic Neumann series yields an error which vanishes rapidly at all boundary
hypersurfaces of ffb except for rbe. This is completely analogous to [Hin21a, Theorem 1.5];
applying the resulting parametrix to ND(R0), we conclude the existence of an operator

Q2 ∈ Ψ
−∞,(∅,N0,∅,E+,(0)

R ,E(3)
R ,E−,(3)

R +1)

e,b (M)

with the property that

P (Q0 +Q2) = I −R2, ND(R2) ∈ ND
(

Ψ
−∞,(∅,N0,∅,∅,∅,E−,(3)

R +1)

e,b (M)
)

;

here E−,(3)
R := E−,(0),(0)

R ∪ (E−,(0)
R + 1) and E(3)

R := N0 ∪ (E+,(0),(0)
R + E−,(0),(0)

R + 1) (which,

for good measure, contain the sets Ê]− and Ê+
ff in the notation of the reference)

Only now do we pass to Mellin-transformed D-normal operators; this gives

N̂D(P, λ)N̂D(Q0 +Q1, λ) = I − N̂D(R1, λ). (2.56)

In view of the expression (2.43) for a positive right edge-b-density, the Schwartz kernel

of N̂D(R1, λ) can be written as R1,λ(R,ω,R′, ω′)|dR′R′ dω′| where R1,λ is analytic in λ, and

uniformly (for bounded Imλ) Schwartz in Reλ with values in the space Ψ−∞,(∅,E
−,(3)
R )(D)

of fully residual operators.

Define then

Q̂3(λ) := N̂D(P, λ)−1N̂D(R1, λ).

Using (2.53) and the composition property (2.10), this is a meromorphic family of elements

of Ψ−∞,(E
+,(4)
R ,E−,(4)

R )(D), for some index sets E±,(4)
R which we shall not write out explicitly,

with the following properties: it has no poles for Imλ = −αD; its divisor (poles, multiplied
with i, with multiplicity) is contained in Specb(ND(P )); for fixed C > 0, it has no poles
with µ = − Imλ ∈ [−C,C] and |Reλ| ≥ h−1

0 for sufficiently small h0 > 0; and for such
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µ, h0, using the composition property (2.25), we have(
Q̂3(−iµ± h−1)

)
h∈(0,h0)

∈ Ċ∞
(
[0, h0)h; Ψ−∞,(E

+,(4)
R ,E−,(4)

R )(D)
)
.

Therefore, the inverse Mellin transform of the Schwartz kernel of Q̂3(λ) on the line Imλ =
−αD is an element of

A(E+
D ,E
−
D ,E

+,(4)
R ,E−,(4)

R )

phg ([0,∞]sb ×D ×D;π∗R
bΩD)⊗

∣∣∣dsb

sb

∣∣∣
where πR : [0,∞] × D × D → D is the right projection. This is, a fortiori, the D-normal
operator of an element

Q3 ∈ Ψ
−∞,(E+

D ,N0,E−D ,E
+,(4)
R ,E+,(4)

R +E−,(4)
R +1,E−,(4)

R +1)

e,b (M).

The right inverse N̂D(Q0 + Q2 + Q3, λ) of N̂D(P, λ) is necessarily equal to N̂D(Q,λ) con-
structed before, and therefore also Q0 + Q2 + Q3 = Q (as these operators are defined as
inverse Mellin transforms along the same contour Imλ = −αD). Combining the thus es-
tablished fact that Q lies in the non-extended edge-b-calculus with the index set bounds
from (2.55) finishes the proof. �

Remark 2.39 (Parametrices). The construction of precise parametrices of general (i.e. not
dilation-invariant) fully elliptic edge-b-pseudodifferential operators requires, in addition to
Theorem 2.37, the inversion of the normal operator at R, which is of edge type; see [Maz91,
MV14] (and [Alb08, §5], [Hin21a]) for details on edge (or, as a special case, uniformly
degenerate) normal operators and their inverses. As we shall not need edge-b-parametrices
in this general setting, we do not work out the details here.

3. Geometric setup and basics of 3b-analysis

We are now set to turn to the main objective of the present paper: the detailed geometric
and analytic description of vector fields and operators with approximate translation- and
dilation-invariances.

Let M0 denote a smooth compact connected n-dimensional manifold whose boundary
∂M0 is a non-empty embedded hypersurface. Fix a point p ∈ ∂M0.

Definition 3.1 (3b-single space). The 3b-single space (associated with M0 and p ∈ ∂M0)
is defined as the real blow-up

M := [M0; {p}].
We denote by D ⊂M (called dilation face) the lift of ∂M0 and by T ⊂M (called translation
face) the lift of {p} (i.e. the front face of the blow-up); we denote by ρD, ρT ∈ C∞(M)
defining functions of D, T ⊂ M . The blow-down map is denoted β : M → M0. Finally,
ρ0 ∈ C∞(M0) denotes a boundary defining function, and thus β∗ρ0 ∈ C∞(M) is a total
boundary defining function on M .

See Figure 3.1.

Remark 3.2 (Several boundary points). We shall occasionally work on 3b-single spaces
defined via the blow-up of several boundary points. We leave it to the reader to spell out
all details of this generalization. In this section, this requires only notational changes, and
the definitions of (large) 3b-pseudodifferential calculi in subsequent sections require only
minor adaptations.
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M0

p

M

T
D β

Figure 3.1. The 3b-single space M as a blow-up of M0.

3.1. Vector fields, differential operators, bundles. We proceed define the class of
vector fields on the 3b-single space M from Definition 3.1 which will be the center of
attention in this work:

Definition 3.3 (3b-vector fields). The space V3b(M) of 3b-vector fields is the span over
C∞(M) of all smooth vector fields V ∈ V(M) which are of the form

V = ρ−1
D β∗W, W ∈ Vsc(M0). (3.1)

(Thus, in the notation of [Vas00], V3b(M) = ρ−1
D V3sc(M), where the space V3sc(M) of

3-body-scattering vector fields is the C∞(M)-span of β∗Vsc(M0).)

Since the quotient of any two defining functions of D ⊂ M is a smooth function on M ,
this definition of V3b(M) is independent of the choice of ρD.

The first part of the following Lemma clarifies the formula (3.1); the remaining parts
elucidate the structure of V3b(M0). By an abuse of notation, we denote by ρ0∂ρ0 ∈ Vb(M0)
a b-normal vector field on M0; this vector field is well-defined if one chooses a collar neigh-
borhood of ∂M0, and as a b-vector field it is independent modulo ρ0Vb(M0) of the choice
of collar neighborhood.

Lemma 3.4 (Basic properties of V3b(M)). (1) Let W ∈ Vsc(M0). Then ρ−1
D W extends

from the interior M◦0 = M◦ to a smooth b-vector field on M .
(2) The space V3b(M) is a Lie subalgebra of Vb(M), and ρT Vb(M) ⊂ V3b(M).
(3) Let V ∈ V3b(M). Then V is approximately dilation-invariant at D in the sense

that [β∗ρ0∂ρ0 , V ] ∈ ρDV3b(M) vanishes at D as a 3b-vector field. Furthermore, V

is approximately translation-invariant (with respect to ρ−1
0 ) at T in the sense that

[β∗ρ2
0∂ρ0 , V ] ∈ ρT V3b(M) vanishes at T (in fact, this lies in ρT ρDV3b(M)).

(4) Let V ∈ Vb(M). Then V ∈ V3b(M) if and only if V (β∗ρ0) ∈ (β∗ρ0)ρT C∞(M).

Proof. Since W ∈ Vsc(M0) = ρ0Vb(M0) vanishes (as a smooth vector field) at the point
p, its lift β∗W to M lies in Vb(M); but as a b-vector field, the restriction of β∗W to
M \ T = M0 \ {p} vanishes at the boundary, and therefore β∗W ∈ ρDVb(M). This
shows (1).

For part (2), suppose Vj = ρ−1
D β∗Wj with Wj ∈ Vsc(M0) for j = 1, 2, then

[V1, V2] = ρ−2
D β∗[W1,W2] + ρ−1

D [β∗W1, ρ
−1
D ]β∗W2 − ρ−1

D [β∗W2, ρ
−1
D ]β∗W1.

But [W1,W2] ∈ ρ0Vsc(M0), so the first term on the right lies in ρ−1
D ρT V3sc(M). In the

second and third terms, we note that the commutator of β∗W1 ∈ ρDVb(M) with ρ−1
D lies
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in C∞(M). Thus [V1, V2] ∈ V3b(M). More generally, if f1, f2 ∈ C∞(M), then also

[f1V1, f2V2] = f1f2[V1, V2] + f1(V1f2)V2 − f2(V2f1)V1 ∈ V3b(M)

since V3b(M) is, by definition, a C∞(M)-module. This proves that V3b(M) is a Lie alge-
bra. Lastly, the claim ρT Vb(M) ⊂ V3b(M) is easily verified in local coordinates (see the
discussion after equation (3.6) below).

To prove part (3), consider f ∈ C∞(M) and W ∈ Vsc(M0). Since ρ0∂ρ0 vanishes as a
smooth vector field at p and indeed on ∂M0, its lift to M satisfies β∗ρ0∂ρ0 ∈ Vb(M) ∩
ρDV(M). Therefore,

[β∗ρ0∂ρ0 , fρ
−1
D β∗W ] = [β∗ρ0∂ρ0 , f ]ρ−1

D β∗W + f [β∗ρ0∂ρ0 , ρ
−1
D β∗W ].

Since [β∗ρ0∂ρ0 , f ] ∈ ρDC∞(M), the first summand on the right lies in V3sc(M) = ρDV3b(M).
The commutator in the second summand can be expanded into the sum of the vector field
[β∗ρ0∂ρ0 , ρ

−1
D ]β∗W (which lies in ρ−1

D V3sc(M) = V3b(M)) and ρ−1
D β∗[ρ0∂ρ0 ,W ] (which due

to [ρ0∂ρ0 ,W ] ∈ [ρ0∂ρ0 , ρ0Vb(M0)] ⊂ ρ0Vb(M0) = Vsc(M0) lies in ρ−1
D V3sc(M) = V3b(M)

as well). But since ρ−1
D β∗W ∈ Vb(M), we also have f [β∗ρ0∂ρ0 , ρ

−1
D β∗W ] ∈ ρDVb(M) ⊂

ρ−1
T ρDV3b(M) (using part (2)). This gives, for V = fρ−1

D β∗W ∈ V3b(M), the membership

[β∗ρ0∂ρ0 , V ] ∈ V3b(M) ∩ ρ−1
T ρDV3b(M) = ρDV3b(M).

This proves the approximate dilation-invariance.

The approximate translation-invariance follows from the calculation

[β∗ρ2
0∂ρ0 , V ] = (β∗ρ0)[β∗ρ0∂ρ0 , V ]− [V,β∗ρ0]ρ0∂ρ0 .

Indeed, the first summand lies in ρT ρ
2
DV3b(M) by what we have already shown. The second

summand, for V = fρ−1
D β∗W with W ∈ Vsc(M0), is equal to

−fρ−1
D β∗[W,ρ0]ρ0∂ρ0 ;

but since [W,ρ0] ∈ ρ2
0C∞(M), this lies in ρ−1

D (β∗ρ0)C∞(M)β∗ρ2
0∂ρ0 ⊂ (β∗ρ0)V3b(M) =

ρT ρDV3b(M). The proof of part (3) is complete.

Finally, we turn to part (4). In one direction, we observe that for V = ρ−1
D β∗W ,

W ∈ Vsc(M0), we have V (β∗ρ0) = ρ−1
D β∗(Wρ0), which due to Wρ0 ∈ ρ2

0C∞(M) lies in
ρT (β∗ρ0)C∞(M) indeed. The converse is easily checked in local coordinates; see the dis-
cussion following (3.7b) below. �

We remark that the commutator of two 3b-vector fields typically does not vanish, as
a 3b-vector field, at D or T . This foreshadows the fact that 3b-vector fields, or more
generally (pseudo)differential operators, have two normal operators capturing their leading
order behavior at D, resp. T .

Remark 3.5 (3b vs. b and cusp). Lemma 3.4 implies that ρT Vb(M) ⊂ V3b(M) ⊂ Vb(M),
which directly shows that V3b(M) and Vb(M) agree away from T (i.e. χV3b(M) = χVb(M)
for any χ ∈ C∞(M) which vanishes in a neighborhood of T ). On the other hand, in M \D,
a 3b-vector field is a cusp vector field [MM99] with respect to the defining function β∗ρ0 of
T ◦. The terminology ‘3-body’ (rather than ‘cusp’) adopted in the present paper refers to
the fact that β∗ρ0 is a total boundary defining function of M , not the defining function of
the single boundary hypersurface T ⊂ M . (This is related to the fact that V3b(M) is not
of ‘product type’ near T ∩D, i.e. the space of restrictions of elements of V3b(M) to a collar
product neighborhood of T ∩ D ⊂M is not spanned by the horizontal lifts of Lie algebras
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of vector fields on T and D. Cf. the local frame (3.7b) below.) Note that any two boundary
defining functions of M0 lift to total boundary defining functions of M which over T are
constant multiples of each other; this is directly related to the independence of the space
of cusp vector fields on the choice of boundary defining functions related in this manner.

Let us now consider the above structures in local coordinates. Consider a neighborhood

[0, 1)T ×Bn−1
X , Bn−1

X = {X ∈ Rn−1 : |X| < 1}, (3.2)

of the point p inside of M0, with ∂M0, resp. p given by T = 0, resp. (T,X) = (0, 0). The
space Vsc(M0) is then spanned by the vector fields T 2∂T , T∂Xj (j = 1, . . . , n− 1). In terms
of the coordinates

t := T−1, x :=
X

T
(3.3)

in (0, 1)T × Bn−1
X , these vector fields are equal to −∂t − x

t ∂x, ∂xj , and therefore (noting
that x

t = X) elements of Vsc(M0) can equivalently be written as linear combinations of ∂t,

∂xj with coefficients in C∞([0, 1)T × Bn−1
X ). Note also that ρ0 = T is a (local) boundary

defining function. In particular,

ρ0∂ρ0 = T∂T = −(t∂t + x∂x)

is the scaling vector field up to an overall sign; its lift to the 3b-single space M is, at the
lift D of the original boundary, still the scaling vector field. This explains the terminology
in the first half of Lemma 3.4(3).

On the 3b-single space M , we may continue to use the coordinates (t, x) away from T ∪D.
Moreover, the coordinates T = t−1 ∈ [0, 1) and x ∈ Rn−1 cover a neighborhood of T ◦ (and
indeed they cover the intersection of a neighborhood of T with M \D). Since x is an affine
function on T ◦, the function 〈x〉−1 ∈ C∞(M) is a defining function of D, and we conclude
that V3b(M) is spanned over C∞(M) by the vector fields

〈x〉∂t, 〈x〉∂xj (j = 1, . . . , n− 1). (3.4)

For bounded x, i.e. in |X| . T , we can equivalently use

T 2∂T , T∂Xj (j = 1, . . . , n− 1).

As an aside, note that

ρ2
0∂ρ0 = T 2∂T = −∂t −

x

t
∂x ≡ −∂t mod ρT V3b(M);

thus the second half of Lemma 3.4(3) implies that near T ◦ we have [∂t, V ] ∈ t−1V3b(M) for
V ∈ V3b(M), explaining the terminology ‘translation-invariance’.

In |x| ≥ 1, we can pass in (3.4) to polar coordinates x = rω, r ≥ 1, ω ∈ Sn−2, and use as
a spanning set the vector fields (in local coordinates ω = (ω1, . . . , ωn−2) on Sn−2)

r∂t, r∂r, ∂ωj (j = 1, . . . , n− 2) (t > 1, r < t); (3.5)

these were mentioned already in §1.

Returning to the coordinates (T,X) on M0 and using polar coordinates X = Rω, we can,
in |X| & T (i.e. |x| & 1) where 〈XT 〉

−1 ∼ T
|X| is a local defining function of D, equivalently

use as a spanning set of V3b(M) the vector fields

|X|T∂T , |X|∂Xj or RT∂T , R∂R, ∂ωj (j = 1, . . . , n− 2). (3.6)
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(We remark that in this region, Vb(M) is spanned over C∞(M) by T∂T , R∂R, ∂ωj ; multi-
plying this vector fields by R thus gives smooth 3b-vector fields. Since R is a local defining
function of T , this implies ρT Vb(M) ⊂ V3b(M). Note here that upon replacing X by
X − vT for any fixed v ∈ Rn−1, the regions |X| > cT for various values of v but fixed c > 0
cover a full neighborhood of T ⊂M .)

Finally, we record a spanning set of V3b(M) expressed in the local coordinates

ρT = R, ρD =
T

R
, ω ∈ Sn−2 (3.7a)

near D ∩ T : the second set of vector fields (3.6) takes the form

ρT ρD∂ρD , ρT ∂ρT − ρD∂ρD , ∂ωj (j = 1, . . . , n− 2). (3.7b)

This description of V3b(M) allows for an easy proof of Lemma 3.4(4). Indeed, write an
arbitrary b-vector field as

V = aρD∂ρD + b(ρT ∂ρT − ρD∂ρD) +
n−2∑
j=1

cj∂ωj

where a, b, cj are smooth functions of ρD ≥ 0, ρT ≥ 0, and ω ∈ Sn−2. Since for ρ0 = T we
have β∗ρ0 = ρT ρD, the condition V (β∗ρ0) ∈ (β∗ρ0)ρT C∞(M) is equivalent to

aρT ρD ∈ ρ2
T ρDC∞(M),

so a ∈ ρT C∞(M), and thus to the membership V ∈ V3b(M) in view of (3.7b). (Working
with X − vT for any fixed v ∈ Rn−1, the regions R > cT for various values of v but fixed
c > 0 cover a full neighborhood of T ⊂M , and hence this argument is sufficient for proving
Lemma 3.4(4). One can alternatively work directly with the coordinates T, x near T ◦.)

The space V3b(M) is in a natural manner the space of smooth sections of a vector bundle:

Definition 3.6 (3b-tangent bundle and related bundles). The 3b-tangent bundle 3bTM →
M is the smooth rank n vector bundle with local frames given by (3.4), (3.5), (3.6), (3.7b)
in the respective coordinates. Invariantly, for q ∈ M , the fiber 3bTqM is the quotient
V3b(M)/IqV3b(M) where Iq ⊂ C∞(M) is the ideal of functions vanishing at q. The 3b-

cotangent bundle 3bT ∗M →M is the dual bundle of 3bTM . By 3bT ∗M →M we denote the
radially compactified 3b-cotangent bundle, and 3bS∗M is its boundary at fiber infinity. For
α ∈ R, the 3b-α-density bundle 3bΩαM →M is the bundle of α-densities corresponding to
3bTM . For α = 1, we write 3bΩM = 3bΩ1M for the 3b-density bundle.

In local coordinates (t, x) as in (3.4), an example of a smooth positive 3b-density is

〈x〉−n|dtdx1 · · · dxn−1|. (3.8)

Definition 3.7 (3b-differential operators). For m ∈ N, we define Diffm3b(M) as the space of
finite sums of up to m-fold compositions of 3b-vector fields; for m = 0 we set Diff0

3b(M) =
C∞(M), regarded as multiplication operators. For weights αD, αT ∈ R, we furthermore set

ρ−αDD ρ−αTT Diffm3b(M) = {ρ−αDD ρ−αTT P : P ∈ Diffm3b(M)}.

If E0 → M0 and F0 → M0 are smooth vector bundles over M0 and E = β∗E0, F = β∗F0

denote their pullbacks to M , then Diffm3b(M ;E,F ) and ρ−αDD ρ−αTT Diffm3b(M ;E,F ) denote
the corresponding spaces of 3b-differential operators acting between sections of E and F .
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The union of all spaces of weighted 3b-differential operators is an algebra under composi-
tion, with the differential order m and the weights αD, αT behaving additively under com-
position; this uses that for V ∈ V3b(M) ⊂ Vb(M) we have ραDD ραTT [V, ρ−αDD ρ−αTT ] ∈ C∞(M).
We also note that the fact that V3b(M) is a Lie algebra implies that elements P ∈ Diffm3b(M)
have a well-defined principal symbol

3bσm(M) ∈ P [m](3bT ∗M) ⊂ C∞(3bT ∗M), (3.9)

i.e. it is a homogeneous polynomial of degree m in the fibers of 3bT ∗M . The principal
symbol captures P modulo operators of one order lower (in the differential sense); that is,
we have a short exact sequence

0→ Diffm−1
3b (M) ↪→ Diffm3b(M)

3bσm−−−→ P [m](3bT ∗M)→ 0.

In §3.2, we discuss the leading order behavior of 3b-operators in the sense of decay at T ,
and in §3.3 the leading order behavior at D. In particular, the approximate invariances at
T and D recorded in Lemma 3.4(3) are related to the existence of exactly invariant normal
operators.

We end this section by discussing the relationship of 3bTM and bTT , bTD. Restriction
to T gives a restriction map V3b(M) → Vb(T ); this map is surjective since in the affine
coordinates x ∈ Rn−1 on T ◦, the space Vb(T ) is spanned over C∞(T ) by 〈x〉∂xj ∈ V3b(M),
see (3.4). Similarly, the restriction map V3b(M)→ Vb(D) to D is surjective, as follows from
the description (3.7b) of 3b-vector fields. Thus, we get corresponding surjective maps of
tangent bundles, and by duality inclusions of cotangent bundles,

3bTTM �
bTT , bT ∗T ↪→ 3bT ∗TM,

3bTDM �
bTD, bT ∗D ↪→ 3bT ∗DM.

(3.10)

3.2. Model at the translation face T . Due to the close relationship between 3b-vector
fields and cusp vector fields near T ◦, the normal operator at T is closely related to the cusp
normal operator; thus, we show here how to adapt some of the arguments of [MM99, §4]
to the present 3b-setting. As a first step, we prove:

Proposition 3.8 (Existence of the 0-energy operator). Let P ∈ Diffm3b(M). Then the
operator

N̂T (P, 0) : Ċ∞(T )→ Ċ∞(T ), Ċ∞(T ) 3 u 7→ (Pũ)|T ,
where ũ ∈ C∞(M) satisfies ũ|T = u, is well-defined (i.e. independent of the choice of ũ).

Moreover, N̂T (P, 0) ∈ Diffmb (T ), and the map Diffm3b(M) 3 P 7→ N̂T (P, 0) ∈ Diffmb (T ) is
surjective.

Proof. If ũ|T = 0, then using only that P ∈ Diffmb (M) we also have (Pũ)|T = 0; this

proves that N̂T (P, 0) is well-defined. For the second part, we work in the coordinates (t, x)
from (3.4); thus

P =
∑

j+|α|≤m

ajα(〈x〉Dt)
j(〈x〉Dx)α, (3.11)

where ajα ∈ C∞(M). Since x : T ◦ → Rn−1 is an affine coordinate system, the 0-energy
operator

N̂T (P, 0) =
∑
|α|≤m

(a0α|T )(〈x〉Dx)α (3.12)
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is indeed an m-th order b-differential operator, as claimed. Since any b-differential operator
on T can be written as on the right hand side in (3.12) for suitable coefficients a0α|T ∈
C∞(T ), the surjectivity of P 7→ N̂T (P, 0) onto Diffmb (T ) follows from the surjectivity of the
restriction map C∞(M)→ C∞(T ). �

Definition 3.9 (∂T -normal operator). For P ∈ Diffm3b(M), we denote by N∂T (P ) ∈
Diffmb,I(

+N∂T ) the b-normal operator of N̂T (P, 0) at ∂T .

In order to capture P as a 3b-operator to leading order at T , we also need to take the
Dt-terms of (3.11) into account.

Proposition 3.10 (Existence of the spectral family). Fix a boundary defining function
ρ0 ∈ C∞(M0). Let P ∈ Diffm3b(M) and σ ∈ R. Then the operator13

N̂T (P, σ) : Ċ∞(T )→ Ċ∞(T ), Ċ∞(T ) 3 u 7→
(
eiσ/β

∗ρ0P (e−iσ/β
∗ρ0 ũ)

)
|T ,

where ũ ∈ C∞(M) satisfies ũ|T = u, is well-defined. Moreover, N̂T (P, σ) ∈ ρ−mD Diffmsc(T );

and for any fixed σ 6= 0, the map Diffm3b(M) 3 P 7→ N̂T (P, σ) ∈ Diffm,msc (T ) = ρ−mD Diffmsc(T )
is surjective.

Proof. In terms of the local coordinate description (3.11), and with ρ0 = t−1, we have

eiσ/β
∗ρ0Pe−iσ/β

∗ρ0 =
∑

j+|α|≤m

ajα(〈x〉(Dt − σ))j(〈x〉Dx)α,

and therefore
N̂T (P, σ) =

∑
j+|α|≤m

(ajα|T )(−〈x〉σ)j(〈x〉Dx)α. (3.13)

Since 〈x〉−1 ∈ C∞(T ) is smooth (and vanishes simply at ∂T ), this implies that the rescaling

〈x〉−mN̂T (P, σ) is indeed a smooth coefficient scattering operator on T .

Conversely, when σ 6= 0, one can rewrite any operator

ρ−mD Diffmsc(T ) 3 B = 〈x〉m
∑
|β|≤m

bβD
β
x , bβ ∈ C∞(T ),

in the form

B =
∑
|β|≤m

bβ〈x〉m(〈x〉−1〈x〉Dx)β

=
∑
|β|≤m

bβ
∑
α≤β
〈x〉m−|β|fαβ(〈x〉Dx)α (fαβ ∈ C∞(T ))

=
∑
|α|≤m

(m−|α|∑
j=0

∑
β≥α

j+|β|=m

fαβbβ〈x〉j
)

(〈x〉Dx)α

=
∑

j+|α|≤m

b̃jα(−〈x〉σ)j(〈x〉Dx)α,

13The choice of signs in the exponents is a matter of convention; the present signs are chosen for compat-

ibility with the convention that the inverse Fourier transform of a function f̂(σ) is (2π)−1
∫
e−iσtf̂(σ) dσ.

This convention is unusual in Fourier analysis, but it is rather standard in the theory of wave equations
where t is a time coordinate.
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where b̃jα =
∑

β≥α, j+|β|=m fαβbβ(−σ)−j ∈ C∞(T ). Since the restriction map C∞(M) →
C∞(T ) is surjective, this proves the surjectivity of N̂T (−, σ) for σ 6= 0 in view of (3.13). �

Definition 3.11 (Spectral family). Fix a boundary defining function ρ0 ∈ C∞(M0). Then
the spectral family of P ∈ Diffm3b(M) is the family of operators

N̂T (P, σ), σ ∈ R,

defined by Proposition 3.10 for σ 6= 0, and by Proposition 3.8 for σ = 0.

We proceed to relate the principal symbols of elements of the spectral family to the
principal symbol of P itself. First, we consider the relationship between phase spaces. We
will use the fact that a choice of boundary defining function ρ0 ∈ C∞(M0) fixes a bundle
isomorphism

3bTT ◦M → TT ◦ ⊕ scT{0}[0, 1)ρ0 .

(In local coordinates as in (3.4), and with t = ρ−1
0 , this map takes 〈x〉∂t 7→ (0, 〈x〉∂t) =

(0,−〈x〉ρ2
0∂ρ0) and 〈x〉∂xj 7→ (〈x〉∂xj , 0).) Identifying scT ∗{0}[0, 1) ∼= Rσ via σ dρ0

ρ2
0

= −σ dt 7→
σ, the adjoint is the isomorphism

T ∗T ◦ ⊕ Rσ → 3bT ∗T ◦M, (dxj , σ) 7→ −σ dt+ dxj . (3.14)

Lemma 3.12 (Phase space identifications). (1) (Zero energy.) The adjoint of the sur-
jective bundle map 3bTTM → bTT (given by restriction of vector fields) is the injec-
tive map ι0 : bT ∗T ↪→ 3bT ∗TM , with range equal to the annihilator ann(3bTTM →
bTT ) (see also (3.10)).

(2) (Nonzero energies.) For a fixed defining function ρ0 ∈ C∞(M0), and for σ0 6= 0, the
restriction of the map (3.14) to T ∗T ◦ × {σ0} extends by continuity to a fiber-wise
affine map

ισ0 : scT ∗T → ρ−1
D

3bT ∗TM (3.15)

which is a diffeomorphism onto its image. (Here ρ−1
D

3bT ∗TM → T is the vector

bundle for which the space of smooth sections is ρ−1
D C∞(T ; 3bT ∗TM).)

In local coordinates, we can use the duals ρD dt, ρD dx (where ρD = 〈x〉−1) of the
local frame (3.4) of V3b(M) and thus introduce smooth fiber-linear coordinates σ3b ∈ R,
ξ3b ∈ Rn−1 on 3bT ∗M near T by writing the canonical 1-form on 3bT ∗M as

−σ3bρD dt+ ξ3b · ρD dx.

Then Lemma 3.12(1) is the isomorphism bT ∗T ∼= {σ3b = 0} ⊂ 3bT ∗TM ; using as fiber-linear

coordinates on bT ∗T the coordinates ξb ∈ Rn−1 defined by writing the canonical 1-form as
ξb · ρD dx, this isomorphism is given fiber-wise by ξb 7→ (0, ξb).

Using fiber-linear coordinates ξsc ∈ Rn−1 defined by writing the canonical 1-form as
ξsc · dx (so ξb = ρ−1

D ξsc), the map (3.15) is given fiber-wise by

ισ0 : ξsc 7→ (ρ−1
D σ0, ρ

−1
D ξsc). (3.16)

The factor ρ−1
D in the first component arises from dt = ρ−1

D · ρD dt.

Proof of Lemma 3.12. Part (1) is elementary linear algebra. Part (2) is a consequence
of (3.16). �
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ran(ι0) ran(ισ)
ρD

σ3bξ3b

Figure 3.2. The ranges of the maps ι0 (on the left) and ισ where σ > 0 (on
the right) inside of the radial compactification of 3bT ∗M , in the notation of
Lemma 3.12. Only the coordinates ρD, σ3b, and ξ3b are indicated.

See Figure 3.2 for an illustration.

Proposition 3.13 (Relationships between principal symbols). Fix a boundary defining

function ρ0 ∈ C∞(M0). For P ∈ Diffm3b(M), the principal symbol of N̂T (P, σ) (as an element

of P [m](bT ∗T ) for σ = 0, and as an element of ρ−mD Pm(scT ∗T )/ρ
−(m−1)
D Pm−1(scT ∗T ) for

σ 6= 0) is equal to the pullback of 3bσm(P ) along the map ισ from Lemma 3.12.

Proof. This follows from an inspection of (3.13). Indeed, for σ = 0 the conclusion is
immediate. For σ 6= 0 on the other hand, terms in (3.13) with j + |α| ≤ m − 1 are

subprincipal in ρ−mD Diffmsc(T ), and therefore the scattering principal symbol of N̂T (P, σ) is
given by ∑

j+|α|=m

(ajα|T )(−〈x〉σ)j(〈x〉ξsc)
α,

which indeed equals
3bσm(P ) =

∑
j+|α|=m

ajα(−σ3b)jξα3b

at (σ3b, ξ3b) = (〈x〉σ, 〈x〉ξsc) (cf. (3.16)). �

We remark that the geometric reason behind the fact that we can characterize the scatter-

ing symbol of N̂T (P, σ), σ 6= 0 at base infinity in the manner described in Proposition 3.13
is that the image of scT ∗∂T T under ισ, or more precisely under the continuous extension of

ισ to a map between radially compactified bundles, is contained in fiber infinity 3bS∗∂TM
(which is contained in the locus of the 3b-principal symbol of P ).

Regarding N̂T (P, σ) as a family of operators, we first consider the uniform behavior near
low frequencies:

Proposition 3.14 (The spectral family as a scattering-b-transition operator for low fre-
quencies). Fix a boundary defining function ρ0 ∈ C∞(M0). Let σ0 > 0. For P ∈ Diffm3b(M),
the family

±[0, σ0) 3 σ 7→ N̂T (P, σ) (3.17)

defines an element of Diffm,m,0,0sc-b (T ) in the notation of §2.4. Conversely, given an operator

family A = (Aσ)σ∈±[0,σ0) ∈ Diffm,m,0,0sc-b (T ), then there exists P ∈ Diffm3b(M) with A(σ) =

N̂T (P, σ) if and only if A(σ) is a polynomial of degree m in σ, and ∂jσA(0) ∈ Diffm−j,jb (T ) =

ρ−jD Diffm−jb (T ) for j = 0, . . . ,m.
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Proof. Write N̂T (P, σ) in (3.13) using inverse polar coordinates x = ρ−1
D ω, ρD = |x|−1, in

ρD < 1 in the form

N̂T (P, σ) =
∑

j+k+|α|≤m

ajkα(−σρ−1
D )j(ρDDρD)kDα

ω , ajkα ∈ C∞([0, 1)ρD × Sn−2
ω ). (3.18)

The membership (N̂T (P, σ))σ∈±[0,σ0) ∈ Diffm,m,0,0sc-b (T ) then follows from the facts that

σρ−1
D ∈ Diff0,1,0,−1

sc-b (T ) ⊂ Diff1,1,0,0
sc-b (T ) and

ρDDρD =
( ρD
ρD + |σ|

)−1
· ρD
ρD + |σ|

ρDDρD ∈ Diff1,1,0,0
sc-b (T ),

cf. (2.17); likewise Dω ∈ Diff1,1,0,0
sc-b (T ).

We prove the converse only near ∂T , where we can write

∂jσA(σ) = ρ−jD

∑
k+|α|≤m−j

ajkα(ρDDρD)kDα
ω .

Therefore, A(σ) =
∑m

j=0
σj

j! ∂
j
σA(σ) is the spectral family of

P :=
∑

j+k+|α|≤m

ãjkα(−ρ−1
D Dt)

j(ρDDρD)kDα
ω ∈ Diffm3b(M);

here, ãjkα ∈ C∞(M) is an extension of ajkα ∈ C∞(T ). �

Definition 3.15 (T -tf-normal operator). Fix a boundary defining function ρ0 ∈ C∞(M0).
Let P ∈ Diffm3b(M). Then the T -tf normal operator

N±T ,tf(P ) ∈ Diffm,m,0sc,b (+N∂T )

is the tf-normal operator of the sc-b-operator (3.17).

Explicitly, one introduces for ±σ > 0 the variable ρ̂D = ρD/|σ| in the expression (3.18)
and takes the limit |σ| → 0 for bounded ρ̂D > 0. Thus,

N±T ,tf(P ) :=
∑

j+k+|α|≤m

(ajkα|∂T )(∓ρ̂D)−j(ρ̂DDρ̂D)kDα
ω (3.19)

on [0,∞]ρ̂D × Sn−2; here the coefficients are ajkα|∂T ∈ C∞(Sn−2). The b-normal op-

erator of N±T ,tf(P ) at ρ̂D = ∞ selects the terms with j = 0, and hence is given by∑
k+|α|≤m(ajkα|∂T )(ρ̂DDρ̂D)kDα

ω , which is equal to the b-normal operator N∂T (P ) of the

zero energy operator N̂T (P, 0) at ρD = 0 (obtained from (3.18) by keeping only the terms
with j = 0 and restricting coefficients to ∂T ) upon identifying ρD and ρ̂D. (Note that
ρD = 0 corresponds to the far end ρ̂D = 0 from the perspective of the b-normal operator
of N±T ,tf(P ) at ρ̂−1

D = 0; in this sense, the map ρD = (ρ̂−1
D )−1 is homogeneous of degree −1,

matching Lemma 2.13.)

Proposition 3.16 (Relationship between principal symbols at low energy). Fix a boundary

defining function ρ0 ∈ C∞(M0). Denote by ρsc ∈ C∞(+N∂T ) a defining function of the zero
section. The principal symbol of N±T ,tf(P ) (i.e. a representative of the equivalence class in

(ρ−msc Pm/ρ
−(m−1)
sc Pm−1)(sc,bT ∗(+N∂T ))) is the pullback of 3bσm(P ) along the map

ι±T ,tf : sc,bT ∗(+N∂T )→ 3bT ∗∂TM
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defined as follows: fixing a defining function ρD of ∂T ⊂ T , and setting ρ̂D := ρD/|σ|,
identify bT ∗p (+N∂T ) ∼= bT ∗π(p)T ⊂

3bT ∗π(p)M where π : +N∂T → ∂T is the base projection.

(Thus, we identify dρ̂D
ρ̂D

with dρD
ρD

.) Write (sc,b)-covectors on +N∂T , resp. 3b-covectors

over ∂T as
ρ̂D + 1

ρ̂D
ζsc,b, resp. −σ3bρD dt+ ζ3b,

where ζsc,b ∈ bT ∗(+N∂T ) and ζ3b ∈ bT ∗T ⊂ 3bT ∗TM . Then

ι±T ,tf : sc,bT ∗(+N∂T ) 3 (ρ̂D, ω; ζsc,b) 7→ (ω;σ3b, ζ3b) =
(
ω;±ρ̂−1

D , (1 + ρ̂−1
D )ζsc,b

)
∈ 3bT ∗∂TM.

Proof. The choice of ρ̂D gives a diffeomorphism +N∂T ∼= [0,∞]ρ̂D × ∂T . Let us write
(sc, b)-covectors, resp. 3b-covectors (in a collar neighborhood of ∂T ⊂ T ) as

ξsc,b
dρ̂D

ρ̂D
ρ̂D
ρ̂D+1

+ ηsc,b
dω
ρ̂D
ρ̂D+1

= (ρD + |σ|)
(
ξsc,b

dρD
ρ2
D

+ ηsc,b
dω

ρD

)
,

resp. −σ3bρD dt+ ρD

(
ξ3b

dρD
ρ2
D

+ η3b
dω

ρD

)
.

(3.20)

In terms of the map (3.16), with (ρD + |σ|)(ξsc,b, ηsc,b) = (|σ|ρ̂D + |σ|)(ξsc-b, ηsc-b) in place

of ξsc, the principal symbol of N±T ,tf(P ) at (ξsc-b, ηsc-b) in the fiber of the sc-b-cotangent

bundle over (ρ̂D, ω) ∈ +N∂T is then the limit of the restriction of 3bσm(P ) to the point
over (|σ|ρ̂D, ω) ∈ T with 3b-momentum

ισ|(|σ|ρ̂D,ω)

(
(|σ|ρ̂D + |σ|)(ξsc,b, ηsc,b)

)
=
(
±ρ̂−1
D , (1 + ρ̂−1

D )ξsc,b, (1 + ρ̂−1
D )ηsc,b

)
as ±σ ↘ 0. Indeed, consider again the expression (3.18) of N̂T (P, σ), with P having 3b-
principal symbol

∑
j+k+|α|=m ajkα(−σ3b)jξk3bη

α
3b where we write 3b-covectors as in (3.20);

the sc-b-principal symbol of N±T ,tf(P ) in (3.19) in the coordinates (3.20) is then (the equiv-

alence class of) ∑
j+k+|α|≤m

(ajkα|∂T )(∓ρ̂D)−j
(
(1 + ρ̂−1

D )ξsc,b

)k(
(1 + ρ̂−1

D )ηsc,b

)α
.

