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PETER HINTZ

Abstract. Given a smooth globally hyperbolic (3 + 1)-dimensional spacetime satisfying
the Einstein vacuum equations (possibly with cosmological constant) and an inextendible
timelike geodesic, we construct a family of metrics depending on a small parameter ε > 0
with the following properties. (1) They solve the Einstein vacuum equations modulo
O(ε∞). (2) Away from the geodesic they tend to the original metric as ε → 0. (3)
Their ε−1-rescalings near every point of the geodesic tend to a fixed subextremal Kerr
metric. Our result applies on all spacetimes with noncompact Cauchy hypersurfaces, and
also on spacetimes without nontrivial Killing vector fields in a neighborhood of a point
on the geodesic. If (M, g) is a neighborhood of the domain of outer communications of
subextremal or extremal Kerr(–anti de Sitter) spacetime, our metrics model extreme mass
ratio mergers if we choose the timelike geodesic to cross the event horizon.

The metrics which we construct here depend on ε and the (rescaled) coordinates on
the original spacetime in a log-smooth fashion. This in particular justifies the formal
perturbation theoretic setup in work of Gralla–Wald on gravitational self-force in the case
of small black holes.
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1. Introduction

The Einstein vacuum equations (with cosmological constant Λ ∈ R) for a Lorentzian
metric g (with signature (−,+,+,+)) on a (3 + 1)-dimensional manifold M (assumed to
be connected) read

Ric(g)− Λg = 0 (1.1)

where Ric is the Ricci curvature. Equivalently, Ein(g) + Λg = 0 where Ein(g) = Ric(g) −
1
2Rgg is the Einstein tensor (with Rg being the scalar curvature). We assume that (M, g) is
globally hyperbolic. The aim of this paper is to construct approximate (in a sense which we
make precise below) solutions gε of this equation (which in local coordinates is a quasilinear
second order partial differential equation for the coefficients gµν of the metric g) which are
obtained from g by gluing a small Kerr black hole [Ker63] along a timelike geodesic C ⊂M .
The metric ĝm,a of a subextremal Kerr black hole depends on two parameters, m > 0 (mass)
and a ∈ R3 (specific angular momentum) with |a| < m. We recall that ĝm,a is

• defined on Rt̂ × {x̂ ∈ R3 : |x̂| > m};
• stationary, i.e. time translations (t̂, x̂) 7→ (t̂+ c, x̂) are isometries;
• axisymmetric when a 6= 0, with the axis of symmetry (rotation axis of the black hole)

given by a
|a| , or rotationally symmetric when a = 0 (which gives the Schwarzschild

metric [Sch16]);
• asymptotically flat, i.e. ĝm,a = −dt̂2 +dx̂2 +O(|x̂|−1) tends to the Minkowski metric

−dt̂2 + dx̂2 as |x̂| → ∞;
• a solution of the Einstein vacuum equations Ric(ĝm,a) = 0.

See Definition 3.22. We may arrange that the t̂-level sets are spacelike (see Lemma 3.24).

Theorem 1.1 (Main result). Let (M, g) be a globally hyperbolic spacetime solving (1.1).
Let p ∈M , let v ∈ TpM be a future timelike unit vector, and denote by C ⊂M the maximal
geodesic with initial conditions p, v. Let m > 0 and a ∈ TpM , a ⊥ v, |a| < m. In Fermi
normal coordinates1 (t, x) ∈ I × R3, I ⊆ R, around C, identify a with a vector in R3. Fix

1In such coordinates, C is given by I×{0} where I ⊆ R, and g is equal to the Minkowski metric −dt2+dx2

up to O(|x|2) errors. Furthermore, the curves s 7→ (t, sx) for constant t, x are geodesics. Coordinates with
these properties are uniquely determined up to constant shifts of t and x 7→ Ax where A ∈ O(3) is t-
independent.
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a Cauchy hypersurface X of (M, g) with X ∩ C = {p} which is orthogonal2 to C. Assume
that either

(I) in the domain of dependence of a connected open neighborhood U◦ ⊂ X of p there
do not exist any nontrivial Killing vector fields for g; or

(II) (M, g) is a neighborhood of the domain of outer communications of a Kerr (when
Λ = 0), Kerr–de Sitter (when Λ > 0) or Kerr–anti de Sitter (when Λ < 0) black
hole which is subextremal or extremal, in which case we fix U◦ ⊂ X to be a connected
open set containing p as well as a point in the black hole interior of (M, g).

For ε ∈ (0, 1), let Mε = M \ {(t, x) : |x| < εm}. Then there exists a family (gε)ε∈(0,1), where
gε is a smooth symmetric 2-tensor on Mε, with the following properties.

(1) (Away from C: close to g.) We have convergence gε|M\C → g|M\C in the smooth

topology, i.e. locally uniformly with all derivatives. That is, if z ∈ R4 denotes local
coordinates on the closure Ū of a precompact open set U ⊂ M with Ū ∩ C = ∅,
then the metric coefficients (gε)µν(z) = gε(z)(∂zµ , ∂zν ) converge to gµν(z) as ε↘ 0,
together with all derivatives. More precisely, (ε, z) 7→ (gε)µν(z) is log-smooth at
ε = 0 in [0, 1)ε × R4

z, i.e. it has a full generalized Taylor expansion at ε = 0 into
terms εm(log ε)kam,k(z) where m, k ∈ N0 (with k = 0 when m = 0) and am,k is
smooth.

(2) (Near C: close to a small Kerr black hole.) In Fermi normal coordinates, we have3

(gε)µν(t, εx̂)→ (ĝm,a)µ̂ν̂(x̂) (1.2)

locally uniformly with all derivatives on It × R3
x̂. Here, µ, ν = 0, . . . , 3 are indices

for z = (t, x), and µ̂, ν̂ are indices for the corresponding components of ẑ = (t̂, x̂).
More precisely, (gε)µν(t, εx̂) is log-smooth at ε = 0 inside [0, 1)ε× It×R3

x̂ and equals
(ĝm,a)µ̂ν̂(x̂) up to O(ε2) errors.

(3) (Transition region.) The coefficients (gε)µν , as functions of

t ∈ I, ρ◦ :=
ε

|x|
≥ 0, ρ̂ := |x| ≥ 0, ω =

x

|x|
, (1.3)

are continuous down to ρ◦ = 0 and ρ̂ = 0, with boundary values

(gε)µν(t, ρ◦, ρ̂, ω) =

{
gµν(t, ρ̂ω), ρ◦ = 0,

(ĝm,a)µ̂ν̂(ρ−1
◦ ω), ρ̂ = 0.

More precisely, (gε)µν , defined on a neighborhood of I×{0}×{0}×S2 in It×[0, 1)ρ◦×
[0, 1)ρ̂ × S2

ω, is log-smooth at ρ◦ = 0 and at ρ̂ = 0, and equals (ĝm,a)µ̂ν̂(ρ−1
◦ ω) up to

O(ρ̂2) errors.
(4) (Formal solution at ε = 0.) The family (gε)ε∈(0,1) is a formal solution of the Einstein

vacuum equations in the following sense. Let V ⊂M be a precompact open set, and
let ε(V ) > 0 be such that gε is a Lorentzian metric on V ∩Mε for ε ∈ (0, ε(V )).4

Then

Errε := Ric(gε)− Λgε = O(ε∞), (1.4)

2We require this orthogonality only for notational convenience: it ensures that t-level sets are spacelike
also near the small Kerr black hole, cf. (1.2), given the form of metric we use here. See also Lemma 3.30.

3The coefficients of ĝm,a are independent of t̂ by stationarity.
4The existence of such an ε(V ) is a consequence of parts (1)–(3).
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i.e. the components of Errε in local coordinates on M near V (restricted to Mε) are
bounded by CN ε

N for all N ∈ N.
(5) (Formal solution at a Cauchy hypersurface.) The error Errε vanishes to infinite

order at X ∩Mε for all ε; more precisely, in the notation of part (4), it vanishes
to infinite order at X ∩Mε ∩ V for ε ∈ (0, ε(V )), where V ⊂ M is an arbitrary
precompact open set.

(6) (Support.) We have gε = g outside the domain of influence (with respect to g) of a
compact subset of U◦.

See Theorem 5.4 for setting (I) and Theorem 12.1 for setting (II). We can also consider
a third setting (see Remark 12.4):

Theorem 1.2 (Main result: third setting). In the notation of Theorem 1.1, let X be
a Cauchy hypersurface of (M, g), and suppose X is noncompact. Let V ⊂ M be any
precompact open set. Then there exists a family (gε)ε∈(0,1) of symmetric 2-tensors on Mε∩V̄
so that the conclusions (1)–(5) hold on V̄ .

We can interpret (1.2) as follows: using the scaling property5

(ĝm,a)µ̂ν̂(x/ε) = (ĝεm,εa)µ̂ν̂(x),

the metric gε(t, x) is, for |x| . ε, close to the metric ĝεm,εa(x) of a Kerr black hole with
mass εm and specific angular momentum εa. See Figure 1.1, and also Figure 1.2 below.
We furthermore obtain rough bounds on the exponents of the logarithms appearing in the
generalized Taylor expansions. Namely, in part (1) only ε0, ε1, ε2 log ε, ε2, and εm(log ε)k

with m ≥ 3 appear, and in part (2) only ε0, ε2, εm(log ε)k with m ≥ 3 (and similarly in
part (3) regarding the expansion at ρ◦ = 0, resp. ρ̂ = 0).

(Mε, gε)

C

t

x

|x| < εm

gε ≈ g

(gε)µν ≈ (ĝεm,εa)µ̂ν̂

Figure 1.1. Illustration of the metric gε from Theorem 1.1 for some small
positive ε > 0: gε is close to g away from C, and near all points of C close
to the metric of a small Kerr black hole with mass εm and specific angular
momentum εa. We cut out a ball |x| < εm in the interior of the small black
hole.

Remark 1.3 (Black hole mergers). If in the Kerr–de Sitter setting (II) in Theorem 1.1 we
take C to cross the event horizon of the KdS black hole in finite proper time, the metric gε

5This follows from the form (3.37) of the Kerr metric, specifically from the fact that pullback under the
scaling map (t̂, x̂) 7→ (εt̂, εx̂), ε > 0, sends ĝεm,εa to ε2ĝm,a.
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describes an extreme mass ratio merger :6 the merger of a mass ε Kerr black hole with a unit
mass Kerr–de Sitter black hole. Once the small black hole is a fixed distance 2η > 0 past
the event horizon of the unit mass KdS black hole, one can, for small ε > 0, consider the
initial data of gε on a suitable spacelike hypersurface in an η-neighborhood of the domain of
outer communications of the unit mass black hole: these are ε-close to the initial data of the
unit mass KdS black hole. The future evolution of these data (which satisfy the constraints
only modulo O(ε∞) errors due to (1.4)) can be controlled using the robust stability result
[HV18]; see §12 for details; see also Figure 12.1. If (M, g) is a Kerr black hole, then an
application of the existing stability results [KS19a, KS19b, DHRT21, KS23, GKS22, She23]
would require not merely formal but true solutions; cf. Conjecture 1.4 below.

In future work, we hope to correct the formal solution gε to a true solution of (1.1):

Conjecture 1.4 (True solution). Fix a precompact open set V ⊂ M . Then for some
small ε0 > 0, there exists a smooth tensor hε on V ∩Mε, 0 < ε < ε0 which vanishes to
infinite order at ε = 0 and outside the domain of influence of a compact subset of U◦, and
which has the property that gε +hε is a true solution of the Einstein vacuum equations, i.e.
Ric(gε + hε)− Λ(gε + hε) = 0 for all ε ∈ (0, ε0].

This conjecture implies that the formal solutions constructed by Theorem 1.1 describe
the interaction of the small Kerr black hole with the ambient spacetime (M, g) to all orders
in ε.

Returning to Theorem 1.1, part (2) is a strengthening of the following statement. Fix
t0 ∈ I, corresponding to a point (t0, 0) in C, and introduce the ‘fast’ coordinates

t̂ =
t− t0
ε

, x̂ =
x

ε
(1.5)

near it: these are time and space coordinates for an observer on an ε−1 rescaling of (M, g).
Then (gε)µν(t0 + εt̂, εx̂) → (ĝm,a)µ̂ν̂(x̂) as ε ↘ 0, locally uniformly and with all derivatives

in (t̂, x̂) ∈ R× R3. Since ∂µ̂ = ε∂µ, this means that

ε−2gε|(t0+εt̂,εx̂)(∂µ̂, ∂ν̂)→ (ĝm,a)µ̂ν̂ |x̂(∂µ̂, ∂ν̂). (1.6)

We may interpret this as follows. If g is a solution of (1.1), then since Ric(ε−2g) = Ric(g),
the rescaling ε−2g solves (1.1) with cosmological constant ε2Λ. The coefficients of ε−2g
with respect to ‘fast’ coordinates t̂ = t−t0

ε , x̂ = x
ε near a point (t, x) = (t0, 0) in M ,

similarly to (1.5), are equal to the coefficients of g with respect to ‘slow’ coordinates t, x.
At (t, x) = (t0, 0) itself, g is equal to the Minkowski metric if we choose the coordinates t, x
appropriately. In this sense, ε−2g tends to the flat Minkowski metric in a O(ε)-neighborhood
of (t0, 0) as ε↘ 0. Thus, the convergence (1.6) means that the local limit of ε−2gε at every
point on C is not the Minkowski metric, but the (asymptotically flat) Kerr metric. Under
the smoothness conditions on gε in part (3) of Theorem 1.1, the limit in (1.6) is necessarily
an asymptotically flat metric which, given (1.4), is moreover Ricci-flat.

6We carefully distinguish this from extreme mass ratio inspirals (EMRIs). In an EMRI, the small black
hole moves (in the limit ε ↘ 0) along a bound orbit in an ambient Kerr spacetime. The loss of energy due
to gravitational waves causes the parameters of the orbit to change and ultimately the small black hole to
merge with the ambient one on time scales ∼ ε−1. Theorem 1.1 on the other hand does not give uniform
control beyond time scales ∼ 1.
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A further feature of (1.6) is that the limiting (Kerr) metric is stationary. The stationarity
of the local limit follows more generally for families gε for which, on the set

[0, 1)ε × It × R3
x̂, (1.7)

the metric (gε)µν depends only on the slow time variable t. (The smoothness of gε on (1.7)
means that the small black hole evolves in a quasistationary, or adiabatic, manner.) There-
fore, the regularity properties of gε force the local limits to be stationary, asymptotically
flat Ricci-flat spacetimes, and thus by necessity (at least conjecturally) Kerr spacetimes;
see Remark 3.23 for further details. This explains why, in the vacuum setting under study
here, one can only possibly glue Kerr black holes into (M, g). In this sense, Theorem 1.1 is
the simplest possible result of its type.7

Proposition 1.5 (Necessary conditions for gluing). In the notation of Theorem 1.1, sup-
pose that C ⊂ M is an inextendible timelike curve,8 furthermore gε is a family of metrics
on Mε which is log-smooth as in points (2)–(3) but where the subextremal Kerr parameters
m, a are allowed to depend on t ∈ I (i.e. on the point in C), with m = m(t) not identically 0;
finally, assume that (1.4) holds. Then C is a geodesic (thus proving the geodesic hypothesis
in our setting), m is constant, and a is parallel along C.

See Proposition 9.13, and also §8.3. Thus, in the quasistationary setting, one cannot
possibly prove a more general result than Theorem 1.1.

Finally, we remark that O(ρ̂2) nature of the corrections to ĝm,a in part (3) of Theorem 1.1
is optimal in that the nonvanishing of the Riemann curvature tensor of (M, g) at the point
t = t0 on the geodesic C induces nontrivial ρ̂2 correction terms at t = t0. Indeed, the
quadratic terms of g at C = x−1(0) in Fermi normal coordinates are given in terms of
components of the Riemann curvature tensor; see Lemma 10.1.

1.1. Context and prior work. The presence of two regimes, as described in parts (1)
and (2) of Theorem 1.1, has for a long time been a prominent feature of studies in the
physics literature on the motion of small bodies, whose mass is a small parameter ε > 0, in
curved spacetimes (M, g) satisfying Einstein’s field equations. The starting point was work
by Burke [Bur71] who was the first to apply the method of matched asymptotic expansions
to general relativity.

One key objective in such studies is to determine the motion of the small body: to leading
order as ε → 0, it must move along a geodesic C of (M, g) (see [EIH38, Tho62, Tau62] for
early contributions, and [EG04, GW08] for more recent works), and one is interested in
O(ε) and higher order corrections to geodesic motion arising from gravitational self-force:
the interaction of the small body with the gravitational field which is generated by it and
interacts with the ambient spacetime. (The notion of a limit of a family of spacetimes
(Mε, gε) was studied by Geroch [Ger69].) In the self-force problem, every formula for the
correction of geodesic motion is necessarily gauge-dependent. One particular such result
is the MiSaTaQuWa equation [MST97, QW97] in harmonic (or Lorenz) gauge. We do not
obtain new results regarding the problem of gravitational self-force here. Rather, in our
construction of gε, which does not involve a fixed choice of gauge, we re-center the small

7One can likely perform a similar construction in the setting of the Einstein–Maxwell equations by gluing
in Kerr–Newman black holes. Outside the (electro)vacuum regime however, even just the existence of small
stationary bodies that one could attempt to glue in is a highly nontrivial issue; see for example [Rei94, Jab21].

8There is still a notion of Fermi normal coordinates; see Lemma 3.14.
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black hole in the first few steps of the construction (and could re-center it to all orders in
ε if we so desired). For a detailed introduction and comprehensive literature review on the
topic of gravitational self-force, we refer the reader to [PPV11, PW22]. The description of
extreme mass ratio inspirals (EMRIs) is discussed in the review article [BP18].

The method of matched asymptotic expansions assumes the existence of two expansions
of gε: a ‘near-field expansion’, which in our notation is a (generalized) Taylor expansion on

[0, 1)ε × It × R3
x̂, x̂ =

x

ε
,

at ε = 0, with coefficients that are regular in the rescaled spatial coordinates and adiabatic
(i.e. they only depend on the ‘slow’ time variable t of the ambient spacetime); and a ‘far-
field expansion’, i.e. an expansion on [0, 1)ε × (M \ C). The two expansions are matched

in an intermediate (or buffer) region (where |x̂| � ε−1 but |x| � 1, e.g. where |x| ∼ ε1/2),
which produces boundary conditions for the terms in each expansion. This method was
subsequently applied by D’Eath [D’E75] to study corrections to the parameters of a small
Kerr black hole in the same setting that we study here; in particular, he already argued for
the validity of Proposition 1.5. D’Eath’s work was extended by Kates [Kat80] and Thorne–
Hartle [TH84] who studied general small bodies and computed leading order corrections for
mass and spin.

Gralla and Wald [GW08] introduced a clean perspective on the self-force problem which
discards the intermediate region in favor of a joint smoothness requirement of the metric
coefficients which corresponds exactly to smoothness in the coordinates (1.3) here. In this
paper, we shall relate this requirement to smoothness on a manifold with corners which
encodes the parameter ε and all spacetime manifolds Mε, ε ∈ (0, 1), in a single object,

denoted M̃ below; see §1.2. (We will also revisit their argument for the necessity that C is
a geodesic; see §8.3.)

The following is a list of further novel features of our approach and result which are
related to the above physics literature.

• We demonstrate that families of spacetimes satisfying the assumptions made in
the aforementioned works indeed exist—at least on the level of formal solutions as
in (1.4) (which is sufficient for the arguments in all of those works to go through
unchanged, as they only require the validity of the field equations up to O(εN )
errors, with N ≤ ∞ depending on the problem under study).
• We produce the metrics gε in a constructive manner, proceeding in an order-by-

order fashion where correction terms are computed as solutions of the linearized
field equations with sources, in turn at the original manifold M (but with singu-
lar boundary conditions at C) and on the small Kerr black hole spacetime (with
asymptotic boundary conditions at spacelike infinity).
• Unlike previous works, our method does not involve any fixed choice of gauge.

Instead, the terms of the (generalized) Taylor expansion of gε at the interface
ρ̂ = ρ◦ = 0 between the near- and far-field regimes are constructed in an essen-
tially gauge-free manner, and only the solutions of linearized field equations with
‘trivial’ forcing terms (which are essentially supported entirely in either the far-field
or near-field regime) involve (rather arbitrary) gauge choices which can be chosen
at each step of the construction individually. The main point is that one can solve
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the sourced linearized field equations Dg(Ein+Λ)h = f (under a genericity assump-
tion on g) whenever f is divergence-free; and this condition on f arises naturally
from the second Bianchi identity in the iterative construction (where f is equal to
(Ein + Λ)(g + [correction terms])) of gε.
• The construction in Taylor series in the near-field regime requires a modulation of

the Kerr black hole parameters to compensate for the failure of solvability for the
linearized Einstein vacuum equations around the Kerr solution with (divergence-
free) sources when restricting to spaces of stationary tensors.

See §1.2 for further details.

From a mathematical perspective, we have two main goals in the present paper:

(1) contribute to the theory of many-black-hole spacetimes;
(2) study gluing problems for the Einstein equations.

Regarding (1), we recall that the only known explicit solutions of Einstein’s field equa-
tions describing several black holes are the asymptotically flat Majumdar–Papapetrou
[Maj47, Pap45] solutions of the Einstein–Maxwell equations and the related Kastor–Tra-
schen solutions [KT93] with positive cosmological constant. In previous work [Hin21a],
the author constructed de Sitter spacetimes in which exact Kerr–de Sitter black holes
are glued into neighborhoods of points at the future conformal boundary. Furthermore,
Chruściel–Mazzeo [CM03] showed that certain classes of asymptotically flat many-black-
hole initial data (constructed in [CD03]) evolve into spacetimes with the property that for
many asymptotically hyperboloidal slicings of the spacetime (up to some finite retarded
time) the apparent horizon has several connected components.

More is known regarding initial data. Recall here that the initial data of a Lorentzian
metric g on a (3 + 1)-dimensional spacetime (M, g) at a spacelike hypersurface X are the
first and second fundamental form of X, respectively; we denote them

γ, k ∈ C∞(X;S2T ∗X).

When (M, g) solves the Einstein vacuum equations (1.1), the pair (γ, k) is a solution of the
constraint equations

Rγ − |k|2γ + (trγ k)2 − 2Λ = 0, δγk + d trγ k = 0, (1.8)

where Rγ is the scalar curvature of γ, and (δγk)µ = −kµν;
ν is the (negative) divergence

operator. Conversely, every solution of the constraint equations gives rise to a unique (up to
isometries) maximal globally hyperbolic spacetime attaining γ, k as its initial data [CB52,
CBG69, Rin09]. Brill and Lindquist [BL63, Lin63] as well as Misner [Mis63] constructed
explicit (and rigid) time-symmetric solutions of (1.8) (i.e. k = 0) describing multiple black
holes in the sense that the initial data contain multiple minimal 2-spheres. Corvino [Cor00]
introduced a flexible gluing method, based on the underdetermined elliptic nature of (the
linearization of) the constraint equations. This has found many applications [CD03, CS16,
ACP23]; see also the review article [Car21].

The paper [Hin24], which also uses Corvino’s technique [Cor00], constructs initial data by
gluing in any asymptotically flat data set (satisfying (1.8) with Λ = 0 on the complement of
a compact subset of R3, and with γ tending to the Euclidean metric and k to 0 at infinity)
into the neighborhood of a point in a given data set, much like Theorem 1.1 but in the
elliptic setting of (1.8) instead of in the hyperbolic setting of (1.1). Our remarks following
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Theorem 1.1 above imply that the evolution of the glued initial data (γε, kε) constructed in

[Hin24] cannot be adiabatic unless one glues in Kerr initial data; and even if the data (γ̂, k̂)
in [Hin24, Theorem 1.1] are those of a subextremal Kerr black hole, the requirement in the
present paper that the spacetime metric be adiabatic to all orders in ε imposes requirements
on (γε, kε) at all orders.9 Conversely, the initial data of gε at X ∩Mε describe a Kerr initial
data set glued into the initial data of (M, g) at X. In this sense, Theorem 1.1 reproves the
formal result [Hin24, Proposition 5.4] in the special case of Kerr data.10

Initial data gluing has recently been developed for the characteristic initial value problem
of (1.1), with initial data given on null hypersurfaces [ACR21, CR22, CC22]. Recent
works by Kehle–Unger [KU22, KU23] demonstrate the effectiveness of characteristic gluing
techniques for gluing event horizons of different spacetimes (Minkowski and black hole
spacetimes).

Concerning point (2) above, the present paper appears to be the first work on spacetime
gluing for the Einstein vacuum equations which is not chiefly based on some version of
initial data gluing (i.e. gluing for the constraint equations).11 We mention however Yang’s
work [Yan14] (building on Stuart’s earlier [Stu04]) on the construction of (true, not merely
formal) solutions in a toy model describing the motion of a very small amplitude and ε-
rescaled stable nonlinear Klein–Gordon soliton which is glued along a timelike geodesic in
a given spacetime (M, g) as a solution of the Einstein–scalar field system, with the scalar
field potential scaled in a way that matches the scaling of the amplitude of the soliton; in
[Yan14], the singularly perturbed spacetime metric is C1-close to g, even near the geodesic.

The literature on gluing or singular perturbation methods for other hyperbolic evolution
equations has largely been concerned with semilinear PDE. Results include the existence
of multi-soliton solutions for the nonlinear Schrödinger equation [Mer90, MM06] and for
generalized Korteweg–de Vries equations [Mar05]; the proofs evolve approximate solutions
backwards in time and use compactness arguments relying on uniform estimates to extract
the desired solutions. This strategy was extended to multi-soliton constructions involv-
ing exponentially unstable solitons in [CMM11, MM16, Jen16, JM20]. Further gluing,
multi-soliton, or multi-bubble results include [DdMW20, DdMW22] for the Euler equa-
tions, [CM14, BGC14, CM18] for the nonlinear Klein–Gordon equation, and [MRT15] for
the water waves system.

9This is the reason why the conjecture in [Hin24, §1.4]—which is our motivation for Theorem 1.1 and
Conjecture 1.4—required the family (γε, kε) to be a ‘suitable family’.

10However, our proof of Theorem 1.1 relies on some of the results proved in [Hin24], specifically the
solvability theory for the linearized constraints on X with control on supports, see Proposition 8.8 and
[CD03]. Part (5) of Theorem 1.1 relies on the nonlinear analysis in [Hin24]. We further remark that the
present construction directly produces log-smooth total families; this was not the case with the construction
in [Hin24], although the latter can be modified to give log-smooth total families, as demonstrated in [Hin23d].

11The key step in the construction of [Hin21a] is the solution of a linear divergence equation (relative to
a Riemannian metric) related to the constraint equations on the conformal boundary of a de Sitter type
spacetime [Fri86]. The only point where the construction in [Hin21a] involves a hyperbolic PDE is the
solution of a (quasilinear) gauge-fixed Einstein equation in a final step; this step is straightforward however,
since the error term solved away there is supported away from the Kerr–de Sitter black holes which are
glued in, and thus the solution of the PDE has support only in an asymptotically de Sitter type region, far
from the glued-in black holes.
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1.2. Elements of the proof. As in [Hin24] and related works on gluing problems in the
elliptic category such as [SS21, KS22], we adopt a geometric singular analysis perspective
and phrase Theorem 1.1 as a singular perturbation problem. We construct the family
of metrics g̃ := (gε)ε∈(0,1) as a single smooth section of the bundle of vertical symmetric
2-tensors on (0, 1)ε ×M (i.e. they annihilate ∂ε) which is log-smooth on an appropriate

(partial) compactification M̃ of (0, 1)ε ×M .

In this introduction, we shall largely work in Fermi normal coordinates t ∈ I, x ∈ R3

near C; this is sufficient to describe all aspects of the analysis except for the very far field
behavior of gε. We denote by

x̂ =
x

ε
(1.9)

the rescaled (‘fast’) spatial coordinates near the small Kerr black hole. Then M̃ should
contain the ‘far field’ [0, 1)ε× (M \C) (containing the chart [0, 1)ε× It× (R3

x \{0})) and the
‘near field’ [0, 1)ε×It×R3

x̂ as smooth submanifolds. We may glue these two charts together
over ε > 0, x 6= 0; but their respective boundary hypersurfaces at ε = 0 are disjoint, and
there are curves which remain bounded in M and along which ε→ 0 but which do not have

a limit.12 To remedy this failure of compactness, we include in M̃ also a coordinate chart

It × [0, 1)ρ◦ × [0, 1)ρ̂ × S2, (1.10)

glued together with the previous two charts via

t, ρ◦ =
ε

|x|
=

1

|x̂|
, ρ̂ = |x| = ε|x̂|, ω =

x

|x|
, (1.11)

on the common domains of definition. Invariantly, M̃ is the blow-up of M̃ ′ := [0, 1)ε×M at

{0}×C, denoted M̃ = [M̃ ′; {0}×C]; see [Mel96]. Thus, M̃ has two boundary hypersurfaces:

(1) the front face M̂ = It × R3
x̂, where R3

x̂ = R3 t S2 is the radial compactification of
R3
x̂ in which S2 = {|x̂|−1 = 0} is attached as the sphere at infinity;

(2) the lift of the original spacetime M◦ = It× [0,∞)ρ̂× S2
ω, which is obtained from M

by replacing the curve C with its spherical normal bundle (which can be thought of
as an infinitesimal tube It×{0}×S2

ω around C). There is a smooth blow-down map

β◦ : M◦ →M, β◦(t, ρ̂, ω) 7→ (t, ρ̂ω) ∈M,

which over ρ̂ > 0 is a diffeomorphism {ρ̂ > 0} → M \ C; the preimage of C is a
bundle of 2-spheres over C.

The front face M̂ is the total space of a fibration M̂ → C ∼= It. Its fibers M̂t, t ∈ I, are
copies of R3; these should be thought of as compactifications of the quotients of a local
stationary spacetime manifold (namely, TpM ∼= R4 at p ∈ C) by the time translation action

(which is the translation action by TpC ∼= R×{0}). Thus, M̂ accurately captures adiabatic
behavior. See Figure 1.2.

One may hope to insert solutions of a PDE on R3
x̂ (e.g. the Kerr metric restricted to

t̂ = 0) into the fibers of M̂ which at |x̂| = ∞ in the fiber over p ∈ C match with a given
solution on M at p (e.g. the metric g, which at p is the Minkowski metric in Fermi normal
coordinates), and to subsequently correct the resulting ‘zeroth order gluing’ by higher order

12A simple example is (ε, t, x) = (ε, t0, ε
1/2) where ε ∈ (0, 1) while t0 ∈ I is fixed. In terms of (1.9), this

is (ε, t, x̂) = (ε, t0, ε
−1/2).



12 PETER HINTZ

x̂

ε

M̂
t

x

ε

M◦ M◦

M̃

Figure 1.2. Illustration of the total space M̃ . Shown are: the portion of
the near field [0, 1)ε× It×R3

x̂ where |x̂| ≤ 1, the boundary hypersurface M̂ ,

and three fibers of M̂ (in red); a portion of the far field [0, 1)ε×It×(R3
x\{0})

where |x| ≥ 1, and the boundary hypersurface M◦ (in blue); and some local
coordinates.

(i.e. vanishing at M◦ and M̂) corrections. Carefully note now that M̃ does not contain an
intermediate (or buffer) region; thus, to find such corrections, one must solve away error

terms at M◦, resp. M̂ with full asymptotic control at the other boundary hypersurface, i.e.
at the boundary ∂M◦ = M◦ ∩ M̂ = ∂M̂ , with the error terms, and thus also the solutions,
typically featuring singular behavior (e.g. terms involving ρ̂k(log ρ̂)m) at the boundary.

We first illustrate how to carry out such a procedure in a linear toy model in §1.2.1 before
turning to the setting of Theorem 1.1 in §§1.2.2–1.2.4.

1.2.1. A model hyperbolic singular perturbation problem. We work on the Minkowski space-
time (M, g) = (R×R3,−dt2 + dx2). Denote by u = u(t, x) a smooth solution of the linear
scalar wave equation

�gu = (−D2
t + ∆x)u =

(
∂2
t −

3∑
j=1

∂2
j

)
u = 0, D =

1

i
∂.

We define a singular perturbation of �g by13

Pε := �g + ε−2V
(x
ε

)
, 0 ≤ V ∈ C∞c (R3

x̂), ε ∈ (0, 1).

We wish to perturb u to a formal solution uε of the equation Pεuε = 0; that is, we want to

find a log-smooth function ũ on M̃ = [[0, 1) ×M ; {0} × C], where C = Rt × {0} ⊂ M , so
that

ũ|M◦ = β∗◦u (i.e. ũ|(ε,t,x)=(0,t,x) = u(t, x), x 6= 0), |Pũ| ≤ CN εN ∀N, (1.12a)

where ũ, resp. Pũ is defined on an ε-level set by uε, resp. Pεuε.

13The assumptions on V here are made for the sake of maximal simplicity. One can treat potentials
with smooth dependence on t with only notational modifications, and similarly also potentials with inverse
cubic (or faster) decay. Many potentials with inverse quadratic decay can be handled as well with more
substantial modifications, including altered exponents in polyhomogeneous expansions.
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The first task is to determine the local limit of ũ at M̂ to be glued in. This task
is trivial in the black hole gluing problem, where we wish to glue in the known Kerr
metric; by contrast, in the current linear model problem, we artificially perturbed the
partial differential operator from �g to Pε, and thus must find the stationary solution of

the local model PDE on the fiber M̂t of M̂ over (t, 0) ∈ C which matches u(t, 0) (i.e. a
constant for each fixed value of t) at |x̂| =∞. In the coordinates t and x̂ = x

ε , we have

ε2Pε = (ε∂t)
2 +

(
∆x̂ + V (x̂)

)
,

which acts on smooth functions of ε, t, x̂ (i.e. they only depend on the slow time t) as

P̂ (0) := ∆x̂ + V (x̂) at ε = 0. We then use:14

Lemma 1.6 (Stationary solution). There exists a unique solution û(0) ∈ C∞(R3
x̂) of

P̂ (0)û(0) = (∆ + V )û(0) = 0, û(0) → 1 as |x̂| → ∞.

Moreover, û(0) ∈ C∞(R3
x̂), i.e. in |x̂| > 0, û(0) is a smooth function of |x̂|−1 and x̂

|x̂| .

We now supplement the requirements (1.12a) by

ũ|M̂t
= u(t, 0)û(0) (i.e. ũ|(ε,t,x̂)=(0,t,x̂) = u(t, 0)û(0)(x̂), t ∈ R, x̂ ∈ R3). (1.12b)

The requirements on ũ at M◦ and M̂ in (1.12a) and (1.12b) are consistent at the corner

M◦ ∩ M̂ .

Remark 1.7 (P in terms of fast variables). If we fix t0 ∈ R and set t̂ = t−t0
ε , then

ε2Pε = −D2
t̂

+ ∆x̂ + V (x̂)

is a wave operator; P̂ (0) is its spectral family at frequency 0.

Remark 1.8 (Other toy models). A related singular perturbation problem which one can
study using the procedure described below is �gεuε = 0 where gε = (gε)µν dzµ dzν , z =

(t, x), is a singular perturbation of the Minkowski metric g in that (gε)µν ∈ C∞(M̃) restricts

to gµν at M◦ and to ĝµν at M̂ where ĝ is a stationary and asymptotically (as |x̂| → ∞)

Minkowski metric for which ∂t̂ and dt̂ are timelike (one may also allow ĝ to depend smoothly
on the parameter t). One demands that ũ = (uε)ε∈(0,1) restricts to u at M◦ and to the

constant u(t, 0) at M̂t. One can also study singular perturbations in nonlinear settings,
such as �gεuε = u2

ε when one is given u satisfying �gu = u2. We leave the details to the
interested reader.

14A clean proof uses b-analytic techniques: the operator ∆ + V : H2,α
b → H0,α+2

b , for α ∈ (− 3
2
,− 1

2
), is

a compact perturbation of the invertible operator ∆: H2,α
b → H0,α+2

b , where Hk,β
b consists of all functions

on R3 which lie in 〈x〉−βL2(R3) upon application of up to k of the vector fields ∂j , x
j∂`. Since V ≥ 0, the

nullspace of ∆ + V is trivial. Thus, û(0) = 1− (∆ + V )−1V , and the stated regularity then follows in view
of ∆û(0) = −V û(0) from elementary properties of ∆. Alternatively, one can write û(0) = 1 + v and find

v solving (I + ∆−1V )v = −∆−1V where ∆−1 = 1
4π|·|∗; the operator I + ∆−1V is compact on 〈x〉βL2 for

β > 1
2
, and thus the Fredholm alternative applies and implies its invertibility when in addition β < 3

2
.
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Step 1. Naive gluing. Let ũ0 ∈ C∞(M̃) be any function which is equal to β∗◦u at

M◦ and equal to u(t, 0)û(0)(x̂) on M̂ .15 Since the restrictions of ũ0 to both boundary

hypersurfaces ε−1(0) = M̂ ∪M◦ of M̃ satisfy the desired PDE, the error term

Err0 := Pũ0

vanishes to leading order at M̂ ∪M◦. More precisely, let

ρ̂ = (ε2 + |x|2)1/2, ρ◦ =
ε

(ε2 + |x|2)1/2

denote defining functions of M̂ and M◦: they vanish only at M̂ , resp. M◦, with nonvanishing
differentials there. Then:

Lemma 1.9 (Mapping properties). Let k, ` ∈ R. Then P : ρk◦ ρ̂
`C∞(M̃) → ρk◦ ρ̂

`−2C∞(M̃).

Furthermore, if ũ ∈ ρk◦C∞(M̃), then (ε2Pũ)|M̂ = P̂ (0)(ũ|M̂ ); and if ũ ∈ ρ̂`C∞(M̃), then
(Pũ)|M◦ = �g(ũ|M◦).

Proof. Near the manifold interior (M◦)
◦, and indeed where |x| > δ > 0 and thus weights

in ρ̂ can be dropped while ρ◦ can be replaced by ε, this follows from the smoothness of the
coefficients of the operator P—which in such a region equals �g when ε is sufficiently small.

Near M̂◦, and indeed where |x̂| < R < ∞ and thus weights in ρ◦ can be dropped while ρ̂
can be replaced by ε, this follows from P = ∂2

t + ε−2(∆x̂ + V (x̂)). We leave the calculation
near the corner in the coordinates (1.11) to the reader. �

By the choice of ũ0, the error Err0 ∈ ρ̂−2C∞(M̃) has an extra order of decay at both M̂
and M◦, so

Err0 ∈ ρ◦ρ̂−1C∞(M̃). (1.13)

If ∂xu(t, 0) = 0, then we can choose ũ0 so that Err0 has an extra order of decay at M̂ , so

Err0 ∈ ρ◦C∞(M̃); (1.14)

indeed, this holds for ũ(0)(ε, t, x) = u(t, x)û(0)(x/ε) by direct computation. The plan is to

add correction terms to ũ0 to improve the error term; we do this in turns at M◦ and M̂ . In
what follows, we shall assume that the error satisfies (1.14), as an analogue of this will hold
in the black hole gluing setting. If, in the present toy model discussion, we instead only
have (1.13), one merely needs to interchange Steps 2 and 3 below (and adjust the overall
powers of ε there).

Step 2. Solving away the error at M◦. Given (1.14), we want to find h = h(t, x) so
that16

P (ũ0 + εh) = Err0 + εP (h) ∈ ρ2
◦C∞(M̃)

vanishes to one order more at M◦ than Err0. By Lemma 1.9, this is equivalent to

�gh = f0 := −(ε−1Err0)|M◦ ∈ ρ̂−1C∞(M◦) = r−1C∞(Rt×[0,∞)r×S2), r = |x|. (1.15)

15In the coordinates (1.11), we can for example take ũ0(t, ρ◦, ρ̂, ω) = u(t, ρ̂ω)+u(t, 0)û(0)(ρ
−1
◦ ω)−u(t, 0);

another possibility is to set ũ0(ε, t, x) = u(t, x)û(0)(x/ε). We stress again that this is a sharp gluing of
û(0) = û(0)(x̂) and u = u(t, x) in that there is no transition region, and we do not use any cutoffs like

χ(|x|/
√
ε) for transitioning between the near- and far-field regimes.

16One may want to cut h off to a neighborhood of M◦ in M̃ in order to emphasize that εh is a correction
term at M◦. We do not do this in this sketch for notational brevity.
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This can be viewed as a wave equation on (M, g) with a source term that is singular at
C (albeit in a highly structured, polyhomogeneous conormal sense). We claim that there
exists a solution h ∈ ρ̂C∞(M◦) (ignoring the possible necessity of logarithmic terms for
simplicity of presentation). Indeed, one can find h in a two-step procedure.

(1) First, one solves �gh] = (∂2
t − ∂2

r − 2
r∂r + r−2∆S2)h] = f0 in Taylor series at r = 0;

this is accomplished by making the ansatz h](t, r, ω) ∼
∑

j≥1 r
jh],j(t, ω) (ignoring

the possibility that (log r)k factors may be needed) and solving iteratively for h],1,
h],2, . . ..

(2) Second, one finds a correction term h[ satisfying �gh[ = f0−�gh]; the source term
here is smooth on M◦, but now vanishes to infinite order at x = 0 and can thus be
regarded as a smooth function on M . One can find h[ by solving an initial value
problem on (M, g) with arbitrarily chosen (smooth) initial data at t = 0, say.

Thus h = h] + β∗◦h[ solves (1.15), and we set ũ1 := ũ0 + εh. The additional term here

satisfies εh ∈ ρ◦ρ̂2C∞(M̃).

Remark 1.10 (Solving for h], I: iterative procedure). The equation for h] in the first step can
be rewritten as (−(r∂r)

2−r∂r+∆S2)h] = r2f0−r2∂2
t h]. Due to the smoothness requirement

in the ‘slow’ variable t, this is an equation which at each step in the construction of the
Taylor series of h] depends only parametrically on t. Moreover, the operator on the left

acts on rλv(ω) as rλ times

N(r2�̂g(0), λ)v, N(r2�̂g(0), λ) := −λ2 − λ+ ∆S2 .

Here, N(r2�̂g(0), λ) is the indicial family of the zero energy operator �̂g(0) of�g. See §2.1.1
regarding the structural reasons for this behavior. For example, the equation for h],1 reads
(−2+∆S2)h],1(t, ω) = (rf0)|(t,r,ω)=(t,0,ω), which is solvable if the right hand side is orthogonal
to l = 1 spherical harmonics (otherwise log r factors are needed in h]); the computation of
h],j , j ≥ 2, involves t-derivatives of f0 and h],k for k ≤ j − 1.

Remark 1.11 (Solving for h], II: non-characteristic nature of C). The construction of h]
is a special case of solving (pseudo)differential equations Pu = f mod C∞ where f is a
(polyhomogeneous) conormal symbol at a submanifold C, with P non-characteristic at
N∗C. Cf. [Hör07, Theorem 18.2.12] for the principal symbol statement: this prompts
one to invert the restriction of the symbol of �g, given by (t, x, τ, ξ) 7→ −τ2 + |ξ|2, to
N∗C \ o = {(t, x, τ, ξ) : x = 0, τ = 0, ξ 6= 0}. The procedure in Remark 1.10 is a ‘physical
space’ version of this.

Remark 1.12 (Issues with initial value problems: I). If one were to solve (1.15) immediately
via an initial value problem, with initial data at t = 0, say, the solution h would typically be
singular along the future and past light cones emanating from the point {t = 0} ∩ {r = 0}
of intersection of the Cauchy surface and the curve C. As a concrete example, the solution
of �gh = r−1, which is of the form (1.15), with initial data (h, ∂th)|t=0 = (0, 0), is

h(t, r) =

{
t− r/2, r < t,

t2/(2r), r > t.

This fails to be C2 at r = t. By contrast, we have �g(− r
2) = r−1, and so h = − r

2 is the type
of ‘good’ solution produced by the above two-step procedure; in other words, obtaining the
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‘good’ solution from an initial value problem would require fine-tuning the initial conditions
to match those of h] modulo β∗◦C∞(M).

Step 3. Solving away the error at M̂ . By construction, the approximate solution

ũ1 ∈ C∞(M̃) has error

Err1 = P (ũ1) ∈ ρ2
◦C∞(M̃).

We now solve away the restriction of Err1 to M̂ ,

f1 := −Err1|M̂ ∈ ρ
2
◦C∞(M̂) = C∞

(
Rt; ρ2

◦C∞(R3
x̂)
)
, ρ◦ = 〈x̂〉−1.

That is, we wish to find h = h(t, x̂) so that17 P (ũ1 + ε2h) = Err1 + ε2P (h) vanishes to one

order more at M̂ than Err0. By Lemma 1.9, this requires solving

P̂ (0)h(t, x̂) = f1(t, x̂) (1.16)

parametrically in t. This is not a wave equation in the fast variables (cf. Remark 1.7); rather,

the fact that only the zero energy operator P̂ (0) appears here is due to our requirement
that the solution ũ we seek be adiabatic. One can solve (1.16) in a two-step procedure.

(1) First, one solves for h(t, x̂) in Taylor series at |x̂|−1 = 0 (in inverse polar coordi-
nates |x̂|−1, ω). This involves the same indicial family as the one mentioned in
Remark 1.10.

(2) Second, one applies P̂ (0)−1 = (∆ + V )−1 to the remaining rapidly decaying error
term. This produces a correction with a full asymptotic expansion as |x̂| → ∞ (here
concretely a smooth function of |x̂|−1 and ω which vanishes at |x̂|−1 = 0).

Ignoring the possibility of logarithmic terms, we obtain a solution h ∈ C∞(Rt; C∞(R3
x̂))

of (1.16). This gives

ũ1 := ũ1 + ε2h, Err1 := P (ũ1) ∈ ρ2
◦ρ̂C∞(M̃).

Remark 1.13 (Issues with initial value problems: II). Consider equation (1.16) for t near
0 ∈ R in the coordinates t̂ = t

ε . Clearly, we cannot solve this from the perspective of an
initial value problem, as h is (up to addition of t-dependent multiples of û(0)) uniquely

determined if we restrict its growth as |x̂| → ∞ to be sublinear (so that ε2h does not affect
the earlier correction term at M◦). If one were to attempt to solve the problem (1.12a)–
(1.12b) via an initial value problem, with trivial initial data at t = 0, say, as in Remark 1.12,
then an adiabatic solution h would not exist. Instead, the equation to be solved in the region
|t̂| . 1 would have to be the wave equation

(−D2
t̂

+ ∆x̂ + V (x̂))h(t̂, x̂) = f1(0, x̂), (h, ∂t̂h)|t̂=0 = (0, 0), (1.17)

the solution of which is not stationary (unless the initial data were chosen so as to be
consistent with (1.16)). The solution of (1.17) typically has a nontrivial radiation field at
null infinity in Rt̂ × R3

x̂, causing oscillations on the scale t̂ − |x̂| ∼ 1, i.e. t − |x| ∼ ε, and
hence a singularity to emerge out of C along the light cone emanating from (t, x) = (0, 0).

Step 4. Iteration; formal solution. One continues solving away error terms in turns
at M◦ and M̂ , obtaining correction terms which vanish to successively higher orders at
{ε = 0} = M◦ ∪ M̂ . Note that after one full step, the decay of the error is improved

17As before, we do not explicitly cut off h to a neighborhood of M̂ , for notational brevity.
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at both boundary hypersurfaces M◦ and M̂ by one order; thus, the linear equations one
needs to solve in this iteration are always the same (i.e. as in Steps 2 and 3 above) as
far as the growth/decay of the right hand sides are concerned (modulo the possibility of
logarithmic factors). Taking an asymptotic sum of ũ0 and these correction terms produces

the desired formal solution ũ ∈ C∞(M̃) (which is, really, only log-smooth) of the singular
perturbation problem (1.12a)–(1.12b). (Mirroring Conjecture 1.4, obtaining a true solution

requires solving P ṽ = −Pũ ∈ Ċ∞(M̃) = ε∞C∞(M̃) with ṽ ∈ Ċ∞(M̃); accomplishing this
requires different arguments which will be discussed elsewhere.)

1.2.2. Basic setup for black hole gluing. We now turn to the setting of the black hole gluing
problem solved formally by Theorem 1.1. Working in the chart (1.10) near the codimension

2 corner of M̃ , we seek g̃ = (gε)ε∈(0,1) in the form

g̃ = g̃(t, ρ◦, ρ̂, ω)µν dzµ dzν , z = (t, x).

This matches the Gralla–Wald setup [GW08], with the minor caveat that we need to allow

for the presence of (powers of) logarithms (i.e. log ρ◦ and log ρ̂) at M◦ and M̂ in the lower
order terms of the expansion of g̃. At ρ◦ = 0, we demand that g̃ be equal to gµν dzµ dzν

at the point (t, x) = (t, ρ̂ω). As ρ̂→ 0, this converges to the Minkowski metric, which thus
becomes the boundary condition at infinity of the restriction of g̃ to ρ̂ = 0. This indeed
holds for the Kerr metric g̃|ρ̂=0 = (ĝm,a)µν(ρ−1

◦ ω) dzµ dzν .

We face additional difficulties compared to the toy model considered in §1.2.1.

(1) The equation Ric(g̃) − Λg̃ = 0 which we wish to formally solve is nonlinear. A
partial relief is the fact that the correction terms which we need to add to a naive
gluing g̃0 are solutions of linear equations, concretely of

(DgRic− Λ)h = f (on M◦), (1.18)

D̂ĝbRic(0)h = f (on M̂), (1.19)

where DgRic is the linearization of the Ricci curvature operator, further ĝb (with

b = (m, a)) is the metric of the small Kerr black hole, and D̂ĝbRic(0) is the restriction
of DĝbRic to stationary symmetric 2-tensors on Rt̂ × R3

x̂. Nonetheless, there are
nonlinear interactions between various Taylor coefficients in the construction of the
formal solution whose treatment requires some care.

(2) The linear equation (1.18) is not hyperbolic and (1.19) is not elliptic, and neither
equation is solvable for general f . However, the error terms f which arise in the
construction are always leading order terms of the error Ric(g̃j)−Λg̃j from a previous
step of the construction, and thus in view of the second Bianchi identity lie in the
kernel of δg̃jGg̃j (where Gg := I − 1

2g trg is the trace reversal operator), so at M◦,

resp. M̂ in the kernel of δgGg, resp. δĝbGĝb . This extra information on f is sufficient
in the settings considered in Theorem 1.1 for the solvability of (1.18); however,
equation (1.19) has a nontrivial cokernel even within the kernel of δĝbGĝb .

(3) The linear operator DgRic − Λ is everywhere characteristic, so even just solving
error terms away in Taylor series at ∂M◦ is a nontrivial task.

The solvability issues arising from the lack of hyperbolicity of (1.18) can be avoided if
one passes to a gauge-fixed version of the Einstein vacuum equations. But since we seek a
formal solution of the Einstein vacuum equations themselves, one would need to ensure that
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the solutions of the corresponding gauge-fixed version of (1.18) satisfy the linearized gauge
conditions—which is equivalent to arranging the validity of gauge conditions at a Cauchy
hypersurface (by the usual argument involving the linearized second Bianchi identity).
However, we already observed in Remark 1.12 the inadequacy of initial value formulations
for the purpose of adiabatic gluing. This forces us to free ourselves from any particular
choice of gauge, even though we are still allowed to use gauge conditions at various substeps
of the construction as long as they are consistent with an adiabatic construction; this will
for example allow us to tackle point (3) above (see §1.2.3). A similar comment applies to

the problem of solving away error terms at M̂ , cf. Remark 1.13.

The starting point of the construction is a naive gluing g̃0 = (g̃0)µν dzµ dzν where (g̃0)µν ∈
C∞(M̃), with boundary values

(g̃0)µν |(ε,t,x)=(0,t,x) = gµν |(t,x), (1.20a)

(g̃0)µν |(ε,t,x̂)=(0,t,x̂) = (ĝb)µ̂ν̂ |x̂. (1.20b)

Since g and ĝb solve the field equations, the tensor g̃0 satisfies the field equations to leading
order at M◦ and M̂ , which means18 19

Err0 := Ric(g̃0)− Λg̃0 ∈ ρ◦C∞(M̃). (1.21)

1.2.3. Far field: linearized Einstein equations with sources. We wish to add to g̃0 a tensor
εh to solve away the error (1.21) to leading order at M◦. This leads to the linear equation

(DgRic− Λ)h = f0 := −(ε−1Err0)|M◦ ∈ ρ̂−1C∞(M◦). (1.22)

Solvability of this equation requires f0 to solve the linearized equations of motion, i.e.
δgGgf0 = 0. Crucially, they hold automatically due to the second Bianchi identity for g̃0,
which reads δg̃0

Gg̃0
Err0 = 0.

The solvability of equation (1.22) is discussed in §8. In brief, we first find h] which
solves (1.22) formally at r = 0. Since DgRic−Λ is characteristic at N∗C (cf. Remark 1.11),
this is a non-trivial task. We accomplish it as follows: as in Remark 1.10, one first needs
to solve

N
(
r2D̂

¯
gRic(0), λ

)
h],1

(
= r−λ+2D

¯
gRic

(
rλh],1(ω)

))
= f0,−1 (1.23)

with smooth parametric dependence on t ∈ R; here
¯
g = −dt2+dx2 is the Minkowski metric,

which g is equal to at C, and f0,−1 is the r−1 coefficient of f0, while h],1 is the sought-after
r1 coefficient of h]. The integrability condition δgGgf0 = 0 implies the analogous condition

N(rδ̂
¯
gG

¯
g(0),−1)f0,−1 = 0. The solvability (and uniqueness) theory of (1.23), which is an

equation on spacetime symmetric 2-tensors on Minkowski space restricted to (0,∞)r times
a coordinate 2-sphere which are quasi-homogeneous in r, is studied in detail in §7, the main
results being Theorem 7.12 and 7.13. The upshot is that a formal solution of (1.22) exists,
with precise control also on the logarithmic factors (log r)k appearing in its generalized
Taylor expansion at r = 0.

18That is, the coefficients in the coordinates z = (t, x) on M lie in ρ◦C∞(M̃). We remind the reader that
Ric(g̃0) is defined on an ε-level set as the Ricci curvature of the restriction of g̃0 to this level set; likewise

for other geometric quantities and operators on M̃ .
19For general Lorentzian metrics g̃0 ∈ C∞(M̃), one only has Err0 ∈ ρ̂−2C∞(M̃). The gain of two orders

at M̂ in (1.21) holds for a careful choice of g̃0, and is due to the quadratic nature of the difference of g and
the Minkowski metric in Fermi normal coordinates.
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The second step is to solve away the remaining error by solving

(DgRic− Λ)h[ = f0 − (DgRic− Λ)h].

The right hand side now vanishes to infinite order at C and thus is smooth on M ; moreover,
it still lies in the kernel of δgGg. However, this by itself does not suffice for the existence of
a solution h[ with controlled support unless (M, g) does not admit nontrivial Killing vector
fields; see [Hin23b].20 For the proof, one first solves the linearized constraint equations at
X using results going back to [CD03]; this uses the assumptions on U◦ in Theorem 1.1,
which ensure that the initial data for h[ can be chosen to have support contained in U◦.
(In the setting of Theorem 1.2, we give up control of the initial data for h[—and indeed
allow for arbitrary growth at infinity in X of the initial data—in return for the ability to
unconditionally solve the linearized constraints.) Subsequently, one finds h[ as the solution
of a gauge-fixed version of the linearized Einstein equations; the support property in part (6)
of Theorem 1.1 follows by finite speed of propagation. (Since at this point we work only
with smooth tensors on M , gauge-fixing is consistent with the adiabatic nature of the gluing
problem at C.)

The tensor h = h] + β∗◦h[ solves (1.22), and thus the log-smooth tensor

g̃1 := g̃0 + εh (1.24)

on M̃ satisfies (ignoring21 logarithmic terms)

Err1 := Ric(g̃1)− Λg̃1 ∈ ρ2
◦C∞(M̃).

See §10.1 for details.

1.2.4. Near field: modulation of black hole parameters. Corresponding to Step 3 in §1.2.1,
we seek an adiabatic tensor h = h(t, x̂)µν dzµ dzν so that g̃1+ε2h solves the Einstein vacuum

equations to one order more at M̂ than g̃1; this leads to the equation22

D̂ĝbRic(0)h = f1, (1.25)

where f1 = −Err1|M̂ ∈ ρ
2
◦C∞(M̂). The necessary condition for solvability, δĝbGĝbf

1 = 0,

follows from the second Bianchi identity for g̃1. By first solving (1.25) to infinite order at
|x̂|−1 = 0, one can reduce to the case that f1 has rapid decay as |x̂| → ∞.

For each fixed t ∈ R, we are faced with the equation DĝbRic(h) = f1 where f1 = f1(x̂)—
dropping the t-dependence—, and we seek a stationary solution h = h(x̂). Pure gauge
tensors h = δ∗ĝbω, where ω is an arbitrary 1-form, solve the homogeneous equation; and

when ω is a spatial translation or rotation, such h have good (i.e. O(|x̂|−1) or better) decay

as ρ◦ = 〈x̂〉−1 → 0. Linearized Kerr metrics ĝ′b(ḃ) = d
ds ĝb+sḃ|s=0, ḃ = (ṁ, ȧ) ∈ R × R3,

20The control of supports—specifically, ensuring that correction terms vanish near spacelike infinity—is
mainly of importance when performing gluing constructions on asymptotically flat spacetimes, with combi-
nations with stability results in mind. See Remark 12.2.

21For completeness, we mention that in early stages of the construction one does need to keep careful
track of leading order logarithmic factors, as e.g. in §10.2.4.

22As already noted by D’Eath [D’E75], ‘[W]e have QS [quasistationary] internal perturbations because
gravitational waves only need a time of order M ’ (in present notation: ε) ‘to cross the black hole, whereas
the background is changing on a time scale of order 1. Thus the small black hole can adjust its gravitational
field on what it feels to be a long time scale in order to cope with the tidal field of the background.’
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provide further homogeneous solutions with good decay. There is a 7-dimensional space of
homogeneous solutions comprised of certain such tensors.23

Dually, asymptotic symmetries (temporal and spatial translations, and rotations) give
rise to a 7-dimensional space of dual pure gauge tensors Gĝbδ

∗
ĝb
ω in the kernel of the adjoint

of D̂ĝbRic(0); see §9.1 for details. This gives a 7-dimensional cokernel (i.e. obstruction space

for the solvability) of (1.25),24 given by integration (over the spatial manifold R3
x̂\{|x̂| < m}

of Kerr) against these dual pure gauge tensors.

As is usual in geometric gluing problems, the basic idea is to avoid this cokernel via
a modulation procedure which takes advantage of the flexibility we have in inserting the
small black hole. The particular form which this modulation takes depends on the order of
vanishing of the error term at M̂ . The basic observation is the following: given an adiabatic
tensor h = h(t, x̂) = hµ̂ν̂(t0 + εt̂, x̂) dẑµ dẑν , where ẑ = (t̂, x̂) with t̂ = t−t0

ε and x̂ = x
ε , we

can expand it in Taylor series in ε to obtain (for bounded ẑ)

h0(x̂) + εt̂h1(x̂) + ε2
t̂2

2
h2(x̂) +O(ε3), hj(x̂) := ∂jt h(t0, x̂).

While to leading order at ε = 0 this is stationary, the coefficient of εj , j ≥ 1, is a polynomial
of degree j in t̂. Thus,

DĝbRic(h) = D̂ĝbRic(0)h0 + εDĝbRic(t̂h1) + ε2DĝbRic
( t̂2

2
h2

)
+O(ε3).

Roughly speaking, this means that a correction term εkh to the family of spacetime metrics
produces a correction term to the output of Ric − Λ at order25 ε−2εk+j = εk+j−2 which is

of the form εk+j−2DĝbRic( t̂
j

j!hj). This can move the O(εk+j−2) error term one is trying to

solve away off the cokernel of D̂ĝbRic(0).

Modulation at the first step. In (1.25), we use a variant of this observation. We

revisit the definition of g̃0: instead of gluing the Kerr black hole into M̂ via (1.20b), we
shall set

(g̃0)µν |(ε,t,x̂)=(0,t,x̂) = (ĝb)µ̂ν̂ |x̂+ĉ(t)

for a function ĉ ∈ C∞(R;R3) which we need to determine. Expanding in Taylor series
around t = t0 as above, and assuming that ĉ(t0) = 0 for notational simplicity, this is

ĝb|x̂ + εt̂Lĉ′(t0)·∂x̂ ĝb + ε2
t̂2

2

(
Lĉ′′(t0)·∂x̂ ĝb + L2

ĉ′(t0)·∂x̂ ĝb
)

+O(ε3).

We can add to this a further adiabatic O(ε) term so that the total coefficient of ε1 of the
resulting family g̃ĉ is the Lie derivative of ĝb along the Lorentz boost t̂ĉ′(t0)·∂x̂+(ĉ′(t0)·x̂)∂t̂.
This implies that Err0,ĉ := Ric(g̃ĉ) − Λg̃ĉ is of the same class as Err0 in (1.21). (Also, the
leading order term of Err0,ĉ at M◦ is the same as that of Err0, which means that the

23Rotations are either Killing vector fields, or can be rewritten as changes of the axis of rotation of the
Kerr black hole. Thus, there are 3 translational and 4 black hole parameter degrees of freedom.

24We do not directly phrase this as a Fredholm index 0 statement for D̂ĝbRic(0). But for the proof we do
use that a gauge-fixed version of the linearized Ricci curvature operator, at zero frequency, can be regarded
as a Fredholm index 0 operator between suitable function spaces, as shown in [HHV21, Theorem 4.3].

25The factor of ε−2 arises from switching from the coordinates ẑ back to z = (t, x).



GLUING SMALL BLACK HOLES ALONG TIMELIKE GEODESICS I: FORMAL SOLUTION 21

correction step at M◦ is unaffected by the presence of ĉ.) The new leading order term f1
ĉ ,

defined analogously to (1.25), is sensitive to ĉ(t), and indeed gets changed by26

DĝbRic
( t̂2

2
Lĉ′′(t0)·∂x̂ ĝb

)
. (1.26)

The inner product of this term with the dual pure gauge solutions related to the three
generators of spatial translations can be made to be equal to any desired three values for a
suitable choice of ĉ′′(t0). In this manner, one can eliminate 3 out of 7 obstructions to the
solvability of (1.25) by solving a linear second order ODE for ĉ.27

The remaining 4 obstructions can be eliminated by modulating the black hole parameters
at order ε: if instead of ĝb one uses ĝb+εĝ

′
b(ḃ(t)) = ĝb+εĝ

′
b(ḃ(t0))+ε2t̂ĝ′b(ḃ

′(t0))+O(ε3), with

ḃ(t) = (ṁ(t), ȧ(t)) to be determined, one produces a further correction term, in addition
to (1.26), given by

DĝbRic
(
t̂ĝ′b(ḃ(t0))

)
.

This can be made to integrate against the dual pure gauge solutions related to time trans-
lations, resp. generators of spatial rotations to yield any 4-tuple of numbers if one chooses
ṁ′(t0), resp. ȧ′(t0) suitably. For representation theoretic reasons, at this first correction

step at M̂ only those choices of ḃ are needed which correspond to infinitesimal rotations
of the rotation axis; these are pure gauge solutions (see Lemma 10.10 and Corollary 10.6).
See Theorem 9.6 and Proposition 10.14 for details.

In summary, through adiabatic translations and sub-leading order pure gauge changes
of the black hole parameters we can move the leading order error at M̂ in (1.25) into the

range of D̂ĝbRic(0); see Theorem 9.12. (For the proof of this theorem, we use a gauge-fixing
procedure and apply results from [HHV21, AHW22] on the solvability properties of the zero
energy operator of the gauge-fixed linearized Ricci curvature operator.) Since the Einstein
vacuum equations are diffeomorphism-covariant, one can pull back the resulting family of
metrics g̃1 + ε2h along a suitable diffeomorphism to re-center the center of mass and axis
of rotation of the small Kerr black holes.

Modulation at later steps. At later stages of the construction of g̃ in Theorem 1.1, we
modulate the center of mass and black hole parameters at higher orders in ε. For instance,
if we add to the family g̃k of spacetime metrics after the k-th step, k ≥ 2, a correction term
εk−1Lĉ(t)·∂x̂ ĝb or εkĝ′b(ḃ(t)), we can eliminate the cokernel for the size ε−2εk+1 = εk−1 leading

order term of the error Ric(g̃k) − Λg̃k. For small k, the details are somewhat involved, as
one needs to take into account quadratic and cubic28 nonlinearities of the Einstein vacuum
equations, though only rather elementary structural information about these terms suffices.
This is carried out in §§10.4 and 10.6.

26The argument really involves an additional term which is linear in t̂ and ĉ′′(t0), arising from the
aforementioned further O(ε) correction term. We also omit further terms arising from the O(ε) terms of g̃ĉ
through the quadratic terms in the Einstein equations.

27The fact that quadratic-in-t̂ correction terms are required to eliminate parts of the cokernel is closely
related to the fact that the resolvent family for the linearization of a gauge-fixed version of the Einstein
vacuum equations around Kerr has a second order pole at zero frequency [HHV21].

28For instance, a O(ε1) modulation of the center of mass of the small black hole, required to eliminate

the cokernel when solving away a O(ε−2ε1+2) = O(ε) error term at M̂ , produces also a O(ε−2 · (ε1)3) = O(ε)
term via cubic self-interaction, and further O(ε) terms via quadratic interactions with additional O(ε2)
correction terms.
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We also remark that during early stages of the construction, we keep careful track of
the logarithmic terms at M̂ and M◦ as well as of the algebraic structure of certain terms
in the generalized Taylor expansion of the error terms at M̂ . This is needed to ensure the
equality of g̃ and ĝb modulo O(ε2) errors at M̂ in part (2) of Theorem 1.1, which plays
an important role in the construction as it significantly reduces the number of nonlinear
interaction terms one needs to keep track of.

1.2.5. Formal solution at a Cauchy hypersurface. Part (5) of Theorem 1.1 is proved in §11.
If gε solves Ric(gε)− Λgε = O(ε∞), then also the constraint equations are valid at X ∩Mε

modulo O(ε∞). The first step is to correct the first and second fundamental forms of gε
at X ∩Mε by tensors of size O(ε∞) so that the constraint equations are satisfied exactly.
We accomplish this by adapting a contraction mapping type argument from [Hin24]. In a
second step, we construct the Taylor series of the metric tensor at X ∩Mε by expressing it
in a (3 + 1)-splitting with fixed lapse and shift.

1.3. Outline of the paper.

• We begin in §2 with a review of notions from geometric singular analysis which are
used throughout the paper, in particular blow-ups, b- and scattering structures and
their (reduced) 3-body analogues, as well as polyhomogeneity.

• In §3, we describe in detail the manifold M̃ , already introduced in §1.2.1 above,
on which the gluing construction will take place. The family g̃ of metrics is a

section of a smooth vector bundle on M̃ (with local trivializations induced by lifts
of coordinates z = (t, x) on M) which we study in some detail. In particular, we
explain the sense in which smooth sections of this bundle induce stationary metrics
on the fibers of M̂ over each point of the geodesic C ⊂ M ; and we analyze the
structural properties of differential operators and geometric quantities associated
with such metrics.
• In §4, we recall aspects of initial value problems and gauge-fixing for the Einstein

vacuum equations and their linearizations, as well as the structural properties of

these equations on M̃ .
• In §5, we introduce and state the main result of this paper in full detail; see Theo-

rem 5.4.
• As explained in Remark 1.10 and §1.2.3, the analysis of the linearized field equations

at M◦ and M̂ utilizes the construction of formal solutions at ∂M◦ = M◦∩M̂ = ∂M̂ ,
which requires a detailed analysis of the linearized field equations on Minkowski
space acting on tensors which are quasi-homogeneous with respect to spatial dila-
tions. This is the content of §7, following the computation of the explicit form of
various geometric operators on Minkowski space in §6.
• The linear theory in the far field, or more precisely on M◦, as sketched in §1.2.3, is

developed in §8.
• The linear theory in the near field, or more precisely on M̂ , as sketched in §1.2.4, is

developed in §9; this includes a precise description of the cokernel of the linearization
of the Einstein vacuum equations around Kerr at zero frequency.
• The heart of the paper is the construction of a formal solution of the gluing problem

at ε = 0 in §10; an outline of the detailed construction is given there.
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• The formal solution at the Cauchy surface X ∩Mε, as discussed in §1.2.5, is con-
structed in §11.
• Up to this point, all proofs take place in setting (I) of Theorem 1.1. The minor mod-

ifications required to handle the case of Kerr(–de Sitter) background spacetimes, i.e.
setting (II), and the application to the construction of extreme mass ratio mergers,
is described in §12.

2. Background on geometric singular analysis

An n-dimensional manifold M with corners is diffeomorphic to [0,∞)k × Rn−k in the
neighborhood of a point p ∈ M , where k ∈ {0, . . . , n} depends on p. The boundary
hypersurfaces of M are the closures of the connected components of the set of p ∈ M for
which k = 1; following [Mel96], we require all boundary hypersurfaces to be embedded
submanifolds. If one can take k = 0, 1 for all p ∈M , then M is a manifold with boundary.
A boundary defining function of a boundary hypersurface H ⊂ M is a smooth function
ρ ∈ C∞(M) so that ρ ≥ 0 on M , ρ−1(0) = H, and dρ 6= 0 on H. Any two boundary
defining functions of the same boundary hypersurface are smooth nonzero multiples of each
other. When working in an open subset U ⊂ M , a local boundary defining function of H
is a function ρ ∈ C∞(U) satisfying these conditions on U .