This proves the claim. �

See Figure 3.3.

Next, we have the following result on the large σ behavior of N̂T (σ), in which we use
the semiclassical scattering cotangent bundle sc,~T ∗T → [0, 1)h×T , see §2.3.1. Recall that
for each h > 0, the restriction sc,~T ∗hT → {h} × T ∼= T of this bundle to the h-level set is
naturally isomorphic to the scattering cotangent bundle scT ∗T → T .

Proposition 3.17 (Spectral family at high energy). Fix a boundary defining function
ρ0 ∈ C∞(M0). Let P ∈ Diffm3b(M). For σ ∈ R, |σ| > 1, set h = |σ|−1 ∈ (0, 1) and define

N̂±T ,h(P ) := N̂T (P,±h−1). (3.21)

Then N̂±T ,h(P ) ∈ Diffm,m,msc,~ (T ). Its semiclassical principal symbol

sc,~σ
(
N̂±T ,h(P )

)
∈ (h−mρ−mD Pm/h−(m−1)ρ

−(m−1)
D Pm−1)(sc,~T ∗T )
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ξ3b

σ3b

3bT ∗∂TM

ρ̂−1D = 0

ρ̂D = c� 1
ξsc,b = c

Figure 3.3. Illustration of the map ι+T ,tf from Proposition 3.16; we only

show the coordinates (ρ̂D, ξsc,b) and (σ3b, ξ3b) from (3.20). The shaded grey

area is the range of ι+T ,tf . The dashed red, resp. solid blue lines are the

images of lines of constant ρ̂D, resp. ξsc,b.

is given by the restriction of 3bσm(P ) to the image of the map ι±h−1 : sc,~T ∗hT → ρ−1
D

3bT ∗TM
in the notation of (3.15).

In local coordinates, the semiclassical principal symbol thus maps ξsc,~ to the 3b-principal

symbol of P at (σ3b, ξ3b) = (±h−1ρ−1
D , h−1ρ−1

D ξsc,~). In other words, the principal symbol

of N̂±T ,h(P ) is the composition of ξsc,~
dx
h 7→ h−1ξsc,~ · dx ∈ scT ∗T with ι±h−1 .

Proof of Proposition 3.17. This is most directly seen in local coordinates starting from the
expression (3.13), and with ρD = 〈x〉−1. Indeed, we have

N̂T (P,±h−1) = h−mρ−mD

∑
j+|α|≤m

(h〈x〉−1)m−j−|α|(ajα|T )(∓1)j〈x〉−|α|(h〈x〉Dx)α.

Thus, only those terms with j + |α| = m contribute to the principal symbol of this oper-
ator (as an element of h−mρ−mD Diffmsc,~(T )); its semiclassical scattering principal symbol is
therefore

h−mρ−mD

∑
j+|α|=m

(ajα|T )(∓1)jξαsc,~ = 3bσm(P )(±h−1ρ−1
D , h−1ρ−1

D ξsc,~),

where we used that 3bσm(P ) is homogeneous of degree m. �

Finally, we assemble the spectral family into a single object. Note that the spectral

family N̂T (P, σ) is the conjugation by the Fourier transform in t of the translation-invariant
operator

NT (P ) :=
∑

j+|α|≤m

(ajα|T )(〈x〉Dt)
j(〈x〉Dx)α; (3.22)

i.e. NT (P ) arises from P simply by freezing its coefficients (as a 3b-operator) at T . The

operator (3.22) is a 3b-operator on the 3b-single space arising from the blow-up of Rt × Rn−1
x

at the ‘north’ and ‘south’ poles {±∞}× {0}. Since we are really only interested in NT (P )
as a model of P for large t, let us observe that the subset of this 3b-single space where
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t > −∞ is naturally diffeomorphic to the blow-up of (−∞,∞]t × Rn−1
x at {∞} × ∂Rn−1.

We phrase this more invariantly:

Definition 3.18 (Model space for the T -normal operator). The model space for the T -
normal operator (or T -model space) is defined as

N3bT :=
[
(−∞,∞]t × T ; {∞} × ∂T

]
.

We denote by T̂ the lift of {∞}×T , and by D̂ the front face. The space N3bT is equipped
with a translation action given by the lift of the R-translation action on the second factor
of T ◦ × R.

See Figure 3.4. Since T ◦ is an affine space, we can equivalently define N3bT as the set
t > −∞ inside the blow-up of the radial compactification of Rt × T ◦ at {(∞, x0)} for any
fixed x0 ∈ T ◦; therefore, we can define 3b-vector fields and associated classes of operators
on N3bT . Note then that a choice of local coordinates (T,X) on M0 near p and of (t, x)

on M◦ near T induces an embedding of a neighborhood of T̂ ⊂ N3bT into a neighborhood
of T ⊂ M via continuous extension of the map R × T ◦ 3 (t, x) 7→ (t, x) ∈ M◦; under this

embedding, T̂ and T get identified, and so do the 3b-tangent bundles on M and N3bT .

T̂

D̂D̂

N3bT

Figure 3.4. The T -model space N3bT . Also shown are two orbits of the
translation action (dashed, blue), as well as a level set of t (dashed, red).

Definition 3.19 (T -normal operator). Let P ∈ Diffm3b(M). Then the T -normal operator
of P is the operator

NT (P ) ∈ Diffm3b,I(N3bT )

(where the subscript ‘I’ restricts to the space of operators which are translation-invariant)

which is uniquely determined by the requirement that it have N̂T (P, σ) (defined with respect

to a choice of boundary defining function ρ0 ∈ C∞(M0)) as its spectral family at T̂ (defined
with respect to t−1).

See (3.22) for the expression in local coordinates. We shall not carry out an analysis
of the dependence of NT (P ) on the choice of ρ0 and thus do not provide a fully invariant
definition of NT (P ) (or of the T -model space); see [MM99] for a discussion in the closely
related cusp calculus.

The T -normal operator gives rise to a multiplicative short exact sequence

0→ ρT Diff3b(M) ↪→ Diff3b(M)
NT−−→ Diff3b,I(N3bT )→ 0 (3.23)

and thus captures, in a precise manner, a 3b-differential operator to leading order at T .
The analysis of NT (P ) of course takes advantage of the translation-invariance, i.e. the main

part of its analysis is based on the study of N̂T (P, σ).
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The principal symbol 3bσm(NT (P )) is translation-invariant and thus uniquely determined
by its restriction to 3bT ∗T̂ (N3bT ), where it is equal to 3bσm(P )|3bT ∗TM

under the isomorphism
3bT ∗T̂ (N3bT ) ∼= 3bT ∗TM .

Remark 3.20 (Normal operator at the corner D ∩ T ). For P ∈ Diffm3b(M), the translation-

invariant operator NT (P ) has itself a dilation-invariant model at D̂ ⊂ N3bT . Concretely,
in the coordinates (t, r, ω) from (3.5) and in t, r & 1, let us write

NT (P ) =
∑

j+k+|α|≤m

ajkα(r−1, ω)(rDt)
j(rDr)

kDα
ω ;

then we have

ND̂(P ) := ND̂(NT (P )) =
∑

j+k+|α|≤m

ajkα(0, ω)(rDt)
j(rDr)

kDα
ω . (3.24)

This operator is both translation-invariant in t and dilation-invariant in (t, r). The T -tf-
normal operators can be defined in terms of ND̂(P ) by exploiting the invariances succes-
sively: first by passing to the spectral family in t (effectively replacing Dt by −σ) and then
by rescaling r̂ = ±rσ in ±σ > 0; this gives

N±T ,tf(P ) =
∑

j+k+|α|≤m

ajkα(0, ω)(−r̂)j(r̂Dr̂)
kDα

ω . (3.25)

Thus, one can equivalently regard ND̂(P ) or N±T ,tf(P ) as the model operator(s) connecting

the two asymptotic regimes (approximate dilation- and approximate translation-invariance)
of 3b-operators.

3.3. Model at the dilation face D. Since Diff3b(M) ⊂ Diffb(M), one can use the normal
operator homomorphism at D from the b-calculus to capture the leading order behavior of
3b-differential operators at D:

ND,b : Diffb(M)→ Diffb,I(
+ND).

While this map ND,b is surjective, its restriction to Diff3b(M) is not surjective anymore
due to the fact that 3b-vector fields degenerate in a particular manner (relative to b-vector
fields) at ∂D, cf. (3.7b). In order to describe a more precise normal operator map on
Diff3b(M), note first that we have a canonical isomorphism +ND◦D ∼= +N∂M0\{p}∂M0 of
half line bundles.

Definition 3.21 (Model space for the D-normal operator). The model space for the D-
normal operator (or D-model space) is defined as

+N3bD :=
[
+N∂M0; +Np∂M0

]
.

This is a half line bundle over [∂M0; {p}] = D, and it is equipped with an R+-dilation
action on its fibers (given by the lift of the dilation action on +N∂M0). We denote its zero
section by D (by an abuse of notation) and the front face of +N3bD by R. We fix on R the
fibration R → +Np∂M0 given by restriction of the blow-down map; the typical fiber is thus
Sn−2. By Ve,b,I(

+N3bD) we denote the space of smooth vector fields which are tangent to
D and to the fibers of R, and which are moreover invariant under the dilation action on
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the fibers; by Diffme,b,I(
+N3bD) we denote the corresponding space of m-th order differential

operators. Finally, we define

+̃N3bD := [+N∂M0; +Np∂M0; op], (3.26)

where op ⊂ Np∂M0 is the zero section over p.

The usage of the notation ‘D’ for a boundary hypersurface of +N3bD is justified since
the lift of the zero section is diffeomorphic to [∂M0; {p}] = D. See Figure 3.5.

Note that we can identify a collar neighborhood of ∂M0 ⊂ M0 with a neighborhood of
the zero section o ⊂ N∂M0, and then [+N∂M0; op] is a model for M near D∪T . As far as a
neighborhood of D is concerned, there exists a diffeomorphism from a neighborhood of the
lift of D (i.e. of the zero section of +N∂M0) in [+N∂M0; op] to a neighborhood of D ⊂ M
which is the identity on D and whose differential at each point of D is also the identity
(using the natural identifications of the respective tangent spaces). The lift of +Np∂M0 to
[+N∂M0; op] is disjoint from a sufficiently small such collar neighborhood of D, and thus
blowing it up does not affect this statement (but this blow-up is performed in (3.26) so that
+̃N3bD is a resolution of +N3bD).

D

R
+N3bD

Figure 3.5. The D-model space +N3bD. Shown are also the boundary

hypersurfaces D and R as well as the fibers of R. The space +̃N3bD in (3.26)
is the blow-up at R∩D (solid circle).

Proposition 3.22 (D-normal operator). Let P ∈ Diff3b(M). If ND,b(P ) denotes its
b-normal operator at D, then its restriction ND,b(P )|+ND◦D extends by continuity to a

dilation-invariant edge-b-operator on +N3bD. This defines a surjective homomorphism14

ND : Diff3b(M)→ Diffe,b,I(
+N3bD). (3.27)

Moreover, there is a multiplicative short exact sequence

0→ ρDDiff3b(M) ↪→ Diff3b(M)
ND−−→ Diffe,b,I(

+N3bD)→ 0.

Colloquially, the map ND is given by freezing coefficients at D. The normal operator
ND(P ) for P ∈ Diff3b(M) thus captures, in a precise manner, a 3b-differential operator to
leading order at D by means of a dilation-invariant normal operator.

Proof of Proposition 3.22. It suffices to analyze ND on vector fields; since away from T
3b-vector fields and b-vector fields are the same, we only work near T . We use polar
coordinates X = Rω in ∂M0 around p as in (3.2), and hence 3b-vector fields are spanned,

14See equation (3.28) below for the expression in local coordinates in the case of vector fields.
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in T < |X|, by the vector fields in (3.6). Note furthermore that smooth functions near
D ⊂ M are precisely those functions which are smooth in T/R ∈ [0, 1), R ∈ [0, 1), and
ω ∈ Sn−2. Therefore, we can restrict a smooth 3b-vector field

V = a(T/R,R, ω)RT∂T + b(T/R,R, ω)R∂R +
n−2∑
j=1

cj(T/R,R, ω)∂ωj (T < R)

to T/R = 0 as a b-vector field and extend it by dilation-invariance in T , thus obtaining

ND(V ) = a(0, R, ω)RT∂T + b(0, R, ω)R∂R +

n−2∑
j=1

cj(0, R, ω)∂ωj . (3.28)

But this is not merely a dilation-invariant b-vector field on

[0,∞)T × [0, 1)R × Sn−2, (3.29)

but indeed an edge-b-vector field, where the edge structure is defined using the fibration
[0,∞)×Sn−2 → [0,∞). This shows that, in this description, ND(V ) ∈ Ve,b,I([0,∞)×[0, 1)×
Sn−2). On the other hand, the space (3.29) is also a local coordinate description of +N3bM0.
Note indeed that +N∂M0 is isomorphic (via a choice of boundary defining function, such
as T in our local chart) to [0,∞) × ∂M0, and hence +N3bM0

∼= [0,∞) × [∂M0; {p}]; and
(R,ω) are smooth coordinates near the front face of [∂M0; {p}] = D.

An alternative, more geometric and invariant, proof—which in particular explains how
the edge structure arises from the 3b-structure on M—proceeds as follows. Let V ∈
Vb(M) ⊃ V3b(M), and consider VD := ND,b(V ) ∈ Vb,I(

+ND). Note that a global triv-
ialization of +ND is given by the fiber-linear function dρD for any fixed defining function
ρD of D. Letting ρT = β∗ρ0/ρD where ρ0 ∈ C∞(M0) is a boundary defining function,
another trivialization is defined over D◦ = D \ T by dρ0 = ρT dρD (note though that
this trivialization does not extend smoothly down to ∂D). Now, the stronger membership
V ∈ V3b(M) is equivalent to V ρ0 ∈ ρ0ρT C∞(M) by Lemma 3.4(4) (where we now drop the
blow-down map β from the notation), which implies

VD(dρ0) = fρT dρ0 (3.30)

for some f ∈ C∞(D) (regarded as a fiber-constant function on +ND). Conversely, for any
V ∈ Vb(M) so that VD = ND,b(V ) has the property (3.30), there exists V ′ ∈ V3b(M) so
that ND,b(V ′) = VD, as is easily checked in local coordinates.

Now, the positive level sets of dρ0 inside of +ND escape to fiber infinity as one approaches
∂D in the base. We thus consider the resolution[

+ND; +SN∂DD
]

(3.31)

of the radial compactification of +ND at fiber infinity (identified with the inward pointing
spherical normal bundle) over ∂D; denote the front face of (3.31) by ef. The level sets of
dρ0 = ρT dρD = ρT /(dρD)−1 are transversal to ef (note here that (dρD)−1 is a defining

function of fiber infinity inside +ND). Moreover, dρ0|ef : ef → [0,∞] is a smooth fibration;
the condition (3.30) is equivalent to the tangency of VD of the fibers of this fibration. (We
remark that a different choice of the boundary defining function ρ′0 of M0 leads to the same
fibration of ef up to post-composition by scaling [0,∞] via x 7→ λx where λ = (ρ′0/ρ0)(p) >
0.)



3B-CALCULUS 75

We wish to ‘blow down’ the lift of the lateral boundary +N∂DD of (3.31). To this end,
a calculation in local coordinates shows that the identity map on +ND◦ = +N(∂M0 \ {p})
extends by continuity to a diffeomorphism[

+ND; +SN∂DD
] ∼= [+N∂M0; +Np∂M0; {(p, 0)}

]
= +̃N3bD (3.32)

which is equivariant for the lifts of the R+-dilation actions on +ND and +N∂M0. See
Figure 3.6. Moreover, ef on the left in (3.32) corresponds to the lift of +Np∂M0 on the
right, and the lateral boundary on the left corresponds to the lift of {(p, 0)} (the zero section
of +Np∂M0) on the right. Blowing down the lateral boundary is thus effected by omitting
the final blow-up on the right in (3.32); this gives (3.27) for 3b-vector fields and thus (by
multiplicativity) finishes the proof. �

+N∂DD

+SND

ef

dρD = c

dρ0 = c

[
+ND; +SN∂DD

]

∼=
+Np∂M0

dρD = c

dρ0 = c

+̃N3bD =
[
+N∂M0; +Np∂M0; {(p, 0)}

]

Figure 3.6. Illustration of the diffeomorphism (3.32) (here ∂M0 = (−1, 1),
so D = (−1, 0]t [0, 1), and we only show the component [0, 1)). Also shown

are corresponding fibers of +ND and +N∂M0 (blue, dashed) as well as
corresponding level sets of dρ0 (red, dashed) and dρD (green, dashed).

Corollary 3.23 (Phase space identification). The restriction of the bundle isomorphism
bT∂M0M0

∼= bT∂M0(+N∂M0) (where we identify ∂M0 with the zero section of +N∂M0) to
∂M0 \ {p} extends by continuity to an isomorphism

3bT ∗DM
∼= e,bT ∗D(+N3bD), (3.33)

and likewise for the tangent bundles.

Corollary 3.24 (Principal symbol). Fix a boundary defining function ρ0 ∈ C∞(M0). Let
P ∈ Diffm3b(M). Under the isomorphism (3.33), we have e,bσm(ND(P )) = 3bσm(P )|3bT ∗DM

.

Having placed ND(P ) in the edge-b-algebra, the definitions and results of §2.7 become
applicable. We stress that in view of the dilation-invariance of the D-normal operator in
the fibers of +N3bD we analyze it by means of the Mellin-transform in the total boundary
defining function ρ0, not in the boundary defining function ρD of D.

Definition 3.25 (Mellin-transformed D-normal operator family, and related operators).
Fix a boundary defining function ρ0 ∈ C∞(M0). Denote, by an abuse of notation, the
fiber-linear function dρ0 on +N∂M0 by ρ0 as well; this induces a trivialization +N3bD ∼=
D × [0,∞)ρ0 . Let P ∈ Diffm3b(M). Following (2.33), the Mellin-transformed D-normal

operator family N̂D(P, λ) ∈ Diffmb (D), λ ∈ C, is defined by

N̂D(P, λ)u :=
(
ρ−iλ0 ND(P )(ρiλ0 u)

)
|ρ0=0, u ∈ Ċ∞(D). (3.34)
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Mirroring (2.35), we moreover denote by

N±D,tf(P ) ∈ Diffm,0,mb,sc (+N∂D)

the tf-normal operator of the smooth (in µ ∈ R) operator family

(0, 1) 3 h 7→ N̂D(P,−iµ± h−1),

which defines an element of Diffm,0,0,mc~ (D) (see (2.34)). Finally, we denote by

N∂D(P ) ∈ Diffmb,I(
+N∂D)

the b-normal operator of N̂D(P, 0) at ∂D (or equivalently that of N±D,tf(P ) at tf ∩ cf),

see (2.37).

Remark 3.26 (Normal operator of ND(P ) atR). The operator ND(P ) has a normal operator
ND,e(P ) at R, obtained by freezing its coefficients there (as an edge-b-operator); see (2.36).

In terms of t = T−1 and r = R
T , we note that RTDT = −rDt − r

t rDr and RDR = rDr;
in particular, −rDt is the unique 3b-vector field which is equal to RTDT at D ∩ T (as
a 3b-vector field) and invariant under translations in t and dilations in (t, r). One can
then show that the translation- and dilation-invariant extension of ND,e(P ) is equal to the

D̂-normal operator ND̂(P ) of NT (P ).

Remark 3.27 (Mellin-transformed normal operator in a special case). In some applications,
the operator under consideration is a 3b-operator only near T , whereas far from T it
has a different structure, and D may have additional boundary hypersurfaces. One such
situation arises in [Hin23] where D can be identified with the dilation face D̂ ⊂ N3bT
of the T -model space, and the D-normal operator is equal to the operator ND̂(P ) in the
notation of Remark 3.20. In this special setting, we proceed to explain the relationship of
the Mellin-transformed normal operator family of ND̂(P ) and the T -tf-normal operators.
It is most convenient to use the coordinates

ρ =
1

r
, v =

t

r
,

in which the operator (3.24) takes the form

ND̂(P ) =
∑

j+k+|α|≤m

ajkα(0, ω)Dj
v(−vDv − ρDρ)

kDα
ω .

(The dilation action is generated by t∂t + r∂r = −ρ∂ρ, and the translation action by
∂t = ρ∂v.) We pass to the Mellin transformed normal operator family with respect to
ρ; this is a singular multiple of the total defining function t−1 = v−1ρ, and thus the
Mellin-transformed normal operator families are related via conjugation by viλ. That is,
we consider the operator ρ−iλND̂(P )ρiλ acting on functions of u(v, ω) only, which takes the
form

ρ−iλND̂(P )ρiλ =
∑

j+k+|α|≤m

ajkα(0, ω)Dj
v(−vDv − λ)kDα

ω .

We then exploit a vestige of the translation-invariance by conjugating this operator by
the Fourier transform in v with the same unusual sign convention as for the t-Fourier
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transform, so û(r̂, ω) =
∫
eir̂vu(v, ω) dv. This amounts to replacing Dv and v by −r̂ and

Dr̂, respectively, and thus gives, in view of Dr̂r̂ = r̂Dr̂ − i,

ÑD̂(P, λ) =
∑

j+k+|α|≤m

ajkα(0, ω)(−r̂)j
(
r̂Dr̂ − (λ+ i)

)k
Dα
ω .

Finally, we conjugate this operator by r̂i(λ+i) = r̂iλ−1,

r̂−iλ+1ÑD̂(P, λ)r̂iλ−1 =
∑

j+k+|α|≤m

ajkα(0, ω)(−r̂)j(r̂Dr̂)
kDα

ω .

This, finally, is the expression (3.25) for N+
T ,tf(P ).

3.4. Summary of symbols, normal operators, and their interrelationships. At this
point, we have introduced a number of multiplicative symbol and normal operator maps.
Given a 3b-differential operator P ∈ Diffm3b(M), these are:

(1) the 3b-principal symbol 3bσm(P ) ∈ P [m](3bT ∗M) (see (3.9));

(2) the T -normal operator NT (P ) and the corresponding spectral family N̂T (P, σ),
σ ∈ R (see Definitions 3.11 and 3.19).

(3) the D-normal operator ND(P ) and the corresponding Mellin-transformed normal

operator family N̂D(P, λ), λ ∈ C (see Proposition 3.22 and Definition 3.25).

Moreover, the low energy spectral family ±[0, 1) 3 σ 7→ N̂T (P, σ) defines an element

of Diffm,m,0,0sc-b (T ) (see Proposition 3.14), and the high energy Mellin-transformed normal

operator family R×(0, 1) 3 (µ, h) 7→ N̂D(P,−iµ±h−1) defines an element of Diffm,0,0,mc~ (D)
(see Definition 3.25).

The principal symbols of N̂T (P, σ) as a b-differential operator for σ = 0 or a weighted
scattering differential operator for σ 6= 0 (including in the high energy, or semiclassical, sense
as |σ| → ∞) can be expressed in terms of the principal symbol of P ; see Propositions 3.13

and 3.17. Likewise for the principal symbols of N̂D(P, λ) as a b-differential operator, or in
the high energy sense as a semiclassical cone operator; see Corollary 3.23 and Lemma 2.31.
Geometrically, the principal symbols of the various normal operators are obtained by pulling
back the principal symbol of P to appropriate subsets of (the radial compactification of)
3bT ∗M which are the images under maps which embed the (radially compactified) phase
spaces corresponding to the model algebras (e.g. bT ∗T for the zero energy operator, or
scT ∗T for elements of the spectral family at nonzero energies) into 3bT ∗M .

There are further normal operators related to NT (P ), namely N∂T (P ) (see Defini-

tion 3.9), N̂±T ,h(P ) (see Proposition 3.17), and N±T ,tf(P ) (see Definition 3.15); and normal

operators related to ND(P ), namely N∂D(P ) and N±D,tf(P ) (see Definition 3.25). The T -

tf-normal operator N±T ,tf(P ) of N̂T (P, σ) near σ = 0 and ∂T and the D-tf-normal operator

N±D,tf(P ) of N̂D(P, λ) near |λ| =∞ and ∂D carry the same information:

Proposition 3.28 (Identification of N±D,tf(P ) and N±T ,tf(P )). Let P ∈ Diffm3b(M). Fix a

boundary defining function ρ0 ∈ C∞(M0) to define N±T ,tf(P ) and N±D,tf(P ). Denote by

φ : +N∂T → +N∂D (3.35)
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the isomorphism (homogeneous of degree −1 in the fibers) given by Lemma 2.1. Then
φ∗N±D,tf(P ) = N±T ,tf(P ).

In this sense, the low frequency behavior of the spectral family at T near ∂T is the same
as the high frequency behavior of the Mellin-transformed normal operator family at D near
∂D.

Proof of Proposition 3.28. We check this in the coordinates T = ρ0, R, ω from (3.6), and

for the basic operators P1 = RTDT , P2 = RDR, and P3 = Dωj . Thus, N̂D(P1, λ) = Rλ,

N̂D(P2, λ) = RDR, and N̂D(P3, λ) = Dωj ; taking the limit as Reλ → ±∞ (for bounded

Imλ) with R̃ = R|λ| bounded, we get

N±D,tf(P1) = ±R̃, N±D,tf(P2) = R̃DR̃, N±D,tf(P3) = Dωj . (3.36)

In the coordinates t = T−1, ρ = (R/T )−1 = T/R, ω, thus with ρ|T a defining function

of ∂T , we have P1 = −ρ−1Dt + t−1Dρ, P2 = −ρDρ, and P3 = Dωj , therefore N̂T (P1, σ) =

ρ−1σ, N̂T (P2, σ) = −ρDρ, and N̂T (P3, σ) = Dωj , and thus, with ρ̂ := ρ/σ,

N±T ,tf(P1) = ±ρ̂−1, N±T ,tf(P2) = −ρ̂Dρ̂, N±T ,tf(P3) = Dωj . (3.37)

Using the identifications of R̃ and ρ̂ with the fiber-linear coordinates dR and dρ on
+N∂D and +N∂T respectively, the isomorphism φ takes the form φ(R̃, ω) = (R̃−1, ω), i.e.

ρ̂ = R̃−1. (Note here that R · ρ = T = ρ0 indeed.) This identifies (3.36) and (3.37), as
desired. �

Note that N∂D(P ) is the b-normal operator of N±D,tf(P ) at cf ⊂ Dc~ in the notation

of §2.5, using the identification of +N∂D and the inward pointing normal bundle of tf ∩ cf
inside of tf ⊂ Dc~. Furthermore, Proposition 3.28 implies that this b-normal operator can
be identified (via φ) with the b-normal operator Nzf∩tf(N

±
T ,tf(P )) of N±T ,tf(P ) at zf ∩ tf ⊂

tf ⊂ Tsc-b, where zf ∼= T is the zero face of the sc-b-single space Tsc-b.

Proposition 3.29 (Relationship of N∂D(P ) and N∂T (P )). Let P ∈ Diffm3b(M). Fix a

defining function ρ0 ∈ C∞(M0). Let ψ : +N∂T → +N(zf ∩ tf) denote the isomorphism
(homogeneous of degree −1) of Lemma 2.13. Let φ be as in (3.35). Then ψ∗φ∗N∂D(P ) =
N∂T (P ), where we identify φ∗N∂D(P ) = Nzf∩tf(N

±
T ,tf(P )), as explained above.

Note here that under the (homogeneous degree −1) identification of the inward pointing
normal bundles of zf ∩ tf ⊂ tf ⊂ Tsc-b—which is the inward pointing normal bundle at fiber
infinity of +N∂T—and of ∂T ⊂ T , the composition

φ ◦ ψ : +N∂T → +N∂D (3.38)

is an isomorphism and homogeneous of degree −1.

Proof of Proposition 3.29. For the operators P1, P2, P3 from the proof of Proposition 3.28,
we have

N∂T (P1) = 0, N∂T (P2) = −ρDρ, N∂T (P3) = Dωj .

In terms of the defining function r̂ = ρ̂−1 = σ/ρ of zf ∩ tf ⊂ tf, we deduce from (3.37) that

Nzf∩tf(N
±
T ,tf(P1)) = 0, Nzf∩tf(N

±
T ,tf(P1)) = r̂Dr̂, Nzf∩tf(N

±
T ,tf(P3)) = Dωj .

It then remains to note that the isomorphism ψ takes the form (r̂, ω) = (ρ−1, ω). �
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See Figure 3.7 for an illustration of the various normal operators.

NT (P )

ND(P )

N∂T (P )

N∂D(P )

σ

N∂T (P )

N̂T (P, 0)

N̂T (P, σ)

N−T ,tf(P )

N+
T ,tf(P ) λ0

N̂D(P,−iµ+ λ0)
N∂D(P )

N+
D,tf(P )

N−D,tf(P )

Figure 3.7. The normal operators of a 3b-differential operator (with the
semiclassical regimes not explicitly indicated); some relationships are indi-
cated with matching colors.

3.5. An example. We consider the example from Theorem 1.2. Thus, on Rn with coor-
dinates (t, x), t ∈ R, x ∈ Rn−1, consider the Euclidean Laplacian ∆ = D2

t +
∑n−1

j=1 D
2
xj

and

potentials V ∈ 〈(t, x)〉−2C∞(Rn) and VT ∈ 〈x〉−3C∞(Rn−1). Consider then

P = 〈x〉2P0, P0 := ∆Rn + V (t, x) + VT (x). (3.39)

In polar coordinates x = rω, r = |x|, ω ∈ Sn−2, this is

P = 〈r〉2
(
D2
t +D2

r − i(n− 2)r−1Dr + r−2∆Sn−2 + VT (rω) + V (t, rω)
)
. (3.40)

On M = [Rn; {(±∞, 0)}] and in r > 1, the vector fields 〈r〉Dt, 〈r〉Dr, and Dωj are 3b-vector
fields, and therefore we have P ∈ Diff2

3b(M), and indeed the 3b-principal symbol 3bσ2(P )
is elliptic. As defining functions of the lift D of ∂Rn and the front face (which has two

connected components), we can take ρD = 〈x〉−1 and ρT = 〈x〉
〈(t,x)〉 , respectively; note that

ρDρT = 〈(t, x)〉−1 is a boundary defining function of Rn. The zero energy operator (at
either front face) is

N̂T (P, 0) = 〈x〉2(∆Rn−1 + VT ) ∈ Diff2
b(Rn−1), (3.41)

while
〈x〉−2N̂T (P, σ) = ∆Rn−1 + VT + σ2 ∈ Diff2

sc(Rn−1). (3.42)

Passing to inverse polar coordinates x = ρ−1ω on Rn−1 with ρ = |x|−1, ω ∈ Sn−2, one then
finds that, for ρ̂ = ρ/σ,

ρ̂2N±T ,tf(P ) = ρ̂2
(
(ρ̂Dρ̂)

2 + i(n− 3)ρ̂Dρ̂ + ∆Sn−2

)
+ 1.

This is the spectral family (at a spectral parameter off the continuous spectrum) of the
Laplacian on an exact cone, with ρ̂ = 0, resp. ρ̂ =∞ being the large, resp. small end of the

cone. Proposition 3.28 (or direct computation using the expressions for N̂D(P, λ) below)
gives

R̃−2N±D,tf(P ) = R̃−2
(
(R̃DR̃)2 − i(n− 3)R̃DR̃ + ∆Sn−2

)
+ 1, (3.43)
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now with R̃ = 0, resp. R̃ =∞, being the small, resp. large end of the cone. Furthermore,

N∂T (P ) = (ρDρ)
2 + i(n− 3)ρDρ + ∆Sn−2 , N∂D(P ) = (RDR)2 − i(n− 3)RDR + ∆Sn−2 .

(3.44)

The D-normal operator can be computed in the coordinates T = t−1, R = r/t, ω, to be
(in t > 0, |x| . t, with similar expressions in t < 0, |x| . −t)

ND(P ) = (RTDT +R2DR)2 + (RDR)2 − i(n− 3)RDR + ∆Sn−2 +W (Rω)

=⇒ N̂D(P, λ) = (RDR)2 − i(n− 3)RDR + ∆Sn−2 + (Rλ+R2DR)2 +W (Rω),

where W (R,ω) = limT→0(〈R/T 〉2V (T−1, Rω/T )) (which is expression for the restriction
of 〈x〉2V to ∂Rn in local coordinates). A simpler description can be given in inverse polar
coordinates % = |(t, x)|−1, $ = % · (t, x) ∈ Sn−1: then ρ−2

T ND(P ) is the b-normal operator
of %−2∆Rn + VD where VD := (%−2V )|∂Rn ∈ C

∞(Sn−1
$ ), and therefore

ND(P ) = (ρT |∂Rn)2
(
(%D%)

2 + i(n− 2)%D% + ∆Sn−1 + VD
)
, (3.45)

regarded as a dilation-invariant (in %) b-differential operator on [0,∞)% × [Sn−1; {N,S}]
where N,S ∈ Sn−1 are the north and south pole (where ρT = 0), respectively.

4. The small 3b-calculus

We use the notation M0, p, M = [M0; {p}] of §3, see Definition 3.1. We now mi-
crolocalize the algebra Diff3b(M) of 3b-differential operators (see Definition 3.7) on the
3b-single space M to an algebra Ψ3b(M) of 3b-pseudodifferential operators. We accom-
plish this by defining a suitable resolution of the space M2

0 so that the Schwartz kernels
of 3b-differential operators are precisely the nondegenerate Dirac distributions at the lifted
diagonal, and then generalizing the class of Schwartz kernels to conormal distributions. See
e.g. [MM87, Maz91, Mel93, Mel94, MM99] for earlier instances of this procedure.

Loosely speaking, we want elements of Ψ3b(M) to act like b-ps.d.o.s near D◦, and like
cusp ps.d.o.s (with respect to the lift of a defining function of M0) near T ◦. Recall here
that if we were to consider the cusp calculus on M0, with respect to a fixed boundary
defining function ρ0 ∈ C∞(M0), we would introduce on the b-double space (M0)2

b the

smooth function s =
ρ0−ρ′0
ρ0+ρ′0

∈ [−1, 1] where we write (by an abuse of notation) ρ0 and ρ′0 for

the lifts of ρ0 along the left and right projections (M0)2
b →M0, respectively; and we would

then define the cusp double space of M0 by

(M0)2
cu := [(M0)2

b; ffb ∩ s−1(0)],

where ffb ⊂ (M0)2
b is the front face. The (small) cusp calculus then consists of distributional

right cusp densities on (M0)2
cu which are conormal to diagcu (the lift of diagb) and vanish to

infinite order at the boundary hypersurfaces of (M0)2
cu which are disjoint from diagcu. (The

corresponding large calculus permits nontrivial, typically conormal or polyhomogeneous,
behavior of Schwartz kernels at all boundary hypersurfaces.)

Roughly speaking then, to construct the 3b-double space of M , we wish to blow up the
b-double space of M0 similarly to the definition of the cusp double space, but now only
at the point (p, p). The following minimalistic definition suffices to capture 3b-differential
operators:
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Lemma 4.1 (Tiny 3b-double space). Let p3b := π−1
b,L({p}) ∩ diagb (which is a subset of

(M0)2
b containing only one point). Put

M2
3b,tiny := [(M0)2

b; p3b].

Then lifts of elements of V3b(M) to the left factor of M2
3b,tiny are smooth b-vector fields, and

the lift of V3b(M) is transversal to the lift diag3b,tiny of diagb to M2
3b,tiny; moreover, this

lifted diagonal is a p-submanifold. That is, the fiber-linear subspaces of Tdiag3b,tiny
M2

3b,tiny

given by T diag3b,tiny on the one hand, and by the restrictions to diag3b,tiny of the lifts of
elements of V3b(M) to the left factor, are transversal. This induces a canonical isomorphism
N diag3b,tiny

∼= 3bTM .

Proof. Note that the diagonal inclusion M0 → diagM0
⊂ (M0)2 lifts to a diffeomorphism

M0
∼= diagb and then further to a diffeomorphism M = [M0; {p}] → [diagb; {(p, p)}] =

diag3b,tiny. We shall write (q, q) ∈ diag3b,tiny for the point corresponding to q ∈ M under
this diffeomorphism.

Denote by πL : M2
3b,tiny → M the lift of the left projection. By dimension counting, we

merely need to prove that the lift π∗LV to M2
3b,tiny of an element V ∈ V3b(M) with V (q) 6=

0 ∈ 3bTqM is nonzero at (q, q) ∈ diag3b,tiny. (The desired bundle isomorphism then arises

by identifying V (q) ∈ 3bTqM with [(π∗LV )(q, q)] ∈ Tdiag3b,tiny
/T diag3b,tiny = N diag3b,tiny.)

We only give details near the preimage of (p, p) ∈ M0 ×M0 under the total blow-down
map M2

3b,tiny →M2
0 . With coordinates T,X on M0 as in (3.2) (so p = (0, 0)), we commit a

standard abuse of notation and denote by T,X and T ′, X ′ the lifts of T,X to the left and
right factor, respectively. Near diagb ⊂ (M0)2

b, we have smooth coordinates

T, X, sb =
T − T ′

T ′
, Xb = X −X ′,

with diagb defined by sb = 0, Xb = 0. The scattering vector fields T 2∂T and T∂Xj on M0

thus lift to T 2∂T + T (1 + sb)∂sb and T∂Xj + T∂
Xj

b
. Upon passing to the blow-up of (M0)2

b

at p3b = {(0, 0, 0, 0)}, we first consider the region where T & max(|X|, sb, |Xb|); there, we
have smooth coordinates

T, x =
X

T
, s3b =

sb

T
, X3b =

Xb

T
,

and thus T 2∂T and T∂Xj lift to the vector fields (1 + Ts3b)∂s3b
+ T (T∂T − x∂x− s3b∂s3b

−
X3b∂X3b

) and ∂xj + ∂
Xj

3b
, which at the 3b-diagonal s3b = 0 = X3b are equal to ∂s3b

+

T 2∂T − Tx∂x and ∂xj + ∂
Xj

3b
, and hence linearly independent. Note that the weight 〈x〉 is

bounded in this region.

In the region where |X| & max(T, sb, |Xb|), we split X = (X1, X2) where X1 ∈ R and
X2 ∈ Rn−2, and after relabeling coordinates we may assume that X1 & |X2|. We likewise
write Xb = (Xb,1, Xb,2). We then introduce coordinates

ρT = X1, ρD =
T

X1
, X̂2 =

X2

X1
,

s3b =
sb

X1
=
T − T ′

T ′X1
, X3b,1 =

Xb,1

X1
=
X1 −X ′1
X1

, X3b,2 =
Xb,2

X1
=
X2 −X ′2
X1

.

(4.1)
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The 3b-vector fields X1T∂T , X1∂X1 , and X1∂Xj
2

(cf. (3.6)) lift, respectively, to

(1 + ρT s3b)∂s3b
+ ρT ρD∂ρD ,

(1−X3b,1)∂X3b,1
+ ρT ∂ρT − ρD∂ρD − X̂2∂X̂2

− s3b∂s3b
−X3b,2∂X3b,2

,

∂
X̂j

2
+ ∂

Xj
3b,2

.