An important example of a manifold with boundary is the radial compactification of Rn,
defined by

Rn :=
(
Rn t

(
[0,∞)ρ × Sn−1

ω

))
/ ∼, Rn \ {0} 3 x = rω ∼ (r−1, ω),

where r = |x| and ω = x
|x| are standard polar coordinates on Rn. A boundary defining

function of the sphere at infinity ∂Rn = ρ−1(0) ∼= Sn−1 is 〈x〉−1 = (1 + |x|2)−1/2; a local
boundary defining function in x 6= 0 is |x|−1. Note that the space C∞(Rn) of smooth
functions on Rn consists of all smooth functions u on Rn which, when expressed in terms of
|x|−1 and x

|x| , are smooth down to |x|−1 = 0; this means that they have Taylor expansions

at infinity,

u ∼
∑
j≥0

|x|−juj
( x
|x|

)
, |x| → ∞, uj ∈ C∞(Sn−1),

meaning that the difference of u and the truncation of the sum to j ≤ J is smooth and
vanishes to order J at |x|−1 = 0.

The procedure of (real) blow-up produces a manifold with corners if one is given a
manifold with corners M and a p-submanifold S ⊂ M : this is a submanifold so that at
each point p ∈ S there exists a coordinate chart [0,∞)k×Rn−k on M so that S is given by
the vanishing of a subset of the collection of local coordinates. Namely, the blow-up of M
along S is

[M ;S] := (M \ S) t SN+S

as a set, where N+S = T+
S M/T+S is the inward pointing normal bundle (with T+

q M ,
for q ∈ M , consisting of all non-strictly inward pointing tangent vectors), and the inward
pointing spherical normal bundle SN+S = (N+S\o)/R+ is the quotient of the complement
of the zero section o ⊂ N+S by the dilation action in the fibers. This can be given a
smooth structure by declaring polar coordinates around S to be smooth down to the polar
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coordinate origin. The blow-down map

β : [M ;S]→M

is defined to be the identity map on M \S and the base projection SN+S → S on the front
face SN+S.

We make this concrete in local coordinates, so S = {x1 = . . . = xj = 0, y1 = . . . = ym =
0} ⊂ M = [0,∞)kx × Rn−ky , where 0 ≤ j ≤ k and 0 ≤ m ≤ n − k. If j = 0 (thus S is not
contained in a boundary hypersurface), then

[M ;S] = [0,∞)kx × Rn−k−m
(ym+1,...,yn−k)

× [0,∞)R × Sm−1
ω ,

R :=

( m∑
i=1

(yi)2

)1/2

, ω :=
(y1, . . . , ym)

R
,

with SN+S = R−1(0). If j ≥ 1, so S is a boundary p-submanifold, we have

[M ;S] = [0,∞)k−j
(xj+1,...,xk)

× Rn−k−m
(ym+1,...,yn−k)

× [0,∞)R × Sj+m−1
j ,

where R = (
∑j

i=1(xi)2 +
∑m

i=1(yi)2)1/2 and

(x1, . . . , xj , y1, . . . , ym)

R
∈ Sj+m−1

j := {(ξ1, . . . , ξj , η1, . . . , ηm) ∈ Sj+m−1, ξ1, . . . , ξj ≥ 0}.

The blow-down map is given by the product of the identity map in the coordinates xj+1,
. . ., xk, ym+1, . . ., yn−k, and the polar coordinate map (R,ω) 7→ Rω in the remaining
variables.

If T ⊂ M is a submanifold, then the lift β∗T of T to [M ;S] is defined to be β−1(T )
when T ∩ S = ∅, and the closure of β−1(T \ S) in [M ;S] otherwise. If S, T ⊂ M are
p-submanifolds so that the lift of T to [M ;S] is again a p-submanifold, one can form the
iterated blow-up [M ;S;T ] := [[M ;S];β∗T ]. In the case that S is a p-submanifold of M
and T ⊂ S is also given by the vanishing of a subset of local coordinates in which already
S is of this form, then this condition is satisfied for S, T and also for T, S; and the two
iterated blow-ups [M ;S;T ] and [M ;T ;S] are naturally diffeomorphic (i.e. the identity map
on M \ S extends to a diffeomorphism of these two manifolds with corners).

As a special case, let M denote a smooth n-dimensional manifold without boundary, and

let C ⊂M be a closed p-submanifold of codimension k. Consider M̃ = [[0, 1)×M ; {0}×C].
Then the front face M̂ ⊂ M̃ is a fiber bundle over C with typical fiber Rk. In fact, there
is a natural diffeomorphism M̂ ∼= NC where NC is the fiber-wise radial compactification of
the normal bundle NC = TCM/TC; indeed, given p ∈ C and a representative V ∈ TpM of
an element of NC, let γ : (−1, 1) → M denote a smooth curve with γ(0) = p, γ′(0) = V ;

then we can map V to limε↘0(ε, γ(ε)) ∈ M̃ . A local coordinate calculation shows that this
extends by continuity to the claimed diffeomorphism. The lift of {0}×M is equal to [M ; C].

2.1. Lie algebras of vector fields. On a manifold with corners M , the space Vb(M)
of b-vector fields [MM83, Mel93, Gri01] consists of all smooth vector fields V ∈ V(M) :=
C∞(M ;TM) which are tangent to all boundary hypersurfaces. In local coordinates [0,∞)kx×
Rn−ky , these are linear combinations, with smooth coefficients, of the vector fields xi∂xi
(i = 1, . . . , k) and ∂yj (j = 1, . . . , n − k). If M is a manifold with boundary, and if
ρ ∈ C∞(M) is a boundary defining function, then Vsc(M) := ρVb(M) = {ρV : V ∈ Vb(M)}
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is the space of scattering vector fields [Mel94]. Both Vb(M) and Vsc(M) are Lie algebras
with respect to the commutator of vector fields, and therefore we have graded algebras

Diffb(M) =
⊕
m∈N0

Diffmb (M), Diffsc(M) =
⊕
m∈N0

Diffmsc(M)

of differential operators which are locally finite sums of up to m-fold compositions of b- and
scattering vector fields, respectively.

From now on we only consider the case that M is a manifold with boundary. In a local
coordinate chart [0,∞)ρ × Rn−1

y , an element P ∈ Diffmb (M) is of the form

P =
∑

j+|α|≤m

ajα(ρ, y)(ρ∂ρ)
j∂αy , ajα ∈ C∞([0,∞)× Rn−1).

Its normal operator at ∂M = ρ−1(0) is given by restricting the coefficients to ρ = 0, giving

N(P ) :=
∑

j+|α|≤m

ajα(0, y)(ρ∂ρ)
j∂αy ∈ Diffmb,I([0,∞)× Rn−1),

where the subscript ‘I’ records the invariance of N(P ) under dilations (ρ, y) 7→ (µρ, y),
µ > 0. The action of N(P ) on functions of the form ρλv(y) is given by the indicial family

N(P, λ) :=
∑

j+|α|≤m

ajα(0, y)λj∂αy ∈ Diffm(Rn−1).

Globally, one can define N(P ) ∈ Diffmb,I([0,∞)× ∂M) if one fixes a collar neighborhood of
M , and then N(P, λ) ∈ Diffm(∂M).

We next recall that Vsc(M) is the space of smooth sections of the scattering tangent bundle
scTM , with local frame ρ2∂ρ, ρ∂yj (j = 1, . . . , n − 1) ; the dual bundle is the scattering

cotangent bundle scT ∗M , with local frame dρ
ρ2 , dyj

ρ (j = 1, . . . , n− 1). When M = Rn, then

a computation in projective coordinates shows that Vsc(Rn) is spanned over C∞(Rn) by the
standard coordinate vector fields ∂x1 , . . . , ∂xn ; thus, these form a global (i.e. down to ∂Rn)
smooth frame of scTRn, and the differentials dx1, . . . ,dxn form a global smooth frame of
scT ∗Rn. The Euclidean metric

∑n
j=1(dxj)2 is thus an example of a smooth positive definite

section of S2 scT ∗Rn (also called a Riemannian scattering metric).

If p ∈ ∂M , then the blow-up [M ; {p}] is a manifold with corners. Following Vasy [Vas00],
we define the Lie algebra V3sc([M ; {p}]) of 3-body-scattering vector fields (or 3sc-vector
fields) as the C∞([M ; {p}])-span of the space of lifts of elements of Vsc(M) to [M ; {p}]. This
generalizes in a straightforward manner to the case that one blows up several distinct points
in ∂M . The case of interest in the present paper will be M = Rn where Rn = Rt × Rn−1

x ,
and we blow up the ‘north’ and ‘south poles’ {N,S} = ∂R×{0} ⊂ ∂Rn; in the case n = 4,
a subset of

[Rn; {N,S}] (2.1)

carries the Kerr metric as a smooth (and stationary) Lorentzian 3sc-metric, i.e. a Lorentzian
signature section of S2 3scT ∗[Rn; {N,S}]. The main point is that the two front faces of

[Rn; {N,S}] are diffeomorphic to Rn−1
x , and thus linear combinations of the second symmet-

ric tensor products of dt,dx1, . . . ,dxn−1 with C∞(Rn−1
x )-coefficients are smooth symmetric

3sc-2-tensors. See Figure 2.1.
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Figure 2.1. Illustration of [Rn; {N,S}] and the blow-down map to Rn,
together with some local coordinates.

We further recall from [Hin23c] the Lie algebra of 3-body/b-vector fields (or 3b-vector
fields): if ρsf is a defining function of the lift of ∂M to [M ; {p}], then this is defined as

V3b([M ; {p}]) := ρ−1
sf V3sc([M ; {p}]).

Associated with these Lie algebras, we have graded algebras of differential operators, which
we denote Diff3sc([M ; {p}]) and Diff3b([M ; {p}]). As an important special case, consider

again [Rt × Rn−1
x ; {N,S}] from (2.1), and let us introduce inverse polar coordinates ρ =

|x|−1, ω = x
|x| ∈ Sn−2 in x 6= 0. Then elements of Diffm3b([Rn; {N,S}]) which are moreover

invariant under translations in t are, in x 6= 0, of the form

P =
∑

j+k+|α|≤m

ajkα(x)(ρ−1∂t)
j(ρ∂ρ)

k∂αω ,

where ajkα ∈ C∞(Rn−1). (The wave operator with respect to the Kerr metric, or indeed
any stationary 3sc-metric, is of this form upon multiplication by r2.) Formally passing to
the Fourier transform in t, i.e. replacing ∂t by −iσ where σ ∈ R, produces the spectral
family

P̂ (σ) =
∑

j+k+|α|≤m

ajkα(x)(−iσρ−1)j(ρ∂ρ)
k∂αω ,

which for σ = 0, resp. σ 6= 0 gives an element of Diffmb (Rn−1), resp. ρ−mDiffmsc(Rn−1).
We refer the reader to [Hin23c, Hin23a] for further information on 3b-operators and their
relationships with scattering or 3-body-scattering geometries.

Lastly, we recall from [Maz91] the Lie algebra of edge vector fields, defined on a manifold
M with boundary whose boundary hypersurface ∂M is the total space of a fibration Z −
∂M → Y ; to wit, Ve(M) consists of all smooth vector fields on M which are tangent to the
fibers of the fibration. (In particular, Ve(M) ⊂ Vb(M).) This situation arises when blowing
up a p-submanifold inside a smooth manifold without boundary: the front face fibers over
the p-submanifold, with the typical fiber being a sphere. See also §2.1.1. Similarly to
before, there exists an associated graded algebra Diffme (M) of edge differential operators.

For all algebras D of differential operators introduced so far, one can also consider
weighted versions: if w is a weight, i.e. the product of (real) powers of boundary defin-
ing functions, one can define wD := {wA : A ∈ D}. If w′ is another weight, then
wD ◦ w′D ⊂ (ww′)D. (This follows from the fact that w−1V (w) is smooth, including
at the boundary, when w is a weight and V is a b-vector field.)
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2.1.1. Edge operators arising from blow-ups. Suppose M is a smooth (n + 1)-dimensional
manifold without boundary, and let C ⊂ M denote a closed 1-dimensional submanifold.
Let E,F → M denote smooth vector bundles. We will encounter the following situation:
we are given a smooth coefficient operator

L ∈ Diffm(M ;E,F )

for which we wish to solve Lu = f in M \ C where f is conormal or polyhomogeneous at C;
and we wish for u to be conormal or polyhomogeneous as well. Under the assumption that
L is non-characteristic at N∗C, this is a classical problem which can e.g. be solved using
the symbol calculus for conormal distributions [Hör07, §18]; in our application, however, L
will be the linearized Einstein operator which does not satisfy this assumption.

We instead proceed as follows: write M◦ = [M ; C] for the real blow-up, and β◦ : M◦ →M
for the blow-down map. The front face ∂M◦ of M◦ is the total space of the fibration
Sn−1−∂M◦ → C given by the blow-down map restricted to the front face. Let r ∈ C∞(M◦)
denote a defining function of the front face ∂M◦.

Lemma 2.1 (Edge operator via blow-up). The lift of rmL to M◦ satisfies

Le := β∗◦(r
mL) ∈ Diffme (M◦;β

∗
◦E,β

∗
◦F ).

Proof. In local coordinates (t, x) along C, with C = x−1(0), and in local trivializations of
E,F , the operator rmL is a sum of terms of the form

rmajβ(t, x)Dj
tD

β
x = rm−j−|β|ajβ(t, x)(rDt)

jr|β|Dβ
x , j + |β| ≤ m, (2.2)

where ajβ is a smooth matrix-valued function. It then remains to note that the vector fields
r∂t, r∂xj (j = 1, . . . , n) are a local frame for Ve(M◦). Indeed, in the region x1 & |x|, we can

use local coordinates t, x1, x̂j = xj

x1 (j = 2, . . . , n), and r is a smooth positive multiple of

x1. The vector fields x1∂t, x
1∂x1 , x1∂xj take the form x1∂t, x

1∂x1 −
∑n

j=2 x̂
j∂x̂j , ∂x̂j ; the

latter vector fields indeed span the space of edge vector fields in our chart, since the fibers
of ∂M◦ over x1 = 0 are the level sets of t. �

When considering the action of β∗◦(r
mL) on conormal distributions at ∂M◦, it is more

appropriate to regard this operator as a b-differential operator. We proceed to compute
its normal operator at ∂M◦. If π : NC → C is the base projection and o ⊂ NC is the zero
section, write29

∨Vb,I([NC; o]) ⊂ Vb([NC; o])
for the Lie subalgebra of vertical b-vector fields (i.e. they lie in kerπ∗) which are dilation-
invariant in the fibers of [NC; o]. (Locally identifying [NC; o] = Rt × [0,∞)r × Sn−1, these
vector fields are a(t, x|x|)rDx where a ∈ C∞(Rt×Sn−1); i.e. rDt from (2.2) is absent.) Write
∨Diffmb,I([NC; o]) for the corresponding space of m-th order differential operators.

Lemma 2.2 (b-normal operator). In the notation of Lemma 2.1, the b-normal operator of

β∗◦(r
mL) at ∂M◦, which we shall denote L̂e(0), satisfies

L̂e(0) ∈ ∨Diffmb,I([NC; o];π∗E|C , π∗F |C).

Moreover, the restriction of the operator L̂e(0) to a fiber [NpC; o], p ∈ C, only depends on
the restriction of the principal symbol of L to annTpC ⊂ T ∗pM .

29We remark that [NC; o] is naturally diffeomorphic to +N(∂M◦).
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Proof. The term (2.2) has vanishing coefficients at r = 0 as a b-operator unless j = 0 and
|β| = m; note that the terms with j = 0 and |β| = m only involve differentiation in (r, ω)
(which are also the coordinates on the fibers NC) but not in t. This implies the claim. �

Thus, if we identify a collar neighborhood of C with a neighborhood of the zero section
in NC, and identify E and F in such a neighborhood with the pullback along π of their
restrictions to C, then

β∗◦(r
mL)− χ̂L̂e(0)χ̂ ∈ rDiffmb (M◦;β

∗
◦E,β

∗
◦F ),

where χ̂ ∈ C∞(M◦) is identically 1 near ∂M◦ and supported in the collar neighborhood of
∂M◦.

Example 2.3 (Wave operator). If C = {x = 0} ⊂ Rt × Rnx, and L = −D2
t +

∑n
j=1D

2
xj

=

−D2
t + D2

r −
i(n−1)
r Dr + r−2 /∆ is the wave operator on Minkowski space, then L̂e(0) =

r2D2
r − i(n− 1)rDr + /∆ is r2 times the Laplacian on Rn, and indeed a smooth (in t ∈ R)

family of dilation-invariant operators on [Rn; {0}]. (Note here that [NC; o] = Rt×[Rn; {0}].)

Remark 2.4 (Pullback bundle). When computing the form of the operator L̂e(0) in concrete
applications, it is useful to note that one may work in bundle splittings of π∗E induced not
merely by splittings of E|C , but of (β∗◦E)|∂M◦ . This is due to the fact that in terms of the
projection πff : NC → SNC = ∂M◦, we can factor π = β◦ ◦ πff , and therefore

π∗E|C = π∗ff
(
(β∗◦E)|∂M◦

)
.

2.2. Conormality and polyhomogeneity; boundary pairing. Let X denote a mani-
fold with boundary, and let ρ ∈ C∞(X) denote a boundary defining function. For α ∈ R,
we then denote by

Aα(X) = {u ∈ ραL∞loc(X) : Pu ∈ ραL∞loc(X) ∀P ∈ Diffb(X)}
the space of conormal functions with weight α. (Crucially, the local uniform boundedness
holds up to the boundary ∂X. The subscript ‘loc’ can be dropped when X is compact.) Its
elements are smooth on X◦, but become singular in a controlled fashion at ∂X. A typical
element of Aα(X) is the function ρα. Spaces of conormal functions can be defined in a
completely analogous manner also on manifolds with corners.

Next, we recall that an index set is a subset E ⊂ C × N0 so that (z, k) ∈ E implies
(z+ 1, k) ∈ E and also (z, k− 1) ∈ E when k ≥ 1, and so that for all C ∈ R there only exist
finitely many elements (z, k) ∈ E with Re z < C. We use special notation for important
examples, namely

(z, k) := {(z + j, l) : j ∈ N0, l ≤ k}, (z, k)+ := {(z + j, l) : j ∈ N0, l ≤ k + j}. (2.3)

We moreover write
(z, ∗)

for an index set which is contained in (z+N0)×N0, but which we otherwise do not specify
explicitly. We write Re E > α if Re z > α for all (z, k) ∈ E . Given index sets E and F , we
write E + F = {(z + w, k + l) : (z, k) ∈ E , (w, l) ∈ F}. In the special case F = E , we write
E + E =: 2E , and inductively jE := (j − 1)E + E . If moreover Re E > 0, then we define the
nonlinear closure of E by

E× :=
⋃
j∈N

jE ; (2.4)
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it is the smallest index set which contains E and for every finite collection (z1, k1), . . .,

(zN , kN ) also contains (
∑N

i=1 zi,
∑N

i=1 ki). Note that for z, k ∈ N0, we have (z, k)+× =
((z, k)+)× = (z, k)+ when k ≤ z; otherwise (z, k)+× ) (z, k)+.

On a manifold X with boundary, and with ρ ∈ C∞(X) denoting a boundary defining
function which moreover satisfies 0 ≤ ρ < 1

2 , we define

AEphg(X)

to consist of all smooth functions u on X◦ which in a collar neighborhood [0,∞)ρ × ∂X of
∂X are asymptotic sums

u(ρ, y) ∼
∑

(z,k)∈E

ρz(log ρ)ku(z,k)(y), u(z,k) ∈ C∞(∂X),

meaning that for all C ∈ R, the difference of u and the finite sum obtained by restricting to
(z, k) ∈ E with Re z ≤ C lies in AC([0,∞)× ∂X). (This space is independent of the choice
of ρ and the collar neighborhood, and it is a module over C∞(X).) When E is nonlinearly
closed, then AEphg(X) is an algebra under pointwise multiplication.

Consider next a manifold M with corners, for concreteness M = [0, 1
2)ρ1 × [0, 1

2)ρ2 ×X.

Given two index sets E1, E2 ⊂ C × N0, we then define AE1,E2phg (M) to consist of smooth

functions u on M◦ which are polyhomogeneous at Hj = ρ−1
j (0) with index set Ej . That is,

at H1, the function u is an asymptotic sum

u(ρ1, ρ2, y) ∼
∑

(z,k)∈E1

ρz1(log ρ1)ku(z,k)(ρ2, y), ρ1 ↘ 0, u(z,k) ∈ AE2phg([0, 1
2)×X),

which now means that the difference of u and the truncation of the sum to Re z ≤ C lies
in AC,α2(M) for all C, where α2 ∈ R is any C-independent constant for which Re E2 > C;
and an analogous expansion holds at the other boundary hypersurface H2. In this manner,

elements of AE1,E2phg have joint asymptotic expansions, or full compound asymptotics, into

terms ρz1ρ
w
2 (log ρ1)k(log ρ2)l where (z, k) ∈ E1 and (w, l) ∈ E2. See [Mel96], [Maz91, §2A],

and [Mel92].

Computations of kernels and cokernels of b-operators on a manifold with boundary often
involve boundary pairings; the following result will be used frequently for this purpose
in §9.1.

Lemma 2.5 (Boundary pairing computation). Let X be a manifold with compact boundary
∂X; denote by x ∈ C∞(X) a boundary defining function, and identify a collar neighborhood
of ∂X ⊂ X with a neighborhood of {0}×∂X inside of [0,∞)x×∂X. Let χ ∈ C∞([0,∞)) be
equal to 0 on [0, 1] and equal to 1 near∞, and set χε(x) = χ(xε ) for 0 < ε� 1. Fix a smooth

density on X◦ which near ∂X is equal to µ = x−w|dxx ν(x)| where w ∈ R, and 0 < ν is a

smooth density on ∂X which depends smoothly on x. Fix µ∂ = x−w|dxx ν(0)| as the density
on [0,∞)× ∂X. Let L ∈ x−αDiffmb (X), write N(L) = x−αN(xαL) ∈ Diffmb,I([0,∞)× ∂X),
and denote the indicial family of the normal operator of xαL by N(xαL, λ) ∈ Diffm(∂X),
λ ∈ C. Let u, v∗ be such that Lu = 0, L∗v∗ = 0, and suppose that

u ∈ A(z,k)
phg (X) +ARe z+δ(X),

v∗ ∈ x−z̄+α+wC∞(X) +A−Re z+α+w+δ(X),
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where z ∈ C, k ∈ N0, and δ > 0. Write the leading order terms of u, resp. v∗ as

u∂ =
k∑
j=0

1

j!
xz(log x)juj , v∗∂ := x−z+α+wv∗0,

respectively, where uj , v
∗
0 ∈ C∞(∂X). Set ũ∂(λ) =

∑k
j=0(λ− z)−j−1uj. Then

lim
ε↘0
〈[L, χε]u, v∗〉L2(X,µ) = 〈[N(L), χ]u∂ , v

∗
∂〉L2([0,∞)×∂X,µ∂)

=
〈(
N(xαL, λ)ũ∂(λ)

)
|λ=z, v

∗
0

〉
L2(∂X,ν(0))(

in the case k = 0: = 〈∂λN(xαL, z)u0, v
∗
0〉L2(∂X,ν(0))

)
.

(2.5)

The same holds true mutatis mutandis when L acts between sections of vector bundles E,F
which are equipped with nondegenerate (but not necessarily positive definite) fiber inner
products.

Proof. Replacing L and µ by x−wL and xwµ gives the same setup, but with w = 0 and
a different value for α. Similarly, replacing L, v∗ by xαL, x−αv∗ gives the same setup,
but now also with α = 0. Finally, we may replace L by x−zLxz and u, v∗ by x−zu, xz̄v∗.
Altogether, we may thus assume that α = w = z = 0.

Note that N(L)u∂ = 0 and N(L∗)v∗∂ = 0. To prove the first equality in (2.5), note that
replacing L, u, v∗ by their respective leading order terms N(L), u∂ , v∗∂ produces vanishing
errors in the limit ε ↘ 0. The second expression in (2.5) on the other hand is unchanged
if we pass from χ to another cutoff χ̃ ∈ C∞([0,∞)) which is 0 near 1 and 1 near ∞, for
integration by parts in 〈[N(L), χ− χ̃]u∂ , v

∗
∂〉 = 〈N(L)((χ− χ̃)u∂), v∗∂〉 does not produce any

boundary terms since χ− χ̃ ∈ C∞c ((0,∞)).

In order to prove the second equality in (2.5), note that

u∂(x) = Resλ=0

(
xλũ∂(λ)

)
=

1

2πi

∮
0
xλũ∂(λ) dλ,

where we integrate along a small circle around 0. We conclude that

0 = N(L)u∂ =
1

2πi

∮
0
xλN(L, λ)ũ∂(λ) dλ,

i.e. N(L, λ)ũ∂(λ) is holomorphic. (Conversely, the holomorphicity of N(L, λ)ũ∂(λ) implies
N(L)u∂ = 0.) Therefore, the second line of (2.5) is well-defined. Writing

N(L) =
m∑
j=0

Lj(x∂x)j , Lj ∈ Diffm−j(∂X),

we have N(L, λ) =
∑m

j=0 Ljλ
j , and we can then compute

〈[N(L), χ]u∂ , v
∗
∂〉

=
1

2πi

∮
0

∫ ∞
0

〈
[N(L), χ](xλũ∂(λ)), v∗0

〉
L2(∂X)

dx

x
dλ

=
1

2πi

∮
0

∫ ∞
0

m∑
j=0

〈
Lj

j−1∑
i=0

(x∂x)ixχ′(x)(x∂x)j−i−1(xλũ∂(λ)), v∗0

〉
L2(∂X)

dx

x
dλ.
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Integration by parts of (x∂x)i produces 0 (since x∂xv
∗
0 = 0) unless i = 0, so this is further

equal to

1

2πi

∮
0

∫ ∞
0

xχ′(x)

m∑
j=0

〈
Lj(x∂x)j−1(xλũ∂(λ)), v∗0

〉
L2(∂X)

dx

x
dλ

=

∫ ∞
0

1

2πi

∮
0
xχ′(x)

〈
xλλ−1N(L, λ)ũ∂(λ), v∗0

〉
L2(∂X)

dλ
dx

x
.

But N(L, λ)ũ∂(λ) = f0 +O(λ) is holomorphic, so

1

2πi

∮
0
xλλ−1N(L, λ)ũ∂(λ) dλ = f0 =

(
N(L, λ)ũ∂(λ)

)
|λ=0.

Using
∫∞

0 xχ′(x) dx
x = 1 finally proves (2.5). �

3. Structure and geometry of the total gluing spacetime

Denote by M an open (n+1)-dimensional manifold. Denote by c : R→M an embedding
whose image C = c(R) ⊂ M is a closed 1-dimensional submanifold. (An example to keep
in mind is M = (−1, 1) × Rn and C = {(t, x0) : t ∈ (−1, 1)}.) We shall construct singular
deformations, depending on a small parameter ε > 0, of a Lorentzian metric on M by

working on a resolution of an (n + 2)-dimensional space M̃ ′ which fibers over [0, 1)ε with
typical fiber M . We immediately fix a trivialization

M̃ ′ = [0, 1)ε ×M.

Definition 3.1 (Total gluing spacetime; tangent bundle). The total gluing spacetime for
(M, C) is the resolution

M̃ := [M̃ ′; {0} × C] =
[

[0, 1)×M ; {0} × C
]

(3.1)

of M̃ ′. The blow-down map is denoted β̃ : M̃ → M̃ ′. We denote by

M◦ = β̃∗
(
ε−1(0)

)
, M̂ = β̃∗({0} × C)

the lift of {0} ×M and the front face, respectively. The restrictions of β̃ to M◦ and M̂

are denoted β◦ : M◦ → M and β̂ : M̂ → C, respectively. The fiber of M̃ over ε ∈ (0, 1) is

denoted M̃ε.
30 Moreover, the fiber of M̂ over a point p ∈ C is denoted

M̂p := β̃∗({0} × {p}) ⊂ M̂.

We denote by T̃ M̃ ′ → M̃ ′ the vertical tangent bundle, i.e. the bundle of tangent vectors

which are tangent to the fibers of M̃ ′ → [0, 1), and by T̃ M̃ → M̃ the pullback of T̃ M̃ ′ → M̃ ′

along β̃. Finally, we write Ṽ(M̃) := C∞(M̃ ; T̃ M̃).

Thus, M◦ = [M ; C] is a manifold with boundary, and M̂ = NC is the radially compactified
normal bundle of C, which is a bundle of closed n-balls over C. (See the last paragraph

before §2.1.) See Figure 3.1. Directly from the definition, we have T̃M◦M̃ = β∗◦(TM◦).
Definition 3.1 is completely analogous to [Hin24, Definition 3.1]; however, the tangent

bundle T̃ M̃ has different features over the front face M̂ due to the 1-dimensional nature of
the submanifold being blown up in (3.1), as we will see in §3.1.

30The preimage of 0 under ε : M̃ → [0, 1) is the union M◦ ∪ M̂ .
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M̃
ε

M◦

M̂

M̂p

β̃

β◦

M

ε
M̃ ′

C

p

Figure 3.1. On the left: the total space M̃ and its boundary hypersurfaces

M̂ and M◦. On the right: the product space M̃ ′ = [0, 1) × M and the

inextendible curve C ⊂ M ∼= {0} ×M ⊂ M̃ ′. Also indicated are the blow-

down map β̃ and its restriction β◦ to M◦, as well as a fiber M̂p of M̂ (on
the left) over the base point p ∈ C (on the right). The blow-down map

β̂ : M̂ → C is not shown here.

We write

ρ̂ ∈ C∞(M̃), ρ◦ ∈ C∞(M̃) (3.2)

for defining functions of M̂ and M◦, respectively; we shall also use this notation for local
defining functions (i.e. defining functions of M̂ ∩U and M◦∩U defined over an open subset

U ⊂ M̃ depending on the context). For local coordinate computations near C on M , we
shall use

(t, x), t ∈ R, x ∈ Rn, (3.3a)

with c(t) = (t, 0). These coordinates are valid for |x| < r0(t) where 0 < r0 ∈ C∞(R). Local

coordinates near the interior M̂◦ of M̂ are then

(ε, t, x̂), x̂ :=
x

ε
. (3.3b)

Near the corner M̂ ∩M◦, we can use

(t, ρ̂, ρ◦, ω), ρ̂ = |x| ∈ [0, r0(t)), ρ◦ =
ε

|x|
, ω :=

x

|x|
∈ Sn−1. (3.3c)

Projective coordinates are computationally more convenient at times; if we write x =
(x1, x′), then in the region where x1 & |x′|, we may use

(t, ρ̂, ρ◦, x̂
′), ρ̂ = x1, ρ◦ =

ε

x1
, x̂′ =

x′

x1
∈ Rn−1. (3.3d)

Examples of local defining functions near M̂ are

ρ̂ = (ε2 + |x|2)1/2 = ε〈x̂〉, ρ◦ =
ε

(ε2 + |x|2)1/2
= 〈x̂〉−1.

We record the following analogue of [Hin24, Lemma 3.4]:

Lemma 3.2 (Relationships between parameterized spaces). The identity map M̃ ′ → M̃ ′

lifts to a diffeomorphism

[M̃ ; [0, 1)ε × C]
∼=−→
[
[0, 1)ε ×M◦; {0} × ∂M◦

]
.
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Using the above coordinates (t, x) near {0} × C, the identity map M̃ ′ → M̃ ′ also lifts to a
diffeomorphism

M̃ ∩ {|x| < r0(t)}
∼=−→
[
[0, 1)ε × M̂ ; {0} × ∂M̂

]
∩ {(ε, t, x̂) : |x̂| < ε−1r0(t)}. (3.4)

Proof. In local coordinates, the second diffeomorphism is a smoothly parameterized (by t ∈
R) version of the second diffeomorphism in [Hin24, Lemma 3.4]. The first diffeomorphism

can be obtained as in the reference upon replacing X, X̃,X◦, {p} there by M,M̃,M◦, C,
respectively. �

We denote by

χ̂, χ◦ ∈ C∞(M̃) (3.5)

two cutoff functions, with χ̂, resp. χ◦ identically 1 near, and supported in, a collar neigh-
borhood of M̂ , resp. M◦, and indeed so that |x| < r0(t) on supp χ̂.

3.1. The front face M̂ ; families of stationary tensors. Consider p ∈ C and a point

q ∈ M̂◦p = NpC = TpM/TpC. Given an element V ∈ T̃qM̃ = TpM , note that we can regard
V ∈ TpM as a translation-invariant vector field V ′ ∈ V(TpM) on TpM itself by means of
the canonical isomorphism Tz(TpM) ∼= TpM for all z ∈ TpM . Now, points in NpC (such as
q) are the same as orbits of the translation action of TpC on TpM ; thus, we may restrict V ′

to q ⊂ TpM . We have defined an isomorphism

T̃qM̃ 3 V 7→ e(V ) ∈ {constant maps q → Tq(TpM)}, q ∈ NpC = TpM/TpC. (3.6)

See Figure 3.2.

M̃
ε

M̂p = NpC
V ∈ T̃qM̃

q

e

TpM

q ⊂ TpM
TpC

Figure 3.2. Illustration of the map (3.6).

Given a section V of T̃ M̃ over M̂◦p , we can combine the images of V |q, q ∈ M̂◦p , into
a single element e(V ) ∈ C∞I (TpM ;T (TpM)) ⊂ V(TpM), where C∞I (TpM ;T (TpM)) is the
subspace of sections of T (TpM)→ TpM which are constant along the fibers of TpM → NpC.
Equivalently, elements of C∞I (TpM ;T (TpM)) are precisely the stationary ones in that they
are invariant (hence the subscript ‘I’) under the translation action of TpC on TpM . These
maps V 7→ e(V ) in turn can be combined into a single isomorphism31

C∞(M̂◦; T̃ a,b
M̂
M̃) 3 V 7→ e(V ) ∈ C∞I (TCM ; ∨T a,b(TCM)), (3.7)

31We write T a,bM = (
⊗a TM)⊗ (

⊗b T ∗M), similarly for tensor powers of other (tangent) bundles and
their duals.
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initially for (a, b) = (1, 0) and then also for general a, b ∈ N0. The notation here is as
follows: the space on the right is the space of smooth sections which are stationary when
restricted to each TpM , p ∈ C; and ∨T (TCM)→ TCM denotes the vertical tangent bundle
of the bundle TCM → C (which is thus of rank n+ 1); that is, for z ∈ TCM—i.e. z ∈ TpM
where p ∈ C—we have (∨T (TCM))z = Tz(TpM) ∼= TpM .

We make this concrete in local coordinates (3.3a)–(3.3b). Write

t̂ = dt(−) ∈ R, x̂ = dx(−) ∈ Rn (3.8)

for the induced linear coordinates on the fibers of TCM → C; also, t̂ is a linear coordinate
on the fibers of TC → C, and x̂ is a linear coordinate system on the fibers of NC → C since
TC = R∂t and dx(∂t) = 0. Note then that the point q = (t, x̂) ∈ M̂p, whose base point in

(t, x)-coordinates is p = β̂(q) = (t, 0), is the equivalence class of x̂∂x in TpM/R∂t, whose
coordinates in TpM are thus equal to x̂ indeed; this justifies the notation. Moreover, the
lifts of ∂t, ∂xj ∈ TpM to T (TpM) are ∂t̂, ∂x̂j . Therefore, the map e on vector fields is

e :
(

(t, x̂) 7→ a(t, x̂)∂z

)
7→
(

(t, x̂) 7→ a(t, x̂)∂ẑ

)
, (3.9)

where z = t or xj and ẑ = t̂ or x̂j . On symmetric 2-tensors,

e :
(

(t, x̂) 7→ g00(t, x̂) dt2 + 2g0j(t, x̂) dt dxj + gij(t, x̂) dxi dxj
)

7→
(

(t, x̂) 7→ g00(t, x̂) dt̂2 + 2g0j(t, x̂) dt̂dx̂j + gij(t, x̂) dx̂i dx̂j
)
.

(3.10)

The right hand side is a smooth family, parameterized by t ∈ R, of stationary symmetric
2-tensors on R1+n

t̂,x̂
.

In order to obtain a uniform description of the isomorphism (3.7) on M̂ , we first introduce:

Definition 3.3 (Bundle of stationary spacetimes; tangent bundles). Define the fiber bundle

T̆CM =
⊔
p∈C
{p} × T̆pM → C, T̆pM := [TpM ; ∂TpC],

with base C and typical fiber [R× Rn; ∂R× {0}]. We write

3sc,∨T (T̆CM)→ T̆CM, ∨V3sc(T̆CM) := C∞(T̆CM ; 3sc,∨T (T̆CM)),

for the vertical 3sc-tangent bundle and the space of its smooth sections: the fiber of
3sc,∨T (T̆CM) over a point z ∈ T̆CM lying over p ∈ C is 3scT (T̆pM), which is the pull-

back along T̆pM → TpM of scT (TpM) (which has as a smooth frame the vector fields ∂t̂,
∂x̂j , j = 1, . . . , n, in the coordinates used in (3.9)).

The manifold interior of T̆pM is TpM ; and for z ∈ TpM , we have 3sc,∨Tz(T̆CM) =
∨Tz(T̆CM) = Tz(TpM) ∼= TpM . This means that the restriction of 3sc,∨T (T̆CM) to the

manifold interior TCM of T̆CM is equal to the bundle ∨T (TCM) featuring in (3.7).

Each fiber of T̆CM carries a translation action by TpC. (The closure of an orbit of

this action is either a copy of R or a single point in ∂T̆pM .) Moreover, the projection
TpM → NpC extends to a smooth submersion

π̆ : T̆pM → NpC = M̂p. (3.11)

See Figure 3.3. This is an instance of the following result:
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Lemma 3.4 (Quotient spaces and compactifications). Let V be a finite-dimensional real
vector space and W ⊂ V a linear subspace. Then the projection V → V/W extends by
continuity from the interior to a smooth fibration

[V ; ∂W ]→ V/W. (3.12)

The preimage of a boundary defining function of V/W is a defining function of the lift of
∂V .

Proof. Extending a basis of W to a basis of V , we may assume V = Rm+n
t,x and W =

Rmt × {0}. We verify the claim only near the codimension 2 corner of [V ; ∂W ], and leave
the remainder of the verification to the reader. It suffices to show that the map (3.12) is
a submersion. Since smooth coordinates on V near (|t|, x) = (∞, 0) are t

|t| (when m ≥ 2),

1
|t| , and x

|t| , smooth coordinates near the corner of [V ; ∂W ] are ρff = |x|
t , ρsf = 1/|t|

|x|/|t| = 1
|x| ,

ωW = t
|t| (when m ≥ 2), and ωV = x/|t|

|x|/|t| = x
|x| . On the other hand, we can identify

V/W ∼= Rnx, with smooth coordinates near |x| = ∞ given by |x|−1 and ω = x
|x| . The

map (3.12) is thus (ρff , ρsf , ωW , ωV ) 7→ (ρsf , ωV ); this is indeed a smooth submersion. �

T
p
C

T̆pM

π̆

NpC

Figure 3.3. Illustration of a fiber T̆pM of T̆CM , of translation orbits of TpC
(red, dashed), and of the projection π̆ : T̆pM → NpC.

Lemma 3.5 (Stationary extension). The map (3.7) for (a, b) = (1, 0) (i.e. on vector fields)

is the restriction to M̂◦ of the isomorphism

e : C∞(M̂ ; T̃M̂M̃)
∼=−→ ∨V3sc,I(T̆CM) = C∞I (T̆CM ; 3sc,∨T (T̆CM)), (3.13)

where the subscript ‘I’ denotes invariance under the TpC-translation action; analogously for
tensors of type (a, b). It induces a short exact sequence

0→ ρ̂Ṽ(M̃) ↪→ Ṽ(M̃)
e−→ ∨V3sc,I(T̆CM)→ 0.

Proof. This follows from (3.9), and from Lemma 3.4 which shows that the x̂-coordinates,

resp. inverse polar coordinates |x̂|−1, x̂
|x̂| are smooth coordinates on T̆pM in |x̂| . 1, resp.

|x̂| & 1. �
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The manifold T̆pM on which sections of T̃ M̃ over M̂p can be regarded as stationary

vector fields can be given an interpretation directly on M̃ . For this purpose, we blow up
M̂p to get

[M̃ ; M̂p] = [[0, 1)×M ; {0} × C; {0} × {p}] ∼= [[0, 1)×M ; {0} × {p}; {0} × C]. (3.14)

The front face is [TpM ; ∂TpC] = T̆pM ; see Figure 3.4. The interior of the front face carries

both the rescaled spatial variables x̂ and the rescaled (‘fast’) temporal variable t̂p := t−t0
ε

where p = c(t0) (and where t̂p can be further identified with t̂). In this manner, working near

the front face of [M̃ ; M̂p] enables one to understand how, say, a metric g̃ ∈ C∞(M̃ ;S2T̃ ∗M̃)
deviates from its stationary model e(g̃|M̂p

) as the parameter ε increases from 0 to positive

values.

lift of M̂

lift of M◦

front face of [M̃ ; M̂p]

t

t0

x

ε

t

x̂

ε

t̂

x̂

ε

Figure 3.4. Illustration of (3.14), together with some local coordinate systems.

Remark 3.6 (Multiplication by ε). Carefully note that the lift of V ∈ V(M) to an ε-

independent vector field on M̃ ′ and then to a vector field on M̃ is singular at M̂ unless
V |C ∈ TC, as follows from the presence of the singular factor ε−1 in ∂x = ε−1∂x̂. (More

generally, V ∈ Ṽ(M̃), regarded as a smooth vector field on {ε > 0}, is singular at M̂

unless V (q) ∈ β̃∗(TpC) for all p ∈ C, q ∈ M̂p.) On the other hand, we saw above that

e(∂x) = ∂x̂. However, the map e on vector fields V (sections of T̃M̂M̃) is not quite given by

multiplication by ε (i.e. smooth extension off M̂ as a section of T̃ M̃ , multiplication by ε,

and restriction back to M̂ as a vector field) since ε∂t = 0 at M̂ ; this should be contrasted
with [Hin24, Lemma 3.2, Definition 3.3]. This can be remedied by instead restricting εV to

the front face T̆pM of [M̃ ; M̂p]. In this manner, multiplication by ε induces an isomorphism

between T̃qM̃ , q ∈ M̂p, and translation-invariant 3sc-vector fields on [TpM ; ∂TpC] defined

over the translation orbit q ⊂ TpM . Since T̆CM is exactly the bundle of all T̆pM , we
conclude that (3.13) is given by multiplication by ε for (a, b) = (1, 0), and by multiplication
by εa−b in general. This now matches [Hin24, Definition 3.3].

3.2. Hypersurfaces transversal to C. The study of evolution equations on M̃ (i.e. on

M̃ε for all small ε > 0 at once) requires the choice of Cauchy hypersurfaces. We recall from
[Hin24, §3]:
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Definition 3.7 (Total gluing space for initial data). Let X be a smooth open n-dimensional

manifold, and let p ∈ X. Then we set X̃ ′ = [0, 1)ε ×X and

X̃ = [X̃ ′; {(0, p)}],

with boundary hypersurfaces denoted X̂ (front face) and X◦ (lift of {0} ×X). The blow-

down map is β
X̃

: X̃ → X̃ ′, with restrictions βX̂ : X̂ → {p} and βX◦ : X◦ = [X; {p}]→ X.

The fiber of X̃ over ε ∈ (0, 1) is denoted X̃ε. The bundle T̃ X̃ ′ → X̃ ′ is the vertical tangent

bundle, and T̃ X̃ → X̃ is its pullback along β
X̃

; we write Ṽ(X̃) = C∞(X̃; T̃ X̃).

If X ⊂M is a smooth hypersurface which is transversal to C and intersects C only once in
the point p = c(t0) ∈ C, then the inclusion map [0, 1)×X ↪→ [0, 1)×M lifts to an embedding

X̃ ↪→ M̃ of X̃ as a smooth hypersurface, with X̃ ∩ M̂ = M̂p and X̃ ∩M◦ = X◦ = β∗◦X.

It is important to retain more precise information about X̃ near M̂ : to wit, X defines a
hypersurface TpX ⊂ TpM .

Remark 3.8 (Geometry of X̃ ⊂ M̃). The lift of X̃ to [M̃ ; M̂p] intersects the front face T̆pM

in a smooth hypersurface, namely the radial compactification TpX of TpX. See Figure 3.5.

In this perspective, the lift of X̃ is a Cauchy hypersurface both for wave evolution near p
in the fast (TpM -)time scale and away from p in the slow (M -)time scale.

M C

X

p

X̃

X◦

M̃

ε

M̂
X̂=M̂p T̆pM

[M̃ ; M̂p]

TpX

Figure 3.5. On the left: the manifold M , the hypersurface X, and the
curve C (transversal to X). In the middle: the total gluing space for initial

data X̃ as a hypersurface inside the total gluing spacetime M̃ . On the right:

lift of X̃ to the blow-up of M̃ at M̂p.

We also recall the isomorphism of tensor bundles

s : T̃ a,bq X̃
∼=−→ scT a,bq X̂, q ∈ X̂, (3.15)

which is defined as multiplication (of a smooth extension) by εa−b (followed by restriction)
in [Hin24, Definition 3.3]. More in line with the construction in §3.1, we can define the

map (3.15) for (a, b) = (1, 0) as follows: lift V ∈ T̃qX̃ = TpX, q ∈ X̂ = TpX, to a

translation-invariant vector field V ′ on TpX (which is thus a scattering vector field on TpX)
and evaluate this lift at q; the map V 7→ V ′|q thus defined is precisely s. In local coordinates

x ∈ Rn on X and x̂ = dx(−) (or equivalently x̂ = x
ε ) on X̂◦, this map takes ∂xj 7→ ∂x̂j .

Since T̃ X̃ ↪→ T̃
X̃
M̃ , we have

s(V )|q = e(V )|q0 , V ∈ T̃qX̃, q ∈ M̂◦p ,
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where q0 = q ∩ TpX (with q ∈ M̂◦p = NpC = TpM/TpC ∼= TpX identified with the corre-
sponding TpC-orbit in TpM).

3.3. Vector fields. Recall that smooth elements of the space Ṽ(M̃) are singular at M̂

when regarded as vector fields on M̃ ; moreover, Ṽ(M̃) is not a Lie algebra, the issue being

the irregularity of the coefficients, which lie in C∞(M̃), with respect to (lifts of) vector fields
on M (i.e. ∂t, ∂xj in local coordinates). The description of differential operators related to

geometric structures on T̃ M̃ thus requires the usage of a different class of vector fields. As
we shall see in §3.4, the appropriate class is the following.

Definition 3.9 (se-vector fields). The space Vse(M̃) of se-vector fields is defined as

Vse(M̃) = {V ∈ Vb(M̃) : V is vertical and tangent to the fibers of M̂}.
Here, V being vertical means that dε(V ) = 0.

Remark 3.10 (Terminology). The total space M̃ is the single surgery space associated with
M and C, as defined in [MM95]. The Lie algebra of vector fields used in [MM95] is

Vs(M̃) = {V ∈ Vb(M̃) : V is vertical};

its elements are surgery vector fields. Thus, Vse(M̃) ⊂ Vs(M̃) is the subspace (and indeed
Lie subalgebra, as we argue below) consisting of those vector fields which are in addition

of edge type [Maz91] at M̂ (which is the total space of a fibration Rn− M̂ → C), hence the
terminology ‘surgery-edge’, or ‘se’ for short.

Elements of Vse(M̃) are smooth (in ε ∈ (0, 1)) families of smooth vector fields on M which
degenerate in a specific manner as ε ↘ 0. In local coordinates (3.3a)–(3.3b), elements of

Vse(M̃) take the following form: away from x = 0, they are smooth (in ε, t, x) linear

combinations of ∂t, ∂xj , and near M̂◦, they are smooth (in ε, t, x̂) linear combinations of

ε∂t, ∂x̂j . Globally, in (ε, t, x)-coordinates, they are smooth (on M̃) linear combinations of

ρ̂∂t, ρ̂∂xj (see (3.2)). We verify this near the corner M̂ ∩M◦ using the coordinates (3.3d):

the fibers of M̂ are the level sets of t at ρ̂ = 0, and the claim follows from the fact that ρ̂∂t,
ρ̂∂x1 = ρ̂∂ρ̂ − ρ◦∂ρ◦ − x̂′∂x̂′ and ρ̂∂xj = ∂x̂′j , j = 2, . . . , n, are indeed tangent to ρ◦ = 0 and
to the fibers of ρ̂ = 0 (i.e. to the t-level sets), and linearly independent (as se-vector fields).
We deduce in particular that

Vse(M̃) = ρ̂Ṽ(M̃). (3.16)

Since Ṽ(M̃) is spanned over C∞(M̃) by lifts of smooth sections of T̃ M̃ ′ → M̃ ′, i.e. by
smooth families (in ε ∈ [0, 1)) of smooth vector fields on M , we infer that

Vse(M̃) 3 V : β̃∗C∞(M̃ ′)→ ρ̂C∞(M̃). (3.17)

In fact, this mapping property characterizes se-vector fields in the space of vertical b-vector

fields on M̃ . The space Vse(M̃) is the space of smooth sections of the se-tangent bundle

seTM̃ → M̃,

local frames of which are the explicit generators above. (By (3.16), we have seTM̃ = ρ̂T̃ M̃ .)

Since Vb(M̃) is a Lie algebra, and since tangency to submanifolds is preserved under

vector field commutators, we deduce that Vse(M̃) is a Lie algebra. The corresponding

space of m-th order differential operators is denoted Diffmse(M̃).
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An element P ∈ Diffmse(M̃) has two normal operators which describe their leading order

behavior at M̂ and M◦.
32 Near M̂◦, we first consider the case of se-vector fields. Com-

bining (3.16) with (3.13), we map V ∈ Vse(M̃) into e(ε−1V ); since ε−1V ∈ ε−1Vse(M̃) =

ρ−1
◦ Ṽ(M̃), with ρ◦ a boundary defining function of each fiber NpC of M̂ , the final part of

Lemma 3.4 gives
e(ε−1V ) ∈ ρ−1

◦
∨V3sc,I(T̆CM) = ∨V3b,I(T̆CM);

this is a smooth family of translation-invariant 3b-vector fields on the fibers T̆pM of T̆CM .
Upon setting NM̂ (V ) := e(ε−1V ), we thus obtain a short exact sequence

0→ ρ̂Vse(M̃) ↪→ Vse(M̃)
NM̂−−→ ∨V3b,I(T̆CM)→ 0. (3.18)

The normal operator
NM◦(P ) ∈ Diffme (M◦)

at M◦ is given by restriction as in the case of b-normal operators: NM◦(P )u = (Pũ)|M◦
where ũ ∈ C∞(M̃) is an (arbitrary) extension of u ∈ C∞(M◦). The map NM◦ is the
multiplicative extension of the third arrow in

0→ ρ◦Vse(M̃) ↪→ Vse(M̃)→ Ve(M◦)→ 0,

where Ve(M◦) is the space of edge vector fields on M◦ = [M ; C], i.e. those b-vector fields
which are tangent to the fibers of the restriction of the blow-down map β◦ : M◦ → M
to ∂M◦; this short exact sequence can be checked using the local coordinate descriptions
above. (We remark that the fibers of β◦|∂M◦ are precisely the intersections of the fibers of

M̂ with M◦.) To summarize:

Definition 3.11 (Normal operators of se-differential operators). The multiplicative exten-
sion of (3.18), resp. the restriction to M◦, gives rise to a surjective homomorphism

NM̂ : Diffmse(M̃)→ ∨Diffm3b,I(T̆CM), resp. NM◦ : Diffmse(M̃)→ Diffme (M◦),

with kernel ρ̂Diffmse(M̃), resp. ρ◦Diffmse(M̃). For p ∈ C, we write NM̂p
: Diffmse(M̃) →

Diffm3b,I(T̆pM) for the restriction of NM̂ to the fiber over p. (Here, the subscript ‘I’ re-
stricts to the space of operators which are invariant under TC-translations.)

Remark 3.12 (Normal operator at M̂ and restriction). In the context of (3.6), we can obtain

NM̂p
(V ) as the restriction of V ∈ Vse(M̃) to the front face T̆pM ⊂ [M̃ ; M̂p]. The M̂p-normal

operator of P ∈ Diffmse(M̃) is thus equal to the restriction of the lift of P to [M̃ ; M̂p] to

the front face T̆pM . (This can be seen explicitly from the local coordinate computations
in (3.21).)

In view of the translation-invariant nature of NM̂ on each fiber M̂p, we may pass to

the Fourier transform along the fibers of the TpC-action on T̆pM . To do this, we first fix

t ∈ C∞(M̃) so that dt 6= 0 on TC. The only information about t we need in the sequel
is its differential dt|TCM ∈ C∞(C;T ∗CM). We may then parameterize the orbits of the TpC-
translation action in the interior TpM of T̆pM using the function

t̂p := dt|TpM (−).

32A third ‘normal operator’ is the principal symbol of P , which captures the leading order behavior at
high frequencies. This plays no role in the present paper however.
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Such a choice of ‘time function’ also allows us to identify NpC with the transversal t̂−1
p (0) =

ker dt ⊂ TpM to the TpC-action. Therefore, we may define the spectral family of P ∈
Diffmse(M̃) at M̂ by(

NM̂ (P, σ̂)u
)
(p, x̂) :=

(
eit̂pσ̂NM̂p

(P )(e−it̂pσ̂u)
)
(x̂),

u ∈ C∞(M̂◦), p ∈ C, x̂ ∈ NpC ∼= t̂−1
p (0), σ̂ ∈ R.

(3.19)

We shall also write
NM̂p

(P, σ̂) = NM̂ (P, σ̂)(p,−).

Note that for P ∈ Diffmse(M̃), this is a polynomial of degree m in σ̂. Conversely, we have

NM̂p
(P ) =

m∑
j=0

1

j!
∂jσ̂NM̂p

(P, 0)(−Dt̂p
)j , (3.20)

since the spectral families of both sides are equal to NM̂p
(P, σ̂).

Example 3.13 (Explicit computations). To make these constructions concrete, consider the

se-vector fields ρ̂∂t and ρ̂∂xj where ρ̂ = (ε2 + |x|2)1/2. Put ρ◦ = ερ̂−1 = 〈x̂〉−1. Then

NM◦(ρ̂∂t) = |x|∂t, NM◦(ρ̂∂xj ) = |x|∂xj ;
these are (a spanning set over C∞(M◦) of the space of) edge vector fields on M◦. Using the
coordinates t̂ = dt(−), x̂j = dxj(−) on TCM , we moreover have

NM̂ (ρ̂∂t) = e(ρ−1
◦ ∂t) = 〈x̂〉∂t̂, NM̂ (ρ̂∂xj ) = 〈x̂〉∂x̂j , (3.21)

which one should regard as smooth families (in t) of stationary vector fields on Rt̂ × Rnx̂;

these are 3b-vector fields on [R× Rn; ∂R× {0}]. Finally, for σ̂ ∈ R,

NM̂ (ρ̂∂t, σ̂) = −iσ̂〈x̂〉, NM̂ (ρ̂∂xj , σ̂) = 〈x̂〉∂x̂j .
In the presence of smooth coefficients, we have, for example,

NM̂ (a(ε, t, x̂)ρ̂∂t, σ̂) = −ia(0, t, x̂)σ̂〈x̂〉;

note the distinction of the slow (t) and fast (t̂ and σ̂) time (and frequency) scales.

Regarding NM̂ (P ) as an operator on the compactification NC = M̂ , the discussion of
the structure of the spectral family of a 3b-differential operator in [Hin23c, §4.1] (or the
explicit computations in Example 3.13), applied here with smooth parametric dependence
on p ∈ C, implies

P̂ (0) := NM̂ (P, 0) ∈ ∨Diffmb (M̂), (3.22)

P̂ (σ̂) := NM̂ (P, σ̂) ∈ ρ−m◦ ∨Diffmsc(M̂), σ̂ 6= 0, (3.23)

∂jσ̂P̂ (0) ∈ ρ−j◦ ∨Diffm−jb (M̂). (3.24)

That is, these operators are b-, resp. weighted scattering operators on each fiber M̂p, p ∈ C.
We finally note that the zero energy operator family NM̂ (P, 0) is equal to the b-normal
operator

P̂ (0) = NM̂ (P, 0) = NM̂ (P ) (3.25)

of P (regarded as a b-differential operator P ∈ Diffmb (M̃), using that Vse(M̃) ⊂ Vb(M̃)) at

M̂ ; this can be seen from (3.19) as a consequence of the fact that the lift of C∞(M̂◦) to
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T̆C is precisely the space of smooth translation-invariant functions on (T̆CM)◦ = TCM . In

particular, P̂ (0) is independent of the choice of t. The operators (3.23) on the other hand
do depend on the choice of t.

3.4. Lorentzian metrics. We now assume that M is equipped with a smooth Lorentzian
metric g ∈ C∞(M ;S2T ∗M) of signature (−,+, . . . ,+); moreover, we shall assume that

C is timelike.

Still requiring C to be closed and the image of an embedding of R, we now denote by
c : I → M an arc-length parameterization of C, defined on some maximal interval I ⊂ R
containing 0. Moreover, we assume that M is time-oriented and c′ is future timelike.
The existence of Fermi normal coordinates around C is standard; we include a proof for
completeness:

Lemma 3.14 (Fermi normal coordinates). There exists a smooth coordinate system (t, x)
in a neighborhood of C so that c(t) = (t, 0), the curves s 7→ (t0, sx0) are geodesics for all
(t0, x0), and

g|(t,x) =
(
−1− 2Γj00(t, 0)xj

)
dt2 +

n∑
j=1

(dxj)2 +O(|x|2). (3.26)

Here, Γλµν = 1
2(∂µgλν + ∂νgλµ − ∂λgµν) (with ∂0 := ∂t and ∂j = ∂xj , j = 1, . . . , n) denotes

the Christoffel symbols of the first kind, and O(|x|2) denotes a symmetric 2-tensor on M all
of whose coefficients vanish quadratically at C. Moreover, if one fixes the tangent vectors
∂x1 , ∂x2 , ∂x3 at one point in C (where they are an orthonormal basis of (TC)⊥), then every
other coordinate system (t′, x′) with these properties satisfies t′ = t + a, x′ = x for some
a ∈ R.

Proof. Complete c′(0) to an orthonormal basis c′(0), V1(0), . . . , VN (0) ∈ Tc(0)M . We con-
tinue this to a smooth orthonormal frame c′(t), V1(t), . . . , VN (t) ∈ Tc(t)M , t ∈ R, in such a
manner that

∇c′(t)Vi(t) ‖ c′(t). (3.27)

If C is a geodesic, we may simply define Vi(t) via parallel transport. In order to ar-
range (3.27) for general timelike curves C, first pick an arbitrary smooth orthonormal frame
W1(t), . . . ,WN (t) of c′(t)⊥, and let

Sij(t) := g(∇c′(t)Wi(t),Wj(t)) = −Sji(t). (3.28)

We then seek (A`i(t)) ∈ C∞(I;O(n)) so that for Vi(t) =
∑
Ai`(t)W`(t) defined relative to

Fermi normal coordinates, we have

0 = g(∇c′Vi, Vj) = (ASAT +A′AT )ij =
(
A(S +A−1A′)AT

)
ij
.

But if we set A(0) = I, then the solution of A′(t) = −A(t)S(t) defines a smooth family of
matrices along C for which J(t) := AT (t)A(t) satisfies J(0) = I and J ′ = −STJ − JS; the
unique solution of this ODE is J(t) = I in view of (3.28), and hence A is orthogonal.

The desired coordinate chart is

(t, x) 7→ expc(t)

(
n∑
j=1

xjVj(t)

)
,
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which has invertible differential at (t, 0) and is thus a diffeomorphism onto its image for
(t, x) near I × {0}. Note indeed that g(t, 0) = diag(−1, 1, . . . , 1) for all t. Moreover, for
any fixed t and for all x ∈ Rn, the curves s 7→ (t, sx) are geodesics passing through (t, 0);
by the geodesic equation z̈µ(s) + Γµκλ|z(s)ż

κ(s)żλ(s) = 0 (where z = (t, x)), this implies

Γµij(t, 0) = 0 for 1 ≤ i, j ≤ n (spatial indices) and 0 ≤ µ ≤ n (all indices), so Γµij(t, 0) = 0.

For µ = k ∈ {1, . . . , n}, this implies ∂igjk = Γkij + Γjik = 0. For µ = 0 on the other
hand, we get for 1 ≤ i, j ≤ n the equation 0 = 2Γ0ij = ∂ig0j + ∂jg0i, while (3.27) implies
0 = 2g(∇0∂i, ∂j) = 2Γj0i = ∂ig0j − ∂jg0i at (t, 0); together, this gives ∂ig0j = 0. Since
−2Γj00(t, 0) = ∂jg00(t, 0), the proof is complete. �

Regarding g as an ε-independent metric on M̃ ′, the pullback β̃∗g ∈ C∞(M̃ ;S2T̃ ∗M̃) is a

Lorentzian section of S2T̃ ∗M̃ ; and in the coordinates (3.8), we have

e(β̃∗g) = −dt̂2 + dx̂2 (3.29)

on TpM for all p ∈ C. Our gluing problem amounts to modifying β̃∗g (within the space

of formal solutions of the Einstein vacuum equations) so that its restriction to M̂ is the
metric of a Kerr black hole, while the restriction to M◦ remains equal to β∗◦g.

Definition 3.15 (Total family). Let g ∈ C∞(M ;S2T ∗M). Let K̂◦ =
⋃
p∈C K̂

◦
p ⊂ M̂

be a relatively open subset whose closure K̂ =
⋃
p∈C K̂p is disjoint from ∂M̂ = M̂ ∩M◦

and has connected complement in M̂ .33 Let K̃ = {(ε, t, x) : (t, x̂) = (t, εx) ∈ K̂} be an

extension of K̂ to M̃ , where (t, x) ∈ R×Rn are local coordinates near C with C = {x = 0}.
Let Ê , E ⊂ C × N0 denote two nonlinearly closed index sets with Re Ê ,Re E > 0. Then a

Lorentzian signature (−,+, . . . ,+) section g̃ of S2T̃ ∗M̃ over M̃ \K̃◦ is called a (Ê , E)-smooth
total family (relative to (M, C, g)) if

g̃ = β̃∗g + g̃(1), g̃(1) ∈ A
N0∪Ê,E
phg (M̃ \ K̃◦;S2T̃ ∗M̃), (3.30)

with the index sets referring to M̂ and M◦ (in this order). The M◦-model of g̃ is g, and the

M̂ -model of g̃ is ĝ := e(g̃|M̂ ). Moreover, we write ĝp = ĝ|M̂p
= e(g̃|M̂p

) for p ∈ C and call

this the M̂p-model of g̃.

Notation 3.16 (Lifts of tensors on M). In (3.30), we regard g ∈ C∞(M ;S2T ∗M) as an

ε-independent element of C∞(M̃ ′;S2T̃ ∗M̃ ′), which we then pull back to M̃ via β̃. We shall
use this notation also in the sequel for lifts of smooth functions, tensors, and differential
operators on M .

As a simple example, g̃ = g, as an ε-independent tensor, is a (∅, ∅)-smooth total family

whose M̂p-model, with respect to Fermi normal coordinates (t, x) and t̂ = dt(−), x̂ = dx(−),

is the Minkowski metric −dt̂2 + dx̂2 for all p ∈ C.
Definition 3.15 is analogous to [Hin24, Definition 4.17]. Note that g is uniquely deter-

mined by g̃ via β∗◦g = g̃|M◦ . The M̂ -model g̃|M̂ ∈ A
N0∪E
phg (M̂ \ K̂◦;S2T̃ ∗M̃) is Lorentzian,

33In our application, K̂p will be a closed ball which, in x̂-coordinates, has a fixed radius, and a center
depending smoothly on p.
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and hence ĝp is a stationary Lorentzian metric on TpM with smooth dependence on p ∈ C.
More precisely, the model of β̃∗g at M̂ is

η̂ := e
(
β̂∗(g|C)

)
∈ C∞I (T̆CM ;S2 3sc,∨T ∗T̆CM), (3.31)

which is a family of stationary Lorentzian metrics; in the coordinates (3.8) associated with
Fermi normal coordinates around C, we have η̂p = −dt̂2 + dx̂2 for all p ∈ C (cf. (3.29));
therefore,

ĝ − η̂ ∈ AEphg,I

(
T̆CM \ π̆−1(K̂◦);S2 3sc,∨T ∗(T̆CM)

)
, (3.32)

where π̆ was defined in (3.11) (so π̆−1(K̂◦) = Rt̂ × K̂◦ in local coordinates); in this sense,
ĝ is a family of asymptotically flat metrics. The notation on the right in (3.32) means that

the index set at the lift of TCM to T̆CM is E , and that ĝ − η̂ is stationary on each fiber of
T̆CM (which implies, but is stronger than, ĝ − η̂ having index set N0 at the front face of

T̆CM).

Conversely, suppose that g̃ of the form (3.30), and suppose that the restriction of g̃ to

M◦ is a Lorentzian metric g and that the M̂p-model of g̃ is Lorentzian for all p ∈ C. We

then claim that for every precompact open set V ⊂ M there exists an ε(V ) > 0 so that g̃
is Lorentzian on

β̃−1
(
[0, ε(V ))× V

)
⊂ M̃. (3.33)

Indeed, note that g̃ is automatically Lorentzian in an open neighborhood of M̂ ∪M◦; since

any such neighborhood contains β̃−1({0}×V ) = (M̂ ∩ β̂−1(V ∩C))∪β−1
◦ (V ), the existence

of ε(V ) follows from the compactness of V . If we take the union of the sets (3.33) over all

precompact V ⊂M , we obtain an open neighborhood of M̂ ∪M◦ on which g̃ is Lorentzian.
(Conversely, every open neighborhood of M̂∪M◦ contains the set (3.33) for any precompact
V ⊂M and some ε(V ) > 0.)

Notation 3.17 (Definitions on neighborhoods of M̂ ∪M◦). By a mild abuse of notation,

we shall write C∞(M̃), Diff(M̃), etc. for functions, differential operators, etc. which are

defined on an open neighborhood of M̂ ∪M◦.

We proceed to describe geometric objects and operators associated with g̃, thus in partic-
ular explaining how the se-structures discussed in §3.3 arise. We write d

M̃
for the fiberwise

exterior derivative which is given by the usual exterior derivative on each fiber M̃ε
∼= M of

M̃ over (0, 1)ε. We similarly write ∇g̃ for the fiberwise Levi-Civita connection. On T̆CM , we
may similarly define the fiberwise exterior derivative dT̆CM (which restricts to the interior

TpM of T̆pM , p ∈ C, to the exterior derivative on TpM) and fiberwise connection ∇ĝ with

respect to the M̂ -model ĝ of g̃.

Lemma 3.18 (Exterior derivative). The exterior derivative on k-forms (here meaning:

sections of ΛkT̃ ∗M̃) satisfies (using Notation 3.16)

d
M̃
∈ β̃∗Diff1(M ; ΛkT ∗M,Λk+1T ∗M) ⊂ ρ̂−1Diff1

se(M̃ ; ΛkT̃ ∗M̃,Λk+1T̃ ∗M̃). (3.34)

For the normal operators, we have

e ◦NM̂ (εd
M̃

) ◦ e−1 = dT̆CM , NM◦(dM̃ ) = β∗◦d, (3.35)

where d is the exterior derivative on M and

β∗◦d ∈ β∗◦
(
Diff1(M ; ΛkT ∗M,Λk+1T ∗M)

)
⊂ ρ̂−1Diff1

e(M◦;β
∗
◦Λ

kT ∗M,β∗◦Λ
k+1T ∗M)
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is its lift to M◦.

Proof. The membership (3.34) follows from the fact that elements of T̃ M̃ (such as the local

coordinate derivatives ∂t, ∂xj on M lifted to M̃) lie in ρ̂−1Vse(M̃). Alternatively, one can

use the coordinate-free formula for the exterior derivative and use that for V,W ∈ Ṽ(M̃) =

ρ̂−1Vse(M̃), we have [V,W ] ∈ ρ̂−2Vse(M̃) = ρ̂−1Ṽ(M̃).

Consider next the action of εd
M̃

on functions u, which is

εd
M̃
u = (ε∂tu) dt+ (ε∂xju) dxj .

Since NM̂ (ε∂z) = e(∂z) = ∂ẑ for z = t, xj and ẑ = t̂, x̂j (in the notation (3.8)), and since
e(dz) = dẑ, we have verified the first equality in (3.35) on functions. The verification on
k-forms is analogous. The second equality in (3.35) is clear. �

Lemma 3.19 (Covariant derivative). Let g̃ be a (Ê , E)-smooth total family relative to

(M, C, g), with M̂ -model ĝ. Let a, b ∈ N0. Then, using Notation 3.17,

∇g̃ ∈ β̃∗
(
Diff1(M ; T̃ a,bM, T̃ a,b+1M)

)
+A(N0∪Ê)−1,E

phg Diff1
se(M̃ \ K̃◦; T̃ a,bM̃, T̃ a,b+1M̃)

⊂ A(N0∪Ê)−1,N0∪E
phg Diff1

se(M̃ \ K̃◦; T̃ a,bM̃, T̃ a,b+1M̃).

The normal operators are given by

e ◦NM̂ (ε∇g̃) ◦ e−1 = ∇ĝ, NM◦(∇g̃) = β∗◦(∇g).