At the diagonal where s3b = X3b,1 = 0 = X3b,2, these vector fields are linearly independent.

The lifted diagonal diag3b,tiny is disjoint from the regions where |Xb| or sb are relatively
large compared to |X ′|, T ′, and hence we do not need to consider these regions here. The
proof is complete. �

Thus, the space given by the lifts to M2
3b,tiny of Schwartz kernels of elements of Diff3b(M)

is equal to the space of Dirac distributions at diag3b,tiny, with values in the lift of 3bΩM to

the right factor. In order to microlocalize Diff3b(M), we need to refine the space M2
3b,tiny

considerably; indeed, loosely speaking, we need to separate D and T in either factor so
as to ensure, among other things, that we obtain a class of operators which act sensibly
on spaces of functions encoding weights at D and T (i.e. that they preserve weights and
conormality).15 Thus:

Definition 4.2 (Small 3b-double space). Let pL∩R, pL, pR denote the lifts to (M0)2
b of

{(p, p)}, {p}×∂M0, and ∂M0×{p}, respectively; let p3b = pL∩R∩diagb (which is the same
singleton set as in Lemma 4.1). Then the small 3b-double space is defined as

M2
3b,[ :=

[
(M0)2

b; p3b; pL∩R; pL, pR
]
. (4.2)

We denote the lift of p3b by ffT ,[, and the lift of the front face of (M0)2
b by ffD,[. The lift

of diagb ⊂ (M0)2
b is the 3b-diagonal, denoted diag3b,[.

(See §5 for figures illustrating the (full) 3b-double space, which is a further resolution of
M2

3b,[ at the lifts of {p} ×M0 and M0 × {p}.) Denoting by πR : M2
3b,[ →M the lifted right

projection, we then define:

Definition 4.3 (3b-pseudodifferential operators). For m ∈ R∪{−∞}, we define the space

Ψm
3b(M)

to consist of all operators (mapping C∞c (M◦)→ D ′(M◦)) with Schwartz kernels lying in the
space Im(M2

3b,[,diag3b,[;π
∗
R

3bΩM) of conormal distributions (valued in right 3b-densities)

which vanish to infinite order at all boundary hypersurfaces of M3b,[ except at ffT ,[ and ffD,[;
unless otherwise noted, we require the Schwartz kernels to be smooth down to ffT ,[ ∪ ffD,[.
More generally, if E0, F0 → M0 are two vector bundles and E = β∗E0, F = β∗F0 → M
denote their pullbacks along the blow-down map β : M = [M0; {p}]→M0, we define

Ψm
3b(M ;E,F )

to consist of all operators whose Schwartz kernels lie in Im(M2
3b,[,diag3b,[;β

∗
2(F0 � E∗0) ⊗

π∗R
3bΩM) and vanish to infinite order at all boundary hypersurfaces of M3b,[ except at

ffT ,[ and ffD,[; here β2 : M2
3b,[ → M2

0 is the blow-down map and F0 � E∗0 is the bundle

π∗0LF0 ⊗ π∗0RE∗0 →M2
0 where π0L, π0R : M2

0 →M0 are the left and right projections.

15Elements of the large 3b-calculus, which will be shown to include (approximate) inverses of fully elliptic
3b-operators, will not be local in this manner anymore.
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We shall restrict our discussion to the case of scalar ps.d.o.s, unless adding vector bundles
requires more than just notational modifications. Lemma 4.1 and the fact that diag3b,tiny is
disjoint from the lifts of pL∩R, pL, and pR imply that Diffm3b(M) ⊂ Ψm

3b(M) is characterized
as the subspace having Dirac distributional Schwartz kernels. Similarly, Lemma 4.1 gives a
natural isomorphism 3bT ∗M ∼= N∗ diag3b,[. Therefore, the principal symbol of the conormal
Schwartz kernels at diag3b,[ gives rise to the symbol short exact sequence

0→ Ψm−1
3b (M) ↪→ Ψm

3b(M)
3bσm−−−→ (Sm/Sm−1)(3bT ∗M)→ 0.

One can also consider weighted versions ρ−αDD ρ−αTT Ψm
3b(M), with ρD, ρT denoting lifts to

the left factor of defining functions of D, T ⊂ M . More generally still, one can allow for
the coefficients of 3b-ps.d.o.s to be polyhomogeneous at ffT ,[ and ffD,[, or merely conormal;
spaces of such operators are denoted

AED,ETphg Ψm
3b(M), AαD,αT Ψm

3b(M),

where the index sets ED, ET ⊂ C × N0 capture the exponents of expansions at ffD,[ and
ffT ,[. Since in §5 we shall consider yet more general classes of operators, we shall however
only study the space Ψm

3b(M) in this section.

Proposition 4.4 (Basic mapping and composition properties). (1) Any element P ∈
Ψs

3b(M) defines a bounded linear map on the spaces Ċ∞(M), C∞(M), and on the

dual spaces D̄(M◦), Ḋ(M) of extendible and supported distributions, respectively.
(2) Let Pj ∈ Ψ

sj
3b(M), j = 1, 2. Then P1 ◦ P2 ∈ Ψs1+s2

3b (M). The principal symbol map
3bσ is multiplicative.

Proof. See Propositions 5.6 and 5.10 for more general results in the large 3b-calculus. �

Remark 4.5 (Bounded geometry perspective on 3b-ps.d.o.s). Fix any Riemannian 3b-metric
g ∈ C∞(M ;S2 3bT ∗M) on M . Then by the transversality statement of Lemma 4.1, for ε > 0,
the closure Nε of the set {(q, q′) ∈ M◦ ×M◦ : dg(q, q

′) ≤ ε} in M2
3b (with dg denoting the

metric induced by g) contains an open neighborhood of diag3b, and as ε ↘ 0, the set
Nε converges to diag3b. Furthermore, g endows M◦ with the structure of a manifold with
bounded geometry [Shu92]; this follows from the fact that in the coordinates s3b, X3b,1, X3b,2

from (4.1) near a point (T ′, X ′1, X
′
2) on M◦ with |X ′1| & T ′, |X ′2|, the metric tensor g and

its inverse g−1 are, essentially by definition, uniformly bounded in the smooth topology,
and similarly in other coordinate systems covering M . One can then regard 3b-ps.d.o.s
on M with Schwartz kernels supported in Nε for some small ε > 0 as bounded geometry
ps.d.o.s on M◦. (The converse is true only under additional regularity hypotheses on
the Schwartz kernel of the bounded geometry ps.d.o.; the standard definition of the latter
typically gives operators whose coefficients only enjoy infinite 3b-regularity, which is weaker
than b-regularity.)

4.1. Normal operator at the translation face T . The T -normal operator of a 3b-
ps.d.o. P will be defined in terms of the restriction of its Schwartz kernel of P to ffT ,[. We
first describe this boundary hypersurface in some detail:

Lemma 4.6 (Structure of ffT ,[). The boundary hypersurface ffT ,[ ⊂M2
3b,[ is diffeomorphic

to T 2
b ×R, where T 2

b = [T 2; (∂T )2] is the b-double space of T . The isomorphism is explicitly
given as follows: denoting by t, x and t′, x′ the lifts to the left and right factor of M2

3b,[ of
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the coordinates t, x on M introduced in (3.3), the functions τ := t− t′ and x, x′ give affine
coordinates on the interior (ffT ,[)

◦; and the map

ffT ,[ ∈ (τ, x, x′) 7→
( τ

〈(x, x′)〉
, x, x′

)
=: (τ3b, x, x

′) ∈ R× T 2
b , (4.3)

defined via continuous extension from (ffT ,[)
◦, is a diffeomorphism. Via this diffeomor-

phism, the intersection ffT ,[ ∩ ffD,[ is equal to R× ffT ,b where ffT ,b ⊂ T 2
b denotes the front

face (i.e. the lift of (∂T )2).

See Figure 4.1.

ffD,[ ∩ ffT ,[

T 2
b τ3b

x

x′

Figure 4.1. Structure of ffT ,[ when ∂M0 is 1-dimensional.

Proof of Lemma 4.6. Fix local coordinates T,X on M0 near p as in (3.2), and denote their
lifts under the left, resp. right projection to (M0)2

b by T,X, resp. T ′, X ′. Local coordi-

nates near p3b ⊂ (M0)2
b are then T ′ ≥ 0, X ∈ Rn−1, X ′ ∈ Rn−1, and s = T

T ′ ∈ (0,∞),
with p3b given by (T ′, X,X ′, s) = (0, 0, 0, 1). Since p3b is thus contained in the bound-
ary hypersurface T ′ = 0, affine coordinates on the interior of the front face ffT ,tiny of

[(M0)2
b; p3b] = M2

3b,tiny are X
T ′ ,

X′

T ′ , and s−1
T ′ = 1

T ( TT ′ )
2− 1

T ′ . But T ′/T = 1 at the front face,
and therefore we can equivalently use

x =
X

T
, x′ =

X ′

T ′
, τ =

1

T
− 1

T ′
= t− t′

as affine coordinates (here t = T−1 and t′ = T ′−1, cf. (3.3)). Thus, ffT ,tiny is the radial

compactification of Rτ × Rn−1
x × Rn−1

x′ .

When blowing up M2
3b,tiny to obtain M2

3b, we shall now track the corresponding blow-ups

of ffT ,tiny. The intersection of the lift of pL∩R (which in local coordinates on (M0)2
b is given

by (T ′, X,X ′, s) = (0, 0, 0, s), s ∈ (0,∞)) with ffT ,tiny is given by the endpoints of the
compactified τ -axis, i.e. by the points (τ, x, x′) = (±∞, 0, 0) in ffT ,tiny. Upon blow-up, the
lift of pL (given by (T ′, X,X ′, s) = (0, 0, X ′, s)) intersects ∂ffT ,tiny at the closure of x = 0;
similarly, the lift of pR intersects ∂ffT ,tiny at the closure of x′ = 0. Altogether,

ffT ,[ =
[
Rτ × Rn−1

x × Rn−1
x′ ; {(±∞, 0, 0)};

∂
(
Rτ × Rn−1

x′
)
× {x = 0}, ∂

(
Rτ × Rn−1

x

)
× {x′ = 0}

]
.

(4.4)
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The front face of the blow-up of (±∞, 0, 0) is naturally diffeomorphic to Rn−1
x × Rn−1

x′ , with

the subsequent blow-ups in (4.4) resolving {0}× ∂Rn−1
x′ and ∂Rn−1

x ×{0}. Thus, the lift of
{(±∞, 0, 0)} to ffT ,[ is[

Rn−1 × Rn−1; {0} × ∂Rn−1, ∂Rn−1 × {0}
]
∼=
[
Rn−1 × Rn−1; ∂Rn−1 × ∂Rn−1

]
. (4.5)

(This diffeomorphism is the continuous extension of the identity map on Rn−1 × Rn−1.)
Invariantly put, this is the b-double space T 2

b = [T 2; (∂T )2].16 The space ffT ,[ fibers over

T 2
b by means of the flow along the vector field ∂τ3b

where τ3b = τ/〈(x, x′)〉 is a rescaled
time coordinate (the scaling by 〈(x, x′)〉 being necessitated by the fact that ffT ,[ in (4.4) is

a resolution of the radial compactification in all variables τ, x, x′). Moreover, |τ3b|−1 is a
local defining function of the lifts of {(±∞, 0, 0)}. This shows that the map (4.3) is indeed
a diffeomorphism.

The intersection of ffT ,[ with ffD,[ is given by the lift of ∂(Rτ × Rn−1
x × Rn−1

x′ ); this is the

product of Rτ3b
with the front face of (4.5), the latter being the front face of T 2

b . �

Let now P ∈ Ψm
3b(M), and denote by17 KT ,[ ∈ Im+ 1

4 (ffT ,[; diag3b,[ ∩ffT ,[;π
∗
R

3bΩM) the
restriction of its Schwartz kernel ffT ,[; thus KT ,[ vanishes at all boundary hypersurfaces of
ffT ,[ except for ffT ,[ ∩ ffD,[.

Definition 4.7 (T -normal operator; spectral family). Recalling Definition 3.18, the T -
normal operator of P ∈ Ψm

3b(M) is the operator

NT (P ) ∈ Ψm
3b,I(N3bT )

with Schwartz kernel given by the partial convolution kernel (t, x, t′, x′) 7→ KT ,[(t−t′, x, x′).
Here, the subscript ‘I’ restricts to the subspace of 3b-operators which are translation-
invariant in t (i.e. precisely to the space of operators with such partial convolution kernels).
The spectral family

N̂T (P, σ), σ ∈ R,
is defined via the Schwartz kernels of their elements as follows: the Schwartz kernel of
N̂T (P, σ) is equal to (x, x′) 7→

∫
R e

iστKT ,[(τ, x, x
′).18 Finally, we define

N∂T (P ) ∈ Ψm
b,I(

+N∂T )

as the b-normal operator of N̂T (P, 0) at ∂T . (The membership N̂T (P, 0) ∈ Ψm
b (T ) is part

of Proposition 4.8(1) below.)

One can equivalently define N̂T (P, σ) via the action on functions on T times an expo-
nential in t = ρ−1

0 with frequency σ just as in Proposition 3.10. One can likewise give a

testing definition of N̂T (P, 0) as in Proposition 3.8.

We aim to show the following analogue of Propositions 3.8, 3.10, and 3.17:

Proposition 4.8 (Membership of N̂T (P, σ)). Let P ∈ Ψm
3b(M).

16In the case dimM = 2, so T = R, this is the ‘over-blown’ double space, with all four corners of R× R
resolved.

17The increase in the order follows the standard convention for conormal distributions [Hör71].
18This is well-defined since for any x, x′ ∈ T ◦ the kernel KT ,[(τ, x, x

′) is a rapidly decreasing density on

Rτ (tensored with a density in x′).
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(1) (Fixed frequencies.) We have N̂T (P, 0) ∈ Ψm
b (T ). Moreover, for σ 6= 0, we have

N̂T (P, σ) ∈ Ψm,m
sc (T ), with smooth dependence on σ ∈ R \ {0}.

(2) (High frequencies.) The semiclassical rescaling

N̂±T ,h(P ) := N̂T (P,±h−1), h ∈ (0, 1), (4.6)

defines an element of Ψm,m,m
sc,~ (T ), with conormal dependence on h down to h = 0.

The principal symbols of these operators are given in terms of 3bσm(P ) as in Proposi-
tions 3.13, 3.17.

Part (1) follows directly from Proposition 4.9 below; we will prove part (2) after the

proof of Proposition 4.9. We remark that the statement N̂T (P, 0) ∈ Ψm
b (T ) is a direct

consequence of the push-forward theorem; the proofs of the remaining claims require more
work. The following result is the pseudodifferential analogue of Proposition 3.14:

Proposition 4.9 (Membership of N̂T (P,−)). Let P ∈ Ψm
3b(M) and σ0 > 0. Then, us-

ing the notation of §2.4, the operator family ±[0, σ0) 3 σ 7→ N̂T (P, σ) is an element of

Ψm,m,0,0
sc-b (T ), with principal symbol given in terms of that of P as in Proposition 4.8. (Re-

call here that the principal symbol of a sc-b-ps.d.o. is uniquely determined by the principal
symbols of the individual operators for all values of σ.)

As a consequence, we can define the T -tf-normal operators (cf. Definition 3.15)

N±T ,tf(P ) ∈ Ψm,m,0
sc,b (+N∂T )

also in the ps.d.o. setting.

Proof of Proposition 4.9. We only consider the behavior of N̂T (P, σ) for σ ∈ [0, σ0), the
analysis for σ ∈ (−σ0, 0] being completely analogous. In the coordinates (τ3b, x, x

′) intro-
duced in (4.3), we have

KT ,[ = Kν3b, (4.7)

where K = K(τ3b, x, x
′) is conormal (of order m+ 1

4) at {0}×diagT ,b and vanishes rapidly

as |τ3b| → ∞ or as |x|/|x′| → 0,∞; here diagT ,b ⊂ T 2
b denotes the b-diagonal, and ν3b =

| dτ
〈x′〉

dx′1···dx′n−1

〈x′〉n−1 | is the right lift of the 3b-density (3.8). Thus, the Schwartz kernel of

N̂T (P, σ) is

〈(x, x′)〉
〈x′〉

K̂0(σ)νb, νb :=
∣∣∣dx′1 · · · dx′n−1

〈x′〉n−1

∣∣∣, (4.8)

where K̂0(σ) is given by

K̂0(σ;x, x′) =
(〈(x, x′)〉
〈x′〉

)−1
∫
R
eiστK

( τ

〈(x, x′)〉
, x, x′

) dτ

〈x′〉

=

∫
R
ei〈(x,x

′)〉στ3bK(τ3b, x, x
′) dτ3b. (4.9)

Consider first the case m = −∞, i.e. P ∈ Ψ−∞3b (M) is residual and thus K is smooth.

When either x or x′ vary over a compact subset of T ◦, then K̂0(σ, x, x′) is smooth in all
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arguments. Consider thus a neighborhood of ffT ,b; letting ρ = |x|−1, ω = x
|x| and likewise

ρ′ = |x′|−1, ω′ = x′

|x′| , we work with the coordinates

µ := ρ+ ρ′ ≥ 0, s :=
ρ− ρ′

ρ+ ρ′
∈ [−1, 1], ω, ω′, τ3b (4.10)

on ffT ,[. Denote by K ′ = K ′(τ3b, µ, s, ω, ω
′) the kernel K in these coordinates, so K ′ is

smooth and vanishes to infinite order as s→ ±1 or τ3b → ±∞. Then, writing

ρtot := 〈(x, x′)〉−1 =
(
1 + (1

2µ(1 + s))−2 + (1
2µ(1− s))−2

)−1/2
(4.11)

for the total boundary defining function of T 2
b , the expression for K̂0(σ) in the coordinates

µ, s, ω, ω′ is

(σ;µ, s, ω, ω′) 7→
∫
eiτ3bσ/ρtotK ′(τ3b, µ, s, ω, ω

′) dτ3b = (F1K
′)
( σ

ρtot
, µ, s, ω, ω′

)
, (4.12)

where F1 denotes the Fourier transform in the first argument (in which, as usual in this
paper, we use the opposite of the ‘standard’ convention).

When s lies in a fixed compact subset of (−1, 1), then σ, resp. ρ̂tot = ρtot/σ lifts to
a defining function of tfsc-b, resp. total defining function of scfsc-b ∪ bfsc-b ⊂ Tsc-b away
from zfsc-b; moreover, µ = µ(s, ρtot) is a smooth function of ρtot and s in this range which

vanishes simply at ρtot = 0. Thus, K̂0 is given by

(σ, ρ̂tot, s, ω, ω
′) 7→ (F1K

′)
(
ρ̂−1

tot, µ(s, σρ̂tot), s, ω, ω
′),

This vanishes rapidly as ρ̂tot ↘ 0 and is smooth in the remaining variables, as required

for membership of N̂T (P,−) in Ψ−∞,−∞,0,0sc-b (T ) = ρ∞scfsc-b
Ψ−∞sc-b(T ). Near zfsc-b on the other

hand, and with s still lying in a fixed compact subset of (−1, 1), we can use σ̂ = σ/ρtot ≥ 0

and ρtot ≥ 0 as local defining functions of zfsc-b and tfsc-b, respectively, and K̂0 is given by

(σ̂, ρtot, s, ω, ω
′) 7→ (F1K

′)
(
σ̂, µ(s, ρtot), s, ω, ω

′), (4.13)

which is smooth in all variables.

It remains to consider the case when s is near −1 (the case when s is near +1 being

completely analogous), thus we need to study K̂0 near lbsc-b ∪ tlbsc-b. Away from zfsc-b ∪
tlbsc-b then, σ, µ̂ = µ/σ, and ŝ := s + 1 are defining functions of tfsc-b, bfsc-b, and lbsc-b,
respectively. In this region, we can write ρtot = a(µ, ŝ)µŝ = a(σµ̂, ŝ)σµ̂ŝ where 0 < a is a

smooth function. Thus, K̂0 takes the form

(σ, µ̂, ŝ, ω, ω′) 7→ (F1K
′)
( 1

a(σµ̂, ŝ)µ̂ŝ
, σµ̂, ŝ− 1, ω, ω′

)
,

and therefore vanishes rapidly as µ̂ŝ → 0, i.e. at bfsc-b ∪ lbsc-b. Near zfsc-b ∪ tlbsc-b on
the other hand, we can use19 σ̂ = σ/µ, µ, and ŝ = s + 1 as local defining functions of

zfsc-b ∪ tlbsc-b, tfsc-b, and lbsc-b ∪ tlbsc-b, and K̂0 takes the form

(σ̂, µ, ŝ, ω, ω′) 7→ (F1K
′)
( σ̂

a(µ, ŝ)ŝ
, µ, ŝ− 1, ω, ω′

)
,

which thus vanishes rapidly at ŝ = 0 (i.e. at lbsc-b ∪ tlbsc-b) and is smooth down to σ̂ = 0
and µ = 0. This completes the proof of the Proposition when P ∈ Ψ−∞3b (M).

19We recycle old symbols here with new definitions.
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For P ∈ Ψm
3b(M), m ∈ R, it suffices to consider de-densitized kernels K (see (4.7)) which

are supported in an arbitrary but fixed neighborhood of {0}× diagT ,b. We only consider a
neighborhood of the boundary {0} × (diagT ,b ∩ffT ,b) of the diagonal, the arguments near
the interior being similar (and indeed simpler). Thus, we work with the coordinates ρtot, s,
ω, ω′, τ3b from (4.10)–(4.11); recall here that ρtot/µ is smooth and varies over a compact
subset of (0,∞) when s is restricted to a compact subset of (−1, 1). In these coordinates
then, K is given by an oscillatory integral

(τ3b, ρtot, s, ω, ω
′)

7→ (2π)−n
∫∫∫

R×R×Rn−2

e−iσ3bτ3beiξseiη·(ω−ω
′)a(ρtot, ω;σ3b, ξ, η) dσ3b dξ dη,

(4.14)

where a is a symbol of order m in (σ3b, ξ, η). Recalling formula (4.9), K̂0(σ;x, x′) is given
in these coordinates by

(σ, ρtot, s, ω, ω
′) 7→ (2π)−(n−1)

∫∫
R×Rn−2

eiξseiη·(ω−ω
′)a
(
ρtot, ω;

σ

ρtot
, ξ, η

)
dξ dη. (4.15)

Near scfsc-b, we introduce coordinates σ ≥ 0, ρ̂tot = ρtot/σ ≥ 0, ŝ = s/ρ̂tot ∈ R, ω, and

ω̂′ := (ω − ω′)/ρ̂tot, in which K̂0 is given by

(σ, ρ̂tot, ŝ, ω, ω̂
′)

7→ (2πρ̂tot)
−(n−1)

∫∫
R×Rn−2

eiξscŝeiηsc·ω̂′a
(
σρ̂tot, ω;

1

ρ̂tot
,
ξsc

ρ̂tot
,
ηsc

ρ̂tot

)
dξsc dηsc.

(4.16)

The factor ρ̂
−(n−1)
tot combines with νb in (4.8) to give a right sc-b-density; and the rescaling

(ρ̂tot, ω; ξsc, ηsc) 7→ ρ̂mtota
(
σρ̂tot, ω;

1

ρ̂tot
,
ξsc

ρ̂tot
,
ηsc

ρ̂tot

)
can easily be checked to be a symbol of order m in (ξsc, ηsc) which is bounded conormal
in ρ̂tot ≥ 0 and as such depends smoothly on σ down to σ = 0. Therefore, its inverse
Fourier transform in (4.16) is a conormal distribution at ŝ = 0 = ω̂′, vanishes rapidly as
|ŝ|+ |ω̂′| → ∞ (thus at bfsc-b), and is conormal with weight ρ̂−mtot at scfsc-b smoothly down
to σ = 0.

In order to finish the proof that N̂T (P,−) ∈ Ψm,m,0,0
sc-b (T ), it remains to study K̂0 in the

coordinates σ̂ = σ/ρtot and ρtot near the diagonal of zfsc-b as in (4.13); in these, K̂0 is given
by

(σ̂, ρtot, s, ω, ω
′) 7→ (2π)−(n−1)

∫∫
R×Rn−2

eiξseiη·(ω−ω
′)a(ρtot, ω; σ̂, ξ, η) dξ dη, (4.17)

which is thus conormal of order m at the diagonal s = 0, ω = ω′ with smooth dependence
on ρtot ≥ 0 and σ̂ ≥ 0. �

Proof of Proposition 4.8. It remains to prove part (2). We do this first in the case that
P ∈ Ψ−∞3b (M) is residual. We use the notation from the proof of Proposition 4.9. Consider

again the expression (4.12) for K̂0(σ) with σ = h−1, 0 < h < 1: since σ/ρtot = (hρtot)
−1 ↗

∞ as either h ↘ 0 or ρtot ↘ 0, we conclude that indeed N̂T (P, h−1) ∈ ρ∞D h∞Ψ−∞b,~ (T ) =

ρ∞D h
∞Ψ−∞sc,~ (T ) in this case.
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It remains to study operators P ∈ Ψm
3b(M) whose Schwartz kernels are localized near

the diagonal. In local coordinates near ffT ,b ⊂ T 2
b , the Schwartz kernel of K̂0 is then

given by the expression (4.15) with σ = h−1. Corresponding local coordinates on the
interior of the semiclassical scattering front face are then h, ρtot, ŝ := s/(hρtot), ω and

ω̂′ := (ω − ω′)/(hρtot), and K̂0 is given by

(h, ρtot, ŝ, ω, ω̂
′) 7→ (2πhρtot)

−(n−1)

∫∫
R×Rn−2

eiξsc,~ŝeiηsc,~·ω̂′

× a
(
ρtot, ω;

1

hρtot
,
ξsc,~
hρtot

,
ηsc,~
hρtot

)
dξsc,~ dηsc,~.

Multiplying the positive b-density νb in (4.8) with the weight (hρtot)
−(n−1) gives a positive

right semiclassical scattering density, while the oscillatory integral itself is a conormal dis-
tribution of order m at the diagonal ŝ = 0, ω̂′ = 0 which vanishes rapidly as |ŝ|+ |ω̂′| → ∞;

indeed this follows from the observation that hmρmtota(ρtot, ω; 1
hρtot

,
ξsc,~
hρtot

,
ηsc,~
hρtot

) is a symbol

of order m in (ξsc,~, ηsc,~), with bounded conormal regularity as h→ 0 or ρtot → 0.

The statements about the principal symbols can be checked by inspection of the explicit
calculations in the proof of Proposition 4.9 as well as the present proof. �

Proposition 4.10 (Algebraic properties of NT ). (1) (Multiplicativity.) The maps as-
signing to P ∈ Ψ3b(M) the normal operator NT (P ) ∈ Ψ3b,I(N3bT ), or the spectral

family (±[0, σ0) 3 σ 7→ N̂T (P, σ)) ∈
⋃
m∈R Ψm,m,0,0

sc-b (T ), or any individual element

N̂T (P, σ) ∈ Ψm,m
sc (T ) of the spectral family, are multiplicative.

(2) (Short exact sequence.) The map NT gives a short exact sequence

0→ ρT Ψm
3b(M) ↪→ Ψm

3b(M)
NT−−→ Ψm

3b,I(N3bT )→ 0.

Proof. The multiplicativity of N̂T (−, σ) follows from its testing definition, see the comment
after Definition 4.7. The multiplicativity of NT is a direct consequence of this. �

4.2. Normal operator at the dilation face D. We now turn to the D-normal operator,
which on the Schwartz kernel level captures the restriction to ffD,[.

Lemma 4.11 (Structure of ffD,[). Denote by D2
b = [D2; (∂D)2] the b-double space of D,

and by ffD,b its front face. Then

ffD,[ ∼=
[
[0,∞]×D2

b; {1} × ffD,b
]
. (4.18)

This diffeomorphism is explicitly given as follows: fix a boundary defining function ρ0 ∈
C∞(M0) and a collar neighborhood [0, ε)ρ0 × ∂M0 of ∂M0, and consider the corresponding
product collar neighborhood [0, ε)ρ0 × [0, ε)ρ′0 × ∂M0× ∂M0 of (∂M0)2 ⊂M2

0 . Then the map

(ρ0, ρ
′
0, q, q

′) 7→ (ρ0/ρ
′
0, q, q

′) extends by continuity from (M◦0 )2 and upon restriction to ffD,[
to the diffeomorphism (4.18).

See Figure 4.2.

Proof of Lemma 4.11. The front face ff ⊂ (M2
0 )b is diffeomorphic to [0,∞]s×(∂M0)2 where

s = ρ0

ρ′0
. In the following, we use that [∂M0; {p}] = D, and we work entirely inside of

ff = [0,∞]× (∂M0)2.
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ρT

ρ′T ρ0/ρ
′
0

Figure 4.2. Structure of ffD,[. We only show a single coordinate in the left
and right factor of D ×D, namely the defining function ρT , resp. ρ′T of ∂D
in the first, resp. second factor.

Consider the resolution (4.2), restricted to ff; then

ffD,[ = [ff; p3b ∩ ff; pL∩R ∩ ff; pL ∩ ff, pR ∩ ff].

Using the terminology introduced after (2.1), we can now commute p3b∩ff through pL∩R∩ff
(⊃), and then further through pL ∩ ff and pR ∩ ff (⊃; pL∩R). In the resulting naturally
diffeomorphic space ffD,[ = [ff; pL∩R ∩ ff; pL ∩ ff, pR ∩ ff; p3b ∩ ff], we may then commute
pL∩R ∩ ff through pL ∩ ff and pR ∩ ff (⊃). In summary, we have a natural diffeomorphism

ffD,[ = [ff; pL ∩ ff, pR ∩ ff; pL∩R ∩ ff; p3b ∩ ff]

But the first two blow-ups produce [0,∞]×D×D, to which pL∩R∩ff lifts as [0,∞]×(∂D)2.
Therefore, ffD,[ is the blow-up of [0,∞]×D2

b at {1}×ffD,b (the lift of p3b∩ff), as claimed. �

Recall from Definition 2.33 the extended edge-b-double space of [0,∞) × D with edge
structure given by the fibration [0,∞)× ∂D → [0,∞),(

[0,∞)×D
)2

e,b,]
=
[
[0,∞)2 ×D2; {(0, 0)} × D2; diag[0,∞)×(∂D)2; [0,∞)2 × (∂D)2

]
.

The b-front face ffb,] (the lift of {(0, 0)} × D2) is diffeomorphic, via restriction of the map
(ρ0, ρ

′
0, q, q

′) 7→ (ρ0/ρ
′
0, q, q

′), to the blow-up of [0,∞] × D2 at its intersection {1} × (∂D)2

with the fiber diagonal (see (2.42)) and at [0,∞]× (∂D)2. Identifying [0,∞)×D ∼= +N3bD
(see Definition 3.21) by means of a choice of boundary defining function ρ0 ∈ C∞(M0), we
have thus proved the following result:

Proposition 4.12 (Relationship of ffD,[ and the extended edge-b-double space of +N3bD).

The boundary hypersurface ffD,[ is diffeomorphic to the b-front face ffb,] ⊂ (+N3bD)2
e,b,].

Via the choice of a boundary defining function ρ0 ∈ C∞(M0), both are diffeomorphic to
[[0,∞]×D2

b; {1}×ffD,b] (in the explicit manner described above as well as in Lemma 4.11).

Definition 4.13 (D-normal operator). The D-normal operator of P ∈ Ψm
3b(M) is the

edge-b-pseudodifferential operator

ND(P ) ∈ Ψm
e,b,I(

+N3bD)
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whose Schwartz kernel is the unique dilation-invariant (with respect to the dilation action
in the fibers of +N3bD—hence the subscript ‘I’) extension of the restriction KP |ffD,[ of the

Schwartz kernel KP of P to ffD,[ (identified with ffb,] ⊂ (+N3bD)2
e,b,] via Proposition 4.12).

Proposition 2.34 then gives the following analogue of Definition 3.25:

Definition 4.14 (Mellin-transformed D-normal operator family). Fix a boundary defining
function ρ0 ∈ C∞(M0). For P ∈ Ψm

3b(M), the Mellin-transformed D-normal operator family

N̂D(P, λ) ∈ Ψm
b (D), λ ∈ C,

is defined by (2.40). Equivalently, the Schwartz kernel of N̂D(P, λ) is the Mellin-transform,
in the first factor of (4.18), of the restriction of the Schwartz kernel of P to ffD,[. Moreover,
we define

N∂D(P ) ∈ Ψm
b,I(

+N∂D)

as the b-normal operator of N̂D(P, 0) at ∂D. Furthermore,

N±D,tf(P ) ∈ Ψm,0,m
b,sc (+N∂D)

is the tf-normal operator of the family(
(0, 1) 3 h 7→ N̂D

(
P,−iµ± h−1

))
∈ Ψm,0,0,m

c~ (D) (4.19)

for any µ ∈ R.

We recall also that the operator family (4.19) depends smoothly on µ ∈ R.

Remark 4.15 (Principal symbols). The principal symbols of N̂D(P, λ), N̂±D (P, µ, h), and

N±D,tf(P ) are related to the principal symbol of P in the manner described in Corollary 3.24

and Lemma 2.31.

Proposition 4.16 (Algebraic properties of ND). (1) (Multiplicativity.) The maps as-
signing to P ∈ Ψ3b(M) the normal operator ND(P ) ∈ Ψe,b,I(

+N3bD), or a Mellin-

transformed normal operator N̂D(P, λ) ∈ Ψb(D), λ ∈ C, are multiplicative.
(2) (Short exact sequence.) The map ND gives a short exact sequence

0→ ρDΨm
3b(M) ↪→ Ψm

3b(M)
ND−−→ Ψm

e,b,I(
+N3bD)→ 0.

Proof. The definition of N̂D(P, λ) in terms of (3.34) implies the first part. In the second
part, only the surjectivity of ND requires an argument; but this follows directly from
Proposition 4.12. �

4.3. Summary of symbols, normal operators, and their interrelationships. The
discussion in §3.4 applies also in the general case of 3b-ps.d.o.s, with minor notational
changes. The analogue of Proposition 3.28 is:

Proposition 4.17 (Identification of N±D,tf(P ) and N±T ,tf(P ): pseudodifferential case). Let

P ∈ Ψm
3b(M). In the notation of Proposition 3.28, we then have

φ∗N±D,tf(P ) = N±T ,tf(P ), (4.20)

where the operators are defined with respect to the same fixed choice of boundary defining
function on M0, and where φ : +N∂T → +N∂D is the isomorphism (3.35).
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Proof. By definition of N±D,tf(P ) and N±T ,tf(P ), the equality (4.20) certainly only depends

on the restriction of the Schwartz kernel KP of P to an arbitrarily small neighborhood of
(ffD,[ ∩ ffT ,[)

◦.20 Via a partition of unity, we may work in the coordinate system (4.1), i.e.

(ρT , ρD, X̂2, s3b, X3b,1, X3b,2) =
(
X1,

T

X1
,
X2

X1
,
T − T ′

T ′X1
,
X1 −X ′1
X1

,
X2 −X ′2
X1

)
,

where T ≥ 0 and X = (X1, X2) ∈ R × Rn−2, with X1 & |X2|, T, T−T
′

T ′ , |X −X
′|, are local

coordinates on M0 lifted to the left factor, and T ′ and X ′ = (X ′1, X
′
2) denote their lifts to

the right factor. Moreover, ffT ,[ and ffD,[ are defined by ρT = 0 and ρD = 0, respectively.
In these coordinates, and letting

t′ =
1

T ′
, x′1 =

X ′1
T ′
, x′2 =

X ′2
T ′
, (4.21)

a positive right 3b-density is given by x′1
−n|dt′ dx′1 dx′2|, and therefore we have

KP = K(ρT , ρD, X̂2, s3b, X3b,1, X3b,2) · x′1−n|dt′ dx′1 dx′2|, (4.22)

where on suppK we have ρT ≥ 0, ρD ≥ 0, while the remaining coordinates X̂2 ∈ Rn−2,
s3b ∈ R, X3b,1 ∈ R, X3b,2 ∈ Rn−2 are bounded.

Consider first the T -tf-normal operator of P ; thus we work in ρT = 0. Introduce the
(singular) coordinates

t =
1

T
, x1 =

X1

T
, x2 =

X2

T
(4.23)

and (4.21) on M2
3b,[; thus

(ρD, X̂2, s3b, X3b,1, X3b,2) =
( 1

x1
,
x2

x1
,
t′ − t
x1

,
x1 − t

t′x
′
1

x1
,
x2 − t

t′x
′
2

x1

)
.

The Schwartz kernel of N̂T (P, σ) (which only depends on K at t/t′ = 1) is then given by

(σ, x1, x2, x
′
1, x
′
2)

7→ x′1
−1

∫
R
eiστK

(
0,

1

x1
,
x2

x1
,− τ

x1
,
x1 − x′1
x1

,
x2 − x′2
x1

)
dτ · x′1−(n−1)|dx′1 dx′2|.

(4.24)

In order to compute the Schwartz kernel of N+
T ,tf(P ), we introduce

σ, ρ̂ =
x−1

1

σ
=

1

σx1
, ω =

x2

x1
, s =

x′1
−1

x−1
1

=
x1

x′1
, ω′ =

x′2
x′1

as coordinates near tf◦sc-b ⊂ T 2
sc-b. Expressing (4.24) in these coordinates, changing variables

via τ̂ = σρ̂τ = τ
x1

, and then taking σ ↘ 0 gives

N+
T ,tf(P )(ρ̂, s, ω, ω′) = s

∫
R
eiτ̂/ρ̂K

(
0, 0, ω,−τ̂, 1− 1

s
, ω − ω′

s

)
dτ̂ ·

∣∣∣ds
s

dω′
∣∣∣. (4.25)

20The explicit calculations in the original definitions of these operators, and also the explicit expressions
in equations (4.25) and (4.26) below, show that these operators in fact only depend on the restriction
KP |ffD,[∩ffT ,[

.
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On the other hand, the D-tf-normal operator of P is defined in terms of the restriction
of (4.22) to ρD = 0. Working in the (singular) coordinates

µ =
T

T ′
, X1, X̂2 =

X2

X1
, X ′1, X̂ ′2 =

X ′2
X ′1

on ffD,[, the right density factor in (4.22) is

x′1
−n|dt′ dx′1 dx′2| = X ′1

−1
∣∣∣dµ
µ

dX ′1
X ′1

dX̂ ′2

∣∣∣
Therefore, the Schwartz kernel of N̂D(P, λ) is given by

(λ,X1, X̂2, X
′
1, X̂

′
2)

7→ X ′1
−1

∫ ∞
0

µ−iλK
(
X1, 0, X̂2,

µ− 1

X1
,
X1 −X ′1
X1

, X̂2 −
X ′1
X1

X̂ ′2

) dµ

µ
·
∣∣∣dX ′1
X ′1

dX̂ ′2

∣∣∣.
We wish to compute (the Schwartz kernel of) N+

D,tf(P ). To this end, we introduce in this

expression the coordinates

h = λ−1, R̃ =
X1

h
, ω =

X2

X1
= X̂2, S =

X ′1
X1

, ω′ = X̂ ′2,

and obtain, upon changing variables via µ = e−hR̃τ̂ ,

N+
D,tf(P ) = lim

h↘0
S−1

∫
R
eiτ̂ R̃K

(
hR̃, 0, ω,

e−hR̃τ̂ − 1

hR̃
, 1− S, ω − Sω′

)
dτ̂ ·

∣∣∣dS
S

dω′
∣∣∣

= S−1

∫
R
eiτ̂ R̃K

(
0, 0, ω,−τ̂, 1− S, ω − Sω′

)
dτ̂ ·

∣∣∣dS
S

dω′
∣∣∣. (4.26)

The identification φ : +N∂T ∼= +N∂D in the coordinates used in (4.25) and (4.26) maps

(ρ̂, s, ω, ω′) 7→ (R̃, S, ω, ω′) where R̃ = ρ̂−1 and S = s−1; pullback along φ thus indeed maps
N+
D,tf(P ) to N+

T ,tf(P ). The case of N−D,tf(P ) and N−T ,tf(P ) is completely analogous. �

Proposition 3.29 remains valid as well, mutatis mutandis:

Proposition 4.18 (Relationship of N∂D(P ) and N∂T (P ): pseudodifferential case). Fix a

boundary defining function ρ0 ∈ C∞(M0). Let P ∈ Ψm
3b(M). Denoting by φ ◦ ψ : +N∂T →

+N∂D the isomorphism (3.38) (homogeneous of degree −1), we then have ψ∗φ∗N∂D(P ) =
N∂T (P ).

Proof. This follows from Proposition 4.17 followed by the identification of the b-normal

operators of N±T ,tf(P ) (i.e. the restriction of N̂T (P,−) to tf ⊂ Tsc-b) at zf ∩ tf ⊂ tf ⊂ Tsc-b

and of N̂T (P, 0) (which is the same as the restriction of N̂T (P,−) to zf ⊂ Tsc-b) via ψ. The
latter identification is valid for any sc-b-operator by Lemma 2.13. �

Lemma 4.19 (3b-operators with elliptic principal symbols). Let m ∈ R and P ∈ Ψm
3b(M);

suppose that the 3b-principal symbol 3bσm(P ) of P is elliptic. Then all normal operators
have elliptic principal symbols. That is, the following operators are elliptic:(

±[0, σ0) 3 σ 7→ N̂T (P, σ)
)
∈ Ψm,m,0,0

sc-b (T ), σ0 > 0, (4.27)
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and thus also N̂T (P, 0) ∈ Ψm
b (T ), further N̂T (P, σ) ∈ Ψm,m

sc (T ) for σ 6= 0, and N±T ,tf(P ) ∈

Ψm,m,0
sc,b (+N∂T ); and also N̂±T ,h(P ) ∈ Ψm,m,m

sc,~ (T ) is elliptic. Furthermore,

N̂D(P, λ) ∈ Ψm
b (D), λ ∈ C,

is elliptic, as is N±D,tf(P ) ∈ Ψm,0,m
b,sc (+N∂D) (related to N±T ,tf(P ) via Proposition 4.17) and

N̂±D,h(P, µ, h) ∈ Ψm,0,0,m
c~ (D). Finally, the operators N∂T (P ) ∈ Ψm

b,I(
+N∂T ) and N∂D(P ) ∈

Ψm
b,I(

+N∂D) are elliptic (and related via Proposition 4.18).

Proof. The relationships of the principal symbols of the normal operators of P and the oper-
ator P itself are discussed for differential operators in Propositions 3.13, 3.17, and 3.16, and
Corollary 3.23 and Lemma 2.31 by means of the phase space identifications of Lemma 3.12
and Corollary 3.23. These relationships hold without changes in the pseudodifferential set-
ting as well, as can be checked using the explicit constructions in Propositions 4.9 and 4.10

for the T -normal operators, and Proposition 2.34 for N̂D(P, λ). See also Remark 4.15. Note

that the ellipticity of N±T ,tf(P ) and N̂T (P, 0) implies that of (4.27) for small σ0 > 0, and

the ellipticity of (4.27) for arbitrary σ0 uses that of N̂T (P, σ) for σ 6= 0. �

4.4. Weighted 3b-Sobolev spaces. We define L2
3b(M) as the L2-space on M with respect

to any positive smooth 3b-density on M .

Lemma 4.20 (L2-boundedness). Let P ∈ Ψ0
3b(M). Then P defines a bounded linear map

on L2
3b(M).

Proof. Using Hörmander’s square root trick, it suffices to prove the claim for P ∈ Ψ−∞3b (M).
Fix any positive 3b-density ν on M , and write the Schwartz kernel of P as Kπ∗Rν where
K ∈ C∞(M2

3b,[) vanishes to infinite order at all boundary hypersurfaces except for ffD,[
and ffT ,[. It then suffices to show that

∫
M |K(−, q)|ν is uniformly bounded for q ∈ M ;

by symmetry, also
∫
M |K(q,−)|ν is uniformly bounded then. The key observation then is

that the lift of ν to the left factor, as a density on M2
3b,[, is smooth down to ffD,[ and ffT ,[

(as a consequence of the calculations in Lemma 4.1) and has at most inverse polynomial
conormal singularities at the other hypersurfaces which are canceled by the infinite order
vanishing of K at those. �

Definition 4.21 (Weighted 3b-Sobolev spaces). For s ≥ 0, fix an operator A ∈ Ψs
3b(M)

with elliptic principal symbol. We define

Hs
3b(M) := {u ∈ L2

3b(M) : Au ∈ L2
3b(M)}.

For s < 0, we fix A ∈ Ψ−s3b (M) with elliptic principal symbol, and let

Hs
3b(M) := {u1 +Au2 : u1, u2 ∈ L2

3b(M)}.

For weights αD, αT ∈ R, we finally set

Hs,αD,αT
3b (M) := {ραDD ραTT u : u ∈ Hs

3b(M)}.

(For s ∈ N0, one can equivalently define Hs
3b(M) to consist of all u ∈ L2

3b(M) so that
Au ∈ L2

3b(M) for all A ∈ Diffs3b(M).) Thus, Hs,αD,αT
3b (M) is a Hilbert space with dual
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space relative to L2
3b(M) given by H−s,−αD,−αT3b (M); and (weighted) 3b-ps.d.o.s act in the

expected manner, for instance

AβD,βT Ψm
3b(M) 3 A : Hs,αD,αT

3b (M)→ Hs−m,αD−βD,αT −βT
3b (M).

When E0 →M0 is a vector bundle and E = β∗E0 →M its pullback along the blow-down
map β : M → M0, one can similarly define spaces Hs

3b(M ;E) of E-valued distributions to
consist, in local trivializations of E, of (rankE)-tuples of elements of Hs

3b(M); likewise
for weighted spaces. Elements of Ψm

3b(M ;E,F ) (or more general spaces of operators with
conormal coefficients) act boundedly between such weighted 3b-Sobolev spaces.

Instead of a positive smooth 3b-density, one can also define L2(M) and weighted 3b-
Sobolev spaces with respect to a weighted positive density ν = ρµDD ρµTT ν0 where 0 < ν0 ∈
C∞(M ; 3bΩM) and µD, µT ∈ R; if the need arises to make the density ν explicit, one writes
L2(M,ν) and Hs,αD,αT

3b (M,ν).

Remark 4.22 (Bounded geometry perspective on 3b-Sobolev spaces). We continue Re-
mark 4.5 and fix any Riemannian 3b-metric g on M ; denote the Riemannian distance
function associated with g by dg : M◦ ×M◦ → [0,∞). One can then, for any fixed ε > 0,
find a countable collection {pi : i ∈ I} ⊂ M◦ of points so that the ε-balls B(pi, ε) (with
respect to dg) cover M◦, and so that there is a finite number J so that any intersection
of more than J balls B(pi, 3ε) of thrice the radius is empty. (See [Shu92, Appendix A].)
Using the exponential map (with respect to g) to identify the balls B(pi, 2ε) with open balls
on Rn of radius 2ε, and denoting by {χi : i ∈ I}, suppχi ⊂ B(pi, ε), a bounded partition
of unity on M◦ subordinate to the balls B(pi, ε) (i.e. in these local coordinate charts, the
family {χi} is uniformly bounded in C∞(Rn)), we then have an equivalence of norms

‖u‖2Hs
3b(M) ∼

∑
i∈I
‖χiu‖2Hs(Rn), (4.28)

where we fix a positive 3b-density on M to define 3b-Sobolev spaces. (To obtain an anal-
ogous statement for weighted spaces Hs,αD,αT

3b (M), one multiplies the term corresponding

to i ∈ I by supBi(ρ
−αD
D ρ−αTT ), or equivalently by infBi(ρ

−αD
D ρ−αTT ), the ratio of the two

quantities being uniformly bounded.) The proof of (4.28) is elementary for s ∈ N0; for
negative integer s one can use a duality argument. For real s finally, one uses the fact that
one can compute 3b-Sobolev norms via testing with any elliptic 3b-ps.d.o. of order s, which
one can thus choose to have Schwartz kernel supported in an ε

2 neighborhood of diag3b.
Expressing this Schwartz kernel in local coordinates on the balls B(pi, 2ε), and localizing
to an ε

2 -neighborhood of B(pi, ε)×B(pi, ε) using a cutoff which in the aforementioned local
coordinates is i-independent, one obtains a uniformly bounded family of (uniformly) elliptic
ps.d.o.s on Rn. Using this family to compute the Hs(Rn)-norm of χiu gives (4.28).

Lemma 4.23 (Rellich-type compactness). Let s, s′, αD, α
′
D, αT , α

′
T ∈ R, and suppose s >

s′, αD > α′D, αT > α′T . Then the inclusion Hs,αD,αT
3b (M) ↪→ H

s′,α′D,α
′
T

3b (M) is compact.

Proof. This is most easily proved using the characterization (4.28). Given a bounded
sequence uj ∈ Hs,αD,αT

3b (M), which we may assume to converge weakly to some u ∈
Hs,αD,αT

3b (M), we can extract a subsequence (via a diagonal argument), which we denote by

uj still, so that for all i ∈ I, the distribution χiuj converges in Hs′(Rn) (with the limit nec-
essarily being χiu). But upon computing ‖uj − u‖2

H
s′,α′D ,α

′
T

3b (M)
using (the weighted version
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of) (4.28), the fact that for any fixed δ > 0, one has supB(pi,ε)(ρ
−α′D
D ρ

−α′T
T ×ραDD ραTT ) ≥ δ only

for at most finitely many i ∈ I, implies the desired convergence uj → u inH
s′,α′D,α

′
T

3b (M). �

Corresponding to the normal operators at the transition face T related to the spectral
family, and the operator algebras in which the spectral family lives, we have the following
result for weighted 3b-Sobolev spaces:

Proposition 4.24 (3b-Sobolev spaces and the Fourier transform near T ). Fix local coor-
dinates ρ0 = T ≥ 0 and X ∈ Rn−1 near p ∈M0, with (T,X) = (0, 0) at p, and put t = T−1

and x = X
T as in (3.3). Let χ ∈ C∞c ([0,∞)T ×Rn−1

X ), with support in the coordinate chart.

Write the Fourier transform of v = v(t, x) in t as v̂(σ, x) =
∫
R e

iσtv(t, x) dt. Fix any γ ∈ R,

and fix the weighted 3b-density 〈x〉γ |dt dx| on M and the density 〈x〉γ |dx| on T ∼= Rn−1
x .

Let s, αD ∈ R. Then

‖χu‖2
H
s,αD ,0
3b (M)

∼
∑
±

∫
±[0,1]

‖χ̂u(σ,−)‖2
H
s,s+αD ,αD ,0
sc-b,σ (T )

dσ

+

∫
±[1,∞)

‖χ̂u(σ,−)‖2
H
s,s+αD ,s
sc,|σ|−1 (T )

dσ,

(4.29)

in the sense that there exists a constant C > 0 which is independent of u so that the left
hand side is bounded by C times the right hand side, and vice versa. (In particular, one
side is finite if and only if the other side is.)

Remark 4.25 (Fourier transform of weighted 3b-Sobolev spaces). In the case s = αD =

γ = 0, the Fourier transform in t gives an equivalence of the H0,0,αT
3b (M)-norm of χu with

the HαT (Rσ;L2(T ))-norm of χ̂u. In particular, the norm on χ̂u is no longer local in σ,
unlike (4.29), and in particular it is involves differentiation across σ = 0; it is not clear how
to capture such σ-regularity at the same time as the sc-b-behavior near zero frequency. In
short, we do not have any norm equivalences such as (4.29) when the T -weight is nonzero.
See §6.4 for workarounds in the context of sharp Fredholm theory for fully elliptic 3b-
operators.

Proof of Propsoition 4.24. Since the Fourier transform commutes with multiplication by
powers of 〈x〉, it suffices to consider the case αD = γ = 0; thus, we work with the densities
|dt dx| on M and |dx| on T . For s = 0 then,

‖χu‖
H0,0,0

3b (M)
= ‖χu‖H0

3b(M) = ‖χu‖L2(Rt;L2(Rn−1
x )) ∼ ‖χ̂u‖L2(Rσ ;L2(Rn−1

x ))

by Plancherel’s Theorem, and the norms on H0,0,0,0
sc-b,σ (T ) and H0,0,0

sc,|σ|−1(T ) are (by definition)

equal to the L2(T )-norm; this proves (4.29) for s = 0.

Before proving (4.29) for general s, we discuss the case s = 1 for the sake of exposition.
On the left, we test χu with 1 (identity operator), 〈x〉Dt, and 〈x〉Dx, which upon passing to
the Fourier transform amounts to testing χ̂u(σ) with 1 + 〈x〉|σ| and 〈x〉Dx. Let us restrict
attention to ρD := |x|−1 ≤ 1, and write ω = x

|x| . For 0 ≤ σ ≤ 1, resp. h := σ−1 ∈ (0, 1], this

can be written as testing with

1 +
σ

ρD
=
( ρD
ρD + σ

)−1
,
( ρD
ρD + σ

)−1( ρD
ρD + σ

ρDDρD

)
,
( ρD
ρD + σ

)−1( ρD
ρD + σ

Dωj

)
,
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resp. h−1ρ−1
D , h−1ρ−1

D (hρ2
DDρD), h−1ρ−1

D (hρDDωj ). But ρD
ρD+σρD∂ρD and ρD

ρD+σ∂ωj span the

space of sc-b-vector fields near ρD = σ = 0, while hρ2
D∂ρD and hρD∂ωj span the space of

semiclassical scattering vector fields near ρD = h = 0. This implies (4.29) for s = 1.

For general s > 0 (and still with αD = γ = 0), we argue as around (2.9). Fix an operator
A ∈ Ψs

3b(M) with elliptic principal symbol. Then

‖χu‖2Hs
3b(M) ∼ ‖χu‖

2
H0

3b(M) + ‖A(χu)‖2H0
3b(M).

We shall in fact arrange for A to be t-translation-invariant on suppχ; that is, upon identi-
fying a neighborhood of T ⊂M containing suppχ with a neighborhood of T ∼= T̂ ⊂ N3bT
in a way compatible with the 3b-structures on M and N3bT (as discussed after Defini-
tion 3.18), the Schwartz kernels of A and NT (A) are equal near suppχ × suppχ. The
advantage is that then, by definition of the spectral family of A, we have

‖A(χu)‖2H0
3b(M) ∼

∫
R
‖N̂T (A, σ)χ̂u(σ,−)‖2L2(T ). (4.30)

But by Lemma 4.19, the operator family (±[0, 1] 3 σ 7→ N̂T (A, σ)) ∈ Ψs,s,0,0
sc-b (T ) has an

elliptic principal symbol as a sc-b-operator, and so does ((0, 1] 3 h 7→ N̂T (A,±h−1)) ∈
Ψs,s,s

sc,~ (T ) as a semiclassical scattering operator. Therefore, upon splitting the right hand

side of (4.30) into (−∞,−1]∪ [−1, 0]∪ [0, 1]∪ [1,∞), the equivalence of norms (4.29) follows
from the definition of the sc-b- and semiclassical scattering norms.

For s < 0, the norm equivalence (4.29) follows by duality from the case that the 3b-
differential order is −s. �

We stress that the equivalence of norms (4.29) only requires as an input the inheritance
of ellipticity when passing from a 3b-operator to its various normal operators; this in turn
is a testament to the high degree of precision with which, say, the sc-b-algebra captures the
range of the low energy spectral family P 7→ ([0, 1) 3 σ 7→ N(P, σ)). However, we caution
that the map P 7→ N(P,−) into the space of sc-b-ps.d.o.s is not surjective, nor is even just
its composition with the sc-b-principal symbol map (cf. the final part of Proposition 3.14).

Proposition 4.26 (3b-Sobolev spaces and the Mellin transform near D). Fix a boundary
defining function ρ0 ∈ C∞(M0). Fix a collar neighborhood U := [0, 1)ρD × D where ρD is
boundary defining function of D ⊂ M , and identify U with a collar neighborhood of the

lift of D to +̃N3bD (see Definition 3.21). Fix χ ∈ C∞c (U). Write the Mellin transform of

v = v(ρ0, z) (where z ∈ D) in ρ0 as v̂(λ, z) =
∫∞

0 ρ−iλ0 v(ρ0, z)
dρ0

ρ0
. Let µD, µT ∈ R and

0 < ν3b ∈ C∞(M ; 3bΩM), and fix on M the weighted 3b-density ν = ρµDD ρµTT ν3b. Fix on

D the weighted b-density ν̂ := ρµT −2µD+µ̂
T νb where 0 < νb ∈ C∞(D; bΩD) and µ̂ ∈ R. Let

s, αD, αT ∈ R. Then

‖χu‖2
H
s,αD ,αT
3b (M,ν)

∼
∫

[−1,1]

∥∥∥χ̂u(λ0 − i
(
αD −

µD
2

)
,−)

∥∥∥2

H
s,αT −αD+

µ̂+1
2

b (D,ν̂)
dλ0

+
∑
±

∫
±[1,∞)

∥∥∥χ̂u(λ0 − i
(
αD −

µD
2

)
,−)

∥∥∥2

H
s,αT −αD+

µ̂+1
2 ,αT −αD+

µ̂+1
2 ,s

c,|λ0|−1 (D,ν̂)
dλ0.

(4.31)

Here, we regard χu as a distribution on +N3bD, obtained by blowing down op in (3.26).
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Note here that χ ∈ A(0,0)(U) is, a fortiori, a bounded conormal function on +̃N3bD with
support disjoint from the lift of +Np∂M0, and its pushforward to +N3bD is thus a bounded

conormal function, i.e. χ ∈ A(0,0)(+N3bD), with support contained in the image of U under

the blow-down map +̃N3bD → +N3bD. See Figure 4.3.

T
D

M

D

R

+N3bD +̃N3bD

Figure 4.3. Illustration of Proposition 4.26. From left to right: the mani-

fold M , the D-model space +N3bD, and its resolution +̃N3bD. The support
of the cutoff function χ is the shaded area; the dashed blue lines are level
sets of the function ρ0 in which we take the Mellin transform.

Proof of Proposition 4.26. Near D ∩ T and in the coordinates ρD = T
R , ρT = R, ω ∈ Rn−2,

the 3b-density ν3b is a smooth positive multiple of |dρDρD
dρT
ρ2
T

dω| = |dTT
dR
R2 dω|, and therefore

ν is a smooth positive multiple of

TµDRµT −µD−1
∣∣∣dT
T

dR

R
dω
∣∣∣.

Thus, ν = ρµDD ρµT −µD−1
T νb where νb is a smooth positive b-density on +N3bD. Note then

that

‖χu‖2
H

0,αD ,αT
3b (M,ν)

=
∥∥ρ−αD+

µD
2

D ρ
−αT +

µT −µD−1

2
T χu

∥∥2

L2(M,νb)

=
∥∥(ρDρT )−αD+

µD
2 ρ
−αT +αD+

µT −1

2
−µD

T χu
∥∥2

L2(M,νb)

∼
∫
R

∥∥∥ρ−αT +αD− µ̂+1
2

T χ̂u
(
λ0 − i

(
αD −

µD
2

)
,−
)∥∥∥2

L2(D,ρµT −2µD+µ̂

T νb)
dλ0;

this is the case s = 0 of (4.31). For general s, the equivalence (4.31) follows from Pro-
position 2.35 in conjunction with Proposition 4.16. (The connection between 3b-Sobolev
spaces on M and edge-b-Sobolev spaces on +N3bD is given explicitly via Definition 4.13:
we can extend an elliptic edge-b-operator on +N3bD by dilation-invariance in ρ0 (in both
factors on the Schwartz kernel level), followed by cutting off to a collar neighborhood of D,
to a 3b-operator which then has an elliptic principal symbol near D. Such an operator can
then be used to measure 3b-regularity on M and edge-b-regularity on +N3bD at the same
time.) �

4.5. Operators and Sobolev spaces with variable order. While not used in the
present paper, ps.d.o.s and Sobolev spaces with variable orders play important roles in hy-
perbolic problems, in particular in settings in which scattering theory enters, cf. the radial
point estimates in [Mel94] as described in [Vas18, Proposition 4.13], [BVW15, §5] or [Hin21c,
§4]. The 3b-framework is used in [Hin23] to analyze the propagation of 3b-regularity for
waves on appropriate asymptotically flat spacetimes through T , and scattering behavior
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occurs at certain conic submanifolds (radial sets) of 3bT ∗∂TM . We thus indicate here the
minor modifications needed to deal with ps.d.o.s or weighted Sobolev spaces with variable
3b-differential orders; this is analogous to the discussion in [BVW15, Appendix A], and
goes back to [Unt71].

We need to use the symbol class Ss1−δ,δ(
3bT ∗M) where δ ∈ (0, 1

2). Letting ρ∞ ∈
C∞(3bT ∗M) denote a boundary defining function of 3bS∗M (so ρ∞, resp. ρ−1

∞ is a clas-

sical symbol on 3bT ∗M of order −1, resp. +1), this is equal to the space Asδ(3bT ∗M) of

functions u ∈ C∞(3bT ∗M) for which V1 . . . Vmu ∈ ρ−s−mδ∞ L∞(3bT ∗M) for all m ∈ N0 and

all vector fields Vj ∈ V(3bT ∗M) which are tangent to 3bS∗M . For s ∈ C∞(3bT ∗M) then, we

then define the space Ss(3bT ∗M) to consist of all ρ−s∞ a0 where a0 ∈
⋂
δ>0 S

0
1−δ,δ(

3bT ∗M).

We remark that when s|3bS∗M = 0, then ρ±s∞ ∈
⋂
δ>0 S

0
1−δ,δ(

3bT ∗M), and therefore the

class Ss(3bT ∗M) only depends on the restriction of s to 3bS∗M . Moreover, if we let
s0 = min3bS∗M s, then Ss(3bT ∗M) ⊂

⋂
δ>0 S

s0
1−δ,δ(

3bT ∗M).

We then define, for δ ∈ (0, 1
2) and s ∈ R, the class Ψs

3b,1−δ,δ(M) of 3b-ps.d.o.s as in
Definition 4.3, except we only demand that their Schwartz kernels be conormal distributions
of class (1 − δ, δ) (see [Hör71]). The principal symbol of P ∈ Ψs

3b,1−δ,δ(M) is then an

element σs3b,1−δ,δ(P ) ∈ (Ss/Ss−1+2δ)(3bT ∗M), and the normal operators are elements of

Ψs
3b,1−δ,δ,I(N3bT ) and Ψs

e,b,1−δ,δ,I(
+N3bD) (defined analogously). Given a variable order

function s ∈ C∞(3bT ∗M) and s0 = min3bS∗M s, we then define

Ψs
3b(M) ⊂

⋂
δ>0

Ψs0
3b,1−δ,δ(M)

as the space of operators whose Schwartz kernels are conormal distributions of variable
order s (identified with a variable order function on N∗ diag3b), i.e. in local coordinates
near diag3b they are given as quantizations of elements of Ss(3bT ∗M). Directly from the
definitions, we have:

Lemma 4.27 (Symbols and normal operators of variable order ps.d.o.s). Denote by s ∈
C∞(3bT ∗M) a variable order function. Then the principal symbol gives a short exact se-
quence

0→
⋂
δ>0

Ψs−1+2δ
3b (M) ↪→ Ψs

3b(M)
3bσs

−−→
(
Ss/

⋂
δ>0

Ss−1+2δ

)
(3bT ∗M)→ 0.

Moreover, the T - and D-normal operators give rise to short exact sequences

0→ ρT Ψs
3b(M) ↪→ Ψs

3b(M)
NT−−→ ΨsT

3b,I(N3bT ) → 0,

0→ ρDΨs
3b(M) ↪→ Ψs

3b(M)
ND−−→ ΨsD

e,b,I(
+N3bD) → 0,

where sT is the translation-invariant extension of s|3bT ∗TM
, and sD is the dilation-invariant

extension of s|3bT ∗DM
∈ C∞(e,bT ∗D(+N3bD)).

Defining variable order versions of all other model ps.d.o. algebras in an analogous fashion
to the 3b-case just discussed, we also have:

Lemma 4.28 (Spectral family and Mellin-transformed normal operator family). Let s ∈
C∞(3bT ∗M) and P ∈ Ψs

3b(M). Then:
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(1) Let σ0 > 0. The family ±[0, σ0) 3 σ 7→ N̂T (P, σ) is an element of Ψs∞,ssc,0,0
sc-b (T ).

Here, the variable order functions s∞ ∈ C∞(sc-bS∗T ) and ssc ∈ C∞(sc-bT ∗scfT ) are

the restrictions (to the stated boundary hypersurfaces of scT ∗T ) of the pullback of s
along the family of maps (ισ)σ∈±[0,σ0) from Lemma 3.12.

(2) The family (0, 1) 3 h 7→ N̂T (P,±h−1) is an element of Ψs∞,ssc,s~
sc,~ (T ), where s∞ ∈

C∞(sc,~S∗T ), ssc ∈ C∞(sc,~T ∗[0,1)×∂T T ), and s~ ∈ C∞(sc,~T ∗{h=0}T ) are the restric-

tions (from sc,~T ∗T ) of the pullback of s along the family of maps ι±h−1.

(3) For λ ∈ C, the operator N̂D(P, λ) is an element of Ψs∞
b (D), where s∞ ∈ C∞(bS∗D)

is the restriction to bS∗D ↪→ e,bS∗D(+N3bD) of s|3bS∗DM
under the identification

given in Corollary 3.23.

(4) For µ ∈ R, the family (0, 1) 3 h 7→ N̂D(P,−iµ±h−1) is an element of Ψs∞,0,0,s~
c~ (D)

where s∞ ∈ C∞(c~S∗D) and s~ ∈ C∞(c~T ∗sfD) are restrictions (from c~T ∗D) of
s|3bS∗DM

in the manner described in Lemma 2.31(4).

The principal symbols of N̂T (P,−) and N̂D(P,−) in the stated algebras are given in terms
of that of P via analogous pullbacks, as discussed in §3.4.

Proof. Upon localization of Schwartz kernels away from diag3b, any 3b-ps.d.o. becomes a
residual operator, whose normal operator families are thus already controlled. Therefore, it
suffices to study the near-diagonal contributions to the normal operator families. Part (1)
then follows as in the proof of Proposition 4.9. Concretely, one starts with the oscillatory
integral expression (4.14), where now a is a variable order symbol in (σ3b, ξ, η); the explicit
expressions (4.15), (4.16), and (4.17) of the spectral family in coordinate charts covering the
support of its Schwartz kernel inside of T 2

sc-b then imply the claimed relationships between

P and N̂T (P,−) as regards the variable orders as well as the principal symbols. Part (2)
similarly follows by inspecting the proof of Proposition 4.8(2). The remaining parts likewise
follow by an inspection of the part of the proof of Proposition 2.34 concerned with the near-
diagonal behavior, applied to the operator ND(P ). The smoothness of the variable orders
induced by s is a consequence of these arguments as well; we leave it to the reader to check
this via direct computations in local coordinates. �

We next define variable order 3b-Sobolev spaces

Hs,αD,αT
3b (M) = ραDD ραTT Hs

3b(M);

here, given s ∈ C∞(3bT ∗M), we fix any A ∈ Ψs
3b(M) with elliptic principal symbol, and

set, for s0 ≤ min3bS∗M s,

Hs
3b(M) =

{
u ∈ Hs0

3b(M) : Au ∈ L2(M)
}
.

Using the 3b-symbol calculus, it then standard to show that variable order 3b-ps.d.o.s are
bounded linear maps between such weighted variable order 3b-Sobolev spaces. Moreover,
Lemma 4.23 can be generalized to the statement that the inclusion

Hs,αD,αT
3b (M) ↪→ H

s′,α′D,α
′
T

3b (M)

is compact if s′ < s (both of which can be variable) holds in the pointwise sense, α′D < αD,
and α′T < αT . (This can be proved similarly to Lemma 4.23; indeed one reduce it locally to
a constant order result by using that for a sufficiently small radius ε > 0 of the balls B(pi, 3ε)
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used to cover M◦, one can squeeze two constant orders supB(pi,2ε) s
′ < s′i < si < infB(pi,2ε) s

in between s and s′. We leave the details to the reader.) We finally record the following
variable order analogues of Propositions 4.24 and 4.26:

Proposition 4.29 (Variable order 3b-Sobolev spaces and the Fourier and Mellin trans-

form). Let s ∈ C∞(3bT ∗M) denote a variable order function, and let ε > 0.

(1) We use the notation ρ0 = T , X, t = T−1, x = X/T , and we fix densities on M and
T as in Proposition 4.24. Then there exists δ > 0 so that for χ ∈ C∞c ([0,∞)T×Rn−1

X )
with T + |X| < δ on suppχ, and for any αD ∈ R, there exists a constant C > 0 so
that

C−1Is−ε(χu) ≤ ‖χu‖
H

s,αD ,0
3b (M)

≤ CIs+ε(χu), (4.32)

where we set

Is(u) :=
∑
±

∫
±[0,1]

‖χ̂u(σ,−)‖2
H

s∞,ssc+αD ,αD ,0
sc-b,σ (T )

dσ

+

∫
±[1,∞)

‖χ̂u(σ,−)‖2
H

s∞,ssc+αD ,s~
sc,|σ|−1 (T )

dσ.

Here, s∞, ssc in the first, and s∞, ssc, s~ in the second line are defined as in
Lemma 4.28(1) and (2), respectively.

(2) We use the notation ρ0, U = [0, 1)ρD × D, and the weights and densities from
Proposition 4.26. Then there exists δ > 0 so that for χ ∈ C∞c (U) with ρD < δ on
suppχ, and for any αD, αT ∈ R, there exists a constant C > 0 so that

C−1J s−ε(χu) ≤ ‖χu‖Hs,αD ,αT
3b (M) ≤ CJ

s+ε(χu),

where we set

J s(u) :=

∫
[−1,1]

∥∥∥χ̂u(λ0 − i
(
αD −

µD
2

)
,−)

∥∥∥2

H
s∞,αT −αD+

µ̂+1
2

b (D,ν̂)
dλ0

+
∑
±

∫
±[1,∞)

∥∥∥χ̂u(λ0 − i
(
αD −

µD
2

)
,−)

∥∥∥2

H
s∞,αT −αD+

µ̂+1
2 ,αT −αD+

µ̂+1
2 ,s~

c,|λ0|−1 (D,ν̂)
dλ0.

Here, s∞ in the first, and s∞, s~ in the second line are defined as in Lemma 4.27(3)
and (4), respectively.

If s is translation-invariant (with respect to t-translations in the (t, x)-coordinates) in a
collar neighborhood U of T , resp. dilation-invariant (with respect to dilations in ρ0 in some
collar neighborhood of ∂M0) in a collar neighborhood U of D, then one can take ε = 0 in
part (1), resp. (2) provided suppχ ⊂ U .

Proof. When s is translation-invariant, part (1), with ε = 0 (and thus a fortiori for ε > 0),
follows by the same proof as in for Proposition 4.24. For general s, one chooses δ > 0 so
small that the pointwise difference between s and the translation-invariant extension sI of
s|3bT ∗TM

is less than ε for T + |X| < δ. One can then apply (4.32) with sI , 0 in place of s, ε;

the estimate (4.32) as stated then follows from Is−ε(χu) . IsI (χu) . Is+ε(χu). The proof
of part (2) is completely analogous. �
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5. The large 3b-calculus

We continue using the notation M0, p, M = [M0; {p}] of §3. The small 3b-calculus intro-
duced in §4 is sufficient for the (symbolic) phase space analysis of 3b-(pseudo)differential
operators; moreover, in combination with the function space isomorphisms related to the
Fourier transform at T and the Mellin transform at D developed in §§4.4–4.5, the small
calculus is a sufficiently powerful tool for asymptotic analysis at T and D; see §7 for a
demonstration in the elliptic setting. However, as is already familiar from the b- [Mel93],
edge [Maz91], or 0-calculi [MM87], precise parametrices or (generalized) inverses of fully
elliptic 3b-operators (a notion we will define in §6) do not lie in the small 3b-calculus, but
in an appropriate large 3b-calculus which incorporates boundary terms. In this section, we
define this large 3b-calculus and prove its basic mapping and composition properties.

5.1. Basic properties of the large 3b-calculus. We begin with the definition of the
resolution of M ×M which will carry the Schwartz kernels of elements of the large 3b-
calculus:

Definition 5.1 (3b-double space). Denote by p̃L and p̃R the lifts of {p}×M0 and M0×{p}
to the small 3b-double space M2

3b,[ from Definition 4.2. Then the (large) 3b-double space is

M2
3b := [M2

3b,[; p̃L, p̃R] = [(M0)2
b; p3b; pL∩R; pL, pR; p̃L, p̃R], (5.1)

where p3b, pL∩R, pL, and pR are as in Definition 4.2. We denote the boundary hypersurfaces
of M2

3b as follows:

• ffT is the lift of ffT ,[ ⊂M2
3b,[, i.e. the lift of p3b ⊂ (M0)2

b;

• ffD is the lift of ffD,[ ⊂M2
3b,[, i.e. of the front face of (M0)2

b;

• lf, resp. rf is the lift of pL, resp. pR;
• lbD, resp. rbD is the lift of the left, resp. right boundary of (M0)2

b;
• lbT , resp. rbT is the lift of p̃L, resp. p̃R;
• ifL, resp. ifR is the connected component of the lift of pL∩R which intersects lbD,

resp. rbD nontrivially. We shall also write if := ifL ∪ ifR.

Finally, diag3b denotes the lift of the diagonal in (M0)2 to M2
3b.

Lemma 5.2 (Relationship of M2
3b and M2). The space M2

3b is a resolution (iterated blow-
up) of M2.

Proof. In M2 = [M2
0 ; {p} ×M0;M0 × {p}], we blow up (the lift of) {(p, p)}; this can be

commuted through M0×{p} (⊃; {p}×M0) and {p}×M0 (⊃). Next, we blow up the lift of
{p}×∂M0; this can be commuted through M0×{p} (intersection ⊂ {(p, p)}) and {p}×M0

(⊃); similarly, we can blow up ∂M0 × {p}. Thus, M2 can be blown up to

[M2
0 ; {(p, p)}; {p} × ∂M0, ∂M0 × {p}; {p} ×M0,M0 × {p}].

Next, we blow up (∂M0)2; this can be commuted through M0×{p} (intersection ⊂ ∂M0×
{p}) and {p} ×M0 (intersection ⊂ {p} × ∂M0), as well as through ∂M0 × {p}, {p} × ∂M0,
and {(p, p)} (⊂ for all three). Using the notation of Definition 5.1, we have thus shown
that M2 can be blown up to[

M2
0 ; (∂M0)2; {(p, p)}; {p} × ∂M0, ∂M0 × {p}; {p} ×M0,M0 × {p}

]
=
[
(M0)2

b; pL∩R; pL, pR; p̃L, p̃R
]
.
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Finally, we can blow up p3b and commute it through p̃L and p̃R since p3b is disjoint from
them, and we can then further commute it through pL and pR (intersection ⊂ pL∩R) and
through pL∩R (⊃). This completes the proof. �

Remark 5.3 (Small 3b-calculus and bundles). In view of Lemma 5.2, we can define spaces
Ψs

3b(M ;E,F ) of 3b-ps.d.o.s acting between sections of smooth bundles E,F → M via
tensoring the space of Schwartz kernels of elements of Ψs

3b(M) with C∞(M2
3b, π

∗
RF ⊗π∗LE∗),

where πL and πR : M2
3b → M are the left and right projection, respectively. This is only

a minor generalization of the setting of Definition 4.3 since any vector bundle E → M is
isomorphic (albeit not in a canonical manner) to the pullback of a vector bundle over M0;

this follows from the fact that E|T → T is trivial (the base T ∼= Rn−1 being contractible).

Figure 5.1 shows two slices of M2
3b given by level sets of the coordinate X ′ ∈ Rn−1, where

we denote by T,X and T ′, X ′ local coordinates on the left, resp. right factor of (M0)2
b.

lbT

lbD

rbT

ffT

rf

rf

ifL

ifR

T

T ′ X

lbD

lbT

rbD

lf

ffD

ffD

Figure 5.1. On the left: the lift of X ′ = 0 inside of M2
3b. On the right: the

lift of X ′ = X ′0 6= 0 inside of M2
3b.

Definition 5.4 (Large 3b-calculus). Let E = (EffD , EffT , Elf , Erf , ElbD , ErbD , ElbT , ErbT , Eif) be
a collection of index sets. With πR : M2

3b → M denoting the right projection, the space of
residual 3b-ps.d.o.s is

Ψ−∞,E3b (M) := AEphg(M2
3b;π∗R

3bΩM),

where the index set EH is associated to the hypersurface H (in the case H = if to both ifL
and ifR). The large 3b-calculus consists of all operators in Ψm

3b(M) + Ψ−∞,E3b (M). We also

define for E = (EL,D, EL,T , ER,D, ER,T ) the space of fully residual operators21

Ψ−∞,E(M) = AEphg(M2;π∗R
bΩM) = AE+(0,0,0,1)

phg (M2;π∗R
3bΩM) (5.2)

which are polyhomogeneous kernels on the (unresolved) product space M ×M with index
set EL,D at D ×M , EL,T at T ×M , ER,D at M ×D, and ER,T at M × T .

In particular, if all index sets in E are trivial (i.e. the empty set) with the exception of

EffD = −βD + N0 and EffT = −βT + N0, then Ψ−∞,E3b (M) = ρ−βDD ρ−βTT Ψ−∞3b (M) lies in the
small weighted 3b-algebra.