Proof. It suffices to prove this for (a, b) = (0, 0), (1, 0). (This implies the result for (a, b) =
(0, 1), and the general case then follows from the Leibniz rule.) For (a, b) = (0, 0), the
gradient ∇g̃ is the composition of34

g̃−1 ∈
(
β̃∗C∞ +AN0∪Ê,E

phg

)(
M̃ \ K̃◦; Hom(T̃ ∗M̃, T̃ M̃)

)
(using that Ê , E are nonlinearly closed) with d

M̃
; the result in this case thus follows from

Lemma 3.18. For (a, b) = (1, 0), one may compute the Christoffel symbols Γ(g̃)κµν of g̃ in

local coordinates z = (t, x): since ∂λg̃µν ∈ β̃∗C∞ + A(N0∪Ê)−1,E
phg , we get Γ(g̃)κµν ∈ β̃∗C∞ +

A(N0∪Ê)−1,E
phg . The claim then follows from ∇g̃µ(aν∂ν) = (∂µa

κ + aνΓκµν(g̃))∂κ, since ∂µ lies

in ρ̂−1Vse(M̃) as a differential operator and is smooth as a section of T̃ M̃ . The M◦-normal

operator selects the coefficients of class β̃∗C∞ (which come solely from g), while for the M̂ -

normal operator we note that the restriction of ε∂zλ g̃µν = ∂ẑλ g̃µν to M̂p is ∂ẑλ ĝ(∂ẑµ , ∂ẑν ).
(We leave a coordinate-free proof using the Koszul formula to the reader.) �

By the properties of the M̂ -normal operator map, or by direct computation on M̂ , the
operators dT̆CM and ∇ĝ are elements of ρ◦

∨Diff1
3b(M̂) acting between the appropriate tensor

powers of 3sc,∨T (T̆CM). This is an instance of the well-known fact that geometric operators
associated with scattering metrics are weighted b-operators, see e.g. [Vas18, Theorem 6.8]
and [Hin23d, §4].

34Here β∗C∞ = β∗C∞(M) is a subset of AN0,N0
phg (M̃).
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Corollary 3.20 (Curvature). Let g̃ be a (Ê , E)-smooth family relative to (M, C, g), with

M̂ -model ĝ. Then the Riemann curvature tensor Riem(g̃)(X,Y )Z = ([∇g̃X ,∇
g̃
Y ]−∇g̃[X,Y ])Z

satisfies

Riem(g̃) ∈ β̃∗C∞(M ; T̃ 1,3M) +A(N0∪Ê)−2,E
phg (M̃ \ K̃◦; T̃ 1,3M̃)

⊂ A(N0∪Ê)−2,N0∪E
phg (M̃ \ K̃◦; T̃ 1,3M̃),

e
(
(ε2Riem(g̃))|M̂

)
= Riem(ĝ), Riem(g̃)|M◦ = β∗◦(Riem(g)).

The Ricci tensor similarly satisfies

Ric(g̃) ∈ β̃∗C∞(M ;S2T̃ ∗M) +A(N0∪Ê)−2,E
phg (M̃ \ K̃◦;S2T̃ ∗M̃),

⊂ A(N0∪Ê)−2,N0∪E
phg (M̃ \ K̃◦; T̃ 1,3M̃),

e
(
(ε2Ric(g̃))|M̂

)
= Ric(ĝ), Ric(g̃)|M◦ = β∗◦(Ric(g));

analogously for the scalar curvature.

The following result connects the notion of total spacetime family to the corresponding
notion on the level of initial data sets for the Einstein equations, cf. [Hin24, Definition 4.17]:

Corollary 3.21 (Initial data). Let g̃ be a (Ê , E)-smooth total family relative to (M, C, g) on

M̃ \ K̃◦ in the notation of Definition 3.15. Let X ⊂M be a smooth spacelike hypersurface

of (M, g) with X ∩ C = {p}. Suppose that TpX \ K̂◦p is spacelike for the M̂p-model ĝp. Let
K ⊂M be compact. Then:

(1) X̃ \ K̃◦ ⊂ M̃ is spacelike for g̃ on β̃−1([0, ε0)×K) when ε0 > 0 is sufficiently small;

(2) the initial data (γ̃, k̃) of g̃ at X̃ \ K̃◦ (i.e. the first and second fundamental form of

X̃ε \ K̃◦ ⊂ M̃ε, ε ∈ (0, 1)) take the form

γ̃ = β̃∗γ + γ̃(1), k̃ = β̃∗k + k̃(1),

where (γ, k) are the initial data of X in (M, g), and where

γ̃(1) ∈ A
N0∪Ê,E
phg (X̃ \ K̃◦;S2T̃ ∗X̃), k̃(1) ∈ A

(N0∪Ê)−1,E
phg (X̃ \ K̃◦;S2T̃ ∗X̃).

Moreover, (γ̂, k̂) := (s(γ̃|X̂), s(εk̃|X̂)) are the initial data of ĝp at TpX \ K̂◦p .

We shall also call (γ̂, k̂) the initial data of g̃ at M̂p. In the terminology of [Hin24,

Definition 4.18], part (2) states that the pair (γ̃, k̃) is a (Ê , E)-smooth total family with

boundary data (γ̂, k̂) and (γ, k).

Proof of Corollary 3.21. We verify the claims near the codimension 2 corner of M̃ . We
work in local coordinates z = (t, x) (which need not be Fermi normal coordinates) on M
with respect to which X = t−1(0) and C = x−1(0), and use coordinates t ∈ R, ρ̂ = |x| ≥ 0,

ρ◦ = ε
|x| ≥ 0, ω ∈ Sn−1 near M̂ ∩M◦. Then the dual metric g̃−1 takes the form

g̃−1(t, ρ̂, ρ◦, ω) =
(
gµν(t, ρ̂ω) + gµν(1)(t, ρ̂, ρ◦, ω)

)
∂zµ ⊗s ∂zν ,
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where gµν(1) is E-smooth at ρ◦ = 0 and (N0∪Ê)-smooth at ρ̂ = 0; in particular it is continuous

and vanishes at ρ◦ = 0. The spacelike nature of X is equivalent to g00(t, ρ̂ω) < 0. Writing

ẑ = (t̂, x̂) = (dt(−),dx(−)), the M̂t-model of g̃−1 is(
gµν(t, 0) + gµν(1)(t, 0, ρ◦, ω)

)
∂ẑµ ⊗s ∂ẑν ,

and the spacelike nature of TpX = t̂−1(0) is equivalent to g00(t, 0) + g00
(1)(t, 0, ρ◦, ω) < 0.

Taken together, we conclude that g̃µν(t, ρ̂, ρ◦, ω) < 0 when (t, ρ̂, ρ◦, ω) is a sufficiently small

neighborhood of X̃ ∩ (M̂ ∪M◦).
Turning to part (2), the statements about the induced metric γ̃ are clear. Regarding the

second fundamental form, we note that the normal vector field g̃−1(dt,−) to X̃ is of class

(β̃∗C∞ +AN0∪Ê,E
phg )(X̃ \ K̃◦; T̃ M̃), (3.36)

and its squared norm near X̂ ∪ X◦ is strictly negative. Therefore, the unit normal is an

element of (3.36) as well. By Lemma 3.19, its covariant derivative along elements of T̃ M̃

lies in β̃∗C∞ + A(N0∪Ê)−1,E
phg ; therefore k̃ is of the stated form. The identification of the

boundary values of k̃ follows at M◦ from these arguments, and at M̂ as usual by passing
to the coordinates (t̂, x̂) = ( tε ,

x
ε ). �

3.5. Kerr metrics as front face models. In this section, we work with

n = 3

spatial dimensions. (Thus, M is 4-dimensional, and M̃ is 5-dimensional.) First, we recall
(see [Ker63, BL67]):

Definition 3.22 (Kerr metric). Let m > 0 and a ∈ R be subextremal Kerr parameters, i.e.

|a| < m. Write r̂m,a := m +
√
m2 − a2 ∈ (m, 2m] for the radius of the event horizon. Then

the Kerr metric ĝm,a in Boyer–Lindquist coordinates is the Lorentzian metric

ĝm,a = − µ(r̂)

%2(r̂, θ)
(dt̂BL − a sin2 θ dφ)2 + %2(r̂, θ)

( dr̂2

µ(r̂)
+ dθ2

)
+

sin2 θ

%2(r̂, θ)

(
(r̂2 + a2)dφ− adt̂BL

)2
,

µ(r̂) = r̂2 − 2mr̂ + a2, %2(r̂, θ) = r̂2 + a2 cos2 θ.

(3.37)

on the manifold Rt̂BL
× (r̂m,a,∞)r̂ × S2

θ,φ.

This solves Ric(ĝm,a) = 0. Moreover, ∂t̂BL
is the unique Killing vector field which is

asymptotically (as r̂ → ∞) future timelike and has squared length approaching −1. A
useful form of ĝm,a, obtained by using the standard metric on S2, /g = dθ2 + sin2 θ dφ2, to

rewrite the dθ2 term, is

ĝm,a = −
(

1− 2mr̂

%2

)
dt̂2BL +

(
1 +

2mr̂ − a2 sin2 θ

µ

)
dr̂2 + %2

/g

+
(

1 +
2mr̂

%2

)
(a sin2 θ dφ)2 − 4amr̂ sin2 θ

%2
dt̂BL dφ.

(3.38)
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Remark 3.23 (Importance of Kerr). Suppose g̃ is a time-oriented (Ê , E)-smooth total family

on M̃ \ K̃◦ relative to (M, C, g), and suppose that

Ric(g̃)− Λg̃ = 0.

By Corollary 3.20, this implies 0 = e−1((ε2Ric(g̃) − ε2Λg̃)|M̂ ) = Ric(ĝ); that is, for each

p ∈ C, the metric ĝp ∈ C∞(TpM \ K̂◦p ;S2T ∗(TpM)) is a stationary and asymptotically
flat solution of Ric(ĝp) = 0. According to the black hole uniqueness conjecture, see e.g.
[CCH12, Conjecture 3.4], this (together with additional hypotheses concerning the extent

of TpM \ K̂◦p) forces ĝp to be isometric to the metric of a Kerr black hole.

Near the event horizon, the Boyer–Lindquist coordinate singularity can be removed by
passing to new coordinates:

Lemma 3.24 (Smooth coordinates across the future event horizon). Given subextremal
Kerr parameters m, a, denote by T,Φ: (r̂m,a,∞)→ R a pair of smooth functions with

T ′(r̂) = − r̂
2 + a2

µ(r̂)
+ T̃ (r̂), Φ′(r̂) = − a

µ(r̂)
+ Φ̃(r̂),

where T̃, Φ̃ are analytic on [0, 4m]. Let t̂ = t̂BL − T (r̂) and φ∗ = φ − Φ(r̂). Then ĝm,a
extends analytically from r̂ > r̂m,a to a metric on Rt̂ × (r̂−m,a,∞)r̂ × S2

θ,φ∗
where r̂−m,a =

m −
√
m2 − a2 ∈ [0,m). Moreover, we may choose T̃, Φ̃ so that the following additional

conditions are satisfied:

(1) T (r̂) = 0 and Φ(r̂) = 0 for large r̂;
(2) dt̂ is everywhere (past) timelike;

(3) for m, a which are close to fixed subextremal parameters m0, a0, the functions T̃ and

Φ̃ depend smoothly on m, a.

Proof. This is a standard and straightforward computation; see e.g. [Hin21b, §3.1]. �

Definition 3.25 (Kerr model). Fix Kerr parameters m > 0, a ∈ R3 which are subextremal
(in the sense that m, a := |a| are subextremal), and define t̂, φ∗ as in Lemma 3.24. Fix the
spacetime manifold

M̂◦m,a := Rt̂ × X̂
◦
m,a, X̂◦m,a = R3 \ (K̂m,a)

◦,

where K̂m,a = K̂0
m,a with K̂δ

m,a := {x̂ ∈ R3 : r̂ = |x̂| ≤ m− δ} for δ ∈ (m− r̂m,a,m− r̂−m,a) =

(−
√
m2 − a2,

√
m2 − a2). Define ĝm,a as a metric on M̂◦m,a by identifying θ ∈ (0, π) and

φ∗ ∈ (0, 2π) with the standard polar coordinates on R3
x̂ in r̂ ≥ m. Let R ∈ SO(3, 1) be a

rotation in the spatial variables which maps (t̂, 0, 0, a)T 7→ (t̂, a)T . We then write35

ĝm,a = R∗ĝm,a

Setting b = (m, a), we also write these objects as

ĝb, M̂
◦
b , X̂

◦
b , K̂b.

We finally denote by ˆ
¯
g = −dt̂2 +dx̂2 the Minkowski metric on the same spacetime manifold.

35The Lorentz transformation R is unique up to pre-composition by a rotation around the z-axis. Since
such rotations are isometries for ĝm,a, the metric ĝm,a is well-defined.
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Thus, ĝm,a is stationary in that ∂t̂ is a Killing vector field which is asymptotically timelike.

Moreover, the components of ĝm,a and ˆ
¯
g in the coordinates (t̂, x̂) satisfy

ĝm,a − ˆ
¯
g ∈ r̂−1C∞(R3 \ (K̂δ

m,a)
◦), ĝm,a − ĝm,0 ∈ r̂−2C∞(R3 \ (K̂δ

m,a)
◦) (3.39)

for all δ ∈ [0,m − r̂−m,a), as can easily be verified using the formula (3.38); see also equa-
tion (3.41) below.

In order to efficiently keep track of asymptotic expansions, we now compactify:

Definition 3.26 (Compactifications related to the Kerr spacetime manifold). In the nota-

tion of Definition 3.25, we write X̂b ⊂ R3 \ K̂◦b for the closure X̂b = X̂◦b ∪ ∂R3 of X̂◦b inside
the radial compactification of R3. We furthermore set

M̂b :=
[
Rt̂ × R3

x̂; ∂Rt̂
]
\ π̂−1(K̂◦b ),

where π̂ : [R× R3; ∂R]→ R3 is the lift of the projection (t̂, x̂) 7→ x̂.

See Figure 3.6. Therefore, ĝm,a, ˆ
¯
g ∈ C∞I (M̂m,a;S

2 3scT ∗M̂m,a) (the subscript ‘I’ restricting

to translation-invariant sections). By Lemma 3.4, we can identify C∞I (M̂m,a) ∼= C∞(X̂m,a).
The membership (3.39) is then equivalent to

ĝm,a − ˆ
¯
g ∈ ρ◦C∞(X̂m,a;S

2 3scT ∗
X̂m,a

M̂m,a), ĝm,a − ĝm,0 ∈ ρ2
◦C∞, ρ◦ := 〈x̂〉−1. (3.40)

M̂b

π̂

r̂ = m

K̂b

X̂b = R3 \ K̂◦
b

Rt̂ × R3
x̂

Rt̂

∂Rt̂

∂Rt̂

blow-down

Figure 3.6. Illustration of Definition 3.26. On the left: the compactifi-
cation M̂b of the Kerr spacetime manifold, and the projection map to the
spatial manifold X̂b. On the right: the radial compactification of Rt̂ × R3

x̂.

We include the parameter δ > 0 in Definition 3.25 in order to enable us to regard ĝb
for b = (m, a) near fixed subextremal Kerr parameters b0 = (m0, a0) as a smooth family of

metrics on the fixed spacetime manifold M̂◦b0 ⊂ Rt̂×(R3\(K̂δ
b )◦); this was shown in the Kerr–

de Sitter case in [HV18, Proposition 3.5]. We recall the relevant calculations in the region
r̂ � m where (t̂, r̂, θ, φ∗) are equal to the Boyer–Lindquist coordinates (t̂BL, r̂, θ, φ). There,
the metric ĝm,a is then given by (3.38) but with the spherical coordinates defined relative
to the axis of rotation â = a

|a| (when a 6= 0) instead of (0, 0, 1)T ∈ R3. Using Euclidean
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coordinates x̂ = (r̂ sin θ cosφ, r̂ sin θ sinφ, r̂ cos θ) and the Euclidean inner product, we can
then write r̂2 = |x̂|2, a2 = |a|2, a2 cos2 θ = (a · x̂|x̂|)

2, and

%2 = |x̂|2 +
(
a · x̂
|x̂|

)2
, r̂a sin2 θ dφ =

(
a× x̂

|x̂|

)
· dx̂, a2 sin2 θ = |a|2 −

(
a · x̂
|x̂|

)2
.

Thus, all terms in (3.38) depend smoothly on a indeed. We record the leading order behavior

ĝm,a ≡ ˆ
¯
g + r̂−1

[
2m(dt̂2 + dr̂2)

]
+ r̂−2

[(
4m2 − |a|2 +

(
a · x̂
|x̂|

)2)
dr̂2 +

(
a · x̂
|x̂|

)2
r̂2
/g +

((
a× x̂

|x̂|

)
· dx̂

)2

− 4mdt̂⊗s
((

a× x̂

|x̂|

)
· dx̂

)]
mod r̂−3C∞

(
X̂m̂,â;S

2 3scT ∗
X̂m̂,â

M̂m̂,â

)
.

(3.41)

Definition 3.27 (Linearized Kerr metrics). Given subextremal Kerr parameters b = (m, a),

and given ḃ = (ṁ, ȧ) ∈ R× R3, we define

ĝ′b(ḃ) :=
d

ds
ĝb+sḃ

∣∣∣
s=0

as a symmetric 2-tensor on M̂◦b .

In view of (3.40), and again identifying C∞I (M̂b) ∼= C∞(X̂b), we have (with ρ◦ = 〈x̂〉−1)

ĝ′b(ḃ) ∈ ρ◦C∞(X̂b;S
2 3scT ∗

X̂b
M̂b),

ĝ′b(0, ȧ) ∈ ρ2
◦C∞(X̂b;S

2 3scT ∗
X̂b
M̂b).

(3.42)

Furthermore, linearizing the equation Ric(ĝb) = 0 in b, we obtain

DĝbRic(ĝ′b(ḃ)) = 0 ∀ ḃ ∈ R× R3. (3.43)

3.5.1. Gluing in a family of Kerr metrics. We proceed to describe how to glue a family of
Kerr metrics into the front face M̂ in the setting of §3.4. Recalling the Minkowski metric

η̂p = e(β̂∗gp) (3.44)

on TpM from (3.31), define

X̂◦p := (TpC)⊥η̂p ⊂ TpM. (3.45)

Denote by

T ∈ V(TpM) (3.46)

the unique generator of the TpC-translation action which is future timelike and has squared
length −1. (Thus, T = ∂t̂ in the coordinates (3.8) relative to Fermi normal coordinates

along C.) By choosing an orthonormal basis of X̂◦p to define coordinates x̂ ∈ R3, and
moreover defining the linear coordinate

t̂ := −η̂(T,−)

on TpM = TpC ⊕ X̂◦p , we obtain an isometric isomorphism

Φp : (R1+3
t̂,x̂

, ˆ
¯
g)→ (TpM, η̂p).
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Since T x̂ = 0 by construction, the pushforward (Φp)∗ĝm,a is a stationary (with respect

to TpC) metric on TpM which asymptotes to η̂p, and for which X̂◦p is a spacelike Cauchy
surface. More precisely,

(Φp)∗ĝm,a ∈ C∞I
(
T̆pM \ π̆−1(Φp(K̂

◦
m,a));S

2 3sc,∨T ∗(T̆pM)
)
,

(Φp)∗ĝm,a − η̂p ∈ AN0+1
phg,I

(
T̆pM \ π̆−1(Φp(K̂

◦
m,a));S

2 3sc,∨T ∗(T̆pM)
)
,

(3.47)

cf. (3.32) and (3.40), as follows from the fact that η̂p = Φ∗ˆ
¯
g. In (3.47), we wrote Φp also

for the map R3
x̂ → X̂◦p given by restriction of Φp to t̂ = 0.

Lemma 3.28 (Naive gluing). Let M, C, g be as in §3.4, and fix 0 < m ∈ C∞(C), a ∈
C∞(C;R3) where |a(p)| < m(p) for all p ∈ C; set b = (m, a).36 Fix Fermi normal coordinates
(t, x) along C, and write r = |x| (Euclidean norm), ω = x

|x| ∈ S2.

(1) There exists a (∅,N0 + 1)-smooth total family g̃ relative to (M, C, g) so that for all

p ∈ C, the M̂p-model of g̃ is (Φp)∗ĝb(p), where

Φp(t̂, x̂) = (t̂, x̂) (3.48)

in the coordinates (t̂, x̂) on M̂◦b(p) and the fiber-linear coordinates t̂ = dt and x̂j =

dxj, j = 1, 2, 3, on TCM . More precisely, if we set K̂◦ =
⊔
p∈C Φp(K̂

◦
b(p)) and define

K̃ ⊂ M̃ as in Definition 3.15, then g̃ is defined on M̃ \ K̃◦.
(2) If C is a geodesic, then the total family g̃ in part (1) can be defined so that g̃(t0)−

e−1((Φc(t0))∗ĝb(c(t0))) ∈ ρ̂2C∞({t = t0};S2T̃ ∗M̃) for all t0 ∈ I, and so that(
ε−1(g̃ − β̃∗g)

)
|M◦ ≡

2m

r
(dt2 + dr2) mod Ċ∞(M◦;β

∗
◦S

2T ∗M) (3.49)

near ∂M◦. Here, we extend the section e−1(Φc(t0))∗ĝb(c(t0)) ∈ C∞(M̂c(t0);S
2T̃ ∗M̃)

to {t = t0} ⊂ M̃ to be constant in ε in the space on the right in (3.4).37

Proof. The prescription g̃|M̂p
= e−1((Φp)∗ĝb(p)) on M̂p, p ∈ C, defines a smooth section g̃|M̂

of S2T̃ ∗M̃ over M̂ \ K̂◦. Now, the difference g̃|M̂p
− β̂∗gp vanishes at ∂M̂p as a section of

S2 3sc,∨T ∗(T̆pM); indeed, note that its image under e is (Φp)∗ĝb(p) − η̂p, and recall (3.47).

We conclude that g̃|M̂ and β∗◦g are equal (as sections of S2T̃ ∗M̃) at the corner M̂ ∩M◦
(and indeed they are equal to the Minkowski metric −dt2 + dx2 there). Therefore, there

indeed exists a (∅,N0 + 1)-smooth total family g̃ which over M̃ \ K̃◦ equals g̃|M̂ at M̂ and

β∗◦g at M◦ (as a section of S2T̃ ∗M̃).

36In our gluing construction, we will operate under the assumptions that C is a geodesic and b is constant.
We state the more general result here so that we may prove the necessity of these assumptions for the exis-

tence of a total family with specified M◦- and M̂ -models satisfying the Einstein vacuum equations; see §§8.3
and 9.3. We could further generalize the naive gluing here by considering maps Φp(t̂, x̂) = (t̂, A(p)x̂+ ĉ(p))

where Â ∈ C∞(C;O(3)) and ĉ ∈ C∞(C;R3). It will turn out that Â is necessarily constant, see Proposi-

tion 9.13, while the flexibility of shifting the center of mass of the M̂ -model metrics via ĉ is not needed;
in any case this could equivalently be implemented via pulling back along (ε, t, x) 7→ (ε, t, x− εĉ(t)) near C
(glued via a partition of unity to the identity map on M̃ away from M̂).

37Concretely, writing e−1((Φc(t0))∗ĝb(c(t0))) = −dt2 + dr2 + r2
/g + h(t0,

ε
r
, ω), this extension is simply

given by the expression on the right hand side.
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For part (2), we note that Lemma 3.14 gives

g(t, r, ω) = −dt2 + dr2 + r2
/g + g′,

where g′ ∈ C∞(M ;S2T ∗M) vanishes quadratically at x = 0. Moreover,

e−1
(
(Φc(t0))∗ĝb(c(t0))

)
= −dt2 + dr2 + r2

/g + h
(
t0,

ε

r
, ω
)

where h is a smooth section of S2T̃ ∗M̃ over M̂ which vanishes simply at ε
r = 0, and which

near ∂M̂ and modulo ( εr )2C∞ = ρ2
◦C∞ is equal to 2m(t0)

r/ε (dt2 + dr2). We may then take

g̃(t0) = −dt2 + dr2 + r2
/g + β̃∗g′(t0) + χ̂(t0, x)h

(
t0,

ε

r
, ω
)
,

where χ̂ is a cutoff function to the Fermi normal coordinate chart which is 1 near x = 0.

Since β̃∗f ⊂ ρ̂2C∞(M̃) when f ∈ C∞(M) vanishes quadratically at C, this has the required
properties. �

3.5.2. Spacelike hypersurfaces in M . Suppose now we are given a spacelike hypersurface
X ⊂ M with X ∩ C = {p}. Besides X̂◦p = (TpC)⊥ (determined by C and g), we then have
another hypersurface TpX ⊂ TpM (determined by X) which is spacelike with respect to
the Minkowski metric η̂p from (3.44).

Definition 3.29 (Lorentz boosts). Fix as the generators Bj ∈ so(1, 3), j = 1, 2, 3, of
Lorentz boosts in the x̂j-direction on Rt̂ × R3

x̂ the matrices (Bj)pq = δ0pδjq + δ0qδjp, 0 ≤
p, q ≤ 3, and let B = (B1, B2, B3). Given a vector ŵ ∈ R3, we define by L(ŵ) = exp(ŵ·B) ∈
SO(1, 3) the Lorentz boost with rapidity ŵ.

Identifying (TpM, η̂p) ∼= (R1+3
t̂,x̂

, ˆ
¯
g) (and thus X̂◦p

∼= R3
x̂), there exists a unique Lorentz

boost L(ŵ) : TpM → TpM , where ŵ ∈ X̂◦p , so that

L(ŵ)(X̂◦p ) = TpX. (3.50)

(Equivalently, L(ŵ) maps T from (3.46) to the future unit normal of X at p.) While TpX
may not be globally spacelike for a Kerr metric ĝp = (Φp)∗ĝb(p) (using (3.48)), it is spacelike

near its boundary at infinity where ĝp = η̂p + O(ρ◦). Therefore, the initial data (γ̂, k̂) of
ĝp are well-defined on the complement of a large enough ball in TpX, and there they are
boosted Kerr initial data with rapidity ŵ determined by (3.50). See Figure 3.7.

There are two ways by which one can extend the lift of {0} × X to M̃ to a spacelike

(for small ε > 0) hypersurface in M̃ equipped with a total family with respect to g and

with M̂p-model ĝp: either one modifies X̃ ⊂ M̃ near a compact subset of M̂◦p so that

the intersection of its lift to [M̃ ; M̂p] (cf. the discussion around (3.6)) with the front face
becomes spacelike for ĝp; or one passes to a suitable modification X0 of X with the property

that X̃0 is spacelike for such g̃. We implement the latter approach:

Lemma 3.30 (Modified spacelike hypersurface). Let M, C, g be as in §3.4. Let X ⊂M be
spacelike with X ∩ C = {p}. Let U ⊂ X be an open neighborhood of p. Then there exists a
spacelike hypersurface X0 ⊂M so that X0 \U = X \U , while near p the hypersurface X0 is
the level set of a Fermi normal coordinate function t; in particular, TpX0 = (TpC)⊥ (with

respect to g|p). In particular, if g̃ is a total family with M̂p-model given by a Kerr metric
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C

X

(M, g)

p

TpX

TpC

X̂◦p = (TpC)⊥

TpM

Figure 3.7. On the left: the timelike curve C and the spacelike hypersurface
X inside of (M, g). On the right: geometry of TpM : the hypersurfaces X̂◦p
and TpX (which are related via a Lorentz boost) are both spacelike with

respect to the Minkowski metric η̂p induced by (M, g) at M̂p. With respect
to a subextremal Kerr metric (Φp)∗ĝb on TpM (sans the black hole interior),

the hypersurface X̂◦p is still spacelike, whereas TpX is spacelike only in the
complement of a large enough spatial coordinate ball.

(Φp)∗ĝb, and if K ⊂M is compact, then X̃0 ⊂ M̃ is a spacelike hypersurface in (M̃, g̃) over

β̃−1([0, ε0)×K) when ε0 > 0 is sufficiently small.

See Figure 3.8.

C

X

X0p

Figure 3.8. Illustration of Lemma 3.30: the spacelike hypersurface X in-
side (M, g) is modified near its intersection point p with C to a new spacelike
hypersurface X0 for which TpX0 = (TpC)⊥ (and indeed X0 is the level set of
a Fermi normal coordinate t near p), which is thus spacelike for Kerr metrics
(Φp)∗ĝb.

Proof of Lemma 3.30. On (1 + 1)-dimensional Minkowski space with coordinates (t, x), the
idea is the following: we want to modify the spacelike hypersurface t = vx, |v| < 1, by a
spacelike hypersurface which is tangent to the x-axis at the origin. We define the latter to be

equal to t = 0 for |x| < 1, the (nonlinear) interpolation t = |x|−1
|x|

R0
R0−1vx for 1 ≤ ±x ≤ R0,

and t = vx for |x| > R0. In order for this to be spacelike, we need | vR0
R0−1 | < 1, which holds

true for sufficiently large R0: if |v| < 1 − 2δ, then R0 = 1−δ
δ (or any larger value) works

with a δ to spare. Upon scaling the resulting hypersurface in space and time, we obtain
an arbitrarily localized (near (0, 0)) modification which, moreover, can be smoothed out to
give a smooth hypersurface.

To prove the Lemma, we use Fermi normal coordinates (t, x) along C, with (t, x) = (0, 0)
at p. The hypersurface X is then the graph {(f(x), x) : |x| < δ} of a smooth function
f : R3 → R with f(0) = 0; here δ > 0 is small enough so that the Fermi normal coordinates
are valid in an open set U with [−C,C] × {|x| ≤ δ} ⊂ U where C = sup|x|≤δ |f(x)|. The

hypersurface X̂◦p ⊂ TpM is, in local coordinates, the tangent space at (0, 0) of {0} × R3.
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Moreover, the inverse metric is g−1 = −∂2
t + ∂2

x +O(|x|). Upon shrinking δ > 0 further, we
may assume that |f ′(0)| < 1−2δ. Let R0 = 1−δ

δ and R1 ∈ (R0, R0 +1). Let χ ∈ C∞([0,∞))
be a smoothed-out version of the function which is equal to 0 on [0, 1], equal to 1 on [R1,∞),

and given by r−1
r

R1
R1−1 on [1, R1]; we can arrange that χ(r) = 0 for r ≤ 1, further χ(r) = 1

for r ≥ R0 + 1, and

0 ≤ χ+ rχ′ = (rχ)′ ≤ R0

R0 − 1
for 1 ≤ r ≤ R0 + 1.

For 0 < η < δ
R0+1 chosen momentarily, we define

X0 =
{(
χ
( |x|
η

)
f(x), x

)
: |x| < δ

}
∪ (X \ {|x| ≤ δ}).

We claim that for sufficiently small η > 0, the differential of t − χ(|x|/η)f(x) is timelike;
we only need to check this for η ≤ |x| ≤ η(R0 + 1). Passing to rescaled coordinates ( tη ,

x
η )

and letting η ↘ 0, it suffices to check this in the case that f(x) = x · v is linear with |v| < 1
(using the Euclidean inner product and norm), with g−1 = −∂2

t + ∂2
x, and with the scaling

parameter η absent. That is, we need to check that |∇(χ(|x|)x ·v)| < 1 (using the Euclidean
gradient and norm). But the gradient has norm∣∣∣χ(|x|)v + |x|χ′(|x|) x

|x|

( x
|x|
· v
)∣∣∣ ≤ (χ(|x|) + |x|χ′(|x|)

)
|v| < R0

R0 − 1
(1− 2δ) = 1− δ < 1,

as required. The final conclusion of the Lemma is now a consequence of Corollary 3.21(1).
�

4. The Einstein vacuum equations and their linearization

In this section, we discuss algebraic and analytic properties of the Einstein vacuum
equations, with cosmological constant Λ ∈ R,

Ric(g)− Λg = 0, (4.1)

on a Lorentzian manifold (M, g) and on the total gluing spacetime M̃ , defined as in Defi-
nition 3.1 with C ⊂M a smooth embedded timelike curve diffeomorphic to the real line.

4.1. Constraint equations. LetX be a 3-dimensional manifold. For a Riemannian metric
γ ∈ C∞(X;S2T ∗X) and a symmetric 2-tensor k ∈ C∞(X;S2T ∗X), the constraints map is

P (γ, k; Λ) =
(
P1(γ, k; Λ), P2(γ, k)

)
:=
(
Rγ − |k|2γ + (trγ k)2 − 2Λ, δγk + d trγ k

)
, (4.2)

where we recall that Rγ = trγ Ric(γ) is the scalar curvature and δγ is the negative di-
vergence. For any Lorentzian metric g on M and its initial data (γ, k) at a spacelike
hypersurface X ⊂ M with unit normal ν ∈ C∞(X;TXM)—i.e. γ(V,W ) = g(V,W ) and
k(V,W ) = g(∇V ν,W ), V,W ∈ TX, are the first and second fundamental form of X,
respectively—we have

P1(γ, k; Λ) = 2Gg(Ric(g)− Λg)(ν, ν) ∈ C∞(X),

P2(γ, k) = −Gg(Ric(g)− Λg)(ν,−) ∈ C∞(X;T ∗X),
(4.3)

where Gg = I − 1
2g trg. (Note that P2 is indeed independent of Λ.) In this sense, the

constraint equations are equivalent to the validity of part of the Einstein vacuum equations
at X. In particular, when Ric(g)− Λg = 0, then P (γ, k; Λ) = 0.
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We say that (X, γ, k) has no KIDs (‘Killing Initial Data sets’) in U◦ if the kernel of the
formal adjoint (D(γ,k)P )∗ on C∞(U ;R⊕T ∗UX) is trivial, where U = U◦. (We remark that the
linearization of P is independent of Λ.) The operator (D(γ,k)P )∗ is overdetermined elliptic,
and its kernel is automatically finite-dimensional. Furthermore, elements of ker(D(γ,k)P )∗

are smooth, and they are determined by their restriction to any nonempty open subset of
U◦. (See e.g. [Hin24, Lemma 4.3].) By [Mon75] or [FMM80, Lemma 2.2], the space of KIDs
for (X, γ, k) in U◦ can be identified with the space of Killing vector fields in the maximal
globally hyperbolic development of (U◦, γ|U◦ , k|U◦). In particular, if a spacetime (M, g)
does not admit any Killing vector fields in some globally hyperbolic subset with Cauchy
surface U◦, then the initial data of g at U◦ have no KIDs (and vice versa).

4.2. Linearization and gauge fixing. The linearization of the Einstein vacuum operator
g 7→ Ric(g)− Λg in g is given by the second order differential operator

DgRic− Λ =
1

2
�g − δ∗gδgGg + Rg − Λ, (4.4)

where (δgh)µ = −hµν;
ν and (δgω)µν = 1

2(ωµ;ν + ων;µ), and

(Rgh)µν = Rκµνλh
κλ +

1

2
(Ric(g)µκhν

κ + Ric(g)κνhµ
κ).

We use the convention Rκµνλ = 〈∂κ,Riem(g)(∂ν , ∂λ)∂µ〉 where Riem(g)(∂ν , ∂λ) = [∇ν ,∇λ].
See for example [GL91, Equation (2.4)].

From now on, we shall assume that g solves (4.1), and (M, g) is globally hyperbolic. The
linearized Einstein operator is analytically rather ill-behaved. The operator DgRic − Λ ∈
Diff2(M ;S2T ∗M) has an infinite-dimensional kernel which contains all pure gauge metric
perturbations, i.e. all symmetric 2-tensors which are of the form δ∗gω where ω is any 1-form
on M (and ω may even be a distribution). The formal adjoint

(DgRic− Λ)∗ = Gg ◦ (DgRic− Λ) ◦ Gg (4.5)

likewise has an infinite-dimensional kernel which contains all dual pure gauge perturbations
Ggδ

∗
gω, with ω again an arbitrary 1-form. Therefore, the cokernel of DgRic (acting on

any reasonable space of tensors) is infinite-dimensional. Towards a characterization of the
cokernel, recall the second Bianchi identity δgGgRic(g) = 0 (and thus also δgGg(Ric(g) −
Λg) = 0), which holds for all metrics g regardless of the validity of the Einstein vacuum
equations. If g solves (4.1), then upon linearizing this identity in g we also obtain the
linearized second Bianchi identity

δgGg ◦ (DgRic− Λ) = 0. (4.6)

Thus, symmetric 2-tensors in the range of DgRic−Λ necessarily lie in ker δgGg. The converse
is not always true, and indeed generally fails when (M, g) admits nontrivial Killing vectors,
as demonstrated in [Hin23b].

A typical equation we need to solve in the course of our gluing construction is38

(DgRic− Λ)h = f, f ∈ C∞ ∩ ker δgGg. (4.7)

We explain the procedure for solving this equation, following [Hin23b], as we will encounter
it in a variety of contexts later on. In order to pass to a hyperbolic equation admitting a

38While often, e.g. in linear stability problems, only considers the case f = 0, we need to allow general
f here; see the discussion in §1.2.3.
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well-posed forcing (or initial value) problem, one adds a gauge fixing term; we shall work
here with generalized harmonic coordinate gauges, which take the form δgGgh − θ = 0
where θ ∈ C∞(M ;T ∗M) is fixed but may be chosen arbitrarily. The gauge-fixed linearized
Einstein equation is then

(DgRic− Λ)h+ δ∗g(δgGgh− θ) =
(1

2
�g + Rg − Λ

)
h− δ∗gθ = f. (4.8)

Upon specifying Cauchy data

h0 = h|X , h1 = ∇νh|X (4.9)

for h at some Cauchy hypersurface X ⊂M with future unit normal ν, there exists a unique
solution h of (4.8). This solves (4.7) provided the gauge 1-form η := δgGgh − θ vanishes.
By virtue of (4.6), η satisfies the decoupled equation

�Cgη = 0, �Cg := 2δgGg ◦ δ∗g ,

where �Cg is a wave operator on 1-forms (i.e. its principal symbol is scalar and equal to
that of �g). Thus, one needs to ensure that η has trivial Cauchy data η|X ,∇νη|X ∈
C∞(X;T ∗XM). (We stress that these are 1-forms on M defined over X, and not 1-forms on
X.) But if η|X = 0, then the vanishing of ∇νη|X is easily seen to be equivalent to that of
(Ggδ

∗
gη)(ν,−) ∈ C∞(X;T ∗XM). Now, applying Gg to the PDE (4.8) and plugging ν into the

first slot of the resulting equation at X, we obtain

D(γ,k)P (γ̇, k̇) +
(
Ggδ

∗
gη
)
(ν,−) = (Ggf)(ν,−).

Here, γ̇ and k̇ are the linearized first and second fundamental form corresponding to the
linearized Cauchy data h0, h1. Requiring the second term on the left to vanish is thus
equivalent to a PDE for (γ̇, k̇).

To summarize, in our approach to solving (4.7), we need to choose h0, h1, θ so that

D(γ,k)P (γ̇, k̇) = (Ggf)(ν,−), (4.10)

η = δgGgh− θ = 0 (4.11)

at X where h is related to h0, h1 via (4.9). If 39 one can solve the first equation, then

one can pick h0, h1 which induce the data γ̇, k̇. Such h0, h1 always exist (see Remark 4.1
below), but they are not unique. One may then take θ ∈ C∞(M ;T ∗M) to be any 1-form
with value δgGgh at X; note here that the 1-form (δgGgh)|X ∈ C∞(X;T ∗XM) only depends
on h0, h1. This arranges (4.10). Having thus fixed θ, h0, h1, the solution h of the gauge-fixed
equation (4.8) satisfies η = 0 on M and thus also (4.7).

Remark 4.1 (Existence of Cauchy data inducing linearized initial data). In order to build

Cauchy data (h0, h1) from (γ̇, k̇), note first that on a small open neighborhoodM⊂ R×X
of {0}×X, the mapM3 (s, p) 7→ expp(sν) is a diffeomorphism onto a neighborhood of X.
Splitting the tangent bundle of M in this collar neighborhood into 〈∂s〉 ⊕ TX, the metric
g then takes the block form

g(s, p) =

(
−1 0
0 γ(s)

)
, γ(0) = γ, γ′(0) = 2k.

39We stress that equation (4.10) may not be solvable when (X, γ, k) has nontrivial KIDs.
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We may thus take

h0 =

(
0 0
0 γ̇

)
, h1 =

(
0 0

0 2k̇

)
.

4.3. Linearization on the total gluing spacetime. In the notation of Definition 3.15,
let g̃ denote a (Ê , E)-smooth total family (relative to M, C, g) on the total gluing spacetime

M̃ \ K̃◦; we write ĝ = (ĝp)p∈C for its M̂ -model. Corollary 3.20 implies that

Err := Ric(g̃)− Λg̃ ∈ β̃∗C∞(M ;S2T̃ ∗M) +A(N0∪Ê)−2,E
phg (M̃ \ K̃◦;S2T̃ ∗M̃),

e−1
(
(ε2Err)|M̂

)
= Ric(ĝ), Err|M◦ = β∗◦(Ric(g)− Λg).

(4.12)

We fix cutoff functions χ̂, χ◦ ∈ C∞(M̃) to collar neighborhoods of M̂,M◦ as in (3.5).

Lemma 4.2 (Linearization and its model operators). The linearization of the Einstein

vacuum operator g 7→ Ric(g) − Λg at g̃ (defined on each fiber M̃ε, ε > 0, of M̃ as the
linearization at g̃|

M̃ε
) satisfies

Dg̃Ric− Λ ∈ β̃∗
(
Diff2(M ;S2T ∗M)

)
+A(N0∪Ê)−2,E

phg Diff2
se(M̃ \ K̃◦;S2T̃ ∗M̃)

⊂ A(N0∪Ê)−2,N0∪E
phg Diff2

se(M̃ \ K̃◦;S2T̃ ∗M̃).

Its normal operators are

e ◦NM̂

(
ε2(Dg̃Ric− Λ)

)
◦ e−1 = DĝRic, NM◦(Dg̃Ric− Λ) = β∗(DgRic− Λ).

Proof. The structure of Dg̃Ric − Λ and the identification of its normal operators follows
immediately from the formula (4.4), the expressions for the normal operators in Lemma 3.19
and Corollary 3.20, and the multiplicativity of the normal operator maps. �

We next study the extent to which the linearization provides an approximation to the
nonlinear Einstein operator. The part of the following result concerning M◦ will suffice for
our purposes; at M̂ on the other hand we will need significantly more refined descriptions
in §10.

Proposition 4.3 (Accuracy of the linearization). Let F̂ ′,F ′ ⊂ C×N0 denote two index sets

with Re F̂ ′,ReF ′ > 0, and let h̃ ∈ AF̂ ,Fphg (M̃ \ K̃◦;S2T̃ ∗M̃). Denote by F̂ ,F the nonlinear

closures of F̂ ′,F ′. Then

L :=
(
Ric(g̃ + h̃)− Λ(g̃ + h̃)

)
−
(
Ric(g̃)− Λg̃

)
⊂ AF̂+(N0∪Ê)−2,F+(N0∪E)

phg (M̃ \ K̃◦;S2T̃ ∗M̃).

(4.13)

To leading order at M̂ and M◦, the tensor L has the following description.

(1) (Accuracy near M◦.) Let us regard g as an ε-independent section of S2T̃ ∗M̃ ′ over

M̃ ′ in order to define DgRic−Λ as an ε-independent differential operator on sections

of S2T̃ ∗M̃ ′, and lift it to M̃ . Then

L− χ◦(DgRic− Λ)(χ◦h̃) ∈ AF̂+(N0∪Ê)−2,(F+E)∪2F
phg (M̃ \ K̃◦;S2T̃ ∗M̃). (4.14)

(2) (Accuracy near M̂ .) Extend the zero energy operator family D̂ĝRic(0) (which we

recall is a vertical b-differential operator on M̂) to an ε-independent operator on
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[0, 1)ε × M̂ and identify it on supp χ̂ with an operator on M̃ via the (coordinate-
dependent) diffeomorphism (3.4) from Lemma 3.2. Then

L− ε−2χ̂e−1
(
D̂ĝRic(0)

(
χ̂e(h̃)

))
∈ AF̂+((N0+1)∪Ê)−2,F+(N0∪E)

phg (M̃ \ K̃◦;S2T̃ ∗M̃). (4.15)

Proof. Since L is polyhomogeneous by Corollary 3.20, it suffices to work near the interiors

of M◦ and M̂ , i.e. away from the corner of M̃ , in order to determine the index sets in (4.13)–
(4.15).

Let us first work near (M◦)
◦, where g̃ ≡ g mod AEphg, where we abbreviate AEphg :=

AEphg([0, 1); C∞(M \ C;S2T ∗M));40 and h̃ ∈ AFphg. Then

(g̃ + h̃)−1 − g̃−1 ≡ −g̃−1h̃g̃−1 mod A2F+(N0∪E)
phg ⊂ AF+(N0∪E)

phg ,

since, in local coordinates, finite products of components of g̃−1 lie in AN0∪E
phg , while k-fold

products of components of h̃, with k ≥ 2, lie in AkFphg ⊂ A2F
phg. This verifies the second index

set in (4.13), and moreover gives

L− (Dg̃Ric− Λ)(h̃) =
(
Ric(g̃ + h̃)− Λ(g̃ + h̃)

)
−
(
Ric(g̃)− Λg̃

)
− (Dg̃Ric− Λ)(h̃)

∈ A2F+(N0∪E)
phg .

Note then further that Dg̃Ric − DgRic ∈ AEphg([0, 1); Diff2(M \ C;S2T ∗M)), which when

evaluated on h̃ gives an element of AF+E
phg . Since (2F + (N0 ∪ E)) ∪ (F + E) = (2F ∪ (2F +

E)) ∪ (F + E) = (F + E) ∪ 2F , this verifies the second index set in (4.14).

Regarding the second index set of (4.15), we note that ε−2χ̂e−1 ◦ D̂ĝRic(0) ◦ χ̂e ∈
ε−2ρ2

◦Diff2
se(M̃ \ K̃◦;S2T̃ ∗M̃) ⊂ ρ̂−2Diff2

b maps h̃ near (M◦)
◦ into an element of AFphg;

it then remains to use (4.13) to conclude.

We next turn to a neighborhood of M̂◦ where we use the smooth coordinates ε ≥ 0,
t ∈ I, and x̂ = x

ε ∈ R3. It suffices to evaluate (4.13)–(4.15) at a single fiber M̂◦p , p = c(t0),

of M̂◦; we do this in by passing to the ‘fast time’ coordinate t̂ := t−t0
ε . Thus,

ε ≥ 0, t̂ ∈ R, x̂ ∈ R3 (4.16)

are local coordinates near the interior of the front face of [M̃ ; M̂p], and the map e : dzµ dzν 7→
dẑµ dẑν , z = (t, x), ẑ = (t̂, x̂), is given by multiplication by ε2; cf. Remark 3.6. We thus
consider

ε2eL =
(
Ric(eg̃ + eh̃)− ε2Λ(eg̃ + eh̃)

)
−
(
Ric(eg̃)− ε2Λeg̃

)
.

By Definition 3.15, we have

eg̃ ≡ ĝp mod A(N0+1)∪Ê
phg := A(N0+1)∪Ê

phg

(
[0, 1)ε; C∞(R4 \ (R× K̂◦p);S2T ∗R4)

)
and eh̃ ∈ AF̂phg. Carefully note also the improved regularity

∂j
t̂
(eh̃) ∈ AF̂+j

phg , j ∈ N, (4.17)

40This is the same as the space AEphg(M̃ ′ \ ([0, 1)× C);S2T̃ ∗M̃ ′).
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of h̃ in the fast time variable; this follows from ∂t̂ = ε∂t. Therefore,

(eg̃ + eh̃)−1 − eg̃−1 ≡ −eg̃−1h̃g̃−1 mod A2F̂+(N0∪Ê)
phg ⊂ AF̂+(N0∪Ê)

phg

and thus

ε2eL ∈ AF̂+(N0∪Ê)
phg , ε2eL− (Deg̃Ric− ε2Λ)(eh̃) ∈ A2F̂+(N0∪Ê)

phg

similarly to above. But in view of (4.17),

Deg̃Ric(eh̃) ≡ D̂ĝpRic(0)(eh̃) mod AF̂+((N0+1)∪Ê)
phg ,

and ε2Λ(eh̃) ∈ AF̂+2
phg is of even lower order. This gives (4.15).

Finally, the verification of the M̂ -index set of (4.14) uses that χ◦(DgRic − Λ)χ◦ ∈
χ◦r
−2Diff2

se(M̃ ;S2T̃ ∗M̃) maps h̃ into AF̂−2
phg near M̂◦. �

5. Setup and statement of the main result

Definition 5.1 (Gluing data). Gluing data are a tuple (M, g, p, v,m, a,Λ) with the following
properties:

(1) (M, g) is a smooth open globally hyperbolic Lorentzian manifold which satisfies the
Einstein vacuum equations with cosmological constant Λ ∈ R, that is,

Ric(g)− Λg = 0;

(2) p ∈M , and v ∈ TpM is a future timelike unit vector;
(3) m > 0, a ∈ TpM , a ⊥ v, |a| < m (so m, |a| are subextremal Kerr black hole

parameters);
(4) there exists a precompact connected open neighborhood U◦M ⊂ M of p so that

(U◦M , g|U◦M ) does not have any nontrivial Killing vector fields.

(Kerr(–de Sitter) spacetimes violate (4); we discuss the modifications required to handle
this case in §12.) Given such gluing data, we shall fix the following further objects.

(5) We write c : I → M (with I ⊆ R an open interval) for the maximally extended
arc-length parameterized timelike geodesic with c(0) = p and c′(0) = v, and we

denote by C = c(I) ⊂ M its image. We denote by M̃ = [[0, 1) ×M ; {0} × C] the

total gluing spacetime of Definition 3.1, with boundary hypersurfaces M̂ and M◦.
(6) We fix Fermi normal coordinates

(t, x) ∈ R× R3, t ∈ I, r = |x| < r0(t), (5.1)

along C, with p = (0, 0); we require r0 ∈ C∞(I) to satisfy 0 < r0(t) < 1
2 for all t ∈ I.

In these coordinates, identify a ∈ (TpC)⊥ ⊂ TpM with a vector in R3, denoted a
still.

(7) By X ⊂ M we denote a Cauchy hypersurface with X ∩ C = {p} and TpX ⊥
TpC, and we let U◦ ⊂ X denote a smoothly bounded precompact connected open
neighborhood of p so that the domain of dependence of U◦ contains U◦M . (See
Remarks 5.2 and 5.3 below.)
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(8) We let g̃0 ∈ C∞(M̃ \ K̃◦;S2T̃ ∗M̃) denote a (∅,N0 + 1)-smooth total family as
produced by Lemma 3.28(2); here

K̃ = {(ε, t, x) : |εx| ≤ m}
is as in Definition 3.15 for the choice K̂p = Φp(K̂m,a) ⊂ M̂p (with Φp given by

Lemma 3.28, and K̂m,a = {x̂ ∈ R3 : |x̂| ≤ m} as in Definition 3.25). We write ĝp for

the M̂p-model of g̃, and ĝ = (ĝp)p∈C for the M̂ -model of g̃. Thus, when expressing

ĝ in the frame dt̂, dx̂ (where t̂ = dt(−), x̂ = dx(−)) on TpM , it is equal to the Kerr

metric ĝm,a = ĝm,a(x̂; dt̂,dx̂) and thus t-independent.
(9) We write (γ, k) for the initial data of (M, g) at X; that is, γ ∈ C∞(X;S2T ∗X) is the

induced metric, and k ∈ C∞(X;S2T ∗X) is the second fundamental form of X ⊂M .

(10) We define the total gluing space X̃ as a subset of M̃ as in §3.2.

Remark 5.2 (Choice of X). By Lemma 3.30, we can always modify a given Cauchy hy-
persurface intersecting C at p in an arbitrarily small neighborhood of p to a hypersurface
satisfying the stated orthogonality condition; if we make this modification inside of a convex
neighborhood of p, the modified hypersurface is guaranteed to be a Cauchy hypersurface
still.

Remark 5.3 (Existence of U◦; KIDs). As the set U◦ ⊂ X in item (7) above, we may take
any smoothly bounded precompact connected open set containing the set V ⊂ X of the
intersection points with X of all maximally extended causal curves emanating from a point
in U◦M . Note that since U◦M is compact and (M, g) is globally hyperbolic, the set V is
compact. As recalled in §4.1, we then conclude that (X, γ, k) has no KIDs in U◦. We also
recall from [Hin24, Remark 4.13] that for all sufficiently small δ > 0, the nonexistence of
KIDs persists on the subset of U◦ consisting of all points with distance larger than δ > 0
from ∂U◦.
Theorem 5.4 (Main theorem, precise version). Given gluing data (M, g, p, v,m, a,Λ), de-

fine C, X ⊂ M and K̃ ⊂ M̃ as above. Then there exists a (Ê , E)-smooth (with index sets

Ê ⊂ (3 + N0) × N0 and E ⊂ (1, 0)+ ∪ ((3 + N0) × N0)) total family g̃ on M̃ \ K̃◦ (see

Definition 3.15) with respect to g (i.e. g̃|M◦ = β∗◦g) and with M̂ -model equal to ĝ (i.e. with

M̂p-model equal to the Kerr metric ĝb = ĝm,a for all p ∈ C, as in point (8) above) so that

(1) g̃ is a formal solution of the Einstein vacuum equations with cosmological constant

Λ at ε = 0 and at X̃. That is, in a neighborhood of (M̂ \ K̃) ∪M◦,
Ric(g̃)− Λg̃ (5.2)

is a smooth section of S2T̃ ∗M̃ over M̃ \ K̃◦ which vanishes to infinite order at M̂ ,

M◦, and X̃ ⊂ M̃ ;
(2) g̃ is equal to g outside the domain of influence of a compact subset of U◦;
(3) eg̃ is equal to the Kerr metric ĝb at M̂ modulo quadratically vanishing error terms,

in the sense that in Fermi normal coordinates around C, the components of

eg̃(ε, t, x̂; dt̂,dx̂)− ĝb(x̂; dt̂,dx̂)

in the frame dt̂,dx̂ vanish quadratically at ε = 0.

The set K̃ which we excise lies inside the interior of the small Kerr black hole glued along
M̂ , and is indeed disjoint from the event horizon at ε = 0. See Figure 5.1.
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x̂

ε
M̂

M◦

X̃

ε

(M̃, g̃)

(M, g)

C
X

Figure 5.1. Illustration of Theorem 5.4. On the left: the total family g̃
solves the Einstein vacuum equations (5.2) to infinite order at ε = 0 (the

union of M̂ and M◦) and at X̃. A set K̃ = {r̂ = |x̂| ≤ m} in the interior
of the small Kerr black hole is excised (not shown here). On the right: the
background spacetime (M, g), and timelike geodesic C along which we want
to glue in a small Kerr black hole, and a spacelike hypersurface X; the lift

of [0, 1)ε ×X to M̃ is X̃ on the left.

As outlined in §1.2, the proof of Theorem 5.4 consists of two steps.

(I) Construction of a formal solution g̃∞ at ε = 0; that is, g̃∞ is a total family with

respect to g and with M̂ -model ĝ which satisfies

Ric(g̃∞)− Λg̃∞ ∈ ε∞C∞(M̃ \ K̃◦;S2T̃ ∗M̃).

This forms the main part of the paper and is accomplished in §§7–10 following some
preliminary calculations in §6; see Theorem 10.27.

(II) Correction of g̃∞ to g̃ = g̃∞ + h̃ where h̃ vanishes to infinite order at ε = 0, and so

that g̃ satisfies the Einstein vacuum equations also to infinite order at X̃. This step
is the subject of §11; it is considerably easier and can be read independently. See
Theorem 11.1.

The combination of Theorems 10.27 and 11.1 proves Theorem 5.4.

6. Geometric differential operators on Minkowski space

In this section, we compute the explicit form of various geometric operators on Minkowski
space which are related to the Einstein equations. A key concept which we recall here as
well is the decomposition of tensors on S2 into scalar and vector type components.

6.1. Spherical harmonics. Geometric differential operators on the unit sphere (S2, /g) are

denoted with a slash, so /g is the standard metric, /d is the exterior derivative, /δ = δ/g is the

(negative) divergence, /δ∗ the symmetric gradient, /tr = tr/g is the trace, and /∆ = ∆/g the

non-negative (tensor) Laplacian. For l ∈ N0, we define the (2l + 1)-dimensional space of
spherical harmonics of degree l on S2 by

Sl = ker
(
/∆− l(l + 1)

)
⊂ C∞(S2).

Definition 6.1 (1-form and symmetric 2-tensor spherical harmonics). Let l ∈ N.
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(1) (1-forms.) We say that a 1-form ω ∈ C∞(S2;T ∗S2) is of scalar type l if ω = /dS for
some S ∈ Sl.

41 We say that ω is of vector type l if ω = /?/dS, where /? is the Hodge
star operator on (S2, /g); we denote by

Vl = {/?/dS : S ∈ Sl} ⊂ C∞(S2;T ∗S2)

the space of all vector type l 1-forms.
(2) (Symmetric 2-tensors.) We say that h ∈ C∞(S2;S2T ∗S2) is of scalar type l if h =

/δ∗0/dS+S′/g with S, S′ ∈ Sl; here /δ∗0 = /δ∗+ 1
2/g/δ is the trace-free part of the symmetric

gradient. We say that h is of vector type l if h = /δ∗V for some V ∈ Vl.

For brevity, we call elements of Sl also sl functions; similarly, vl 1-forms are 1-forms of
vector type l, and likewise for scalar type 1-forms and for symmetric 2-tensors on S2.

We say that a function, 1-form, or tensor is of pure type if it is of scalar type l or
vector type l for some l ∈ N0. Recall that since /d has injective principal symbol, every
ω ∈ C∞(S2;T ∗S2) can be uniquely decomposed as ω = /du + v where u ∈ C∞(S2) and
v ∈ C∞(S2;T ∗S2) ∩ ker /d∗, i.e. /δv = 0; this means /d/?v = 0, and since S2 has trivial first
cohomology, we can further write /?v = /dv′ for v′ ∈ C∞(S2). (In total, ω = /du − /?/dv′.)
Expanding u, v′ into spherical harmonics, we thus conclude that every smooth 1-form on
S2 can be expanded into a (rapidly convergent) sum of 1-forms of pure type.

We have a similar decomposition of symmetric 2-tensors h ∈ C∞(S2;S2T ∗S2): using
that /δ∗0 is elliptic, and recalling that there do not exist nontrivial divergence- and trace-
free symmetric 2-tensors on S2 [Hig87], we can write h = u/g + /δ∗0ω with u ∈ C∞(S2) and

ω ∈ C∞(S2;T ∗S2); decomposing u and ω into their pure type components shows that h can
be written as a sum of pure type tensors as well. We remark that the case l = 1 is special
in that

/δ∗0/dS = 0 ∀S ∈ S1, /δ∗V = 0 ∀V ∈ V1.

The second identity is a re-statement of the fact that the elements of V1 are (dual to)
rotations on S2 and thus are Killing 1-forms. The first identity only needs to be checked
for S equal to the height function on S2 ⊂ R3, in which case /g−1(/dS,−) is related, via

stereographic projection from the south pole, to the radial vector field on R2, which is a
conformal Killing vector field indeed.

Definition 6.2 (Projections onto pure types). Given a function, 1-form, or symmetric
2-tensor q on S2, we denote by

πsl(q), πvl(q)

its scalar type l, resp. vector type l part.

Example 6.3 (Some projections). Regarding S2 as the unit sphere in R3
x, write ωj = xj

|x| . If

u ∈ C∞(S2), then πs0(u) = 1
4π

∫
S2 ud/g and πs1(u) =

∑3
j=1( 3

4π

∫
S2 uω

j d/g)ωj , where we use

that 1
4π

∫
S2 ω

jωl d/g = 1
3δ
jl (Kronecker delta). For ω ∈ C∞(S2;T ∗S2), we have

πs1(ω) =

3∑
j=1

(
1

4π

∫
S2

〈ω, /dωj〉 d/g
)

3

2
/dωj ;

the factor 3
2 here is the reciprocal of 1

4π 〈/dω
j , /dωj〉L2(S2;T ∗S2) = 1

4π 〈/δ/dω
j , ωj〉L2(S2) = 2

3 .

41We exclude the case l = 0 here, since S0 consists of constants.
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We next discuss these notions in terms of the representation theory of O(3) = SO(3)×
(Z/2Z). The representation of SO(3) on Sl via pullback of functions on SO(3) is the unique
(up to isomorphism) complex (2l + 1)-dimensional representation ρl. Note moreover that
elements of Sl are even, resp. odd with respect to the antipodal map −I for even, resp. odd
l. On the other hand, −I reverses orientation, thus (−I) ◦ /? = −/? ◦ (−I). Therefore,

O(3) acts (via pullback) on

{
Sl

Vl
as the representation

{
ρl ⊗ (−1)l, l ≥ 0,

ρl ⊗ (−1)l+1, l ≥ 1.

We then recall that ρl ⊗ ρl′ ∼= ρ|l−l′| ⊕ · · · ⊕ ρl+l′ , and ρl ⊗s ρl ∼= ρ2l ⊕ ρ2l−2 ⊕ · · · ⊕ ρ0. For

example, V1 ⊗s V1 ⊂ C∞(S2;T ∗S2), as an SO(3)-representation, is isomorphic to ρ0 ⊕ ρ2;
and since it is even under −I, we must have

V1 ⊗s V1
∼= S0 ⊕ S2 (6.1)

as O(3)-representations. That is, if V ∈ V1, then V ⊗s V is the sum of a scalar type
0 symmetric 2-tensor (i.e. a constant multiple of /g) and a scalar type 2 symmetric 2-

tensor. Explicitly, for V = ∂[φ = sin2 θ dφ, one finds V ⊗s V = 1
3/g + (Y /g + /δ∗0/dY ) where

Y = 1
2 sin2 θ − 1

3 ∈ S2. The ‘vector type 0’ representation ρ0 ⊗ (−1), given by O(3) 3 A 7→
(v 7→ (detA)v), v ∈ V0 := C, is not realized by tensors on S2. Thus, for example, while
S1⊗V1

∼= V0⊕S1⊕V2 as representations, the space {fω : f ∈ S1, ω ∈ V1} ⊂ C∞(S2;T ∗S2)
is isomorphic to S1 ⊕V2. Explicitly, the map S1 ⊗V1 3 (f, ω) 7→ fω has 1-dimensional
kernel spanned by

∑
ωj ⊗ /?/dωj since

∑
ωj/?/dωj = 1

2/?/d
∑

(ωj)2 and
∑

(ωj)2 = 1.

Lemma 6.4 (Identities for spherical harmonics). Let l ∈ N0, and S ∈ Sl. Then

/δ(/dS) = l(l + 1)S, /δ∗(/dS) = /δ∗0/dS−
l(l + 1)

2
/gS, /∆(/dS) = (l(l + 1)− 1)S, (6.2)

/∆(/gS) = l(l + 1)/gS, /δ(/δ∗0/dS) =
l(l + 1)− 2

2
/dS, /∆(/δ∗0/dS) = (l(l + 1)− 4)/δ∗0/dS. (6.3)

For l ∈ N and V ∈ Vl, we have

/∆V = (l(l + 1)− 1)V, /δ/δ∗V =
l(l + 1)− 2

2
V, /∆/δ∗V = (l(l + 1)− 4)/δ∗V. (6.4)

Proof. The first two identities in (6.2) and the first identity in (6.3) follow directly from
the definitions and [ /∆, /g] = 0. The third identity in (6.2) follows from the fact that the
Hodge Laplacian and the tensor Laplacian on 1-forms on a Riemannian manifold (M, g)
are related via ∆g + Ric(g) = dδg + δgd; but Ric(/g) = /g acts as the identity operator on

C∞(S2;T ∗S2), so /∆/d = (/d/δ + /δ/d− 1)/d = /d( /∆− 1) on functions. Since [ /∆, /?] = 0, this also
implies the first identity in (6.4).

For a 1-form ω on a Riemannian manifold (M, g), we have

(2δgδ
∗
gω)µ = −2(δ∗gω)µν;

ν = −ωµ;ν
ν − ων;µ

ν = −ωµ;ν
ν − ων;

ν
µ + gνλ(ων;λµ − ων;µλ)

=
(
(∆g + dδg)ω

)
µ

+ gνλRρνλµωρ =
(
(∆g + dδg − Ric(g))ω

)
µ
.

On (S2, /g), this implies /δ/δ∗ = 1
2( /∆ + /d/δ − 1), which in view of /δV = 0 proves the second

identity in (6.4). The second identity in (6.3) follows similarly from

/δ(/δ∗0/dS) = /δ/δ∗/dS + /δ
( l(l + 1)

2
/gS
)

=
1

2
(2l(l + 1)− 2)/dS− l(l + 1)

2
/dS.
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Finally, for ω ∈ C∞(M ;T ∗M) on an n-dimensional Riemannian manifold (M, g) with
constant sectional curvature K, so Rρµνλ = K(gµλδ

ρ
ν − gµνδρλ), we compute

2(∆gδ
∗
gω)µν = −gκλ(ωµ;νκλ + ων;µκλ)

= −gκλ
(
ωµ;κλν + ων;κλµ +Rρµνλωρ;κ +Rρκνλωµ;ρ +Rρνµλωρ;κ +Rρκµλων;ρ

+ ((Rρµνκ +Rρνµκ)ωρ);λ

)
= 2(δ∗g∆gω)µν −Kgκλ

(
gµλων;κ − gµνωλ;κ + gκλωµ;ν − gκνωµ;λ

+ gνλωµ;κ − gνµωλ;κ + gκλων;µ − gκµων;λ

)
−K

(
gµκων;

κ − gµνωκ;
κ + gνκωµ;

κ − gνµωκ;
κ
)

= 2
((
δ∗g(∆g − (n+ 1)K)− 2Kgδg

)
ω
)
µν
.

On the 2-sphere, with n = 2 and K = 1, this gives

/∆/δ∗ = /δ∗( /∆− 3)− 2/g/δ.

Since /δV = 0, this implies the third identity in (6.4), and after a short calculation also the
last identity in (6.3). �

Using the representation theory of O(3), or by direct computation, one can check that if
E = R, T ∗S2, S2T ∗S2 and u, v ∈ C∞(S2;E) are of different pure types, then 〈u, v〉L2(S2;E) =

0 where we use the volume density and fiber inner product induced by /g to define the L2-
inner product. As an example of an explicit check, we have for S ∈ Sl and V ∈ Vl′ , l, l

′ ∈ N,
the identity 〈/δ∗0/dS, /δ∗V〉 = 〈/δ∗/dS, /δ∗V〉 = 〈/dS, /δ/δ∗V〉 = 1

2(l′(l′ + 1)− 2)〈/dS,V〉 (using (6.4)),

which vanishes after another integration by parts since /δV = 0.

6.2. Operators on Minkowski space. We write
¯
g = −dt2 + dx2 = −dt2 + dr2 + r2/g for

the Minkowski metric on Rt × R3
x, and

¯
δ = δ

¯
g,

¯
δ∗ = δ∗

¯
g , tr = tr

¯
g,

¯
G = G

¯
g = I − 1

2
¯
gtr,

¯
� = �

¯
g.

Polar coordinates on R3 are denoted r = |x|, ω = x
|x| ∈ S2; we write ρ = r−1 for the inverse

radial coordinate. In r > 0, we introduce the double null coordinates42

x0 = t+ r = t∗ + 2r, x1 = t− r =: t∗,

in terms of which we have

¯
g = −dx0 dx1 + r2

/g = −dt2∗ − 2 dt∗ dr + r2
/g,

¯
g−1 = −4∂0 ⊗s ∂1 + r−2

/g
−1 = −2∂t∗ ⊗s ∂r + ∂2

r + r−2
/g
−1.

We write xa (a = 2, 3) for coordinates on S2, and use the letters a, b, c, d ∈ {2, 3} for
spherical indices. The Christoffel symbols of

¯
g in the coordinates x0, x1, xa all vanish, with

the exception of

¯
Γc0b = 1

2r
−1δcb , ¯

Γc1b = −1
2r
−1δcb , ¯

Γ0
ab = −r/gab,

¯
Γ1
ab = r/gab,

¯
Γcab = /Γcab. (6.5a)

42One can equally well perform all computations in (t, r)-coordinates, and in fact in the present paper
some calculations would be slightly simplified. We use double null coordinates (x0, x1) and the related
coordinates (t∗, r) here, as these are more commonly used in related works on spectral theory and microlocal
analysis on asymptotically flat spacetimes.



64 PETER HINTZ

In particular, this gives

¯
gµν

¯
Γ0
µν = −2r−1,

¯
gµν

¯
Γ1
µν = 2r−1,

¯
gµν

¯
Γcµν = r−2

/g
ab/Γcab. (6.5b)

We introduce the bundle splittings

T ∗R4 = 〈dx0〉 ⊕ 〈dx1〉 ⊕ rT ∗S2,

S2T ∗R4 = 〈(dx0)2〉 ⊕ 〈2dx0 dx1〉 ⊕ (2dx0 ⊗s rT ∗S2)

⊕ 〈(dx1)2〉 ⊕ (2dx1 ⊗s rT ∗S2)⊕ r2S2T ∗S2.

(6.6)

(That is, we write a covector ω at a point in R4 \ r−1(0) as ω = ω0 dx0 +ω1 dx1 + r/ω where
/ω ∈ T ∗S2.) In these splittings, the fiber inner products on T ∗R4, resp. S2T ∗R4 induced by

¯
g take the form

 0 −2 0
−2 0 0
0 0 /g−1

 , resp.


0 0 0 4 0 0
0 8 0 0 0 0
0 0 0 0 −4/g−1 0
4 0 0 0 0 0
0 0 −4/g−1 0 0 0

0 0 0 0 0 /g
−1
2

 , (6.7)

where /g
−1
2 is the fiber inner product on S2T ∗S2. Tensor calculations in the splittings (6.6)

require careful bookkeeping of r-weights.

Definition 6.5 (r-weights). For N ∈ N and µ1, . . . , µN ∈ {0, 1, 2, 3}, define

s(µ1, . . . , µN ) := #
{
i ∈ {1, . . . , N} : µi ∈ {2, 3}

}
.

Given a tensor T with components Tµ1...µN
ν1...νK , we then set

Tµ1...µN
ν1...νK := rs(ν1,...,νK)−s(µ1,...,µN )Tµ1...µN

ν1...νK .

We similarly define the weighted Christoffel symbols
¯
Γκ̄µ̄ν̄ := rs(κ)−s(µ,ν)

¯
Γκµν , which are thus

all zero except for

¯
Γc̄0b̄ = 1

2r
−1δcb , ¯

Γc̄1b̄ = −1
2r
−1δcb , ¯

Γ0
āb̄ = −r−1

/gab,
¯
Γ1
āb̄ = r−1

/gab,
¯
Γc̄āb̄ = r−1/Γcab. (6.8)

For example, for ω = ω0 dx0 + ω1 dx1 + r/ω, we have ω0̄ = ω0, ω1̄ = ω1, and ωā = /ωa.

Lemma 6.6 (Form of geometric operators on Minkowski space). We work in the bundle
splittings (6.6) and in the coordinates (t∗, ρ, ω) = (t− |x|, 1

|x| ,
x
|x|).

(1) Acting on 1-forms, we have

¯
� = −2∂t∗ρ(ρ∂ρ − 1) + ̂̄�(0), ̂̄�(0) = ρ2

−(ρ∂ρ)
2 + ρ∂ρ + /∆ +

 1 −1 −/δ
−1 1 /δ
−2/d 2/d 1

 ,

¯
δ∗ =


0 0 0
1
2 0 0
0 0 0
0 1 0
0 0 1

2
0 0 0

 ∂t∗ + ̂̄δ∗(0), ̂̄δ∗(0) = ρ


−1

2ρ∂ρ 0 0
1
4ρ∂ρ −1

4ρ∂ρ 0
1
2
/d 0 −1

4(ρ∂ρ + 1)
0 1

2ρ∂ρ 0
0 1

2
/d 1

4(ρ∂ρ + 1)

/g −/g /δ∗

 .
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Here, /∆ is the block-diagonal operator all of whose diagonal entries are equal to the
respective (tensor) Laplacian on the standard 2-sphere.

(2) Acting on symmetric 2-tensors, we have tr = (0,−4, 0, 0, 0, /tr),

¯
� = −2∂t∗ρ(ρ∂ρ − 1) + ̂̄�(0),

̂̄�(0) = ρ2

−(ρ∂ρ)
2 + ρ∂ρ + /∆ +


2 −2 −2/δ 0 0 −1

2
/tr

−1 2 /δ −1 −/δ 1
2

/tr
−2/d 2/d 3 0 −2 −/δ

0 −2 0 2 2/δ −1
2

/tr
0 −2/d −2 2/d 3 /δ
−2/g 4/g −4/δ∗ −2/g 4/δ∗ 2



 ,

¯
G =


1 0 0 0 0 0
0 0 0 0 0 1

4
/tr

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 2/g 0 0 0 G/g

 ,

¯
δ =

2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0

 ∂t∗ + ̂̄δ(0),

̂̄δ(0) = ρ

ρ∂ρ − 2 −ρ∂ρ + 2 /δ 0 0 1
2

/tr
0 ρ∂ρ − 2 0 −ρ∂ρ + 2 /δ −1

2
/tr

0 0 ρ∂ρ − 3 0 −ρ∂ρ + 3 /δ

 .

Proof. The Minkowski metric and dual metric take the form
¯
g = (0,−1

2 , 0, 0, 0, /g)T and

¯
g−1 = (0,−2, 0, 0, 0, /g−1) (using the dual splitting). This implies tr = (0,−4, 0, 0, 0, /tr).

Moreover, the passage from (x0, x1)-coordinates to (t∗, r)- or (t∗, ρ)-coordinates is given by

∂0 = 1
2∂r = −1

2ρ
2∂ρ, ∂1 = ∂t∗ − 1

2∂r = ∂t∗ + 1
2ρ

2∂ρ. (6.9)

On functions, the expressions (6.9) and (6.5a)–(6.5b) thus give

¯
� = −

¯
gµν(∂µ∂ν −

¯
Γκµν∂κ) = 4∂0∂1 − 2r−1∂0 + 2r−1∂1 + r−2 /∆

= −2ρ∂t∗(ρ∂ρ − 1) + ρ2
(
−(ρ∂ρ)

2 + ρ∂ρ + /∆
)
.

(6.10)

We have (
¯
δ∗ω)µ̄ν̄ = r−s(µ,ν) 1

2(∂µ(rs(ν)ων̄) + ∂ν(rs(µ)ωµ̄))−
¯
Γκ̄µ̄ν̄ωκ̄, and therefore

¯
δ∗ =


∂0 0 0
1
2∂1

1
2∂0 0

1
2r
−1/d 0 1

2(r−1∂0r − r−1)
0 ∂1 0
0 1

2r
−1/d 1

2(r−1∂1r + r−1)
r−1/g −r−1/g r−1/δ∗

 ,

which produces the stated expression upon using (6.9). The divergence operator on sym-
metric 2-tensors can be computed as the formal adjoint of

¯
δ∗ with respect to the L2 inner
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product with volume density r2|d
¯
x0d

¯
x1d/g| and fiber inner products (6.7). This gives

¯
δ =

2r−2∂1r
2 2r−2∂0r

2 r−1/δ 0 0 1
2r
−1 /tr

0 2r−2∂1r
2 0 2r−2∂0r

2 r−1/δ −1
2r
−1 /tr

0 0 2(r−1∂1r − r−1) 0 2(r−1∂0r + r−1) r−1/δ

 ,

and thus the stated expression upon plugging in (6.9).

The wave operator on 1-forms can be computed by recalling that for any metric g one
has �g = 2δgGgδ

∗
g + Ric(g); using that Ric(

¯
g) = 0 and Ric(/g) = /g, one can thus compute

¯
� = 2

¯
δ
¯
G

¯
δ∗ using the already known expressions for

¯
δ,

¯
G, and

¯
δ∗.

We compute the action of the wave operator on a symmetric 2-tensor h in two steps.

Step 1. Covariant derivative of a symmetric 2-tensor. By direct calculation using the
formula

hµ̄ν̄;κ̄ = r−s(µ,ν,κ)∂κ
(
rs(µ,ν)hµ̄ν̄

)
−

¯
Γρ̄µ̄κ̄hρ̄ν̄ − ¯

Γρ̄ν̄κ̄hµ̄ρ̄,

one finds that the components hµ̄ν̄;κ̄ of the covariant derivative ∇̄h = ∇¯
gh are given by

h00;0 = ∂0h00, h00;1 = ∂1h00, h00;c̄ = r−1∂ch00 − r−1h0c̄,

h01;0 = ∂0h01, h01;1 = ∂1h01, h01;c̄ = r−1∂ch01 + 1
2r
−1(h0c̄ − h1c̄),

h0b̄;0 = ∂0h0b̄, h0b̄;1 = ∂1h0b̄, h0b̄;c̄ = r−1 /∇ch0b̄ + r−1(h00 − h01)/gbc − 1
2r
−1hb̄c̄,

h11;0 = ∂0h11, h11;1 = ∂1h11, h11;c̄ = r−1∂ch11 + r−1h1c̄,

h1b̄;0 = ∂0h1b̄, h1b̄;1 = ∂1h1b̄, h1b̄;c̄ = r−1 /∇ch1b̄ + r−1(h01 − h11)/gbc + 1
2r
−1hb̄c̄,

hāb̄;0 = ∂0hāb̄, hāb̄;1 = ∂1hāb̄, hāb̄;c̄ = r−1 /∇chāb̄ + r−1(h0ā − h1ā)/gbc + r−1(h0b̄ − h1b̄)/gac.

Step 2. Wave operator. In order to compute
¯
�h, we use the formula

(
¯
�h)µ̄ν̄ = −gκ̄λ̄hµ̄ν̄;κ̄λ̄

= −gκ̄λ̄
[
r−s(µ,ν,κ,λ)∂λ

(
rs(µ,ν,κ)hµ̄ν̄;κ̄

)
−

¯
Γρ̄
κ̄λ̄
hµ̄ν̄;ρ̄ −

¯
Γρ̄
µ̄λ̄
hρ̄ν̄;κ̄ −

¯
Γρ̄
ν̄λ̄
hµ̄ρ̄;κ̄

]
= 2
(
r−s(µ,ν)∂0(rs(µ,ν)hµ̄ν̄;1) + r−s(µ,ν)∂1(rs(µ,ν)hµ̄ν̄;0)− r−1hµ̄ν̄;0 + r−1hµ̄ν̄;1

−
¯
Γρ̄1µ̄hρ̄ν̄;0 −

¯
Γρ̄0µ̄hρ̄ν̄;1 −

¯
Γρ̄1ν̄hµ̄ρ̄;0 −

¯
Γρ̄0ν̄hµ̄ρ̄;1

)
+ (Sh)µ̄ν̄ ,

(6.11)

where we define

(Sh)µ̄ν̄ = −/gcdr−1∂chµ̄ν̄;d̄ + /g
cd(

¯
Γρ̄µ̄c̄hρ̄ν̄;d̄ +

¯
Γρ̄ν̄c̄hµ̄ρ̄;d̄ +

¯
Γēc̄d̄hµ̄ν̄;ē).

Since
¯
Γρ̄1µ̄ = −1

2r
−1s(µ)δρµ = −

¯
Γρ̄0µ̄, the derivatives falling on rs(µ,ν) in the big parenthesis

cancel the terms from the Christoffel symbols; the big parenthesis in (6.11) thus evaluates
to

(4∂0∂1 − 2r−1∂0 + 2r−1∂1)hµ̄ν̄ = −2ρ∂t∗(ρ∂ρ − 1) + ρ2
(
−(ρ∂ρ)

2 + ρ∂ρ
)
hµ̄ν̄ , (6.12)

cf. (6.10). It remains to evaluate the action of S. Using (6.8), we compute

(Sh)00 = −/gcdr−1 /∇ch00;d̄ + /g
cdr−1h0c̄;d̄,

(Sh)01 = −/gcdr−1 /∇ch01;d̄ + 1
2/g
cdr−1(h1c̄;d̄ − h0c̄;d̄),

(Sh)0b̄ = −/gcdr−1 /∇ch0b̄;d̄ + r−1(h01;b̄ − h00;b̄) + 1
2/g
cdr−1hb̄c̄;d̄,

(Sh)11 = −/gcdr−1 /∇ch11;d̄ − /gcdr−1h1c̄;d̄,
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(Sh)1b̄ = −/gcdr−1 /∇ch1b̄;d̄ + r−1(h11;b̄ − h01;b̄)− 1
2/g
cdr−1hb̄c̄;d̄,

(Sh)āb̄ = −/gcdr−1 /∇chāb̄;d̄ + r−1(h1ā;b̄ + h1b̄;ā − h0ā;b̄ − h0b̄;ā).

Using the expressions for hµ̄ν̄;κ̄ given above, and denoting spherical indices by ‘•’, this gives

(r2Sh)00 = /∆h00 + 2(h00 − h01)− 2/δh0• − 1
2

/trh••,

(r2Sh)01 = /∆h01 − h00 + 2h01 − h11 + /δh0• − /δh1• + 1
2

/trh••,

(r2Sh)0• = /∆h0• − 2 /dh00 + 2 /dh01 + 3h0• − 2h1• − /δh••,
(r2Sh)11 = /∆h11 − 2h01 + 2h11 + 2/δh1• − 1

2
/trh••,

(r2Sh)1• = /∆h1• − 2 /dh01 + 2 /dh11 − 2h0• + 3h1• + /δh••,

(r2Sh)•• = /∆h•• + (−2h00 + 4h01 − 2h11)/g − 4/δ∗h0• + 4/δ∗h1• + 2h••.

Together with (6.12), this verifies the form of
¯
� on symmetric 2-tensors. The proof of

Lemma 6.6 is complete. �

Corollary 6.7 (Indicial family of linearized Ricci at zero frequency). Regarding R3 =

t−1(0) ⊂ R4, define D̂
¯
gRic(0) ∈ Diff2(R3;S2T ∗R3R4) to be the restriction of D

¯
gRic to t-

translation invariant symmetric 2-tensors on R4. In the coordinates ρ = r−1 = |x|−1,

ω = x
|x| , and in the bundle splitting (6.14), the operator ρ−2D̂

¯
gRic(0) is then dilation-

invariant on [0,∞)ρ×S2
ω, and its indicial family43 N(ρ−2D̂

¯
gRic(0), λ) = ρ−λ−2D̂

¯
gRic(0)ρλ

(i.e. defined with respect to ρ) satisfies

N
(
ρ−2D̂

¯
gRic(0), λ

)
=



1
2
/∆ λ 1

2 (λ−1)/δ 0 0 − 1
8λ(λ−1) /tr

− 1
4λ(λ−1) − 1

2λ(λ+1)+ 1
2
/∆ − 1

4 (λ−1)/δ − 1
4λ(λ−1) 1

4 (λ−1)/δ 1
8λ(λ−1) /tr

− 1
2λ/d − 1

2 (λ+2)/d − 1
4 (λ2−λ+2)+ 1

2
/δ/d 0 − 1

4 (λ−2)(λ+1) 1
4λ(/δ+/d /tr)

0 λ 0 1
2
/∆ − 1

2 (λ−1)/δ − 1
8λ(λ−1) /tr

0 1
2 (λ+2)/d − 1

4 (λ−2)(λ+1) 1
2λ/d − 1

4 (λ2−λ+2)+ 1
2
/δ/d − 1

4λ(/δ+/d /tr)
−(λ−1)/g −2/g+2/δ∗/d −(λ−1)/δ∗−/g/δ −(λ−1)/g (λ−1)/δ∗+/g/δ − 1

2 (λ+1)(λ−2)+ 1
2
/∆

+ 1
2 (λ−2)/g /tr−/δ∗/δG/g


,

∂λN
(
ρ−2D̂

¯
gRic(0), λ

)

=


0 1 1

2
/δ 0 0 −1

8(2λ−1) /tr
−1

4(2λ−1) −1
2(2λ+1) −1

4
/δ −1

4(2λ−1) 1
4
/δ 1

8(2λ−1) /tr
−1

2
/d −1

2
/d −1

4(2λ−1) 0 −1
4(2λ−1) 1

4(/δ+/d /tr)
0 1 0 0 −1

2
/δ −1

8(2λ−1) /tr
0 1

2
/d −1

4(2λ−1) 1
2
/d −1

4(2λ−1) −1
4(/δ+/d /tr)

−/g 0 −/δ∗ −/g /δ∗ −1
2(2λ−1−/g /tr)

 ,

∂λN
(
ρ−1[D

¯
gRic, t∗]̂(0), λ

)

43This is a family of second order differential operators on S2 acting on sections of R⊕ R⊕ T ∗S2 ⊕ R⊕
T ∗S2 ⊕ S2T ∗S2. Conceptually more accurately, it is a family of operators on ∂(R3 \ {0}) = ∂R3 acting on

sections of the restriction to ∂R3 of the bundle on R3 \ {0} defined by continuous extension of (6.6).
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=


0 0 0 0 0 0
−1 −1 0 0 0 1

4
/tr

0 0 −1
2 0 0 0

0 0 0 0 0 −1
2

/tr
0 0 −1 0 −1

2 0
0 0 0 0 0 −1

 .

Proof. One obtains D̂
¯
gRic(0) from D

¯
gRic (expressed in t∗, ρ, ω coordinates) by dropping

all derivatives in t∗. We then have

N
(
ρ−2D̂

¯
gRic(0), λ

)
=

1

2
N
(
ρ−2 ̂̄�(0), λ

)
−N

(
ρ−1 ̂̄δ∗(0), λ+ 1

)
N
(
ρ−1̂̄δ(0), λ

)
¯
G.

The first half of the Lemma then follows by differentiation in λ and evaluation using the
expressions in Lemma 6.6. To prove the second half, we note that

[D
¯
gRic, t∗]̂(0) =

1

2
[̂
¯
�, t∗](0)− [

¯
δ∗, t∗]̂̄δ(0)

¯
G− ̂̄δ∗(0)[

¯
δ, t∗]

¯
G. (6.13)

Since [
¯
δ, t∗] is homogeneous of degree 0, this implies

∂λN
(
ρ−1[D

¯
gRic, t∗]̂(0), λ

)
=

1

2
∂λN

(
ρ−1 [̂

¯
�, t∗](0), λ

)
− [

¯
δ∗, t∗] ◦ ∂λN(ρ−1̂̄δ(0), λ) ◦

¯
G

− ∂λN(ρ−1 ̂̄δ∗(0), λ) ◦ [
¯
δ, t∗] ◦

¯
G.

A computation using Lemma 6.6 gives the stated result. �

Using polar coordinates x = rω, r > 0, ω ∈ S2, we can decompose tensors on R3 \ {0}
into spherical harmonics. In the case of functions u = u(r, ω), this amounts to projecting
u(r,−) to Sl for each r > 0 and l ∈ N0; in this manner, we can write u ∈ C∞(R3 \ {0}) as
a (rapidly converging) series

∑
l∈N0

ul(r) where ul ∈ C∞((0,∞); Sl). In the case of 1-forms
and symmetric 2-tensors, we split

T ∗R3 = 〈dr〉 ⊕ rT ∗S2, S2T ∗R3 = 〈dr2〉 ⊕ (2dr ⊗s rT ∗S2)⊕ r2S2T ∗S2 (6.14)

over r > 0. (We note that the splittings (6.14) extend to smooth splittings of scT ∗R3

and S2 scT ∗R3 away from r = 0.) A 1-form ω ∈ C∞(R3 \ {0};T ∗R3) is then given by
ω = (u, r/ω) where u ∈ C∞(R3 \ {0}) and /ω ∈ C∞((0,∞); C∞(S2;T ∗S2)), and we may split
u and similarly /ω into its pure type components as above. The symmetric 2-tensor case is
completely analogous.

Further generalizing this to time-translation-invariant sections of T ∗R4 and S2T ∗R4 in
the bundle splitting (6.6), we can split the restriction to a single coordinate 2-sphere (say
{t = 0, |x| = 1}) into pure types as follows:

(1) scalar type 0: for a, b, c, d ∈ C,

1-forms (a, b, 0)T , symmetric 2-tensors (a, b, 0, c, 0, d/g)T (6.15a)

(i.e. a dx0 + bdx1 and a(dx0)2 + 2bdx0 dx1 + c(dx1)2 + d · r2/g);
(2) scalar type 1: for a, b, c, d, e, f ∈ C and S ∈ S1,

1-forms (aS, bS, c /dS), symmetric 2-tensors (aS, bS, c /dS, dS, e /dS, fS/g); (6.15b)
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(3) scalar type l ≥ 2: for a, b, c, d, e, f, h ∈ C and S ∈ Sl,

1-forms (aS, bS, c /dS), symmetric 2-tensors (aS, bS, c /dS, dS, e /dS, fS/g + h/δ∗0/dS);
(6.15c)

(4) vector type 1: for a, b ∈ C and V ∈ V1,

1-forms (0, 0, aV)T , symmetric 2-tensors (0, 0, aV, 0, bV, 0)T ; (6.15d)

(5) vector type l ≥ 2: for a, b, c ∈ C and V ∈ Vl,

1-forms (0, 0, aV)T , symmetric 2-tensors (0, 0, aV, 0, bV, c/δ∗V)T . (6.15e)

Remark 6.8 (Action on pure type tensors). Importantly, the operators in Lemma 6.6 and
Corollary 6.7 not only preserve pure types; they also map pure type tensors of the above
forms with fixed S or V into pure type tensors of the same type with the same S, V.

Therefore, for example, the restriction of ̂̄δ∗(0) to scalar type l ≥ 2 tensors is given by a
7× 3 matrix of differential operators in r (or ρ = r−1), formally obtained from Lemma 6.6
by replacing /d by 1, /g by (1, 0)T , and /δ∗ by (−1

2 l(l + 1), 1)T .

We shall use such decompositions mostly to analyze the behavior of tensors on R3 (arising
as stationary tensors on R4) as r →∞ or r → 0.

Definition 6.9 (Leading order type). Let ρ = r−1 on R3 \ {0}. Let E → R3 \ {0} be the
pullback along the projection (ρ, ω) 7→ ω of a direct sum of the bundles R, T ∗S2, S2T ∗S2 →
S2. Let u ∈ C∞(R3 \ {0};E). Then we say that u is of scalar (resp. vector) type l modulo

ρkC∞ if there exists u0 ∈ C∞(R3\{0};E) which on each coordinate sphere is of scalar (resp.
vector) type l and for which u − u0 ∈ ρkC∞. If this holds for k = 1, we say that u is of
scalar (resp. vector) type to leading order at infinity.

7. Linearized Ricci curvature operator on Minkowski space

We continue using the notation
¯
g = −dt2 + dr2 + r2/g from §6.2. In order to prepare

solving the linearized Einstein equations with right hand sides which are polyhomogeneous
at ∂M◦ or ∂M̂ (cf. §1.2.3), we now study the mapping properties of the indicial family

N
(
r2D̂

¯
gRic(0), λ

)
, λ ∈ C, (7.1)

defined with respect to r, i.e. N(r2D̂
¯
gRic(0), λ) = r2−λD̂

¯
gRic(0)rλ acting on stationary (in

t) and dilation-invariant (in r relative to the splitting (6.6)) symmetric 2-tensors.

Remark 7.1 (Indicial family with respect to ρ = r−1). If one defines the indicial family
using ρ (as done in Corollary 6.7), then the parameter λ gets replaced by −λ.

In the bundle splittings (6.6), the operator N
(
r2D̂

¯
gRic(0), λ) is of class Diff2(S2;R⊕R⊕

T ∗S2⊕R⊕ T ∗S2⊕S2T ∗S2). More accurately, it is the indicial family of r2D̂
¯
gRic(0) at the

front face ff ∼= S2 of [R3; {0}], and thus acts on sections of the pullback of S2T ∗(0,0)R
4 →

{0} ⊂ R3 along the blow-down map
¯
β : [R3; {0}] → R3. We mostly consider its action on

pure type tensors, and write

N•(r
2D̂

¯
gRic(0), λ)
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for the restriction of N(r2D̂
¯
gRic(0), λ) to tensors of pure type • ∈ {sl, vl}; expressed in

terms of the bases (6.15a)–(6.15e), this is a square matrix whose coefficients are quadratic

functions of λ ∈ C. We similarly write N•(r ̂̄δ∗(0), λ) and N•(r̂̄δ
¯
G(0), λ). Finally, we write

C∞• (ff;
¯
β∗T ∗(0,0)R

4) ⊂ C∞(ff;
¯
β∗T ∗(0,0)R

4)

for the (finite-dimensional) subspace consisting of pure type • 1-forms; similarly for sym-
metric 2-tensors.

Concretely, we shall characterize the extent to which the range of (7.1) is smaller than

the kernel of N(r̂̄δ
¯
G(0), λ− 2) (cf. the linearized second Bianchi identity

¯
δ
¯
G ◦D

¯
gRic = 0),

or the kernel is bigger than the range of N(r ̂̄δ∗(0), λ+ 1) (cf. the identity D
¯
gRic ◦

¯
δ∗ = 0).

In other words, we will study the extent to which the complex

0→ C∞(ff;
¯
β∗T ∗(0,0)R

4)
N(r ̂̄δ∗(0),λ+1)−−−−−−−−−→ C∞(ff;

¯
β∗S2T ∗(0,0)R

4)

N(r2D̂
¯
gRic(0),λ)

−−−−−−−−−−→ C∞(ff;
¯
β∗S2T ∗(0,0)R

4)
N(r̂̄δ

¯
G(0),λ−2)−−−−−−−−−→ C∞(ff;

¯
β∗T ∗(0,0)R

4)→ 0

(7.2)

is exact, and precisely characterize the failure of exactness when it occurs.

For notational brevity, we shall henceforth write G =
¯
G and

N(DRic, λ) := N(r2D̂
¯
gRic(0), λ), N(δ∗, λ) := N(r ̂̄δ∗(0), λ), N(δG, λ) := N(r̂̄δ

¯
G(0), λ).

(7.3)
Note that the adjoint of D

¯
gRic ◦

¯
δ∗ = 0 is 0 =

¯
δ ◦

¯
GD

¯
gRic

¯
G =

¯
δ
¯
G ◦D

¯
gRic

¯
G. Thus, the first

two (nontrivial) arrows in (7.2) are essentially the formal adjoints of the final two arrows.
This implies a certain duality between the two middle homology groups. Moreover, we shall
see that kerN(DRic, λ)/ ranN(δ∗, λ+ 1) can be nontrivial, which means that we can have
D

¯
gRic(rλh0) = 0 (with h0 ∈ C∞(

¯
β∗S2T ∗(0,0)R

4)) but rλh0 6=
¯
δ∗(rλ+1ω0). One may then

worry that one can have D
¯
gRic(rλ(log r)h0 + rλh1) = 0, and yet the argument is not pure

gauge to leading order, and so on, which would imply that quasi-homogeneous linearized
metric perturbations can have arbitrarily high powers of log r, even after quotienting out
by pure gauge solutions. However, already the existence of h1 turns out to force h0 to lie
in the range of N(δ∗, λ + 1). We proceed to discuss the underlying linear algebra of such
‘restricted kernels’ (and the dual ‘generalized ranges’) in an abstract setting in §7.1.

In §7.2, we then turn to the mode stability of the Minkowski metric at zero energy on
homogeneous (with respect to spatial dilations) tensors in r > 0. The dual problem of
solving the equation N(DRic, λ)h = f for homogeneous f ∈ kerN(δG, λ− 2) is considered
in §7.3. These two sections consider individual pure types, and thus only require finite-
dimensional linear algebra; in §7.4, we study all but finitely many pure types (depending
on the value of λ ∈ C) in one go by means of a gauge-fixed linearized Einstein operator.

We then combine these ingredients in §7.5 to give a complete description of the nullspace,
modulo pure gauge, of D

¯
gRic on quasi-homogeneous tensors in r > 0, and of its range inside

of ker
¯
δ
¯
G.

7.1. Linear algebra of restricted kernels and extended ranges. Consider two finite-
dimensional complex vector spaces V,W , each equipped with a nondegenerate (but not
necessarily positive definite) sesquilinear inner product, and a holomorphic family of linear
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maps

A(λ) : V →W, λ ∈ Ω,

where Ω ⊆ C is open and nonempty. For j ∈ N0 and λ0 ∈ Ω, define

Kj(A, λ0) :=

{
ω(λ) =

j∑
k=0

(λ− λ0)−k−1ωk : ωk ∈ V, A(λ)ω(λ) is holomorphic at λ0

}
,

K[j](A, λ0) :=
{
ωj : ∃ω(λ) ∈ Kj(A, λ0) with leading term (λ− λ0)−j−1ωj

}
,

R[j](A, λ0) :=

{
(A(λ)ω(λ))|λ=λ0 : ω(λ) =

j∑
k=0

(λ− λ0)−kωk, ωk ∈ V,

A(λ)ω(λ) is holomorphic at λ0

}
.

(7.4)

Define K∗j (A∗, λ0), K∗[j](A
∗, λ0), R∗[j](A

∗, λ0) analogously by replacing A(λ) by A(λ)∗ and

λ− λ0, ‘holomorphic’ by λ̄− λ0, ‘anti-holomorphic’. We note that

ranA(λ0) = R[0](A, λ0) ⊆ R[1](A, λ0) ⊆ · · · ,
· · · ⊆ K[1](A, λ0) ⊆ K[0](A, λ0) = kerA(λ0),

hence the nomenclature of ‘generalized range’ and ‘restricted kernel’.

Lemma 7.2 (Duality). For λ0 ∈ C and for all j ∈ N0, we have K[j](A, λ0) = R∗[j](A
∗, λ0)⊥

and K∗[j](A
∗, λ0) = R[j](A, λ0)⊥.

Proof. This is elementary for j = 0. We thus consider j ≥ 1. We only explicitly discuss
the proof of K[j](A, λ0) = R∗[j](A

∗, λ0)⊥, since the proof of the second part is completely

analogous. We give two proofs of this result.

• First proof. Let ω(λ) =
∑j

k=0(λ− λ0)−k−1ωj ∈ Kj(A, λ0), so ωk ∈ K[j](A, λ0), and let

h∗(λ) =
∑j

k=0(λ̄− λ0)−kh∗k be such that ω∗ := (A(λ)∗h∗(λ))|λ=λ0 ∈ R∗[j](A
∗, λ0). Then

〈ωk, ω∗〉 = lim
λ→λ0

〈(λ− λ0)j+1ω(λ), A(λ)∗h∗(λ)〉 = lim
λ→λ0

(λ− λ0)〈A(λ)ω(λ), (λ̄− λ0)jh∗(λ)〉

vanishes since the pairing remains bounded as λ → λ0. This establishes the inclusion
K[j](A, λ0) ⊆ R∗[j](A

∗, λ0)⊥.

It remains to show that R∗[j](A
∗, λ0)⊥ ⊆ K[j](A, λ0). Arguing by induction (simulta-

neously also for the second part of the Lemma), suppose that ω ∈ R∗[j](A
∗, λ0)⊥. Then

ω ∈ R∗[j−1](A
∗, λ0)⊥ = K[j−1](A, λ0) by the inductive hypothesis, so there exists ω(λ) =∑j−1

k=0(λ− λ0)−k−1ωk ∈ Kj−1(A, λ0) with ωj−1 = ω; and for all h∗(λ) =
∑j

k=0(λ̄− λ0)−kh∗k
for which A(λ)∗h∗(λ) is anti-holomorphic at λ = λ0, we have

0 = lim
λ→λ0

〈ω,A(λ)∗h∗(λ)〉

= lim
λ→λ0

〈
(λ− λ0)jω(λ), A(λ)∗h∗(λ)

〉
= lim

λ→λ0

〈
A(λ)ω(λ), (λ̄− λ0)jh∗(λ)

〉
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=
〈
(A(λ)ω(λ))|λ=λ0 , h

∗
j

〉
.

The space of all leading order terms h∗j of such h∗(λ) is K∗[j−1](A
∗, λ0). Thus, using the

inductive hypothesis (for the second part of the Lemma), we deduce that

(A(λ)ω(λ))|λ=λ0 ∈ K∗[j−1](A
∗, λ0)⊥ = R[j−1](A, λ0)

can be written as (A(λ)ω[(λ))|λ=λ0 where ω[(λ) =
∑j−1

k=0(λ − λ0)−kω[k. This means that
A(λ)(ω(λ)− ω[(λ)) vanishes at λ = λ0, and therefore

(λ− λ0)−1ω(λ)− (λ− λ0)−1ω[(λ)

= (λ− λ0)−j−1ω +

j−2∑
k=0

(λ− λ0)−k−2ωk −
j−1∑
k=0

(λ− λ0)−k−1ω[k
(7.5)

gets mapped by A(λ) into a function which is holomorphic at λ = λ0. This means that (7.5)
lies in Kj(A, λ0), and therefore ω ∈ K[j](A, λ0). This completes the proof.

• Second proof. If T (λ), S(λ) are invertible linear maps which are defined and holomorphic
near λ = λ0, then Kj(A, λ0) = {S(λ)ω(λ) : ω ∈ Kj(TAS, λ0)} and therefore

K[j](A, λ0) = S(λ0)K[j](TAS, λ0).

Similarly, R∗[j](A
∗, λ) = (S(λ0)∗)−1R∗[j](S

∗A∗T ∗, λ0). Therefore, it suffices to prove the

Lemma for TAS in place of A. Fixing orthonormal bases {e1, . . . , eN} of V and {f1, . . . , fN ′}
of W , we can then choose T, S so that TAS is in Smith normal form: in the case that
N ′ = dimW ≥ N = dimV , this means that

T (λ)A(λ)S(λ) =

(
D(λ)

0

)
, D(λ) = diag((λ− λ0)j1 , . . . , (λ− λ0)jN ),

where 0 ≤ j1 ≤ · · · ≤ jN , and thus S(λ)∗A(λ)∗T (λ)∗ = (D(λ)∗, 0). Therefore,

K[j](TAS, λ0) = span{ek : jk > j}, R∗[j]((TAS)∗, λ0) = span{ek : jk ≤ j}.

The case that N ′ ≤ N is similar. This implies the claim. �

Let now Z be a further finite-dimensional complex vector space equipped with a nonde-
generate sesquilinear inner product. Suppose

A(λ) : V →W, B(λ) : W → Z, λ ∈ Ω,

where Ω ⊆ C is open and nonempty, are holomorphic families of linear maps with B(λ) ◦
A(λ) = 0 for all λ ∈ Ω. In other words, we have a family of complexes

V
A(λ)
−−−−→←−−−−
A(λ)∗

W
B(λ)
−−−−→←−−−−
B(λ)∗

Z, λ ∈ Ω,

with the top row holomorphic and the bottom row antiholomorphic.

Proposition 7.3 (Nondegenerate pairings). Let i, j ∈ N0, λ0 ∈ Ω. Then R[j](A, λ0) ⊂
K[i](B, λ0) and R∗[i](B

∗, λ0) ⊂ K∗[j](A
∗, λ0). Furthermore, the inner product K[i](B, λ0) ×

K∗[j](A
∗, λ0) 3 (h, h∗) 7→ 〈h, h∗〉 induces a nondegenerate sesquilinear pairing(

K[i](B, λ0)/R[j](A, λ0)
)
×
(
K∗[j](A

∗, λ0)/R∗[i](B
∗, λ0)

)
→ C. (7.6)
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The special case i = j = 0 is the non-degeneracy of the pairing(
kerB(λ)/ ranA(λ)

)
×
(
kerA(λ)∗/ ranB(λ)∗

)
→ C,

which is elementary.

Remark 7.4 (Interpretation). If A,B depend polynomially on λ, then K[0](B, λ0) is equal

to the space of all h ∈ W so that the W -valued function r 7→ rλ0h on (0,∞)r satisfies
B(r∂r)(r

λ0h) = 0. The stronger membership h ∈ K[1](B, λ0) implies that there exists
h1 ∈W so that

B(r∂r)(r
λ0(log r)h+ rλ0h1) = 0; (7.7)

and so on. For i = 1, j = 0, the first factor in (7.6) is trivial if and only if all log r leading
order terms (such as h in (7.7)) of quasi-homogeneous (of degree λ0) elements in kerB(r∂r)
lie in the range of A(λ0). In this case, the second factor is then also trivial, which means that

every h∗ ∈W with A∗(r∂r)(r
λ0h∗) = 0 can be written as h∗ = B(r∂r)

∗(rλ0(log r)f∗0 +rλ0f∗1 )

for some f∗0 ∈ kerB(λ0)∗ and f∗1 ∈ Z. (Here, B(r∂r)
∗ is defined using the b-density |drr | on

(0,∞).)

Proof of Proposition 7.3. If ω(λ) =
∑j

k=0(λ − λ0)−kωk is such that A(λ)ω(λ) is holomor-
phic, then the identity

B(λ)((λ− λ0)−i−1A(λ)ω(λ)) = B(λ)A(λ)((λ− λ0)−i−1ω(λ)) = 0

shows that (A(λ)ω(λ))|λ0 ∈ R[j](A, λ0) lies in K[i](B, λ0). Similarly, one shows that the
second quotient space in (7.6) is well-defined. The non-degeneracy follows from Lemma 7.2.

�

Besides the case i = 0, j = 0, we only need the case i = 1, j = 0 (or i = 0, j = 1) in our
application. We rephrase this as follows (see also Remark 7.4).

Corollary 7.5 (Nondegenerate pairings, special case). The inner product on W induces a
nondegenerate sesquilinear pairing between the spaces

{h ∈ kerB(λ0) : B′(λ0)h ∈ ranB(λ0)}/ ranA(λ0) (7.8)

and

kerA(λ0)∗/{B(λ0)∗f∗0 +B′(λ0)∗f∗1 : f∗0 ∈ Z, f∗1 ∈ kerB(λ0)∗}. (7.9)

Proof. Note that if h ∈ kerB(λ0), then v ∈ W solves B′(λ0)h = B(λ0)v if and only if
B(λ)((λ − λ0)−2h − (λ − λ0)−1v) is holomorphic at λ0; thus, such a vector v exists if and
only if h ∈ K[1](B, λ0). Thus, (7.8) is the space K[1](B, λ0)/R[0](A, λ0).

Similarly, if given f∗0 , f
∗
1 ∈ Z we define f∗ by f∗(λ) = (λ̄− λ0)−1f∗1 + f∗0 , then

B(λ)∗f∗(λ) = (λ̄− λ0)−1B(λ0)∗f∗1 +
(
B′(λ0)∗f∗1 +B(λ0)∗f∗0

)
+O(|λ̄− λ0|)

is anti-holomorphic at λ = λ0 if and only if f∗1 ∈ kerB(λ0)∗. Thus, (7.9) is equal to the
space K[0](A

∗, λ0)/R[1](B
∗, λ0). The claim now follows from Proposition 7.3. �
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7.2. Mode stability at zero energy for the indicial family. We study the kernel of
N(DRic, λ) modulo pure gauge solutions, i.e. modulo the range of N(δ∗, λ + 1). This is
a variant on the classical problem of mode stability for the linearized Einstein vacuum
equations (see e.g. [RW57, KI03], [HHV21, §8]), here at the Minkowski metric and at zero
energy but with the caveat that we are considering stationary metric perturbations in r > 0
which are homogeneous of degree λ with respect to spatial dilations (r, ω) 7→ (cr, ω), c > 0
(and thus typically singular at r = 0). Since N(DRic, λ) preserves pure type tensors in
the strong sense explained in Remark 6.8, one can specialize this problem further and
study the mode stability individually for each pure type.44 We identify kerNs1(DRic, λ) ⊂
C∞s1 (ff;

¯
β∗S2T ∗(0,0)R

4) with the subspace of C4 which is the kernel of the 4×4 matrix obtained

by expressing N(DRic, λ) in the splitting (6.15b) for any fixed 0 6= S ∈ S1 (see Remark 6.8);
similarly for other pure types. Explicit expressions are given below, see e.g. (7.18).

Proposition 7.6 (Mode stability at zero energy for the indicial family). Let λ ∈ C.

(1) (Scalar type 0.) For λ 6= −1, 0, we have kerNs0(DRic, λ) = ranNs0(δ∗, λ + 1).
For λ = −1, in the notation of (7.4), the quotient Ks0,[0](DRic,−1)/Rs0,[0](δ

∗, 0) =
kerNs0(DRic,−1)/ ranNs0(δ∗, 0) is 2-dimensional, whereas (in terms of (6.15a))

Ks0,[0](DRic,−1)/Rs0,[1](δ
∗, 0)

= kerNs0(DRic,−1)/
(
ranNs0(δ∗, 0) + rankerNs0(δ∗,0) ∂λNs0(δ∗, 0)

)
= span{(1, 0, 1, 0)T }

is 1-dimensional (in coordinates spanned by the equivalence class of r−1((dx0)2 +
(dx1)2) = 2

r (dt2 + dr2)). For λ = 0 finally,

Ks0,[0](DRic, 0)/Rs0,[0](δ
∗, 1) = span{(1, 1, 1, 0)T }

(in coordinates, (1, 1, 1, 0)T corresponds to 4 dt2).
(2) (Scalar type 1.) For λ 6= −2,−1, 1, we have kerNs1(DRic, λ) = ranNs1(δ∗, λ + 1).

For the exceptional values of λ, we have, in terms of (6.15b)45

Ks1,[0](DRic,−2)/Rs1,[0](δ
∗,−1) = span{(−1, 0, 1,−1,−1, 0)T }, (7.10)

Ks1,[0](DRic, 1)/Rs1,[0](δ
∗, 2) = span{(0, 0, 0, 2,−1, 0)T }; (7.11)

finally,

Ks1,[0](DRic,−1)/Rs1,[0](δ
∗, 0) = span

{
∂λNs1(δ∗, 0)

(1

2
,−1

2
, 1
)T}

(7.12)

(in coordinates
¯
δ∗((log r)d(rS)) = 1

rdr ⊗s d(rS), S ∈ S1), so

Ks1,[0](DRic,−1)/Rs1,[1](δ
∗, 0)

= kerNs1(DRic,−1)/
(
ranNs1(δ∗, 0) + rankerNs1(δ∗,0) ∂λNs1(δ∗, 0)

)
= {0}.

(7.13)

44The converse is not automatic; that is, suppose, say, λ ∈ C is such that kerN•(DRic, λ) = ranN•(δ
∗, λ+

1) for all • ∈ {sl, vl}. Then we can only conclude that kerN(DRic, λ) = ranN(δ∗, λ + 1) if we restrict to
the subspace of C∞(ff;

¯
β∗T ∗(0,0)R4) consisting of tensors with finite pure type support, i.e. only finitely many

projections onto pure type tensors are nonzero. We show in §7.4—necessarily using analytic tools—how to
remove this restriction.

45As explained above, (7.10) means that in the splitting (6.15b), the space of symmetric 2-tensors of the
form (−S, 0, dS,−S,−dS, 0)T , S ∈ S1, projects isomorphically onto the quotient space.
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(3) (Scalar type l ≥ 2.) For λ 6= −l−1, l, we have kerNsl(DRic, λ) = ranNsl(δ
∗, λ+1).

For λ = −l − 1, l, we have

Ksl,[0](DRic, λ)/Rsl,[0](δ
∗, λ+ 1) = span{(1, 0, 0, 1, 0, 2, 0)T }.

(4) (Vector type l = 1.) For λ 6= −2, 0, 1, we have kerNv1(DRic, λ) = ranNv1(δ∗, λ+1).
Furthermore,

Kv1,[0](DRic, λ)/Rv1,[0](δ
∗, λ+ 1) = span{(1, 1)T }, λ = −2, 1.

(In coordinates, (1, 1)T is 4rλ dt⊗s rV, V ∈ V1.) Finally, for λ = 0, the space

Kv1,[0](DRic, 0)/Rv1,[0](δ
∗, 1) = span

{
∂λNv1(δ∗, 1)(1,−1)T

}
(7.14)

(in coordinates
¯
δ∗(2r · rV), V ∈ V1) is 1-dimensional, whereas

Kv1,[0](DRic, 0)/Rv1,[1](δ
∗, 1)

= kerNv1(DRic, 0)/
(
ranNv1(δ∗, 1) + rankerNv1(δ∗,1) ∂λNv1(δ∗, 1)

)
= {0}.

(7.15)

(5) (Vector type l ≥ 2.) For λ 6= −l−1, l, we have kerNvl(DRic, λ) = ranNvl(δ
∗, λ+1).

Furthermore,

Kvl,[0](DRic, λ)/Rvl,[0](δ
∗, λ+ 1) = span{(1, 1, 0)T }, λ = −l − 1, l.

When the quotient of kerN•(DRic, λ) by ranN•(δ
∗, λ+1) is nontrivial, this indicates the

possibility that there exists a homogeneous metric perturbation which is not pure gauge; in
the s0, s1, and v1 cases, the quotient can contain nontrivial elements which are nonetheless
pure gauge if the gauge potential is permitted to contain an additional logarithmic term.
But even if one quotients out by the generalized range of N(δ∗,−), there remain certain
nontrivial quotient spaces for all pure types. Certain ones have simple interpretations which
will play an important role in §9:

• for s0 and λ = −1: linearized mass perturbations—compare 2
r (dt2 +dr2) in part (1)

with the first line in expression (3.41);
• for s1 and λ = −2: deformation tensors of translations on a mass 6= 0 Schwarzschild

spacetime (which are not deformation tensors on Minkowski space however). This
is the reason for the choice (−1, 0, 1,−1,−1, 0)T of basis in (7.10): relative to the
scalar type 1 function S = S(ĉ) = ĉ · x|x| , this (times r−2) is the leading order part of

h(2,0),ĉ = 1
2Lĉ·∂x̂ ĝ2,0 where ĝ2,0 is the mass 2 Schwarzschild metric (though expressed

in x-coordinates here), cf. (9.9) and (9.27); and
• for v1 and λ = −2: linearized angular momentum perturbations—compare the

tensor 4r−2 dt ⊗s rV with the last line in (3.41) (which is the only term in large
square parentheses which is of vector type 1, cf. the discussion after (9.26)).

Proof of Proposition 7.6. Since N•(DRic, λ) and N•(δ
∗, λ+ 1) are (finite-dimensional) ma-

trices, this can in be verified by direct computation. For most pure types, we shall proceed
in a mildly conceptual fashion by mimicking some of the arguments in [KI03] as in [HHV21,
§8]. We use Lemmas 6.4 and 6.6, Corollary 6.7, and the splittings (6.15a)–(6.15e) to obtain
the expressions for the matrices below. (Recall that λ is the power of r = ρ−1 here, rather
than of ρ in Corollary 6.7.)
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• Part (1): s0 tensors. We note the explicit expressions

Ns0(δ∗, λ+ 1) =
1

4


2(λ+ 1) 0
−λ− 1 λ+ 1

0 −2(λ+ 1)
4 −4

 ,

Ns0(DRic, λ) =
1

4


0 −4λ 0 −λ(λ+ 1)

−λ(λ+ 1) −2λ(λ− 1) −λ(λ+ 1) λ(λ+ 1)
0 −4λ 0 −λ(λ+ 1)

4(λ+ 1) −8 4(λ+ 1) −2(λ+ 1)(λ+ 2)

 ,

Ns0(δG, λ− 2) =
1

2

(
−2λ 4 0 λ

0 −4 2λ −λ

)
(7.16)

For λ 6= 0, Ns0(δG, λ−2) is surjective and thus has 2-dimensional kernel; since Ns0(DRic, λ)
maps a supplementary subspace of kerNs0(DRic, λ) injectively into this kernel, we conclude
that dim ranNs0(DRic, λ) = 4−dim kerNs0(DRic, λ) ≤ 2. But for λ 6= −1, 0, the dimension
of ranNs0(DRic, λ) is at least 2. Thus, it must equal to 2. Since for λ 6= −1, ranNs0(δ∗, λ+
1) is a 2-dimensional subspace of kerNs0(DRic, λ), we conclude that for λ 6= −1, 0 we have
kerNs0(DRic, λ) = ranNs0(δ∗, λ+ 1).

For λ = −1, we have kerNs0(δ∗, λ+ 1) = span{(1, 1)T } (in coordinates, this is
¯
δ∗(2dt) =

0), so ranNs0(δ∗, λ+ 1)|λ=−1 = span{(0, 0, 0, 1)T } is a 1-dimensional subspace of

Ns0(DRic,−1) = span{(1, 0, 0, 0)T , (0, 0, 1, 0)T , (0, 0, 0, 1)T }. (7.17)

We note that the range of ∂λNs0(δ∗, λ+ 1)|λ=−1 : (1, 1)T 7→ 1
2(1, 0,−1, 0)T (in coordinates,

this is the equation
¯
δ∗(2 log r dt) = 2r−1dt ⊗s dr = 1

2r
−1((dx0)2 − (dx1)2)) spans a 1-

dimensional subspace in the quotient kerNs0(DRic,−1)/ ranNs0(δ∗, 0), and a complemen-
tary subspace is spanned by (1, 0, 1, 0)T .

For λ = 0 finally, the quotient of

kerNs0(DRic, λ) = span{(1, 0, 0, 1)T , (−1, 0, 1, 0)T , (2, 1, 0, 0)T }
by ranNs0(δ∗, λ+1)|λ=0 = span{(2,−1, 0, 4)T , (0, 1,−2,−4)T } is spanned e.g. by the image
of (1, 1, 1, 0)T in the quotient.

• Part (2): s1 tensors. For λ 6= −1, the annihilator of the range of

Ns1(δ∗, λ+ 1) =
1

4


2(λ+ 1) 0 0
−λ− 1 λ+ 1 0

2 0 λ
0 −2(λ+ 1) 0
0 2 −λ
4 −4 −4


is spanned by

h∗1 = (1 , 2 , 0, 1, 0, 0),

h∗2 =
(
− 2

λ+ 1
, − 2

λ+ 1
, 1, 0, 1, 0

)
,

h∗3 =
(
− 1

λ+ 1
,

λ

λ+ 1
, 1, 0, 0,

λ

4

)
.
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Thus, for h ∈ C∞s1 (ff;
¯
β∗S2T ∗(0,0)R

4), the value of N(DRic, λ)h only depends on the gauge-

invariant quantities (X,Y, Z) := (h∗1(h), h∗2(h), h∗3(h)). Since (X,Y, Z) = (1, 0, 0), (0, 1, 0),
(0, 0, 1) for h = (0, 0, 0, 1, 0, 0)T , (0, 0, 0, 0, 1, 0)T , (−λ − 1, 0, 0, λ + 1,−2, 0)T , respectively,
one computes using

Ns1(DRic, λ) =
1

2



2 −2λ −2(λ+1) 0 0 − 1
2
λ(λ+1)

− 1
2
λ(λ+1) −(λ−2)(λ+1) λ+1 − 1

2
λ(λ+1) −λ−1 1

2
λ(λ+1)

λ λ−2 − 1
2

(λ2+λ+2) 0 − 1
2

(λ−1)(λ+2) − 1
2
λ

0 −2λ 0 2 2(λ+1) − 1
2
λ(λ+1)

0 −λ+2 − 1
2

(λ−1)(λ+2) −λ − 1
2

(λ2+λ+2) 1
2
λ

2(λ+1) −8 −2(λ+3) 2(λ+1) 2(λ+3) −λ(λ+3)


(7.18)

the matrix of N(DRic, λ) in terms of (X,Y, Z) (for the columns) and the splitting (6.15b)
(for the rows) to be

Ns1(DRic, λ) =
1

2


0 0 −2(λ+ 1)

−1
2λ(λ+ 1) −λ− 1 2(λ+ 1)

0 −1
2(λ− 1)(λ+ 2) −2

2 2(λ+ 1) −2(λ+ 1)
−λ −1

2(λ2 + λ+ 2) 2
2(λ+ 1) 2(λ+ 3) −4(λ+ 3)

 .

Since λ 6= −1, the third column is linearly independent from the first two (cf. the (1, 3)
entry). The second column is λ + 1 times the first (cf. the fourth row) if and only if
λ = −2, 1. We conclude that for λ 6= −2,−1, 1, Ns1(DRic, λ)h = 0 implies (X,Y, Z) = 0
and thus h ∈ ranNs1(δ∗, λ+1). For λ = −2, resp. λ = 1, the kernel of Ns1(DRic, λ) modulo
ranNs1(δ∗, λ+ 1) is spanned by h with (X,Y, Z) = (1, 1, 0), resp. (X,Y, Z) = (2,−1, 0) e.g.
h = 1

2(1, 0,−1, 1, 1, 0)T , resp. h = (0, 0, 0, 2,−1, 0)T .

For λ = −1, Ns1(δ∗, λ+ 1) has 1-dimensional kernel spanned by (1
2 ,−

1
2 , 1)T (correspond-

ing in coordinates to the fact that translation 1-forms d(rS), S ∈ S1, are Killing 1-forms on
Minkowski space). One computes

ranNs1(δ∗, λ+ 1)|λ=−1 = span{(0, 0, 1, 0, 0, 2)T , (0, 0, 1, 0, 1, 0)T },
kerNs1(DRic, λ)|λ=−1 = span{(0, 0, 1, 0, 0, 2)T , (0, 0, 1, 0, 1, 0)T , (1,−1, 1, 1,−1, 0)T },

so the quotient space is 1-dimensional; but

4∂λNs1(δ∗, λ+ 1)
(1

2
,−1

2
, 1
)T

= (1,−1, 1, 1,−1, 0)T

(in coordinates
¯
δ∗((log r)d(rS)) = 1

rdr ⊗s d(rS)) spans this quotient.

• Part (3): sl tensors, l ≥ 2. Now

Nsl(δ
∗, λ+ 1) =

1

4



2(λ+ 1) 0 0
−λ− 1 λ+ 1 0

2 0 λ
0 −2(λ+ 1) 0
0 2 −λ
4 −4 −2l(l + 1)
0 0 4


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is injective for all λ ∈ C. The annihilator of its range is spanned by46

h∗1 =
(

1, 0, −λ− 1, 0, 0 , 0,
λ(λ+ 1)

4

)
,

h∗2 =
(

0, 1,
λ+ 1

2
, 0, −1

2
(λ+ 1), 0, −λ(λ+ 1)

4

)
,

h∗3 =
(

0, 0, 0 , 1, λ+ 1 , 0,
λ(λ+ 1)

4

)
,

h∗4 =
(

0, 0, −2 , 0, 2 , 1,
l(l + 1)

2
+ λ

)
.

Given h ∈ C∞sl (ff;
¯
β∗S2T ∗(0,0)R

4), the vector (X,Y, Z, J) := (h∗1(h), h∗2(h), h∗3(h), h∗4(h)) is

thus gauge-invariant. Noting that (1, 0, 0, 0, 0, 0, 0)T , (0, 1, 0, 0, 0, 0, 0)T , (0, 0, 0, 1, 0, 0, 0)T ,
(0, 0, 0, 0, 0, 1, 0)T is a dual basis (i.e. the matrix of evaluations against h∗1, . . . , h

∗
4 is the

identity matrix), the action of

2Nsl(DRic, λ) (7.19)

=



l(l+1) −2λ −l(l+1)(λ+1) 0 0 − 1
2λ(λ+1) 0

− 1
2λ(λ+1) −(λ−l−1)(λ+l) 1

2 l(l+1)(λ+1) − 1
2λ(λ+1) − 1

2 l(l+1)(λ+1) 1
2λ(λ+1) 0

λ λ−2 − 1
2 (λ2+λ+2) 0 − 1

2 (λ−1)(λ+2) −λ
2 − 1

4 (l−1)(l+2)λ
0 −2λ 0 l(l+1) l(l+1)(λ+1) − 1

2λ(λ+1) 0
0 −λ+2 − 1

2 (λ−1)(λ+2) −λ − 1
2 (λ2+λ+2) λ

2
1
4 (l−1)(l+2)λ

2(λ+1) −2(l2+l+2) −l(l+1)(λ+3) 2(λ+1) l(l+1)(λ+3) −(λ−l+1)(λ+l+2) 1
2 (l−1)l(l+1)(l+2)

0 4 2(λ+1) 0 −2(λ+1) 0 −λ(λ+1)


on h is thus given, in terms of (X,Y, Z, J) (for the columns) and the splitting (6.15c) (for
the rows), by the first, second, fourth, and sixth columns, so

2Nsl(DRic, λ) =



l(l+1) −2λ 0 −1
2λ(λ+1)

−1
2λ(λ+1) −(λ−l−1)(λ+l) −1

2λ(λ+1) 1
2λ(λ+1)

λ λ−2 0 −λ
2

0 −2λ l(l+1) −1
2λ(λ+1)

0 −λ+2 −λ λ
2

2(λ+1) −2(l2+l+2) 2(λ+1) −(λ−l+1)(λ+l+2)
0 4 0 0


.

We need to determine for which λ ∈ C this matrix has a nontrivial nullspace. Note that
the second column is linearly independent from the span of the other three columns which
we denote r1, r3, r4. When λ = 0, then r1 is linearly independent of span{r3, r4} (cf. the
(1, 1) entry), and r3, r4 are linearly independent as well (cf. the fourth row). When λ 6= 0,
then ar1 + br3 + 2cr4 = 0 implies (b − c)λ = 0 (fifth row), so b = c, and furthermore
bl(l + 1) = cλ(λ + 1) (fourth row), so λ = −l − 1, l. And indeed for λ = −l − 1, l, tensors
with (X,Y, Z, J) = (1, 0, 1, 2) (for either value of λ) lie in the kernel of Nsl(DRic, λ).

• Part (4): v1 tensors. We have

Nv1(δ∗, λ+ 1) =
1

4

(
λ
−λ

)
, Nv1(DRic, λ) = −(λ− 1)(λ+ 2)

4

(
1 1
1 1

)
. (7.20)

46While we do not attempt to exactly parallel the arguments in [HHV21, §8.1.1] here, we do remark
that the choice of h∗4 (which in particular tests the spherical pure trace and trace free parts of a symmetric
2-tensor) is inspired by the definition of the gauge-invariant quantity J in [HHV21, Equation (8.8)], and
similarly the choice of (h∗1, h

∗
2, h
∗
3) (which tests for the non-spherical part of a symmetric 2-tensor) is inspired

by F̃ in the reference.
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For λ 6= −2, 1, kerNv1(DRic, λ) is therefore 1-dimensional and spanned by (1,−1)T , which
for λ 6= 0 spans the range of Nv1(δ∗, λ+1). Turning to the exceptional values, note that for
λ = −2, 1, the quotient space kerNv1(DRic, λ)/ ranNv1(δ∗, λ+ 1) is spanned by {(1, 1)T }.
(Since Nv1(δ∗, λ + 1) is injective, quotienting out by the generalized range gives the same
space.) For λ = 0, the quotient space is 1-dimensional (and spanned by (1,−1)T ), but in
view of ran(∂λNv1(δ∗, λ + 1)) = span{(1,−1)T } the quotient by Rv1,[1](Nv1(δ∗, λ + 1)) is
trivial.

• Part (5): vl tensors, l ≥ 2. Similarly to the scalar type l ≥ 2 case, the operator

Nvl(δ
∗, λ+ 1) =

1

4

 λ
−λ
4


is now always injective; the annihilator of its range is spanned by h∗1 = (1, 0,−1

4λ)T , h∗2 =

(0, 1, 1
4λ). A dual basis being (1, 0, 0), (0, 1, 0), we can compute the action of

− 4Nvl(DRic, λ) =

−2(l2+l−1)+λ(λ+1) (λ−1)(λ+2) 1
2(l−1)(l+2)λ

(λ−1)(λ+2) −2(l2+l−1)+λ(λ+1) −1
2(l−1)(l+2)λ

−4(λ+1) 4(λ+1) 2λ(λ+1)


(7.21)

on a tensor h in terms of (X,Y ) = (h∗1(h), h∗2(h)) (for the columns) to be given by

−4Nvl(DRic, λ) =

−2(l2+l−1)+λ(λ+1) (λ−1)(λ+2)
(λ−1)(λ+2) −2(l2+l−1)+λ(λ+1)
−4(λ+1) 4(λ+1)


For λ = −1, this has trivial nullspace (using l2 + l − 1 6= ±1). For λ 6= −1, the only
possible nontrivial linear combination of the two columns which gives the zero vector is (up
to scalar multiples) their sum (cf. the third row), i.e. (X,Y ) = (1, 1) (corresponding e.g. to
h = (1, 1, 0)T ). This indeed vanishes if 0 = −2(l2 + l − 1) + λ(λ + 1) + (λ − 1)(λ + 2) =
2(λ− l)(λ+ l + 1), which has the solutions λ = −l − 1, l. This implies the claim. �

What this result does not yet treat is the generalized nullspace of N(DRic, λ), i.e. the

possibility and structure of solutions of D
¯
gRic(

∑k
j=0 r

λ(log r)jhj) = 0 with k ≥ 1. Note

that for such solutions, the leading order term hk necessarily lies in kerN(DRic, λ). We
will prove in Proposition 7.7 that leading order terms for k ≥ 1 are always pure gauge; this
is thus a result on the ‘semi-simplicity modulo pure gauge’ for the (generalized) nullspace
of N(DRic, λ).

In this analysis of the generalized nullspace of N(DRic, λ), we will use duality and pairing
arguments. The fiber inner products are induced by the Minkowski metric. Making explicit
the volume density used for the definition of adjoints (and recalling that the Minkowskian
volume density is r2dr times the standard density on S2), we then note that

N(DRic, λ)∗ := N(r2D̂
¯
gRic(0), λ)∗ =

(
r−λr2D̂

¯
gRic(0)rλ

)∗,|dr
r
|

= r3
(
r−λr2D̂

¯
gRic(0)rλ

)∗,|r2dr|
r−3 = r3

(
rλ̄D̂

¯
gRic(0)∗r2r−λ̄

)
r−3

= r1+λ̄r2D̂
¯
gRic(0)∗r−1−λ̄ = N

(
r2

¯
GD̂

¯
gRic(0)

¯
G,−1− λ̄

)
= G ◦N(DRic,−1− λ̄) ◦ G,

(7.22)
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and similarly
N(δ∗, λ+ 1)∗ = N(δ,−3− λ̄) = N(δG,−3− λ̄) ◦ G,
N(δG, λ− 2)∗ = G ◦N(δ∗,−λ̄) = N(Gδ∗,−λ̄).

(7.23)

Thus, Proposition 7.3 asserts that for every pure type • ∈ {sl, vl}, the pairings(
K•,[j](δG, λ− 2)/R•,[i](DRic, λ)

)
×
(
K•,[i](DRic,−1− λ̄)/R•,[j](δ

∗,−λ̄)
)

3 (h, h∗) 7→ 〈h,Gh∗〉 ∈ C
(7.24)

are non-degenerate.

Proposition 7.7 (Restricted kernels are pure gauge). (1) (Scalar type 0.) We have

Ks0,[1](DRic,−1) =
{
h ∈ kerNs0(DRic,−1) : ∂λNs0(DRic,−1)h ∈ ranNs0(DRic, 0)

}
= Rs0,[1](δ

∗, 0),
(7.25a)

Ks0,[1](DRic, 0) = Rs0,[0](δ
∗, 1). (7.25b)

Moreover,

Ks0,[1](DRic,−1)/Rs0,[0](δ
∗, 0) = span{∂λN(δ∗, 0)(1, 1)T } (7.26)

(in local coordinates, ∂λN(δ∗, 0)(1, 1)T is
¯
δ∗(2(log r)dt) = 2r−1 dr ⊗s dt).

(2) (Scalar type 1.) We have

Ks1,[1](DRic,−2) = Rs1,[0](δ
∗,−1), (7.27a)

Ks1,[1](DRic, 1) = Rs1,[0](δ
∗, 2). (7.27b)

(3) (Scalar type l ≥ 2.) We have Ksl,[1](DRic, λ) = Rsl,[0](δ
∗, λ+ 1) for λ = −l − 1, l.

(4) (Vector type 1.) We have Kv1,[1](DRic, λ) = Rvl,[0](δ
∗, λ+ 1) for λ = −2, 1.

(5) (Vector type l ≥ 2.) We have Kvl,[1](DRic, λ) = Rvl,[0](δ
∗, λ+ 1) for λ = −l − 1, l.

Proof. Let h ∈ K•,[0](DRic, λ) = kerN•(DRic, λ). In order to find a condition whether
h ∈ K•,[1](DRic, λ), i.e. ∂λN•(DRic, λ)h ∈ ranN•(DRic, λ), note that

∂λN•(DRic, λ)h ∈ K•,[0](δG, λ− 2)

since on kerN•(DRic, λ) we have

N•(δG, λ− 2) ◦ ∂λN•(DRic, λ) = −∂λN•(δG, λ− 2) ◦N•(DRic, λ) = 0.

Thus, we have a well-defined linear map(
K•,[0](DRic,−1− λ̄)/R•,[0](δ

∗,−λ̄)
)
3 h∗ 7→ 〈∂λN•(DRic, λ)h,Gh∗〉. (7.28)

By (7.24), this is the zero map if and only if ∂λN•(DRic, λ)h ∈ R•,[0](DRic, λ), i.e. h ∈
K•,[1](DRic, λ). Proposition 7.6 describes the spaces of inputs h∗ in the pairing (7.28).

Now, (7.28) depends only on the equivalence class of h in K•,[0](DRic, λ)/R•,[N ](δ
∗, λ+1)

where N ∈ N0 is arbitrary: this follows from the fact that for ω(µ+1) =
∑N

j=0(µ−λ)−j−1ωj
such that N•(δ

∗, µ+ 1)ω(µ+ 1) is holomorphic at µ = λ we have〈
∂µN•(DRic, µ)

(
N•(δ

∗, µ+ 1)ω(µ+ 1)
)
,Gh∗

〉
|µ=λ

= −
〈
N•(DRic, λ)∂µ

(
N•(δ

∗, µ+ 1)ω(µ+ 1)
)
,Gh∗

〉
|µ=λ

=
〈
∂λ
(
N•(δ

∗, λ+ 1)ω(λ+ 1)
)
,GN•(DRic,−1− λ̄)h∗

〉
|µ=λ

= 0.
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We have thus shown that

K•,[1](DRic, λ)/R•,[N ](δ
∗, λ+ 1)

=
{

[h] ∈ K•,[0](DRic, λ)/R•,[N ](δ
∗, λ+ 1): 〈∂λN•(DRic, λ)h,Gh∗〉 = 0

∀h∗ ∈ K•,[0](DRic,−1− λ̄)/R•,[0](δ
∗,−λ̄)

}
.

(7.29)

We use this characterization to show that K•,[1](DRic, λ) = R•,[N ](δ
∗, λ + 1) for various

values of •, λ, and N .

• Part (1): s0 tensors. Consider first (7.25a), and λ = −1 in (7.29). By Proposi-

tion 7.6(1) it suffices to check that for

h := (1, 0, 1, 0)T ∈ Ks0,[0](DRic,−1), h∗ = (1, 1, 1, 0)T ∈ Ks0,[0](DRic, 0),

we have 〈∂λNs0(DRic,−1)h,Gh∗〉 6= 0. The matrix of the fiber inner product on s0 sections
of

¯
β∗S2T ∗(0,0)R

4 tensors can be read off from (6.7) and is
0 0 4 0
0 8 0 0
4 0 0 0
0 0 0 2

 .

Using the expression (7.16), we thus compute〈
∂λNs0(DRic,−1)(1, 0, 1, 0)T ,G(1, 1, 1, 0)T

〉
L2(S2)

=
〈(

0,
1

2
, 0, 2

)T
, (1, 0, 1, 2)T

〉
L2(S2)

= 32π 6= 0.

The statement (7.25b) follows from the same calculation: we now take h = (1, 1, 1, 0)T to
span Ks0,[0](DRic, 0)/Rs0,[0](δ

∗, 1); for h∗ = (1, 0, 1, 0)T ∈ Ks0,[0](DRic,−1), we then have

〈∂λNs0(DRic, 0)h,Gh∗〉 = 〈Gh, ∂λNs0(DRic,−1)h∗〉 = 32π 6= 0.

(That is, the roles of h, h∗ and 0,−1 are reversed compared to the first computation.)

To prove (7.26), note that Rs0,[0](δ
∗, 0) is a 1-codimensional subspace of Rs0,[1](δ

∗, 0) =

Ks0,[1](DRic,−1), with the quotient spanned by ∂λN(δ∗, 0)(1, 1)T ; see the computations
following (7.17).

• Part (2): s1 tensors. Since for λ = −2 we have −1 − λ̄ = 1, we calculate with h =

(−1, 0, 1,−1,−1, 0)T and h∗ = (0, 0, 0, 2,−1, 0)T (see (7.10)–(7.11)), and using (7.18) and
the fiber inner product on s1 tensors (from (6.7))

0 0 0 4 0 0
0 8 0 0 0 0
0 0 0 0 −8 0
4 0 0 0 0 0
0 0 −8 0 0 0
0 0 0 0 0 2


the pairing

〈∂λNs1(DRic,−2)h,Gh∗〉L2(S2)
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=
〈(
−1,−1

2
,−1

2
,−1,

1

2
,−4

)T
, (0, 0, 0, 2,−1, 0)T

〉
L2(S2)

= −48π 6= 0.

This gives (7.27a); and (7.27b) follows from the same calculation with h, h∗ and −2, 1
interchanged.

• Part (3): sl tensors, l ≥ 2. Using h = (1, 0, 0, 1, 0, 2, 0)T = h∗ from Proposition 7.6(3),

the expression (7.19), and the fiber inner product (from (6.7), using (6.15c) and Lemma 6.4)

0 0 0 4 0 0 0
0 8 0 0 0 0 0
0 0 0 0 −4l(l + 1) 0 0
4 0 0 0 0 0 0
0 0 −4l(l + 1) 0 0 0 0
0 0 0 0 0 2 0
0 0 0 0 0 0 1

2(l − 1)l(l + 1)(l + 2)


,

we compute

〈∂λNsl(DRic,−l − 1)h,Gh∗〉L2(S2)

=
〈(
l +

1

2
, 0, 0, l +

1

2
, 0, 2l + 1, 0

)T
, (1, 1, 0, 1, 0, 0, 0)T

〉
L2(S2)

= 16(2l + 1)π 6= 0.

This implies the claims in part (3).

• Part (4): v1 tensors. For l = 1 and λ = −2, we use Proposition 7.6(4) and take

h = (1, 1)T = h∗. The fiber inner product being(
0 −8
−8 0

)
,

we find, using (7.20),

〈∂λNv1(DRic,−2)h,Gh∗〉L2(S2) =
〈(3

2
,
3

2

)T
, (1, 1)T

〉
= −96π 6= 0.

The case λ = 1 follows from the same calculation.

• Part (5): vl tensors, l ≥ 2. This is similar to the case l = 1: now h = (1, 1, 0)T = h∗,

and using (7.21) and the fiber inner product 0 −4l(l + 1) 0
−4l(l + 1) 0 0

0 0 1
2(l − 1)l(l + 1)(l + 2)

 ,

we find

〈∂λNvl(DRic,−l − 1)h,Gh∗〉L2(S2) =
〈(
l +

1

2
, l +

1

2
, 0
)T
, (1, 1, 0)T

〉
L2(S2)

= −16l(l + 1)(2l + 1)π 6= 0.