21We use right b-densities here for simpler bookkeeping; see Lemma 5.8 below regarding the relationship
between the b- and 3b-density bundles used here.
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Notation 5.5 (Index sets). To assist the reader with keeping track of which index set is
assigned to which boundary hypersurface of M2

3b, we shall also write

Ψ−∞,E3b (M) = Ψ−∞3b (M ; ffD[EffD ],ffT [EffT ], lf[Elf ], rf[Erf ],

lbD[ElbD ], rbD[ErbD ], lbT [ElbT ], rbT [ErbT ], if[Eif ]).

We also note that by (5.2) and Lemma 5.2, we have

Ψ−∞,E(M) ⊂ Ψ−∞3b

(
M ; ffD[EL,D + ER,D],ffT [EL,T + ER,T + 1],

lf[EL,T + ER,D], rf[EL,D + ER,T + 1], lbD[EL,D], rbD[ER,D],

lbT [EL,T ], rbT [ER,T + 1], if[EL,T + ER,T + 1]
)
.

(5.3)

Proposition 5.6 (Basic mapping properties). Let E be a collection of index sets as in
Definition 5.4.

(1) Let P ∈ Ψm
3b(M) + Ψ−∞,E3b (M). Let F = (FD,FT ) be a pair of index sets. Suppose

that Re(ErbD + FD) > 0 and Re(ErbT + FT ) > 1. Then

P : AFphg(M)→ AGphg(M) (5.4)

where G = (GD,GT ) is given by

GD = ElbD ∪ (EffD + FD) ∪ (Erf + FT − 1),

GT = ElbT ∪ (Elf + FD) ∪ (Eif + FT − 1) ∪ (EffT + FT ).
(5.5)

In particular, if P ∈ Ψm
3b(M) is an element of the small 3b-algebra, then G = F .

(2) Let αD, αT ∈ R, and define weighted 3b-Sobolev spaces on M with respect to a
positive b-density. Suppose that Re(ErbD + αD) > 0 and Re(ErbT + αT ) > 1. Then

P : Hs,αD,αT
3b (M)→ AγD,γT (M), P : Hs,αD,αT

b (M)→ AγD,γT (M),

for any

γD < γ0
D := min(Re ElbD ,Re EffD + αD,Re Erf + αT − 1),

γT < γ0
T := min(Re ElbT ,Re Elf + αD,Re Eif + αT − 1,Re EffT + αT ).

The boundedness of Ψm
3b(M) as a map between weighted 3b-Sobolev spaces was already

noted in §4.4, and hence we do not repeat it here. We shall prove Proposition 5.6 using
pullback and pushforward results for polyhomogeneous distributions. The key geometric
input is:

Lemma 5.7 (Projection to the single space). The left, resp. right projection M2
0 → M0

lifts to a smooth map πL : M2
3b → M , resp. πR : M2

3b → M which is a b-fibration. The
preimage under πL of D, resp. T is lbD ∪ ffD ∪ rf, resp. lbT ∪ lf ∪ if ∪ ffT . The preimage
under πR of D, resp. T is rbD ∪ ffD ∪ lf, resp. rbT ∪ rf ∪ if ∪ ffT .

Proof. We use the lifting results of [Mel96, Chapter 5]. Consider the left projection; the
case of the right projection is completely analogous. We start with the lifted left projection
(M0)2

b → M0, which is a b-fibration. This map is b-transversal to pR (which gets mapped
diffeomorphically to ∂M0), and hence lifts to a b-fibration

[(M0)2
b; pR]→M0.
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The preimage of {p} under this map is the union of the lifts of pL∩R, pL, and p̃L, and by
[Mel96, Proposition 5.12.1] this map lifts to a b-fibration[

(M0)2
b; pR; pL∩R; pL; p̃L

]
→ [M0; {p}] = M. (5.6)

Since pR ⊃ pL∩R, we can commute the first two blow-ups on the left. Moreover, the
map (5.6) is b-transversal to the lifts of p3b and p̃R, and hence lifts to a b-fibration[

(M0)2
b; pL∩R; pL, pR; p̃L, p̃R; p3b

]
→M. (5.7)

The blow-up of p3b can be commuted all the way to the front since p3b is disjoint from p̃L
and p̃R, and since p3b ∩ p• ⊂ pL∩R for • = L,R (so [Mel96, Proposition 5.11.2] applies).
Thus, the domain of the map (5.7) is M2

3b, and the proof is complete. �

Pushforward and pullback results [Mel92] are most conveniently applied to b-densities;
hence, we record:

Lemma 5.8 (3b- and b-densities). We have 3bΩM = ρ−1
T

bΩM = ρ−nT β∗bΩM0 where
ρT ∈ C∞(M) is a defining function of T . Moreover,

π∗L
3bΩM ⊗ π∗R3bΩM = (ρffT ρlfρrfρlbT ρrbT ρ

2
if)
−1 bΩM2

3b, (5.8)

where ρH ∈ C∞(M2
3b) is a defining function of H ⊂M2

3b.

Proof. Away from T , b- and 3b-densities are the same, and near T ◦ and in the coordi-
nates T,X and t, x from (3.2) and (3.3), a positive section of 3bΩM is |dt dx| = |dT

T 2 dx| =
T−1|dTT dx|; near the corner T ∩ D, the claim follows from the fact that | dTRT

dR
R dω| (in the

coordinates (3.6)) is a positive 3b-density, with R a local defining function of T . This es-
tablishes 3bΩM = ρ−1

T
bΩM . The second equality follows from the general observation (2.2)

since {p} has codimension n− 1 inside of ∂M0.

For the proof of (5.8), we note that the bundle on the left is

ρ−nT (ρ′T )−nβ∗2
bΩM2

0 (5.9)

where β2 : M2
3b → M2

0 is the blow-down map and ρT and ρ′T are the left and right lifts of
a defining function of T ⊂M . Repeated application of (2.2) gives

β∗2
bΩM2

0 = ρ2n−1
ffT

ρ2n−2
if ρn−1

lf ρn−1
rf ρn−1

lbT
ρn−1

rbT
bΩM2

3b,

while Lemma 5.7 implies ρT = ρffT ρifρlbT ρlf and ρ′T = ρffT ρifρrfρrbT . Plugged into (5.9),
this gives (5.8). �

Proof of Proposition 5.6. We only consider the case m = −∞. (Since πL is transversal to
the 3b-diagonal, the diagonal singularity for finite m is easily handled.) For part (1), fix
a b-density 0 < ν3b ∈ C∞(M ; 3bΩM), and denote the Schwartz kernel of P by KP . For
u ∈ AFphg(M), we then have

Pu = ν−1
3b (πL)∗

(
KP · π∗Ru · π∗Lν3b

)
.

The distribution in parentheses is a section of π∗L
3bΩM ⊗ π∗R 3bΩM . By Lemma 5.8, we

thus have

KP · π∗Ru · π∗Lν3b ∈ AHphg(M2
3b; bΩM2

3b),

H =
(
EffD + FD, EffT + FT − 1, Elf + FD − 1, Erf + FT − 1,

ElbD , ErbD + FD, ElbT − 1, ErbT + FT − 1, Eif + FT − 2
)
.
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The pushforward along (πL)∗ is well-defined provided the index sets ErbD +FD and ErbT +
FT − 1 at the hypersurfaces rbD and rbT (the image of which intersects the interior of M)
are positive; and using Lemma 5.7, the pushforward then lies in

A(GD,GT −1)
phg (X; bΩM)

where GD,GT are defined by (5.5). Division by ν3b ∈ ρ−1
T C∞(M ; bΩM) increases the T -

index set by 1; this gives (5.4).

For part (2), we conjugate P by ρ−αDD ρ−αTT to reduce to the case αD = αT = 0, and then

divide P on the left by ρ
γ0
D−ε
D ρ

γ0
T −ε
T where 0 < ε < 1

2 min(γ0
D − γD, γ0

T − γT ). This reduces

our task to the proof of the boundedness of P : Hs
3b(M)→ A−ε,−ε(M) for P ∈ Ψ−∞,E3b (M)

under the assumptions Re ErbD > 0, Re ErbT > 1, and Re EffD , Re EffT , Re ElbD , Re ElbT > 0
and Re Erf ,Re Eif > 1. Under these assumptions, the boundedness P : H0

3b(M) → H0
b(M),

i.e. the L2-boundedness of P , follows from Schur’s Lemma. The desired result is then

a consequence of the fact that also APB ∈ Ψ−∞,E3b (M) for any A ∈ Diffb(M) and B ∈
Diffb(M) (or B ∈ Diff3b(M)), since every element of Hs

b(M) (or Hs
3b(M)) is a finite sum

of derivatives of suitable elements of L2(M) along b- (or 3b-)differential operators. �

We end this section with a description of the boundary hypersurfaces of M2
3b:

Lemma 5.9 (Structure of the boundary hypersurfaces of M2
3b). Fix a boundary defining

function ρ0 ∈ C∞(M0), and denote by ρ0 = T and ρ′0 = T ′ its lifts to the left and right
factor of M2

3b, respectively. Introduce local coordinates T ≥ 0, X ∈ Rn−1, resp. T ′ ≥ 0,
X ′ ∈ Rn−1 on the left, resp. right factor of M0 ×M0 near ∂M0; put s = T/T ′ ∈ [0,∞]. If
(T,X) are local coordinates near p, with p given by (T,X) = (0, 0), then put (t, x) = ( 1

T ,
X
T ),

likewise for the primed coordinates. When p = (0, 0) in both coordinate systems (T,X) and
(T ′, X ′), set τ = t− t′. Then:

(1) ffT ∼= R × T 2
b , with the diffeomorphism given in local coordinates by continuous

extension of (τ, x, x′) 7→ ( τ
〈(x,x′)〉 , x, x

′). (See Figure 5.2.)

(2) ffD ∼= [[0,∞] × D2
b; {1} × ffD,b], with the diffeomorphism given by (s,X,X ′). (See

Figure 5.3.)
(3) lbD ∼= [D × M ; ∂D × T ; ∂D × D], with the diffeomorphism given by (X,T ′, X ′).

Similarly, rbD ∼= [M×D; T ×∂D;D×∂D], with diffeomorphism given by (T,X,X ′).
(See Figure 5.4.)

(4) lbT ∼= T ×M , with the diffeomorphism given by (x, T ′, X ′). Similarly, rbT ∼= M×T
via (T,X, x′). (See Figure 5.5.)

(5) lf ∼= [[0,∞]× T × D; {1} × ∂T × D; {0} × T × ∂D], with the diffeomorphism given
by (s, x,X ′). Similarly, rf ∼= [[0,∞]×D×T ; {1}× ∂D×T ; {∞}×D× ∂T ] via the
coordinates (s,X, x′).

(6) ifL ∼= [[0, 1] × T 2; {0} × ∂T × T ; [0, 1] × (∂T )2], with the diffeomorphism given by
(s, x, x′). Similarly, ifR ∼= [[1,∞]× T 2; {∞} × T × ∂T ; [0, 1]× (∂T )2].

Parts (1)–(3) have been used in the definition of model operators in §4 or will be used
in the parametrix construction in §6. Parts (4)–(6) are included only for completeness.

Proof of Lemma 5.9. We introduce the functions ρ = T+T ′ as well as X̂ = X
ρ (when X = 0

at p) and X̂ ′ = X′

ρ (when X ′ = 0 at p).
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ifL

ifR

rf

lf
ffD

τ/〈(x, x′)〉

x

x′

Figure 5.2. Structure of ffT ; this is a variant of Figure 4.1. The intersec-
tion of ffT with a boundary hypersurface ∗ ⊂ M2

3b is labeled ∗. We note

that the family left, resp. right boundary R × lbb, resp. R × rbb of R × T 2
b

is given by the lift of x−1 = 0, resp. x′−1 = 0, which is rf, resp. lf.

lf

rf

rbD

lbD

ffT

ifR

ifL

X

X ′ ∞

0

s

Figure 5.3. Structure of ffD in the case dim ∂M0 = 1; this is a variant of
Figure 4.2. We only show the part of ffD on which X,X ′ ≥ 0.

lbT

rf

ffDifL

lf

lf

X

T ′ X ′

Figure 5.4. Structure of lbD in the case dim ∂M0 = 1; we only show the
part of lbD on which X ≥ 0.

Since p̃L and p̃R lift to be disjoint from ffT ,[ and ffD,[, we have ffT = ffT ,[ and ffD = ffD,[.
Part (1) is therefore the same as Lemma 4.6, and part (2) is the same as Lemma 4.11.
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lbD

lf

ifL x

+∞−∞

X ′
T ′

Figure 5.5. Structure of lbT .

Turning to part (3), the left boundary of (M0)2
b is the lift of ∂M0 ×M0, and indeed

(naturally) diffeomorphic to it; local coordinates are X,T ′, X ′. Among the submanifolds
blown up in (5.1), only pL∩R, pL, pR, and p̃L lift to be not disjoint from it, and indeed their
lifts intersect ∂M0 ×M0 in {(p, p)}, {p} × ∂M0, ∂M0 × {p}, and {p} ×M0, respectively.
Since the lifts of ∂M0×{p} and {p}×M0 to [∂M0×M0; {(p, p)}] are disjoint, we can blow
up {p} ×M0 before ∂M0 × {p}; and then we can move the blow-up of {p} ×M0 all the
way to the front (since {(p, p)}, {p} × ∂M0, {p} ×M0 is a chain of p-submanifolds). Thus,
lbD is the blow-up of [∂M0 ×M0; {p} ×M0] = D ×M0 at ∂D × {p}, ∂D × ∂M0, D × {p}.
The lift of the latter two manifolds to the blow-up of the first are disjoint, and we can then
move the blow-up of D × {p} to the front, obtaining

lbD = [D ×M0;D × {p}; ∂D × {p}; ∂D × ∂M0] = [D ×M ; ∂D × T ; ∂D ×D],

as claimed. The case of rbD is completely analogous.

For part (4), let us work in local coordinates s ≥ 0, X ′, T ′ ≥ 0, X near the left boundary
of (M0)2

b; we only consider a neighborhood of p in each factor, i.e. with p given in the left and
right factor by X = 0 and X ′ = 0, respectively. Then upon blowing up pL∩R = {(s, 0, 0, 0)}
and pL = {(s,X ′, 0, 0)} (which can be done in either order), the lift of pR = {(s, 0, 0, X)}
is disjoint from the lift of p̃L = {(0, X ′, T ′, 0)}. Now, blowing up pL produces, locally,

[0, 1)s × Rn−1
X′ ×M

′, M ′ :=
[
[0, 1)T ′ × Rn−1

X ; {(0, 0)}
]
.

Near the interior of the front face, we thus have smooth coordinates s, X ′, T ′, X̃ := X
T ′ ∈

Rn−1, and the lift of pL∩R and p̃L is given by [0, 1)× {0} × {0} × Rn−1 and {0} × Rn−1 ×
[0, 1) × {0}, respectively. Blowing up pL∩R thus gives [0, 1)s ×MT ′,X′ × Rn−1

X̃
. The front

face of the blow-up of the lift of p̃L, i.e. of s = X̃ = 0, is diffeomorphic to T ×M , with
local coordinates X̃/s = X/T = x and T ′, X ′, as claimed.

For part (5), note that the blow-up of pL in (5.1) can be commuted to the first place. Since
in local coordinates s, ρ,X,X ′ on (M0)2

b, with X = 0 at p, we have pL = {(s, 0, 0, X ′)}, the

front face of [(M0)2
b; pL] is diffeomorphic to [0,∞]s×Rn−1

X̂
×Rn−1

X′ . Blowing up its intersection

with the lifts of pL∩R (given by [0,∞]×Rn−1×{0}) and p3b (given by {1}×Rn−1×{0}) in
either order, and subsequently blowing up the lift of p̃L (given by {0} × {0} × Rn−1) gives

[[0,∞]×D; {1}× ∂D]×Rn−1

X̂
(with local coordinates s,X ′, X̂) blown up at {0}×D×{0}.

The lift of p̃R is disjoint from lf. Thus, the coordinates s,X ′, X̂ provide a local coordinate
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description (in the interior of lf) of the diffeomorphism

lf ∼=
[
[0,∞]×D × Rn−1; {1} × ∂D × Rn−1; {0} × D × {0}

]
(5.10)

Now for s > 1, where ρ and T are equivalent (in the sense that ρ/T is bounded away from

0 and ∞), we can use X/T = x instead of X̂ = X/ρ; for s < 2, we can use X/T ′ = xs.
On the fibers of the map blowing down {0} × D × {0} in (5.10), we therefore have affine
coordinates given by (xs)/s = x, and hence the lift of {0} × D × {0} is diffeomorphic to
D × T (with local coordinates X ′, x). But this means that we have a diffeomorphism

lf ∼=
[
[0,∞]×D × T ; {1} × ∂D × T ; {0} × D × ∂T

]
,

in local coordinates given by (s,X ′, x). Switching the order of D and T (i.e. of X ′ and x)
gives the description in the statement of the Lemma.

Finally, to prove part (6), we start with the front face of [(M0)2
b; pL∩R]; it is diffeomorphic

to [0,∞]×R2(n−1) via the coordinates s ∈ [0,∞] and Z := (X,X ′)/ρ ∈ R2(n−1). The blow-
up of p3b creates two connected components; ifL is a resolution of the component with
s ∈ [0, 1]. There, we may replace ρ by T ′, i.e. use (X,X ′)/T ′ = (xs, x′) =: (x̃, x′) as affine

coordinates on the interior of [0, 1]s × Rn−1
x̃ × Rn−1

x′ . The lift of pL and pR is given by

[0, 1]×{0}× ∂Rn−1 and [0, 1]× ∂Rn−1×{0}, respectively. Blowing these up thus produces

[0, 1] × [Rn−1
x̃ × Rn−1

x′ ; ∂Rn−1 × ∂Rn−1], cf. (4.5). Upon blowing up the lift of p̃L, which is

given by {0} × {x̃ = 0}, we obtain ifL. In ifL, near the interior of the front face of this
final blow-up, we have local coordinates s, x̃/s = x, x′. Thus, we can equivalently describe
ifL as the resolution of [0, 1] × T × T (with coordinates (s, x, x′)) at {0} × ∂T × T (with
s/(1/x) = x̃ a smooth coordinate on the interior of the resulting front face) and then at
the lift of [0, 1]× (∂T )2. This finishes the proof. �

5.2. Composition. Our goal is to show that the large 3b-calculus is indeed a calculus, i.e.
closed under composition of appropriate pairs of operators:

Proposition 5.10 (Compositions). Let E ,F ⊂ (C × N0)9 denote two collections of index
sets, and write E = (EffD , . . .), F = (FffD , . . .) as in Definition 5.4. Let A ∈ Ψs

3b(M) +

Ψ−∞,E3b (M) and B ∈ Ψs′
3b(M) + Ψ−∞,F3b (M), and suppose that Re(ErbD + FlbD) > 0 and

Re(ErbT + FlbT ) > 1. Then A ◦B is well-defined, and we have

A ◦B ∈ Ψs+s′

3b (M) + Ψ−∞,G3b (M),

where G = (GffD ,GffT ,Glf ,Grf ,GlbD ,GrbD ,GlbT ,GrbT ,Gif) is given by

GffD = (EffD + FffD) ∪ (ElbD + FrbD) ∪ (Erf + Flf − 1),

GffT = (EffT + FffT ) ∪ (Eif + Fif − 1) ∪ (Elf + Frf) ∪ (ElbT + FrbT ),

Glf = (EffT + Flf) ∪ (Eif + Flf − 1) ∪ (Elf + FffD) ∪ (ElbT + FrbD),

Grf = (Erf + FffT ) ∪ (Erf + Fif − 1) ∪ (EffD + Frf) ∪ (ElbD + FrbT ),

GlbD = ElbD ∪ (EffD + FlbD) ∪ (Erf + FlbT − 1),

GrbD = (ErbD + FffD) ∪ FrbD ∪ (ErbT + Flf − 1),

GlbT = ElbT ∪ (EffT + FlbT ) ∪ (Eif + FlbT − 1) ∪ (Elf + FlbD),

GrbT = (ErbT + FffT ) ∪ FrbT ∪ (ErbT + Fif − 1) ∪ (ErbD + Frf),

Gif = (Eif + Fif − 1) ∪ (EffT + Fif) ∪ (Eif + FffT ) ∪ (Elf + Frf) ∪ (ElbT + FrbT ).

(5.11)
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Definition 5.11 (Composition of 3b-index sets). Given collections E ,F of index sets as in
Proposition 5.10, we write G = E ◦ F for the 9-tuple consisting of the index sets (5.11).

This yields the composition result in the small 3b-calculus:

Proof of Proposition 4.4. The only difference between Proposition 4.4 and Proposition 5.10
is that in the latter, 3b-ps.d.o.s are defined via their Schwartz kernels on M2

3b rather than
on M2

3b,[. But the Schwartz kernels of elements of Ψs
3b(M) are rapidly vanishing at the left

and right boundaries, i.e. the lifts of ∂M0×M0 and M0×∂M0; hence they can equivalently
be characterized via their lifts to M2

3b as being rapidly vanishing at lbD, lbT , rbD, and
rbT . �

The remainder of this section is concerned with the proof of Proposition 5.10. We proceed
geometrically via pullback and pushforward theorems involving a suitable 3b-triple space
of M . This 3b-triple space will be a resolution of the b-triple space

(M0)3
b =

[
M3

0 ; (∂M0)3; ∂M0 × ∂M0 ×M0; ∂M0 ×M0 × ∂M0;M0 × ∂M0 × ∂M0

]
of M0; we denote the front faces by ffb,3, ff̃b,F , ff̃b,C , ff̃b,S in this order (with ‘F’, ‘C’,
‘S’ standing for ‘First’, ‘Composition’, ‘Second’, respectively), and we moreover denote by
mfb,F , mfb,S , and mfb,C the lift of M0×M0×∂M0, ∂M0×M0×M0, and M0×∂M0×M0,
respectively. We write πb,F , πb,S , and πb,C for the lifts, as maps (M0)3

b → (M0)2
b =

[M2
0 ; (∂M0)2], of the projections M3

0 → M2
0 to the first two, last two, and first and last

factors of M3
0 , respectively. See Figure 5.6.

T

T ′

T ′′

ff̃b,F

ff̃b,S

ff̃b,C
ffb,3

mfb,F

mfb,C

mfb,S

πb,F

πb,C

πb,S

Figure 5.6. The b-triple space (M0)3
b and its boundary hypersurfaces; we

only show the lifts of a boundary defining function of M0 to the first (T ),
second (T ′), and third factor (T ′′). We also indicate the three lifted projec-
tions (M0)3

b → (M0)2
b by blue arrows.

For O = F, S,C, the preimages under πb,O of the submanifolds blown up in the defini-
tion (5.1) of M2

3b are unions of two p-submanifolds of (M0)3
b each; we introduce the following
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notation for them:

π−1
b,O(p3b) = p3b,O ∪ p̃3b,O, p3b,O ⊂ ffb,3, p̃3b,O ⊂ ff̃b,O,

π−1
b,O(pL∩R) = pL∩R,O ∪ p̃L∩R,O, pL∩R,O ⊂ ffb,3, p̃L∩R,O ⊂ ff̃b,O,

π−1
b,O(pL) = pL,O ∪ p̃L,O, pL,O ⊂ ffb,3, p̃L,O ⊂ ff̃b,O,

π−1
b,O(pR) = pR,O ∪ p̃R,O, pR,O ⊂ ffb,3, p̃R,O ⊂ ff̃b,O,

π−1
b,O(p̃L) = p̃[L,O ∪ p̃]L,O, p̃[L,O ⊂ ff̃b,O′ , p̃]L,O ⊂ mfb,O′′ ,

π−1
b,O(p̃R) = p̃[R,O ∪ p̃]R,O, p̃[R,O ⊂ ff̃b,O′′ , p̃]R,O ⊂ mfb,O′ ,

where for O = F, S,C, we write O′ = C,F, F and O′′ = S,C, S. There are some redundan-
cies in these definitions, since

pL,F = pL,C , pL,S = pR,F , pR,S = pR,C ;

p̃L,F = p̃[L,C , p̃L,S = p̃[R,F , p̃L,C = p̃[L,F ,

p̃R,F = p̃[L,S , p̃R,S = p̃[R,C , p̃R,C = p̃[R,S ;

p̃]L,F = p̃]L,C , p̃]L,S = p̃]R,F , p̃]R,S = p̃]R,C .

(5.12)

With O still ranging over F, S,C, we finally set

p3b,3 :=
⋂
O

p3b,O, pL∩R,3 :=
⋂
O

pL∩R,O, pL∩R,3,O := pL∩R,3 ∩ p3b,O.

(It suffices to take the intersection over two distinct values of O.) We introduce the short-
hand notation

p3b,F/S := {p3b,F , p3b,S},

similarly p3b,S/C , etc. As a special case, pL,F/C is the singleton set {pL,F } by (5.12).

Definition 5.12 (3b-triple space). The 3b-triple space of M is the resolution

M3
3b :=

[
(M0)3

b; p3b,3; pL∩R,3; {pL∩R,3,O}; {p3b,O}; {pL∩R,O}; {pL,O, pR,O};

{p̃3b,O}; {p̃L∩R,O}; {p̃L,O, p̃R,O}; {p̃]L,O, p̃
]
R,O}

]
.

(5.13)

We write ρ3b,3 ∈ C∞(M3
3b) for a defining function of the lift of p3b,3, similarly ρL∩R,3,

ρL∩R,3,O (O = F, S,C), . . . , ρ̃]R,O; and we write ρb,3, ρ̃b,O, and ρb,O ∈ C∞(M3
3b) for defining

functions of the lifts of ffb,3, ff̃b,O, and mfb,O ⊂ (M0)3
b, respectively.

Lemma 5.13 (Projections to 3b-double spaces). The three projection maps M3
0 → M2

0

given by (q, q′, q′′) 7→ (q, q′), (q, q′, q′′) 7→ (q, q′′), and (q, q′, q′′) 7→ (q′, q′′) lift to b-fibrations
πF , πC , πS : M3

3b →M2
3b.

Proof. Since any two projections can be intertwined by a cyclic permutation of the factors
of M3

0 —which induces a diffeomorphism of M3
3b—it suffices to prove the claim for πF .

The reader may find a local coordinate description of the various submanifolds blown up
in (5.13) helpful: we write T,X, T ′, X ′, T ′′, X ′′ for the three lifts of the coordinates (3.2)
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to M3
0 ; then in the coordinates T̂ = T

T ′′ , T̂
′ = T ′

T , and T ′′, X, X ′, X ′′ on (M0)3
b \ (mfb,F ∪

mfb,S ∪ ff̃b,S ∪ ff̃b,C)—so T = T̂ = T̂ ′ = 0 is the corner ffb,3 ∩mfb,C ∩ ff̃b,F—, we have

πF : (T̂, T̂ ′, T ′′;X,X ′, X ′′) 7→ (T, T̂ ′, X,X ′) (T = T̂ T ′′),

πS : (T̂, T̂ ′, T ′′;X,X ′, X ′′) 7→ (Ť ′, T ′′, X ′, X ′′) (Ť ′ = T̂ T̂ ′),

πC : (T̂, T̂ ′, T ′′;X,X ′, X ′′) 7→ (T̂, T ′′, X,X ′′),

where on (M0)2
b and for πF , we use coordinates T, T

′

T away from the left boundary lbb

of (M0)2
b; for πS we use T ′

T ′′ , T
′′ away from rbb; and for πC , we use T̂, T ′′ away from rbb.

Correspondingly,

p3b,3 = {(1, 1, 0; 0, 0, 0)}, pL∩R,3 = {(T̂, T̂ ′, 0; 0, 0, 0)},

p3b,F = {(T̂, 1, 0; 0, 0, X ′′)}, p̃3b,F = {(0, 1, T ′′; 0, 0, X ′′)},

p3b,S = {( 1
T̂ ′
, T̂ ′, 0;X, 0, 0)}, p3b,C = {(1, T̂ ′, 0; 0, X ′, 0)},

pL∩R,F = {(T̂, T̂ ′, 0; 0, 0, X ′′)}, p̃L∩R,F = {(0, T̂ ′, T ′′; 0, 0, X ′′)},

pL∩R,S = {(T̂, T̂ ′, 0;X, 0, 0)}, pL∩R,C = {(T̂, T̂ ′, 0; 0, X ′, 0)},

pL,F = pL,C = {(T̂, T̂ ′, 0; 0, X ′, X ′′)}, p̃L,F = p̃[L,C = {(0, T̂ ′, T ′′; 0, X ′, X ′′)},

pL,S = pR,F = {(T̂, T̂ ′, 0;X, 0, X ′′)}, p̃R,F = p̃[L,S = {(0, T̂ ′, T ′′;X, 0, X ′′)},

pR,S = pR,C = {(T̂, T̂ ′, 0;X,X ′, 0)},

p̃]L,S = p̃]R,F = {(T̂, 0, T ′′;X, 0, X ′′)},

(5.14)

and furthermore

pL∩R,3,F = {(T̂, 1, 0; 0, 0, 0)},

pL∩R,3,S = {( 1
T̂ ′
, T̂ ′, 0; 0, 0, 0)},

pL∩R,3,C = {(1, T̂ ′, 0; 0, 0, 0)}.

(The submanifolds not listed here are not contained in the local coordinate chart.)

We begin the proof with the b-fibration πb,F : (M0)3
b → (M0)2

b. We immediately blow up
pR,S = pR,C in the domain; the map πb,F restricts to a fibration pR,S → ffb (the front face
of (M0)2

b), and therefore πb,F lifts to a b-fibration

[(M0)3
b; pR,S/C ]→ (M0)2

b. (5.15)

The preimage of p3b is the union of the lifts of p3b,F , p̃3b,F , and p3b,F∩pR,S = p3b,F∩pL∩R,3 =
pL∩R,3,F . Using [Mel96, Proposition 5.12.1], the map (5.15) thus lifts to a b-fibration[

(M0)3
b; pR,S/C ; pL∩R,3,F ; p3b,F ; p̃3b,F

]
→ [(M0)2

b; p3b]. (5.16)

Recalling the terminology regarding the commutation of blow-ups from §2, we can commute
pR,S/C through pL∩R,3,F (⊂), and then further through p3b,F (intersection ⊂ pL∩R,3,F ), thus
in total moving the blow-up of pR,S/C in (5.15) from first to third place. Furthermore, the
map (5.16) is b-transversal to the lift of p3b,3, and therefore we can blow up p3b,3 in the
domain, and commute its blow-up all the way to the front: through p̃3b,F (disjoint), pR,S/C
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and p3b,F (⊃; pL∩R,3,F for both), and finally through pL∩R,3,F (⊃). Thus, we obtain a
b-fibration [

(M0)3
b; p3b,3; pL∩R,3,F ; p3b,F ; pR,S/C ; p̃3b,F

]
→ [(M0)2

b; p3b]. (5.17)

Next, we blow up pL∩R in the range of (5.17); its preimage under the map (5.15) is the
union of the lifts of pL∩R,F ∩ pR,S = pL∩R,3, pL∩R,F , and p̃L∩R,F , and we blow these up in
this order. We commute pL∩R,3 through p̃3b,F (intersection ⊂ pL∩R,3,F ), pR,S/C (⊃), p3b,F

(intersection ⊂ pL∩R,3,F ), and pL∩R,3,F (⊂) to the second spot. We furthermore commute
pL∩R,F through p̃3b,F (intersection ⊂ pL∩R,3,F ) and pR,S/C (intersection ⊂ pL∩R,3). Thus,[

(M0)3
b; p3b,3; pL∩R,3; pL∩R,3,F ; p3b,F ; pL∩R,F ; pR,S/C ; p̃3b,F ; p̃L∩R,F

]
→ [(M0)2

b; p3b; pL∩R].

is a b-fibration. We may now restore some symmetry in the domain by blowing up the
lifts of pL∩R,3,S and pL∩R,3,C (which πb,F maps diffeomorphically to pL∩R); we can then
commute pL∩R,3,S/C through p̃L∩R,F and p̃3b,F (disjoint), pR,S/C and pL∩R,F (⊃; pL∩R,3 for
both), and p3b,F (intersection ⊂ p3b,3), and we obtain the b-fibration[

(M0)3
b; p3b,3; pL∩R,3; {pL∩R,3,O}; p3b,F ; pL∩R,F ; pR,S/C ; p̃3b,F ; p̃L∩R,F

]
→ [(M0)2

b; p3b; pL∩R]

where O = F, S,C as usual.

The next step is the blow-up of pL in the codomain, and correspondingly the lifts of
pL,F ∩ pR,S/C = pL∩R,C , pL,F = pL,C , and p̃L,F in the domain. We can commute pL∩R,C
through p̃L∩R,F and p̃3b,F (intersection ⊂ pL∩R,3 for both) and pR,S/C (⊃); and we can
commute pL,F/C through p̃L∩R,F (intersection ⊂ pL∩R,F ) and p̃3b,F (intersection ⊂ p3b,F ).
We obtain a b-fibration[

(M0)3
b; p3b,3; pL∩R,3; {pL∩R,3,O}; p3b,F ; pL∩R,F/C ; pL,F/C , pR,S/C ; p̃3b,F ; p̃L∩R,F ; p̃L,F

]
→ [(M0)2

b; p3b; pL∩R; pL].
(5.18)

Note that the order of pR,S/C and pL,F/C is arbitrary (intersection ⊂ pL∩R,C). Now, since
πb,F maps p3b,C diffeomorphically to pL, the map (5.18) lifts to a b-fibration[

(M0)3
b; p3b,3; pL∩R,3; {pL∩R,3,O}; p3b,F/C ; pL∩R,F/C ; pL,F/C , pR,S/C ; p̃3b,F ; p̃L∩R,F ; p̃L,F

]
→ [(M0)2

b; p3b; pL∩R; pL].

Here, we commuted p3b,C through p̃L,F , p̃L∩R,F , p̃3b,F (disjoint), pL,F/C and pR,S/C (⊃;
pL∩R,F/C for both), pL∩R,F (intersection ⊂ pL∩R,3,C), and pL∩R,C (⊃). By completely
analogous arguments, we can blow up pR in the codomain and pR,F ∩ pR,S/C = pL∩R,S ,
pR,F = pL,S , and p̃R,F in the domain, and we can then also blow up p3b,S in the domain
and obtain, after commuting blow-ups, the b-fibration[

(M0)3
b; p3b,3; pL∩R,3; {pL∩R,3,O}; {p3b,O}; {pL∩R,O}; {pL,O, pR,O}; p̃3b,F ; p̃L∩R,F ; p̃L,F ; p̃R,F

]
→ [(M0)2

b; p3b; pL∩R; pL; pR].

Using [Mel96, Proposition 5.11.2] again, we next blow up the disjoint submanifolds p̃L
and p̃R in the codomain (which gives M2

3b) and their preimages p̃[L,F , p̃]L,F , p̃[R,F , and p̃]R,F
in the domain, giving the b-fibration[

(M0)3
b; p3b,3; pL∩R,3; {pL∩R,3,O}; {p3b,O}; {pL∩R,O}; {pL,O, pR,O};
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p̃3b,F ; p̃L∩R,F ; p̃L,F , p̃R,F , p̃
[
L,F , p̃

[
R,F ; p̃]L,F , p̃

]
R,F

]
→M2

3b.

The order of the blow-ups p̃L,F , p̃R,F , p̃[L,F , and p̃[R,F is arbitrary: the only two of these

four submanifolds that intersect nontrivially are p̃L,F and p̃R,F , whose intersection p̃L∩R,F
is blown up earlier.

Now, the projection πb,F maps p̃3b,S diffeomorphically to p̃R; we can thus blow up p̃3b,S

in the domain, and commute it through p̃]R,F , p̃]L,F (disjoint), p̃[R,F (⊃), and p̃[L,F , p̃R,F ,

p̃L,F , p̃L∩R,F (disjoint). Analogous arguments apply to the blow-up of p̃3b,C . Note next
that πb,F restricts to a fibration p̃L∩R,S → p̃R, and the blow-up of p̃L∩R,S in the domain

can then be commuted through p̃]R,F = p̃]L,S (intersection ⊂ p̃L,S = p̃[R,F ), p̃]L,F (disjoint),

p̃[R,F = p̃L,S (⊃), p̃[L,F (disjoint), and p̃R,F = p̃[L,S and p̃L,F (disjoint). Arguing similarly for

the blow-up of p̃L∩R,C , we have a b-fibration[
(M0)3

b; p3b,3; pL∩R,3; {pL∩R,3,O}; {p3b,O}; {pL∩R,O}; {pL,O, pR,O};

{p̃3b,O}; {p̃L∩R,O}; p̃L,F , p̃R,F , p̃[L,F , p̃[R,F ; p̃]L,F , p̃
]
R,F

]
→M2

3b.
(5.19)

In view of (5.12), it remains to blow up p̃R,S , p̃R,C , and p̃]R,S in the domain. Note that

these submanifolds get mapped by πb,F to rbb, lbb, and (M0)2
b, respectively; and p̃R,S can

be commuted through p̃]R,F (intersection ⊂ p̃L∩R,S) and p̃]L,F (disjoint), similarly for p̃R,C .

Thus, the map (5.19) lifts to a b-fibration which is the desired map M3
3b →M2

3b. �

We also need the following variant of Lemma 5.8:

Lemma 5.14 (3b- and b-densities on the triple space). Denote by π1, π2, and π3 : M3
3b →M

the lifts of the projections M3 →M to the first, second, and third factor, respectively. Then

π∗1
3bΩM ⊗ π∗23bΩM ⊗ π∗33bΩM

=

(
ρ3b,3ρ

3
L∩R,3

∏
O=F,S,C

ρ2
L∩R,3,Oρ3b,Oρ

2
L∩R,Oρ

1
2
L,Oρ

1
2
R,O

× ρ̃3b,Oρ̃
2
L∩R,Oρ̃L,Oρ̃R,O(ρ̃]L,O)

1
2 (ρ̃]R,O)

1
2

)−1
bΩM3

3b.

(5.20)

The factor 1
2 in the exponents of ρL,O, ρR,O, ρ̃]L,O, and ρ̃]R,O counteracts double counting

the boundary hypersurfaces in (5.12).

Proof of Lemma 5.14. By Lemma 5.8, the bundle on the left in (5.20) is

ρ−nT (ρ′T )−n(ρ′′T )−nβ∗3
bΩ(M3

0 ), (5.21)

where β3 : M3
3b → M3

0 is the blow-down map, and ρT , ρ
′
T , ρ

′′
T are the pullbacks along

π1, π2, π3 of a defining function of T ⊂ M . Repeated application of the relation (2.2),
and reading off the codimensions of the submanifolds of interest in (5.13) from the explicit
expressions (5.14), gives

β∗3
bΩ(M3

0 ) = ρ3n−1
3b,3 ρ

3n−3
L∩R,3

∏
O=F,S,C

ρ3n−2
L∩R,3,Oρ

2n−1
3b,O ρ

2n−2
L∩R,Oρ

n−1
2

L,O ρ
n−1

2
R,O

× ρ̃2n−1
3b,O ρ̃

2n−2
L∩R,Oρ̃

n−1
L,O ρ̃

n−1
R,O(ρ̃]L,O)

n−1
2 (ρ̃]R,O)

n−1
2 .
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On the other hand,

ρT ρ
′
T ρ
′′
T = ρ3

3b,3ρ
3
L∩R,3

∏
O=F,S,C

ρ3
L∩R,3,Oρ

2
3b,Oρ

2
L∩R,Oρ

1
2
L,Oρ

1
2
R,O

× ρ̃2
3b,Oρ̃

2
L∩R,Oρ̃L,Oρ̃R,O(ρ̃]L,O)

1
2 (ρ̃]R,O)

1
2 .

Plugged into (5.21), this proves (5.20). �

Proof of Proposition 5.10. We only consider the case s = s′ = −∞. Fix a positive 3b-
density ν ∈ C∞(M ; 3bΩM); then the Schwartz kernel KA◦B of A ◦B is

KA◦B · π∗Lν = (πC)∗K̃A◦B, K̃A◦B := π∗1ν · π∗FKA · π∗SKB,

where πL : M2
3b → M is the left projection, πF , πS , and πC are as in Lemma 5.7, and π1

is as in Lemma 5.14. We have K̃A◦B ∈ AHphg(M3
3b; bΩM3

3b), for a collection H of index sets
which we proceed to describe. Write H3b,3 for the index set associated with the lift of p3b,3

to M3
3b, similarly for the other index sets, and write Hb,3, H̃b,O, Hb,O for the index sets

associated with the lifts of the boundary hypersurfaces ffb,3, ff̃b,O, mfb,O of (M0)3
b; then

Lemma 5.14 implies

H3b,3 = EffT +FffT −1, HL∩R,3 = Eif+Fif−3, Hb,3 = EffD+FffD ,

HL∩R,3,F = EffT +Fif−2, HL∩R,3,S = Eif+FffT −2, HL∩R,3,C = Eif+Fif−2,

H3b,F = EffT +Flf−1, H3b,S = Erf+FffT −1, H3b,C = Elf+Frf−1,

HL∩R,F = Eif+Flf−2, HL∩R,S = Erf+Fif−2, HL∩R,C = Elf+Frf−2,

H̃3b,F = EffT +FlbT −1, H̃3b,S = ErbT +FffT −1, H̃3b,C = ElbT +FrbT −1,

H̃L∩R,F = Eif+FlbT −2, H̃L∩R,S = ErbT +Fif−2, H̃L∩R,C = ElbT +FrbT −2,

H̃L,F = Elf+FlbD−1, H̃L,S = ErbT +Flf−1, H̃L,C = ElbT +FrbD−1,

H̃R,F = Erf+FlbT −1, H̃R,S = ErbD+Frf−1, H̃R,C = ElbD+FrbT −1,

Hb,F = FrbD , Hb,S = ElbD , Hb,C = ErbD+FlbD ,

H̃b,F = EffD+FlbD , H̃b,S = ErbD+FffD , H̃b,C = ElbD+FrbD ,

and

HL,F = HL,C = Elf+FffD−1, H̃]L,F = H̃]L,C = ElbT −1,

HL,S = HR,F = Erf+Flf−1, H̃]L,S = H̃]R,F = ErbT +FlbT −1,

HR,S = HR,C = EffD+Frf−1, H̃]R,S = H̃]R,C = FrbT −1.

(For example, for H̃3b,F = EffT + FlbT − 1, we use that πF maps the lift of p̃3b,F to M3
3b

to the boundary hypersurface ffT ⊂ M2
3b which contributes EffT , whereas πS maps it to

lbT which contributes FlbT ; the shift by −1 arises from the factor ρ̃−1
3b,F in (5.20).) The

pushforward of K̃A◦B along πC is well-defined provided the index sets at those boundary
hypersurfaces of M3

3b which get mapped by πC to an interior b-submanifold of M2
3b have

positive real part; these boundary hypersurfaces are the lifts of p̃]L,S = p̃]R,F and mfb,C ,

corresponding to the index sets H̃]L,S = H̃]R,F and Hb,C . This gives the conditions stated
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in Proposition 5.10. When they are satisfied, the pushforward theorem [Mel92] gives

(πC)∗K̃A◦B ∈ AG−(0,1,1,1,0,0,1,1,2)
phg (M2

3b; bΩM2
3b).

where the collection of index sets G = (GffD ,GffT ,Glf ,Grf ,GlbD ,GrbD ,GlbT ,GrbT ,Gif) is given
in (5.11). (For example, for the index set at ffT we use that the hypersurfaces of M3

3b which
get mapped to ffT by πC are the lifts of p3b,3, pL∩R,3,C , p3b,C , p̃3b,C .) By Lemma 5.8, this
now implies

KA◦B ∈ AGphg(M2
3b;π∗L

3bΩ⊗ π∗R3bΩ)⊗ (π∗Lν)−1,

which completes the proof. �

5.3. Range of the T -normal operator. While the D-normal operator map relates a 3b-
operator P to an operator in the more readily analyzable (product-type) edge-b-algebra,
the same is not true for the T -normal operator; note that NT (P ) in Definition 3.19 is still
a 3b-operator. Absent a practical characterization of the range of the full spectral family

σ 7→ N̂T (P, σ), we show here that the range of N̂T contains spectral families consisting of
operators with appropriate behavior at large, intermediate, or low frequencies (but without
diagonal singularities). These results are needed in §6.2.

Lemma 5.15 (Rapidly decaying spectral families). Suppose P̂ (σ) ∈ C∞(Rσ; Ψ−∞,−∞sc (T ))

is such that (0, 1) 3 h 7→ P̂ (±h−1) is an element of Ψ−∞,−∞,−∞sc,~ (T ). Then there exists

P ∈ Ψ−∞3b (M) with N̂T (P, σ) = P̂ (σ) for all σ ∈ R.

Proof. The assumptions on P̂ imply that P̂ ∈ Ċ∞(R × T 2
b ;π∗R

bΩT ), where πR is the lift

of the projection from R × T 2 to the second factor of T . The inverse Fourier transform
of this from σ to τ lies in Ċ∞(Rτ × T 2

b ;π∗R
bΩT ⊗ scΩRτ ), the pushforward of which along

the map (4.3) is an element K ∈ Ċ∞(Rτ3b
× T 2

b ;π∗R
3bΩM). Thus, there indeed exists an

operator P ∈ Ψ−∞3b (M) so that the restriction of the Schwartz kernel of P to ffT is equal
to K. (In fact, the Schwartz kernel of P can be chosen to vanish to infinite order at all
boundary hypersurfaces of M2

3b except ffT .) �

Proposition 5.16 (Polyhomogeneous spectral family at low energy). Let Elb, Erb, Etf , Ezf ⊂
C× N0 denote index sets, and suppose Re Ezf > −1. Let σ0 > 0, and suppose that, for one
choice of sign, we are given an operator family(

±[0, σ0) 3 σ 7→ P̂ (σ)
)
∈ Ψ

−∞,(Elb,Erb,Etf ,Ezf)
sc-b (T ), (5.22)

with P̂ (σ) = 0 for |σ| > 1
2σ0. Then, using Notation 5.5, there exists an operator

P ∈ Ψ−∞3b

(
T ; ffD[Etf ],ffT [N0], lf[Erb], rf[Elb + 1],

lbD[∅], rbD[∅], lbT [∅], rbT [∅], if[Ezf + 1]
)

with N̂T (P, σ) = P̂ (σ) for σ ∈ ±[0, σ0), and N̂T (P, σ) = 0 for σ ∈ R \ (±[0, σ0)).

For the proof, we need the following technical result:

Lemma 5.17 (A diffeomorphism related to the sc-b-double space). Let T denote a manifold
with embedded and connected boundary ∂T 6= ∅. Denote by ρtot ∈ C∞(T 2

b ) a total defining
function of T 2

b . Then the map

φ : [0,∞)× T ◦ × T ◦ 3 (σ, z, z′) 7→ (σ′, z, z′) :=
( σ

ρtot(z, z′)
, z, z′

)
(5.23)
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extends (by continuity and density) to a diffeomorphism

φ : T̃ 2
0 :=

[
[0,∞]σ × T 2

b ; {0} × ffb; {0} × lbb, {0} × rbb

]
∼=−→ T̃ 2

∞ :=
[
[0,∞]σ′ × T 2

b ; {∞} × lbb, {∞} × rbb; {∞} × ffb

]
.

(5.24)

Proof. This is easily checked in local coordinates; see also [Hin21b, Proof of Proposition
2.27], in particular [Hin21b, Equation (2.36), Figure 2.5] for the case of T = [0, 1) (with
ρ̂ffb
≥ 0, s ∈ [0,∞] in the reference playing the roles of local coordinates on T 2

b near ffb

here, and σ̃ and h̃′−1 in the reference playing the roles of σ and σ′ in present notation) from
which the general result easily follows. �

Corollary 5.18 (Polyhomogeneity on T̃ 2
0 ). We use the notation of Lemma 5.17. If one

denotes by tf0, tlb0, trb0, and zf0 ⊂ T̃ 2
0 the lifts of {0} × ffb, {0} × lbb, {0} × rbb, and

{0} × T 2
b , respectively, then the map φ in (5.23) induces an isomorphism

φ∗ : A(Elb,Erb,Etf ,Ezf)
phg (T̃ 2

0 )
∼=−→ A(Elb,Erb,Etf ,Ezf)

phg ([0,∞]σ′ × T 2
b ), (5.25)

where the index sets Elb, Erb, Etf , Ezf are assigned to the boundary hypersurfaces tlb0, trb0,
tf0, and zf0 on the left, and to [0,∞]× lbb, [0,∞]× rbb, [0,∞]× ffb, and {0} × T 2

b on the
right, while the index sets at all other boundary hypersurfaces are trivial (i.e. equal to ∅).

Proof. The main reason behind the validity of the Corollary is that σ/ρtot is a defining

function of zf0. In more detail, since elements u ∈ A(Elb,Erb,Etf ,Ezf)
phg (T̃ 2

0 ) vanish to infinite

order at the lifts of [0,∞]×ffb, [0,∞]× lbb, [0,∞]× rbb, and {∞}×T 2
b , their pushforwards

φ∗u, as polyhomogeneous distributions on T̃ 2
∞ (see (5.24)), vanish to infinite order at the lifts

of {∞}×ffb, {∞}×lbb, {∞}×rbb, and {∞}×T 2
b . Therefore, φ∗u remains polyhomogeneous

on the manifold given on the right hand side in (5.24) but without performing the blow-ups;
this gives (5.25). �

Proof of Proposition 5.16. We only consider the ‘+’ sign, the treatment of the ‘−’ sign
being completely analogous. We work in the coordinates (τ3b, x, x

′) from (4.3), and τ =
〈(x, x′)〉τ3b. Now,

|dτ |ν̃3b, ν̃3b = 〈x′〉−1
∣∣∣dx′1 · · · dx′n−1

〈x′〉n−1

∣∣∣,
is a positive right 3b-density on M2

3b near ffT . On the other hand, a positive right sc-b-
density on T 2

sc-b is given by

νsc-b :=
( 〈x′〉−1

|σ|+ 〈x′〉−1

)−(n−1)∣∣∣dx′1 · · · dx′n−1

〈x′〉n−1

∣∣∣ = (〈x′〉−1)−1
( 〈x′〉−1

|σ|+ 〈x′〉−1

)−(n−1)
ν̃3b.

Now, 〈x′〉−1 ∈ C∞(T 2
sc-b) is a joint defining function {trbsc-b, tfsc-b, rbsc-b, scfsc-b, bfsc-b}, and

|σ|+ 〈x′〉−1 is a joint defining function of {trbsc-b, tfsc-b}. Thus, we can write

(〈x′〉−1)−1
( 〈x′〉−1

|σ|+ 〈x′〉−1

)−(n−1)
= aρ−1

trbsc-b
ρ−1

tfsc-b
,

where a is a product of integer powers of defining functions of rbsc-b, scfsc-b, bfsc-b only.
Therefore, the Schwartz kernel of P̂ (σ)—which is a polyhomogeneous right sc-b-density
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with the index sets specified in (5.22) at tlbsc-b, trbsc-b, tfsc-b, zfsc-b (in this order) and
vanishes to infinite order at all other boundary hypersurfaces—is of the form

K̂0(σ, x, x′)ν̃3b, K̂0 ∈ A(Elb,Erb−1,Etf−1,Ezf)
phg (T 2

sc-b).

The restriction of the Schwartz kernel of the sought-after operator P to ffT must be
K0|dτ |ν̃3b where

K0(τ3b, x, x
′) = (2π)−1

∫ σ0

0
e−i〈(x,x

′)〉στ3bK̂0(σ, x, x′) dσ

= (2π)−1〈(x, x′)〉−1

∫ ∞
0

e−iσ3bτ3bK̂0

( σ3b

〈(x, x′)〉
, x, x′

)
dσ3b.

(This in particular ensures that N̂T (P, σ) = 0 for σ < 0.) Since 〈(x, x′)〉−1 ∈ C∞(T 2
b ) is a

total boundary defining function, Corollary 5.18 implies that the function

K̂0,3b : (σ3b, x, x
′) 7→ K̂0

( σ3b

〈(x, x′)〉
, x, x′

)
is an element of A(Elb,Erb−1,Etf−1,Ezf)

phg ([0,∞]σ3b
× T 2

b ); equivalently put,

K̂0,3b ∈ A
(Ezf ,∅)
phg

(
[0,∞]σ3b

;A(Elb,Etf−1,Erb−1)
phg (T 2

b )
)
,

where the boundary hypersurfaces of [0,∞] are ordered {0}, {∞}, and those of T 2
b are

ordered in the usual manner (left boundary, front face, right boundary). By Corollary 2.26,

K0(τ3b, x, x
′) = (2π)−1〈(x, x′)〉−1

∫ ∞
0

e−iσ3bτ3bK̂0,3b(σ3b, x, x
′) dσ3b

∈ AEzf+1
phg

(
Rτ3b

;A(Elb+1,Etf ,Erb)
phg (T 2

b )
)
.

The proof is complete. (See also Figure 5.2.) �

6. Fully elliptic 3b-operators and their parametrices

In this section, we discuss the notion of full ellipticity for 3b-(pseudo)differential opera-
tors; besides the ellipticity of the principal symbol, this involves the invertibility of various
normal operators which were introduced in §3, resp. §4 in the case of differential, resp.
pseudodifferential 3b-operators. The main theorem of this work is the existence of precise
parametrices of fully elliptic 3b-ps.d.o.s in the large 3b-calculus, see Theorem 6.4; after
some preparations in §6.2, the proof of Theorem 6.4 is completed in §6.3. Applications of
the parametrix construction are collected in §6.4; these are the Fredholm property of fully
elliptic 3b-ps.d.o.s, a precise description of their generalized inverses, the polyhomogeneity
of elements of the (co)kernel, and a relative index theorem. An alternative proof of the
Fredholm property, which only uses the (small) 3b-algebra, is given in §7.

Notation 6.1 (Densities). We shall denote fixed smooth positive sections of the density
bundle corresponding to a Lie algebra V∗ of vector fields on some manifold with corners by
ν∗. Thus, when working on T , the symbol νsc denotes a smooth positive scattering density
(such as |dx| in the coordinates (3.3), or a smooth positive multiple thereof); when working
on Tsc-b, the symbol νsc-b is, in terms of local coordinates |σ|, ρ = |x|−1 ≥ 0, ω = x

|x| ∈ S−2,

a smooth (on Tsc-b) positive multiple of ( ρ
ρ+|σ|)

−(n−1)|dρρ dω|; and so on. We use for the
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underlying L2-space of Sobolev spaces H∗ the density ν∗, unless otherwise specified. For
example, we write Hs,α

b (T ) = ραDH
s
b(T , νb).

6.1. Full ellipticity. Utilizing Lemma 4.19, we first record a number of consequences of
the ellipticity of the 3b-principal symbol.

Lemma 6.2 (N̂T (P, σ) at nonzero energies). Let P ∈ Ψm
3b(M) be elliptic. Then for σ 6= 0,

the operator N̂T (P, σ) : Hs,r
sc (T ) → Hs−m,r−m

sc (T ) is Fredholm of index 0 for all s, r ∈ R,

with kernel and cokernel (L2-orthogonal complement of the range) contained in Ċ∞(T ).

There exists σ0 > 0 so that N̂T (P, σ) is invertible for |σ| > σ0.

Proof. For fixed nonzero σ, the Fredholm property of N̂T (P, σ) follows from its symbolic
ellipticity in the scattering calculus; that it has index 0 is then a consequence of the fact

that the Fredholm index is independent of σ, and equal to 0 for large |σ| since N̂±T ,h(P ) is

invertible for sufficiently small h > 0 by Lemma 2.11. �

Next, the normal operators N∂T (P ) and N∂D(P ) are elliptic b-operators. By Proposi-
tion 4.18, their boundary spectra (see Definition 2.5) are related via

Specb(N∂D(P )) =
{

(−z, k) : (z, k) ∈ Specb(N∂T (P ))
}
.

The sign switch arises from the fact that the isomorphism φ ◦ ψ in Proposition 4.18 is
homogeneous of degree −1. Elliptic b-theory then implies that for β ∈ R so that β /∈
Re Specb(N∂T (P )), the operators

N̂T (P, 0) : Hs,β
b (T )→ Hs−m,β

b (T ), (6.1)

N±T ,tf(P ) : Hs,r,−β
sc,b (+N∂T )→ Hs−m,r−m,−β

sc,b (+N∂T ),

N±D,tf(P ) : Hs,−β,r
b,sc (+N∂D)→ Hs−m,−β,r−m

b,sc (+N∂D)
(6.2)

are Fredholm for any s, r ∈ R (with index, or invertibility if it holds, independent of s, r). In
the case that the operators (6.2) are invertible (in view of Proposition 4.17, the invertibility
of one is equivalent to the invertibility of the other), Theorem 2.37 implies that

N̂D(P, λ) : Hs,−β
b (D)→ Hs−m,−β

b (D), λ ∈ C, (6.3)

is an analytic family of Fredholm operators of index 0 which is invertible outside a discrete
set, and the boundary spectrum Specb(ND(P )) is then well-defined via equation (2.51).
(Recall from Remark 2.38 that the invertibility of (6.3) holds for an open and connected
interval of values of β which, by Theorem 2.37, is non-empty if N±D,tf(P ) is invertible.)

With this context, we can now introduce:

Definition 6.3 (Full ellipticity). Let P ∈ Ψm
3b(M) have elliptic principal symbol. Let

αD, αT ∈ R. We say that P is fully elliptic with weights αD, αT if the following conditions
are satisfied for β := αD − αT :

(1) β /∈ Re Specb(N∂T (P ))—equivalently, −β = αT − αD /∈ Re Specb(N∂D(P ));
(2) one of the operators in (6.2) is invertible (and thus both are);
(3) αD /∈ Re Specb(ND(P ));

(4) N̂T (P, 0) : Hs,β
b (T )→ Hs−m,β

b (T ) is invertible for some s ∈ R;
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(5) for all σ 6= 0, the operator N̂T (P, σ) : Hs,r
sc (T )→ Hs−m,r−m

sc (T ) is injective for some
s, r ∈ R.

Furthermore, we denote by (β−T , β
+
T ) the largest interval of values of β for which condition (1)

is satisfied. We write β±T (P ) = β±T when we need to make the dependence of these quantities
on P explicit.

Conditions (2) and (4) are independent of β in the interval (β−T , β
+
T ); moreover, invert-

ibility for some s ∈ R implies invertibility for all s by ellipticity. Next, by Lemma 6.2,

condition (5) is equivalent to the invertibility of N̂T (P, σ) for all σ 6= 0 and s, r ∈ R. More-

over, conditions (2) and (4) together imply the invertibility of N̂T (P, σ) in (5) for small |σ|
by Theorem 2.19; in view of the invertibility for large |σ| proved in Lemma 6.2, the purpose

of condition (5) is thus to exclude the possibility that N̂T (P, σ) has non-trivial nullspace
for the remaining set of bounded nonzero σ which are not covered by the automatic high
and low energy invertibility results.

The main result of this paper in the elliptic setting concerns the construction of very
precise parametrices of fully elliptic 3b-operators in the large 3b-calculus:

Theorem 6.4 (Parametrices of fully elliptic 3b-operators with smooth coefficients). Let
P ∈ Ψm

3b(M) be a 3b-pseudodifferential operator which is fully elliptic with weights αD, αT .

Then there exist a right parametrix Q ∈ Ψ−m3b (M) + Ψ−∞,E3b (M) and a left parametrix

Q′ ∈ Ψ−m3b (M) + Ψ−∞,E
′

3b (M) with

PQ = I −R, R ∈ Ψ−∞,(∅,∅,ErbD ,ErbT −1)(M),

Q′P = I −R′, R′ ∈ Ψ
−∞,(E ′lbD ,E

′
lbT

,∅,∅)
(M),

(6.4)

where the index sets comprising E obey the lower bounds

Re(EffD \ {(0, 0)}) ≥ ε, Re(EffT \ {(0, 0)}) ≥ 1,

Re Elf ≥ −β−T , Re Erf ≥ 1 + β+
T ,

Re ElbD > αD, Re ErbD > −αD,
Re ElbT ≥ αD − β−T , Re ErbT ≥ −αD + β+

T + 1− ε,
Re Eif ≥ 1 + ε,

(6.5)

for some ε > 0 which satisfies ε < 1
2β

∆
T := 1

2 min(β+
T − β

−
T , 1) and ε < b := min(β+

T − β, β −
β−T ). The index sets comprising E ′ obey the same lower bounds, except Re E ′lbT ≥ αD−β

−
T −ε

and Re E ′rbT ≥ −αD + β+
T + 1.

The index sets of the parametrices in Theorem 6.4 are defined in the course of the proof,
see (6.30)–(6.31) for the case of the right parametrix and the subsequent discussion for the
case of the left parametrix. The lower bounds (6.5) can likely be sharpened at lbD, resp. rbD
to a+

D(αD), resp. −a−D(αD), and at lbT , resp. rbT to a+
D(αD)− β−T , resp. −a−D(αD) + β+

T + 1
in the notation of Definition 6.9 below, via more careful accounting of index sets in §6.3;
we shall not pursue this here.

Remark 6.5 (More general 3b-operators). Theorem 6.4 remains true with purely notational
changes for fully elliptic operators acting between sections of vector bundles over M . With
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modifications to the index sets, it also remains true when the coefficients of P are polyho-
mogeneous down to T and D (i.e. the Schwartz kernel of P is polyhomogeneous conormal
down to ffD and ffT ) with the index sets minus (0, 0) having positive real parts. When
the subleading terms (in the sense of decay) of P at D and T are merely conormal, then
Schwartz kernels of parametrices or generalized inverses have only conormal lower order
terms themselves; see e.g. [Lau03] and [Hin21a, §3.2] for such results in the uniformly de-
generate (0-)setting. We leave the detailed statements and proofs to the interested reader.

The starting point of the proof of Theorem 6.4 is to take Q0 ∈ Ψ−m3b (M) to be a symbolic
parametrix of P , so

PQ0 = I −R0, R0 ∈ Ψ−∞3b (M). (6.6)

Improving the error term R0 requires the inversion of the D- and T -normal operators
(see §6.2). The conclusion of the parametrix construction, and thereby the proof of Theo-
rem 6.4, is given in §6.3.

For later use, we record three results regarding the choice of weights for which full
ellipticity holds.

Lemma 6.6 (Weights for full ellipticity). Suppose P ∈ Ψm
3b(M) is fully elliptic with weights

αD, αT . Let α′D ∈ R \ Re Specb(ND(P )). Then P is fully elliptic with weights α′D, α′T :=
αT + (α′D − αD).

Proof. The assumption on α′D ensures part (3) of Definition 6.3; parts (1), (2), and (4) only
depend on the difference α′D−α′T = αD−αT = β and thus remain valid; and part (5) does
not depend on the weights at all. �

Lemma 6.7 (Full ellipticity and conjugation). Let ρD, ρT ∈ C∞(M) denote defining func-
tions of D, T . Let P ∈ Ψm

3b(M) and αD, αT ∈ R, and let γD, γT ∈ R. Then P is fully

elliptic with weights αD, αT if and only if PγD,γT := ρ−γDD ρ−γTT PργTT ργDD ∈ Ψm
3b(M) is fully

elliptic with weights αD − γD, αT − γT .

Proof. Fix a total defining function ρ0 ∈ C∞(M0) to define spectral families and Mellin-
transformed normal operators. Since conjugation by a positive smooth function on M
preserves full ellipticity (for the same weights), we may assume that ρ0 = ρDρT . Set
β = αD−αT , and note that β− (γD−γT ) = (αD−γD)− (αT −γT ). The principal symbols
of P and

PγD,γT = ρ
−(γD−γT )
D ρ−γT0 PργT0 ργD−γTD

are equal. The T -normal operator of PγD,γT depends on (γD, γT ) only through γD − γT ;
indeed, writing T , resp. T ′ for the lift of ρT to the left, resp. right factor of M2

3b, the function
(T ′/T )γT is equal to the constant function 1 on ffT . Thus,

N̂T (PγD,γT , σ) = ρ
−(γD−γT )
D N̂T (P, σ)ργD−γTD . (6.7)

This gives

Specb(N∂T (PγD,γT )) =
{

(z − (γD − γT ), k) : (z, k) ∈ Specb(N∂T (P ))
}

;

thus, β − (γD − γT ) /∈ Re Specb(N∂T (PγD,γT )) if and only if β /∈ Re Specb(N∂T (P )). (This
takes care of Definition 6.3(1).) Moreover, the invertibility of

N±T ,tf(PγD,γT ) = ρ̂
−(γD−γT )
D N±T ,tf(P )ρ̂γD−γTD : H

s,r−(γD−γT ),−β+γD−γT
sc,b (+N∂T )
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→ H
s−m,r+m−(γD−γT ),−β+γD−γT
sc,b (+N∂T )

(where ρ̂D = ρD/|σ|) is equivalent to that of (6.2) since multiplication by ρ̂γD−γTD is

an isomorphism H
s,r−(γD−γT ),−β+γD−γT
sc,b (+N∂T ) → Hs,r,−β

sc,b (+N∂T ). (This takes care of

Definition 6.3(2).) Similarly, (6.7) implies that the invertibility of the zero energy op-

erator N̂T (PγD,γT , 0) : H
s,β−(γD−γT )
b (T ) → H

s−m,β−(γD−γT )
b (T ) is equivalent to that of

N̂T (P, 0) : Hs,β
b (T ) → Hs−m,β

b (T ). For nonzero σ, the invertibility of N̂T (PγD,γT , σ) on
scattering Sobolev spaces is independent of γD, γT (cf. the independence of Definition 6.3(5)
on the values of s, r). (This takes care of Definition 6.3(4) and (5).)

Finally, upon writing

PγD,γT = ρ
−(γT −γD)
T ρ−γD0 PργD0 ργT −γDT ,

we see that
N̂D(PγD,γT , λ) = ρ

−(γT −γD)
R N̂D(P, λ− iγD)ργT −γDR

where ρR := ρT |D ∈ C∞(D) is a defining function of ∂D. Therefore, αD − γD 6= Re z

for all z so that N̂D(PγD,γT ,−iz) is not invertible if and only if αD 6= Re z for all z so

that N̂D(P,−iz) is not invertible. (This takes care of Definition 6.3(3).) The proof is
complete. �

Lemma 6.8 (Full ellipticity and adjoints). Use a positive smooth 3b-density ν3b on M
to define formal adjoints. Let P ∈ Ψm

3b(M) be fully elliptic with weights αD, αT . Then

P ∗ ∈ Ψm
3b(M) is fully elliptic with weights −αD,−(αT − 1). Moreover, we have β−T (P ∗) =

−β+
T (P ∗)− 1 and β+

T (P ∗) = −β−T (P )− 1. If instead we define formal adjoints with respect
to a positive b-density, then P ∗ is fully elliptic with weights −αD,−αT .

Proof. Near T and in the coordinates t, x from (3.2), we can write ν3b = a〈x〉−n|dt dx|
where 0 < a ∈ C∞(M). Thus, N̂T (P ∗, 0) = N̂T (P, 0)∗, where the adjoint on the right hand
side is taken with respect to the volume density a|T 〈x〉−n|dx| on T ; this density is equal

to 〈x〉−1νb where νb = a|T 〈x〉−(n−1)|dx| is a positive b-density on T . Making the density
with respect to which adjoints are defined explicit, we then note that

N̂T (P, 0)∗,〈x〉
−1νb = 〈x〉N̂T (P, 0)∗,νb〈x〉−1 = ρ−1

D N̂T (P, 0)∗,νbρD, ρD := 〈x〉−1.

Now N∂T (N̂T (P, 0)∗,νb , z) = N∂T (N̂T (P, 0), z̄)∗,ν∂ , where 0 < ν∂ ∈ C∞(∂T ; Ω∂T ) is defined

via νb = |dρDρD |ν∂ at ∂T in a collar neighborhood of ∂T ⊂ T . Altogether, we conclude that

Specb(N∂T (P ∗)) =
{

(−z̄ − 1, k) : (z, k) ∈ Specb(N∂T (P ))
}
,

and N̂T (P ∗, 0) : H−s+m,−β−1
b (T )→ H−s,−β−1

b (T ), with β = αD − αT , is invertible (assum-
ing Definition 6.3(4)).

Similarly then, the invertibility of N̂D(P, λ) : Hs,−β
b (D) → Hs−m,−β

b (D) implies that of

N̂D(P ∗, λ̄) : H−s+m,β+1
b (D)→ H−s,β+1

b (D), and

Specb(ND(P ∗)) =
{

(−z̄, k) : (z, k) ∈ Specb(ND(P ))
}
.

(There is no shift here since ν3b is, away from T , an unweighted positive b-density.) We
conclude that P ∗ is fully elliptic with weights −αD and (−αD)− (−β − 1) = −(αT − 1).

The final claim follows from P ∗,ρT ν3b = ρ−1
T P ∗,ν3bρT and Lemma 6.7 with γD = 0,

γT = 1. �
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We use the following notation for index sets arising in the parametrix construction:

Definition 6.9 (Index sets). Let P ∈ Ψm
3b(M) be fully elliptic with weights αD, αT . Put

β = αD − αT . In the notation of Definition 2.5, let

E±T = E±(N∂T (P ), β) = E∓(N∂D(P ),−β),

define E±,(0)
T using Definition 2.8, and set

E(0)
T := N0 ∪

(
(E+,(0)
T + E−,(0)

T ) ∪ (N0 + 1)
)
.

Define E±,(2)
T and E(2)

T as in Definition 2.18 (with respect to E+
T , E

−
T ), and put E(2)′

T :=

E(2)
T \ {(0, 0)}. For α /∈ Re Specb(ND(P )), define moreover

E±D (α) = E±(ND(P ), α), a±D(α) := ±min Re E±D (α).

Thus, min Re E±T = ±β±T and min Re E±D (α) ≥ ±a±D(α). We also recall from Remark 2.20

that E(2)
T = N0 ∪ E(2)′

T with

Re E(2)′
T ≥ β∆

T := min(β+
T − β

−
T , 1) > 0; (6.8)

and Re E±,(2)
T ≥ ±β±T .

6.2. Inversion of the T - and D-normal operators. For the inversion of the T -normal
operator, we only need conditions (1), (2), (4), and (5) of Definition 6.3.

Proposition 6.10 (T -normal operator inverse). Let P ∈ Ψm
3b(M) be fully elliptic with

weights αD, αT . Put

EQT :=
(
E(2)
T ,N0, E−,(2)

T , E+,(2)
T + 1, ∅, ∅, ∅, ∅, E(2)′

T + 1
)
,

ERT := EQT + (0, 1, 0, 0, 0, 0, 0, 0, 0).

Then there exists an operator

QT ∈ Ψ−m3b (M) + Ψ
−∞,EQT
3b (M)

= Ψ−m3b (M) + Ψ−∞3b

(
M ; ffD[E(2)

T ],ffT [N0], lf[E−,(2)
T ], rf[E+,(2)

T + 1],

lbD[∅], rbD[∅], lbT [∅], rbT [∅], if[E(2)′
T + 1]

) (6.9)

with N̂T (QT , σ) = N̂T (P, σ)−1 for all σ ∈ R, and so that

RT := I − PQT ∈ Ψ
−∞,ERT
3b (M). (6.10)

(In particular, the Schwartz kernel of RT vanishes at ffT .)

Proof. The main task is to show that the individual inverses N̂T (P, σ)−1, which exist by
the full ellipticity assumption, can be assembled to the spectral family of an element in
the range of the T -normal operator map. To get started, recall (6.6) and pass to spectral
families. Then

N̂T (P, σ)N̂T (Q0, σ) = I − N̂T (R0, σ).

Here, the normal operators are described by Proposition 4.9 for low and bounded frequen-
cies, and by Proposition 4.8(2) for high frequencies.
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By Lemma 2.11 and the definition (4.6) of N̂±T ,h(P ), we have(
N̂T (P,±h−1)−1

)
h∈(0,h0)

∈ Ψ−m,−m,−msc,~ (T ) (6.11)

for some h0 > 0. In view of the invertibility of N̂T (P, σ) for all nonzero σ, the mem-
bership (6.11) in fact remains valid for any h0 < ∞, and for fixed finite values of h it

simply states N̂T (P,±h−1)−1 ∈ Ψ−m,−msc (T ). Note moreover that N̂T (P, σ)−1 is smooth

in σ 6= 0 as an element of Ψ−m,−msc (T ); indeed this follows by direct differentiation of

N̂T (P, σ) ◦ N̂T (P, σ)−1 = I and using that N̂T (P, σ) is smooth in σ 6= 0 as an element of

Ψm,m
sc (T ). Applying the operator (6.11) to N̂T (R0,±h−1) ∈ Ψ−∞,−∞,−∞sc,~ (T ) thus produces

Q̃1 ∈ C∞
(
Rσ \ {0}; Ψ−∞,−∞sc (T )

)
with the property that Q̃1(±h−1) ∈ Ψ−∞,−∞,−∞sc,~ (T ). Fix any σ0 > 0. If χ ∈ C∞c ((−σ0, σ0))

is identically 1 on [−σ0
2 ,

σ0
2 ], then we can apply Lemma 5.15 to (1−χ(σ))Q̃1(σ) to conclude

that there exists Q1 ∈ Ψ−∞3b (M) so that

N̂T (P, σ)N̂T (Q1, σ) = N̂T (R0, σ), |σ| > 1
2σ0.

Thus, for Q0 +Q1 ∈ Ψ−m3b (M) we have

P (Q0 +Q1) = I −R1, R1 ∈ Ψ−∞3b (M), N̂T (R1, σ) = 0 ∀σ, |σ| > 1
2σ0. (6.12)

In order to solve away the remaining error N̂T (R1, σ) for |σ| ≤ 1
2σ0, we use Theorem 2.19;

this gives(
±(0, σ0] 3 σ 7→ N̂T (P, σ)−1

)
∈ Ψ−m,−m,0,0sc-b (T ) + Ψ

−∞,(E+,(2)
T ,E−,(2)

T ,E(2)
T ,E(2)

T )

sc-b (T ). (6.13)

Applying this to N̂T (R1,−) ∈ Ψ−∞,−∞,0,0sc-b (T ) = Ψ
−∞,(∅,∅,N0,N0)
sc-b (T ) using Lemma 2.15

produces an operator family

Q̃2(σ) := N̂T (P, σ)−1N̂T (R1, σ),
(
±(0, σ0] ∈ σ 7→ Q̃2(σ)

)
∈ Ψ

−∞,(E+,(2)
T ,E−,(2)

T ,E(2)
T ,E(2)

T )

sc-b (T ),

with Q̃2(σ) = 0 for |σ| > 1
2σ0. An application of Proposition 5.16 shows that Q̃2 =

N̂T (Q2, σ) for an appropriate operator Q2, with QT = Q0 + Q1 + Q2 being the desired
inverse of class (6.9). Regarding the index set at if = ifL ∪ ifR, the reason why one can

exclude (0, 0) from E(2)
T is the following: the restrictions to zf of the operators (6.13) to

σ = 0 agree: they are both equal to N̂T (P, 0)−1. Thus, the element (0, 0) ∈ E(2)
T of the

zf-index set corresponds to a smooth (across σ = 0) term when combining the contributions
for positive and negative σ, and the inverse Fourier transform in σ of this term therefore
gives a rapidly decaying contribution. �

Next, for the inversion of the D-normal operator, we only use conditions (1), (2), and
(3) of Definition 6.3.

Proposition 6.11 (D-normal operator inverse). Let P ∈ Ψm
3b(M) be fully elliptic with

weights αD, αT . Put

EQD (αD) :=
(
N0,N0 ∪ (E(0)

T + 1), E−,(0)
T , E+,(0)

T + 1,

E+
D (αD), E−D (αD), E−,(0)

T + E+
D (αD), ∅, E+,(0)

T + E−,(0)
T + 1

)
,
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ERD (αD) := EQD (αD) + (1, 0, 0, 0, 1, 0, 0, 0, 0).

Then there exists an operator

QD(αD) ∈ Ψ−m3b (M) + Ψ
−∞,EQD (αD)

3b (M) (6.14)

so that N̂D(QD(αD), λ) = N̂D(P, λ)−1 for all λ ∈ C with λ /∈ Re Specb(ND(P )), and so that

RD(αD) := I − PQD(αD) ∈ Ψ
−∞,ERD(αD)

3b (M).

(In particular, the Schwartz kernel of RD(αD) vanishes at ffD.)

Proof. We first claim that we can find

Q̃D(αD) ∈ Ψ−m3b (M) + Ψ−∞3b

(
M ; ffD[N0],ffT [N0 ∪ (E(0)

T + 1)], lf[E−,(0)
T ], rf[E+,(0)

T + 1],

lbD[E+
D (αD)], rbD[E−D (αD)], lbT [∅], rbT [∅], if[E+,(0)

T + E−,(0)
T + 1]

)
with N̂D(Q̃D(αD), λ) = N̂D(P, λ)−1. Indeed, this is a consequence of the full ellipticity of
ND(P ) as an edge-b-operator with weights αD and αR := αT −αD = −β (in the notation of
Definition 6.3) and Theorem 2.37. Specifically, conditions (1), (2), and (3) of Theorem 2.37
are satisfied in view of conditions (1), (3), and (2) in Definition 6.3, respectively. Moreover,
the sets E±R in Theorem 2.37 are equal to E∓T in the notation of Definition 6.9. Finally, the
relationship between the small edge-b-result (2.52) and the extended edge-b-double space
(cf. Proposition 4.12) is given in (2.48). (For an illustration of the boundary hypersurfaces
of the b-front face ffD ⊂ M2

3b and the b-front face of the extended edge-b-double space of
+N3bD, recall Figures 5.3 and 2.4, respectively.)