This completes the proof. �
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7.3. Generalized range. Let • ∈ {sl, vl}. Having studied the (restricted) kernel of
N(DRic, λ), we are now interested in solving the equation N•(DRic, λ)h = f , or more
generally ∂λN•(DRic, λ)h + N•(DRic, λ)h1 = f (necessarily with h ∈ kerN•(DRic, λ)).
A necessary condition for f ∈ R•,[i](DRic, λ) for any i ∈ N0 is f ∈ kerN•(δG, λ − 2) =
K•,[0](δG, λ − 2). The extent to which the converse fails can be read off from the non-
degeneracy of the pairings (7.24) (with j = 0).

Proposition 7.8 (Solvability for the indicial family). Let λ ∈ C.

(1) (Scalar type 0.) For λ 6= −1, 0, we have

Ks0,[0](δG, λ− 2) = kerNs0(δG, λ− 2) = ranNs0(DRic, λ) = Rs0,[0](DRic, λ).

Furthermore,

Ks0,[0](δG,−3) = Rs0,[1](DRic,−1)

= {∂λNs0(DRic,−1)h+Ns0(DRic,−1)h1 : h ∈ kerNs0(DRic,−1)}.

Moreover, we have an isomorphism47

Ks0,[0](δG,−2)/Rs0,[1](DRic, 0) 3 f 7→ 〈∂λN(δG,−2)f,dt〉L2(S2) ∈ C. (7.30)

(2) (Scalar type 1.) We have

Ks1,[0](δG, λ− 2) = Rs1,[0](DRic, λ), λ 6= −2, 0, 1,

Ks1,[0](δG, λ− 2) = Rs1,[1](DRic, λ), λ = −2, 1.

Moreover, we have an isomorphism48

Ks1,[0](δG,−2)/Rs1,[0](DRic, 0) 3 f 7→
(
S1 3 S 7→ 〈∂λN(δG,−2)f,d(rS)〉L2(S2)

)
∈ S∗1.

(7.31)
(3) (Scalar type l ≥ 2.) We have

Ksl,[0](δG, λ− 2) = Rsl,[0](DRic, λ), λ 6= −l − 1, l,

Ksl,[0](δG, λ− 2) = Rsl,[1](DRic, λ), λ = −l − 1, l.

(4) (Vector type 1.) We have

Kvl,[0](δG, λ− 2) = Rvl,[0](DRic, λ), λ 6= −2, 1,

Kvl,[0](δG, λ− 2) = Rvl,[1](DRic, λ), λ = −2, 1.

Moreover, we have an isomorphism49

Kv1,[0](δG,−3)/Rv1,[0](DRic,−1) 3 f 7→
(
V1 3 V 7→ 〈∂λN(δG,−3)f, r2V〉L2(S2)

)
∈ V∗1.

(7.32)
(5) (Vector type l ≥ 2.) We have

Kvl,[0](δG, λ− 2) = Rvl,[0](DRic, λ), λ 6= −l − 1, l,

Kvl,[0](δG, λ− 2) = Rvl,[1](DRic, λ), λ = −l − 1, l.

47The right hand side is 〈∂λNs0(δG,−2)f, ( 1
2
, 1

2
)T 〉 in terms of (6.15a).

48The right hand side, for fixed S ∈ S1, is 〈∂λNs1(δG,−2)f, ( 1
2
,− 1

2
, 1)T 〉 in terms of (6.15b).

49The right hand side, for fixed V ∈ V1, is 〈∂λNv1(δG, 1)f, ( 1
2
,− 1

2
)T 〉 in terms of (6.15b).
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Proof. Those cases in Propositions 7.6–7.7 in which the (restricted) kernel K•,[i](DRic, λ),
i ∈ N0, is equal to the range R•,[0](δ

∗, λ + 1) imply, via (7.24) with j = 0, most of the
Proposition.

The isomorphism (7.30) follows from (7.26) using (7.24) (with λ = 0, i = 1, j = 0)
and the fact that (G ◦ ∂λN(δ∗, 0))∗ = ∂λN(δG,−2). Similarly, the isomorphism (7.31)
follows from (7.12) using (7.24) (with λ = 0, i = 0, j = 0); and (7.32) follows from (7.14)
using (7.24) (with λ = −1, i = 0, j = 0). �

In (7.30), (7.31), and (7.32), the generalized ranges R•,[i](DRic,−) have already stabi-

lized, i.e. they remain unchanged if one increases i further.50 Thus, these isomorphisms

capture the full extent to which r2D̂
¯
gRic(0)h = rλ−2f , f ∈ kerN•(δG, λ−2), does not have

a solution h which is quasi-homogeneous of degree λ. Requiring f to lie in the restricted
kernel K•,[1](δG, λ− 2) does guarantee solvability:

Lemma 7.9 (Solvability for restricted right hand sides). We have

Ks0,[1](δG,−2) = Rs0,[1](DRic, 0),

Ks1,[1](δG,−2) = Rs1,[0](DRic, 0),

Kv1,[1](δG,−3) = Rv1,[0](DRic,−1).

Proof. This follows by duality from the non-degeneracy of (7.24) and the equalities (7.25a),
(7.13), and (7.15). �

7.4. Kernel and range for pure types with large l. If the equation N(DRic, λ)h = f ∈
kerN(δG, λ), with f smooth, can be solved for each pure type separately, the existence of a
smooth solution h cannot directly be obtained by summing the infinitely many individual
pure type solutions constructed above due to possible convergence issues. Instead, we work
with a gauge-fixed version of the linearized Einstein equation in this and the next section.
Concretely, we consider

L := D
¯
gRic +

¯
δ∗ ◦

¯
δ
¯
G, (7.33)

which by (4.4) is equal to 1
2 ¯
� where

¯
� is the tensor wave operator, i.e. the scalar wave

operator on each coefficient of a symmetric 2-tensor in the bundle trivialization induced by
the coordinates t, x. In polar coordinates x = rω, the zero energy operator of the scalar

wave operator is the spatial Laplacian, ̂̄�(0) = −∂2
r − 2

r∂r + r−2 /∆, and therefore

N
(
r2 ̂̄�(0), λ

)
= −λ(λ+ 1) + /∆.

Restricted to scalar type l functions, this is multiplication by −λ(λ + 1) + l(l + 1) =
−(λ− l)(λ+ l+ 1), with roots λ = −l− 1, l. In particular, if λ is fixed, then the restriction

N≥l(r
2 ̂̄�(0), λ) to functions whose scalar type ≤ l components vanish is injective when

|λ| > l + 1. But since N(r2 ̂̄�(0), λ) has Fredholm index 0 since /∆ is elliptic, this implies

the invertibility of N≥l(r
2 ̂̄�(0), λ).

50The argument is as follows. Let j ∈ N0. If there exists i such that R[j](DRic, λ) = K[i](δG, λ − 2),
then R[j′](DRic, λ) = R[j](DRic, λ) for all j′ ≥ j since R[j′](DRic, λ) ⊃ R[j](DRic, λ) is always contained
in K[i](δG, λ − 2) by Proposition 7.3. Note now that by (7.24), the assumption on i here is equivalent to

R[i](δ
∗,−λ̄) = K[j](DRic,−1− λ̄). This holds in the s0 case with λ = 0, i = 1, j = 1 by (7.25a), in the s1

case with λ = 0, j = 0, i = 1 by (7.13), and in the v1 case with λ = −1, j = 0, i = 1 by (7.15).
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Note next that dt is of scalar type 0, and dxj , j = 1, 2, 3, is of scalar type 1; and therefore
dzµ ⊗s dzν (where z = (zµ)µ=0,...,3 = (t, x1, x2, x3)) is a sum of tensors of scalar or vector
type at most 2. This allows us to pass from the dzµ ⊗s dzν bundle splitting of S2T ∗R4 to
the splitting (6.6). We have thus shown:

Lemma 7.10 (Invertibility of the indicial family of the gauge-fixed linearized Einstein

operator). Fix λ ∈ C. Then for large enough l0 ∈ N0, the restriction N≥l0(r2L̂(0), λ) of

N(r2L̂(0), λ) ∈ Diff2(ff;
¯
β∗S2T ∗(0,0)R

4) to the space of smooth tensors all of whose scalar type

l and vector type l components vanish for l < l0 is invertible; and also the indicial operators

N(r2 ̂̄�(0), λ ± 1) of the tensor wave operator on 1-forms are invertible. (Concretely, one
may take l0 > |λ|+ 3.)

Corollary 7.11 (Kernel modulo pure gauge; range). Fix λ ∈ C, and let l0 ∈ N0 be as in
Lemma 7.10 (e.g. l0 > |λ|+ 3). We use the notation (7.3).

(1) (Kernel modulo pure gauge.) If h ∈ C∞≥l0(ff;
¯
β∗S2T ∗(0,0)R

4) (i.e. h is smooth with

vanishing scalar and vector type l components for all l < l0) satisfies N(DRic, λ)h =
0, then there exists ω ∈ C∞≥l0(ff;

¯
β∗T ∗(0,0)R

4) with N(δ∗, λ+ 1)ω = h.

(2) (Range.) If f ∈ C∞≥l0(ff;
¯
β∗S2T ∗(0,0)R

4) satisfies N(δG, λ− 2)f = 0, then there exists

h ∈ C∞≥l0(ff;
¯
β∗S2T ∗(0,0)R

4) with N(DRic, λ)h = f .

Proof. We begin with part (2). We may solve

N(r2L̂(0), λ)h = f

with h ∈ C∞≥l0 since N≥l0(r2L̂(0), λ) is invertible. Applying N(δG, λ−2) to this equation and

using the definition (7.33) of L as well as f ∈ kerN(δG, λ−2) implies N(r2̂̄δ
¯
G(0)◦ ̂̄δ∗(0), λ−

1)η = 0 where η := N(
¯
δ
¯
G, λ)h. But

¯
δ
¯
G ◦

¯
δ∗ = 1

2 ¯
� (tensor wave operator on 1-forms), and

therefore η = 0 by Lemma 7.10. This implies N(r2D̂
¯
gRic(0)h) = f , as desired.

For part (1), we first claim that there exists ω ∈ C∞≥l0(ff;
¯
β∗S2T ∗(0,0)R

4) so that h′ :=

h+N(δ∗, λ+ 1)ω satisfies the gauge condition N(δG, λ)(h+N(δ∗, λ+ 1)ω) = 0. To verify
this, note that ω needs to satisfy the equation

1

2
N(r2 ̂̄�(0), λ+ 1)ω = −N(δG, λ)h ∈ C∞≥l0(ff;

¯
β∗T ∗(0,0)R

4),

which does have a solution. But then N(r2L̂(0), λ)h′ = 0 implies h′ = 0 by Lemma 7.10.
This gives h = −N(δ∗, λ+ 1)ω. The proof is complete. �

7.5. Solvability and uniqueness at r = 0 for quasi-homogeneous tensors. We can
now prove the two main theorems of this section. We write πff(r, ω) = ω for the projection
[R3; {0}] = [0,∞)r × S2 → S2.

Theorem 7.12 (Quasi-homogeneous nullspace modulo pure gauge). Let z ∈ C, k ∈ N0.
Consider a stationary solution

h(r, ω) =
k∑
j=0

1

j!
rz(log r)jπ∗ffhj(ω), hj ∈ C∞(ff;

¯
β∗S2T ∗(0,0)R

4),
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of the equation D̂
¯
gRic(0)h = 0. Then there exists a stationary 1-form

ω =
k+k′∑
j=0

1

j!
rz+1(log r)jπ∗ffωj(ω), ωj ∈ C∞(ff;

¯
β∗T ∗(0,0)R

4),

so that h =
¯
δ∗ω if z /∈ Z in which case we can take k′ = 0. Otherwise:

(1) if z ∈ {−l − 1, l} where l ≥ 1: there exists ω, with k′ = 0, so that

h−
¯
δ∗ω = rzπ∗ffh

′, h′ ∈ C∞(ff;
¯
β∗S2T ∗(0,0)R

4), (7.34)

with h′ ∈
∑
•=sl,vl kerN•(DRic, z);

(2) if z = −1, set k′ = 1 (unless hs0,k = 0 and hs1,k = 0, in which case k′ = 0 works);
if z = 0, set k′ = 1 (unless hv1,k = 0, in which case k′ = 0 works): then there exists

ω so that (7.34) holds with h′ ∈ kerNs0(DRic, z).51

One can moreover choose the 1-forms ωj to depend continuously on (h0, . . . , hk) for fixed
z ∈ C.

Thus, for non-integer z, the metric perturbation h is always pure gauge, whereas for
integer z one can always add a pure gauge term to h so as to eliminate all terms involving
(log r)j with j ≥ 1.

Proof of Theorem 7.12. • Step 1. Analysis for individual pure types.

(1.i) z /∈ Z. Fix a pure type •. Note that hk ∈ K•,[0](DRic, z) = R•,[0](δ
∗, z + 1) (using

Proposition 7.6). Therefore, we can write hk = N(δ∗, z + 1)ωk. The remaining error

h−
¯
δ∗
(
(log r)kωk

)
=

k−1∑
j=0

1

j!
rz(log r)jπ∗ffhj − [

¯
δ∗, (log r)k](rz+1π∗ffωk) (7.35)

still lies in the kernel of D̂
¯
gRic(0), but the largest power of log r is reduced by 1. Iterating

this argument until k = 0 (in which case the remaining error vanishes) produces the desired
gauge potential ω.

(1.ii) z = −l− 1, l with l ≥ 1. The same arguments apply to the pure gauge • /∈ {sl, vl}
part of h by Proposition 7.6. Consider next the sl part hsl of h. If k = 0, we may simply
take ω = 0. For k ≥ 1 on the other hand, note that hsl,k (the sl part of hk) lies in
Ksl,[k](DRic, z) ⊂ Ksl,[1](DRic, z); but Ksl,[1](DRic, z) = Rsl,[0](δ

∗, z+1) by Proposition 7.7
(part (2) for l = 1, and part (3) for l ≥ 2). Therefore, we can write hsl,k = N(δ∗, z + 1)ωk.
The computation (7.35) again applies and reduces the largest logarithmic exponent k by
1, until one reaches k = 0 in which case the remaining error h′, which has no logarithmic
terms anymore, can no longer be solved away. The same reasoning applies in the vl case,
now using parts (4) and (5) of Proposition 7.7.

(1.iii) z = −1. Proposition 7.6 shows that we only need to consider the scalar type 0
and 1 cases. Consider first the s0 case. If k = 0, we take ω = 0. For k ≥ 1, we have

51Thus, if h does not have any scalar type 0 components, then we can find ω so that h′ = 0, so h is pure
gauge.
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hs0,k ∈ Ks0,[1](DRic,−1) = Rs0,[1](δ
∗, 0), where we use Proposition 7.7(1). Therefore, we

can find ωk+1 ∈ kerN(δ∗, 0) and ωk so that

r−1hs0,k =
¯
δ∗
(
(log r)ωk+1 + ωk

)
.

Using
¯
δ∗ ◦ (log r)k+1 = (log r)k+1

¯
δ∗ + (k + 1)(log r)k[

¯
δ∗, log r], we thus have

1

k!
r−1(log r)khs0,k −

¯
δ∗
( 1

(k + 1)!
(log r)k+1ωk+1 +

1

k!
(log r)kωk

)
=

1

k!
(log r)k

(
r−1hs0,k −

¯
δ∗
(
(log r)ωk+1

)
+ ωk

))
− 1

k!
[
¯
δ∗, (log r)k]ωk

= − 1

k!
[
¯
δ∗, (log r)k]ωk,

which has one power of log r less than h. We can thus eliminate all logarithmic terms of h
until we are left with a stationary error term h′.

In the s1 case, the same arguments apply for all k ≥ 0 by virtue of (7.13). Thus, hs1 is
pure gauge in this case.

(1.iv) z = 0. We only need to consider the scalar type 0 and vector type 1 cases in view
of Proposition 7.6. In the s0 case, for k ≥ 1 we can use (7.25b) to solve away all logarithmic
terms (i.e. k ≥ 1) as in step (1.i) until we are left with a tensor h′ without logarithmic
terms. In the v1 case on the other hand, we use (7.15) to solve away all terms using the
same arguments as in step (1.iii).

• Step 2. Analysis for all pure types with large l simultaneously. Let l0 ∈ N0 be as in
Corollary 7.11 with λ = z. We may replace h by its projection h≥l0 off all spaces of
scalar and vector type l < l0 tensors. Since hk ∈ kerN(DRic, z), we can thus pick ωk ∈
C∞≥l0(ff;

¯
β∗T ∗(0,0)R

4) with N(δ∗, z + 1)ωk = hk. Via (7.35), we can then eliminate the term

rz(log r)kπ∗ffhk (at the expense of causing changes to lower order terms). Iterating until
k = 0 finishes the construction of ω.

Finally, the continuous dependence of ωj on (h0, . . . , hk) is guaranteed for the projections
to scalar and vector type l ≥ l0 tensors, whereas for the finitely many remaining pure types
the finite-dimensionality of all function spaces involved implies, by linear algebra, that
one can choose the pure type sl or vl, l < l0, parts of ωj to depend linearly (and thus
automatically continuously) on the corresponding pure type parts of (h0, . . . , hk). �

Theorem 7.13 (Solvability with quasi-homogeneous forcing). Let z ∈ C, k ∈ N0. Consider
the stationary tensor52

f(r, ω) =
k∑
j=0

1

j!
rz−2(log r)jπ∗fffj(ω), fj ∈ C∞(ff;

¯
β∗S2T ∗(0,0)R

4),

on R3 \ {0}. Write f•,j for the pure type • ∈ {sl, vl} part of fj. Suppose that ̂̄δ
¯
G(0)f = 0.

Fix a cutoff function χ ∈ C∞c ([0,∞)r) which equals 1 near r = 0. Consider the following
possibilities.

(1) z /∈ Z: set k′ = 0.

52This means that the components of f(r, ω) with respect to the bundle trivialization induced by the
coordinates t, x are homogeneous of degree z with respect to dilations (r, ω) 7→ (λr, ω) when k = 0, and
quasi-homogeneous when k ≥ 1.
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(2) z ∈ {−l − 1, l} where l ≥ 1: set k′ = 0 if fsl,k = 0 and fvl,k = 0, and k′ = 1
otherwise.

(3) z = −1: writing 〈−,−〉 for L2-pairings on R3 with volume density r2|dr d/g| and

fiber inner products induced by the Minkowski metric, assume that53〈
[
¯
δ
¯
G, χ]f, r2V

〉
= 0 ∀V ∈ V1, (7.36)

Set k′ = 0 if fs0,k = 0, and k′ = 1 otherwise.
(4) z = 0: assume that 〈

[
¯
δ
¯
G, χ]f, dt

〉
= 0, (7.37)〈

[
¯
δ
¯
G, χ]f, d(rS)

〉
= 0 ∀S ∈ S1. (7.38)

Set k′ = 0 if fs0,k = 0, and k′ = 1 otherwise.

Then there exist hj ∈ C∞(ff;
¯
β∗S2T ∗(0,0)R

4), j = 0, . . . , k + k′, so that, in r > 0,

D̂
¯
gRic(0)h = f, h(r, ω) =

k+k′∑
j=0

1

j!
rz(log r)jπ∗ffhj(ω), (7.39)

and so that (h0, . . . , hk+k′) depends linearly and continuously on (f0, . . . , fk). When k′ = 1,
then hk+1 ∈ kerN(DRic, z).

The conditions (7.36), (7.37), and (7.38) only depend on fv1, fs0, and fs1, respectively.
Moreover, the pairings in (7.36)–(7.38) are independent of the choice of χ; indeed, the
difference of any two such cutoffs is a function ψ ∈ C∞c ((0,∞)), and thus there are no
boundary terms in the integration by parts computation 〈[

¯
δ
¯
G, ψ]f, dt〉 = 〈

¯
Gψf,

¯
δ∗dt〉 −

〈ψ
¯
δ
¯
Gf, dt〉 = 0− 0 = 0 (similarly for the other two pairings).

Proof of Proposition 7.13. Let us write

f̃(λ, ω) =
k∑
j=0

(λ− z)−j−1fj(ω), h̃(λ, ω) =
k+k′∑
j=0

(λ− z)−j−1hj(ω),

so that f(r, ω) = Resλ=z(r
λ−2f̃(λ, ω)), while h(r, ω) = Resλ=z(r

λh̃(λ, ω)) is the solution

of (7.39) which we seek. In terms of f̃, h̃, equation (7.39) is equivalent to

N(DRic, λ)h̃(λ) = f̃(λ) + hol., (7.40)

where we write hol. for a λ-dependent tensor which is holomorphic at λ = z. This follows
as in the proof of Lemma 2.5. Indeed, multiplying (7.40) by rλ−2, integrating along a small

circle around λ = z, and recalling our shorthand notation N(DRic, λ) = N(r2D̂
¯
gRic(0), λ)

gives (7.39); conversely, we can pull the action of r2D̂
¯
gRic(0) on h(r, ω) = 1

2πi

∮
z r

λh̃(λ, ω) dλ

under the integral sign where it acts on h̃ via N(DRic, λ), and (7.40) follows.

Similarly, we shall use that ̂̄δ
¯
G(0)f = 0 is equivalent to

N(δG, λ− 2)f̃(λ) = hol. (7.41)

The conditions (7.36), (7.37), and (7.38) are moreover equivalent to〈
N(r̂̄δ

¯
G(0), λ− 2)f̃(λ), rV

〉
L2(S2)

∣∣
λ=−1

= 0 ∀V ∈ V1, (7.42)

53An example is V = ∂[φ = sin2 θ dφ, so r2V = x1 dx2 − x2 dx1.
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N(r̂̄δ

¯
G(0), λ− 2)f̃(λ),dt〉L2(S2)

∣∣
λ=0

= 0, (7.43)〈
N(r̂̄δ

¯
G(0), λ− 2)f̃(λ),d(rS)〉L2(S2)

∣∣
λ=0

= 0 ∀S ∈ S1, (7.44)

respectively; this is a special case of Lemma 2.5 (for X = [R3; {0}], w = −3, α = 0,

L = r̂̄δ
¯
G(0), and z = −3,−2,−2).

• Step 1. Individual solvability for pure types. Fix a pure type •, and replace f̃ by its

pure type • part f̃•.

(1.i) z /∈ Z. Proposition 7.8 gives K•,[0](δG, z − 2) = R•,[0](DRic, z). If k = 0 and thus
f0 ∈ kerN•(δG, z − 2), this produces h0 so that (7.40) holds. For general k ∈ N, we have
fk ∈ kerN•(δG, z − 2); choosing hk with N•(DRic, z)hk = fk, we get

N•(DRic, λ)
(
(λ− z)−k−1hk

)
= f̃(λ) + ẽ(λ), ẽ(λ) =

k−1∑
j=0

(λ− z)−j−1ej , (7.45)

where thus ẽ(λ) is more regular by one power of λ− z; and since N•(δG, λ− 2) annihilates
the left hand side identically, we find using (7.41) that

N•(δG, λ− 2)ẽ(λ) is holomorphic at λ = z. (7.46)

Having thus reduced k by 1, the solvability of (7.40) follows by induction on k.

(1.ii) z ∈ {−l − 1, l}, l ≥ 1. If • 6= sl, vl (or even if • ∈ {sl, vl} but f̃sl = 0 and

f̃vl = 0), then the arguments from step (1.i) apply without change. If • ∈ {sl, vl} and

f̃• 6= 0, then since fk ∈ kerN•(δG, z − 2), Proposition 7.8 (part (2), resp. (4) for l = 1,
and part (3), resp. (5) for l ≥ 2) produces hk+1 ∈ kerN•(DRic, z) and hk so that fk =
∂λN•(DRic, z)hk+1 +N•(DRic, z)hk; in other words,

N•(DRic, λ)
(
(λ− z)−k−2hk+1 + (λ− z)−k−1hk

)
= f̃(λ) + ẽ(λ)

where, as in part (1.i), ẽ has one power of (λ − z)−1 less than f̃ , and N(δG, λ − 2)ẽ(λ) is
holomorphic at λ = z. An inductive argument finishes the proof also in this case.

(1.iii) z = −1. If • 6= s0, v1, the arguments from step (1.i) apply. For • = s0, the
arguments from step (1.ii) apply in view of Proposition 7.8(1).

For • = v1 finally, consider first the case k = 0. Since f0 ∈ kerNv1(δG,−3), we obtain

(Nv1(δG, λ−2)f̃(λ))|λ=−1 = ∂λNv1(δG,−3)f0, and thus (7.42) reads 〈∂λN(δG,−3)f0, rV〉 =
0, V ∈ V1. In view of the isomorphism (7.32), this implies that we can write f0 =
N(DRic,−1)h0.

For k ≥ 1, the argument is different: we now have fk ∈ Kv1,[k](δG,−3) ⊂ Kv1,[1](δG,−3)
and thus fk = Nv1(DRic,−1)hk for some hk by Lemma 7.9. Thus, we again have (7.45)–
(7.46) (with z = −1). Moreover, applying Nv1(δG, λ − 2) to (7.45) and taking the inner
product with rV gives

0 =
〈
Nv1(δG, λ− 2)f̃(λ), rV

〉
+
〈
Nv1(δG, λ− 2)ẽ(λ), rV

〉
,

and thus 〈
Nv1(δG, λ− 2)ẽ(λ), rV

〉∣∣
λ=−1

= 0. (7.47)

Therefore, ẽ has one power of (λ+ 1)−1 less than f̃ while satisfying the same assumptions,
and an inductive argument finishes the proof in this case. (If k − 1 = 0, one applies the
first part of the argument, whereas for k − 1 ≥ 1 one repeats the second part.)
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(1.iv) z = 0. Since the scalar type 1 and vector type 1 cases in Proposition 7.8 (specifi-
cally (7.31) and (7.32)) and Lemma 7.9 are completely analogous, up to replacing z = 0 by
z = −1, as far as the orders of (restricted) kernels and (generalized) ranges are concerned,
the scalar type 1 case follows by the same arguments as the vector type 1 case.

The treatment of the scalar type 0 case is a combination of steps (1.ii) and (1.iii). In
the case k = 0, the tensor f0 ∈ kerN(δG,−2) lies in the kernel of the map (7.30) and thus
can be written as f0 = ∂λNs0(DRic, 0)h1 + Ns0(DRic, 0)h0 where h1 ∈ kerNs0(DRic, 0),

which gives (7.40) for h̃(λ) = λ−2h1 + λ−1h0. On the other hand, if k ≥ 1, then fk ∈
Ks0,[1](δG,−2) = Rs0,[1](DRic, 0) by Lemma 7.9, and thus we obtain hk+1 ∈ kerNs0(DRic, 0)
and hk so that

Ns0(DRic, λ)
(
λ−k−2hk+1 + λ−k−1hk

)
= f̃(λ) + ẽ(λ),

where ẽ is as in (7.45)–(7.46); and the arguments leading to (7.47) apply mutatis mutandis
to give 〈

Ns0(δG, λ− 2)ẽ(λ), dt
〉∣∣
λ=0

= 0.

By induction, we can solve away ẽ(λ) to finish the proof.

• Step 2. Simultaneous solvability for all pure types with large l. With z fixed, there ex-
ists l0 ∈ N0 so that Corollary 7.11 applies (with λ = z). Thus, for the projection f≥l0,k of fk
off the space of scalar and vector type l < l0 tensors, we have N(δG, z−2)f≥l0,k = 0, whence
there exists a solution hk ∈ C∞≥l0(ff;

¯
β∗S2T ∗(0,0)R

4) of N(DRic, z)hk = f≥l0,k. Repeating the

argument from step (1.i) then reduces the task to one where k is reduced by 1. Induction
finishes the construction of h.

The linear continuous dependence of (h0, . . . , hk+k′) on (f0, . . . , fk) can be arranged by
the same argument as in the proof of Theorem 7.12. �

Remark 7.14 (Necessity of solvability conditions). Proposition 7.8 and the comments fol-
lowing it imply that the conditions (7.36)–(7.38) are necessary for the solvability of equa-
tion (7.39) for z = −1, 0 regardless of the value of k′ ∈ N0. Tensors f violating condi-
tion (7.38) (thus z = 0) arise rather directly later on. An explicit example is the scalar
type 1 tensor f = r−2f0, f0 = (−2,−1

2 ,
1
2 ,−2,−1

2 , 4)T (in terms of (6.15b) with 0 6= S ∈ S1

fixed), for which one can check by direct computation that f0 ∈ kerN(δG,−2) whereas the
pairing (7.38) (for the same choice of S) evaluates to 24π‖S‖2L2(S2) 6= 0. See §8.3 for the

origin of this example.

8. Linear analysis on M◦

We use the setup and notation of §5. In this section, we solve the linearized Einstein
vacuum equations with nontrivial right hand side f ∈ ker δgGg on M◦. We shall only

study the case that f = O(|x|−2+δ) for some δ > 0; in practice, we will in fact only en-
counter log-smooth f (which thus have leading order behavior |x|−1(log |x|)k). Importantly,
Theorem 7.13 is applicable to each term in the polyhomogeneous expansion of such f at
x = 0 since for exponents z ∈ C with z > 0, there are no further necessary conditions for
solvability (since (7.36)–(7.38) only enter for z = 0,−1).

We only need to use here that (M, g) is globally hyperbolic and satisfies Ric(g)−Λg = 0,
and that the initial data set (X, γ, k) has no KIDs in the precompact connected smoothly
bounded open neighborhood U◦ ⊂ X of p ∈ X ∩ C. The curve C = c(I) ⊂ M can be any
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smooth inextendible timelike curve, and we recall the blow-down map β◦ : M◦ = [M ; C]→
M .

Theorem 8.1 (Solvability of the linearized Einstein vacuum equations at M◦). Let F̂ ⊂
C × N0 be an index set with Re F̂ > −2. Set Ê = {(z + j + 2, l) : (z, k) ∈ F̂ , j ∈ N0, l ≤
k+ j+ 1}.54 If f ∈ AF̂phg(M◦;β

∗
◦S

2T ∗M), with supp f contained in the domain of influence
of a compact subset of U◦, satisfies δgGgf = 0, then there exists

h = h] + β∗◦h[, h] ∈ AÊphg(M◦;β
∗
◦S

2T ∗M◦), h[ ∈ C∞(M ;S2T ∗M), (8.1)

with the following properties:

(1) on (M◦)
◦, we have

(DgRic− Λ)h = f ; (8.2)

(2) h vanishes near X \ U◦, or equivalently supph ∩ β∗◦X b β∗◦U◦, and in fact supph
is contained in the domain of influence of a compact subset of U◦;

(3) if C is a geodesic: h[ vanishes quadratically at C, i.e. its coefficients in smooth
coordinates on M near C vanish quadratically at C.

Remark 8.2 (Weight at M◦). Note that f, h are locally integrable at C with respect to
the lift of a smooth positive density on M to M◦ (such as |dg|), and thus they can be
extended uniquely from M \ C = (M◦)

◦ to L1
loc-distributions Ef,Eh on M . The difference

(DgRic − Λ)(Eh) − Ef , which is supported at C, must vanish identically by homogeneity

considerations, since both summands are . |x|−2+δ near x = 0 where δ ∈ (0,min Re F̂ +2).
Since we always have the distributional equality δgGg(DgRic−Λ)(Eh) = 0 by the linearized
second Bianchi identity, a necessary condition for the solvability of (8.2) on M \ C (with
|h| . |x|−1+δ for some δ > 0) is δgGgEf = 0 (in the distributional sense on M); and this
equation indeed holds not only in (M◦)

◦ by assumption, but indeed globally by homogeneity
considerations since δgGgEf is polyhomogeneous with degrees > −3 (which excludes δ-

distributions at C). If one drops the assumption Re F̂ > −2, then one may have δgGgEf 6= 0
even though δgGgf = 0. See also Remark 7.14 and §8.3 below.

The proof of Theorem 8.1 will be given in §§8.1–8.2. In §8.1, we first find a formal
solution h] at ∂M◦, i.e. h] satisfies (8.2) to infinite order at ∂M◦. We then correct the
formal solution to a true solution by solving an initial value problem (with carefully chosen
initial data) on the blow-down M of M◦ in §8.2. Constraints which our sharp solvability
theory imposes on the conditions under which our gluing construction can succeed at all
are discussed in §8.3.

8.1. Formal solution near ∂M◦. For this part, we only need to assume that Ric(g)−Λg
vanishes to infinite order at C. Recall the Fermi normal coordinates (t, x) near C ⊂M and
parameterize C by c : t 7→ (t, 0). Write

¯
g = −dt2 + dx2

for the Minkowski metric in these coordinates. (Thus, g −
¯
g vanishes at x = 0 by

Lemma 3.14.) Introduce r = |x| and ω = x
|x| ∈ S2 in order to pass to M◦ = [M ; C].

54This index set is not sharp for those (z, k) ∈ F̂ with z /∈ Z. Since in this paper all exponents z will be

integers, we content ourselves with the possibly oversized index set Ê here.



92 PETER HINTZ

The coordinates (t, r, ω) are valid in a collar neighborhood

N = {(t, r, ω) : t ∈ I, 0 ≤ r < r0(t)} (8.3a)

of ∂M◦, where we recall that r0 ∈ C∞(I) satisfies 0 < r0 <
1
2 . Let

χ̂ ∈ C∞c (N ), χ̂ = 1 near ∂N = r−1(0) (8.3b)

be a cutoff function. We identify N with a collar neighborhood of the zero section in +NC.
Since DgRic − Λ ∈ Diff2(M ;S2T ∗M) by (4.4), Lemma 2.1 gives β∗◦(DgRic − Λ) ∈

r−2Diff2
e(M◦;β

∗
◦S

2T ∗M), and Lemma 2.2 allows us to compute the b-normal operator.
To wit, the principal symbol of DgRic− Λ over a point p ∈ C only depends on g(p), which
in our local coordinates is equal to the Minkowski metric

¯
g. Thus, the b-normal operator of

β∗◦r
2(DgRic−Λ), restricted to a level set t−1(t0), t0 ∈ I, is the same as that of β∗◦r

2D
¯
gRic.

The latter is a vertical operator which, restricted to a fiber t−1(t0), t0 ∈ R, of +NC, acts
on sections of the pullback of S2T ∗c(t0)M

∼= S2T ∗(t0,0)(R× R3) along the projection

π : +NC → C.

It is the zero energy operator of r2D
¯
gRic, i.e. obtained from r2D

¯
gRic, regarded as a differ-

ential operator on Rt×R3
x, by dropping all ∂t (or more precisely r∂t) derivatives. It is thus

independent of t0 ∈ I. We denote this zero energy operator by

D̂
¯
gRic(0) ∈ Diff2(R3;S2T ∗(t0,0)R

4); (8.4)

it is the unique operator with D
¯
gRic(h)|t−1(t0) = D̂

¯
gRic(0)(h|t−1(t0)) for all t-invariant h.

Since
¯
g is homogeneous of degree 2 with respect to dilations (t0 + t′, x) 7→ (t0 + λt′, λx),

the operator D
¯
gRic is homogeneous of degree −2, and thus so is D̂

¯
gRic(0) with respect to

dilations x 7→ λx. Therefore,

β∗◦(r
2D̂

¯
gRic(0)) ∈ ∨Diff2

b,I(
+NC;π∗S2T ∗CM). (8.5)

(This also follows from the explicit expression in Corollary 6.7.) In summary:

Lemma 8.3 (b-normal operator at ∂M◦). We have

β∗◦(DgRic− Λ) ∈ r−2Diff2
e(M◦;β

∗
◦S

2T ∗M) ⊂ r−2Diff2
b(M◦;β

∗
◦S

2T ∗M).

Moreover, if we identify S2T ∗M ∼= π∗S2T ∗CM over N , then

β∗◦(DgRic− Λ)− χ̂β∗◦D̂
¯
gRic(0)χ̂ ∈ r−1Diff2

b(M◦;β
∗
◦S

2T ∗M). (8.6)

Identifying the fibers of +NC over different points on C by means of their trivializations
given by Fermi normal coordinates, and similarly for the fibers of T ∗CM , the restriction of
the operator (8.5) to +Nc(t0)C is independent of t0 ∈ I. We thus mainly need to study

¯
β∗
(
r2D̂

¯
gRic(0)

)
∈ Diff2

b,I

(
[R3; {0}];π∗ff

¯
β∗S2T ∗(0,0)R

4
)
, (8.7)

where
¯
β : [R3; {0}] = [0,∞)r × S2

ω → R3 is the blow-down map, πff(r, ω) = ω is as in

Theorem 7.13, and where, as before, we regard R3 = t−1(0) ⊂ R4. The solvability theory
for this operator, for quasi-homogeneous right hand sides, was analyzed in Theorem 7.13.
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Lemma 8.4 (Formal solution at C with restricted polyhomogeneous right hand side). Let

z ∈ C\(−2−N0), and let F̂ ⊂ (z+N0)×N0 be an index set. Let Ê = {(w+j+2, l) : (w, k) ∈
F̂ , j ∈ N0, l ≤ k + j + 1}. Let

f ∈ AF̂phg(M◦;β
∗
◦S

2T ∗M), δgGgf ∈ Ċ∞(M◦;β
∗
◦T
∗M),

i.e. δgGgf vanishes to infinite order at ∂M◦. Then there exists h ∈ AÊphg(M◦;β
∗
◦S

2T ∗M),
with support contained in any fixed neighborhood of ∂M◦, so that

(DgRic− Λ)(h) = f + f[, f[ ∈ Ċ∞(M◦;β
∗
◦S

2T ∗M). (8.8)

The equations δgGgf = 0 and DgRic(h) = f here are to be understood as equalities in
M \ C (or more precisely as equalities of extendible distributions on M◦).

Proof of Lemma 8.4. We identify the collar neighborhood N using the polar coordinates
(t, r, ω) associated with Fermi normal coordinates (t, x) with a neighborhood of I×{0}×S2 ⊂
I × [R3; {0}] = I × [0,∞)× S2. Let χ̂ ∈ C∞c (N ) be a cutoff as in (8.3a)–(8.3b). We use the

notation introduced in (8.7). If k ∈ N0 is such that (z, k) ∈ F̂ but (z, k + 1) /∈ F̂ , there
exist f0, . . . , fk ∈ C∞(I; C∞(S2;

¯
β∗S2T ∗(0,0)R

4)) so that

f − χ̂f (0) ∈ AF̂0
phg(M◦;β

∗
◦S

2T ∗M), f (0) :=
k∑
j=0

rz(log r)jπ∗fffj ,

where F̂0 = F̂ \ {(z, l) ∈ F̂} = {(w, l) ∈ F̂ : w ∈ z + 1 + N0} ⊂ (z + 1 + N0)× N0. We now

apply the operator β∗◦(δgGg) to f − χ̂f (0) ∈ AF̂0
phg and use Lemma 2.2; this implies that

χ̂̂̄δ
¯
G(0)f (0) ∈ AF̂0−1

phg (M◦;β
∗
◦T
∗M).

Since ̂̄δ
¯
G(0) is homogeneous of degree −1, this implies ̂̄δ

¯
G(0)f (0) = 0. Therefore, we are

in the setting of Theorem 7.13 with smooth parametric dependence on t ∈ I. This gives
k′ ∈ {0, 1} and hj(t) ∈ C∞(S2;

¯
β∗S2T ∗(0,0)R

4), j = 0, . . . , k + k′, for each t ∈ I so that

D̂
¯
gRic(0)(h(0)(t)) = f (0)(t), h(0)(t) =

k+k′∑
j=0

rz+2(log r)jπ∗ffhj(t).

In view of the continuous and linear dependence of (h0(t), . . . , hk+k′(t)) on (f0(t), . . . , fk(t)),
we first conclude that the hj(t) are continuous in t. Moreover, the solution of

D̂
¯
gRic(0)(h(1),ε(t)) = ε−1

(
f (0)(t+ ε)− f (0)(t)

)
(8.9)

is on the one hand given by ε−1(h(0)(t + ε) − h(0)(t)), and on the other hand converges as

ε↘ 0 to the solution (as produced by Theorem 7.13) of D̂
¯
gRic(0)(h(1)(t)) = ∂tf

(0)(t). Since

h(1)(t) is continuous in t, this shows that h(0) is C1 in t. Iterating this argument implies
hj ∈ C∞(I; C∞(S2;

¯
β∗S2T ∗(0,0)R

4)), j = 0, . . . , k + k′.

By Lemma 8.3 and recalling the notation for index sets from §2.2, we conclude that

f ′ := f − (DgRic− Λ)(χ̂h(0)) ∈ AF̂0∪(z+1,k+k′)
phg (M◦;β

∗
◦T
∗M).

(Note that the cosmological constant produces terms which are of lower order even compared
to the terms arising from (8.6).) That is, we have solved away f to leading order at ∂M◦, at
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the expense of (possibly) an additional logarithmic factor of the error f ′. Note furthermore
that the linearized second Bianchi identity ensures that

δgGgf
′ = δgGgf − δgGg(DgRic− Λ)(χ̂h(0)) ∈ Ċ∞(M◦;β

∗
◦T
∗M)

still. (We use here the validity of the nonlinear Einstein vacuum equations Ric(g)−Λg = 0
in Taylor series at C.)

Since z + 1 ∈ C \ (−N0 − 2) still, we may repeat this procedure. Proceeding inductively,

we thus obtain a sequence Ê` ⊂ ((z + 2) + ` + N0) × N0, ` ∈ N0, of index sets (with

Ê0 = (z + 2, k + k′) in the above notation) and h(`) ∈ AÊ`phg(M◦;β
∗
◦S

2T ∗M) so that

f − (DgRic− Λ)

(
χ̂

m∑
`=0

h(`)

)
∈ AF̂mphg(M◦;β

∗
◦S

2T ∗M),

where F̂m is an index set with F̂m ⊂ (z+(m+1)+N0)×N0 (and with F̂0 defined previously).
More precisely, the construction gives

Êm+1 ⊂ {((z + 2) + (m+ 1) + j, l) : j ∈ N0, l ≤ max{k + 1: (z + (m+ 1), k) ∈ F̂m+1}},

F̂m+1 ⊂ {(z + (m+ 2) + j, l) : j ∈ N0, l ≤ max{k : ((z + 2) + (m+ 1), k) ∈ Êm+1}}

∪ {(z + j, l) ∈ F̂m : j ≥ m+ 2}.

Thus, F̂m+1 removes the leading order terms (z+(m+1), k) of F̂m but adds the contribution

from the leading order terms ((z+2)+(m+1), k+k′) of Êm+1 (with k′ ≤ 1 here replaced by 1

simply, which may be lossy but acceptably so), while Êm+1 picks up the leading order terms

of F̂m+1 and (when k′ = 1) adds a logarithm. Setting Ê =
⋃
`∈N0
Ê` (which has the stated

description), we may thus take h ∈ AÊphg to be an asymptotic sum of the χ̂h(`) over ` ∈ N0.
We can arrange for the desired support property of h since multiplying h by a smooth
function which is equal to 1 in a neighborhood of ∂M◦ preserves the conclusion (8.8). �

Remark 8.5 (Control of logarithmic terms). Since the first step of the proof is an application
of Theorem 7.13, the refined statements made there imply also refinements about h and
its index set: if all leading order terms of f , corresponding to elements (z, k) ∈ F̂ with

Re z = min Re F̂ , are of a particular type (depending on the value of z), then one may

take Ê to have the same leading order part as F̂ ; more precisely, Ê = {(w + 2, k) ∈
F̂} ∪ {(w + 2 + j, l) : (w, k) ∈ F̂ , w ∈ z + 1 + N0, j ∈ N0, l ≤ k + j + 1}.

Proposition 8.6 (Formal solution at C). Under the assumptions of Theorem 8.1, and using

the notation of the Theorem, there exists h ∈ AÊphg(M◦;β
∗
◦S

2T ∗M), with support contained
in any fixed neighborhood of ∂M◦, so that

(DgRic− Λ)(h) = f + f[, f[ ∈ Ċ∞(M◦;β
∗
◦S

2T ∗M). (8.10)

Proof. Write F̂ as the disjoint union of index sets F̂j ⊂ (zj + N0) × N0, j ∈ J , with the

property that zi−zj /∈ Z whenever i 6= j; necessarily min Re F̂j ↗∞ as j →∞ (in case the

set J is infinite). This decomposition can be effected by taking z0 ∈ C so that (z0, 0) ∈ F̂
and Re z0 = min Re F̂ and then defining F̂0 = {(z, k) ∈ F̂ : z − z0 ∈ N0}; thus F̂ \ F̂0 is

still an index set, and if it is non-empty we may repeat this process. The fact that F̂ is
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an index set ensures that the complex numbers z0, z1, . . . one selects in this process satisfy
Re zj ↗∞, unless the process stops after finitely many steps.

We can then write f ∈ AF̂phg(M◦;β
∗
◦S

2T ∗M) as an asymptotic sum of fj ∈ A
F̂j
phg, j ∈ J .

Lemma 2.1 gives

δgGg : AF̂jphg(M◦;β
∗
◦S

2T ∗M)→ AF̂j−1
phg (M◦;β

∗
◦T
∗M).

Thus δgGgfj is polyhomogeneous with index set F̂j − 1; but δgGgfj is at the same time

also an asymptotic sum of polyhomogeneous distributions with index sets F̂i, i 6= j, since
δgGgfj ∼ δgGgf −

∑
i 6=j δgGgfi ∼ −

∑
i 6=j δgGgfi. Therefore,

δgGgfj ∈ Ċ∞(M◦;β
∗
◦T
∗M), j ∈ J.

We apply Lemma 8.4 to each fj , j ∈ J , separately. We obtain index sets Êj ⊂ (zj + 2 +

N0)×N0 and symmetric 2-tensors hj ∈ A
Êj
phg(M◦;β

∗S2T ∗M) so that (DgRic−Λ)hj − fj ∈
Ċ∞. Let now Ê =

⋃
j∈J Êj , and take h ∈ AÊphg(M◦;β

∗
◦S

2T ∗M) to be an asymptotic sum of

all hj . Then (8.10) holds. Multiplying h by a smooth function which is identically 1 near
∂M◦ and supported in the desired neighborhood of ∂M◦ furthermore ensures the desired
support property of h. �

Proposition 8.6 remains valid (and Theorem 8.1 can be similarly extended), with the

same proof, under the weaker assumption that F̂ ∩ ((−2−N0)×N0) = ∅. We shall however
only use the stated version in the solution of the gluing problem.

8.2. True solution; proof of Theorem 8.1. With F̂ , Ê , and f ∈ AF̂phg(M◦;β
∗
◦S

2T ∗M)

as in Theorem 8.1, we now denote by h] ∈ AÊphg(M◦;β
∗
◦S

2T ∗M) the formal solution of (8.2)

given by Proposition 8.6, which we arrange to satisfy supph] ∩ β−1
◦ (X) b β−1

◦ (U◦). Thus,

(DgRic− Λ)h] = f + f[, f[ ∈ Ċ∞(M◦;β
∗
◦S

2T ∗M). (8.11)

Due to the support properties of f and h], we also have supp f[∩β−1
◦ (X) b β−1

◦ (U◦). Now,

for any bundle E →M , the space Ċ∞(M◦;β
∗
◦E) is equal to the space of lifts under β◦ of all

smooth sections of E →M which vanish to infinite order at C. Thus, we may ‘blow down’
∂M◦ and regard f[ as an element

f[ ∈ C∞(M ;S2T ∗M), supp f[ ∩X b U◦,
which vanishes to infinite order at C (although we will not use this final property). Applying
the linearized second Bianchi identity to (8.11) (and using that Ric(g) − Λg = 0) implies
that δgGgf[ = 0. The next result uses the full set of assumptions spelled out before the
statement of Theorem 8.1 (in particular the absence of KIDs):

Proposition 8.7 (Solving away the trivial error). Suppose f[ ∈ C∞(M ;S2T ∗M) satisfies
δgGgf[ = 0, and supp f[ is contained in the domain of influence of a compact subset of U◦.
Then there exists h[ ∈ C∞(M ;S2T ∗M) with

(DgRic− Λ)h[ = f[ (8.12)

and so that supph[ is contained in the domain of influence of a compact subset of U◦.

We shall need:
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Proposition 8.8 (Solving the linearized constraints equations). Let X, γ, k,U◦ be as above;
that is, P (γ, k; Λ) = 0 (see (4.2)), and (D(γ,k)P )∗ has trivial kernel on the space of sections

of55 R ⊕ T ∗X ∼= T ∗XM over the non-empty smoothly bounded connected precompact open

subset U◦. Then for all ω ∈ C∞c (U◦;T ∗XM), there exist γ̇, k̇ ∈ C∞c (U◦;S2T ∗X) so that

D(γ,k)P (γ̇, k̇; Λ) = ω.

Proof. This is a standard result, see e.g. [CD03, §3]. Coercive a priori estimates for
(D(γ,k)P )∗ on function spaces allowing for exponential growth at the boundary of the com-

plement U◦δ ⊂ U◦ of a δ-neighborhood of ∂U◦, with δ > 0 so small that ω ∈ C∞c (U◦δ ) and

(X, γ, k) has no KIDs on U◦δ still, imply the solvability of D(γ,k)P (γ̇, k̇) = ω with smooth

γ̇, k̇ which are exponentially decaying at ∂U◦δ ; the extension of γ̇, k̇ by 0 to X \U◦δ furnishes
the desired solution. �

Proof of Proposition 8.7. This is a variant of the main result of [Hin23b]; we recall the
argument for the sake of completeness. Following the strategy outlined in §4.2, we seek h[
as the solution of an initial value problem for the gauge-fixed linearized Einstein equations.
Thus, if ν ∈ C∞(X;TXM) denotes the future unit normal at X, we solve{

(DgRic− Λ)h[ + δ∗g(δgGgh[ − θ) = f[ in M,

(h[,∇νh[) = (h0, h1) at X,
(8.13)

for carefully chosen θ ∈ C∞c (M ;T ∗M) and h0, h1 ∈ C∞c (U◦;S2T ∗XM); the task is to select
θ, h0, h1 so that h[ also solves (8.12). As demonstrated in §4.2, it suffices to arrange

D(γ,k)P (γ̇, k̇; Λ) = (Ggf[)(ν,−) (8.14)

at X, where (γ̇, k̇) are the linearized initial data induced by (h0, h1). Since (Ggf[)(ν,−) ∈
C∞c (U◦;T ∗XM), and due to the absence of KIDs in U◦, we may apply Proposition 8.8

to obtain the existence of γ̇, k̇ ∈ C∞c (U◦;S2T ∗X) solving (8.14). Choosing h0, h1 as in
Remark 4.1, we subsequently let θ be any smooth extension of (δgGg(h0 + sh1))|X ∈
C∞c (U◦;T ∗XM) to a 1-form on M (see (4.11)). With these data in place, we solve (8.13).
Then h[ satisfies (8.12). (We recall the argument: since η := δgGgh[ − θ ∈ C∞(M ;T ∗M)
vanishes at X, so does its normal derivative since (Ggδ

∗
gη)(ν,−) = 0 due to (8.14), and thus

we have η = 0 everywhere since δgGgδ
∗
gη = 0.) The support property of h follows from

finite speed of propagation. The proof is complete. �

Proof of Theorem 8.1. In view of equations (8.11) and (8.12), the tensor h := h] − β∗◦h[
solves the equation (8.2) and is indeed of the form (8.1).

When C is a geodesic, it remains to arrange property (3) by exploiting the fact that we
may add to h[ any linearized pure gauge term, i.e. a tensor of the form δ∗gω where we will
be able to take ω ∈ C∞(M ;T ∗M) to be supported in an arbitrarily small neighborhood
of C, so δ∗gω satisfies the same support properties as h[ in Proposition 8.7. To arrange for
simple vanishing, note that in Fermi normal coordinates (t, x) around C, the restriction of
h[ to C takes the form

h[(t, 0) = a00(t) dt2 + 2a0k(t) dtdxk + ajk(t) dxj dxk, aµν ∈ C∞(I),

55The isomorphism is given by T ∗XM 3 ω 7→ (ω(ν), ω|TX) where ν is the future unit normal of X.
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where ajk = akj . Pick A00 ∈ C∞(I) with A′00 = a00. Since g agrees with the Minkowski
metric

¯
g at C modulo error terms vanishing quadratically at x = 0, we have

δ∗gdt ≡ 0, δ∗gdx
j ≡ 0

modulo tensors vanishing simply at x = 0. Therefore,56

δ∗g
(
A00(t) dt

)
= a00(t) dt2 +A00(t)δ∗gdt ≡ a00(t) dt2,

δ∗g
(
a0k(t)x

k dt
)

= a0k(t) dtdxk + a′0k(t)x
k dt2 + a0k(t)x

kδ∗gdt ≡ a0k(t) dtdxk,

δ∗g
(
ajk(t)x

j dxk
)

= ajk(t) dxj dxk + a′jk(t)x
j dt dxk + ajk(t)x

jδ∗gdx
k ≡ ajk(t) dxj dxk.

If we subtract from h[ the tensor δ∗g(χ̂ω) where χ̂ ∈ C∞(M) is equal to 1 near C and sup-

ported in a small neighborhood of C, and with ω = A00(t) dt+ 2A0k(t) dxk + ajk(t)x
j dxk,

then the new h[ vanishes simply at C and still satisfies the support condition of Proposi-
tion 8.7.

This can be improved to quadratic vanishing by similarly explicit means: modulo tensors
vanishing quadratically at x = 0, we have

a(t)xj dt2 ≡ δ∗g
(
A1(t)xj dt−A2(t) dxj

)
,

2a(t)xj dt dxk ≡ δ∗g
(
a(t)xjxk dt+A1(t)(xj dxk − xk dxj)

)
,

2a(t)xj dxk dx` ≡ δ∗g
(
a(t)xjxk dx` + a(t)x`(xj dxk − xk dxj)

)
,

where A1(t) =
∫
a(t) dt and A2(t) =

∫
A1(t) dt.

An alternative, and conceptually cleaner, argument proceeds as follows. Consider for
s ∈ R the symmetric 2-tensor g+sh[; on any fixed compact subset of M , this is a Lorentzian
metric when s is sufficiently small. Fix p ∈ C and a future timelike vector v ∈ TpC. Denote
by Cs the geodesic for

gs := g + sh[
with initial condition (p, v

‖v‖gs
). Then we have Fermi normal coordinates (ts, xs) around Cs

which are equal to (t, x) for s = 0; by the construction in the proof of Lemma 3.14, these
coordinates can be chosen to depend smoothly on s near 0 and are defined near any fixed
precompact subset of C when s is sufficiently small. Denote by φs : Ds ⊂ R× R3 →M the
corresponding coordinate chart (T,X) 7→ (ts, xs) = (T,X); here, if J b I, then the domain
Ds contains a neighborhood of J × {0} when s is small. By definition,

φ∗sgs = −dT 2 + dX2 +G′s(T,X; dT, dX),

where G′s depends smoothly on s and vanishes quadratically at X = 0. Consider now the
map

Φs := φs ◦ φ−1
0 : D0 ∩ φ0(Ds)→M

which is a diffeomorphism onto its image near φ0(J × {0}) ⊂ M for small enough s, and
which satisfies Φ0 = Id. Then Φ∗0g0 = Id∗ g = g and

Φ∗s(g + sh[) = Φ∗sgs = (φ−1
0 )∗(−dT 2 + dX2 +G′s) = −dt2 + dx2 + g′s(t, x; dt,dx)

56Compare this with Theorem 7.12: the scalar type 1 tensor dt dxk, and the sum dxj dxk of scalar type

0 and 2 tensors both lie in ker D̂
¯
gRic(0) or indeed in kerN(DRic, 0) in the notation of §7, and are thus pure

gauge. Lastly, while dt2 ∈ kerNs0(DRic, 0), this is not in the range of Ns0(δ∗, 1) (cf. Proposition 7.6(1)).
Rather, it is the symmetric gradient of a non-stationary 1-form, dt2 = δ∗

¯
g(t dt). This explains the appearance

of A00 =
∫
a00 dt.
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(using the Fermi normal coordinates around C for the expression on the right), where g′s
is smooth in s and vanishes quadratically at x = 0; we express this as g′s = O(|x|2).
Differentiating at s = 0 gives

O(|x|2) =
d

ds
(Φ∗sg)

∣∣∣
s=0

+ Φ∗0h[ = LV g + h[,

where the smooth vector field V is defined in a neighborhood N ⊂ C by V (q) = d
dsΦs(q)|s=0,

q ∈ N . If χ̂ ∈ C∞(M) is supported in N , equal to 1 near C, and has support sufficiently
close to C, then we may replace h[ by h[ + Lχ̂V g (which is O(|x|2) near C = {x = 0})
without affecting properties (1)–(2) in Theorem 8.1. This completes the proof. �

8.3. Necessary conditions for gluing: I. A result of Gralla–Wald revisited. The
material in this section is of supplementary character: it is not used in the rest of the paper
and may therefore be skipped at first reading, but it sheds further light on the analysis
in §§8.1–8.2.

We shall show that the gluing construction (for polyhomogeneous total families g̃ on M̃ ,

with the M̂ -model being a Kerr metric with nonzero mass) in this paper is only possible if C
is a geodesic; in this sense we recover, in our setting, the geodesic hypothesis. Furthermore,
the rescaled mass of the glued black hole must be constant along C. Our arguments are
closely related to those given by Gralla–Wald in [GW08, §III]; in present terminology, they
exploit an obstruction to solving the linearized Einstein equations in the polyhomogeneous
category with right hand sides having borderline r−2 growth (which is precisely what is
excluded in Theorem 8.1). Further necessary conditions are derived in §9.3.

Let C = c(I), I ⊆ R, be any inextendible embedded smooth timelike curve (not necessar-
ily a geodesic). Fix a smooth family of mass parameters 0 < m ∈ C∞(I), and consider the
naively glued metric g̃0 produced by Lemma 3.28 for any choice of a ∈ C∞(I;R3). Consider
the leading order error of the Einstein vacuum equations for g̃0 at M◦, defined by

f :=
(
ε−1
(
Ric(g̃0)− Λg̃0

))∣∣∣
M◦
∈ r−2C∞(M◦;β

∗
◦S

2T ∗M). (8.15)

While by virtue of the (nonlinear) second Bianchi identity for g̃0 we have δgGgf = 0 in
(M◦)

◦ = M \ C, it is no longer necessarily the case that for the unique L1
loc-extension

Ef ∈ L1
loc(M ;S2T ∗M) of f we still have δgGg(Ef) = 0 in the distributional sense on M ;

rather, δgGg(Ef) may be a δ-distribution with support in C. As discussed in Remark 8.2,
the nonvanishing of δgGg(Ef) at ∂M◦ would render the solvability of (DgRic − Λ)h = f

in the set (M◦)
◦ with |h| . |x|−1+δ impossible. (The upper bound on h demanded here

ensures that the correction εh to g̃0 near M◦ does not change the M̂ -model metrics.) We
proceed to make this explicit.

Working in Fermi normal coordinates (t, x) around C and with t, r = |x|, ω = x
|x| ∈ S2

on M◦ near ∂M◦, we write g̃0 in the region ρ◦ := ε
r . 1 (i.e. in a collar neighborhood of

M◦ ⊂ M̃) as

g̃0(ρ◦, t, r, ω) ≡ g(t, r, ω) + ρ◦g1(t, r, ω) mod ρ2
◦C∞(M̃ ;S2T̃ ∗M̃),

where Ric(g)− Λg = 0 and g1(t, r, ω) ∈ C∞(M◦;β
∗
◦S

2T ∗M). The restriction to M̂ , locally

given by r = 0, is g(t, 0, ω) + ρ◦g1(t, 0, ω) mod ρ2
◦C∞(M̂ ;S2T̃ ∗

M̂
M̃). Applying the map



GLUING SMALL BLACK HOLES ALONG TIMELIKE GEODESICS I: FORMAL SOLUTION 99

e from (3.7) to this gives the Kerr metric, which (independently of the choice of a in
Lemma 3.28) modulo O(ρ2

◦)-terms is equal to the mass m(t) Schwarzschild metric

−dt̂2 + dr̂2 + r̂2
/g +

2m(t)

r̂
(dt̂2 + dr̂2) +O(r̂−2),

where r̂ = ρ−1
◦ , in view of (3.41). Since e(g(t, 0, ω)) = −dt̂2 + dr̂2 + r̂2/g, we thus find

ρ◦g1(t, 0, ω) = 2m(t)ρ◦(dt
2 + dr2) = εg1,m(t), g1,m(t) :=

2m(t)

r
(dt2 + dr2). (8.16)

Since the error ρ◦g1(t, r, ω)− ρ◦g1(t, 0, ω) is of class ρ◦rC∞ = εC∞, we conclude that

g̃0(ρ◦, t, r, ω) = g(t, r, ω) + εg1,m(t) + εg′1 mod ρ2
◦C∞, g′1 ∈ C∞(M◦;β

∗
◦S

2T ∗M). (8.17)

Remark 8.9 (Leading order behavior). For g̃0 as in (8.17), but for general g1,m ∼ r−1, one has

f ∼ r−3; the fact that f ∼ r−2 for the specific g1,m in (8.16) is due to g1,m ∈ kerβ∗◦D̂
¯
gRic(0),

where we use the notation of Corollary 6.7 and Lemma 8.3.

Plugging (8.17) into (8.15), we have

f = Dg(Ric− Λ)(g1,m(t) + g′1) in (M◦)
◦.

Denoting by E the extension operator E : L1
loc(M◦; |dg|) → L1

loc(M ; |dg|), the linearized
second Bianchi identity implies

δgGg(Ef) = δgGg
(
EDg(Ric− Λ)(g1,m(t) + g′1)−Dg(Ric− Λ)(Eg1,m(t) + Eg′1)

)
. (8.18)

The big parenthesis is supported in C. Since g′1 ∈ A0(M◦) and therefore Eg′1 ∈ H
3
2
−

loc (M),

the term EDg(Ric − Λ)g′1 − Dg(Ric − Λ)(Eg′1) ∈ H
− 1

2
−

loc (M), which is supported in C
(with codim C = 3), must vanish. For the same reason, in the evaluation of EDg(Ric −
Λ)(g1,m) − Dg(Ric − Λ)(Eg1,m) we may drop Λ and replace g by its restriction to C, i.e.
by the Minkowski metric; moreover, since t-derivatives preserve the conormal order (unlike
r-derivatives, which increase the strength of the singularity at r = 0 by 1 order), we may
fix m to be equal to the constant value m(t0) when computing (8.18) at t−1(t0). Since

D̂
¯
gRic(0)g1,m(t0) = 0 in r 6= 0, only the term D

¯
gRic(Eg1,m(t0)) in parentheses in (8.18) is

possibly nonzero. The key calculation is thus:

Lemma 8.10 (Calculation for the linearized Einstein equation). Let
¯
g = −dt2 + dx2,

and write r = |x|. Recall
¯
G : h 7→ h − 1

2
¯
g tr

¯
g h. In the sense of distributional sections of

S2T ∗R4 → R4, we then have

¯
GD

¯
gRic

(2m

r
(dt2 + dr2)

)
= 8mπδ(x) dt2. (8.19)

Proof. It suffices to prove this for 2m = 1. Denote the expression on the left in (8.19) by

T . Note that
¯
G(dt2 + dr2) = dt2 + dr2; since dr = 1

|x|r dr =
∑3

j=1
xj

|x|dx
j , we thus have

¯
GT = D

¯
gRic

( 1

|x|
(dt2 + dr2)

)
=
(1

2
(∂2
t − ∂2

x)−
¯
δ∗

¯
δ
)( 1

|x|
dt2 +

∑
j,k

xjxk

|x|3
dxj dxk

)
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in view of the formula (4.4) for D
¯
gRic. Using ∂2

x
1
|x| = −4πδ(x) and

¯
δ(|x|−1dt2) = 0, the

contribution of 1
|x|dt

2 to
¯
GT equals 2πδ(x) dt2. We further compute(

−1

2

∑
`

∂2
` −¯

δ∗
¯
δ
)(∑

j,k

xjxk

|x|3
dxj dxk

)
=

1

2

∑
j,k,`

[
∂2
`

(
∂j
xk

|x|
−
δkj
|x|

)
+ 2∂j∂`

x`xk

|x|3

]
dxj dxk

=
∑
j

2πδ(x) (dxj)2 +
1

2

∑
j,k,`

[
∂2
` ∂j

xk

|x|
− 2∂j∂`

(
∂`
xk

|x|
−
δk`
|x|

)]
dxj dxk

= 2πδ(x) dx2 +
1

2

∑
j,k,`

[(
−∂2

` ∂jx
k + 2δk` ∂`∂j

)
|x|−1

]
dxj dxk.

But
∑

`(−∂2
` ∂jx

k + 2δk` ∂`∂j) =
∑

` ∂j(−∂2
` x

k + 2∂k) = −∂jxk
∑

` ∂
2
` annihilates |x|−1. We

conclude that
¯
GT = 2πδ(x)(dt2 + dx2). Applying

¯
G to this and using

¯
G(dt2 + dx2) = 2 dt2

gives T = 4πδ(x) dt2, as claimed. �

Corollary 8.11 (Equations of motion for the stress-energy tensor). The L1
loc(M)-extension

Ef of the tensor f defined by (8.15) satisfies

δgGg(Ef) = 8π
(
−m(t)(∇∂t∂t)[ + m′(t)∂[t

)
δ(x). (8.20)

(Cf. [GW08, Equations (47) and (50)].)

Proof. Lemma 8.10 implies (see also Remark 8.9), via (8.18), that

δgGg(Ef) = 8πδg
(
m(t)δ(x) dt2

)
= 8πm(t)δg

(
δ(x) dt2

)
− 8πm′(t)δ(x)ι∇t(dt

2).

But since in the Fermi normal coordinates (t, x) all Christoffel symbols vanish at x =

0 except possibly for Γj00 = Γ0
0j (j = 1, 2, 3), we have δg(δ(x) dt2) = −Γ0

0jδ(x) dxj =

−δ(x)(∇∂t∂t)[. �

To conclude, if it is possible to find h̃ ∈ C∞(M̃ ;S2T̃ ∗M̃) (or more generally h̃ ∈ AÊ,Ephg

where Re Ê > −1 and min Re(E \ {(0, 0)}) > 0, so that εh̃ has vanishing restriction to M̂

and vanishes simply at M◦) with the property that for g̃1 = g̃0 + εh̃, the error Ric(g̃1)−Λg̃1

vanishes to more than one order at M◦, then we showed above that necessarily δgGg(Ef) =
0; and Corollary 8.11 shows that this is equivalent to the requirement that C be a geodesic,
and m(t) must be a constant. (Indeed, since t 7→ c(t) is an arc-length parameterization of
C, we have ∇∂t∂t ⊥ ∂t, and therefore the vanishing of (8.20) requires the vanishing of ∇∂t∂t
and m′(t) separately.)

We finally note that if C is not a geodesic, then the homogeneous r−2 leading order
term of f in (8.15) at ∂M◦ gives rise to the example in Remark 7.14 as follows: if g =

(−1 − 2Γj00x
j)dt2 +

∑3
j=1(dxj)2, say, with S :=

∑3
j=1 Γj00

xj

|x| 6= 0 (cf. (3.26)), then for

f = DgRic(g1,m) with m 6= 0, a calculation gives m−1r2f = (−5Sdt2 − 3Sdr2 + 2 dr ⊗s
r/dS + 4Sr2/g) + o(1) as r → 0, and this is not equal to r2(D

¯
gRic − Λ)h̃ in r > 0 for any

h̃ = O(|x|−1+δ). (The expression in Remark 7.14 arises by expressing this in terms of (6.6)
and (6.15b).) On the other hand, when C is a geodesic, the fact that g agrees to second
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order with the Minkowski metric along C in Fermi normal coordinates lets one pick g̃0 in
such a way that the r−2-leading order term of f vanishes at ∂M◦, i.e. one has f ∈ r−1C∞
in (8.15) (see Lemma 10.3 below); and then δgGgf = 0 automatically implies δgGg(Ef) = 0
by homogeneity considerations.

9. Linear analysis on M̂

We continue using the setup and notation of §5. We fix subextremal Kerr parameters

b = (m, a) ∈ R× R3,

and recall the Kerr metric ĝb from Definition 3.22, defined on the compactified spacetime
manifold M̂b with compactified Cauchy surface X̂b (see Definition 3.26). Recall also the

linearized Kerr metrics ĝ′b(ḃ) from Definition 3.27. The interior M̂◦b of M̂b is a subset of

R4 = Rt̂ × R3
x̂, and indeed is the complement of {|x̂| ≤ m}, while X̂◦b = t̂−1(0) ⊂ M̂◦b .

Writing |dĝb| = |dt̂||dĝb|X̂b |, we have

|dĝb|X̂b | ∈ C
∞(X̂b;

scΩX̂b). (9.1)

With respect to this density, we have Aα(X̂b) ⊂ L1(X̂b) if and only if α > 3. We write
〈·, ·〉 for the L2-inner product of sections of tensor bundles (arising as restrictions of tensor

bundles on M̂ to X̂b) on X̂◦b with respect to the volume density |dĝb|X̂b | and the fiber inner

product induced by ĝb. We denote by

t̂∗ := t̂− T∗(x̂), T∗ ∈ C∞(R3), T∗(x̂) = r̂ = |x̂|, r̂ ≥ 10m, (9.2)

a function which for r̂ ≥ 10m is equal to the null coordinate t̂ − |x̂| on Minkowski space
which was used in §6. Finally, write

b0 = (m, 0) (9.3)

for the parameters of a Schwarzschild black hole with the same mass.

Motivated by §1.2.4 (and also Proposition 4.3(2)), we shall study the solvability proper-
ties of the equation DĝbRic(h) = f for stationary h, f ; thus, we study

D̂ĝbRic(0)(h) = f, δ̂ĝbGĝb(0)f = 0, (9.4)

on X̂◦b .