The remainder term I − PQ̃D(αD) does vanish to leading order at ffD, but its index set
at lbD is only equal to E+

D (αD) unless we exercise more care. Thus, in order to construct

QD(αD), we need to make an appropriate choice of extension of K̃ := Q̃D(αD)|ffD (i.e. the

restriction of the Schwartz kernel of Q̃D(αD) to ffD) to a neighborhood of lbD. To wit,
with T , resp. T ′ denoting the left, resp. right lift of a boundary defining function of M0,
the distribution K̃ has, at the left boundary ffD ∩ lbD, a polyhomogeneous expansion into
terms of the form

az =
k∑
j=0

( T
T ′

)z∣∣∣log
T

T ′

∣∣∣ja(z,j), (6.15)

where (z, k) ∈ E+
D (αD) and

a(z,j) ∈ A
(E−,(0)
T ,E+,(0)

T +1)

phg (D ×D),

where the index sets refer to ∂D × D and D × ∂D in this order; this follows from (2.52)
and the above identifications, see also Figure 2.4. Furthermore, we have ND(P )az = 0.
Recalling from Lemma 5.9(3) that lbD is a resolution of D ×M and thus of D ×M0, fix
now a collar neighborhood [0, ε)ρ0 × ∂M0 of ∂M0 ⊂ M0 and define the projection maps
π : D × [0, ε)× (∂M0 \ {p}) 3 (q, T ′, q′) 7→ q ∈ D (where we write q, q′ for points on D and
∂M0\{p} = D◦) and π′ : D×M →M ; denote furthermore by χ ∈ C∞c ([[0, ε)×∂M0; {(0, p)}])
(the domain here being a neighborhood of D ∪ T ⊂ M) a cutoff function with support in
a collar neighborhood of the lift D of {0} × ∂M0, and identically 1 near D. Define then

b(z,j) := ((π′)∗χ) · (π∗a(z,j)).
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(In terms of Figure 5.4 and the local coordinates used there, the function b(z,j) is obtained
by extending a(z,j) = a(z,j)(X,X

′) to be T ′-independent, followed by cutting it off with a
cutoff depending only on (T ′, X ′); one may think of a smooth version of the characteristic
function of {T ′/|X ′| < 1}.) Thus, b(z,j) extends from D◦ × M◦ as a polyhomogeneous

function on lbD, with index set E−,(0)
T at lf and lbT , with index set E+,(0)

T + 1 at rf, and

with index set E+,(0)
T + E−,(0)

T + 1 at ifL. On the other hand, the prefactor ( TT ′ )
z| log T

T ′ |
j

in (6.15) lifts to M2
3b to a polyhomogeneous function with index set E+

D (αD) at lbD ∪ lbT .

We can then take the Schwartz kernel of QD(αD) to be equal to K̃ at ffD and to have a
polyhomogeneous expansion at lbD into the terms (6.15) but with a(z,j) replaced with b(z,j);
this can be done consistently with the membership (6.14).

It remains to show that for such QD(αD), the Schwartz kernel of the error RD(αD) =
I − PQD(αD) not only vanishes at ffD (by construction), but also gains one power at lbD
relative to QD(αD). To prove this, let χ ∈ C∞(M) denote a cutoff to a collar neighborhood
of D, with χ ≡ 1 near D; then P − χND(P )χ ∈ ρDΨm

3b(M). Write

I − PQD(αD) = I − χND(P ) ◦
(
χQD(αD)

)
− (P − χND(P )χ)QD(αD).

Near lbD the Schwartz kernel of the second term on the right vanishes by construction, and
so does the Schwartz kernel of the identity operator. Since the third term has index set
E+
D (αD) + 1 at lbD, we are done. �

The operator QT , resp. QD(αD) is unique modulo the space of operators with vanishing
T -, resp. D-normal operator. Furthermore:

Lemma 6.12 (Equality of normal operator inverses at ffD ∩ ffT ). The restrictions of the
Schwartz kernels of QT in (6.9) and of QD(αD) in (6.14) to ffD ∩ ffT are equal.

Proof. Denote by KT and KD the restrictions of the Schwartz kernels of QT and QD(αD)
to ffD ∩ ffT . We then claim that their Fourier transforms in the coordinate τ3b from (4.3),
restricted to positive or negative frequencies, are the Schwartz kernels of the inverses of
N±T ,tf(P ) and N±D,tf(P ), respectively (with the absolute value of the frequency variable

being the reciprocal of a fiber-linear coordinate on +N∂T and +N∂D, respectively). Recall
here the expressions (4.25) and (4.26), which relate the Schwartz kernels of N±T ,tf(P ) and

N±D,tf(P ) to that of P in a similar manner. The Lemma then follows from the identification

of the two tf-normal operators via Proposition 4.17.

The claim follows for the Fourier transform of KT directly from the construction of the
T -normal operator of QT via an inverse Fourier transform, with KT being comprised of
the inverse Fourier transforms of the Schwartz kernels (a distribution on tfsc-b ⊂ T 2

sc-b) of

the inverses of N+
T ,tf(P ) and N−T ,tf(P ); see also the proof of Proposition 5.16. For KD, one

can argue similarly: by an inspection of the first part of the proof of Theorem 2.37 (and
of Proposition 2.28), KD is comprised of the inverse Fourier transforms of the Schwartz
kernels of the inverses of N+

D,tf(P ) and N−D,tf(P ) (with respect to the fiber-linear coordinate

on (+N∂D)2
b, the blow-up of which at the boundary of the b-diagonal at fiber infinity is

tfc~ ⊂ D2
c~). (Equivalently, one can use Proposition 2.29 to show that the Mellin transform

of the restriction of the Schwartz kernel of QD(αD) to ffD is polyhomogeneous, with its
leading order term at tfc~ ⊂ D2

c~—cf. Proposition 2.34(3)—one the one hand necessarily
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being the inverse of N±D,tf(P ), and on the other hand being the Fourier transform of KD
restricted to positive or negative frequencies.) �

6.3. Parametrix construction: proof of Theorem 6.4. It will be useful to have rough
right parametrices available not just for the D-weight αD, but for a range of D-weights.
Recall here that if α′D /∈ Re Specb(ND(P )), then P is fully elliptic with weights α′D and
α′T = αT + (α′D − αD) by Lemma 6.6.

Using Lemma 6.12, we can construct a symbolic parametrix and invert the T - and D-
normal operators in one go: we denote by

Q1(α′D) ∈ Ψ−m3b (M) + Ψ
−∞,EQ(α′D)

3b (M),

EQ(α′D) := EQT ∪ E
Q
D (α′D)

=
(
E(2)
T ,N0 ∪ (E(0)

T + 1), E−,(2)
T , E+,(2)

T + 1,

E+
D (α′D), E−D (α′D), E−,(0)

T + E+
D (α′D), ∅, E(2)′

T + 1
)

(6.16)

an operator whose Schwartz kernel is equal to that of QT (from Proposition 6.10) at ffT , to
that of QD(α′D) (from Proposition 6.11) at ffD and in a neighborhood of lbD, and to that
of a symbolic parametrix of P in a neighborhood of diag3b. We can make this choice so
that the index set of

R1(α′D) := I −PQ1(α′D) ∈ Ψ
−∞,ER(α′D)

3b (M),

ER(α′D) :=
(
E(2)′
T , (N0 + 1) ∪ (E(0)

T + 1), E−,(2)
T , E+,(2)

T + 1,

E+
D (α′D) + 1, E−D (α′D), E−,(0)

T + E+
D (α′D), ∅, E(2)′

T + 1
) (6.17)

inherits the improvements of both Proposition 6.10 and Proposition 6.11 (i.e. the index sets
at ffT and ffD do not contain (0, 0), and the index set at lbD is one better than that of
Q1(α′D)).

Specializing to the case α′D = αD, the next step is to solve away the error R1(αD) at
lbD∪ lbT to infinite order. This is not straightforward for a number of reasons; for example,
lbD does not fiber smoothly over D via the left projection (see also Figure 5.4), and moreover

for 3b-pseudodifferential operators P it is difficult to interpret the operator N̂T (P, 0) as the
b-normal operator of P at T due to an incompatibility of ps.d.o. algebras (putting aside

the mild complication that N̂T (P, 0) acts on the leaves only of the singular fibration of a
neighborhood of T by level sets of T ). Thus, rather than solving R1(αD) away by hand, we
take full advantage of the large 3b-calculus and exploit the fact that Q1(α′D) (for suitable
choices of α′D) is already a sufficiently precise parametrix to aid in solving away the lbD-
and lbT -error terms; see also Remark 2.10.

Lemma 6.13 (Solving away the error at the left boundary). Set Q
(0)
1 := Q1(αD) and

R
(0)
1 = R1(αD). With β∆

T ∈ (0, 1] defined in (6.8), let ε ∈ (0, 1
2β

∆
T ] be such that αD + jε /∈
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Re Specb(ND(P )) for all j ∈ N0.22 Then we can inductively define two sequences of 3b-
ps.d.o.s by setting

Q
(j)
1 := Q

(j−1)
1 +Q1(αD + jε)R

(j−1)
1 ,

R
(j)
1 := I − PQ(j)

1 = R1(αD + jε)R
(j−1)
1 ,

(6.18)

for j ∈ N. Moreover, if, in the notation of Definition 5.11, we set ER(0) := ER(αD) and

ER(j) := ER(αD + jε) ◦ ER(j−1),

EQ(j),∆ := EQ(αD + jε) ◦ ER(j−1),
(6.19)

then Q
(j)
1 −Q

(j−1)
1 ∈ Ψ−∞,E

Q(j),∆

3b (M) and R
(j)
1 ∈ Ψ−∞,E

R(j)

3b (M), and

min Re(EQ(j),∆)•, min Re(ER(j))• →∞, j →∞, • = ffD,ffT , lf, rf, lbD, lbT , if.

Proof. From Definition 6.9 and the comments following it, we have

Re EQ(α′D) ≥
(
0, 0,−β−T , β

+
T + 1, a+

D(α′D), −a−D(α′D), a+
D(α′D)− β−T ,∞, 1 + β∆

T
)
,

Re ER(α′D) ≥
(
β∆
T , 1,−β−T , β

+
T + 1, a+

D(α′D) + 1,−a−D(α′D), a+
D(α′D)− β−T ,∞, 1 + β∆

T
)
;

(6.20)
by this we mean that Re EQ(α′D)ffD ≥ 0, Re EQ(α′D)ffT ≥ 0, Re EQ(α′D)lf ≥ −β−T , etc., and

EQ(α′D)rbT = ∅, similarly for ER(α′D). We shall prove by induction that

R
(j)
1 ∈ Ψ−∞,E

R(j)

3b (M),

Re ER(j) ≥
(
(j + 1)ε, 1 + jε,−β−T + jε, β+

T + jε+ 1,

αD + (j + 1)ε,−αD,
αD − β−T + jε,−αD + β+

T + 1− ε, 1 + (j + 1)ε
)
,

(6.21)

with (6.20) implying the base case j = 0. Now, if (6.21) holds for j−1 in place of j ∈ N, then

by Proposition 5.10, the compositions Q1(αD + jε)R
(j−1)
1 and R1(αD + jε)R

(j−1)
1 in (6.18)

are well-defined since

Re
(
EQ(αD + jε)rbD + (ER(j−1))lbD

)
≥ −a−D(αD + jε) + (αD + jε)

> −(αD + jε) + (αD + jε) = 0,

where we used that αD + jε /∈ Re Specb(ND(P )) to get the strict inequality. From the
expressions (5.11), using (6.20) for α′D = αD + jε as well as a±D(α′D) > ±(αD + jε), and

noting that β+
T − β

−
T ≥ β∆

T ≥ 2ε, we find that R
(j)
1 ∈ Ψ−∞,E3b (M) with

Re EffD ≥ min
(
β∆
T + jε, jε+ 1, β+

T − β
−
T + (j − 1)ε

)
≥ (j + 1)ε,

Re EffT ≥ min
(
2 + (j − 1)ε, β∆

T + 1 + jε,−β−T + β+
T + (j − 1)ε+ 1,

jε− β−T + β+
T + 1− ε

)
≥ 1 + jε,

Re Elf ≥ min
(
1− β−T + (j − 1)ε, β∆

T − β−T + (j − 1)ε,−β−T + jε, jε− β−T
)

= −β−T + jε,

Re Erf ≥ min
(
β+
T + 2 + (j − 1)ε, β+

T + jε+ 1, β∆
T + β+

T + (j − 1)ε+ 1,

jε+ 1 + β+
T + 1− ε

)
= β+

T + jε+ 1,

22Such ε exist since the set of ε ∈ (0, β∆
T ) for which this condition is not satisfied is countable.
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Re ElbD ≥ min
(
αD + jε+ 1, β∆

T + αD + jε, β+
T + αD − β−T + (j − 1)ε

)
≥ αD + (j + 1)ε,

Re ErbD ≥ min
(
−αD − jε+ jε,−αD

)
= −αD,

Re ElbT ≥ min
(
αD + jε− β−T , 1 + αD − β−T + (j − 1)ε,

β∆
T + αD − β−T + (j − 1)ε,−β−T + αD + jε

)
= αD − β−T + jε,

Re ErbT ≥ min
(
−αD + β+

T + 1− ε,−αD − jε+ β+
T + (j − 1)ε+ 1

)
= −αD + β+

T + 1− ε,
Re Eif ≥ min

(
β∆
T + 1 + jε, 2 + jε, 1 + β∆

T + 1 + (j − 1)ε,

− β−T + β+
T + (j − 1)ε+ 1, jε− β−T + β+

T + 1− ε
)
≥ 1 + (j + 1)ε.

This implies (6.21).

In particular, the infima of the real parts of the index sets of R
(j)
1 at ffD, ffT , lf, rf, lbD,

lbT , and if tend to +∞ as j →∞.

Recall also from (6.20) that the infima of the real parts of the index sets of Q1(αD + jε)
at lbD and lbT tend to +∞ as αD + jε→∞. Moreover, the real parts of the index sets of

R
(j)
1 at rbD and rbT are uniformly bounded from below, as are the real parts of the index

sets of Q1(αD + jε) at ffD, ffT , lf, rf, and if. The claim about the index set collection

EQ(j),∆ now follows from Proposition 5.10. �

We continue using the notation of Lemma 6.13; we impose on ε the additional constraint

ε < min(β− β−T , β
+
T − β). While the index sets of Q

(j)
1 −Q

(j−1)
1 have uniform lower bounds

at the right boundaries (rbD and rbT ), the rough accounting of index sets afforded by

Proposition 5.10 cannot exclude the possibility that the total set
⋃
j∈N0

(EQ(j),∆)rbD is no

longer an index set (e.g. due to an accumulation of elements with real part near −a−D(αD)),

similarly at rbT . Thus, we only use the Q
(j)
1 away from rbD ∪ rbT : if χ ∈ C∞(M2

3b) denotes
a cutoff which vanishes near rbD ∪ rbT but is identically 1 near lbD ∪ lbT , then we can take

Q2 ∈ Ψ
−∞,EQ2
3b (M), Q2 ∼

∞∑
j=1

χ · (Q(j)
1 −Q

(j−1)
1 ),

where the asymptotic sum is taken at lbD ∪ lbT , and

EQ2 =
(
ẼffD , ẼffT , Ẽlf , Ẽrf , ẼlbD , ∅, ẼlbT , ∅, Ẽif

)
, Ẽ• :=

⋃
j∈N

(EQ(j),∆)•. (6.22)

Proposition 5.10, applied to Q
(j)
1 − Q

(j−1)
1 = Q1(αD + jε)R

(j−1)
1 (j ∈ N) using (6.20) (for

α′D = αD + jε) and (6.21) (for j − 1 in place of j), implies that for (eQ2 )• := min Re(EQ2 )•,
we have

(eQ2 )ffD ≥ ε, (eQ2 )ffT ≥ 1, (eQ2 )lf ≥ −β−T , (eQ2 )rf ≥ 1 + β+
T ,

(eQ2 )lbD > αD + ε, (eQ2 )lbT ≥ αD − β
−
T , (eQ2 )if ≥ 1 + ε.

(6.23)

Let now J ∈ N and define the partial sum Q
[J ]
2 :=

∑J
j=1 χ·(Q

(j)
1 −Q

(j−1)
1 ) = χ·(Q(J)

1 −Q
(0)
1 );

then the index sets of Q2−Q[J ]
2 are contained in those of Q2, but with the minimum of the

real parts of the index sets at lbD and lbT tending to ∞ as j →∞. Consider then

R2 := I − P
(
Q1(αD) +Q2

)
= R1(αD)− PQ2
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= I − P
(
Q

(0)
1 +Q

[J ]
2 + (Q2 −Q[J ]

2 )
)

= I − PQ(J)
1 + P

(
(1− χ)(Q

(J)
1 −Q(0)

1 )
)
− P (Q2 −Q[J ]

2 )

= R
(J)
1 + P

(
(1− χ)(Q

(J)
1 −Q(0)

1 )
)
− P (Q2 −Q[J ]

2 ).

The minima of the real parts of the index sets at lbD and lbT of the first and third term
on the right tend to ∞ as J →∞; for the second term, these index sets are trivial (∅). On
the other hand, from the expression for R2 in the second line, the index sets of R2 at the
other boundary hypersurfaces of M2

3b can be bounded by the union of those of R1(αD) and
Q2. Recalling the notation (6.17), we have thus shown that

R2 ∈ Ψ
−∞,ER2
3b (M),

ER2 =
(
ER(αD)ffD ∪ (EQ2 )ffD , E

R(αD)ffT ∪ (EQ2 )ffT ,

ER(αD)lf ∪ (EQ2 )lf , ER(αD)rf ∪ (EQ2 )rf ,

∅, ER(αD)rbD , ∅, ∅, E
R(αD)if ∪ (EQ2 )if

)
.

(6.24)

In view of (6.16) and (6.23), the quantities (eR2 )• := min Re(ER2 )• for • 6= lbD, lbT , rbT (for
which one may define them as +∞) satisfy

(eR2 )ffD ≥ ε, (eR2 )ffT ≥ 1, (eR2 )lf ≥ −β−T , (eR2 )rf ≥ 1 + β+
T ,

(eR2 )rbD > −αD, (eR2 )if ≥ 1 + ε.
(6.25)

Noting that

P (Q1(αD) +Q2) = I −R2, (6.26)

we now solve away the error R2, which is trivial at the left boundary lbD ∪ lbT , using an
asymptotic Neumann series as in the b-setting (see the proof of Theorem 2.9).

Lemma 6.14 (Asymptotic Neumann series). Let R2 be as in (6.24)–(6.25). Then the j-fold

composition Rj2 is well-defined for all j ∈ N, and we have Rj2 ∈ Ψ
−∞,ER(j)

2
3b (M) with

ER(1)
2 := ER2 , ER(j)

2 := ER2 ◦ E
R(j−1)
2 . (6.27)

The values min Re(ER(j)
2 )• for • = ffD,ffT , lf, rf, rbD, if satisfy the bounds (6.25), and we

have Re(ER(j)
2 )rbT ≥ −αD + β+

T + 1 and (ER(j)
2 )• = ∅ for • = lbD, lbT . Moreover, for

• = ffD,ffT , lf, rf, if, we have Re(ER(j)
2 )• →∞ as j →∞. Finally,

(ER3 )• :=
⋃
j∈N

(ER(j)
2 )• (6.28)

is an index set for all boundary hypersurfaces • of M2
3b, and it satisfies the bounds (6.25)

and Re(ER3 )rbT ≥ −αD + β+
T + 1.

Proof. We show by induction that

Re ER(j)
2 ≥

(
jε, 1 + (j − 1)ε,−β−T + (j − 1)ε, 1 + β+

T + (j − 1)ε,

∞,−αD + δ,∞,−αD + β+
T + 1, 1 + jε

) (6.29)



3B-CALCULUS 131

for some δ > 0. For j = 1, this follows from (6.25), and we in fact have (ER(1)
2 )rbT = ∅.

Assuming (6.29) for j − 1, the definition (6.27) and Proposition 5.10 imply (for the same
δ > 0)

Re(ER(j)
2 )ffD ≥ min

(
ε+(j−1)ε, β+

T −β
−
T +(j−2)ε

)
= jε,

Re(ER(j)
2 )ffT ≥ min

(
2+(j−2)ε, ε+1+(j−1)ε,−β−T +1+β+

T +(j−2)ε
)
≥ 1+(j−1)ε,

Re(ER(j)
2 )lf ≥ min

(
1−β−T +(j−2)ε, ε−β−T +(j−2)ε,−β−T +(j−1)ε

)
= −β−T +(j−1)ε,

Re(ER(j)
2 )rf ≥ min

(
1+β+

T +1+(j−2)ε, 1+β+
T +(j−1)ε, ε+1+β+

T +(j−2)ε
)

= 1+β+
T +(j−1)ε,

ER(j)
2 )lbD = ∅,

Re(ER(j)
2 )rbD ≥ min

(
−αD+δ,−αD+β+

T −β
−
T +(j−2)ε

)
= −αD+δ,

(ER(j)
2 )lbT = ∅,

Re(ER(j)
2 )rbT ≥ min

(
−αD+β+

T +1+1+(j−2)ε,−αD+β+
T +1

)
= −αD+β+

T +1,

Re(ER(j)
2 )if ≥ min

(
ε+1+(j−1)ε, 1+1+(j−1)ε, 1+ε+1+(j−2)ε,

−β−T +1+β+
T +(j−2)ε

)
= 1+jε,

which completes the inductive step. The lower bound (6.29) implies the bounds (6.25) for

min Re(ER(j)
2 )•, • = ffD,ffT , lf, rf, rbD, if, as well as the fact that min Re(ER(j)

2 )• → ∞ as
j →∞ for • = ffD,ffT , lf, rf, if. For these •, this also implies that (ER3 )• is an index set.

It remains to show that (ER3 )rbD and (ER3 )rbT are index sets. To this end, it suffices to
note that

(ER(j)
2 )rbD = (ER(j−1)

2 )rbD ∪
(
(ER2 )rbD + (ER(j−1)

2 )ffD

)
,

(ER(j)
2 )rbT = (ER(j−1)

2 )rbT ∪
(
(ER2 )rbD + (ER(j−1)

2 )rf

)
,

with min Re
(
(ER2 )rbD + (ER(j−1)

2 )ffD

)
→ ∞ and min Re

(
(ER2 )rbD + (ER(j−1)

2 )rf

)
→ ∞ as

j →∞ by what we have already shown. �

With ER3 given by (6.28), let now R3 ∈ Ψ
−∞,ER3
3b (M), with Schwartz kernel equal to the

asymptotic sum (at lbD ∪ lbT ∪ ffD ∪ ffT ∪ lf ∪ rf ∪ if) of Rj2 over j ∈ N. Then we can
compose (6.26) with I +R3. We obtain

PQ = I −R,

Q := (Q1(αD) +Q2)(I +R3) ∈ Ψ−m3b + Ψ
−∞,EQ
3b (M),

R := I − (I −R2)(I +R3) ∈ Ψ−∞,ER3b (M),

(6.30)

where using the notation (6.16), (6.22) (based in turn on Lemma 6.13), and (6.28), we have

EQ = (EQ(αD) ∪ EQ2 ) ∪
(
(EQ(αD) ∪ EQ2 ) ◦ ER3

)
,

ER =
(
∅, ∅, ∅, ∅, ∅, (ER3 )rbD , ∅, (E

R
3 )rbT , ∅

)
.

(6.31)
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For the index set collection of R, we use that for any J , and setting R
[J ]
3 =

∑J
j=1R

j
2, we

have

R = I − (I −R2)(I +R
[J ]
3 )− (I −R2)(R3 −R[J ]

3 )

= RJ+1
2 − (I −R2)(R3 −R[J ]

3 ),

where the index sets (RJ+1
2 )• at lbD, lbT are trivial and at ffD,ffT , lf, rf, if have real part ex-

ceeding any fixed number when J is large enough, while (RJ+1
2 )• ⊂ (ER3 )• for • = rbD, rbT .

The same is true for the index sets of R3 − R[J ]
3 , and therefore also the real parts of the

index sets F of (I−R2)(R3−R[J ]
3 ) = (R3−R[J ]

3 )−R2(R3−R[J ]
3 ) at ffD,ffT , lf, rf, lbD, lbT , if

exceed any fixed number, while Proposition 5.10 shows that the subsets of the index sets
at rbD, resp. rbT with real part less than any fixed number are contained in (ER3 )rbD , resp.
(ER3 )rbT for sufficiently large J . This gives (6.31) and finishes the proof of the construction
of the right parametrix of Theorem 6.4; note indeed that

Ψ−∞,ER3b (M) = Ψ−∞,(∅,∅,(ER)rbD ,(ER)rbT −1)(M),

the shift by −1 arising from (5.2). The bounds (6.5) on the index sets follow from (6.16),
(6.23), and from the bounds for (6.28) stated in Lemma 6.14.

We construct a left parametrix for P as follows: fix a positive 3b-density 0 < ν3b ∈
C∞(M ; 3bΩM) on M ; by Lemma 6.8, the adjoint P ∗ is fully elliptic with weights −αD,

−(αT − 1). Denote by Q] ∈ Ψ−m3b (M) + Ψ−∞,F3b (M) a right parametrix of P ∗; the index

sets comprising F satisfy the lower bounds (6.5) with β±T and αD replaced by −β∓T − 1 and

−αD, respectively (again by Lemma 6.8). But then Q∗] ∈ Ψ−m3b (M) + Ψ−∞,F
∗

3b (M) is the
desired left parametrix of P , where

F∗ffD = FffD , F∗ffT = FffT ,

F∗lf = Frf , F∗rf = Flf ,

F∗lbD = FrbD , F∗rbD = FlbD ,

F∗lbT = FrbT , F∗rbT = FlbT ,

F∗if = Fif ;

here we write FffD = {(z̄, k) : (z, k) ∈ FffD}, etc. The proof of Theorem 6.4 is complete.

6.4. Consequences: Fredholm theory and generalized inverses. The existence of
the parametrices in Theorem 6.4 gives precise information on the mapping properties of
fully elliptic 3b-operators:

Theorem 6.15 (Fredholm theory and (generalized) inverses). Let P ∈ Ψm
3b(M) be fully

elliptic with weights αD, αT ; see Definition 6.3. Define 3b-Sobolev spaces on M with respect
to a positive b-density νb, so Hs,αD,αT

3b (M) = Hs,αD,αT
3b (M,νb) in terms of Notation 6.1.

Then:

(1) For all s ∈ R, the map

P : Hs,αD,αT
3b (M)→ Hs−m,αD,αT

3b (M) (6.32)

is Fredholm. We have kerP ⊂ H∞,αD,αT3b (M) and kerP ∗ ⊂ H∞,−αD,−αT3b (M).
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(2) Denote the orthogonal projection (with respect to H0,αD,αT
3b (M)) to kerP by Π,

and the orthogonal projection to (ranP )⊥ by Π′. Write G : Hs−m,αD,αT
3b (M) →

Hs,αD,αT
3b (M) for the generalized inverse of P (i.e. Gf = u when f ∈ ranP and

Pu = f , u ⊥ kerP , and Gf = 0 when f ⊥ ranP ). Then

Π ∈ Ψ−∞,E
Π

(M), Π′ ∈ Ψ−∞,E
Π′

(M), G ∈ Ψ−m3b (M) + Ψ−∞,G3b (M),

where, in the notation of Theorem 6.4,

EΠ =
(
E ′lbD , E ′lbT , E ′lbD − 2αD, E ′lbT − 2αT

)
,

EΠ′ =
(
ErbD + 2αD, ErbT − 1 + 2αT , ErbD , ErbT − 1

)
,

(6.33)

and G = (GffD ,GffT ,Glf ,Grf ,GlbD ,GrbD ,GlbT ,GrbT ,Gif) is a collection of index sets
with

Re(GffD \ {(0, 0)}) > 0, Re(GffT \ {(0, 0)}) ≥ 1,

ReGlf > −β + b− ε, ReGrf > β + b+ 1− ε,
ReGlbD > αD, ReGrbD > −αD,
ReGlbT > αT + b− ε, ReGrbT > −αT + b+ 1− ε,

ReGif > 1;

(6.34)

here, we recall β = αD−αT , b = min(β−β−T , β
+
T −β) > 0, and ε ∈ (0,min(1

2β
∆
T , b)).

(3) The kernel and cokernel of P consist of polyhomogeneous distributions on M , with

kerP ⊂ A
(E ′lbD ,E

′
lbT

)

phg (M) and (ranP )⊥ = kerP ∗ ⊂ A(ErbD ,ErbT −1)

phg (M).

Proof. In the notation of Theorem 6.4, part (1) follows from the compactness properties

of the errors R,R′. To wit, R is a compact operator on Hs−m,αD,αT
3b (M); note that it is

bounded on this space since Re ErbD +αD > 0 and Re ErbT − 1 +αT > αT −αD + β+
T − ε =

(β+
T −β)−ε > 0, and the range ofR consists of elements of Ċ∞(M), which includes compactly

into Hs−m,αD,αT
3b (M). Similarly, R′ is a compact operator on Hs,αD,αT

3b (M), since its range

is contained in AαD+δ,αD−β−T (M) ⊂ AαD+δ,αT +δ(M) for some small δ > 0, and this space
embeds compactly into Hs,αD,αT

3b (M).

For part (2), denote by u1, . . . , uN ∈ H0,αD,αT
3b (M) an orthonormal basis of kerP . Then

uj = (Q′P +R′)uj = R′uj ∈ A
(E ′lbD ,E

′
lbT

)

phg (M), and therefore

Π =
N∑
j=1

uj〈−, uj〉H0,αD ,αT
3b (M)

=

N∑
j=1

uj ⊗ ρ−2αD
D ρ−2αT

T uj

is of the stated class. The claim for Π′ follows from an analogous description of the L2(M)-

adjoint (Π′)∗, using the fact that any v ∈ kerP ∗ ∩H0,−αD,−αT
3b (M) satisfies v = (Q∗P ∗ +

R∗)v = R∗v ∈ A(ErbD ,ErbT −1)

phg (M). Finally, the generalized inverse G satisfies PG = I − Π

and GP = I −Π′, and hence

G = G(PQ+R)

= (I −Π′)Q+ (Q′P +R′)GR

= Q−Π′Q+Q′R−Q′ΠR+R′GR. (6.35)
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Note then that the boundedness of G : Hs−m,αD,αT
3b (M) → Hs,αD,αT

3b (M) implies R′GR ∈
Ψ
−∞,(E ′lbD ,E

′
lbT

,ErbD ,ErbT −1)
(M). The relationship (5.3) moreover gives Π ∈ Ψ

−∞,EΠ
3b

3b (M) and

Π′ ∈ Ψ
−∞,EΠ′

3b
3b (M) (with (EΠ

3b)ffD = 2(E ′lbD − αD) etc. from (6.33)), with the lower bounds
recorded in Theorem 6.4 implying

Re(EΠ
3b)ffD > 0, Re(EΠ

3b)ffT > 2(β − β−T − ε) + 1,

Re(EΠ
3b)lf > −β−T − ε, Re(EΠ

3b)rf > −β−T + 2β + 1− ε,
Re(EΠ

3b)lbD > αD, Re(EΠ
3b)rbD > −αD,

Re(EΠ
3b)lbT ≥ αD − β

−
T − ε, Re(EΠ

3b)rbT ≥ −αT + β − β−T + 1− ε,
Re(EΠ

3b)if ≥ 2(β − β−T − ε) + 1,

and also

Re(EΠ′
3b )ffD > 0, Re(EΠ′

3b )ffT > 2(β+
T − β − ε) + 1,

Re(EΠ′
3b )lf > −2β + β+

T − ε, Re(EΠ′
3b )rf > β+

T + 1− ε,

Re(EΠ′
3b )lbD > αD, Re(EΠ′

3b )rbD > −αD,

Re(EΠ′
3b )lbT ≥ αT + β+

T − β − ε, Re(EΠ′
3b )rbT ≥ −αD + β+

T + 1− ε,

Re(EΠ′
3b )if ≥ 2(β+

T − β − ε) + 1,

Thus, we have G ∈ Ψ−m3b (M) + Ψ−∞,G3b (M), where the index set G can be computed
from (6.35) by means of Proposition 5.10; and the lower bounds (6.34) follow from (5.11)
using the lower bounds on the index sets for Π,Π′ (recorded above) and R,Q,Q′ (recorded
in Theorem 6.4).

Part (3) follows from the description of Π and Π′. �

Corollary 6.16 (Tempered nullspace). Suppose u ∈ D ′(M◦) satisfies Pu = 0. Then u is
polyhomogeneous.

Proof. The intersection of all weighted 3b-Sobolev spaces on M with values in densities is
equal to Ċ∞(M ; ΩM). By duality, the union of all weighted 3b-Sobolev spaces on M is
therefore equal to the dual space D ′(M◦). (This is Hörmander’s notation [Hör07, Appen-
dix B]; another common notation for this space is C−∞(M) [Mel96]. In the case M0 = Rn,

this is the space S ′(Rn) of tempered distributions.) Therefore, u ∈ H
−N,(−N,−N)
3b (M)

for some N . Since the full ellipticity assumption for P is verified for any weights αD, αT
provided the difference αD − αT lies in the fixed interval (β−T , β

+
T ) and αD avoids the dis-

crete set Re Specb(ND(P )) ⊂ R, we can choose weights αD, αT so that u ∈ H−N,αD,αT3b
and P is fully elliptic with weights αD, αT . The polyhomogeneity of u then follows from
Theorem 6.15(3). �

While we do not develop an index formula for fully elliptic 3b-operators, we do record
the following relative index theorem, which is the 3b-analogue of [Mel93, §6.2]:

Theorem 6.17 (Relative index theorem). Let P ∈ Ψm
3b(M), and suppose P is fully elliptic

with weights αD, αT and also with weights α′D, α
′
T , where αD < α′D. Put β = αD − αT .
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Write ind(αD, αT ) for the Fredholm index of P : Hs,αD,αT
3b (M) → Hs−m,αD,αT

3b (M) (which
is independent of s ∈ R), and define ind(α′D, α

′
T ) analogously. Then

ind(α′D, α
′
T )− ind(αD, αT ) =

∑
αD<Reλ<α′D

mD(λ),

where mD(λ) is the rank of a pole N̂D(P, ζ)−1 at ζ = −iλ: that is, mD(λ) = 0 unless
(λ, 0) ∈ Specb(ND(P )), in which case mD(λ) = dimFD(P, λ), where

FD(P, λ) =

{
u =

J∑
j=0

ρλ0(log ρ0)juj : J ∈ N0, uj ∈ H∞,−βb (D), ND(P )u = 0

}
. (6.36)

Remark 6.18 (Fredholm property and weights at D and T ). (1) Theorem 6.17 implies
that Theorem 6.15 is sharp as far as the D-weight is concerned: P is not Fredholm
as a map (6.32) for αD ∈ Re Specb(ND(P )) since the index is not constant when
αD crosses Re Specb(ND(P )).

(2) As far as the relative weight β = αD − αT is concerned, note that Theorem 6.15
applies whenever β ∈ (β−T , β

+
T ); we claim that this condition is also almost neces-

sary, in the following sense. If P ∈ Ψm
3b(M) has an elliptic principal symbol and

is Fredholm as a map (6.32), then necessarily αD − αT ∈ I := [B−T , B
+
T ] where

B−T , resp. B+
T is the infimum, resp. supremum of all weights β ∈ R for which

N̂T (P, 0) : Hs,β
b (T ) → Hs−m,β

b (T ) is injective, resp. surjective; if B−T > B+
T , we

set I = ∅. Ignoring the borderline case when B−T = B+
T , the interval [B−T , B

+
T ] is

the closure of the (possibly empty) largest open interval (β−T , β
+
T ) of weights β for

which N̂T (P, 0) is invertible. To prove the claim, we use material from §7 below:
the Fredholm property of P implies the validity of an estimate (7.1). One then

plugs uδ = ραT +δ
0 u0 into (7.1) where u0 ∈ AαD−αT ,0(M) is supported near T and

smooth down to T , with u0|T ∈ AαD−αT (T ); using the testing definition (Propo-

sition 3.8) of N̂T (P, 0), simple bounds for both sides of (7.1) imply, upon taking

δ ↘ 0, that N̂T (P, 0)(u0|T ) cannot vanish unless u0|T does. Thus, αD − αT ≥ B−T .

One similarly shows αD − αT ≤ B+
T via consideration of the adjoint P ∗.

Proof of Theorem 6.17. We may split the interval (αD, α
′
D) into a finite number of subin-

tervals so that each interval contains only one element of Re Specb(ND(P )); we may thus
assume that (αD, α

′
D) ∩ Re Specb(ND(P )) consists of a single real number α0. When αD

varies in R\Specb(ND(P )), the Fredholm index ind(αD, αT ) remains constant; therefore, we
may then further assume that αD = α0− δ and α′D = α0 + δ for an arbitrarily small δ > 0.
Finally, the full ellipticity condition is open in the relative D- and T -weights; therefore,
upon taking δ > 0 sufficiently small, we may assume that P is fully elliptic with weights
αD = α0 − δ, αT and α′D = α0 + δ, αT ; in particular, (α0 ± δ) − αT ∈ (β−T , β

+
T ) in the

notation of Definition 6.3.

The proof is now a largely notational adaptation of the arguments in [Mel93, §§6.1–6.2].
The main ingredient is, for λ, λ′ ∈ specb(ND(P )) with Reλ = Reλ′ = α0, the sesquilinear
pairing

FD(p, λ′)× FD(P ∗,−λ̄) 3 (u, v) 7→ i−1

∫
D
P (χu)χv − (χu)P ∗(χv) dνb, (6.37)
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where we extend u, v to a collar neighborhood U ⊂ M of D, and χ ∈ C∞c (U) is a cutoff
which is identically 1 near D; furthermore, FD(P ∗,−) is defined as in (6.36) but using
the weight +β at ∂D. The integral over D converges since the coefficients uj in (6.36)

necessarily lie in H
∞,−β−T −ε
b (D) for all ε > 0 by elliptic b-theory for N̂D(P, λ) near ∂D, and

similarly the coefficients of elements of FD(P ∗, λ̄) lie in H
∞,β+

T −ε
b (D) for all ε > 0. Following

the proof of [Mel93, Proposition 6.2] then, the pairing (6.37) is identically 0 for λ 6= λ′,
and nondegenerate when λ = λ′. The proof of [Mel93, Lemma 6.4] goes through as well,
and shows that the subspace of FD(P, λ) consisting of those elements which are the leading
order terms of elements of kerP is the annihilator of the subspace of FD(P ∗,−λ̄) consisting
of those elements which are the leading order terms of elements of kerP ∗. This implies the
Theorem by the same arguments as in [Mel93, Proof of Theorem 6.5]. �

6.5. An example. We consider again the operator from Theorem 1.2, rescaled as in §3.5;
thus,

P0 = 〈x〉2
(
D2
t +D2

x + V (t, x) + VT (x)
)
,

t ∈ R, x ∈ Rn−1, V ∈ 〈(t, x)〉−2C∞(Rn), VT ∈ 〈x〉−3C∞(Rn−1),

satisfies P0 ∈ Diff2
3b(M), where M = [Rn; {(−∞, 0), (+∞, 0)}], and has an elliptic 3b-

principal symbol. We moreover let P̃ ∈ Diff
2,(−1,−1)
3b (M) = 〈(t, x)〉−1Diff2

3b(M) and assume
that

P := P0 + P̃ ∈ Diff2
3b(M)

has an elliptic 3b-principal symbol. (This is true for any P̃ in a sufficiently small neighbor-
hood of ∂M ; this assumption thus excludes the possibility of characteristic set in M◦.) We
work with positive b-densities on M , D (the lift of ∂Rn) and T (the union of the two front
faces), unless otherwise noted.