9.1. Cokernel of the zero energy operator. In equation (9.4), we shall only consider

f ∈ A2(X̂b;S
2 3scT ∗

X̂b
M̂b) = ρ2

◦A0(X̂b;S
2 3scT ∗

X̂b
M̂b), i.e. f has at least inverse quadratic

decay as ρ◦ := 〈x̂〉−1 ↘ 0, where we recall that ρ◦ is a boundary defining function of X̂b

(and also of the lift of the boundary of R4
t̂,x̂

to M̂b). We first note:

Lemma 9.1 (Necessary condition for solvability). Let f ∈ Aα(X̂b;S
2 3scT ∗

X̂b
M̂b), α ≥ 2. If

there exists a solution h ∈ A−1+δ(X̂b;S
2 3scT ∗

X̂b
M̂b), δ > 0, of D̂ĝbRic(0)(h) = f , then

〈f, Ĝĝbδ∗ĝb(0)ω〉 = 0 (9.5)

for all ω ∈ D ′(X̂◦b ) so that Ĝĝbδ
∗
ĝb

(0)ω ∈ A2−δ+(X̂b) + E ′(X̂◦b ) has support disjoint from

r̂ = m.
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We allow for ω to be a distribution since the 1-forms ω which arise in the solvabil-
ity theory for D̂ĝbRic(0) are singular at the event horizon; see [HHV21, Proposition 9.1],
[AHW22, Theorem 7.5], and Theorem 9.12 below. (By elliptic regularity, ω is smooth

where Ĝĝbδ
∗
ĝb

(0)ω is.) We will show in Theorem 9.8 below that (9.5) is also sufficient for

the solvability in the stated function space.

Proof of Lemma 9.1. Since D̂ĝbRic(0) ∈ ρ2
◦Diff2

b(X̂b;S
2 3scT ∗

X̂b
M̂b), integration by parts in〈

D̂ĝbRic(0)h, Ĝĝbδ
∗
ĝb

(0)ω
〉

=
〈
h, D̂ĝbRic(0)∗Ĝĝbδ

∗
ĝb

(0)ω
〉

is justified since (−1 + δ) + 2 + (2 − δ + ε) = 3 + ε > 3 when ε > 0. It then remains to
recall that the kernel of (DĝbRic)∗ = Gĝb ◦DĝbRic ◦ Gĝb contains all symmetric 2-tensors in
the range of Gĝbδ

∗
ĝb

. �

On the other hand, if f ∈ Aα(X̂b), α ≥ 2, satisfies δ̂ĝbGĝb(0)f = 0 instead of (9.5), then
the integration by parts in

0 =
〈
δ̂ĝbGĝb(0)f, ω

〉
=
〈
f, Ĝĝbδ

∗
ĝb

(0)ω
〉

(9.6)

is only justified when ω ∈ Aβ(X̂b) + E ′(X̂◦b ), suppω ∩ r̂−1(m) = ∅, with α+ 1 + β > 3, i.e.
β > 2− α, which for α = 2 requires β > 0 and thus ω to decay (as a 3sc-1-form, i.e. when
expressed in the frame dt̂, dx̂) as |x̂| → ∞. But since the Kerr metric is asymptotically flat,
it possesses approximate Killing 1-forms ω which do not decay (i.e. β ≤ 0) and nonetheless
fit the assumptions of Lemma 9.1 since their symmetric gradients do decay, as we discuss

below. Thus, the necessary condition (9.5) for solvability of D̂ĝbRic(0)h = f with h ∈ A−1+δ

is strictly stronger than δ̂ĝbGĝb(0)f = 0.57

Definition 9.2 (Approximate Killing 1-forms). On R4 = Rt̂ × R3
x̂, x̂ = (x̂1, x̂2, x̂3), we

define the 1-forms

ω0 := dt̂, ωj := dx̂j , ωjk := x̂j dx̂k − x̂k dx̂j ,

where j, k = 1, 2, 3 and j 6= k.

Thus, ωµ ∈ C∞(X̂b;
3scT ∗

X̂b
M̂b) for µ = 0, . . . , 3, and ωjk ∈ ρ−1

◦ C∞(X̂b;
3scT ∗

X̂b
M̂b). More-

over, ω0 is of scalar type 0, ωj is of scalar type 1, and ωjk is of vector type 1.

Lemma 9.3 (Deformation tensors). For ω = ω0, ωj , ωjk, we have

δ∗ĝbω ∈ ρ
2
◦C∞(X̂b;S

2 3scT ∗
X̂b
M̂b). (9.7)

Proof. First, note that δ̂∗ĝb(0) ∈ ρ◦Diff1
b(X̂b;

3scT ∗
X̂b
M̂b, S

2 3scT ∗
X̂b
M̂b) differs from δ̂∗

¯
g(0) by a

term of class ρ2
◦Diff0

b and from δ̂∗ĝb0
(0) by a term of class ρ3

◦Diff0
b since the metrics ĝb and

¯
g, resp. ĝb0 differ by ρ◦C∞, resp. ρ2

◦C∞ as sections of S2 3scT ∗
X̂b
M̂b, see (3.40). (Indeed, this

implies that the Christoffel symbols in the (t̂, x̂)-coordinates differ by ρ2
◦C∞, resp. ρ3

◦C∞.)

57The equation δ̂ĝbGĝb(0)f = 0 satisfied by f imposes restrictions on the behavior of f as |x̂| → ∞ which
may cause the boundary terms at infinity in the integration by parts in (9.6) to vanish even when ω does
not decay. That such a cancellation typically does not occur is a consequence of Theorem 9.6 below: the

(stationary) tensors in (9.17) lie in the kernel of δ̂ĝbGĝb(0) but are not orthogonal to certain (quadratically
decaying) tensors Gĝbδ

∗
ĝb
ω by Theorem 9.6.
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Since ω ∈ ker δ∗

¯
g , the membership (9.7) follows directly for ω = ω0, ωj , while for the more

growing 1-forms ω = ωjk one notes the stronger vanishing δ∗ĝb0
ω = 0. �

Lemma 9.3 provides us with a 7-dimensional space of 1-forms to which Lemma 9.1 applies,
but not (9.6) when f ∈ A2; in this sense, the cokernel has (at least) 7 dimensions more

than what the condition δ̂ĝbGĝb(0)f = 0 imposes.

We next discuss Lorentz boosts. Rather than considering t̂ dx̂j−x̂j dt̂, we will use 1-forms
which are better adapted to the Kerr metric:

Definition 9.4 (Translations and boosts on Kerr). Set58

ωb,j := ∂[x̂j = ĝb(∂x̂j ,−).

We define hb,j , h̆b,j , and h̆∗,b,j using the t̂∗-coordinate from (9.2) by59

hb,j := δ∗ĝbωb,j , δ∗ĝb(t̂∂
[
x̂j + x̂j∂[

t̂
) = t̂hb,j + h̆b,j = t̂∗hb,j + h̆∗,b,j .

For ĉ ∈ R3, we moreover let

ωb,ĉ =
3∑
j=1

ĉjωb,j , hb,ĉ =
3∑
j=1

ĉjhb,j , h̆b,ĉ =
3∑
j=1

ĉj h̆b,j , h̆∗,b,ĉ =
3∑
j=1

ĉj h̆∗,b,j .

Writing e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , e3 = (0, 0, 1)T for the standard basis of R3, we
have

hb,j =
1

2
L∂

x̂j
ĝb, hb,ĉ =

1

2
Lĉ·∂x̂ ĝb. (9.8)

Lemma 9.5 (Leading order terms of boosts). For ĉ ∈ R3, set S(ĉ) := ĉ · x̂|x̂| ∈ S1 ⊂ C∞(S2).

We have hb,ĉ ∈ ρ2
◦C∞(X̂b;

3scT ∗
X̂b
M̂b) and h̆b,ĉ, h̆∗,b,ĉ ∈ ρ◦C∞(X̂b;

3scT ∗
X̂b
M̂b), and

hb,ĉ ≡
m

r̂2

(
−S(ĉ)(dt̂2 + dr̂2) + 2 dr̂ ⊗s r̂ /dS(ĉ)

)
mod ρ3

◦C∞, (9.9)

h̆∗,b,ĉ ≡
m

r̂

(
S(ĉ)(−dt̂2 + 4 dt̂dr̂ − dr̂2) + 2(dt̂+ dr̂)⊗s r̂ /dS(ĉ)

)
mod ρ2

◦C∞. (9.10)

Proof. In the computation of hb,j = 1
2L∂x̂j ĝb modulo ρ3

◦C∞, contributions to ĝb of class ρ2
◦C∞

do not matter since ∂x̂j ∈ Vsc(X̂b) = ρ◦Vb(X̂b). Since ˆ
¯
g = −dt̂2 + dx̂2 (see Definition 3.25)

is translation-invariant, we thus conclude from (3.41) that

hb,j ≡
1

2
L∂

x̂j

(2m

r̂
(dt̂2 + dr̂2)

)
=

m

r̂2

(
−(∂x̂j r̂)(dt̂

2 + dr̂2) + 2 dr̂ ⊗s (r̂L∂
x̂j

dr̂)
)

modulo ρ3
◦C∞. Since L∂

x̂j
dr̂ = d(∂x̂j r̂) = d x̂

j

r̂ , this gives (9.9).

For the computation of h̆b,j and h̆∗,b,j , we use the formula

δ∗ĝb(t̂∂
[
x̂j + x̂j∂[

t̂
) = t̂hb,j + h̆b,j , h̆b,j = dt̂⊗s (ωb,j − dx̂j) + (∂[

t̂
+ dt̂)⊗s dx̂j ; (9.11)

the t̂-independent term h̆b,j thus lies in ρ◦C∞. Using the t̂∗-coordinate, we similarly have

h̆∗,b,j = T∗hb,j + h̆b,j ∈ ρ◦C∞; (9.12)

58Thus, ωb,j ≡ ωj mod ρ◦C∞(X̂b;
3scT ∗

X̂b
M̂b) in view of (3.40).

59See (9.11) and (9.12) below for the explicit expressions.
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recall then that T∗ = r̂ for large r̂. More precisely,

ωb,j − dx̂j ≡ ι∂
x̂j

(2m

r̂
(dt̂2 + dr̂2)

)
=

2m

r̂

x̂j

r̂
dr̂

modulo ρ2
◦C∞, further

− ∂[
t̂
≡
(

1− 2m

r̂

)
dt̂ (9.13)

modulo ρ2
◦C∞ by (3.41), and thus ∂[

t̂
+ dt̂ ≡ 2m

r̂ dt̂. Plugging this into (9.11)–(9.12)

gives (9.10). �

The next result demonstrates that there is indeed a 7-dimensional space of obstructions

for the solvability of D̂ĝbRic(0)h = f ∈ A2 ∩ ker δ̂ĝbGĝb(0), and at the same time gives us
the means to project off this 7-dimensional space (which is thus a subspace of the quotient

of kerAα δ̂ĝbGĝb(0), α ≥ 2, by the subspace of elements in the range of D̂ĝbRic(0) on A−1+δ)

via modulation of the Kerr and center of mass parameters. Write60

V(q) :=
(
q× x̂

|x̂|

)
· dx̂

|x̂|
∈ V1, q ∈ R3, (9.14)

and recall S(q) = q · x̂|x̂| ∈ S1 from Lemma 9.5.

Theorem 9.6 (Eliminating the cokernel). Suppose ω∗0, ω
∗
j , ω

∗
jk are stationary 1-forms on

M̂b so that, for some δ > 0, the differences ω̃µ = ω∗µ−ωµ, µ = 0, 1, 2, 3, and ω̃jk = ω∗jk−ωjk,

1 ≤ j 6= k ≤ 3, lie in the space Aδ(X̂b;
3scT ∗

X̂b
M̂b) + E ′(X̂◦b ;TX̂◦b

M̂◦b ), and so that suppω∗µ,

suppω∗jk are disjoint from r̂−1(m) ⊂ X̂b. Let

K∗b,COM := span
{
Gĝbδ

∗
ĝb
ω∗j : j = 1, 2, 3

}
,

K∗b,Kerr := span
{
Gĝbδ

∗
ĝb
ω∗0, Gĝbδ

∗
ĝb
ωjk : 1 ≤ j < k ≤ 3

}
,

K∗b,tot := K∗b,COM ⊕K∗b,Kerr.

For • ∈ {COM,Kerr, tot}, write (K∗b,•)∗ := L(K∗b,•,R) for the dual space. Define the linear

maps61

`b,COM : R3 → (K∗b,tot)
∗, `b,COM(ĉ) : h∗ 7→

〈
DĝbRic

(
t̂2∗
2
hb,ĉ + t̂∗h̆∗,b,ĉ

)
, h∗
〉
, (9.15)

`b,Kerr : R4 → (K∗b,tot)
∗, `b,Kerr(ḃ) : h∗ 7→

〈
DĝbRic(t̂∗ĝ

′
b(ḃ)), h

∗〉. (9.16)

Denote by πb,COM : (K∗b,tot)
∗ → (K∗b,COM)∗ and πb,Kerr : (K∗b,tot)

∗ → (K∗b,Kerr)
∗ the projection

maps.62 Then:

(1) the maps `b,COM and `b,Kerr are independent of the lower order terms ω̃µ, ω̃jk;
(2) πb,Kerr ◦ `b,Kerr : R4 → (K∗b,Kerr)

∗ is an isomorphism;

(3) πb,COM ◦ `b,Kerr = 0;
(4) πb,COM ◦ `b,COM : R3 → (K∗b,COM)∗ is an isomorphism.

60The scaling is chosen such that the coefficients of V(q) in the splitting (6.14), using r̂ = |x̂| in place of
r, are independent of r̂.

61The first arguments of the L2(X̂◦b ;S2T ∗
X̂◦
b
M̂◦b )-pairings here are described in Lemma 9.7 below.

62That is, πb,COM restricts the domain of definition of a linear functional to K∗b,COM; this is the adjoint

of the inclusion K∗b,COM ↪→ K∗b,tot. Likewise for πb,Kerr.
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(5) πb,Kerr ◦ `b,COM = 0.

Explicitly, writing63 dt̂, r̂2V(q), /d(r̂S(q)) for the 1-form in span{ω∗µ, ω∗jk} with leading order

term dt̂, r̂2V(q), /d(r̂S(q)) = q · dx̂, respectively, we have, with b = (m, a),

K∗b,Kerr K∗b,COM︷ ︸︸ ︷ ︷ ︸︸ ︷
`b,Kerr

{
`b,COM {

Gĝbδ
∗
ĝb

dt̂ Gĝbδ
∗
ĝb

(r̂2V(q)) Gĝbδ
∗
ĝb

(/d(r̂S(q)))

(ṁ, 0) −8πṁ −8π(q · a)ṁ 0
(0, ȧ) 0 −8πm(q · ȧ) 0
ĉ 0 0 4πm(q · ĉ).

Finally:

(6) 〈DĝbRic(t̂∗hb,ĉ), h
∗〉 = 0 for all h∗ ∈ K∗b,tot;

(7) the map `b,Kerr is unchanged when replacing t̂∗ by t̂, or indeed by any function t̂′ for

which t̂∗ − t̂′ ∈ A−1(X̂b). The same is true for the map `b,COM if in addition one

replaces h̆∗,b,ĉ by h̆′b,ĉ = h̆∗,b,ĉ + (t̂∗ − t̂′)hb,ĉ (so that t̂∗hb,ĉ + h̆∗,b,ĉ = t̂′hb,ĉ + h̆′b,ĉ), so

in particular when using t̂ and h̆b,ĉ in place of t̂∗ and h̆∗,b,ĉ.

Lemma 9.7 (Modulation terms). We have

DĝbRic

(
t̂2∗
2
hb,ĉ + t̂∗h̆∗,b,ĉ

)
, DĝbRic(t̂∗ĝ

′
b(ḃ)) ∈ ρ2

◦C∞
(
X̂b;S

2 3scT ∗
X̂b
M̂b

)
. (9.17)

Proof. Since hb,ĉ and t̂∗hb,ĉ + h̆∗,b,ĉ lie in kerDĝbRic, we have

DĝbRic
( t̂2∗

2
hb,ĉ + t̂∗h̆∗,b,ĉ

)
=
t̂2∗
2
DĝbRic(hb,ĉ) +

1

2
t̂∗[DĝbRic, t̂∗]hb,ĉ +

1

2
[DĝbRic, t̂∗](t̂∗hb,ĉ)

+ t̂∗DĝbRic(h̆∗,b,ĉ) + [DĝbRic, t̂∗]h̆∗,b,ĉ

= t̂∗
(
[DĝbRic, t̂∗]hb,ĉ +DĝbRic(h̆∗,b,ĉ)

)
+

1

2

[
[DĝbRic, t̂∗], t̂∗

]
hb,ĉ

+ [DĝbRic, t̂∗]h̆∗,b,ĉ

=
1

2

[
[DĝbRic, t̂∗], t̂∗

]
hb,ĉ + [DĝbRic, t̂∗]h̆∗,b,ĉ. (9.18)

Since hb,ĉ and h̆∗,b,ĉ are stationary, we can replace the operators acting on them by their

zero energy operators. Since t̂∗ ≡ t̂ mod ρ−1
◦ C∞, the (zero energy operator of the) double

commutator lies in Diff0
b(X̂b) and the zero energy operator of the commutator lies in ρ◦Diff1

b;

this uses (3.24). Since hb,ĉ ∈ ρ2
◦C∞ and h̆∗,b,ĉ ∈ ρ◦C∞ by Lemma 9.5, this verifies the first

membership in (9.17).

Similarly, in view of (3.42) we have

DĝbRic(t̂∗ĝ
′
b(ḃ)) = [DĝbRic, t̂∗]ĝ

′
b(ḃ) ∈ ρ2

◦C∞. (9.19)
�

63We commit this abuse of notation only for better readability of the table below. We consider it an
acceptable abuse due to part (1).
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Proof of Theorem 9.6. Since the first argument in the pairing in (9.15) lies in ρ2
◦C∞ by

Lemma 9.7, its inner product with the tensors in K∗b,COM, which have at least inverse qua-
dratic decay as r̂ → ∞, are well-defined; this shows that `b,COM is well-defined. Similarly,
the well-definedness of `b,Kerr follows from the second membership in (9.17).

• Part (1) will be proved in the course of the computations for parts (2)–(5), and will

be seen to be due to the fact that all pairings can be rewritten as boundary pairings (i.e.

L2-inner products only involving the leading order terms of various tensors at ∂X̂b).

• Parts (2)–(3): computation of `b,Kerr. For each h∗, we will rewrite the inner prod-

uct (9.16) as a boundary pairing. We begin with preliminary computations. Let χ ∈
C∞([0,∞)) be identically 0 on [0, 1] and identically 1 on [2,∞), and let χε = χ(ρ◦/ε),
ρ◦ = 〈x̂〉−1. Then, by (9.19), writing h∗ = Gĝbδ

∗
ĝb
ω∗, and recalling (4.5), we have

〈DĝbRic(t̂∗ĝ
′
b(ḃ)), h

∗〉 =
〈
[DĝbRic, t̂∗]ĝ

′
b(ḃ), h

∗〉
= −

〈
ĝ′b(ḃ), [(DĝbRic)∗, t̂∗]Gĝbδ

∗
ĝb
ω∗
〉

= −
〈
ĝ′b(ḃ),Gĝb [DĝbRic, t̂∗]δ

∗
ĝb
ω∗
〉
. (9.20)

The integration by parts does not produce any boundary terms: at infinity, this is due to
the sufficient decay of the terms involved (namely, [DĝbRic, t̂∗]̂(0) ∈ ρ◦Diff1

b, ĝ′b(ḃ) ∈ ρ◦C∞,

and h∗ ∈ ρ2
◦C∞(X̂b) + E ′(X̂◦b )), while near the inner boundary r̂ = m̂ of X̂b, we use the

vanishing of ω∗. Since DĝbRic ◦ δ∗ĝb = 0, we further have

[DĝbRic, t̂∗]δ
∗
ĝb
ω∗ = DĝbRic(t̂∗δ

∗
ĝb
ω∗) = −DĝbRic([δ∗ĝb , t̂∗]ω

∗) = −DĝbRic(dt̂∗ ⊗s ω∗).

We can thus further rewrite (9.20) as〈
ĝ′b(ḃ),GĝbD̂ĝbRic(0)(dt̂∗ ⊗s ω∗)

〉
=
〈
ĝ′b(ḃ), D̂ĝbRic(0)∗Gĝb(dt̂∗ ⊗s ω

∗)
〉
. (9.21)

(Retracing the calculations thus far back to (9.20), the second argument here has O(ρ3
◦)

decay, and thus the inner product is well-defined.) Inserting χε in the left factor and taking
the limit ε↘ 0, we can integrate by parts and obtain

`b,Kerr(ḃ)(h
∗) = lim

ε↘0

〈
χεĝ
′
b(ḃ), D̂ĝbRic(0)∗Gĝb(dt̂∗ ⊗s ω

∗)
〉

= lim
ε↘0

〈[
D̂ĝbRic(0), χε

]
ĝ′b(ḃ),Gĝb(dt̂∗ ⊗s ω

∗)
〉
.

(9.22)

(i) Pairings with deformation tensors of (approximate) spacetime translations ω∗0, ω
∗
j . If

ĝ′b(ḃ) ∈ ρ2
◦C∞—which is the case if and only if ḃ = (0, ȧ)—and ω∗ = O(1)—which holds

for ω∗µ, µ = 0, 1, 2, 3—then we can integrate by parts directly in (9.21) (cf. the discussion
following (9.1)), and thus the inner product evaluates to 0. This shows that

`b,Kerr(0, ȧ)(h∗) = 0, ȧ ∈ R3, h∗ ∈ K∗b,COM ⊕ span{Gĝbδ
∗
ĝb
ω∗0}. (9.23)

For all other combinations of ḃ and h∗, we use the expression (9.22). Modifications of
ω∗ which have compact support or lie in Aδ, δ > 0, do not affect the limit (since they
do not affect (9.21)), and therefore we may now replace ω∗ by one of the 1-forms ω0, ωj ,
ωjk. Consider first h∗ = Gĝbδ

∗
ĝb
ω∗ with ω∗ ∈ span{ω∗µ : µ = 0, 1, 2, 3} as in (9.23) and

ḃ = (ṁ, 0), thus ω∗ ∈ C∞ and ĝ′b(ḃ) ∈ ρ◦C∞. Then we may replace ĝb by the Minkowski
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metric ˆ
¯
g ≡ ĝb mod ρ◦C∞, and Lemma 2.5 thus gives

`b,Kerr(ṁ, 0)(h∗) =
〈
∂λN(ρ−2

◦ D̂ˆ
¯
gRic(0), 1)h(1), h

∗
(0)

〉
L2(∂X̂b)

,

h(1) :=
(
ρ−1
◦ ĝ′b(ṁ, 0)

)
|∂X̂b = 2ṁ(dt̂2 + dr̂2), h∗(0) :=

(
Gˆ

¯
g(dt̂∗ ⊗s ω∗)

)
|∂X̂b .

(9.24)

Here, we use the standard volume density on ∂X̂b
∼= S2 and the fiber inner product on

S2 3scT ∗
∂X̂b

M̂b induced by ˆ
¯
g; and we used (3.41). Note that h(1) is of scalar type 0. Thus,

if ω∗ = ωj for j = 1, 2, 3, then ω∗ is of scalar type 1, and thus so is h∗(0); therefore,

`b,Kerr(ḃ)(h
∗) = 0 in this case. Together with (9.23), this proves part (3). In the remaining

case ω∗ = ω0 = dt̂, we need to perform a calculation. Write x̂0 = t̂ + r̂ and x̂1 = t̂ − r̂
(which equals t̂∗ near r̂ =∞); in the bundle splittings (6.6) and using Lemma 6.6, we then
find

h(1) = ṁ
(
(dx̂0)2 + (dx̂1)2

)
= ṁ(1, 0, 0, 1, 0, 0)T ,

h∗(0) = Gˆ
¯
g

(
dx̂1 ⊗s

1

2
(dx̂0 + dx̂1)

)
=

1

2
(0, 0, 0, 1, 0, /g)T .

Corollary 6.7 with λ = 1 gives ∂λN(ρ−2
◦ D̂ˆ

¯
gRic(0), 1)h(1) = ṁ(0,−1

2 , 0, 0, 0,−2/g)T .64 Upon

using (6.7), we finally obtain from (9.24) the result

`b,Kerr(ṁ, 0)
(
Gĝbδ

∗
gb
ω∗0
)

= −4πṁ〈/g, /g〉/g−1
2

= −8πṁ.

(ii) Pairings with deformation tensors of (approximate) spatial rotations ω∗jk. We now

consider ω∗ ∈ span{ω∗jk} and h∗ = Gĝbδ
∗
ĝb
ω∗. We first evaluate (9.22) for ḃ = (0, ȧ). Since

g′b(ḃ) ∈ ρ2
◦C∞ and ω∗ ∈ ρ−1

◦ C∞ near r̂ =∞, this can again be written as a boundary pairing;

thus, only the leading order term of ω∗ at ∂X̂b matters. Recalling (9.14), let q ∈ R3 be
such that

ω∗ − r̂2V(q) ∈ Aδ(X̂b) + E ′(X̂◦b ). (9.25)

Then
`b,Kerr(0, ȧ)(h∗) =

〈
∂λN(ρ−2

◦ D̂ˆ
¯
gRic(0), 2)h(2), h

∗
(−1)

〉
L2(∂X̂b)

, (9.26)

where now

h(2) :=
(
ρ−2
◦ ĝ′b(0, ȧ)

)
|∂X̂b ,

h∗(−1) :=
(
ρ◦Gˆ

¯
g(dt̂∗ ⊗s ω∗)

)
|∂X̂b = dx̂1 ⊗s r̂V(q) = 1

2(0, 0, 0, 0,V(q), 0)T

in the splitting (6.6). One can compute h(2) using (3.41). Since h∗(−1) is of vector type 1, we

may replace h(2) by its vector type 1 part h(2),v1. Now, a · x̂|x̂| = S(a) is a function of scalar

type 1, and hence its square is a sum of scalar type 0 and 2 functions; therefore, the same

64This is −dx̂0 dx̂1 − 2r̂2
/g = −dt2 + dr̂2 − 2r̂2

/g = −dt2 − 2 dx̂2 + 3 dr̂2. Lemma 8.10 is an averaged

version of this computation: the distributional pairing computed there is, for h∗ ∈ C∞c (R3;S2T ∗R4), given
by 〈D

¯
gRic( 1

r
(dt2 + dr2)), h∗〉 = 〈 1

r
(dt2 + dr2)h, (D

¯
gRic)∗h∗〉 = limε↘0〈[D

¯
gRic, χ( r

ε
)] 1
r
(dt2 + dr2), h∗〉 =∫

S2〈∂λN(D̂
¯
gRic(0),−1)(dt2 + dr2)(ω), h∗(0)〉 d/g(ω), where the indicial operator is defined in terms of r (as

compared to r̂−1 in the current section). The first argument is 1
2
(dt2 + 2 dx2 − 3 dr2), as computed above.

(Here, the 1-form dr depends on ω, and should correctly be regarded as a section of the pullback of T ∗R4

to [R4;x−1(0)] over the front face r−1(0).) Note that the test ‘function’ (symmetric 2-tensor) h∗ here is
smooth across x = 0, and thus we may integrate 1

2
(dt2 + 2 dx2−3 dr2) in ω, which gives 2π(dt2 + dx2) since

vol(S2) = 4π, dr =
∑3
j=1

xj

|x|dx
j , and

∫
S2(dr2) dω =

∑3
j,k=1(

∫
xjxk

|x|2 dω) dxj dxk = 4π
3

∑3
j=1(dxj)2 = 4π

3
dx2.
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is true for its linearization in a. Similarly, (a× x̂
|x̂|) · dx̂ = r̂V(a) is a 1-form of vector type

1, and hence (the linearization of) its symmetric square is a sum of symmetric 2-tensors
of scalar types 0 and 2, as discussed around (6.1). Thus, only the final term in the large
square brackets in (3.41) contributes to h(2),v1; we therefore obtain

h(2),v1 = −4mdt̂⊗s
((

ȧ× x̂

|x̂|

)
· dx̂

)
= −2m(dx̂0 + dx̂1)⊗s r̂V(ȧ)

= −m(0, 0,V(ȧ), 0,V(ȧ), 0)T .

Corollary 6.7 gives ∂λN(ρ−2
◦ D̂ˆ

¯
gRic(0), 2)h(2),v1 = 3m

2 (0, 0,V(ȧ), 0,V(ȧ), 0)T , and therefore65

`b,Kerr(0, ȧ)
(
Gĝbδ

∗
ĝb
ω∗
)

=

∫
S2

−4
〈3m

2
V(ȧ),

1

2
V(q)

〉
/g−1

d/g = −8πm(q · ȧ).

The computations thus far already imply part (2). In order to finish the proof of part (1)
(and to finish the evaluation of the first two rows of the table in the statement of the
Theorem), we still need to compute `b,Kerr(ṁ, 0)(h∗) for h∗ = Gĝbδ

∗
ĝb
ω∗, with ω∗ as in (9.25).

In (9.22), we may replace ω∗ by r̂2V(q); since ĝ′b(ṁ, 0) ∈ ρ◦C∞ and r̂2V(q) ∈ ρ−1
◦ C∞, the

limit (9.22) is sensitive also to subleading order terms. We may thus only replace Gĝb by

Gĝb0 (see (9.3)), and D̂ĝbRic(0) by D̂ĝb0
Ric(0). But then Gĝb0 (dt̂∗⊗ r̂2V(q)) is of vector type

1, and therefore we only need to compute the vector type 1 part of ĝ′b(ṁ, 0) modulo ρ3
◦C∞,

which in view of (3.41) is given by

−4r̂−2ṁdt̂⊗s r̂V(a),

and in particular has an additional order of vanishing relative to ĝ′b((ṁ, 0)) itself. The
calculation is now the same as the one above, with m, ȧ replaced by ṁ, a. Therefore,

`b,Kerr(ṁ, 0)
(
Gĝbδ

∗
ĝb
ω∗
)

= −8πṁ(q · a).

• Part (4): computation of πb,COM ◦ `b,COM. We record the identity

1

2

[
[DĝbRic, t̂∗], t̂∗

]
◦ δ∗ĝb =

1

2
DĝbRic ◦ t̂2∗ ◦ δ∗ĝb − t̂∗DĝbRic ◦ t̂∗ ◦ δ∗ĝb

= −1

2
DĝbRic ◦ [δ∗ĝb , t̂

2
∗] + t̂∗DĝbRic ◦ [δ∗ĝb , t̂∗]

= −DĝbRic ◦ t̂∗ ◦ [δ∗ĝb , t̂∗] + t̂∗DĝbRic ◦ [δ∗ĝb , t̂∗]

= −
[
DĝbRic, t̂∗

]
◦ [δ∗ĝb , t̂∗].

For hb,ĉ and h̆∗,b,ĉ as in Lemma 9.5, and for h∗ = Gĝbδ
∗
ĝb
ω∗ with ω∗ =

∑3
j=1 qjω

∗
j , q ∈ R3, we

then compute, using [DĝbRic, t̂∗]̂(0)∗ = −[(DĝbRic)∗, t̂∗]̂(0) = −Gĝb [DĝbRic, t̂∗]̂(0)Gĝb :

`b,COM(ĉ)(h∗)

=

〈
1

2

[
[DĝbRic, t̂∗], t̂∗

]
hb,ĉ + [DĝbRic, t̂∗]̂(0)h̆∗,b,ĉ,Gĝbδ

∗
ĝb
ω∗
〉

=

〈
hb,ĉ,

1

2
Gĝb
[
[DĝbRic, t̂∗], t̂∗

]
δ∗ĝbω

∗
〉
−
〈
h̆∗,b,ĉ,Gĝb [DĝbRic, t̂∗]̂(0)δ∗ĝbω

∗
〉

65This is most easily computed by writing V(q) = /?/dS(q) and noting that 〈V(ȧ),V(q)〉 = 〈/dS(ȧ), /dS(q)〉 =
〈/δ/dS(ȧ), S(q)〉 = 2

∫
S2(ȧ · x̂)(q · x̂) d/g = 8π

3
(ȧ · q).
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= −
〈
hb,ĉ,Gĝb [DĝbRic, t̂∗]̂(0)

(
[δ∗ĝb , t̂∗]ω

∗)〉+
〈
h̆∗,b,ĉ,GĝbD̂ĝbRic(0)

(
[δ∗ĝb , t̂∗]ω

∗)〉
= lim

ε↘0

〈
[DĝbRic, t̂∗]̂(0)(χεhb,ĉ) + D̂ĝbRic(0)(χεh̆∗,b,ĉ),Gĝb [δ

∗
ĝb
, t̂∗]ω

∗
〉

= lim
ε↘0

〈[
[DĝbRic, t̂∗]̂(0), χε

]
hb,ĉ + [D̂ĝbRic(0), χε]h̆∗,b,ĉ,Gĝb(dt̂∗ ⊗s ω

∗)
〉
.

Here, we used that 0 = DĝbRic(t̂∗hb,ĉ + h̆∗,b,ĉ) = [DĝbRic, t̂∗]hb,ĉ + DĝbRic(h̆∗,b,ĉ) to obtain

the final expression. Since the second argument in this pairing lies in C∞(X̂b;S
2 3scT ∗

X̂b
M̂b),

whereas hb,ĉ, D̂ĝbRic(0) have weight ρ2
◦ and [DĝbRic, t̂∗]̂(0), h̆∗,b,ĉ have weight ρ◦, this is a

boundary pairing which only depends on the leading order terms of the operators and ten-
sors involved; thus, we can replace ĝb and ω∗ by ˆ

¯
g and d(r̂S(q)) = (1

2S(q),−1
2S(q), /dS(q))T

in the splitting (6.6). By Lemma 9.5 and using Lemma 6.6, we then have

h(2) := (ρ−2
◦ hb,ĉ)|∂X̂b =

m

2

(
−S(ĉ), 0, /dS(ĉ),−S(ĉ),−/dS(ĉ), 0

)T
, (9.27)

h̆(1) := (ρ−1
◦ h̆∗,b,ĉ)|∂X̂b =

m

2

(
S(ĉ), 0, 2 /dS(ĉ),−3S(ĉ), 0, 0

)T
,

h∗(0) :=
(
Gĝb(dt̂∗ ⊗s ω

∗)
)
|∂X̂b =

(
0, 0, 0,−1

2
S(q),

1

2
/dS(q),

1

2
S(q)/g

)T
.

Using Corollary 6.7 and Lemma 6.4 as well as the fiber inner product (6.7), we thus find
(again using 〈S(ĉ), S(q)〉 = 4π

3 (ĉ · q))

`b,COM(ĉ)
(
Gĝbδ

∗
ĝb
ω∗
)

=
〈
∂λN

(
ρ−1
◦ [Dˆ

¯
gRic, t̂∗

]̂(0), 2
)
h(2) + ∂λN

(
ρ−2
◦ D̂ˆ

¯
gRic(0), 1

)
h̆(1), h

∗
(0)

〉
L2(∂X̂b)

=
m

2

〈(
0, S(ĉ),−1

2
/dS(ĉ), 0,−1

2
/dS(ĉ), 0

)T
+
(

2S(ĉ),−1

2
S(ĉ),−/dS(ĉ), 0,−2 /dS(ĉ), 4S(ĉ)/g

)T
,(

0, 0, 0,−1

2
S(q),

1

2
/dS(q),

1

2
S(q)/g

)T〉
L2(S2)

=
m

2

(
−4〈S(ĉ), S(q)〉+ 3〈/dS(ĉ), /dS(q̂)〉+ 2〈S(ĉ)/g,S(q)/g〉

)
= 4πm(ĉ · q).

• Part (5). When ω∗ = ω∗0, then the above calculation shows that `b,COM(Gĝbδ
∗
ĝb
ω∗) = 0

since the leading order term of ω∗0 is of scalar type 0 and thus orthogonal to scalar type 1

tensors on ∂X̂b. An alternative argument proceeds as follows. Write

L̃(V ) := LV (·); (9.28)

acting on a fixed tensor, this is a first order differential operator acting on V . We have

2hb,j = L̃(∂x̂j )ĝb and 2h̆∗,b,j = ([L̃, t̂∗](∂x̂j ) + L̃(x̂j∂t̂∗))ĝb (so that L̃(t̂∗∂x̂j + x̂j∂t̂∗) =

2(t̂∗hb,j + h̆∗,b,j)). We then compute

L̃
( t̂2∗

2
∂x̂j + t̂∗x̂

j∂t̂∗

)
=
t̂2∗
2
L̃(∂x̂j ) + t̂∗[L̃, t̂∗](∂x̂j ) +

1

2

[
[L̃, t̂∗], t̂∗

]
(∂x̂j )

+ t̂∗L̃(x̂j∂t̂∗) + [L̃, t̂∗](x̂j∂t̂∗);
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the third term is a double commutator and thus vanishes. Applying this operator to ĝb
gives

L t̂2∗
2
∂
x̂j

+t̂∗x̂j∂t̂∗
ĝb = 2

( t̂2∗
2
hb,j + t̂∗h̆b,j

)
+ [L̃, t̂∗](x̂j∂t̂∗)ĝb,

and therefore

DĝbRic
( t̂2∗

2
hb,j + t̂∗h̆b,j

)
= D̂ĝbRic(0)̊hb,j ,

h̊b,j := −1

2
[L̃, t̂∗](x̂j∂t̂∗)ĝb = −ĝb(x̂j∂t̂∗ ,−)⊗s dt̂∗ ∈ ρ−1

◦ C∞(X̂b;S
2 3scT ∗

X̂b
M̂b).

Here, we use that [L̃, f ](V )h = 2h(V,−) ⊗s df when f is a smooth function, V a vector

field, and h a symmetric 2-tensor; and since h̊b,j is stationary, the action of DĝbRic on it is

given by D̂ĝbRic(0)̊hb,j indeed. Thus for h∗ ∈ ker D̂ĝbRic(0)∗ which near ∂X̂b lie in A2+δ

where δ > 0, integration by parts shows that〈
D̂ĝbRic(0)̊hb,j , h

∗〉
L2(X̂b)

(9.29)

vanishes. This applies in particular to h∗ = Gĝbδĝbω
∗ when ω∗ = ω∗0 and also when ω∗ has

leading order term r̂2V(q) where q ∈ R3, with the restriction q ∈ Ra when a 6= 0, since in

these cases h∗ is compactly supported in X̂◦b ; thus `b,COM(h∗) = 0.

When h∗ has a ρ2
◦ leading order term, then the inner product (9.29) can instead be

rewritten as a boundary pairing in the usual manner; since the leading order term of h̊b,j
is of scalar type 1, this pairing only involves the scalar type 1 part of the ρ2

◦ leading order
term of h∗. (When h∗ ∈ K∗b,COM, one can use this to compute πb,COM ◦ `b,COM again.) For

h∗ = Gĝbδ
∗
ĝb
ω∗ ∈ K∗b,Kerr where ω∗ has leading order term r̂2V(q), we claim that the scalar

type 1 part of (ρ−2
◦ h∗)∂X̂b vanishes. Since h∗ now depends linearly on q, we only need to

consider the case q ⊥ a 6= 0 (the cases a = 0 or a 6= 0, q ∈ Ra having been discussed above).
In this case, δ∗ĝb(r̂

2V(q)) is the Lie derivative of ĝb along a rotation vector field along an

axis perpendicular to a, and thus it is a linearized Kerr metric ĝ′b(0, ȧ) for some ȧ. (See
also Lemma 10.10 below.) But the r̂−2 part of (3.41) is the sum of scalar type 0 and 2
and vector type 1 tensors; its scalar type 1 part vanishes. Thus, (9.29) vanishes also in this
case.

• Part (6). Repeating the calculations leading to (9.22) for hb,ĉ ∈ ρ2
◦C∞ in place of

g′b(ḃ), the conclusion is clear when ω∗ ∈ C∞ near infinity (as in this case one can drop the
regularizer χε in (9.22)). When ω∗ is an asymptotic rotation, then the limit in (9.22) is a
boundary pairing which evaluates to 0 since the ρ2

◦ leading order term of hb,ĉ is of scalar
type 1, whereas the ρ−1

◦ leading order term of ω∗ is of vector type 1.

• Part (7). Recall that h∗, near ∂X̂b, is conormal with weight 2 at ∂X̂b. If we set

T ′ := t̂∗ − t̂′ ∈ A−1, then T ′ĝ′b(ḃ) ∈ A0, and hence we can integrate by parts to conclude
that

〈DĝbRic(T ′ĝ′b(ḃ)), h
∗〉 =

〈
D̂ĝbRic(0)(T ′ĝ′b(ḃ)), h

∗〉 =
〈
T ′ĝ′b(ḃ), D̂ĝbRic(0)∗h∗

〉
= 0.

Similarly, setting h̆′b,ĉ = T ′hb,ĉ + h̆∗,b,ĉ and using t̂∗ = t̂′ + T ′, we have

t̂2∗
2
hb,ĉ + t̂∗h̆∗,b,ĉ =

t̂′2

2
hb,ĉ + t̂′h̆′b,ĉ + h̆′′, h̆′′ :=

T ′2

2
hb,ĉ + T ′h̆∗,b,ĉ ∈ A0.
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Thus, 〈DĝbRic(h̆′′), h∗〉 = 0 as before. This completes the proof. �

9.2. Polyhomogeneous solutions of the zero energy problem. The necessary con-
dition for the solvability of the zero energy problem for the linearized Ricci operator of
Lemma 9.1 is also sufficient:

Theorem 9.8 (Polyhomogeneous solutions of the zero energy problem). Let ω∗0, ω
∗
j , ω

∗
jk

be stationary 1-forms on M̂b as in Theorem 9.6, i.e. their supports are disjoint from
r̂−1(m) ⊂ X̂b and ω∗µ − ωµ, ω∗jk − ωjk ∈ Aδ(X̂b;

3scT ∗
X̂b
M̂b) + E ′(X̂◦b ;TX̂◦b

M̂◦b ) in the notation

of Definition 9.2. Let F ⊂ C× N0 be an index set with ReF > 1. Set

E =
{

(z + j − 2, l) : (z, k) ∈ F , j ∈ N0, l ≤ k + j + 1
}
.

Suppose f ∈ AFphg(X̂b;S
2 3scT ∗

X̂b
M̂b) satisfies δ̂ĝbGĝb(0)f = 0 and

〈f, Ĝĝbδ∗ĝb(0)ω∗〉L2(X̂b)
= 0, ω∗ ∈ {ω∗µ, ω∗jk : 0 ≤ µ ≤ 3, 1 ≤ j 6= k ≤ 3}. (9.30)

Then there exists a solution h ∈ AEphg(X̂b;S
2 3scT ∗

X̂b
M̂b) of

D̂ĝbRic(0)(h) = f. (9.31)

In the notation of Theorem 9.6, condition (9.30) is equivalent to the requirement that

〈f,−〉L2(X̂b)
∈ (K∗b,tot)

∗ (9.32)

be equal to 0, or equivalently 〈f,−〉 ∈ (K∗b,COM)∗ = 0 and 〈f,−〉L2(X̂b)
∈ (K∗b,Kerr)

∗ = 0.

Remark 9.9 (Non-uniqueness). One can of course add to h any pure gauge solution δ̂∗ĝb(0)ω

without invalidating (9.31). In our gluing construction, we will only exploit the existence
of a 7-dimensional kernel spanned by

ĝ′b(ḃ), ḃ = (ṁ, ȧ) ∈ R× R3; hb,ĉ, ĉ ∈ R3.

The proof of Theorem 9.8 proceeds in two steps: the construction of a formal solution
near infinity, and solving away the remaining error.

Lemma 9.10 (Step 1: formal solution at infinity). Under the assumptions and using the

notation of Theorem 9.8, there exists h ∈ AEphg(X̂b;S
2 3scT ∗

X̂b
M̂b) so that

D̂ĝbRic(0)h = f + f[, f[ ∈ Ċ∞(X̂b;S
2 3scT ∗

X̂b
M̂b).

If f depends smoothly on a parameter lying in an open subset of Rk, k ∈ N,66 then we can
find h depending smoothly on this parameter as well.

Proof. Fix χ◦ ∈ C∞(X̂b) to be equal to 1 near ∂X̂b and 0 near r̂ = m. Let (2 − z, k) ∈ F
be such that Re(2− z) = min ReF and (2− z, k + 1) /∈ F . (Since Re(2− z) > 1, we have

Re z < 1.) Then for some fj ∈ C∞(∂X̂b;S
2 3scT ∗

∂X̂b
M̂b), j = 0, . . . , k,

f − χ◦
k∑
j=0

r̂z−2(log r̂)jfj(ω) ∈ AF ′phg(X̂b), F ′ := F \ {(2− z, j) : j = 0, . . . , k},

66That is, each term in its polyhomogeneous expansion at ∂X̂b is a smooth function of the product of

∂X̂b and the parameter space.
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where r̂ = |x̂| and ω = x̂
|x̂| . Applying the operator

δ̂ĝbGĝb(0) ≡ δ̂ˆ
¯
gGˆ

¯
g(0) mod 〈r̂〉−2Diff1

b(X̂b;S
2 3scT ∗

X̂b
M̂b,

3scT ∗
X̂b
M̂b)

to this equation, and identifying fj with an element of C∞(ff;
¯
β∗S2T ∗(0,0)R

4) in the notation

of Theorem 7.13 (where we recall that ff = S2 is the front face of [R3; {0}]), we obtain

̂̄δ
¯
G(0)

¯
f = 0,

¯
f =

¯
f(r, ω) :=

k∑
j=0

rz−2(log r)jfj(ω).

Consider assumption (9.30). Let χ ∈ C∞([0,∞)) be equal to 0 on [0, 1] and equal to 1

near ∞, and set χε = χ( r̂
−1

ε ) for 0 < ε� 1. Then〈
f, Ĝĝbδ

∗
ĝb

(0)ω∗
〉

= lim
ε↘0

〈[
δ̂ĝbGĝb(0), χε

]
f, ω∗

〉
.

When z = 0 and ω∗ = ω∗µ, or z = −1 and ω∗ = ω∗jk, we get a nontrivial boundary pairing,
and indeed we may replace ĝb by ˆ

¯
g, and f and ω∗ by their respective leading order terms∑k

j=0 r̂
z−2(log r̂)jfj and ωµ or ωjk. We thus deduce that when z = −1, resp. z = 0,

then (7.36), resp. (7.37)–(7.38) holds for
¯
f in place of f . We now distinguish four cases:

(1) If z /∈ Z, then Theorem 7.13 produces h0, . . . , hk ∈ C∞(ff;
¯
β∗S2T ∗(0,0)R

4) so that

D̂
¯
gRic(0)

(
k∑
j=0

rz(log r)jhj

)
=

¯
f,

and therefore

f ′ := f − D̂gbRic(0)

(
χ◦

k∑
j=0

r̂z(log r̂)jhj

)
∈ AF ′phg(X̂b). (9.33)

Furthermore, f ′ satisfies the same assumptions as f , with (9.30) following via inte-
gration by parts as in (9.6).

(2) When z = 0, then as argued above, Theorem 7.13(4) applies and produces h0,

. . ., hk+1 ∈ C∞(ff;
¯
β∗S2T ∗(0,0)R

4) with D̂
¯
gRic(0)

∑k+1
j=0 r

z(log r)jhj =
¯
f ; analogously

to (9.33), we can use this to solve away the term in the asymptotic expansion of f
corresponding to (2− z, f) ∈ F .

(3) The case z = −1 is analogous to the case z = 0: we now use Theorem 7.13(3).
(4) Finally, when z ∈ Z, z ≤ −2, we can solve away the term in the asymptotic

expansion of f corresponding to (2− z, f) ∈ F using Theorem 7.13(2).

Repeating this procedure a finite number of times, we can, for any N , find h(N) ∈
AEphg(X̂b;S

2 3scT ∗
X̂b
M̂b) so that h(N+1) − h(N) ∈ AN−1 and

D̂ĝbRic(0)h(N) = f + f[,(N), f[,(N) ∈ (AFphg ∩ AN )(X̂b;S
2 3scT ∗

X̂b
M̂b).

Taking h to be an asymptotic sum h ∼ h(1) +
∑

N∈N(h(N+1) − h(N)) near ∂X̂b finishes the
proof for a single f .
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When f = f(q) depends smoothly on a parameter q ∈ U ⊂ Rk, then the above construc-
tion produces h(N) which depend smoothly on q (due to the linear and continuous depen-
dence of the solutions in Theorem 7.13, see also the analogous arguments around (8.9)).

Asymptotically summing h(1) +
∑

N∈N(h(N+1) − h(N)) on U × X̂b produces the desired
h = h(q). �

Lemma 9.11 (Step 2: polyhomogeneous solutions for Schwartz forcing). For all f[ ∈
Ċ∞(X̂b;S

2 3scT ∗
X̂b
M̂b) with δ̂ĝbGĝb(0)f[ = 0, there exists h[ ∈ ρ◦C∞(X̂b;S

2 3scT ∗
X̂b
M̂b) (where

ρ◦ = 〈x̂〉−1) solving D̂ĝbRic(0)h[ = f[. If f[ depends smoothly on a finite-dimensional
parameter, then we can find h[ depending smoothly on this parameter as well.

Note that for f[ as in this Lemma, condition (9.30) follows from δ̂ĝbGĝb(0)f[ = 0. We will

deduce Lemma 9.11 from the existence of a solution h[ which is conormal at X̂b and decays
at some positive rate; the latter is a nontrivial statement about the perturbation theory of
subextremal Kerr black holes.

Theorem 9.12 (Solvability on spaces of conormal tensors). Recall b = (m, a). There exists
η > 0 so that the following statements hold.

(1) (Linearized Einstein equation.) If67 f ∈ Ċ∞(X̂b;S
2 3scT ∗

X̂b
M̂b) satisfies δĝbGĝbf = 0,

then there exists a solution h ∈ Aη(X̂b;S
2 3scT ∗

X̂b
M̂b), of68 D̂ĝbRic(0)(h) = f ; and h

can be taken to depend continuously and linearly on f .
(2) (Gauge potential wave operator.) There exists69

EΥ ∈ ρ◦C∞
(
X̂b; Hom(S2 3scT ∗

X̂b
M̂b,

3scT ∗
X̂b
M̂b)

)
so that for all θ ∈ A1+η(X̂b;

3scT ∗
X̂b
M̂b) there exists ω ∈ A−1+η′(X̂b;

3scT ∗
X̂b
M̂b),

η′ ∈ (0, η), depending linearly and continuously on θ, with

(δĝb + EΥ)Gĝbδ
∗
ĝb
ω = θ.

Proof. Define weighted b-Sobolev spaces Hs,α
b (R3) = 〈x̂〉−αHs

b(R3) on R3
x̂ using the Eu-

clidean volume density |dx̂|, and write H̄s,α
b (X̂b) for the space of restrictions of elements of

Hs,α
b (R3) to X̂b. We have H̄

∞,− 3
2

+α

b (X̂b) ⊂ Aα(X̂b) ⊂
⋂
α′<α H̄

∞,− 3
2

+α′

b (X̂b).

Part (2) is stated in [HHV21, Remark 10.14] in the slowly rotating case | am | � 1; using
[AHW22, Theorem 5.1], the same argument applies in the general subextremal range. In
brief, for EΥ = 0, the zero energy operator of the tensor wave operator 2δĝbGĝbδ

∗
ĝb

= �ĝb
acting on 1-forms is Fredholm of index 0 as a map

�̂ĝb(0) :
{
ω ∈ H̄s,`

b (X̂b;
3scT ∗

X̂b
M̂b) : �̂ĝb(0)ω ∈ H̄s−1,`+2

b (X̂b;
3scT ∗

X̂b
M̂b)

}
→ H̄s−1,`+2

b (X̂b;
3scT ∗

X̂b
M̂b)

(9.34)

67That is, f is a stationary symmetric 2-tensor on the complement of the spatial m-ball in Rt̂×R3
x̂ whose

coefficients with respect to the standard coordinate differentials are rapidly vanishing as |x̂| → ∞.
68In other words, h is a stationary solution of DĝbRic(h) = f .
69This means that EΥ, expressed in the frame dt̂, dx̂, is a 10 × 4 matrix whose entries are smooth

functions of |x̂|−1, x̂
|x̂| which are independent of t̂ and vanish at |x̂|−1 = 0.
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for all sufficiently large s and for ` ∈ (−3
2 ,−

1
2), with 1-dimensional kernel and cokernel

spanned by explicit 1-forms ωb, ω
∗
b = δ(r̂− r̂m,a) dr̂, respectively; see [HHV21, Theorem 7.1]

for the very slowly rotating case | am | � 1 and [AHW22, Theorem 5.1] for the full subextremal
range. Since, by inspection, ωb is not a linear combination of the 1-forms dual to time
translations and rotations (around the axis of symmetry when a 6= 0), we have ωb /∈ ker δ∗ĝb .

Therefore, we can select EΥ
1 so that 〈EΥ

1 Gĝbδ
∗
ĝb
ωb, ω

∗
b 〉L2(X̂b)

6= 0. For the choice EΥ := cEΥ
1

then, with c 6= 0 sufficiently small, the operator ((δĝb +EΥ)Gĝbδ
∗
ĝb

)̂(0) is invertible between

the spaces in (9.34). By elliptic b-theory near ∂X̂b, this operator remains surjective for all
` ≤ −3

2 which avoid a discrete set.

We now turn to part (1). Define the gauge-fixed linearized Einstein operator

Lb := 2(DĝbRic + δ∗ĝbδĝbGĝb),

which is equal to �ĝb modulo lower order terms. By [AHW22, Theorem 7.5] (see [HHV21,
Proposition 9.1] and the description [HHV21, (9.3a)–(9.3c)] for the slowly rotating case), all

elements of the cokernel of L̂b(0) are of the form Gĝbδ
∗
ĝb
ω∗ where ω∗ is stationary, conormal

of class A−1 near ∂X̂b, and vanishes in the black hole interior (so in particular near r̂ = m).
Since f is rapidly vanishing, we have〈

f, Ĝĝbδ
∗
ĝb

(0)ω∗
〉

=
〈
δ̂ĝbGĝb(0)f, ω∗

〉
= 0

via integration by parts. Therefore, there exists

h ∈
⋂

s∈R, `∈(− 3
2
,− 1

2
)

H̄s,`
b (X̂b;S

2 3scT ∗
X̂b
M̂b) ⊂

⋂
α<1

Aα(X̂b;S
2 3scT ∗

X̂b
M̂b)

solving L̂b(0)h = f . Applying δ̂ĝbGĝb(0) to this implies

�̂ĝb(0)θ = 0, θ := δ̂ĝbGĝb(0)h ∈
⋂
α<1

Aα+1(X̂b;
3scT ∗

X̂b
M̂b).

The description of the kernel of �̂ĝb(0) in [AHW22, Theorem 5.1]—concretely, the fact that

ωb, having a nonzero r̂−1 leading order term at r̂ =∞, does not lie in Aα+1(X̂b;
3scT ∗

X̂b
M̂b)

for α > 0—implies that θ = 0, and therefore we in fact have D̂ĝbRic(0)h = f , as desired. �

Proof of Lemma 9.11. Let h ∈ Aη(X̂b;S
2 3scT ∗

X̂b
M̂b), η > 0, be the solution provided by

Theorem 9.12(1). We first find ω ∈ A−1+η/2(X̂b;
3scT ∗

X̂b
M̂b) to arrange the gauge condition

h+ δ∗ĝbω ∈ ker
(
(δĝb + EΥ)Gĝb

)
;

this is possible by Theorem 9.12(2). Replacing h by h+ δ∗ĝbω, we therefore have

D̂ĝbRic(0)h = f[, (δĝb + EΥ)Gĝbh = 0,

and therefore
L̂(0)h = 0, L := 2

(
DĝbRic + δ∗ĝb(δĝb + EΥ)Gĝb

)
.

But L ∈ ρ2
◦Diff2

3b(M̂b;S
2 3scT ∗M̂b) is equal to �ĝb modulo ρ3

◦Diff2
3b, and therefore L̂(0) ∈

ρ2
◦Diff2

b(X̂b;S
2 3scT ∗

X̂b
M̂b) is elliptic near ∂X̂b as a b-differential operator. By standard

elliptic b-theory (locally near ∂X̂b), h is necessarily polyhomogeneous with some index set
E ′ ⊂ C× N0 satisfying Re E ′ > 0.
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We now show how to add to h ∈ AE ′phg(X̂b;S
2 3scT ∗

X̂b
M̂b) a further pure gauge solution

δ∗ĝbω, with ω = o(|x̂|) stationary and polyhomogeneous, so as to obtain the desired solution

h[ = h + δ∗ĝbω ∈ ρ◦C∞(X̂b;S
2 3scT ∗

X̂b
M̂b). To this end, consider (z, k) ∈ E ′ with Re z =

min Re E ′ and (z, k + 1) /∈ E ′; then the term

k∑
j=0

r̂−z(log r̂)jhj

in the polyhomogeneous expansion of h at ∂X̂b = {r̂−1 = 0} lies in ker D̂ˆ
¯
gRic(0). Theo-

rem 7.12 thus produces a stationary 1-form

ω(z) = χ◦

k+k′∑
j=0

r̂−z(log r̂)jωj , k′ ∈ {0, 1}, ωj ∈ C∞(∂X̂b;
3scT ∗

∂X̂b
M̂b),

so that the only term in the polyhomogeneous expansion of h − δ∗ĝbω(z) involving r̂−z is

r̂−zh′ where, in fact, h′ = 0 when z /∈ Z. An asymptotic summation argument as in the
proof of Lemma 9.10 produces the desired ω. �

Proof of Theorem 9.8. Apply Lemma 9.10 to f to get a formal solution h]. Then apply
Lemma 9.11 to −f[ to produce h[. The desired solution is h = h] + h[. �

9.3. Necessary conditions for gluing: II. A result of D’Eath revisited. In this sup-
plementary section, we show how the results of §9.1 imply additional necessary conditions,
beyond those of §8.3, for a total spacetime family with Kerr models along C to solve the
Einstein vacuum equations.

Proposition 9.13 (Necessary conditions on C and the Kerr parameters). Suppose that g̃

is a (Ê , E)-smooth total family (relative to (M, g, C)) with Re Ê > 1, and the M̂p-model of g̃
is a Kerr metric with parameters b = (m, a) ∈ C∞(I;R × R3) so that |a(p)| < m(p) for all
p ∈ C, where a is defined relative to a fixed choice of Fermi normal coordinates along C. If
Ric(g̃)− Λg̃ vanishes to leading and subleading order at M̂ (i.e. has weight > −1 at M̂ as

a conormal section of S2T̃ ∗M̃), then

C is a geodesic, m is constant, and a is parallel along C (i.e. constant).

This explains why in Lemma 3.28 we do not need to consider maps of the form Φp(t̂, x̂) =

(t̂, A(p)x̂) where A(p) ∈ O(3) is not the identity. The essence of the statement of Proposi-
tion 9.13 appears already in work of D’Eath [D’E75].

Proof of Proposition 9.13. Let δ > 0 be such that min Re Ê > 1 + δ and min Re E > δ. We
denote the Fermi normal coordinates around C by (t, x), and denote by I 3 t 7→ c(t) ∈ C
an arc-length parameterization of C. Regarding a neighborhood of M̂ ⊂ M̃ as a subset of
the lift of ε = 0 in [[0, 1) × M̂ ; {0} × ∂M̂ ] via Lemma 3.2, and using the fiber coordinates
t̂ = dt(−) and x̂ = dx(−) on TCM , we thus have

(eg̃)(ε, t, x̂) = ĝb(t)(x̂) + εĥ(t, x̂) +O(ε1+δ) (9.35)

for bounded x̂, where we regard ĝb(t) and ĥ as symmetric 2-tensors in dt̂, dx̂, and the

O(ε1+δ) error term is such a symmetric 2-tensor whose coefficients are conormal on M̃ with
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weight 1 + δ at M̂ (and with weight 0 at M◦); here, writing ρ◦ = 〈x̂〉−1, the subleading
term is

ĥ ∈ A(N0∪E)−1
phg,I (T̆CM ;S2 3sc,∨T ∗T̆CM) (9.36)

in the notation of Lemma 3.5, i.e. its coefficients lie in C∞(I;A(N0∪E)−1
phg,I (R3

x̂)). Moreover,

since ρ◦
ε = ρ̂−1 on M̃ , with ρ̂|M◦ = r, we have

ĥ(−1) := (ρ◦ĥ)|∂M̂ = e(ρ̂−1(g̃ − ĝb(t)))|∂M◦ = −2
3∑
j=1

Γj00(t, 0)
x̂j

|x̂|
dt̂2 (9.37)

by Lemma 3.14. Therefore, ĥ(−1) = 0 if and only if C is a geodesic.

We now expand (9.35) around t = t0, and identify t̂ = t−t0
ε at Tc(t0)M ; this gives

ĝb(x̂) + ε
(
t̂ĝ′b(ḃ) + ĥ(x̂)

)
+O(ε2), b = b(t0), ḃ = b′(t0), ĥ(x̂) = ĥ(t0, x̂). (9.38)

Since the cosmological constant Λ only gives a O(ε2) contribution to e(ε2(Ric(g̃)−Λg̃)) =

Ric(ĝ) + O(ε) at M̂ , the validity of the Einstein vacuum equations Ric(g̃) − Λg̃ also to

subleading order at M̂ is equivalent to (9.38) being Ricci-flat modulo O(ε1+δ) errors, and
thus to the validity of the equation

DĝbRic
(
t̂ĝ′b(ḃ) + ĥ

)
=
[
DĝbRic, t̂

]
ĝ′b(ḃ) + D̂ĝbRic(0)ĥ = 0 (9.39)

for ĥ(t0, x̂) with (9.36)–(9.37). Since x̂j dt̂2 ∈ kerDˆ
¯
gRic, we have D̂ĝbRic(0)(ĥ) ∈ A1+δ.

Let ψ ∈ C∞(X̂b) be equal to 1 near ∂X̂b and equal to 0 near r̂−1(m). For ĉ ∈ R3, set
ω∗ = ψωb,ĉ in the notation of Definition 9.4. We then integrate (9.39) against the tensor

h∗ = Gĝbδ
∗
ĝb
ω∗ ∈ ρ2

◦C∞;

the leading order term of h∗ at ∂X̂b is r̂−2h(2), where h(2) is given by (9.27). The contri-

bution of ĝ′b(ḃ) vanishes by Theorem 9.6(3). Furthermore, since for ĥ′ ∈ A−1+δ, δ > 0, we

can integrate in parts to obtain 〈D̂ĝbRic(0)ĥ′, h∗〉 = 0, only the leading order term r̂ĥ(−1)

of ĥ enters in the calculation of 〈D̂ĝbRic(0)ĥ, h∗〉. In the splitting (6.6), we have

ĥ(−1) = (S(q),S(q), 0, S(q), 0, 0)T

where q := −1
2(Γj00(t0, 0))j=1,2,3. Therefore, inserting a localizer χε = χ(ρ◦ε ), where χ ∈

C∞([0,∞)) vanishes near 0 and is equal to 1 on [1,∞), we have, using Corollary 6.7,

formula (6.7), equation (9.27), and h∗ ∈ ker D̂ĝbRic(0)∗,〈
D̂ĝbRic(0)ĥ, h∗

〉
= − lim

ε↘0

〈[
D̂ĝbRic(0), χε

]
ĥ, h∗

〉
= −

〈
∂λN

(
ρ−2
◦ D̂ˆ

¯
gRic(0),−1

)
ĥ(−1), h(2)

〉
L2(S2)

= −m

2

〈(
S(q), 2S(q),−/dS(q),S(q), /dS(q),−2S(q)/g

)T
,(

−S(ĉ), 0, /dS(ĉ),−S(ĉ),−/dS(ĉ), 0
)T 〉

= 16πm(q · ĉ).
We conclude that equation (9.39) can hold only if this pairing vanishes for all ĉ, which forces

q = 0 and thus Γj00(t0, 0) = 0. Since t0 ∈ I was arbitrary, we conclude that ĥ(−1) = 0,
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and thus C must be a geodesic; this re-proves, from the perspective of M̂ , what we had
demonstrated already in §8.3 following [GW08].

Next, from equation (9.39), where we now have ĥ ∈ A−1+δ for 0 < δ < min Re E , we can
extract information also about the derivative

ḃ = (ṁ, ȧ)

of the Kerr parameters along C. First, we integrate against Gĝbδ
∗
ĝb
ω∗ with ω∗ = ψ dt; the

contribution from ĥ vanishes upon integrating by parts, whereas by Theorem 9.6, the term
involving ĝ′b(ḃ) contributes −8πṁ. Therefore, ṁ = 0, and we conclude that the black hole
mass must be constant along C; we had previously deduced this from the perspective of M◦
using Corollary 8.11.

Finally, we constrain ȧ by integrating (9.39) against h∗(q) = Gĝbδ
∗
ĝb
ω∗ ∈ ρ2

◦C∞ where

ω∗(q) = ψr̂2V(q) in the notation of (9.14). By Theorem 9.6, the contribution from

ĝ′b(ḃ) is −8πm(q · ȧ). On the other hand, we can integrate by parts to conclude that

〈D̂ĝbRic(0)ĥ, h∗(q)〉 = 0 (see Lemma 9.1). Therefore, we must have q · ȧ = 0 for all q ∈ R3,
and thus ȧ = 0, as claimed. �

10. Construction of the formal solution at ε = 0

In this section, we complete step (I) of the proof of Theorem 5.4. We use the notation
of the Theorem as introduced in Definition 5.1 and the constructions following it. In
particular, (M, g) is globally hyperbolic, the metric g solves the Einstein vacuum equations

Ric(g) = Λg, (10.1)

the curve C ⊂ M is a timelike geodesic arc-length parameterized by c : I ⊂ R → M , and
we fix subextremal black hole parameters

b = (m, a), m > 0.

Without loss of generality (due to the O(3) freedom in Lemma 3.14), we may assume that

a = ae3, a := |a|, (10.2)

where e3 ∈ R3 is the third standard basis vector. We fix Fermi normal coordinates (t, x)
around C, and write r = |x|. We moreover set t̂ = dt, x̂ = dx on TCM , which we moreover

identify with the coordinates t̂ = t−t0
ε and x̂ = x

ε on the front face of [M̃ ; M̂p]. Fix cutoff
functions

χ̂, χ◦ ∈ C∞(M̃) (10.3)

to collar neighborhoods of M̂,M◦, respectively, as in (3.5); we demand that supp χ̂ is
contained in the domain of influence of a compact subset of U◦.

With K̃ defined near M̂ by K̃ = {(ε, t, x) : |xε | ≤ m} (cf. item (8) in §5), recall the
(∅,N0 + 1)-smooth total family

g̃0 ∈ β̃∗C∞(M ;S2T ∗M) +AN0,N0+1
phg (M̃ \ K̃◦;S2T̃ ∗M̃)

defined by Lemma 3.28(2). Concretely, we define g̃ near C as in the proof of Lemma 3.28
(albeit using slightly different notation here) by

g̃0(t0, x) = −dt2 + dx2 + β̃∗g′(t0, x; dt,dx) + χ̂(t0, x)ĝ1,b

( |x|
ε
, ω; dt,dx

)
, (10.4)
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where g′ ∈ C∞(M ;S2T ∗M) vanishes quadratically at x = 0, and ĝ1,b = ĝb−ˆ
¯
g in the notation

of Definition 3.25, so

ĝ1,b(r̂, ω; dt̂,dx̂) =
2m

r̂
(dt̂2 + dr̂2) +O(r̂−2). (10.5)

By Corollary 3.20, we have

Err0 := Ric(g̃0)− Λg̃0 ∈ ρ̂−1ρ◦C∞(M̃ \ K̃◦;S2T̃ ∗M̃), (10.6)

and supp Err0 is contained in the domain of influence of a compact subset of U◦. In fact,
Err0 has an additional order of vanishing at M̂ , as we proceed to show; that is, Err0 ∈ ρ◦C∞.
The following result is well-known, see e.g. [Poi04, §8.5]; we phrase it in general spacetime
dimension 1 + n and give a proof for completeness. (We do not need to require g to solve
the Einstein equations for this result.)

Lemma 10.1 (Metric in Fermi normal coordinates). Use Fermi normal coordinates (t, x) =
z = (z0, . . . , zn) around the timelike geodesic C ⊂ M ; write i, j, k, l for indices between 1
and n. Then the metric g on M takes the form g = −dt2 + dx2 + r2g(2) +O(|x|3), where

O(|x|3) stands for a smooth symmetric 2-tensors whose coefficients in the frame ∂t, ∂xj
(j = 1, . . . , n) vanish cubically at x = 0, and where

(g(2))00 = −R0`0m|(t,0)
x`

r

xm

r
,

(g(2))j0 = −2

3
Rj`0m|(t,0)

x`

r

xm

r
,

(g(2))jk = −1

3
Rj`km|(t,0)

x`

r

xm

r
.

Here, Rκλµν |(t,0) denotes the coefficients of the Riemann curvature tensor of g at (t, 0) ∈ C.
That is,

g(2) = −x
`

r

xm

r

(
R0`0mdt2 +

4

3
Rj`0mdt dxj +

1

3
Rj`kmdxj dxk

)
. (10.7)

Proof. Consider a Jacobi field J = J(s) along a geodesic γ : s 7→ γ(s). Denoting by R the
endomorphism of TγM given by RV = Riem(g)(γ′, V )γ′, the Jacobi equation reads J ′′ =
RJ , where we denote covariant differentiation along γ by a prime. Note that 〈RV,W 〉 =
〈V,RW 〉 for all V,W , and therefore R and all its derivatives along γ are symmetric. Define
now the function f(s) = 〈J(s), J(s)〉, where 〈−,−〉 is the inner product given by g(γ(s)).
Then

f = |J |2,
f ′ = 2〈J, J ′〉,
f ′′ = 2|J ′|2 + 2〈J,RJ〉,
f ′′′ = 8〈J ′, RJ〉+ 2〈J,R′J〉,
f ′′′′ = 8|RJ |2 + 12〈J ′, R′J〉+ 8〈J ′, RJ ′〉+ 2〈J,R′′J〉.

If J(0) = 0 and J ′(0) = v ∈ Tc(t)M , we have

f(0) = f ′(0) = 0, f ′′(0) = 2|v|2, f ′′′(0) = 0, f ′′′′(0) = 8〈v,Rv〉,
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which implies f(s) = s2|v|2 + 1
3〈Riem(g)(γ′, v)γ′, v〉s4 +O(s5). In Fermi normal coordinates

(t, x), the curves γq(s) = (t, s(x + qv)) (for fixed t ∈ R and x ∈ Rn, and defined for
small s) are geodesics for all q; therefore, J(s) = ∂qγq(s)|q=0 = sv is a Jacobi field along
γ0(s) = (t, sx), and we obtain

g(t, sx)jkv
jvk = δjkv

jvk +
s2

3

〈
Riem(g)|(t,0)(x

m∂m, v
k∂k)x

`∂`, v
j∂j
〉

+O(s3),

which gives r2(g(2))jk(t, x) = 1
3Rj`mk|(t,0)x

`xm +O(|x|3).

Next, we consider the family of geodesics γq(s) = (t+ q, sx), whose variation vector field
J(s) = ∂t satisfies J(0) = ∂t and J ′(0) = ∇γ′0(0)∂t = 0. Therefore,

f(0) = −1, f ′(0) = 0, f ′′(0) = 2〈∂t, R∂t〉,
which implies f(s) = g(t, sx)00 = −1 + s2〈Riem(g)|(t,0)(x

m∂m, ∂t)x
`∂`, ∂t〉+O(s3) and thus

the stated expression for (g(2))00.

Finally, for γq(s) = (t+ q, s(x+ qv)), we have J(s) = ∂t+sv, so J(0) = ∂t and J ′(0) = v,
and we compute

f(0) = −1, f ′(0) = 0, f ′′(0) = 2|v|2 + 2〈∂t, R∂t〉, f ′′′(0) = 8〈v,R∂t〉+ 2〈∂t, R′∂t〉.
In the resulting Taylor expansion of g(t, sx)(∂t + sv, ∂t + sv), we consider the coefficient
of s3, which is the sum of a term of schematic form x2v and another term of the form
x3. The x2v term is 2r2(g(2))0jv

j , which must equal the x2v term of the s3-coefficient of

f(s); the latter is 8
3!s

3〈v,R∂t〉 = 4
3s

3〈Riem(g)|(t,0)(x
m∂m, ∂t)x

`∂`, v
j∂j〉. This completes the

proof. �

The components of the tensor g(2) in (10.7) are dilation-invariant in x. In order to capture
the fact that g(2) should rightfully live at r = |x| = 0, we consider the blow-up

[Rt × Rnx;Rt × {0}] = Rt ×
(
[0,∞)r × Sn−1

ω

)
,

with blow-down map β : (t, r, ω) 7→ (t, rω), and identify T ∗(t,x)R
4 ∼= T ∗(t,0)R

4 via the trivial-

ization by coordinate differentials. Write ff := Rt×{0}× Sn−1
ω ⊂ R× [0,∞)× Sn−1 for the

front face and C := Rt × {0} ⊂ R× Rn for the curve x = 0. We can then regard

g(2) ∈ C∞(ff;β∗S2T ∗CRn+1). (10.8)

Specializing now the case n = 3, we may split β∗T(t,0)R4 and its symmetric second tensor

power as in (6.6), where dx0 = dt+dr and dx1 = dt−dr. (Concretely, g(2) is now a smooth

(in t) family of sections of a bundle over S2 which is isomorphic to R ⊕ R ⊕ T ∗S2 ⊕ R ⊕
T ∗S2 ⊕ S2T ∗S2, equipped with the fiber inner product induced by the Minkowski metric.)
In its spherical harmonic decomposition, we next determine the projections to various pure
types. (The metric g does not need to satisfy the Einstein equations in the following result
either.)

Lemma 10.2 (Pure type components of g(2)). We assume that dimM = n + 1 = 4 and
define g(2) by (10.7), regarded as an element of (10.8). Defining curvature components in

the coordinates (t, x) ∈ R× R3, we have

πs1(g(2)) = −2

3
Ric(g)0j dt r/dωj ; (10.9a)

πv1(g(2)) = 0. (10.9b)
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Here Rg = trg Ric(g) is the scalar curvature of g at (t, 0) ∈ C. In particular, if Ric(g) = Λg,
then πs1(g(2)) = 0.

Proof. Write ωj = xj

r , j = 1, 2, 3. Since ωj ∈ S1, we have ωjωm ∈ S0 ⊕ S2 since the

O(3)-representation S1 ⊗s S1 is isomorphic to S0 ⊕ S2. Furthermore, dt2 is of scalar type
0, the 1-form dxj = r /dωj + ωj dr is of scalar type 1, and dxj dxk is a sum of scalar type
0 and 2 tensors. Therefore, writing sl and vl for tensors of scalar type l and vector type l,
respectively, the three terms in (10.7) are sums of tensors of the following pure types:

−ω`ωm dt2 : s0, s2; (10.10a)

−4

3
ω`ωm dt d(rωj) : s1, v2, s3; (10.10b)

−1

3
ω`ωm d(rωj) d(rωk) : s0, v1, s2, v3, s4. (10.10c)

We use here isomorphisms of O(3)-representations such as S2⊗S2
∼= S0⊕V1⊕S2⊕V3⊕S4.

• Scalar type 1 part. The only contribution comes from (10.10b). Expanding d(rωj) =

ωj dr + r /dωj , we then note that the contraction of ω`ωmωj dr (which is symmetric in j, `)
with Rj`0m (which is antisymmetric in j, `) vanishes. Next, we shall need70

1

4π

∫
S2

ω`ωmωjωk d/g =
1

15
(δ`mδjk + δ`jδmk + δ`kδmj);

and we moreover compute /g−1(/dωj , /dωk) = 〈ej − (ej · ω)ω, ek − (ek · ω)ω〉R3 at ω ∈
S2 ⊂ R3 (where e1, e2, e3 is the standard basis of R3), which equals δjk − ωjωk. Since
1

4π

∫
S2 ω

`ωm d/g = 1
3δ
`m, the s1 part of ω`ωm r /dωj is therefore

3∑
k=1

(
1

4π

∫
S2

ω`ωm/g
−1(/dωj , /dωk) d/g

)
3

2
r /dωk =

1

10

(
4δ`m r /dωj − δ`j r /dωm − δmj r /dω`

)
,

cf. Example 6.3. Contracting with −4
3Rj`0m gives the stated result.

• Vector type 1 part. The vector type 1 components of (10.10c) are necessarily of the
form dr ⊗s rV for V ∈ V1, cf. (6.15d). Contracting

d(rωj) d(rωk) = ωjωk dr2 + ωk r /dωj dr + ωj r /dωk dr + r /dωj r /dωk

with Rj`km, we must thus find the vector type 1 part of Rj`kmω
`ωm(ωk /dωj +ωj /dωk). But

this 1-form vanishes since Rj`km is odd in k,m, resp. j, ` while ω`ωm · ωk, resp. ω`ωm · ωj
is even. �

We now return to the specific setting of the black hole gluing problem.

Lemma 10.3 (Error term #0). The total family g̃0, defined by (10.4), solves the Einstein

vacuum equations to leading order at M◦ and to leading and subleading order at M̂ , in the
sense that

Err0 := Ric(g̃0)− Λg̃0 ∈ ρ◦C∞(M̃ \ K̃◦;S2T̃ ∗M̃).

70This integral can be evaluated easily via polarization from
∫
S2(q · x)4 d/g = 4π

5
|q|4 for q ∈ R3, which in

turn follows by spherical symmetry and scaling from the special case q = (0, 0, 1). In polar coordinates, one

finds
∫ 2π

0

∫ π
0

(cos θ)4 sin θ dθ dφ = − 2π
5

(cos5 θ)|π0 = 4π
5

.
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Moreover, supp Err0 is contained in the domain of influence of a compact subset of U◦, and

e
(
Err0|M̂c(t)

)
= D̂ĝbRic(0)

(
r̂2eg(2)(t)

)
− Λĝb, (10.11)

(ε−1Err0)|M◦ ≡ (DgRic− Λ)
(2m

r
(dt2 + dr2)

)
mod Ċ∞(M◦;β

∗
◦S

2T ∗M). (10.12)

These leading order terms lie in ρ◦C∞(M̂ ; β̂∗S2T̃ ∗M) and ρ̂−1C∞(M◦;β
∗
◦S

2T ∗M), respec-
tively. Furthermore, the scalar type 1 and vector type 1 components of the common boundary
values (r̂Err0)|∂M̂ = (rε−1Err0)|∂M◦ ∈ C∞(∂M◦;β

∗
◦S

2T ∗CM) vanish.

Proof. We need to show that the O(ε) leading order term of ε2Err0 at M̂ vanishes at

M̂◦c(t0) for all t0 ∈ I. But since eg̃0|{t=t0} = ĝb+O(ε2) (regarded as an ε-dependent family of

symmetric 2-tensors on Tc(t0)M), the desired conclusion follows from e(ε2(Ric(g̃0)−Λg̃0)) =

Ric(eg̃0) +O(ε2) near M̂◦.

In order to verify (10.11), we may replace g′ in (10.4) by its leading order term r2g(2),

since the lower order terms of g′ vanish cubically at M̂ and thus do not contribute to
Err0|M̂ . Working near M̂◦ and in the coordinates t̂, x̂ and writing ω = x̂

|x̂| , we have71

e(Err0|M̂ ) =
(
ε−2Ric

(
ĝb + ε2r̂2g(2)(t, ω; dt̂,dx̂)

))∣∣∣
ε=0
− Λe(g̃0|M̂ )

= D̂ĝbRic(0)(r̂2eg(2))− Λĝb.

Near (M◦)
◦, we compute

Ric(g̃0)− Λg̃0 ≡ ε(DgRic− Λ)
((
ε−1(g̃0 − β̃∗g)

)∣∣
M◦

)
modulo ε2C∞(M̃ \ (M̂ ∪ K̃◦);S2T̃ ∗M̃). This gives (10.12) upon using (10.5).

We prove the final claim by considering the ρ◦-leading order term of e(Err0|M̂c(t)
) at

M̂c(t). We need to use the expression (10.11) and the following facts: the scalar type 1

and vector type 1 components of r̂2eg(2)(t) vanish (Lemma 10.2); the operator D̂ĝbRic(0) ≡
D̂ĝb0

Ric(0) mod ρ4
◦Diff2

b maps r̂2eg(2)(t) into a tensor with vanishing scalar and vector type

1 components modulo ρ4
◦r̂

2C∞ = ρ2
◦C∞; and ĝb is of scalar type 0 modulo ρ2

◦C∞. �

The plan for the remainder for this section is as follows.

(1) In §10.1, we solve away the leading order term of Err0 at M◦ using Theorem 8.1.

(2) In §10.2, we solve away the leading order term of the remaining error Err1 at M̂ .

This involves the inversion of the zero energy operator D̂ĝbRic(0), which however has
a cokernel (see Theorem 9.8). We show, roughly speaking, that if one modulates
the center of mass and the axis of rotation of the small black hole by amounts
depending on the ‘slow’ time variable t along C, one can eliminate the cokernel.
This is the most delicate part of the construction: an O(εk) error at M̂ requires a
modulation of the center of mass, resp. axis of rotation of the small black hole by
an amount of size O(εk), resp. O(εk+1). We subsequently show that by pulling back

71One may want to multiply the term β̃∗g′ in (10.4) by a cutoff χ◦ vanishing near x̂ = 0 to stress its
origin as a correction term of the metric g at M◦. We do not do this here for notational brevity.
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the updated metric by a suitable diffeomorphism on the total gluing spacetime, one
can re-normalize the center of mass and axis of rotation of the small black hole.

(3) In §10.3, we solve away the leading order term of the remaining error Err2 at M◦;

we take care in keeping track of certain error terms produced at M̂ .
(4) In §10.4, we again turn to M̂ , where the remaining error has an additional order of

vanishing at M̂ , and indeed is of size O(ε log ε). By modulating the center of mass
and axis of rotation, we again succeed in solving this error away, and afterwards
re-center the black hole. Here it is important that the error terms from previous
steps have a particular form, as this prevents modulations of the black hole mass or
the magnitude of the angular momentum from becoming necessary at this stage.

(5) Following another solution step at M◦ in §10.5, we turn again to M̂ in §10.6, where
we now face an error of size O(ε2(log ε)m); this can be solved away by modulating
the center of mass of the small black hole by an amount of size O(ε2(log ε)m), and by
also modulating the black hole parameters by amounts of size O(ε3(log ε)m) which
is now better than ε2 and thus acceptable without the need for further re-centering.

(6) The remainder of the construction consists of solving away errors in turn at M◦ and

M̂ ; at this point no further care needs to be taken as regards the particular nature
of error terms. See §10.7.

See Theorem 10.27 for the final result of this section.

10.1. First correction at M◦. We begin by solving away the error term Err0 from
Lemma 10.3 at M◦. Recall the notation (2.3).

Proposition 10.4 (First correction at M◦). There exist

h1
] ∈ A

(1,0)+

phg (M◦;β
∗
◦S

2T ∗M), h1
[ ∈ C

∞(M ;S2T ∗M),

with the following properties:

(1) using Fermi normal coordinates near ∂M◦, we have

h1
] = χ̂rh1

],(1,0) + h̃1
] ,

h1
],(1,0) ∈ C

∞(∂M◦;β
∗
◦S

2T ∗CM), h̃1
] ∈ A

(2,1)+

phg (M◦;β
∗
◦S

2T ∗M),

where h1
],(1,0) has vanishing scalar type 1 and vector type 1 components (on each

fiber M̂p ∩ ∂M◦ = S2 of ∂M◦);
(2) h1

[ vanishes quadratically at C;
(3) if we set

g̃1 := g̃0 + εh1, h1 := χ◦(h
1
] + β∗◦h

1
[ ), (10.13)

then we have

Err1 := Ric(g̃1)− Λg̃1 ∈ A(0,0)+,(2,0)
phg (M̃ \ K̃◦;S2T̃ ∗M̃); (10.14)

(4) we have g̃1 = g outside (the lift to M◦ of) the domain of influence U of a compact
subset of U◦ in X, and thus also supp Err1 ∩M◦ ⊂ β∗◦U ;

(5) the leading order term of Err1 at M̂ is

e(Err1|M̂c(t)
) = e(Err0|M̂c(t)

) + D̂ĝbRic(0)
(
χ◦r̂e(h

1
],(1,0)(t))

)
= D̂ĝbRic(0)

[
e
(
r̂2g(2)(t) + χ◦r̂h

1
],(1,0)(t)

)]
− Λĝb;

(10.15)
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(6) the ε(log ρ̂) term of Err1 at M̂ is

e−1
(
ε log(εr̂)Err1

(1,1)

)
, Err1

(1,1) := D̂ĝbRic(0)
(
χ◦r̂

2e(h1
],(2,1))

)
, (10.16)

and satisfies e−1Err1
(1,1) ∈ ρ◦C

∞(M̂ ;S2T̃ ∗M̃); here72 h1
],(2,1) ∈ C

∞(∂M◦;β
∗
◦S

2T ∗CM)

is a sum of scalar and vector type 2 tensors, as is (ρ−1
◦ Err1

(1,1))|∂M̂ . That is, if one

extends Err1
(1,1) to an ε-independent tensor near M̂◦ in the coordinates t, x̂, then

Err1 − χ̂e−1
(
ε log(εr̂)Err1

(1,1)

)
∈ A(0,0)+\{(1,1)},(2,0)

phg (M̃ \ K̃◦;S2T̃ ∗M̃).

Proof. We obtain h1 as the solution of

(DgRic− Λ)h1 = f0 := −(ε−1Err0)|M◦ ∈ ρ̂−1C∞(M◦;β
∗S2T ∗M) (10.17)

by means of Theorem 8.1 with F̂ = (−1 +N0)×{0}. We have δgGgf0 = 0 since the second

Bianchi identity, away from M̂ , gives

0 = δg̃0
Gg̃0

Err0 ≡ δgGg(εf0) mod ε2C∞(M̃ \ M̂ ;S2T̃ ∗M̃).

We need to be a bit more precise (cf. Remark 8.5): near ∂M◦ and in Fermi normal coor-

dinates, the forcing term is f0 = r−1f0,(−1,0) + f̃0 where f0,(−1,0) ∈ C∞(∂M◦;β
∗
◦S

2T ∗CM)

has vanishing scalar type 1 and vector type 1 components by Lemma 10.3, and f̃0 ∈
C∞(M◦;β

∗S2T ∗M). Theorem 7.13(2) then produces h1
],(1,0) with D̂

¯
gRic(0)h1

],(1,0) = f0,(−1,0)

(at each fiber of ∂M◦ → C), and

f0 − (DgRic− Λ)
(
χ̂rh1

],(1,0)

)
∈ C∞(M◦;β

∗S2T ∗M)

is one order better at ∂M◦ than f0 and still lies in ker δgGg. Applying Theorem 8.1 to this

error term produces h̃1
] and h1

[ satisfying properties (1) and (2). In view of Theorem 7.13(2)
with z = l = 2, one does expect there to be a nontrivial leading order logarithmic term
r2(log r)h1

],(2,1) in the expansion of h̃1
] , with h1

],(2,1) necessarily being the sum of scalar and

vector type 2 tensors lying in kerN(r2D̂
¯
gRic(0), 2).

Since εh1 ∈ A(2,0)+,(1,0)
phg (M̃ \ K̃◦;S2T̃ ∗M̃), with (2, 0)+ − 2 = (0, 0)+ nonlinearly closed,

property (3) and the leading order description (10.15) at M̂ follow from Proposition 4.3(2).

The leading order logarithmic contribution to g̃1 at M̂ comes from the term

εr2(log r)χ◦h
1
],(2,1) = ε3 log(εr̂)χ◦r̂

2h1
],(2,1), (10.18)

and thus, following the arguments following (4.16), the leading order logarithmic term of
Err1 is given by

e−1ε−2D̂ĝbRic(0)
(
ε3(log ε)χ◦r̂

2e(h1
],(2,1))

)
,

as claimed in (10.16). The fact that e−1Err1
(1,1) ∈ ρ◦C

∞ follows from the earlier observation

h1
],(2,1) ∈ kerN(r2D̂

¯
gRic(0), 2). �

72The notation reflects the fact that h1
],(2,1) is the r2 log r term in the polyhomogeneous expansion of h̃1

]

at r = 0.
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10.2. First correction at M̂ : modulation and re-centering. From (10.14), we deduce
that

e(Err1|M̂ ) ∈ ρ2
◦C∞I (T̆CM \ K̆◦;S2 3sc,∨T (T̆CM)),

with the explicit expression given by (10.15); here we write K̆◦ =
⊔
p∈C K̆

◦
p where K̆p ⊂ T̆pM

is the closure of {|x̂| ≤ m}. Restricted to a single fiber T̆pM of T̆CM , we can identify the

stationary tensor e(Err1|M̂ ) with an element of ρ2
◦C∞(X̂b;S

2 3scT ∗
X̂b
M̂b), and thus73

f1 := e(Err1|M̂ ) ∈ C∞
(
I; ρ2
◦C∞(X̂b;S

2 3scT ∗
X̂b
M̂b)

)
. (10.19)

Moreover, the identity δg̃1Gg̃1Err1 = 0 implies (in view of the stationarity of f1(t) for all
t ∈ I) that

δ̂ĝbGĝb(0)f1(t) = 0 for all t ∈ I.
We investigate the condition (9.32) required for an application of Theorem 9.8 and thus set

f1
Kerr := 〈f1,−〉L2(X̂b)

∈ C∞(I; (K∗b,Kerr)
∗),

f1
COM := 〈f1,−〉L2(X̂b)

∈ C∞(I; (K∗b,COM)∗)

in the notation of Theorem 9.6.

Lemma 10.5 (f1 and the cokernel of linearized Ricci). We use the notation of Theorem 9.8.
For ω∗ = ω∗0 as well as for ω∗ = ω∗12 when a 6= 0,74 and for ω∗ = ω∗jk for all 1 ≤ j < k ≤ 3
when a = 0, we have

〈f1(t), Ĝĝbδ
∗
ĝb

(0)ω∗〉L2(X̂b)
= f1

Kerr

(
Ĝĝbδ

∗
ĝb

(0)ω∗
)

= 0

for all t ∈ I.

Proof. Let χ = χ(r̂) ∈ C∞(X̂b) be a radial function which is equal to 1 near ∂X̂b and

supported in r̂ = |x̂| > m. In view of the discussion around (9.6), we may take ω∗0 = χ∂[
t̂

and

ω∗12 = χV [ where V = (e× x̂) · ∂x̂ is the rotation vector field around the axis e = (0, 0, 1)T ,
which is the axis of rotation of ĝb when a 6= 0, or e ∈ R3 is an arbitrary unit vector when
a = 0. Note then that W = ∂t̂, V is a Killing vector field, and therefore we have

Ĝĝbδ
∗
ĝb

(0)ω∗ = Gĝb [δ
∗
ĝb
, χ]W [ ∈ C∞c (X̂◦b ; 3scT ∗

X̂b
M̂b).

Since this moreover vanishes near r̂ = m̂ by definition of χ, we conclude that for any
h ∈ D ′(X̂◦b ;S2T ∗

X̂◦b
M̂◦b ) we have

〈D̂ĝbRic(0)h, Ĝĝbδ
∗
ĝb

(0)ω∗〉 = 〈h, D̂ĝbRic(0)∗Ĝĝbδ
∗
ĝb

(0)ω∗〉 = 0. (10.20)

Recalling the expression (10.15) for f1(t), it remains to note that

〈ĝb, Ĝĝbδ∗ĝb(0)ω∗〉 =

∫
X̂b

δĝb(ω
∗) dĝb|X̂b = 0

since, for W = ∂t̂, V , we have

δĝb(χW
[) = −χ′W [(∇r̂) = −χ′ĝb(W,∇r̂) = −χ′dr̂(W ) = 0. �

73This simply means that f1 is a smooth family (in t ∈ I) of symmetric 2-tensors f1(t, x̂)µνdẑµ dẑν

where ẑ = (t̂, x̂) ∈ R1+3 and f1(t,−)µν ∈ C∞({x̂ ∈ R3 : |x̂| ≥ m}) is smooth in ρ◦ = |x̂|−1, x̂
|x̂| , and vanishes

quadratically at ρ◦ = 0.
74Recall here the normalization (10.2).
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Corollary 10.6 (Parameters for elimination of the cokernel). We use the notation of
Theorem 9.6. There exist unique functions

ĉ1 ∈ C∞(I;R3),

{
a = 0 : ȧ1 = 0,

a 6= 0 : ȧ1 ∈ C∞(I; (Ra)⊥),

so that

f1
Kerr = `b,Kerr(0, ȧ

1), f1
COM = `b,COM(ĉ1).

Proof. The existence and uniqueness of ĉ1(t), t ∈ I, follows from the fact that `b,COM : R3 →
(K∗b,COM)∗ is an isomorphism. When a = 0, then f1

Kerr = 0 by Lemma 10.5, which thus

equals `b,Kerr(0, 0) indeed. When a 6= 0 on the other hand, then the explicit expression

for `b,Kerr in Theorem 9.6 shows that the space `b,Kerr(0, (Ra)⊥) ⊂ (K∗b,Kerr)
∗ consists of all

linear functionals on K∗b,Kerr which annihilate Gĝbδ
∗
ĝb
ω∗ for ω∗ = ω∗0 and ω∗12; this space thus

contains f1
Kerr(t) for each t ∈ I. The smoothness of ĉ1 and ȧ1 along I follows from their

uniqueness and the linearity of their construction. �

We shall account for ĉ1 by modulating the center of mass of the small black hole, and
for ȧ1 in the case a 6= 0 by modulating its axis of rotation. We first motivate our strategy
for the two modulations separately in §§10.2.1–10.2.2. In §10.2.3, we combine the two
modulations, and in §10.2.4 we graft them into the total gluing spacetime.

10.2.1. Center of mass. In Fermi normal coordinates (t, x), and with x̂ = x
ε , and for ĉ ∈

C∞(I;R3), define for fixed t ∈ I the diffeomorphism

Φ1,ĉ(t) : (ε, x̂) 7→ (ε, x̂+ ĉ(t))

on [0, 1)ε × {t} × R3
x̂. Here and in §10.2.2 below, we consider a simplified setting in which

instead of g̃1 we work on

[0, 1)ε × M̂◦ = [0, 1)ε × It × R3
x̂

(which is diffeomorphic to a neighborhood of M̂◦ ⊂ M̃) with a section of the pullback of
S2T ∗CM which on a level set of t we define by Φ∗1,ĉ(t)ĝb; we denote this tensor by (Φ∗1,ĉ(t)ĝb)t∈I .

We emphasize that ĝb = ĝb(x̂; dt̂,dx̂); thus,

(Φ∗1,ĉ(t)ĝb)t∈I = ĝb(x̂+ ĉ(t); dt̂,dx̂).

Working near the interior of the front face of [M̃ ; M̂c(t0)] (cf. (3.14)) with coordinates

ε, t̂ =
t− t0
ε

, x̂, (10.21)

we have

(Φ∗1,ĉ(t)ĝb)t∈I = ĝb(x̂+ ĉ(t0 + εt̂); dt̂,dx̂). (10.22)

Taylor expanding ĉ around t0 gives ĉ(t) = ĉ(t0) + (t− t0)ĉ′(t0) + (t−t0)2

2 ĉ′′(t0) + (t− t0)3C∞
and thus (regarding t as a parameter, and subsequently expressing it in terms of t̂), defining
Φĉ(t0) : (t̂, x̂) 7→ (t̂, x̂+ ĉ(t0)),

(Φ∗1,ĉ(t)ĝb)t∈I ≡ Φ∗ĉ(t0)

(
ĝb+ εt̂Lĉ′(t0)·∂x̂ ĝb+

ε2t̂2

2

(
L2
ĉ′(t0)·∂x̂ +Lĉ′′(t0)·∂x̂

)
ĝb

)
mod ε3C∞ (10.23)
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for bounded t̂, x̂; here, we write C∞ = C∞([0, 1)ε × R4
t̂,x̂

;S2T ∗R4). This gives

Ric((Φ∗1,ĉ(t)ĝb)t∈I) ≡ Φ∗ĉ(t0)

(
Ric(ĝb) + εDĝbRic

(
t̂Lĉ′(t0)·∂x̂ ĝb

))
≡ 2εΦ∗ĉ(t0)

(
[DĝbRic, t̂]hb,ĉ′(t0)

)
mod ε2C∞,

(10.24)

where we used (9.8). (An explicit calculation using Corollary 6.7 shows that this does not
vanish unless ĉ′(t0) = 0.)

Remark 10.7 (Comparison with total pullback). The pullback of (t, x̂) 7→ ĝb(x̂; dt̂,dx̂) along

Φĉ : (ε, t, x̂) 7→ (ε, t, x̂+ ĉ(t)), (10.25)

which in the coordinates (10.21) is

Φĉ : (ε, t̂, x̂) 7→ (ε, t̂, x̂+ ĉ(t0 + εt̂)) =
(
ε, t̂, x̂+ ĉ(t0) + εt̂ĉ′(t0) +O(ε2)

)
, (10.26)

is equal to

Φ∗ĉ ĝb = ĝb
(
x̂+ ĉ(t0 + εt̂), dt̂,dx̂+ εĉ′(t0 + εt̂)dt̂

)
. (10.27)

Since ĝb is Ricci-flat, this pullback is also Ricci-flat. Note that this pullback metric differs
from (10.22) when ĉ′ 6= 0. The Taylor expansion of Φ∗ĉ ĝb in (10.27) at ε = 0 (and for

bounded t̂) is

Φ∗ĉ ĝb ≡ Φ∗ĉ(t0)

(
ĝb + εLt̂ĉ′(t0)·∂x̂ ĝb

)
mod ε2C∞.

Compared with (10.23), the factor t̂ is in the argument of the Lie derivative here.

Returning to (10.24), recall now from Definition 9.4 that

t̂hb,ĉ′(t0) + h̆b,ĉ′(t0) =
1

2
Lt̂ĉ′(t0)·∂x̂+(ĉ′(t0)·x̂)∂t̂

ĝb ∈ kerDĝbRic

=⇒ h̆b,ĉ′(t0) =
1

2

(
Lt̂ĉ′(t0)·∂x̂ − t̂Lĉ′(t0)·∂x̂ + L(ĉ′(t0)·x̂)∂t̂

)
ĝb.

(10.28)

We thus deduce that Ric((Φ∗1,ĉ(t)(ĝb + 2εh̆b,ĉ′(t)))t∈I) ∈ ε2C∞. We proceed to compute the

ε2 leading order term, which is related to the tensors in (9.15) and (9.18). We first record
the following general result:

Lemma 10.8 (Lie derivatives and the Taylor expansion of Ricci). If (M, g) is Ricci-flat
and V ∈ V(M), then

D2
gRic(LV g,LV g) = −DgRic(L2

V g),

D3
gRic(LV g,LV g,LV g) = −3D2

gRic(LV g,L2
V g)−DgRic(L3

V g).

For V,W ∈ V(M), we furthermore have

D2
gRic(LV g,LW g) = −1

2

(
DgRic(LV LW g) +DgRic(LWLV g)

)
. (10.29)

Proof. Denote by Ψs the time s flow of V , which is defined on any fixed precompact open
subset U ⊂ M when s is sufficiently small (depending on U). We compute the Taylor
expansion of Ric(Ψ∗sg) = 0 around s = 0 using

Ψ∗sg = g + sLV g +
s2

2
L2
V g +

s3

6
L3
V g +O(s4) (10.30)
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where O(s4) denotes a smooth symmetric 2-tensor on U which depends smoothly on s when
s is sufficiently small and vanishes to fourth order at s = 0, to be

0 = Ric(g) + sDgRic(LV g) +
s2

2

(
DgRic(L2

V g) +D2
gRic(LV g,LV g)

)
+
s3

6

(
DgRic(L3

V g) + 3D2
gRic(LV g,L2

V g) +D3
gRic(LV g,LV g,LV g)

)
+O(s4).

The vanishing of the coefficients of s2 and s3 gives the desired result. The identity (10.29)
follows by polarization. �

Lemma 10.9 (Ricci tensor of fiberwise pullback: center of mass). Consider on [0, 1)ε×M̂◦
the symmetric 2-tensor (in dt̂, dx̂, with smooth dependence on ε, t, x̂) which for fixed t ∈ I
is given by Φ∗1,ĉ(t)(ĝb+2εh̆b,ĉ′(t)). For t0 ∈ I, set V (t0) = t̂ĉ′(t0) ·∂x̂+(ĉ′(t0) · x̂)∂t̂ (generator

of a Lorentz boost). In terms of t = t0 + εt̂, we then have(
Φ∗1,ĉ(t)(ĝb + 2εh̆b,ĉ′(t))

)
≡ Φ∗ĉ(t0)

(
ĝb + εLV (t0)ĝb

)
mod ε2C∞, (10.31)

and furthermore

Ric
(
(Φ∗1,ĉ(t)(ĝb + 2εh̆b,ĉ′(t)))t∈I

)
≡ ε2Φ∗ĉ(t0)

[
2DĝbRic

( t̂2
2
hb,ĉ′′(t0) + t̂h̆b,ĉ′′(t0)

)
+DĝbRic(f(t0))

]
mod ε3C∞

(10.32)

where f ∈ C∞(I; C∞(X̂b;S
2 3scT ∗

X̂b
M̂b)).

75

Proof. Using (10.23), we have, modulo ε3C∞,

(Φ∗1,ĉ(t)(ĝb + 2εh̆b,ĉ′(t)))t∈I

≡ Φ∗ĉ(t0)

[
ĝb + ε

(
t̂Lĉ′(t0)·∂x̂ ĝb + 2h̆b,ĉ′(t0)

)
+ ε2

( t̂2
2
Lĉ′′(t0)·∂x̂ ĝb +

t̂2

2
L2
ĉ′(t0)·∂x̂ ĝb + 2t̂h̆b,ĉ′′(t0) + 2t̂Lĉ′(t0)·∂x̂ h̆b,ĉ′(t0)

)]
= Φ∗ĉ(t0)

[
ĝb + εLt̂ĉ′(t0)·∂x̂+(ĉ′(t0)·x̂)∂t̂

ĝb + 2ε2
( t̂2

2
hb,ĉ′′(t0) + t̂h̆b,ĉ′′(t0)

)
+ ε2

( t̂2
2
L2
ĉ′(t0)·∂x̂ ĝb + t̂Lĉ′(t0)·∂x̂

(
Lt̂ĉ′(t0)·∂x̂ − t̂Lĉ′(t0)·∂x̂ + L(ĉ′(t0)·x̂)∂t̂

)
ĝb

)]
,

(10.33)

where we used (10.28) for the second equality. Motivated by Lemma 10.8, we rewrite the

final line. To simplify the notation, we use the notation L̃(V ) := LV (·) from (9.28). Writing
ĉ′ = ĉ′(t0), we then compute

1

2
L2
t̂ĉ′·∂x̂+(ĉ′·x̂)∂t̂

ĝb =
1

2
L̃(t̂ĉ′ · ∂x̂ + (ĉ′ · x̂)∂t̂)

2ĝb =
1

2
(t̂A1 +A0)2ĝb,

A1 := L̃(ĉ′ · ∂x̂), A0 := [L̃, t̂](ĉ′ · ∂x̂) + L̃((ĉ′ · x̂)∂t̂).

Since [A1, t̂] = 0, this is further equal to( t̂2
2
A2

1 + t̂A1A0

)
ĝb +

(1

2
[A0, t̂A1] +

1

2
A2

0

)
ĝb.

75That is, the components of f in the frame dt̂,dx̂ are smooth on It × (R3
x̂ \ {|x̂| < m}).
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The first parenthesis precisely matches the ε2-coefficient in the final line of (10.33). Fur-

thermore, 1
2A

2
0ĝb = A0h̆b,ĉ′ ∈ ρ◦C∞(X̂b;S

2 3scT ∗
X̂b
M̂b) (where ρ◦ = 〈x̂〉−1) since h̆b,ĉ′ is of

this class (and stationary) and [L̃, t̂](ĉ′ · ∂x̂) ∈ Diff0
b(X̂b;S

2 3scT ∗
X̂b
M̂b) is stationary as well,

and L̃((ĉ′ · x̂)∂t̂)h̆b,ĉ′ = [L̃, ĉ′ · x̂](∂t̂)h̆b,ĉ′ with [L̃, ĉ′ · x̂](∂t̂) ∈ Diff0
b(X̂b;S

2 3scT ∗
X̂b
M̂b).

We proceed to rewrite 1
2 [A0, t̂A1]ĝb: this is 1

2 times[
[L̃, t̂](ĉ′ · ∂x̂) + L̃((ĉ′ · x̂)∂t̂), L̃(t̂ĉ′ · ∂x̂)− [L̃, t̂](ĉ′ · ∂x̂)

]
ĝb

=
[
[L̃, t̂](ĉ′ · ∂x̂), L̃(t̂ĉ′ · ∂x̂)

]
ĝb +

[
L̃((ĉ′ · x̂)∂t̂), L̃(t̂ĉ′ · ∂x̂)

]
ĝb

−
[
L̃((ĉ′ · x̂)∂t̂), [L̃, t̂](ĉ

′ · ∂x̂)
]
ĝb.

The second term is the Lie derivative of ĝb along [(ĉ′ ·x̂)∂t̂, t̂ĉ
′ ·∂x] = (ĉ′ ·x̂)ĉ′ ·∂x̂−|ĉ′|2t̂∂t̂; the

third term is a stationary tensor which lies in C∞(X̂b;S
2 3scT ∗

X̂b
M̂b). For f = t̂, V = ĉ′ · ∂x̂,

the operator acting on ĝb in the first term is[
[L̃, f ](V ), L̃(fV )

]
= [L̃(fV )− f L̃(V ), L̃(fV )] = LfV fLV − fLV LfV
= fV (f)LV + f [LfV ,LV ] = fV (f)LV + fL[fV,V ]

= fV (f)LV − fLV (f)V = 0

since V (f) = 0. In summary, we have shown that

(Φ∗1,ĉ(t)(ĝb + 2εh̆b,ĉ′(t)))t∈I

Φ∗ĉ(t0)

[
ĝb + εLV (t0)ĝb +

ε2

2
L2
V (t0)ĝb + 2ε2

( t̂2
2
hb,ĉ′′(t0) + t̂h̆b,ĉ′′(t0)

)
+ ε2

(
LW (t0)ĝb + f(t0)

)]
mod ε3C∞,

where f ∈ C∞(I; C∞(X̂b;S
2 3scT ∗

X̂b
M̂b)), and W ∈ C∞(I;V(R1+3

t̂,x̂
)). (The proof gives

W (t0) = 1
2((ĉ′(t0) · x̂)ĉ′(t0) · ∂x̂ − |ĉ′(t0)|2t̂∂t̂).)

Next, note that pullback of tensors along Φ∗ĉ(t0), regarded as a t-independent diffeo-

morphism of t-level sets coincides with pullback along (ε, t, x̂) 7→ (ε, t, x̂ + ĉ(t0)) (cf. Re-
mark 10.7) and thus commutes with the computation of the Ricci tensor. We moreover

have Ric(ĝb + εLV (t0)ĝb + ε2

2 L
2
V (t0)ĝb) ∈ ε

3C∞ by (the proof of) Lemma 10.8. The expres-

sion (10.32) thus follows from the fact that DĝbRic(LW (t0)ĝb) = 0. �

10.2.2. Axis of rotation. For this part, we shall assume

a 6= 0.

(Otherwise, there is nothing to do by Corollary 10.6.) We need to modify the tensor
(ε, t, x̂) 7→ ĝb(x̂; dt̂,dx̂), t = t0 + εt̂, in such a way as to produce a term t̂g′b(0, ȧ

1) in the
ε2-coefficient of the Ricci tensor, similarly to (but in fact simpler than) (10.32). We define
the rotation vector field

Ω(ȧ) = Ω0(ȧ, x̂) · ∂x̂, Ω0(ȧ, x̂) =
(
ȧ× a

|a|2
)
× x̂. (10.34)

Lemma 10.10 (Linearized Kerr metric as a Lie derivative). If R3 3 ȧ ⊥ a (in terms of the
Euclidean metric on R3), then

g′m,a(0, ȧ) = LΩ(ȧ)ĝb.
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Proof. Denote the time s flow of Ω(ȧ) by φs. Then the derivative at s = 0 of φ∗s ĝm,a = ĝm,φ−1
s a

reads
LΩ(ȧ)ĝm,a = ĝ′m,a(0,−Ω0(ȧ, a)).

But Ω0(ȧ, a) = −(a · a
|a|2 )ȧ = −ȧ since ȧ · a = 0. �

The analogue of Lemma 10.9 is then:

Lemma 10.11 (Ricci tensor of fiberwise pullback: axis of rotation). Let ȧ ∈ C∞(I; (Ra)⊥).

Consider on [0, 1)ε × M̂◦ the symmetric 2-tensor (in dt̂, dx̂, with smooth dependence on
ε, t, x̂) which for fixed t ∈ I is given by ĝb + εĝ′b(0, ȧ(t)). Let t0 ∈ I. In terms of t = t0 + εt̂,
we then have (

ĝb + εĝ′b(0, ȧ(t))
)
t∈I = ĝb + εLΩ(ȧ(t0))ĝb mod ε2C∞. (10.35)

Furthermore,

Ric
(
(ĝb + εĝ′b(0, ȧ(t)))t∈I

)
≡ ε2

[
DĝbRic

(
t̂ĝ′b(0, ȧ

′(t0))
)

+DĝbRic(f(t0))
]

mod ε3C∞, (10.36)

where f = −1
2L

2
Ω(ȧ(·))ĝb ∈ C

∞(I; ρ2
◦C∞(X̂b;S

2 3scT ∗
X̂b
M̂b)) (where ρ◦ = 〈x̂〉−1).

The first term in (10.36) is precisely the one appearing in (9.16).

Proof of Lemma 10.11. Taylor expanding ȧ(t) = ȧ(t0) + (t − t0)ȧ′(t0) + O((t − t0)2) and
then writing t = t0 + εt̂ gives

(ĝb + εĝ′b(0, ȧ(t)))t∈I ≡ ĝb + εLΩ(ȧ(t0))ĝb + ε2t̂ĝ′b(0, ȧ
′(t0))

≡ ĝb + εLΩ(ȧ(t0))ĝb +
ε2

2
L2

Ω(ȧ(t0))ĝb

+ ε2
(
t̂ĝ′b(0, ȧ

′(t0))− 1

2
L2

Ω(ȧ(t0))ĝb

)
mod ε3C∞

in view of Lemma 10.10. Lemma 10.8 then gives (10.36). �

10.2.3. Combination; total pullback. The combination of Lemmas 10.9 and 10.11 is:

Proposition 10.12 (Ricci tensor of fiberwise pullback: combination). Let ĉ ∈ C∞(I;R3).
If a 6= 0 and ȧ ∈ C∞(I; (Ra)⊥), define

ĝ1,b,ĉ,ȧ = ĝ1,b,ĉ,ȧ(ε, t, x̂; dt̂,dx̂)

on [0, 1)ε × M̂◦ to be equal to Φ∗1,ĉ(t)(ĝb + 2εh̆b,ĉ′(t) + εĝ′b(0, ȧ(t))) for fixed t ∈ I, where

Φ1,ĉ(t)(ε, x̂) = (ε, x̂+ ĉ(t)). Let t0 ∈ I and set V (t0) = t̂ĉ′(t0) · ∂x̂ + (ĉ′(t0) · x̂)∂t̂ + Ω(ȧ(t0)).

Then, in terms of t = t0 + εt̂, and writing Φĉ(t0) : (t̂, x̂) 7→ (t̂, x̂+ ĉ(t0)),

ĝ1,b,ĉ,ȧ = Φ∗ĉ(t0)

(
ĝb + εLV (t0)ĝb

)
mod ε2C∞. (10.37)

Furthermore,

Ric(ĝ1,b,ĉ,ȧ) ≡ ε2Φ∗ĉ(t0)

[
DĝbRic

( t̂2
2
hb,2ĉ′′(t0) + t̂h̆b,2ĉ′′(t0) + t̂ĝ′b(0, ȧ

′(t0))
)

+DĝbRic(f(t0))
]

mod ε3C∞,
(10.38)

where f ∈ C∞(I; C∞(X̂b;S
2 3scT ∗

X̂b
M̂b)). If a = 0, define ĝb,ĉ to be equal to Φ∗1,ĉ(t)(ĝb +

2εh̆b,ĉ′(t)); then we have (10.37)–(10.38) for ĝb,ĉ if we drop all terms involving ȧ.



130 PETER HINTZ

Proof. When a = 0, this is Lemma 10.9; when a 6= 0, then in the proof of Lemma 10.9,
we merely need to replace every occurrence of h̆b,ĉ′(t) by h̆b,ĉ′(t) + 1

2 ĝ
′
b(0, ȧ(t)) = h̆b,ĉ′(t) +

1
2LΩ(ȧ)ĝb. �

In order to prepare the grafting of ĝ1,b,ĉ,ȧ into the total gluing spacetime M̃ , we record:

Lemma 10.13 (Further properties of ĝ1,b,ĉ,ȧ). Define the space

M̃ :=
[

[0, 1)ε × It × R3
x̂; {0} × I × ∂R3

]
; (10.39)

denote its front face byM◦ and the lift of {0}×I×R3 by M̂, and write ρ◦, resp. ρ̂ ∈ C∞(M̃)

for defining functions of M◦, resp. M̂. Suppose first that a 6= 0.

(1) (Decay of coefficients.) In the coordinates ẑ = (t̂, x̂), the components of the tensor
ĝ1,b,ĉ,ȧ(ε, t, x̂; dt̂,dx̂) (defined in Proposition 10.12), which are smooth functions on

[0, 1)ε×It×R3
x̂, lift to smooth functions on76 M̃ which differ from the corresponding

components of ĝb by terms in ρ2
◦C∞(M̃).

(2) (Total pullback.) In the notation of (10.34), set

Φ1,ĉ,ȧ : (ε, t, x̂) 7→
(
ε, t− ε2(ĉ′(t) · x̂), e−εΩ(ȧ(t))x̂− ĉ(t)

)
,

where e−εΩ(ȧ(t)) is the time ε flow of −Ωȧ(t) (i.e. a rotation). Then Φ1,ĉ,ȧ lifts to

a diffeomorphism of M̃ which is the identity on M◦ and the translation (t, x̂) 7→
(t, x̂− ĉ(t)) on M̂◦. Moreover, the components of

Φ∗1,ĉ,ȧĝ1,b,ĉ,ȧ − ĝb

lie in ρ̂2ρ◦C∞(M̃).

If a = 0, the same conclusions hold upon dropping all terms and subscripts involving ȧ.

Recalling the second part of Lemma 3.2, a neighborhood of M̂ ⊂ M̃ is diffeomorphic

to a neighborhood of M̂ ⊂ M̃ , with the diffeomorphism given by the identity map in the

coordinates (ε, t, x̂) on M̃◦ induced by the Fermi normal coordinates (t, x).

Proof of Lemma 10.13. We only consider the case a 6= 0, as the case a = 0 follows from the
same arguments but with ȧ dropped.

• Part (1). Lemma 9.5 gives

h̆b,ĉ′(·) ∈ C∞
(
I; ρ◦C∞(X̂b;S

2 3scT ∗
X̂b
M̂b)

)
,

and hence the coefficients of εh̆b,ĉ′(·) are of class ε〈x̂〉−1C∞ on (10.39). The same is true, a
fortiori, for the coefficients of εĝ′b(0, ȧ) in view of the even better (namely, quadratic) decay
of the coefficients of ĝ′b(0, ȧ) as |x̂| → ∞, cf. (3.42). Since ε〈x̂〉−1 is a smooth function
vanishing quadratically at the front face M◦ of (10.39), this shows that the coefficients of

(2εh̆b,ĉ′(t) + εĝ′b(0, ȧ(t)))t∈I vanish quadratically at M◦.
To deal with the pullback, consider now the map Φ1,ĉ(t) : (ε, x̂) 7→ (ε, x̂ + ĉ(t)) from

Proposition 10.12. Letting x = εx̂ = (x1, x2, x3), so Φ1,ĉ(t) : (ε, x) 7→ (ε, x+ εĉ(t)), this is a

76More precisely, they are defined on the subset where |x̂+ ĉ(t)| ≥ m; we shall not make this explicit in
the notation here.
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smooth family (in t) of invertible linear maps in (ε, x) ∈ R × R3 which preserve {0} × R3.

Therefore, this lifts to a smooth family of diffeomorphisms of [[0, 1) × R3; {0} × ∂R3] and

hence to a diffeomorphism of M̃ which preserves all boundary hypersurfaces.

To conclude the proof of the first part, note then that Φ1,ĉ(t0) is the time 1 flow of ĉ(t0)·∂x̂;

but since Lĉ(t0)·∂x̂ ĝb = 2hb,ĉ′(t0) ∈ ρ2
◦C∞(X̂b;S

2 3scT ∗
X̂b
M̂b), we have (ĝb − Φ∗1,ĉ(t)ĝb)t∈I ∈

C∞(I; ρ2
◦C∞(X̂b;S

2 3scT ∗
X̂b
M̂b)), i.e. upon lifting to M̃ its coefficients vanish quadratically

at M◦.
• Part (2). The smoothness properties of Φ1,ĉ,ȧ are clear near the interior of M̂, and also

near the interior of M◦ where this map has the local coordinate expression

(ε, t, x) 7→
(
ε, t− ε(ĉ′(t) · x), e−εΩ(ȧ(t))x− εĉ(t)

)
.

At ε = 0, this is the identity map (0, t, x) 7→ (0, t, x). Furthermore, the projection of Φ1,ĉ,ȧ

to I is clearly smooth, and the projection to [[0, 1) × R3; {0} × ∂R3] is a smooth family
(in t ∈ I) of smooth maps as well, as follows from the same arguments as in the proof of
part (1).

Let us now work near t = t0 ∈ I and write t̂ = t−t0
ε ; thus t̂, x̂ are linear coordinates in

the interior of the front face of the blow-up of M̃ at the lift of {0} × {t0} ×R3 (cf. (3.14)).
The Taylor expansion of Φĉ(t0) ◦Φ1,ĉ,ȧ around t = t0 expressed in the coordinates ε, t̂, x̂ and

truncated at order ε2 is

(Φĉ(t0) ◦ Φ1,ĉ,ȧ)(ε, t̂, x̂) ≡
(
ε, t̂− ε(ĉ′(t0) · x̂), x̂− εt̂ĉ′(t0)− εΩ0(ȧ(t0), x̂)

)
mod ε2C∞.

The quadratic vanishing of Φ∗1,ĉ,ȧĝ1,b,ĉ,ȧ − ĝb at M̂◦ then follows from

(Φĉ(t0) ◦ Φ1,ĉ,ȧ)
∗(ĝb + εLV (t0)ĝb)− ĝb ≡ (ĝb + εLV (t0)ĝb)− εLV (t0)(ĝb + εLV (t0)ĝb)− ĝb ≡ 0

modulo terms vanishing quadratically at M̂◦. Since ĝ1,b,ĉ,ȧ and ĝb are equal at M◦ and
Φ1,ĉ,ȧ is the identity there, the simple vanishing at M◦ is immediate. �

10.2.4. Full implementation. We shall only consider the case

a 6= 0

explicitly here; the treatment of the case a = 0 is simpler, and obtained by omitting all
terms involving ȧ.

We return to the total family g̃1 from Proposition 10.4 and its error f1 from (10.19).
Recall the functions ĉ1 ∈ C∞(I;R3), ȧ1 ∈ C∞(I; (Ra)⊥) produced by Corollary 10.6. In

light of Theorem 9.6, we can solve away f1 to leading order at M̂ only if we adjust g̃1 two
orders (in powers of ε) earlier.77 Theorem 9.6 and Proposition 10.12 suggest setting, for
any fixed

¯
t ∈ I,

ĉ(t) = −1

2

∫ t

¯
t

∫ s

¯
t
ĉ1(w) dw ds, ȧ(t) = −

∫ t

¯
t
ȧ1(s) ds, (10.40)

77In particular, the vanishing of the scalar type 1 component of g(2) in Lemma 10.2 is critical: otherwise,

the solution h1 of equation (10.17) would have an r(log r) scalar type 1 leading order term, which would

lead to a scalar type 1 error term at M̂◦ of size ε · ε(log ε), which could not be solved away since this would

require a modulation of the center of mass at order log ε—which blows up at M̂ .
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so that 2ĉ′′ = −ĉ1 and ȧ′ = −ȧ1. In view of Lemma 10.13(1), if we set

g̃′1,ĉ,ȧ := g̃1 + χ̂e−1(ĝ1,b,ĉ,ȧ − ĝb), (10.41)

then g̃′1,ĉ,ȧ − g̃1 is a smooth section of S2T̃ ∗M̃ near M◦ which vanishes quadratically at

M◦. Furthermore, by (10.4), Lemma 10.1 (so g′(t, x; dt,dx) = r2g(2)(t,
x
|x| ; dt,dx) plus a

remainder with cubic decay at r = 0), and (10.13), we have

eg̃′1,ĉ,ȧ ≡ ĝ1,b,ĉ,ȧ(ε, t, x̂; dt̂,dx̂) + ε2
(
r̂2g(2)

(
t,
x

|x|
; dt̂,dx̂

)
+ χ◦e(r̂h

1
],(1,0))

)
modulo terms which vanish more than quadratically at M̂ ; this expression also defines

g̃′1,ĉ,ȧ on M̃ \ K̃◦ĉ , where K̃◦ĉ = {(ε, t, x̂) : (ε, t, x̂+ ĉ(t)) ∈ K̃◦} similarly to Proposition 10.4.

The ε3(log ρ̂)-term of g̃′1,ĉ,ȧ, which is the leading logarithmic term at M̂ , is moreover given

by (10.18) still. We then have

Err′1,ĉ,ȧ := Ric(g̃′1,ĉ,ȧ)− Λg̃′1,ĉ,ȧ ∈ A
(0,0)+,(2,0)
phg (M̃ \ K̃◦ĉ ;S2T̃ ∗M̃), (10.42)

and indeed at M̂c(t) we have

f1,ĉ,ȧ(t) := e(Err′1,ĉ,ȧ|M̂c(t)
)

=
(
ε−2
(
Ric(eg̃′1,ĉ,ȧ)− Λε2eg̃′1,ĉ,ȧ

))∣∣∣
ε=0

= Φ∗ĉ(t)

(
D̂ĝbRic(0)

[
e
(
r̂2g(2)(t) + χ◦r̂h

1
],(1,0)(t)

)
−
( t̂2

2
hb,ĉ1(t) + t̂h̆b,ĉ1(t) + t̂ĝ′b(0, ȧ

1(t))
)

+ D̂ĝbRic(0)(f(t))
]
− Λĝb

)
(with smooth dependence on t) by Proposition 10.12, where Φĉ(t) : (t̂, x̂) 7→ (t̂, x̂+ ĉ(t)) and

f(t) ∈ C∞(X̂b;S
2 3scT ∗

X̂b
M̂b). That is, compared to (10.15) we have the additional terms

from (10.38). Furthermore, the ε(log ρ̂)-term of Err1,ĉ,ȧ is given on a t-level set by the
pullback of (10.16) along Φĉ(t).

By Theorem 9.6 and Corollary 10.6, and in view of the choices (10.40), the assumptions

of Theorem 9.8 (cf. (9.32)) are satisfied for (Φ−1
ĉ(t))

∗f1,ĉ,ȧ(t) ∈ ρ2
◦C∞(X̂b;S

2 3scT ∗
X̂b
M̂b) for all

t ∈ I, in that 〈
(Φ−1

ĉ(t))
∗f1,ĉ,ȧ(t),−

〉
L2(X̂b)

= 0 ∈ (K∗b,tot)
∗.

Theorem 9.8 produces

h ∈ A(0,1)+

phg (M̂ \ K̃◦;S2T̃ ∗
M̂
M̃),

so eh ∈ C∞(I;A(0,1)+

phg (X̂b;S
2 3scT ∗

X̂b
M̂b)), with Φ∗ĉ(t)(D̂ĝbRic(0)(eh(t))) = −f1,ĉ,ȧ(t) for all

t ∈ I. Since ε2χ̂h ∈ A(2,0),(2,1)+

phg , we therefore find that78

g̃1,ĉ,ȧ := g̃′1,ĉ,ȧ + ε2χ̂h ≡ β̃∗g mod
(
A(0,0)∪(3,1)+,(1,0)

phg +A(2,0),(2,1)+

phg

)
(M̃ \ K̃◦ĉ ;S2T̃ ∗M̃)

78The error space here is contained in AN0∪(3,1)+,(1,0)+
phg . But we keep the two summands separate here to

record the fact that the coefficient of the first logarithmic term at M̂ , resp. M◦ does not have a logarithmic
leading order term at the other boundary.
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satisfies
Err1,ĉ,ȧ := Ric(g̃1,ĉ,ȧ)− Λg̃1,ĉ,ȧ ∈ A

(1,1)+,(2,1)+

phg (M̃ \ K̃◦ĉ ;S2T̃ ∗M̃).

(Thus, we have succeeded in solving away the leading order error at M̂ at the expense of
generating mild logarithmic terms at M◦ and shifting the small black hole.)

More precisely, recalling (10.42), the error Err1,ĉ,ȧ is the sum of Err′1,ĉ,ȧ, the linear

term ε2Dg̃′
1,ĉ,ȧ

Ric(χ̂h), and quadratic and higher order error terms. But since g̃′1,ĉ,ȧ ∈

A(0,0)∪(3,1)+,(0,0)
phg by Proposition 10.4 and (10.41)—i.e. this metric has smooth coefficients

modulo A(3,1)+,(0,0)
phg (so modulo almost three orders down at M̂)—the operator Dg̃1,ĉ,ȧ

Ric ∈
A(−2,0)∪(1,1)+,(0,0)

phg Diff2
se has smooth coefficients modulo A(1,1)+,(0,0)

phg Diff2
se (so almost modulo

three orders down at M̂). As a consequence, we can separate the leading order logarithmic

terms of Err1,ĉ,ȧ at M̂ (which is a pullback of the term (10.15)) and M◦ (arising from the

log r̂ leading order term of h at ∂M̂), to wit,79

Err1,ĉ,ȧ ∈
(
A(1,1)+,(2,0)∪(3,2)+

phg +A(1,0),(2,1)+

phg

)
(M̃ \ K̃◦ĉ ;S2T̃ ∗M̃).

We refine the description of the second summand here: the first step in the proof of Theo-
rem 9.8 is, in Lemma 9.10, the application of Theorem 7.13(4), and therefore the coefficient
h(0,1) ∈ C∞(∂M◦;β

∗
◦S

2T ∗CM) of the leading order term (log r̂)e(h(0,1)) of h is of scalar
type 0. The same is thus true for the coefficient of the logarithmic term of Err1,ĉ,ȧ of
the second summand here at ∂M◦, as this is ε2(log r̂)DgRic(h(0,1)) with DgRic(h(0,1)) ≡
D

¯
gRic(h(0,1)) mod C∞(M◦;β

∗
◦S

2T ∗M) (which lies in ρ̂−1C∞ since h(0,1) ∈ kerN(DRic, 0),

cf. the final part of Theorem 7.13).

Finally, we pull back g̃1,ĉ,ȧ by Φ1,ĉ,ȧ in the notation of Lemma 10.13(2); pullback by Φ1,ĉ,ȧ

preserves polyhomogeneity, and
g̃1 := Φ∗1,ĉ,ȧg̃1,ĉ,ȧ

equals g at M◦ and ĝb modulo ρ̂2C∞ near M̂ . In summary, we have shown:

Proposition 10.14 (First correction at M̂). There exists a ((3, 1)+, (1, 0)+)-smooth total

family g̃1 which is equal to80 g̃0 at M̂ and M◦ so that

Err1 := Ric(g̃1)− Λg̃1 ∈
(
A(1,1)+,(2,0)∪(3,2)+

phg +A(1,0),(2,1)+

phg

)
(M̃ \ K̃◦;S2T̃ ∗M̃),

which moreover has the following properties.

(1) g̃1 is equal to the Kerr metric along M̂ modulo O(ε2) errors in the sense that in the

coordinates ε, t, x̂ near M̂◦ the coefficients of e(g̃1)(t, x̂)− ĝb(x̂) in the frame dt̂,dx̂
lie in ε2C∞([0, 1)ε × It × R3

x̂);
(2) g̃1 = g outside the domain of influence U of a compact subset of U◦ in X, and thus

also supp Err1 ∩M◦ ⊂ β∗◦U ;

(3) the leading order term of Err1 at M̂ (in Fermi normal coordinates) is equal to

the ε log ρ̂ term e−1(ε log(εr̂)Err1
(1,1)), Err1

(1,1) = D̂ĝbRic(0)(χ◦r̂
2e(h1

],(2,1))), h
1
],(2,1) ∈

C∞(∂M◦;β
∗
◦S

2T ∗CM), of Err1 in Proposition 10.4, in the sense described there, and
(r̂Err1

(1,1))|∂M̂ is a sum of scalar and vector type 2 terms;

79The leading parts of the index sets of the first term are (1, 1) and (2, 0), and those of the second term
are (1, 0) and (2, 1).

80That is, its M̂ -model is constant along C and equal to ĝb, while its M◦-model is g.
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(4) the leading order term of Err1 at M◦ is equal to ε2(log ρ◦)Err1,(2,1) where Err1,(2,1) ∈
ρ̂−1C∞(M◦;β

∗
◦S

2T ∗M) has scalar type 0 leading order term (rErr1,(2,1))|∂M◦.

Remark 10.15 (Re-interpretation of the update from g̃1 to g̃1). Carefully note that Φ1,ĉ,ȧ

differs from the identity map near (M◦)
◦ by a term of size ε; thus, we typically only have

g̃1 − g̃1 = O(ε) there, and in this sense the construction leading to Proposition 10.14 in
fact also entails a correction at M◦ at the O(ε) level. (On the other hand, g̃1 and g̃1

are equal modulo O(ε2) corrections near M̂◦.) An alternative approach to the proof of
Proposition 10.14 is thus to replace the correction term εh1 from Proposition 10.4 by

(eεW )∗(g + εh1)− g = ε(h1 + LW g) + ε2
(1

2
L2
W g + LWh1

)
+O(ε3)

for a suitable smooth vector field W on M ; the contributions of εLW g, ε
2

2 L
2
W g, and ε2LWh

at M̂ are all of size ρ̂2 (and sensitive only to the quadratic term g(2) in the Taylor expansion
of g at C as well as the size r leading order term of h at ∂M◦). The advantage of the approach
chosen above is that it will generalize easily to a unified construction of corrections at later
stages of our argument which require infinitesimal changes of the parameters of the black
hole which (unlike those encountered above) are not pure gauge.

Remark 10.16 (Less precise description of the leading order terms). We keep track of the
nature of the leading order terms in parts (3)–(4) in order to limit the power of logarithms
appearing below. However, this precision is not actually necessary for completing the
construction of a formal solution if one is willing to acquire more logarithmic terms early
on in the construction; and in later stages of the construction, we shall abandon this quest.

10.3. Second correction at M◦. By Proposition 10.14, there exist

f0 ∈ A(−1,1)+

phg (M◦;β
∗
◦S

2T ∗M),

f1 ∈ ρ̂−1C∞(M◦;β
∗
◦S

2T ∗M),
(10.43)

so that81

Err1 ≡ −
(
ε2f0 + ε2(log ρ◦)f1

)
mod A(1,1)+,(3,2)+

phg (M̃ \ K̃◦;S2T̃ ∗M̃).

We take ρ̂ = r near ∂M◦ and set ρ◦ = ε
ρ̂ ; then the coefficient of r−1 log r of f0 is a sum

of terms of scalar and vector type 2, and the coefficient of r−1 of f1 is of scalar type 0.
The important common feature in the sequel is that the leading order terms of f0 and f1

at ∂M◦ have vanishing scalar and vector type 1 components.

Proposition 10.17 (Second correction at M◦). There exists a symmetric 2-tensor h ∈
A(3,1)+∪(4,3)+,(2,1)+

phg (M̃ ;S2T̃ ∗M̃) with support in the domain of influence of a compact subset

of U◦ so that g̃2 := g̃1 +h, which is a ((3, 1)+∪(4, 3)+, (1, 0)+)-smooth total family, satisfies

Err2 ∈ A(1,1)+∪(2,3)+,(3,2)+

phg (M̃ \ K̃◦;S2T̃ ∗M̃).

Moreover, the leading order term of Err2 at M̂ is ε(log ρ̂)e−1Err2
(1,1) where

Err2
(1,1) := D̂ĝbRic(0)(eĥ)

81The term f1 is independent of the choice of defining function ρ◦, whereas changing from ρ◦ to aρ◦
where 0 < a ∈ C∞(M̃) changes f0 to f0 + (log a|M◦)f1. This does not affect the memberships (10.43).
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for some ĥ ∈ A(−2,0)+(M̂ ;S2T̃ ∗M̃); and e−1Err2
(1,1) ∈ A

(2,2)+

phg (M̂ \ K̃◦;S2T̃ ∗M̃).

Proof. The second Bianchi identity for g̃1, i.e. δg̃1
Gg̃1

Err1 = 0, implies

0 = δgGg
(
f0 + (log ρ◦)f1

)
= δgGg

[
(log ε)f1 + (f0 − (log ρ̂)f1)

]
for all ε > 0, and therefore

δgGgf1 = 0, δgGg
(
f0 − (log ρ̂)f1

)
= 0.

We may thus apply Theorem 8.1, strengthened (following Remark 8.5) as in the proof of
Proposition 10.4 using the absence of scalar and vector type 1 components of the leading
order term of f1, to obtain

h1 ∈ A(1,0)+

phg (M◦;β
∗
◦S

2T ∗M), (DgRic− Λ)(h1) = f1.

We then note that

f ′0 := f0 − (log ρ̂)f1 + (DgRic− Λ)
(
(log ρ̂)h1

)
= f0 + [DgRic, log ρ̂]h1

∈ A(−1,1)+

phg (M◦;β
∗
◦S

2T ∗M)

has the same r−1 log r leading order term as f0, and still lies in δgGg. Since application of
Theorem 7.13 (with z = 1) to the r−1 terms of f ′0 does not produce additional logarithmic
terms to leading order, Theorem 8.1 produces

h′0 ∈ A
(1,1)+∪(2,3)+

phg (M◦;β
∗
◦S

2T ∗M), (DgRic− Λ)(h′0) = f ′0.

Altogether then, we have

(DgRic− Λ)
(
h′0 + (log ρ◦)h1

)
= (DgRic− Λ)

(
h′0 − (log ρ̂)h1

)
+ (log ε)(DgRic− Λ)(h1)

= f0 − (log ρ̂)f1 + (log ε)f1

= f0 + (log ρ◦)f1.

We then set

g̃2 := g̃1 + h, h := χ◦ε
2
(
h′0 + (log ρ◦)h1

)
∈ A(3,1)+∪(4,3)+,(2,1)+

phg (M̃ ;S2T̃ ∗M̃). (10.44)

Since g̃1 ≡ β̃∗g mod A(0,0)∪(2,0)+,(1,0)+

phg (M̃ \ K̃◦;S2T̃ ∗M̃) (from Proposition 10.14), this is a

((2, 0)+ ∪ (4, 3)+, (1, 0)+)-smooth total family, and thus

Err2 = Ric(g̃2)− Λg̃2 ∈ A(0,0)+∪(2,3)+,(1,0)+

phg (M̃ \ K̃◦;S2T̃ ∗M̃).

Being a correction of g̃1 by the tensor h which eliminates the leading order terms of Err1

at M◦ and which only contributes terms at M̂ with index set (1, 1)+ ∪ (2, 3)+ (cf. (10.44)),
we in fact have

Err2 ∈ A(1,1)+∪(2,3)+,(3,2)+

phg (M̃ \ K̃◦;S2T̃ ∗M̃).

The leading order logarithmic term of Err2 at M̂ is the sum of that of Err1 (described

in Proposition 10.14(3)) and an additional contribution which is D̂ĝbRic(0) applied to the
ε3 log ρ̂ leading order term of h (from h′0 in (10.44)). �
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10.4. Second correction at M̂ . In the notation of Proposition 10.17, we have

Err2 − χ̂ε(log ρ̂)e−1(Err2
(1,1)) ∈ A

(1,0)+∪(2,3)+,(3,2)+

phg (M̃ \ K̃◦;S2T̃ ∗M̃).

We shall thus first solve away this logarithmic term in §10.4.1 before dealing with the
remaining O(ε) error at M̂◦ in §10.4.2.

10.4.1. Solving away the logarithmic leading order term. We have the following analogue
of Corollary 10.6, which follows from the analogue of Lemma 10.5 for the error term

Err2
(1,1)|M̂c(t)

∈ D̂ĝbRic(0)(A(−2,0)+(M̂c(t))), t ∈ I, the key calculation being (10.20):

Lemma 10.18 (Parameters for elimination of Err2
(1,1)). We use the notation of Theo-

rem 9.6. There exist unique functions

ĉ2 ∈ C∞(I;R3),

{
a = 0 : ȧ2 = 0,

a 6= 0 : ȧ2 ∈ C∞(I; (Ra)⊥),

so that

〈Err2
(1,1)(t),−〉L2(X̂b)

= `b,Kerr(0, ȧ
2(t)) ∈ (K∗b,Kerr)

∗,

〈Err2
(1,1)(t),−〉L2(X̂b)

= `b,COM(ĉ2(t)) ∈ (K∗b,COM)∗.

Furthermore, the second Bianchi identity for g̃2 implies that

δ̂ĝbGĝb(0)
(
Err2

(1,1)(t)
)

= 0 for all t ∈ I.

Similarly to §10.2, the strategy is now roughly to modify g̃2 by pure gauge terms ε(log ε)hb,ĉ
and ε2(log ε)g′b(0, ȧ) for suitable functions ĉ, ȧ so as to generate ε3(log ε) corrections making
Err2

(1,1) orthogonal to the full cokernel (i.e. so that (9.32) holds for the modified Err2
(1,1)).

There are two main differences to §10.2: first, such modifications leave the M̂ -model un-
changed; second, the nonlinear terms of the Ricci curvature operator interact in a different
manner due to different powers of ε and log ε appearing here.

Calculations for the Kerr model. Consider functions ĉ ∈ C∞(I;R3), and ȧ ∈
C∞(I; (Ra)⊥) if a = 0 and ȧ ≡ 0 otherwise; we shall determine them later. Consider
then

Φ2,ĉ(t) : (ε, x̂) 7→
(
ε, x̂+ ε(log ε)ĉ(t)

)
.