Lemma 6.19 (Properties of P ). Let n = dimM ≥ 4. Then

Specb(N∂T (P )) =
⋃
l∈N0

{(−l, 0), (l + n− 3, 0)},

and the T -tf-normal operators in (6.2) are invertible for any β = (β−T , β
+
T ) := (0, n − 3).

Let VD := (〈(t, x)〉2V )|∂Rn ∈ C
∞(Sn−1), and let D ⊂ R be the (discrete) set consisting of

all a ∈ R for which there exists λ ∈ C, Imλ = −a, so that λ2 + i(n− 2)λ+ ∆Sn−1 + VD is
not invertible on C∞(Sn−1). Then conditions (1)–(3) of the Definition 6.3 of full ellipticity
(with weights αD, αT ) are satisfied for P if and only if

αD /∈ D, αD − αT ∈ (0, n− 3). (6.38)

For V = 0, we have D = {−l, l + n− 2: l ∈ N0}, and Specb(ND(P )) =
⋃
l∈N0
{(−l, 0), (l +

n− 2, 0)}.

Proof. The normal operators

ND(P ) = ND(P0), NT (P ) = NT (P0)

are independent of P̃ . Since the spectrum of ∆Sn−2 is equal to {`(`+ n− 3) : ` ∈ N0}, the

operator N̂∂T (P,−iξ) = −ξ2 + (n − 3)ξ + ∆Sn−2 on Sn−2 (see (3.44)) is invertible unless
ξ ∈ {−`, `+n−3: ` ∈ N0}, and at these values of ξ its inverse has a pole of order 1. Consider
next the operator N±D,tf(P ) from (3.43); its invertibility as a map (6.2) for β ∈ (0, n − 3)
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is standard, see e.g. [Hin22b, Proof of Theorem 6.1] (where the dimension is shifted by
1 relative to here). Next, for VD = 0, the boundary spectrum of the rescaled Laplacian
〈(t, x)〉2(D2

t +D2
x) on Rn is the set {(−l, 0), (l+n− 2, 0) : l ∈ N0}, as follows via separation

into spherical harmonics on Sn−1 ⊂ Rn; the Mellin-transformed normal operator family of
ND(P ) is related to this via (3.45). But since the weight at ∂D of the b-Sobolev space

on which we need to study the invertibility of N̂D(P, λ) (see (6.3)) is −β > −n + 3, every

element of the nullspace of N̂D(P, λ) is necessarily bounded at ∂D and thus has a removable
singularity at ∂D (i.e. it is the lift from ∂Rn = Sn−1 of a smooth function on Sn−1). The
same arguments (except for the explicit calculation of D and Specb(ND(P ))) apply also
when VD 6= 0. The proof is complete. �

Whether or not conditions (4) and (5) hold depends on the potential VT . For real-valued
VT , these conditions are directly related to classical spectral theory:

Corollary 6.20 (P as a fully elliptic 3b-operator). Suppose VT is real-valued. For n ≥ 4
and αD, αT as in (6.38), the operator P is fully elliptic with weights αD, αT if and only
if ∆Rn−1 + VT has no negative L2-eigenvalues and 0 is neither an L2-eigenvalue nor a
resonance (the latter only being a possibility for n = 4, 5); here, we use the standard norm
on L2(Rn−1). In particular, P is fully elliptic when VT ≥ 0.

This produces a class of examples of operators P to which Theorems 6.4 (precise para-
metrices), 6.15 (Fredholm properties, structure of nullspace, and structure of generalized
inverses), and 6.17 (relative index theorem) apply. For a more general result, see Theo-
rem 1.2, and also Remark 6.21 below.

Proof of Corollary 6.20. The absence of negative L2-eigenvalues of ∆Rn−1 +VT is equivalent
to condition (5) of Definition 6.3. The zero energy operator

N̂T (P, 0) = 〈x〉2
(
∆Rn−1 + VT

)
: Hs,β

b (T )→ Hs−2,β
b (T ) (6.39)

is Fredholm (as discussed in §6.1). Since the standard density on Rn−1 is 〈x〉n−1 times
a positive b-density, the L2(Rn−1)-adjoint of (6.39) is (up to conjugation by a positive

smooth function) given by (∆Rn−1 + VT )〈x〉2 : H−s+2,−β+n−1
b (T ) → H−s,−β+n−1

b (T ), the

conjugation of which by 〈x〉2 is the operator N̂T (P, 0) as a map H−s+2,−β+n−3
b (T ) →

H−s,−β+n−3
b (T ), with −β + n − 3 lying in the same interval (0, n − 3) as β itself; but

since its nullspace is independent of the choice of β within this interval (and also on the

choice of s), we conclude that (6.39) has index 0. Any element u ∈ Hs,β
b (T ) ∩ ker N̂T (P, 0)

automatically lies in An−3(Rn−1); for n = 4, 5, such u are thus decaying, and for n ≥ 6,
such u automatically lie in L2(Rn−1).

For VT ≥ 0, the absence of negative L2-eigenvalues and of a zero energy resonance or
bound state follows via an integration by parts argument. �

Remark 6.21. For general VT , the full ellipticity of P with weights αD, αT as in (6.38)
is equivalent to condition (1) of Theorem 1.2. Indeed, the condition on the zero energy
operator in Theorem 1.2 ensures the absence of a kernel and cokernel of 〈x〉2(∆Rn−1 + VT )

on H0,β
b (T ) and H0,−β+n−3

b (T ), respectively, for some (and thus all) β ∈ (0, n−3). We also
note that the weights in Theorem 1.2 which for clarity we denote α̃D, α̃T here correspond,

upon passing from the density |dtdx| there to a b-density ρT ρ
n
D|dtdx| (where ρT = 〈x〉

〈(t,x)〉
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and ρD = 〈x〉−1), to the weights αD = α̃D+ n
2 and αT = α̃T + 1

2 in present notation. Thus,

the conditions α̃D − α̃T ∈ (−n−1
2 , n−1

2 − 2) and α̃D + n
2 /∈ D = Re Specb(ND(P )) (which is

condition (2) in Theorem 1.2) are equivalent to the conditions (6.38).

7. Fully elliptic 3b-operators: Fredholm theory via estimates

While the parametrix construction in §6 gives very precise information about fully elliptic
3b-operators P (see Definition 6.3) and their (approximate, generalized, or true) inverses, it
is rather involved, and rests on similarly precise descriptions of inverses of elliptic operators
in the various model calculi that were discussed in §2. In this section, we show how to
prove the Fredholm property (Theorem 6.15(1)) only using small ps.d.o. calculi (i.e. without
boundary terms), by exploiting the spectral characterizations of 3b-function spaces given
in Propositions 4.24 and 4.26.

Remark 7.1 (Outlook and motivation: non-elliptic theory). The main reason for including
this section is that it allows us to demonstrate how to use the 3b-algebra as a tool, which
is a more flexible point of view when studying non-elliptic equations. This is discussed in
detail in [Hin23].

Theorem 7.2 (Semi-Fredholm estimate). Let P ∈ Ψm
3b(M) be fully elliptic with weights

αD, αT . Let s,N ∈ R with −N < s. Then there exist ε > 0 and C > 0 so that

‖u‖Hs,αD ,αT
3b (M) ≤ C

(
‖Pu‖

H
s−m,αD ,αT
3b (M)

+ ‖u‖
H
−N,αD−ε,αT −ε
3b (M)

)
. (7.1)

Here, the 3b-Sobolev spaces on M are defined with respect to a positive b-density.

(The final, error, term in (7.1) can be weakened to ‖u‖
H−N,−N,−N3b (M)

using an interpola-

tion inequality.) At the end of §7.3, we show how Theorem 7.2 and an analogous estimate
for P ∗ imply the Fredholm property of P acting between weighted 3b-Sobolev spaces, cf.
Theorem 6.15(1).

The estimate-based proof of Theorem 7.2 requires estimates for the various models, which
we proceed to state and prove only using the various small calculi. We use b-densities on
T , D, and M throughout, unless otherwise noted.

7.1. Estimates for the spectral family. With P as in Theorem 7.2, we record estimates

for N̂T (P, σ) in all frequency regimes: high (Lemma 7.3), bounded (Lemma 7.4), and low
(Lemma 7.5).

Lemma 7.3 (Uniform bounds at high frequencies). Let s, r, b ∈ R. There exist σ0 > 0 and
C > 0 so that

‖u‖
Hs,r,b

sc,|σ|−1 (T )
≤ C‖N̂T (P, σ)u‖

Hs−m,r−m,b−m
sc,|σ|−1 (T )

, |σ| > σ0. (7.2)

Proof. Recall the semiclassical rescaling N̂T (P,±h−1) of the spectral family from (4.6).

This is an elliptic element of Ψm,m,m
sc,~ (T ). Pick a parametrix Q ∈ Ψ−m,−m,−msc,~ (T ) with

QhN̂T (P,±h−1) = I −Rh, R = (Rh)h∈(0,1) ∈ Ψ−∞,−∞,−∞sc,~ (T ); then

‖u‖
Hs,r,b

sc,h (T )
≤ C

(
‖QhPhu‖Hs,r,b

sc,h (T )
+ ‖u‖

H−N,−N,−Nsc,h (T )

)
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for any fixed N and some constant C. Since Qh : Hs−m,r−m,b−m
sc,h (T ) → Hs,r,b

sc,h (T ) is uni-

formly bounded, and using that for N > max(−s,−r,−b) we have C‖u‖
H−N,−N,−Nsc,h (T )

≤
1
2‖u‖Hs,r,b

sc,h (T )
for all sufficiently small h > 0, we obtain (7.2). �

Lemma 7.4 (Uniform bounds at bounded frequencies). Let c ∈ (0, 1) and s, r ∈ R. Then
there exists C > 0 so that

‖u‖Hs,r
sc (T ) ≤ C‖N̂T (P, σ)u‖Hs−m,r−m

sc (T ), c ≤ |σ| ≤ c−1. (7.3)

Proof. Exploiting the ellipticity of the principal symbol of N̂T (P, σ) for nonzero σ, we obtain

‖u‖Hs,r
sc (T ) ≤ C

(
‖N̂T (P, σ)u‖Hs−m,r−m

sc (T ) + ‖u‖
H−N,−Nsc (T )

)
, c ≤ |σ| ≤ c−1, (7.4)

for any fixed N which we take to be larger than max(−s,−r). We can drop the er-
ror term in this estimate, upon enlarging C, as a consequence of the full ellipticity and

the compactness of Hs,r
sc (T ) ↪→ H−N,−Nsc (T ). Indeed, if this were not possible, then

we could find a sequence uj ∈ Hs,r
sc (T ) with ‖uj‖Hs,r

sc (T ) = 1 and N̂T (P, σj)uj → 0

in Hs−m,r−m
sc (T ), where |σj | ∈ [c, c−1]; upon passing to a subsequence, we can assume

that the limit σ∞ := limj→∞ σj exists. Applying the estimate (7.4) to this subsequence,
one obtains lim infj→∞ ‖uj‖H−N,−Nsc (T )

≥ C−1 > 0. Therefore, any subsequential weak

limit u∞ ∈ Hs,r
sc (T ) of uj , which is a strong limit with respect to the norm topology on

H−N,−Nsc (T ), is nonzero; but N̂T (P, σ∞)u∞ = 0, contradicting the full ellipticity assumption
(concretely, Definition 6.3(5)). �

Lemma 7.5 (Uniform bounds at low frequencies). Put β = αD − αT . Let s, r ∈ R. Then
there exist σ0 > 0 and C > 0 so that

‖u‖
Hs,r,β,0

sc-b,σ (T )
≤ C‖N̂T (P, σ)u‖

Hs−m,r−m,β,0
sc-b,σ (T )

. (7.5)

for all σ ∈ ±[0, σ0).

Proof of Lemma 7.5. The proof is conceptually analogous to (but due to the elliptic nature
of the problem simpler than) the uniform low energy estimates on the spectrum proved by
Vasy [Vas21]; see also [Hin21b, §3.5]. We work in σ ≥ 0, the case σ ≤ 0 being completely

analogous. Since N̂T (P,−) is elliptic as a sc-b-operator, there exists a symbolic parametrix

Q ∈ Ψ−m,−m,0,0sc-b (T ) with I = QN̂T (P,−) + R where R ∈ Ψ−∞,−∞,0,0sc-b (T ). This gives for
any fixed N > max(−s,−r) a constant C > 0 so that

‖u‖
Hs,r,β,0

sc-b,σ (T )
≤ C

(
‖N̂T (P, σ)u‖

Hs−m,r−m,β,0
sc-b,σ (T )

+ ‖u‖
H−N,−N,β,0sc-b,σ (T )

)
. (7.6)

• Improving the error at tf. Let now [0, 1)ρD ×∂T be a collar neighborhood of ∂T inside
of T . Let χ ∈ C∞c ([0, 1)σ × [0, 1)ρD × ∂T ) be identically 1 near σ = ρD = 0. Aiming to
improve the error term in (7.6) at tf ⊂ Tsc-b, we write

‖u‖
H−N,−N,β,0sc-b,σ (T )

≤ ‖χu‖
H−N,−N,β,0sc-b,σ (T )

+ ‖(1− χ)u‖
H−N,−N,β,0sc-b,σ (T )

≤ ‖χu‖
H−N,−N,β,0sc-b,σ (T )

+ C‖u‖
H−N,−N,−N,0sc-b,σ (T )
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for some C (depending on χ and N). Write φσ : (ρ̂, ω) 7→ (σρ̂, ω) ∈ T for σ ∈ (0, 1). By
Proposition 2.21(1), we can then estimate the first term by

‖χu‖
H−N,−N,β,0sc-b,σ (T )

=
∥∥∥( ρD
ρD + σ

)N
(ρD + σ)−βχu

∥∥∥
H−N,0,0,0sc-b,σ (T ,|dρD

ρD
dω|)

= σ−β
∥∥∥( ρ̂D
ρ̂D + 1

)N
(1 + ρ̂D)−βφ∗σ(χu)

∥∥∥
H−N,0,0sc,b (tf,|dρ̂D

ρ̂D
dω|)

= σ−β‖φ∗σ(χu)‖
H−N,−N,−βsc,b (tf)

.

Using Definition 6.3(2) (turned into a quantitative estimate in a manner completely anal-
ogous to the proof of Lemma 7.4), this is bounded from above by a constant times

σ−β‖N+
T ,tf(P )φ∗σ(χu)‖

H−N−m,−N−m,−βsc,b (tf)
.

(Note that spaces of smooth sc-b- and b-densities on tf coincide away from tf ∩ scf.) Since

N̂T (P,−)− χ̃N+
T ,tf(P )χ ∈ Ψm,m,−1,0

sc-b (T ) for any cutoff χ̃ ∈ C∞c ([0, 1)σ× [0, 1)ρD×∂T ) which

is identically 1 near suppχ, we then further have

σ−β‖N+
T ,tf(P )φ∗σ(χu)‖

H−N−m,−N−m,−βsc,b (tf)

≤ ‖χN̂T (P, σ)u‖
H−N−m,−N−m,β,0sc-b,σ (T )

+ C‖u‖
H−N,−N,β−1,0

sc-b,σ (T )
,

where the second term on the right bounds the contributions from N̂T (P,−)− χ̃N+
T ,tf(P )χ

and the commutator ‖[N̂T (P, σ), χ]u‖
H−N−m,−N−m,βsc-b,σ (T )

. Plugging these estimates into (7.6)

gives (with a new constant C)

‖u‖
Hs,r,β,0

sc-b,σ (T )
≤ C

(
‖N̂T (P, σ)u‖

Hs−m,r−m,β,0
sc-b,σ (T )

+ ‖u‖
H−N,−N,β−1,0

sc-b,σ (T )

)
. (7.7)

• Improving the error at zf. Next, we improve the error term at zf ⊂ Tsc-b by using the
invertibility of the zero energy operator. Thus, let χ, χ̃ ∈ C∞c (Tsc-b\scf) be two cutoff which
are identically 1 near zf, and with χ̃ = 1 near suppχ. Then Proposition 2.21(2) gives

‖u‖
H−N,−N,β−1,0

sc-b,σ (T )
≤ ‖χu‖

H−N,−N,β−1,0
sc-b,σ (T )

+ ‖(1− χ)u‖
H−N,−N,β−1,0

sc-b,σ (T )

≤ C
(
‖(χu)(σ)‖

H−N,β−1
b (T )

+ ‖u‖
H−N,−N,β−1,−N

sc-b,σ (T )

)
.

We increase β − 1 to β − ε, where ε ∈ (0, 1] is so small that β − ε ∈ (β−T , β
+
T ) still, i.e. the

invertibility of N̂T (P, 0) in Definition 6.3(4) also holds with β− ε in place of β; then we can
estimate

‖(χu)(σ)‖
H−N,β−εb (T )

≤ C
∥∥N̂T (P, 0)((χu)(σ))

∥∥
H−N−m,β−εb (T )

≤ C
(
‖χN̂T (P, σ)u‖

H−N−m,−N−m,β−ε,0sc-b,σ (T )
+ ‖u‖

H−N,−N,β−ε,−1
sc-b,σ (T )

)
since N̂T (P, σ) − χ̃N̂T (P, 0)χ vanishes simply at zf, and a fortiori [N̂T (P, σ), χ] does, too.
(The weights at scf in the final line are arbitrary, but chosen to match the weights appearing
earlier.) Altogether, we can now improve (7.7) to

‖u‖
Hs,r,β,0

sc-b,σ (T )
≤ C

(
‖N̂T (P, σ)u‖

Hs−m,r−m,β,0
sc-b,σ (T )

+ ‖u‖
H−N,−N,β−ε,−1

sc-b,σ (T )

)
. (7.8)
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Since N > max(−s,−r), note then that the error term∥∥(ρD + σ)ε σ
ρD+σu

∥∥
H−N,−N,β,0sc-b,σ (T )

≤ Cσε‖u‖
H−N,−N,β,0sc-b,σ (T )

is small and can therefore be absorbed into the left hand side of (7.8) for all σ ∈ [0, σ0)
when σ0 > 0 is sufficiently small. This gives (7.5) and completes the proof. �

7.2. Estimates for the Mellin-transformed normal operator. With P as in The-

orem 7.2, we next turn to estimates for N̂D(P, λ) when λ ∈ C, Imλ = −αD. We put
β = αD − αT as usual.

Lemma 7.6 (Uniform bounds for bounded λ). Let s ∈ R and λ0 > 0. Then there exists
C > 0 so that

‖u‖
Hs,−β

b (D)
≤ C‖N̂D(P, λ)u‖

Hs−m,−β
b (D)

, Imλ = −αD, |Reλ| ≤ λ0.

Proof. This is standard elliptic b-theory. The details are as follows: the symbolic ellipticity

of N̂D(P, λ) implies the estimate

‖u‖
Hs,−β

b (D)
≤ C

(
‖N̂D(P, λ)u‖

Hs−m,−β
b (D)

+ ‖u‖
H−N,−βb (D)

)
, Imλ = −αD, |Reλ| ≤ λ0.

(7.9)
Fix a collar neighborhood [0, 1)ρT × ∂D of ∂D ⊂ D and cutoffs χ, χ̃ ∈ C∞c ([0, 1)ρT × ∂D)
which are identically 1 near ρT = 0, and with χ̃ = 1 near suppχ; then

‖u‖
H−N,−βb (D)

≤ ‖χu‖
H−N,−βb (D)

+ C‖(1− χ)u‖
H−N,−Nb (D)

. (7.10)

Denote the Mellin transform in ρT by a hat, and the Mellin-dual variable by ξ; then

‖χu‖2
H−N,−βb (D)

≤ C
∫

Im ξ=β
‖χ̂u(ξ,−)‖

H−N,−N
〈ξ〉−1 (∂D)

dξ

by (2.8). But by assumption (see Definition 6.3(1)), the Mellin-transformed normal operator

family N̂∂D(P, ξ) of N∂D is invertible for Im ξ = −(−β) = β, and we have elliptic estimates
(including at large |Re ξ|)

‖χ̂u(ξ,−)‖
H−N,−N
〈ξ〉−1 (∂D)

≤ C‖N̂∂D(P, ξ)χ̂u(ξ,−)‖
H−N−m,−N−m
〈ξ〉−1 (∂D)

, Im ξ = β,

cf. Lemma 2.3. Thus,

‖χu‖
H−N,−βb (D)

≤ C‖N∂D(P )(χu)‖
H−N−m,−βb (D)

. (7.11)

Since N̂D(P, λ)− χ̃N∂D(P )χ ∈ ρT Ψm
b (D), and since [N̂D(P, λ), χ] a fortiori lies in the same

space, we obtain from (7.9)–(7.11) the estimate

‖u‖
Hs,−β

b (D)
≤ C

(
‖N̂D(P, λ)u‖

Hs−m,−β
b (D)

+ ‖u‖
H−N,−β−1

b (D)

)
.

Taking N > −s, the inclusion Hs,−β
b (D) ↪→ H−N,−β−1

b (D) is compact, and therefore we can
drop the error term here by the same argument as in the proof of Lemma 7.4 by virtue of

the injectivity of N̂D(P, λ) for Imλ = −αD. �

Lemma 7.7 (Uniform bounds for large λ). Let s ∈ R. There exist λ0 > 0 and C > 0 so
that

‖u‖
Hs,−β,−β,s

c,|λ|−1 (D)
≤ C‖N̂D(P, λ)u‖

Hs−m,−β,−β,s−m
c,|λ|−1 (D)

, Imλ = −αD, |Reλ| > λ0. (7.12)
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Proof. The ellipticity of N̂D(P,−iαD ± h−1) as a semiclassical cone operator of order
(m, 0, 0,m) (see Definition 4.14) gives the estimate (7.12) but with an additional term
C‖u‖

H−N,−β,−β,−N
c,|λ|−1 (D)

on the right hand side.

Next, fix a collar neighborhood [0, 1)ρT ×∂D of ∂D ⊂ D, and fix a cutoff χ ∈ C∞c ([0, 1)h×
[0, 1)ρT × ∂D) which is identically 1 near h = ρT = 0. Then supp(1 − χ) ∩ tf = ∅ where
tf ⊂ Dc~ is the transition face, and therefore, identifying h = |λ|−1,

‖(1− χ)u‖
H−N,−β,−β,−N

c,|λ|−1 (D)
≤ C‖u‖

H−N,−β,−N,−N
c,|λ|−1 (D)

.

On the other hand, we estimate χu using Proposition 2.24; to wit, for ρ̂D = ρD
|λ|−1 and

±Reλ > 0,

‖χu‖
H−N,−β,−β,−N

c,|λ|−1 (D,|dρD
ρD

dω|) = ‖(ρD + |λ|−1)βχu‖
H−N,−β,0,−N

c,|λ|−1 (D,|dρD
ρD

dω|)

≤ C|λ|−β‖(ρ̂D + 1)βχu‖
H−N,−β,−Nb,sc (tf,|dρ̂D

ρ̂D
dω|)

= C|λ|−β‖χu‖
H−N,−β,−N−βb,sc (tf,|dρ̂D

ρ̂D
dω|)

≤ C|λ|−β‖N±D,tf(χu)‖
H−N−m,−β,−N−β−mb,sc (tf,|dρ̂D

ρ̂D
dω|)

≤ C‖N±D,tf(χu)‖
H−N−m,−β,−β,−N−m

c,|λ|−1 (D,|dρD
ρD

dω|).

Here, by an abuse of notation, we write N±D,tf for any fixed operator in Ψm,0,0,m
c~ (D) with the

tf-normal operator given by the D-tf-normal operator of P . Since N̂D(−iαD±h−1)−N±D,tf ∈
Ψm,0,−1,m

c~ (D), we can estimate this further by a constant times

‖χN̂D(λ)u‖
H−N−m,−β,−β,−N−m

c,|λ|−1 (D)
+ ‖u‖

H−N,−β,−β−1,−N
c,|λ|−1 (D)

.

We obtain

‖u‖
Hs,−β,−β,s

c,|λ|−1 (D)
≤ C

(
‖N̂D(P, λ)u‖

Hs−m,−β,−β,s−m
c,|λ|−1 (D)

+ ‖u‖
H−N,−β,−β−1,−N

c,|λ|−1 (D)

)
. (7.13)

Since for N > −s + 1 we have ‖u‖
H−N,−β,−β−1,−N

c,|λ|−1 (D)
≤ Ch‖u‖

Hs,−β,−β,s
c,|λ|−1 (D)

, we can, for

sufficiently small h > 0, absorb the final term in (7.13) into the left hand side. The proof
is complete. �

7.3. Proof of Theorem 7.2; Fredholm property. We now use the Lemmas proved
in §§7.1–7.2 in combination with the relationships (Propositions 4.24 and 4.26) between
3b-Sobolev spaces on M and those Sobolev spaces on T and D which are used in these
Lemmas.

Proof of Theorem 7.2. Denote by ρT ∈ C∞(M) a defining function of T . In terms of u0 :=

ρ
−αT + 1

2
T u, the estimate (7.1) is equivalent to

‖u0‖
H
s,αD ,

1
2

3b (M)
≤ C

(
‖ρ−αT + 1

2
T Pρ

αT − 1
2

T u0‖
H
s−m,αD ,

1
2

3b (M)
+ ‖u0‖

H
−N,αD−ε,

1
2−ε

3b (M)

)
.
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But by Lemma 6.7, the operator P0 := ρ
−αT + 1

2
T Pρ

αT − 1
2

T ∈ Ψm
3b(M) is fully elliptic with

weights αD,
1
2 . It thus suffices to prove the estimate (7.1) for αD ∈ R under the assump-

tion that P is fully elliptic with weights αD,
1
2 . The relevance of 1

2 here is that (using
Notation 6.1) Proposition 4.24 applies to the space

H
s,αD,

1
2

3b (M,νb) = Hs,αD,0
3b (M,ν3b);

for this equality, note that ν3b := ρ−1
T νb is a positive 3b-density.

The proof of (7.1) then proceeds via the combination of elliptic estimates with normal
operator estimates, much as in the proofs of Lemmas 7.5 and 7.7 above. The elliptic
estimate is

‖u‖
H
s,αD ,

1
2

3b (M)
≤ C

(
‖Pu‖

H
s−m,αD ,

1
2

3b (M)
+ ‖u‖

H
−N,αD ,

1
2

3b (M)

)
. (7.14)

• Improving the error at T . Fix a cutoff χ ∈ C∞([0,∞)T ×Rn−1
X ) as in Proposition 4.24,

with χ = 1 near (T,X) = (0, 0). Then for any N ′,

‖u‖
H
−N,αD ,

1
2

3b (M)
≤ ‖χu‖

H
−N,αD ,

1
2

3b (M)
+ C‖u‖

H
−N,αD ,−N′
3b (M)

since T ∩ supp(1 − χ) = ∅. Passing to the weighted 3b-density 〈x〉ν3b = 〈x〉−(n−1)|dt dx|
(which is a positive element of ρ−1

D ρ−1
T C∞(M ; bΩM)) and correspondingly working with the

unweighted b-density 〈x〉−(n−1)|dx| on T , we then have, in terms of β := αD− 1
2 , and using

Lemmas 7.3, 7.4, and 7.5 as well as Proposition 4.24,

‖χu‖2
H
−N,αD ,

1
2

3b (M,νb)
= ‖χu‖2

H−N,β,03b (M,〈x〉ν3b)

≤ C
∑
±

∫
±[0,1]

‖χ̂u(σ,−)‖2
H−N,−N+β,β,0

sc-b,σ (T )
dσ +

∫
±[1,∞)

‖χ̂u(σ,−)‖2
H−N,−N+β,−N

sc,|σ|−1 (T )
dσ

≤ C

(∑
±

∫
±[0,1]

‖N̂T (P, σ)χ̂u(σ,−)‖2
H−N−m,−N+β−m,β,0

sc-b,σ (T )
dσ

+

∫
±[1,∞)

‖N̂T (P, σ)χ̂u(σ,−)‖2
H−N−m,−N+β−m,−N−m

sc,|σ|−1 (T )
dσ

)
≤ C‖NT (P )(χu)‖2

H−N−m,β,03b (M,〈x〉ν3b)
= C‖NT (P )(χu)‖2

H
−N−m,αD ,

1
2

3b (M,νb)
,

where we identify a neighborhood of T ⊂ M with a neighborhood of T̂ ⊂ N3bT (see
Definition 3.18 and the subsequent discussion), and we write NT (P ) also for an operator
of class Ψm

3b(M) which has NT (P ) as its T -normal operator. Using that P − NT (P ) ∈
ρT Ψm

3b(M), and that also [P, χ] lies in this space, we obtain from (7.14) the improved
estimate

‖u‖
H
s,αD ,

1
2

3b (M)
≤ C

(
‖Pu‖

H
s−m,αD ,

1
2

3b (M)
+ ‖u‖

H
−N,αD ,

1
2−ε

3b (M)

)
(7.15)

for ε = 1, and a fortiori also for any smaller ε; we fix ε > 0 so that P is fully elliptic with
weights αD, 1

2 − ε still.

• Improving the error at D. We further improve the error term in (7.15) at D. Fix a
cutoff χ ∈ C∞(M) as in Proposition 4.26, so χ has support in a collar neighborhood of D,
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and is equal to 1 near D. Write α̃T := 1
2 − ε. Then

‖u‖
H
−N,αD ,

1
2−ε

3b (M)
≤ ‖χu‖

H
−N,αD ,α̃T
3b (M)

+ C‖u‖
H
−N,−N′,α̃T
3b (M)

for any fixed N ′ since D ∩ supp(1− χ) = ∅. Application of Proposition 4.26 (with positive
unweighted b-densities on M and D, corresponding to µD = 0, µT = 1, µ̂ = −1) gives

‖χu‖2
H
−N,αD ,α̃T
3b (M)

≤ C

(∫
[−1,1]

‖χ̂u(λ0 − iαD,−)‖2
H
s,α̃T −αD
b (D)

dλ0

+
∑
±

∫
±[1,∞)

‖χ̂u(λ0 − iαD,−)‖2
H
−N,α̃T −αD ,α̃T −αD ,−N
c,|λ0|−1 (D)

dλ0

)
.

Due to the full ellipticity of P with weights αD, α̃T , we can apply Lemmas 7.6 and 7.7 (with
β in the Lemmas equal to αD − α̃T ) in order to bound the integrands in this expression;
applying Proposition 4.26 again, we deduce

‖χu‖
H
−N,αD ,α̃T
3b (M)

≤ C‖ND(P )(χu)‖
H
−N−m,αD ,α̃T
3b (M)

.

Extending ND(P ) to an element of Ψm
3b(M), we have P − ND(P ) ∈ ρDΨm

3b(M), and also
[P, χ] is of this class, and therefore we can now improve (7.15) to

‖u‖
H
s,αD ,

1
2

3b (M)
≤ C

(
‖Pu‖

H
s−m,αD ,

1
2

3b (M)
+ ‖u‖

H
−N,αD−1, 12−ε
3b (M)

)
,

which is the desired estimate. �

The estimate (7.1) (with N > −s) implies, in view of the compactness of the inclusion

Hs,αD,αT
3b (M) ↪→ H−N,αD−ε,αT −ε3b (M) (see Lemma 4.23), that

P : Hs,αD,αT
3b (M)→ Hs−m,αD,αT

3b (M) (7.16)

has finite-dimensional kernel and closed range. In the same manner, one can prove an
analogous estimate for the adjoint P ∗ (defined with respect to the L2-inner product on M
for a positive b-density),

‖u‖
H
−s+m,−αD ,−αT
3b (M)

≤ C
(
‖P ∗u‖

H
−s,−αD ,−αT
3b (M)

+ ‖u‖
H
−N,−αD−ε,−αT −ε
3b (M)

)
. (7.17)

Here, we use Lemma 6.8, which shows that P ∗ is fully elliptic with weights −αD,−αT .
The estimate (7.17) implies that P ∗ has finite-dimensional kernel, and hence P has finite-
dimensional cokernel. This completes our estimate-based proof that the operator (7.16) is
Fredholm.
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[GS94] Alain Grigis and Johannes Sjöstrand. Microlocal analysis for differential operators: an introduc-
tion, volume 196. Cambridge University Press, 1994.

[GS14] Colin Guillarmou and David A. Sher. Low Energy Resolvent for the Hodge Laplacian: Applica-
tions to Riesz Transform, Sobolev Estimates, and Analytic Torsion. International Mathematics
Research Notices, 2015(15):6136–6210, 07 2014. doi:10.1093/imrn/rnu119.

[GTV20] Daniel Grieser, Mohammad Talebi, and Boris Vertman. Spectral geometry on manifolds with
fibred boundary metrics I: Low energy resolvent. Preprint, arXiv:2009.10125, 2020.

[Hin21a] Peter Hintz. Elliptic parametrices in the 0-calculus of Mazzeo and Melrose. Preprint,
arXiv:2112.08130, 2021.

[Hin21b] Peter Hintz. Mode stability and shallow quasinormal modes of Kerr–de Sitter black holes away
from extremality. Preprint, arXiv:2112.14431, 2021.

[Hin21c] Peter Hintz. Semiclassical propagation through cone points. Preprint, arXiv:2101.01008, 2021.

https://doi.org/10.1007/BFb0077734
https://doi.org/10.1007/BFb0077734
https://doi.org/10.1007/s00220-021-04308-3
https://doi.org/10.1007/s00220-021-04308-3
https://doi.org/10.1007/BF02392446
https://www.sciencedirect.com/science/article/pii/S0022247X18307066
https://www.sciencedirect.com/science/article/pii/S0022247X18307066
https://doi.org/https://doi.org/10.1016/j.jmaa.2018.08.042
https://doi.org/https://doi.org/10.1016/j.jmaa.2018.08.042
https://doi.org/10.1007/s00208-008-0216-5
https://doi.org/10.1016/j.jfa.2009.09.016
http://aif.cedram.org.libproxy.mit.edu/item?id=AIF_2009__59_4_1553_0
http://aif.cedram.org.libproxy.mit.edu/item?id=AIF_2009__59_4_1553_0
https://doi.org/10.1007/978-3-319-02550-6_8
https://doi.org/10.1007/978-3-319-02550-6_8
https://doi.org/10.1016/j.jfa.2006.07.010
https://doi.org/10.1007/978-3-0348-8253-8_2
https://doi.org/10.1093/imrn/rnu119


146 PETER HINTZ

[Hin22a] Peter Hintz. A sharp version of Price’s law for wave decay on asymptotically flat spacetimes. Com-
munications in Mathematical Physics, 389:491–542, 2022. doi:10.1007/s00220-021-04276-8.

[Hin22b] Peter Hintz. Resolvents and complex powers of semiclassical cone operators. Mathematische
Nachrichten, 295(10):1990–2035, 2022. doi:https://doi.org/10.1002/mana.202100004.

[Hin23] Peter Hintz. Linear waves on non-stationary asymptotically flat spacetimes. I. Preprint, 2023.
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[Hör07] Lars Hörmander. The analysis of linear partial differential operators. III. Classics in Mathematics.

Springer, Berlin, 2007.
[HV20] Peter Hintz and András Vasy. Stability of Minkowski space and polyhomogeneity of the metric.

Annals of PDE, 6(2), 2020. doi:10.1007/s40818-020-0077-0.
[HV23] Peter Hintz and András Vasy. Microlocal analysis near null infinity of asymptotically flat space-

times. Preprint, 2023.
[JK79] Arne Jensen and Tosio Kato. Spectral properties of Schrödinger operators and time-decay of the

wave functions. Duke mathematical journal, 46(3):583–611, 1979.
[KR22] Chris Kottke and Frédéric Rochon. Low Energy Limit for the Resolvent of Some Fibered

Boundary Operators. Communications in Mathematical Physics, Jan 2022. doi:10.1007/

s00220-021-04273-x.
[Lau03] Robert Lauter. Pseudodifferential analysis on conformally compact spaces. Mem. Amer. Math.

Soc., 163(777):xvi+92, 2003. doi:10.1090/memo/0777.
[Loy02] Paul Loya. On the resolvent of differential operators on conic manifolds. Comm. Anal. Geom.,

10(5):877–934, 2002. doi:10.4310/CAG.2002.v10.n5.a1.
[Maz91] Rafe Mazzeo. Elliptic theory of differential edge operators I. Communications in Partial Differ-

ential Equations, 16(10):1615–1664, 1991. doi:10.1080/03605309108820815.
[Mel81] Richard B. Melrose. Transformation of boundary problems. Acta Mathematica, 147(1):149–236,

1981.
[Mel92] Richard B. Melrose. Calculus of conormal distributions on manifolds with corners. International

Mathematics Research Notices, (3):51–61, 1992.
[Mel93] Richard B. Melrose. The Atiyah-Patodi-Singer index theorem, volume 4 of Research Notes in

Mathematics. A K Peters, Ltd., Wellesley, MA, 1993. doi:10.1016/0377-0257(93)80040-i.
[Mel94] Richard B. Melrose. Spectral and scattering theory for the Laplacian on asymptotically Euclidian

spaces. In Spectral and scattering theory (Sanda, 1992), volume 161 of Lecture Notes in Pure and
Appl. Math., pages 85–130. Dekker, New York, 1994.

[Mel96] Richard B. Melrose. Differential analysis on manifolds with corners. Book, in preparation, avail-
able online, 1996. URL: https://math.mit.edu/~rbm/daomwcf.ps.

[MM83] Richard B. Melrose and Gerardo Mendoza. Elliptic operators of totally characteristic type. Math-
ematical Sciences Research Institute, 1983.

[MM87] Rafe R. Mazzeo and Richard B. Melrose. Meromorphic extension of the resolvent on complete
spaces with asymptotically constant negative curvature. J. Funct. Anal., 75(2):260–310, 1987.
doi:10.1016/0022-1236(87)90097-8.

[MM95] Rafe R. Mazzeo and Richard B. Melrose. Analytic surgery and the eta invariant. Geometric &
Functional Analysis, 5(1):14–75, Jan 1995. doi:10.1007/BF01928215.

[MM99] Rafe R. Mazzeo and Richard B. Melrose. Pseudodifferential operators on manifolds with fibred
boundaries. Asian J. Math., 2(4):833–866, 1999.

[Mor20] Katrina Morgan. The effect of metric behavior at spatial infinity on pointwise wave decay in the
asymptotically flat stationary setting. Preprint, arXiv:2006.11324, 2020.
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