Anticipating the need to produce Lorentz boosts and modulations of the angular momentum
vector at the order ε2(log ε), consider, near t = t0 ∈ I and with t̂ = t−t0

ε as in (10.21), the
symmetric 2-tensor ĝ2,b,ĉ,ȧ defined by

ĝ2,b,ĉ,ȧ :=
(

Φ∗2,ĉ(t)
(
ĝb + ε2(log ε)

(
h̆b,2ĉ′(t) + LΩ(ȧ(t))ĝb

)))
t∈I

≡ Φ∗2,ĉ(t0)

(
ĝb + ε2(log ε)

(
t̂hb,2ĉ′(t0) + h̆b,2ĉ′(t0) + LΩ(ȧ(t0))ĝb

)
+ ε3(log ε)

( t̂2
2
hb,2ĉ′′(t0) + t̂h̆b,2ĉ′′(t0) + t̂LΩ(ȧ′(t0))ĝb

))
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≡ ĝb + ε(log ε)Lĉ(t0)·∂x̂ ĝb + ε2(log ε)Lt̂ĉ′(t0)·∂x̂+(ĉ′(t0)·x̂)∂t̂+Ω(ȧ(t0))ĝb

+
1

2
ε2(log ε)2L2

ĉ(t0)·∂x̂ ĝb + ε3(log ε)
( t̂2

2
hb,2ĉ′′(t0) + t̂h̆b,2ĉ′′(t0) + t̂ĝ′b(0, ȧ

′(t0))
)

+ ε3(log ε)2Lĉ(t0)·∂x̂Lt̂ĉ′(t0)·∂x̂+(ĉ′(t0)·x̂)∂t̂+Ω(ȧ(t0))ĝb

+
1

6
ε3(log ε)3L3

ĉ(t0)·∂x̂ ĝb mod A(4,4)+

phg ;

(10.45)

here, we write A(4,4)+

phg = A(4,4)+

phg ([0, 1)ε; C∞(R4
t̂,x̂

;S2T ∗R4)), and we used Lemma 10.10.

Using Lemma 10.8, we then compute

Ric(ĝ2,b,ĉ,ȧ) ≡ ε3(log ε)
[
DĝbRic

( t̂2
2
hb,2ĉ′′(t0) + t̂h̆b,2ĉ′′(t0) + t̂ĝ′b(0, ȧ

′(t0))
)]

+ ε3(log ε)2
[
D2
ĝb

Ric
(
Lĉ(t0)·∂x̂ ĝb,Lt̂ĉ′(t0)·∂x̂+(ĉ′(t0)·x̂)∂t̂+Ω(ȧ(t0))ĝb

)
+DĝbRic

(
Lĉ(t0)·∂x̂Lt̂ĉ′(t0)·∂x̂+(ĉ′(t0)·x̂)∂t̂+Ω(ȧ(t0))ĝb

)]
mod A(4,4)+

phg .

(10.46a)

Writing V = ĉ(t0) · ∂x̂ and W = t̂ĉ′(t0) · ∂x̂ + (ĉ′(t0) · x̂)∂t̂ + Ω(ȧ(t0)), the identity (10.29)

implies that the coefficient of ε3(log ε)2 is 1
2 times

DĝbRic(LV LW ĝb − LWLV ĝb) = DĝbRic(L[V,W ]ĝb) = 0. (10.46b)

Thus, the Ricci tensor of ĝ2,b,ĉ,ȧ produces ε3(log ε) terms which we shall use below to elim-

inate the cokernel of D̂ĝbRic(0), cf. Theorem 9.6.

Lemma 10.19 (Further properties of ĝ2,b,ĉ,ȧ). We use the notation of Lemma 10.13. Sup-
pose first that a 6= 0.

(1) (Decay of coefficients.) The components of ĝ2,b,ĉ,ȧ(ε, t, x̂; dt̂,dx̂), which are smooth

functions on (0, 1)ε × It × R3
x̂, lift to elements of A(0,0)+,(0,0)∪(3,1)+

phg (M̃) (with index

sets referring to M̂ and M◦, in this order) which differ from the corresponding

components of ĝb by terms in A(1,1)+,(3,1)+

phg (M̃).

(2) (Total pullback.) Set

Φ2,ĉ,ȧ : (ε, t, x̂) 7→
(
ε, t− ε3(log ε)ĉ′(t) · x̂, e−ε2(log ε)Ω(ȧ(t))x̂− ε(log ε)ĉ(t)

)
.

Then Φ2,ĉ,ȧ lifts to a conormal diffeomorphism of M̃ with the property that the

components of (Φ2,ĉ,ȧ)
∗ĝ2,b,ĉ,ȧ − ĝb lie in A(3,2)+,(2,1)+

phg (M̃).

If a = 0, the same conclusions hold upon dropping all terms and subscripts involving ȧ.

Proof. The polyhomogeneity of the components of ĝ2,b,ĉ,ȧ follows from the smoothness of

the coefficients of ĝb. The index set of ĝ2,b,ĉ,ȧ at M̂ is (0, 0)+ since f(x̂ + ε(log ε)ĉ(t)) ∈
A(0,0)+

phg (M̃ \ M◦) when f is a smooth function on R3, as follows by Taylor expanding f

around x̂. Near (M◦)◦, we can use the coordinates ε, t, x = εx̂, so that Φ2,ĉ(t) : (ε, x) 7→
(ε, x+ ε2(log ε)ĉ(t)); we then write

ĝ2,b,ĉ,ȧ − ĝb =
(
Φ∗2,ĉ(t)ĝb − ĝb

)
+ ε2(log ε)Φ∗2,ĉ(t)

(
h̆b,2ĉ′(t) + LΩ(ȧ(t))ĝb

)
.
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Since the components of h̆b,2ĉ′(t) +LΩ(ȧ(t))ĝb lie in ρ◦C∞(M̃ \M̂), the second summand here
has index set (3, 1)+ at M◦. If in the first summand we replaced ĝb by ˆ

¯
g, it would vanish;

therefore, we may replace ĝb by ĝb−ˆ
¯
g, whose components lie in ρ◦C∞(M̃ \M̂), and thus the

pullback along Φ2,ĉ(t) (which equals the identity map at ε = 0 modulo a A(2,1)
phg correction)

lies in A(3,1)+

phg as well.

For the second part, the index set at M◦ is a consequence of the first part and the
fact that, in the coordinates ε, t, x near (M◦)◦, the map Φ2,ĉ,ȧ is the identity map plus

corrections of class A(2,1)+

phg . Near a fiber of M̂◦ and using t̂ = t−t0
ε , we have

Φ2,ĉ,ȧ(ε, t̂, x̂) ≡
(
ε, t̂− ε2(log ε)ĉ′(t0 + εt̂) · x̂, x̂− ε(log ε)ĉ(t0 + εt̂)− ε2(log ε)Ω(ȧ(t0 + εt̂)

)
modulo corrections of class A(4,2)+ ; thus, pullback along Φ2,ĉ,ȧ cancels all terms in (10.45)

except for the ε3(log ε) and ε3(log ε)2 terms. In fact, all terms 1
j!ε

j(log ε)jLjĉ(t0)·∂x̂ ĝb, j ∈ N,

are canceled in this manner, and hence the index set of Φ∗2,ĉ,ȧĝ2,b,ĉ,ȧ − ĝb at M̂ does not

contain (j, j), j ∈ N. �

Grafting into the total gluing spacetime; computation of the error term. In
the notation of Proposition 10.17, set

g̃′2,ĉ,ȧ := g̃2 + χ̂e−1(ĝ2,b,ĉ,ȧ − ĝb) ≡ g̃2 mod A(1,1)+,(3,1)+

phg (M̃ \ K̃◦;S2T̃ ∗M̃).

By the definition of g̃2 (and h) in Proposition 10.17, and recalling Proposition 10.14(1), we
have

eg̃′2,ĉ,ȧ(ε, t, x̂; dt̂,dx̂)

≡ ĝ2,b,ĉ,ȧ(ε, t, x̂; dt̂,dx̂) + ε2h(2)(t, x̂; dt̂,dx̂) + h mod A(3,0)+∪(4,3)+,(0,0)∪(1,0)+

phg

≡ ĝ2,b,ĉ,ȧ(ε, t, x̂; dt̂,dx̂) + ε2h(2)(t, x̂; dt̂,dx̂) mod A(3,1)+∪(4,3)+,(0,0)∪(1,0)+

phg

(10.47)

for some h(2) with82 e−1h(2) ∈ A
(−2,0)+

phg (M̂ \ K̃◦;S2T̃ ∗M̃). Combining these two facts and

using (10.46a)–(10.46b) shows that

Err′2,ĉ,ȧ := Ric(g̃′2,ĉ,ȧ)− Λg̃′2,ĉ,ȧ ∈ A
(1,1)+∪(2,3)+,(3,2)+

phg (M̃ \ K̃◦;S2T̃ ∗M̃). (10.48)

Furthermore, using the description (10.47) and taking into account the contribution from
the coupling of ε2h(2) with the ε(log ε) term ε(log ε)Lĉ(t0)·∂x̂ ĝb = ε(log ε)hb,2ĉ(t0) in (10.45),

the coefficient of the ε(log ε) leading order term of Err′2,ĉ,ȧ at M̂ is, at the fiber M̂c(t), given

by e−1 applied to

Err′2,ĉ,ȧ,(1,1) := Err2
(1,1) + D̂ĝbRic(0)

( t̂2
2
hb,2ĉ′′(t) + t̂h̆b,2ĉ′′(t) + t̂ĝ′b(0, ȧ

′(t))
)

− Λhb,2ĉ(t) +D2
ĝb

Ric(hb,2ĉ(t), h(2)(t))

∈ A(2,2)+

phg (X̂b;S
2 3scT ∗

X̂b
M̂b).

(10.49)

The membership here is a consequence of (10.48), and the term −Λhb,2ĉ(t) arises from
the ε(log ε)Lĉ(t0)·∂x̂ ĝb term of ĝ2,b,ĉ,ȧ in (10.45). We can simplify this expression using the
following identity:

82The index set can be sharpened to (−2, 0) ∪ (−1, 0)+, but we do not need this level of precision here.
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Lemma 10.20 (Lie derivative and linearized Ricci). Let g be a metric, h a symmetric
2-tensor, and V a vector field. Then

LV
(
DgRic(h)

)
= D2

gRic(LV g, h) +DgRic(LV h).

Proof. Writing etV for the time t flow of V , the left hand side of the claimed identity is

d

dt

∣∣∣
0

[
(etV )∗

( d

ds

∣∣∣
0
Ric(g + sh)

)]
=

d

dt

∣∣∣
0

d

ds

∣∣∣
0
Ric
(
(etV )∗g + s(etV )∗h

)
=

d

dt

∣∣∣
0

d

ds

∣∣∣
0

(
(etV )∗Ric(g) + sD(etV )∗gRic((etV )∗h)

)
=

d

dt

∣∣∣
0
D(etV )∗gRic(h+ tLV h)

= D2
gRic(LV g, h) +DgRic(LV h). �

Since ε2e(Err2) vanishes more than quadratically at M̂ , we have

DĝbRic(h(2)(t))− Λĝb = D̂ĝbRic(0)(h(2)(t))− Λĝb = 0

for all t ∈ I. Taking the Lie derivative of this along ĉ(t) · ∂x̂ (on each t-level set separately)
gives the identity

D2
ĝb

Ric(hb,2ĉ(t), h(2)(t))− Λhb,2ĉ(t) + D̂ĝbRic(0)
(
Lĉ(t)·∂x̂h(2)(t)

)
= 0. (10.50)

Therefore, we can rewrite (10.49) as

Err′2,ĉ,ȧ,(1,1) = Err2
(1,1) + D̂ĝbRic(0)

( t̂2
2
hb,2ĉ′′(t) + t̂h̆b,2ĉ′′(t) + t̂ĝ′b(0, ȧ

′(t))− Lĉ(t)·∂x̂h(2)(t)
)
.

(10.51)
For later use, we note that, by definition of h(2), the leading order term (r̂2e(h(2)))|∂M̂ is

equal to g(2) from Lemma 10.1; therefore, near |x̂|−1 = 0, the coefficients (in the frame

dt̂,dx̂) of h(2)(t) are quadratic polynomials in x̂ modulo A(−1,1)+

phg errors, and therefore

those of Lĉ(t)·∂x̂h(2)(t) are linear functions of x̂ modulo A(0,1)+

phg errors; since ẑµ dẑκ dẑλ ∈
ker D̂

¯
gRic(0) where ẑ = (t̂, x̂), this implies

D̂ĝbRic(0)
(
Lĉ(t)·∂x̂h(2)(t)

)
∈ A(2,1)+

phg (X̂b;S
2 3scT ∗

X̂b
M̂b), (10.52)

with smooth dependence on t ∈ I.

Eliminating the cokernel; conclusion. In the notation of Theorem 9.6, consider now
the map

`2,COM : C∞(I;R3) 3 ĉ 7→ 〈Err′2,ĉ,ȧ,(1,1),−〉L2(X̂b)
∈ C∞

(
I; (K∗b,COM)∗

)
;

in view of Theorem 9.6(3), this map is independent of the choice of ȧ, and by Lemma 10.18
it evaluates at t ∈ I to

`2,COM(ĉ)(t) = `b,COM(ĉ2(t)) + `b,COM(2ĉ′′(t)) + λ(t, ĉ(t)),

λ(t, ĉ) := −
〈
D̂ĝbRic(0)

(
Lĉ·∂x̂h(2)(t)

)
,−
〉
L2(X̂b)

∈ (K∗b,COM)∗.
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The functional λ(t, ĉ) is well-defined since by (10.52) the first factor has almost a full
order of decay more than necessary for integration against an element of K∗b,COM. Since

I × R3 3 (t, ĉ) 7→ λ(t, ĉ) defines an element of C∞(I; (R3)∗), the equation

`2,COM(ĉ) = 0

is a nondegenerate linear second order ODE for ĉ and thus has a solution

ĉ ∈ C∞(I;R3).

Next, when a 6= 0, we still need to find ȧ ∈ C∞(I; (Ra)⊥) so that also `2,Kerr(ȧ) = 0,
where we define

`2,Kerr : C∞(I; (Ra)⊥) 3 ȧ 7→ 〈Err′2,ĉ,ȧ,(1,1),−〉L2(X̂b)
∈ C∞

(
I; (K∗b,Kerr)

∗).
Using Theorem 9.6 and the expression (10.51), we find that

`2,Kerr(ȧ)(t) = `b,Kerr(0, ȧ
2(t)) + `b,Kerr(0, ȧ

′(t)) + µ(t),

µ(t) := −〈D̂ĝbRic(0)(Lĉ(t)·∂x̂h(2)(t)),−〉 ∈ (K∗b,Kerr)
∗.

Arguing as in (10.20) and the proof of Corollary 10.6, we deduce that one can write
µ(t) = `b,Kerr(0, q(t)) where q ∈ C∞(I; (Ra)⊥). Therefore, the equation `2,Kerr(ȧ) = 0 is
a nondegenerate linear first order ODE for ȧ which thus has a global solution

ȧ ∈ C∞(I; (Ra)⊥) (a 6= 0).

For these choices of ĉ, ȧ, the assumptions of Theorem 9.8 are satisfied for Err′2,ĉ,ȧ,(1,1)(t)

for all t ∈ I, and therefore there exists

h ∈ A(0,3)+

phg (M̂ \ K̃◦;S2T̃ ∗
M̂
M̃),

i.e. eh ∈ C∞(I;A(0,3)+

phg (X̂b;S
2 3scT ∗

X̂b
M̂b)), so that D̂ĝbRic(0)(eh(t)) = −Err′2,ĉ,ȧ,(1,1)(t) for

all t ∈ I. The metric

g̃2,ĉ,ȧ := g̃′2,ĉ,ȧ + ε3(log ρ̂)χ̂h,

which is a ((1, 1)+, (1, 0)+ ∪ (3, 3)+)-smooth total family, thus satisfies

Ric(g̃2,ĉ,ȧ)− Λg̃2,ĉ,ȧ ∈ A
(1,0)∪(2,3)+,(3,3)+

phg (M̃ \ K̃◦;S2T̃ ∗M̃).

As desired, this eliminates the ε(log ρ̂) leading order term of Err2 at M̂ from Proposi-
tion 10.17, at the expense of additional logarithmic factors at M◦. In a last step, we
re-center the small black hole by passing from g̃2,ĉ,ȧ to

g̃′2 := Φ∗2,ĉ,ȧg̃2,ĉ,ȧ = Φ∗2,ĉ,ȧ
(
χ̂e−1ĝ2,b,ĉ,ȧ + (g̃2 − χ̂e−1ĝb) + ε3(log ρ̂)χ̂h

)
.

By Lemma 10.19, noting that ε3(log ρ̂)χ̂h ∈ A(3,1),(3,3)+

phg (M̃ \ K̃◦;S2T̃ ∗M̃), and recall-

ing (10.47)–(10.48), we have proved the following result:

Proposition 10.21 (Second correction at M̂ : first step). There exists a total family g̃′2
which is ((3, 2)+, (1, 0)+ ∪ (3, 3)+)-smooth, equal to g̃0 at M̂ and M◦, and which satisfies

Err′2 := Ric(g̃′2)− Λg̃′2 ∈ A
(1,0)∪(2,3)+,(3,3)+

phg (M̃ \ K̃◦;S2T̃ ∗M̃); (10.53)

moreover, g̃′2 = g outside the domain of influence of a compact subset of U◦. Furthermore,

g̃′2 is equal to the Kerr metric ĝb along M̂ modulo O(ε2) in the sense of Proposition 10.14(1),
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and the leading order term h(2)(t) := ε−2(eg̃′2(t)−ĝb)|M̂(t) ∈ A
(−2,0)+

phg (X̂b;S
2 3scT ∗

X̂b
M̂b) (with

smooth dependence on t ∈ I) satisfies (10.52) for all ĉ.

10.4.2. Solving away the remaining term. We next solve away the leading order term of
Err′2 at M̂ , which is

Err′2,(1,0) := e
(
(ε−1Err′2)|M̂

)
∈ C∞

(
I;A(2,3)+

phg (X̂b;S
2 3scT ∗

X̂b
M̂b)

)
.

Unlike in previous arguments at M̂ , we no longer record any special properties of

〈Err′2,(1,0),−〉 ∈ C
∞(I; (K∗b,tot)

∗),
and thus need to allow for the full range of linearized Kerr metrics when eliminating the
cokernel.

As usual, we begin with a computation for the Kerr spacetime. Let ĉ ∈ C∞(I;R3) and

ḃ ∈ C∞(I;R × R3), and set Φ′2,ĉ(t) : (ε, x̂) 7→ (ε, x̂ + εĉ(t)). Fix t0 ∈ I and write t̂ = t−t0
ε .

Then the tensor

ĝ′
2,b,ĉ,ḃ

:=
(

(Φ′2,ĉ(t))
∗(ĝb + ε2

(
h̆b,2ĉ′(t) + ĝ′b(ḃ(t))

)))
t∈I

≡ (Φ′2,ĉ(t0))
∗
(
ĝb + ε2

(
t̂hb,2ĉ′(t0) + h̆b,2ĉ′(t0) + ĝ′b(ḃ(t0))

)
+ ε3

( t̂2
2
hb,2ĉ′′(t0) + t̂h̆b,2ĉ′′(t0) + t̂ĝ′b(ḃ

′(t0))
))

t∈I

≡ ĝb + εLĉ(t0)·∂x̂ ĝb + ε2
(1

2
L2
ĉ(t0)·∂x̂ ĝb + Lt̂ĉ′(t0)·∂x̂+(ĉ′(t0)·x̂)∂t̂

ĝb + ĝ′b(ḃ(t0))
)

+ ε3
( t̂2

2
hb,2ĉ′′(t0) + t̂h̆b,2ĉ′′(t0) + t̂ĝ′b(ḃ

′(t0))
)

+ ε3
(1

6
L3
ĉ(t0)·∂x̂ ĝb + Lĉ(t0)·∂x̂

(
t̂hb,2ĉ′(t0) + h̆b,2ĉ′(t0) + ĝ′b(ḃ(t0))

))
mod ε4C∞

satisfies

Ric(ĝ′
2,b,ĉ,ḃ

) ≡ ε3DĝbRic
( t̂2

2
hb,2ĉ′′(t0) + t̂h̆b,2ĉ′′(t0) + t̂ĝ′b(ḃ

′(t0))
)

+ ε3
[
D2
ĝb

Ric
(
Lĉ(t0)·∂x̂ ĝb,Lt̂ĉ′(t0)·∂x̂+(ĉ′(t0)·x̂)∂t̂

ĝb + ĝ′b(ḃ(t0))
)

+DĝbRic
(
Lĉ(t0)·∂x̂

(
Lt̂ĉ′(t0)·∂x̂+(ĉ′(t0)·x̂)∂t̂

ĝb + ĝ′b(ḃ(t0))
))]

mod ε4C∞.

Using the identity (10.29) as around (10.46b), the expression in square brackets is

D2
ĝb

Ric
(
Lĉ(t0)·∂x̂ ĝb, ĝ

′
b(ḃ(t0))

)
+DĝbRic

(
Lĉ(t0)·∂x̂ ĝ

′
b(ḃ(t0))

)
;

but by Lemma 10.20, this is further equal to Lĉ(t0)·∂x̂
[
DĝbRic

(
ĝ′b(ḃ(t0))

)]
and thus vanishes

in view of (3.43). Therefore,

Ric(ĝ′
2,b,ĉ,ḃ

) ≡ ε3
[
DĝbRic

( t̂2
2
hb,2ĉ′′(t0) + t̂h̆b,2ĉ′′(t0) + t̂ĝ′b(ḃ

′(t0))
)]

mod ε4C∞.

We now let

g̃′
2,ĉ,ḃ

:= g̃′2 + χ̂e−1(ĝ′
2,b,ĉ,ḃ

− ĝb).
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The second summand here lies in A(1,0),(3,0)
phg (M̃ \ K̃◦;S2T̃ ∗M̃), and we have

Ric(g̃′
2,ĉ,ḃ

)− Λg̃′
2,ĉ,ḃ
∈ A(1,0)∪(2,3)+,(3,3)+

phg (M̃ \ K̃◦;S2T̃ ∗M̃),

cf. (10.53), with leading order term ε times e−1 applied to

Err′
2,ĉ,ḃ

:= Err′2,(1,0) +DĝbRic
( t̂2

2
hb,2ĉ′′(t0) + t̂h̆b,2ĉ′′(t0) + t̂ĝ′b(ḃ

′(t0))− Lĉ(t)·∂x̂h(2)(t)
)

∈ C∞
(
I;A(2,3)+

phg (X̂b;S
2 3scT ∗

X̂b
M̂b)

)
,

(10.54)

as follows from the same computations as in (10.49)–(10.51). We also recall the member-
ship (10.52). By Theorem 9.6, the equation

〈Err′
2,ĉ,ḃ

,−〉L2(X̂b)
= 0 ∈ C∞

(
I; (K∗b,COM)∗

)
is a nondegenerate linear second order ODE for ĉ which thus also has a global solution
ĉ ∈ C∞(I;R3). With ĉ now fixed, the equation

〈Err′
2,ĉ,ḃ

,−〉L2(X̂b)
= 0 ∈ C∞

(
I; (K∗b,Kerr)

∗)
is a nondegenerate linear first order ODE for ḃ which thus has a global solution ḃ ∈ C∞(I;R×
R3). For these choices of ĉ, ḃ, we can now apply Theorem 9.8 and obtain

h ∈ A(0,4)+

phg (M̂ \ K̃◦;S2T̃ ∗
M̂
M̃)

so that

D̂ĝbRic(0)(eh(t)) = −Err′
2,ĉ,ḃ

(t) ∀ t ∈ I.

Finally, we set g̃2 = (Φ′2,ĉ)
∗(g̃′

2,ĉ,ḃ
+ ε3χ̂h) where the pullback by Φ′2,ĉ : (ε, t, x̂) 7→ (ε, t, x̂ −

εĉ(t)) applied to g̃′
2,ĉ,ḃ

is equal to ĝb along M̂ up to O(ε2) errors. In summary:

Proposition 10.22 (Second correction at M̂ : second step). There exists a ((3, 2)+, (1, 0)+∪
(3, 4)+)-smooth total family g̃2 which is equal to g̃0 at M̂ and M◦ and which satisfies83

Err2 := Ric(g̃2)− Λg̃2 ∈ A(2,3)+,(3,4)+×
phg (M̃ \ K̃◦;S2T̃ ∗M̃);

moreover, g̃2 = g outside the domain of influence of a compact subset of U◦. Furthermore,
g̃2 is equal to the Kerr metric ĝb along M̂ modulo O(ε2) in the sense of Proposition 10.14(1),

and the subleading term h(2)(t) := ε−2(eg̃2(t) − ĝb)|M̂(t) ∈ A
(−2,0)+

phg (X̂b;S
2 3scT ∗

X̂b
M̂b) satis-

fies (10.52) for all ĉ.

Remark 10.23 (Linearized Kerr contributions). The term h(2)(t) in Proposition 10.22 is not
pure gauge when g(2)(t) 6= 0, or equivalently when Riem(g) 6= 0 at c(t) ∈ C; this is why we

may as well admit correction terms ε2ĝ′b(ḃ(t)) in ĝ′
2,b,ĉ,ḃ

which are not pure gauge either. By

contrast, we carefully avoided O(ε2 log ε) metric perturbations which are not pure gauge
in §10.4.1.

83Recall the notation (2.4).
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10.5. Third correction at M◦. At this point, no special arguments are required at M◦
anymore. We thus record the following general result:

Proposition 10.24 (Correction at M◦). Let k ∈ N.84 Suppose g̃k−1 is a ((1, ∗), (1, ∗))-
smooth total family with g̃k−1 = g̃0 at M̂ ∪M◦. Suppose moreover that

Errk−1 := Ric(g̃k−1)− Λg̃k−1 ∈ A
(k−1,∗),(k,m)∪(k+1,∗)
phg (M̃ \ K̃◦;S2T̃ ∗M̃)

for some m ∈ N0, and supp Errk−1 ⊂ U where U is the domain of influence of a compact

subset of U◦. Then there exists h ∈ A(k+1,∗),(k,m)
phg (M̃ \K̃◦;S2T̃ ∗M̃) with supph∩M◦ ⊂ β∗◦U

so that for g̃k := g̃k−1 + h, we have

Errk := Ric(g̃k)− Λg̃k ∈ A(k−1,∗),(k+1,∗)
phg (M̃ \ K̃◦;S2T̃ ∗M̃).

In other words, we can solve away the error term Errk−1 to leading order at M◦. A careful
accounting of index sets, similarly to (but combinatorially more involved than) the proof
of Proposition 10.17, allows one to specify the index sets; we leave this to the interested
reader.

Proof of Proposition 10.24. There exist f0, . . . , fm ∈ A(−1,∗)
phg (M◦;β

∗
◦S

2T ∗M) so that the

index set of

Errk−1 − χ◦εk
m∑
j=0

(log ρ◦)
jfj

at M◦ is (k + 1, ∗). Writing ρ◦ = ε
ρ̂ , the second Bianchi identity for g̃k−1 implies

0 = δgGg

( m∑
j=0

(log ε− log ρ̂)jfj

)
=

m∑
q=0

(log ε)qδgGgf
′
q,

f ′q :=

m−q∑
j=0

(
j + q
q

)
(−1)j(log ρ̂)jfj+q ⊂ A(−1,∗)

phg (M◦;β
∗
◦S

2T ∗M).

Therefore δgGgf
′
q = 0 for all q = 0, . . . ,m. Theorem 8.1 produces

hq ∈ A(1,∗)
phg (M◦;β

∗
◦S

2T ∗M), (DgRic− Λ)hq = f ′q,

with supphq contained in the domain of influence of a compact subset of U◦. Therefore,

(DgRic− Λ)

( m∑
q=0

(log ε)qhq

)
=

m∑
q=0

(log ε)qf ′q =

m∑
j=0

(log ε− log ρ̂)jfj .

Thus, the conclusions of the Proposition hold for h = χ◦ε
k
∑m

q=0(log ε)qhq. �

For k = 3, this produces a ((3, ∗), (1, 0)+ ∪ (3, ∗))-smooth total family g̃3 with

Err3 := Ric(g̃3)− Λg̃3 ∈ A(2,∗),(4,∗)
phg (M̃ \ K̃◦;S2T̃ ∗M̃). (10.55)

Note that the correction g̃3 − g̃2 produced by Proposition 10.24 has index set (4, ∗) at M̂ ,

so in particular the description of the leading order correction to the Kerr metric at M̂ in
Proposition 10.22 remains valid for g̃3 as well.

84At the current stage, we apply this result with k = 3.
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10.6. Third correction at M̂ . Let m ∈ N0 be such that the index set of Err3 in (10.55)

at M̂ is (2,m) ∪ (3, ∗). Write the leading order part of Err3 at M̂ as
m∑
j=0

ε2(log ε)je−1fj , fj ∈ C∞
(
I;A(2,∗)

phg (X̂b;S
2 3scT ∗

X̂b
M̂b)

)
.

In order to solve this away, we need to make corrections to g̃3 by deformation tensors
of translations by amounts O(ε2(log ε)m); since such corrections are thus still larger (by

logarithmic factors) at M̂ than the ε2 deviation of the total family g̃3 from ĝb at M̂ , we
need to solve away this leading order part using a combination of a correction and a pullback
much as in §§10.2 and 10.4. (Only in later steps of the construction can we omit the pullback
part; see §10.7.)

Since the arguments are very similar to those in §10.4, we shall be brief. We begin by
solving away the term ε2(log ε)me−1fm. Setting

Φ3,ĉ(t) : (ε, x̂) 7→
(
ε, x̂+ ε2(log ε)mĉ(t)

)
where ĉ ∈ C∞(I;R3) is to be determined, we consider for ḃ ∈ C∞(I;R× R3) the tensor

ĝ3,ĉ,ḃ = ĝ3,ĉ,ḃ(ε, t, x̂; dt̂,dx̂)

defined on a t-level set by Φ∗3,ĉ(t)(ĝb + ε3(log ε)m(h̆b,2ĉ′(t) + ĝ′b(ḃ(t)))); thus, in the coordi-

nates (10.21) near t = t0 ∈ I, we have

ĝ3,ĉ,ḃ ≡ ĝb + ε2(log ε)mLĉ(t0)·∂x̂ ĝb + ε3(log ε)m
(
Lt̂ĉ′(t0)·∂x̂+(ĉ′(t0)·x̂)∂t̂

ĝb + ĝ′b(ḃ(t0))
)

+ ε4(log ε)m
( t̂2

2
hb,2ĉ′′(t0) + t̂h̆b,2ĉ′′(t0) + t̂ĝ′b(ḃ

′(t0))
)

+ ε4(log ε)2mL2
ĉ(t0)·∂x̂ ĝb

mod A(5,∗)
phg

(
[0, 1)ε; C∞(R4

t̂,x̂
;S2T ∗R4)

)
.

(The interaction of Lĉ(t0)·∂x̂ ĝb and Lt̂ĉ(t0)·∂x̂+(ĉ(t0)·x̂)∂t̂
ĝb+ ĝ

′
b(ḃ(t0)) is now of order ε5(log ε)2m

and thus negligible.) Therefore,

Ric(ĝ3,ĉ,ḃ) ≡ ε
4(log ε)mDĝbRic

( t̂2
2
hb,2ĉ′′(t0) + t̂h̆b,2ĉ′′(t0) + t̂ĝ′b(ḃ

′(t0))
)

mod A(5,∗)
phg .

For the tensor g̃3,ĉ,ḃ := g̃3 + χ̂e−1(ĝ3,ĉ,ḃ − ĝb), define the error term

Err3,ĉ,ḃ := Ric(g̃3,ĉ,ḃ)− Λg̃3,ĉ,ḃ ∈ A
(2,m)∪(3,∗),(4,∗)
phg (M̃ \ K̃◦;S2T̃ ∗M̃);

then the ε2(log ε)m coefficient of eErr3,ĉ,ḃ is at M̂c(t) given by

f3,ĉ,ḃ,m(t) = fm(t) +DĝbRic
( t̂2

2
hb,2ĉ′′(t) + t̂h̆b,2ĉ′′(t) + t̂ĝ′b(ḃ

′(t))− Lĉ(t)·∂x̂h(2)(t)
)

analogously to (10.54), where, as in Proposition 10.22, the subleading term h(2) = ε−2(eg̃3−
ĝb)|M̂(t) ∈ A

(−2,0)+

phg (X̂b;S
2 3scT ∗

X̂b
M̂b) satisfies (10.52) for all ĉ. Choosing ĉ and then ḃ by

solving nondegenerate linear second, resp. first order ODEs by means of Theorem 9.6, we
can arrange for this coefficient to satisfy the assumptions of Theorem 9.8 for all t ∈ I.

Therefore, we obtain hm ∈ A(0,∗)
phg (M̂ \ K̃◦;S2T̃ ∗

M̂
M̃) so that

D̂ĝbRic(0)(ehm(t)) = −f3,ĉ,ḃ,m(t), t ∈ I.
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The update to g̃3 is then

g̃3,m := Φ∗
3,ĉ,ḃ

(
g̃3,ĉ,ḃ + χ̂ε4(log ε)mhm

)
, Φ3,ĉ,ḃ(ε, t, x̂) =

(
ε, t, x̂+ ε2(log ε)mĉ(t)

)
.

The error term Err3,m := Ric(g̃3,m)−Λg̃3,m has index set (2,m− 1)∪ (3, ∗) at M̂ and (4, ∗)
at M◦; and eg̃3,m equals ĝb along M̂ modulo quadratic error terms.

One can continue in this fashion to eliminate the ε2(log ε)m−1 term of Err3,m, and so on;
after m+ 1 steps, one obtains:

Proposition 10.25 (Third correction at M̂). There exists a ((3, ∗), (1, 0)+∪ (3, ∗))-smooth

total family g̃3 which is equal to g̃0 at M̂ and M◦ and equal to g near X \ U◦, with

Err3 := Ric(g̃3)− Λg̃3 ∈ A(3,∗),(4,∗)
phg (M̃ \ K̃◦;S2T̃ ∗M̃)

with supp Err3 ∩M◦ ⊂ β∗◦U where U is the domain of influence of a compact subset of U◦,
and so that eg̃3 is equal to ĝb at M̂ modulo quadratically vanishing errors in the sense of
Proposition 10.14(1).

10.7. Completion of the construction. Proposition 10.24 produces a correction h ∈
A(5,∗),(4,∗)

phg (M̃ \ K̃◦;S2T̃ ∗M̃) to g̃3, with support in the domain of influence of a compact

subset of U◦, so that

Err4 := Ric(g̃4)− Λg̃4 ∈ A(3,∗),(5,∗)
phg (M̃ \ K̃◦;S2T̃ ∗M̃), g̃4 := g̃3 + h.

Note that g̃4 is a ((3, ∗), (1, 0)+ ∪ (3, ∗))-smooth total family. Solving away Err4 to leading

order at M̂ now relies on the following result:

Proposition 10.26 (Correction at M̂). Let k ≥ 4. Suppose g̃k is a ((3, ∗), (1, 0)+∪ (3, ∗))-
smooth total family so that eg̃k is equal to ĝb at M̂ modulo quadratically vanishing errors
in the sense of Proposition 10.14(1). Suppose that

Errk = Ric(g̃k)− Λg̃k ∈ A(k−1,m)∪(k,∗),(k+1,∗)
phg (M̃ \ K̃◦;S2T̃ ∗M̃).

Then there exists h ∈ A(k−1,m),(k+1,∗)
phg (M̃ \ K̃◦;S2T̃ ∗M̃) so that for g̃k := g̃k + h, we have

Errk := Ric(g̃k)− Λg̃k ∈ A
(k,∗),(k+1,∗)
phg (M̃ \ K̃◦;S2T̃ ∗M̃).

In particular, eg̃k is equal to ĝb at M̂ modulo quadratically vanishing errors; and we have
supp Errk ∩M◦ ⊂ β∗◦U where U is the domain of influence of a compact subset of U◦.

Proof. We shall solve away the leading order term of Errk at M̂ , which is

εk−1(log ε)me−1f, f ∈ C∞
(
I;A(2,∗)

phg (X̂b;S
2 3scT ∗

X̂b
M̂b)

)
.

Let ĉ ∈ C∞(I;R3) and ḃ ∈ C∞(I;R × R3); we will determine these functions momentarily.
Consider Φĉ(t) : (ε, x̂) 7→ (ε, x̂+ εk−1(log ε)mĉ(t)) and the tensor

gĉ,ḃ =
(

Φ∗ĉ(t)
(
ĝb + εk(log ε)m

(
h̆b,ĉ′(t) + ĝ′b(ḃ(t))

)))
t∈I .

Taylor expanding around t = t0 ∈ I and using the coordinates ε, t̂ = t−t0
ε , x̂, this is

ĝĉ,ḃ ≡ ĝb + εk−1(log ε)mhb,2ĉ(t0) + εk(log ε)m
(
Lt̂ĉ′(t0)·∂x̂+(ĉ′(t0)·x̂)∂t̂

ĝb + ĝ′b(ḃ(t0))
)
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+ εk+1(log ε)m
( t̂2

2
hb,2ĉ′′(t0) + t̂h̆b,2ĉ′′(t0) + t̂ĝ′b(ḃ

′(t0))
)

mod A(k+2,∗)
phg

(
[0, 1)ε; C∞(R4

t̂,x̂
;S2T ∗R4)

)
,

and therefore we have

Ric(ĝĉ,ḃ) ≡ ε
k+1(log ε)mD̂ĝbRic(0)

( t̂2
2
hb,2ĉ′′(t0) + t̂h̆b,2ĉ′′(t0) + t̂ĝ′b(ḃ

′(t0))
)

mod A(k+2,∗)
phg .

We then consider
g̃ĉ,ḃ := g̃k + χ̂e−1(ĝĉ,ḃ − ĝb).

Since eg̃k ≡ ĝb + ε2h(2) mod A(3,∗)
phg at M̂◦, we compute, as in (10.54) and earlier in (10.49)–

(10.51), the leading order term of Ric(g̃ĉ,ḃ)−Λg̃ĉ,ḃ at M̂ to be εk−1(log ε)m times e−1 applied
to

Errĉ,ḃ(t) := f(t) +DĝbRic
( t̂2

2
hb,2ĉ′′(t) + t̂h̆b,2ĉ′′(t) + t̂ĝ′b(ḃ

′(t))− Lĉ(t)·∂x̂h(2)(t)
)
,

Errĉ,ḃ ∈ C
∞(I;A(2,∗)

phg (X̂b;S
2 3scT ∗

X̂b
M̂b)

)
.

We then solve 〈Errĉ,ḃ,−〉L2(X̂b)
= 0 ∈ C∞(I; (K∗b,COM)∗), which is a nondegenerate linear

second order ODE for ĉ by Theorem 9.6; and then we take ḃ to be a solution of the
nondegenerate first order ODE 〈Errĉ,ḃ,−〉L2(X̂b)

= 0 ∈ C∞(I; (K∗b,Kerr)
∗).

For these choices of ĉ, ḃ, we can then apply Theorem 9.8 to find hm ∈ A(0,∗)
phg (M◦ \

K̃◦;S2T̃ ∗
M̂
M̃) with D̂ĝbRic(0)(ehm(t)) = −Errĉ,ḃ(t) for all t ∈ I. We then set

g̃k,m := g̃ĉ,ḃ + χ̂εk+1(log ε)mhm;

this is a ((3, ∗), (1, 0)+ ∪ (3, ∗))-smooth total family with

Ric(g̃k,m)− Λg̃k,m ∈ A
(k−1,m−1)∪(k,∗),(k+1,∗)
phg (M̃ \ K̃◦;S2T̃ ∗M̃).

Thus, we have removed the O(εk−1(log ε)m) leading order term of Errk using a correction

χ̂εk+1(log ε)mhm with index sets (k−1,m)∪(k+1, ∗) at M̂ and (k+1, ∗) at M◦. Continuing
in this fashion, we can successively remove all O(εk−1(log ε)j) terms for j = k − 1, . . . , 0.
This finishes the proof. �

We are now ready to conclude the first part of the construction:

Theorem 10.27 (Formal solution at ε = 0). In the notation of Theorem 5.4, there exists

a ((3, ∗), (1, 0)+ ∪ (3, ∗))-smooth total family g̃∞ over M̃ \ K̃◦ with respect to g with the
following properties:

(1) in the frame dt̂,dx̂ related to the fixed choice Fermi normal coordinates,85 the M̂p-
model of ĝ is equal to the Kerr metric ĝm,a for all p ∈ C;

(2) the tensor eg̃∞ (defined near M̂) is equal to the Kerr metric ĝb at M̂ modulo quadrat-
ically vanishing errors in the sense of Theorem 5.4 (or as in Proposition 10.14(1));

(3) we have

Err∞ := Ric(g̃∞)− Λg̃∞ ∈ Ċ∞(M̃ \ K̃◦;S2T̃ ∗M̃); (10.56)

85See also point (8) in §5.
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(4) g̃∞ = g outside the domain of influence U of a compact subset of U◦ (and in
particular supp Err∞ ∩M◦ ⊂ U).

Proof. Using Proposition 10.26 with k = 4, we correct the ((3, ∗), (1, 0)+ ∪ (3, ∗))-smooth

total family g̃4 using h4 ∈ A(3,∗),(5,∗)
phg (M̃ \ K̃◦;S2T̃ ∗M̃) to g̃4 = g̃4 + h4, which satisfies

Err4 := Ric(g̃4)− Λg̃4 ∈ A(4,∗),(5,∗)
phg (M̃ \ K̃◦;S2T̃ ∗M̃).

Proposition 10.24, with k = 5, then produces h5 ∈ A(6,∗),(5,∗)
phg (M̃ \ K̃◦;S2T̃ ∗M̃) so that

g̃5 := g̃4 + h5 satisfies

Err5 := Ric(g̃5)− Λg̃5 ∈ A(4,∗),(6,∗)
phg (M̃ \ K̃◦;S2T̃ ∗M).

Continuing in this fashion, we obtain sequences hk ∈ A
(k−1,∗),(k+1,∗)
phg (M̃ \ K̃◦;S2T̃ ∗M̃) and

hk+1 ∈ A(k+2,∗),(k+1,∗)
phg (M̃ \ K̃◦;S2T̃ ∗M̃) so that for g̃k = g̃k + hk and g̃k+1 = g̃k + hk+1 we

have

Errk := Ric(g̃k)− Λg̃k ∈ A
(k,∗),(k+1,∗)
phg ,

Errk+1 := Ric(g̃k+1)− Λg̃k+1 ∈ A(k−1,∗),(k+1,∗)
phg .

Moreover, the supports of the correction terms hk, h
k+1, and thus also of the error terms

Errk, Errk+1, are contained in the domain of influence of a compact subset of U◦. More
precisely, in the k-th step of the construction we can ensure that supphk and supphk+1

are contained in the domain of influence of a compact subset of U◦ whose distance (with
respect to any fixed Riemannian metric on X) to ∂U◦ is at least δ + δ2−k for some fixed

small δ > 0; for hk this is clear since we may cut off hk to any neighborhood of M̂ (which is,
indeed, how hk is constructed), while for hk+1 this follows from the proof of Theorem 8.1,
specifically Proposition 8.7 which one simply applies to a δ-shrinking of U◦, for a fixed
small δ > 0, throughout the entire construction in this section. Define then g̃∞ to be an
asymptotic sum

g̃∞ ∼ g̃4 +

∞∑
k=4

(hk + hk+1),

in the sense that the difference of g̃∞ and the truncation of the series at k = N (which

gives g̃N ) is polyhomogeneous on M̃ with index sets (N, ∗) and (N + 2, ∗) at M̂ and
M◦, respectively. In view of the support properties of g̃4, hk, h

k+1, we can arrange that
g̃∞ = g̃4 = g outside the domain of influence of a compact subset of U◦, as desired. Since
g̃∞ differs from g̃k by error terms which have increasing orders of vanishing at M̂ and M◦
as k →∞, the membership (10.56) follows. �

Remark 10.28 (Construction on a slightly larger manifold). While in the notation of Def-

inition 3.25, the above construction takes place outside of [0, 1)ε × It × K̂δ
m,a where δ = 0,

any other choice of δ ∈ (−
√
m2 − a2,

√
m2 − a2) works just as well. Thus, if we write

K̃δ = {(ε, t, x) : |εx| ≤ m− δ},

then Theorem 10.27 remains valid if one replaces K̃ by K̃δ. By taking δ > 0, we can thus

construct a formal solution g̃∞ on the larger manifold M̃ \ (K̃δ)◦.
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11. Formal solution of the initial value problem

We continue using the notation from §5. In this section, the focus is on the hypersurface
X ⊂ M , which intersects the curve C ⊂ M orthogonally at the point p. We now complete
the proof of Theorem 5.4 by adding to the total family g̃∞ from Theorem 10.27 a further

correction, supported near the total gluing space X̃ ⊂ M̃ (see point (10) in §5), which

vanishes to infinite order at M̂ ∪M◦. For technical reasons, we start with g̃∞ defined on a

larger manifold M̃ \ (K̃δ)◦, δ ∈ (0,
√
m2 − |a|2), as in Remark 10.28.86

Theorem 11.1 (Formal solution at X̃). Let Ê , E ⊂ C × N0 be two nonlinearly closed

index sets with Re Ê ,Re E > 0. Suppose g̃∞ is a (Ê , E)-smooth total family with respect

to g over M̃ \ (K̃δ)◦ whose M̂ -model is ĝ, i.e. the M̂p-model is a fixed subextremal Kerr
metric ĝm,a for all p ∈ C (as in point (8) in §5). Suppose that g̃∞ = g near X \ U◦, and

Ric(g̃∞)−Λg̃∞ ∈ Ċ∞(M̃ \ K̃◦;S2T̃ ∗M̃).87 Then there exists h̃ ∈ Ċ∞(M̃ \ K̃◦;S2T̃ ∗M̃) with

support contained in any fixed open neighborhood of M̂p∪β∗◦U◦, so that for the (Ê , E)-smooth
total family

g̃ := g̃∞ + h̃

over M̃ \ K̃◦, the error Ric(g̃)− Λg̃ vanishes to infinite order at M̂ ∪M◦ ∪ X̃.

The infinite order vanishing of Ric(g̃∞ + h̃) − Λ(g̃∞ + h̃) at M̂ ∪M◦ is automatic for

h̃ ∈ Ċ∞(M̃ \ K̃◦;S2T̃ ∗M̃). Furthermore, the desired conclusion depends only on h̃ in a

neighborhood of X̃ ⊂ M̃ , and indeed only on the jet of h̃ at X̃; therefore, the support

property of h̃ can be arranged via multiplication with a smooth cutoff which equals 1 near

X̃. The task is thus to construct h̃ in Taylor series at X̃.

We shall work in a (3 + 1)-decomposition near X̃ (see §11.1), and construct g̃ with the
additional requirement (which amounts to fixing a gauge) that the lapse and shift of g̃ be
equal to those of g̃∞. The first step of the construction is to arrange for the constraint

equations to hold at X̃ (Proposition 11.5); then we solve for the full Taylor series of h̃ at

X̃ order by order (Proposition 11.6). This gives Theorem 11.1.

11.1. Foliations by spacelike hypersurfaces. To fix notation and conventions and to
illustrate the Taylor series construction, we first consider in §11.1.1 (n+ 1)-decompositions

on general spacetimes. In §11.1.2, we set up the construction on X̃ which is then carried
out in §11.2.

11.1.1. (n + 1)-decomposition on a general manifold. We first recall the (n + 1)-decom-
position near a spacelike hypersurface X inside a smooth (n + 1)-dimensional Lorentzian
manifold (M, g), following [CB09, §§VI.2–VI.3] (which uses different sign conventions).
Thus, we identify an open neighborhood of X ⊂M with a neighborhood

O ⊂ R×X
of {0}×X, whereX is identified with {0}×X. This induces splittings TOM = π∗1TR⊕π∗2TX
and T ∗OM = π∗1T

∗R ⊕ π∗2T ∗X of the tangent and cotangent bundles, where π1 : O → R,

86Following Notation 3.17, all tensors are defined only in some open neighborhood of M̂ ∪M◦. Recall

that g̃∞ is a Lorentzian signature section of S2T̃ ∗M̃ in some such open neighborhood by Corollary 3.21(1).
87For Ê = (3, ∗) and E = (1, 0)+ ∪ (3, ∗), Theorem 10.27 produces such a g̃∞.
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π2 : O → X are the projection maps which we henceforth drop from the notation. We
denote the coordinate in the first factor of R×X by t, and assume that dt is past timelike,
so in particular all t-level sets Xt are spacelike. The future unit normals to the Xt give the
vector field

ν := − dt]

(−g−1(dt,dt))1/2
.

The lapse 0 < N ∈ C∞(O) and the shift β ∈ C∞(O;TX) are uniquely determined by

ν = N−1(∂t − β), N :=
1

dt(ν)
=
(
−g−1(dt,dt)

)−1/2
, β := Nν − ∂t. (11.1)

Defining the vector field

e0 := ∂t − β ∈ C∞(O;TOM), g(e0, e0) = −N2, (11.2)

we then have an orthogonal splitting

T(t,x)M = Re0 ⊕ TxX, (t, x) ∈ O.

which induces an orthogonal splitting

T ∗(t,x)M = Rdt⊕B(T ∗xX), B : ξ 7→ ξ + ξ(β) dt,

and correspondingly

S2T(t,x)M = Re2
0 ⊕

(
2e0 ⊗s TxX

)
⊕ S2TxX,

S2T ∗(t,x)M = Rdt2 ⊕
(
2dt⊗s B(T ∗xX)

)
⊕B(S2T ∗xX),

(11.3)

where we write B also for the induced map on S2T ∗xX. In view of e0 ⊥ TxX and dt ⊥
B(T ∗xX), we can thus write the metric g and dual metric g−1 as88

g =
(
−N2, 0, B(ḡ)

)
, g−1 =

(
−N−2, 0, ḡ−1

)
, ḡ ∈ C∞(O;S2T ∗X),

where ḡ is positive definite, and ḡ−1 ∈ C∞(O;S2TX) is its dual. The first and second
fundamental form of the t-level sets inside O are89

γ = ḡ, k(V,W ) := g(∇V ν,W ) (V,W ∈ TX).

Let us write ∇̄ for the Levi-Civita connection of ḡ on each level set of t inside O, and Ric
and R̄ for the Ricci and scalar curvature of ḡ on the t-level sets, respectively.

Lemma 11.2 (Levi-Civita connection). For V,W ∈ C∞(O;TX), we have

∇e0e0 = N−1e0(N)e0 +N∇̄N, ∇e0W = N−1W (N)e0 +Nk(W, ·) + [e0,W ],

∇V e0 = N−1V (N)e0 +Nk(V, ·), ∇VW = N−1k(V,W )e0 + ∇̄VW.

Furthermore, k = 1
2N
−1Le0 ḡ.

Proof. We have

[e0, V ] = [∂t, V ]− [β, V ] ∈ C∞(O;TX), (11.4)

88In local coordinates x1, . . . , xn on X, this means g = −N2dt2 + ḡij(dx
i + βi dt)(dxj + βj dt) and

g−1 = −N−2e2
0 + ḡij∂xi ⊗s ∂xj .

89The sign convention for k here is consistent with the one used in §4.1, but it is the opposite of [CB09].
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so [e0, V ] ⊥ e0. Writing 〈·, ·〉 = g(·, ·) (which on vector fields tangent to X is equal to
ḡ(·, ·)), we can then use (11.2), the orthogonality e0 ⊥ V,W , and the torsion-free property
∇e0V −∇V e0 = [e0, V ] to get

〈∇e0e0, e0〉 =
1

2
e0〈e0, e0〉 = −Ne0(N),

〈∇e0e0, V 〉 = −〈e0,∇e0V 〉 = −〈e0,∇V e0〉 = −1

2
V 〈e0, e0〉 = NV (N);

since V (N) = 〈∇̄N,V 〉, this gives the stated expression for ∇e0e0. Similarly, we have
〈∇e0W, e0〉 = 1

2W 〈e0, e0〉 = −NW (N) and

〈∇e0W,V 〉 = 〈∇W e0, V 〉+ 〈[e0,W ], V 〉
= 〈∇W (Nν), V 〉+ 〈[e0,W ], V 〉
= Nk(W,V ) + 〈[e0,W ], V 〉,

which gives the stated expression for ∇e0W . The expression for ∇V e0 is obtained from this
using ∇V e0 = ∇e0V + [V, e0]. For ∇VW , we have ∇VW = ∇̄VW + k(V,W )ν.

Finally, the stated expression for k arises from (11.4) and

2Nk(V,W ) = g(∇V e0,W ) + g(V,∇W e0)

= g(∇e0V,W ) + g(V,∇e0W )− g([e0, V ],W )− g(V, [e0,W ])

= e0(g(V,W ))− g([e0, V ],W )− g(V, [e0,W ])

= e0(ḡ(V,W ))− ḡ([e0, V ],W )− ḡ(V, [e0,W ])

= (Le0 ḡ)(V,W ). �

Corollary 11.3 (Curvature). In local coordinates x1, . . . , xn on X, the Ricci tensor Ric =
Ric(g) of g satisfies

Ric00 = −N∆̄N −N trḡ(Le0k) +N2|k|2ḡ,
Ric0i = −N(δḡk + d trḡ k)i,

Ricmi = N−1(Le0k)mi + Ricmi + (trḡ k)kmi − 2kiqkm
q −N−1(∇̄2N)mi.

Here ∆̄N = − trḡ(∇̄2N), and the index ‘0’ stands for e0. The scalar curvature is

Rg = R̄g + 2N−1 trḡ(Le0k) + (trḡ k)2 − 3|k|2ḡ + 2N−1∆̄N.

Proof. Using abstract indices i, j, l,m = 1, . . . , n for local coordinates on X, we have

∇∂i∇∂j∂l = ∇∂i
(
∇̄∂j∂l +N−1kjle0

)
= ∇̄∂i∇̄∂j∂l +

(
N−1k(∂i, ∇̄∂j∂l) + ∂i(N

−1kjl)
)
e0

+N−1kjl
(
N−1(∂iN)e0 +Nk(∂i, ·)

)
= ∇̄∂i∇̄∂j∂l + kjlk(∂i, ·)

+N−1
(
(∇̄ik)(∂j , ∂l) + k(∂i, ∇̄∂j∂l) + k(∂j , ∇̄∂i∂l) + k(∇̄∂i∂j , ∂`)

)
e0,

and therefore

[∇∂i ,∇∂j ]∂l = [∇̄∂i , ∇̄∂j ]∂l +N−1
(
(∇̄ik)jl − (∇̄jk)il

)
e0 + kjlk(∂i, ·)− kilk(∂j , ·).

This gives

Rmlij = 〈[∇∂i ,∇∂j ]∂l, ∂m〉 = R̄mlij + kimkjl − kilkjm,
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R0lij = 〈[∇∂i ,∇∂j ]∂l, e0〉 = N
(
(∇̄jk)il − (∇̄ik)jl

)
.

Lastly,

R0l0j =
〈
[∇e0 ,∇∂j ]∂l −∇[e0,∂j ]∂l, e0

〉
=
〈
∇e0

(
∇̄∂j∂l +N−1kjle0

)
−∇∂j

(
N−1(∂lN)e0 +Nk(∂l, ·) + [e0, ∂l]

)
−∇[e0,∂j ]∂l, e0

〉
= −N(∇̄∂j∂l)(N)−N2e0(N−1kjl)− kjle0(N) +N2∂j

(
N−1(∂lN)

)
+ (∂lN)(∂jN)

+N2k(∂j , k(∂l, ·)) +Nk(∂j , [e0, ∂l]) +Nk([e0, ∂j ], ∂l)

= N(∇̄2N)jl −N(Le0k)jl +N2kjqkl
q.

This gives the stated expressions for Ric00 = ḡljR0l0j , Ric0i = ḡljR0lij , and

Ricmi = ḡljRmlij −N−2Rm0i0 = ḡljRmlij −N−2R0m0i.

The scalar curvature can now be computed from Rg = ḡmiRicmi −N−2Ric00. �

For the Einstein tensor Ein(g) = Ric(g)− 1
2Rgg of g, we recover the constraints

(Ein(g) + Λg)(ν, ν) = N−2
(

Ric00 +
1

2
RgN

2
)
− Λ =

1

2

(
R̄− |k|2ḡ + (trḡ k)2 − 2Λ

)
,

(Ein(g) + Λg)(ν, ∂j) = N−1Ric0j = −(δḡk + d trḡ k)j ,

as in §4.1.

By Lemma 11.2, k is essentially the first e0-derivative of ḡ, and therefore Corollary 11.3
shows that Ricmi−Λḡmi = 0 determines the second e0-derivative of ḡ. We shall thus use the
spatial part (Ric(g)− Λg)mi = 0 to construct ḡ in Taylor series at t = 0. This is sufficient
to solve the full Einstein vacuum equations, provided the constraints are satisfied at t = 0.

Lemma 11.4 (Solution in Taylor series). Let n ≥ 3. Suppose the constraint equations
(Ein(g)+Λg)0µ = 0, µ = 0, . . . , n, hold for g at t = 0. (The index 0 refers to e0, and indices

between 1 and n refer to local coordinates on X.) Suppose moreover that (Ric(g)− 2Λ
n−1g)ij

vanishes to infinite order at t = 0 for all spatial indices 1 ≤ i, j ≤ n. Then Ein(g) + Λg
(and thus also Ric(g)− 2Λ

n−1g) vanishes to infinite order at t = 0.

Proof. This is a Taylor series version of [CB09, Chapter VI, Theorem 4.1]. We consider the
tensor E := Ein(g) + Λg; so E0µ = 0 at t = 0 by assumption. Let us write ‘≡’ for equality
in Taylor series at t = 0. Then

Rg ≡ ḡmi ·
2Λ

n− 1
ḡmi −N−2Ric00 =

2Λn

n− 1
−N−2Ric00

and

E00 = Ric00 + Λg00 −
1

2
Rgg00

≡ Ric00 −N2Λ +
N2

2

( 2Λn

n− 1
−N−2Ric00

)
=

1

2
Ric00 +

N2Λ

n− 1
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imply N−2Ric00 = 2N−2E00 − 2Λ
n−1 , so Rg ≡ 2(n+1)

n−1 Λ− 2N−2E00, and therefore

Eij = (Ric(g) + Λg)ij −
1

2
Rg ḡij ≡

( 2Λ

n− 1
+ Λ− Λ(n+ 1)

n− 1

)
ḡij +N−2E00ḡij = N−2E00ḡij .

(11.5)
Therefore, we also have Eij = 0 at t = 0.

Next, the second Bianchi identity δgE = 0 gives

0 = (δgE)(e0) = N−2(∇e0E)(e0, e0)− ḡjk(∇∂jE)(e0, ∂k),

so e0(E00) can be written in terms of Eµν and their spatial derivatives at t = 0, and therefore
e0(E00) = 0 at t = 0. Similarly,

0 = (δgE)(∂i) = N−2(∇e0E)(∂i, e0)− ḡjk(∇∂jE)(∂i, ∂k)

allows one to express e0(E0i) in terms of Eµν and their spatial derivatives at t = 0, so
e0(E0i) = 0 at t = 0. Differentiating (11.5) along e0, we thus obtain e0(Eij) = 0 at t = 0.

Differentiating the second Bianchi identity along e0 at t = 0 then implies e2
0(E0µ) = 0 at

t = 0, and then the second derivative of (11.5) along e0 gives e2
0(Eij) = 0. Continuing in

this fashion, we deduce that all derivatives of Eµν at t = 0 vanish, as claimed. �

We end this section by explaining the procedure for constructing a formal solution of
the Einstein vacuum equations at Σ = t−1(0) ∼= X. Suppose that g satisfies the constraint
equations at Σ. We shall leave the initial data γ = ḡ and k = 1

2N
−1Le0 ḡ unchanged at Σ.

Let h̄2 ∈ C∞(O;S2T ∗X) and consider

g2 := g + t2Bh̄2;

then in the splitting (11.3) we have g2 = (−N2, 0, B(ḡ+ t2h̄2)), and thus the lapse and shift
of g2 are equal to those of g. By Lemma 11.2, the second fundamental form k2 of Xt with
respect to g2 is

k2 =
1

2
N−1Le0

(
ḡ + t2h̄2

)
= k + tN−1h̄2 +

t2

2
N−1Le0 h̄2,

and therefore Le0k2 = Le0k +N−1h̄2 at Σ. By Corollary 11.3, the equation(
Ric(g2)mi −

2Λ

n− 1
(g2)mi

)∣∣∣
Σ

= 0

gives an algebraic expression for h̄2|Σ in terms of k|Σ and ḡ|Σ. With h̄2|Σ thus fixed and
h̄2 being any smooth extension, one can then determine h̄3|Σ so that for g3 = g2 + t3Bh̄3,
the spatial coefficients Ric(g3)mi − 2Λ

n−1(g3)mi vanish not just to first, but to second order

at t = 0: this uses the fact, again from Corollary 11.3, that the equation (e0(Ric(g3)mi −
2Λ
n−1(g3)mi))|Σ = 0 produces an algebraic expression for h̄3. Proceeding in this manner,

one can construct a full Taylor expansion g′ ∼ g +
∑

j≥2 t
jBh̄j which satisfies Ric(g′)mi −

2Λ
n−1g

′
mi ≡ 0 (equality in Taylor series at t = 0), and thus Ein(g′) + Λg′ ≡ 0 at Σ by

Lemma 11.4.
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11.1.2. (3+1)-decomposition near X̃. Returning to the setup of Theorem 11.1, fix a smooth
function t ∈ C∞(M) so that dt is past timelike on X, and fix a smooth vector field V ∈
C∞(M ;TM) near X with dt(V ) = 1 which at C ⊂ M is tangent to C. The flow of V
defines a diffeomorphism Ψ from an open neighborhood O ⊂ R×X of {0}×X to an open
neighborhood Ψ(O) ⊂ M of X ⊂ M ; it has the property that Ψ(0, x) = x for x ∈ X, and
Ψ(t, p) ∈ C for all t with (t, p) ∈ O (where {p} = X ∩ C). Write

Xt := Ψ
(
O ∩ ({t} ×X)

)
for the (images of the) level sets of t; upon shrinking O if necessary, we may assume
that they are spacelike hypersurfaces in (M, g). Via the identification O ∼= Ψ(O) (which
identifies Xt with open submanifolds of X containing p), the map Ψ induces an embedding
TXtX = TXt ↪→ TXtM .

Consider now the map Ψ̃′ : [0, 1) × O → M̃ ′, (ε, t, x) 7→ (ε,Ψ(t, x)), which is a diffeo-

morphism onto [0, 1) × Ψ(O). Since Ψ̃′({0} × (O ∩ (R × {p}))) ⊂ C, the map Ψ̃′ lifts to a
diffeomorphism

Ψ̃: Õ :=
[
[0, 1)×O; {0} × (O ∩ (R× {p}))

]
→ β̃∗

(
[0, 1)×Ψ(O)

)
⊂ M̃ = [M̃ ′; C].

This maps (a neighborhood of) the lift of [0, 1)× (O∩ ({t}×X)) to (a neighborhood of) the

lift X̃t of [0, 1)×Xt to M̃ . Moreover, we have X̃0 = X̃. We henceforth identify Õ ∼= Ψ̃(Õ);

thus, we write points in the open neighborhood Õ ⊂ M̃ of X̃ as (t, x̃) ∈ R × X̃. We have

subbundles T̃
X̃t
X̃ ∼= T̃ X̃t ↪→ T̃

X̃t
M̃ of corank 1, and we write

T̃
Õ
X̃ :=

⊔
t

{t} × T̃ X̃t ⊂ T̃ÕM̃.

We now define lapse Ñ and shift β̃ for the section g̃∞ of S2T̃ ∗M̃ over M̃ \ (K̃δ)◦, which

has Lorentzian signature in a neighborhood of M̂ ∪ M̃ over which we exclusively work

(even though we do not make this explicit in the notation), relative to the foliation of Õ by

{t}×X̃t.
90 Note that (upon shrinking O and thus Õ further, if necessary) dt is past timelike

by Corollary 3.21 (using Lemma 3.24 and the spacelike nature of dt̂ for the Kerr metrics

at M̂). Thus, −g̃−1
∞ (dt,dt) has a strictly positive lower bound near (X̂ \ (K̃δ)◦) ∪X◦. The

regularity of g̃∞ in Theorem 11.1 thus implies, via (11.1),91

Ñ , Ñ−1 ∈ AĜ,Gphg(Õ\(K̃δ)◦), β̃ ∈ AĜ,Gphg(Õ\(K̃δ)◦; T̃
Õ
X̃), Ĝ := N0∪Ê , G := N0∪E .

We moreover define the vector field

ẽ0 := ∂t − β̃ ∈ AĜ,Gphg(Õ \ (K̃δ)◦; T̃
Õ
M̃),

with ν̃ := N−1ẽ0 being the future pointing unit normal to all X̃t. The shift β̃ gives rise to

a bundle map B̃ ∈ AĜ,Gphg(Õ \ (K̃δ)◦; Hom(T̃ ∗
Õ
X̃, T̃ ∗

Õ
M̃)),

B̃ : T̃ ∗x̃ X̃t → T̃ ∗(t,x̃)M̃, ξ 7→ ξ + β̃(ξ) dt, (11.6)

90That is, the restrictions of Ñ and β̃ to an ε-level set M̃ε, ε > 0, of M̃ are the lapse and shift of g̃∞|M̃ε .
91We have the more precise memberships in β̃∗C∞(O) +AN0∪Ê,E

phg (Õ \ (K̃δ)◦) here and below.
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which induces a map on the symmetric second tensor power which we also denote B̃. We
can then write

g̃∞ = −N2 dt2 + B̃
(˜̄g∞), ˜̄g∞ ∈ AĜ,Gphg(Õ \ (K̃δ)◦;S2T̃ ∗X̃).

Since ẽ0, as a vector field on Õ ⊂ M̃ , is a vertical (i.e. tangent to ε-level sets) vector field
of class

ẽ0 ∈ AĜ−1,G
phg Vb(Õ \ (K̃δ)◦), (11.7)

the second fundamental forms k̃∞ = 1
2Ñ
−1Lẽ0˜̄g∞ (see Lemma 11.2) of the leaves X̃t satisfy

k̃∞ ∈ AĜ−1,G
phg (Õ \ (K̃δ)◦;S2T̃ ∗

Õ
X̃).

The initial data of X̃ = X̃0 are

γ̃∞,0 = ˜̄g∞|X̃ ∈ AĜ,Gphg(X̃ \ (K̃δ)◦;S2T̃ ∗X̃), k̃∞,0 = k̃∞|X̃ ∈ A
Ĝ−1,G
phg (X̃ \ (K̃δ)◦;S2T̃ ∗X̃).

Matching Corollary 3.21, they satisfy (γ̃∞,0, k̃∞,0)|X◦ = β∗◦(γ, k) where (γ, k) are the initial
data of X inside (M, g), and

s
(
γ̃∞,0, εk̃∞,0

)∣∣
X̂

= (γ̂, k̂)

are the initial data of X̂b inside the Kerr spacetime (M̂b, ĝb); they are in fact a (Ê , E)-
smooth total family in the terminology of [Hin24, Definition 4.18]. Furthermore, since

Ein(g̃∞) + Λg̃∞ ∈ Ċ∞(M̃ \ (K̃δ)◦;S2T̃ ∗M̃), the constraint equations are satisfied to infinite

order at ε = 0 as well, in particular at X̃; that is,

P (γ̃∞,0, k̃∞,0; Λ) ∈ Ċ∞(X̃ \ (K̃δ)◦;R⊕ T̃ ∗X̃) (11.8a)

in the notation of (4.2). Since g̃∞ = g near X \U◦, the intersection of the support of (11.8a)
with β∗◦X is in fact contained in β∗◦U◦ and in particular compact; thus, there exists ε0 > 0
so that

{ε ≤ ε0} ∩ suppP (γ̃∞,0, k̃∞,0; Λ) b β̃∗([0, ε0]× U◦). (11.8b)

11.2. Proof of Theorem 11.1. We continue using the notation of §11.1.2. We begin the
proof of Theorem 11.1 by removing the error term (11.8a).

Proposition 11.5 (Solving the constraint equations). There exists a metric perturbation

h̃1 ∈ Ċ∞(M̃ \ K̃◦;S2T̃ ∗M̃) so that the initial data of

g̃1 := g̃∞ + h̃1

satisfy the constraint equations at (X̃ \ K̃◦) ∩ {ε < ε0} for some small ε0 > 0, and so that
lapse and shift of g̃1 are equal to those of g̃∞ in the (3 + 1)-decomposition fixed in §11.1.2.

Proof. With γ̃∞,0, k̃∞,0 as in (11.8a)–(11.8b), the key step is to find corrections

h̃, q̃ ∈ Ċ∞(X̃ \ K̃◦;S2T̃ ∗X̃) (11.9)

with support compactly contained in β̃∗([0, ε0]× U◦) so that

P (γ̃∞,0 + h̃, k̃∞,0 + q̃; Λ) = 0 (11.10)

on X̃∩{ε ≤ ε0} for some small ε0 > 0. This is almost the content of [Hin24, Proposition 5.6];

the difference to the reference is that in the present paper the initial data s(γ̃∞,0, εk̃∞,0) near
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X̂◦ are not equal to exact Kerr initial data in any set {(ε, x) : |εx| < R̂0}, R̂0 > m−δ, due to

the global (in the fibers of M̂) nature of our construction of g̃∞. (Cf. [Hin24, Theorem 5.2,
item (2)].)

We can fix this in the following ad hoc manner, using that the initial data are equal to

Kerr data (γ̂, k̂) to leading order at X̂. Fix a cutoff function χ ∈ C∞(X̃) so that χ = 1 for
r̂ ≤ m− 2

3δ and χ = 0 for r̂ ≥ m− 1
3δ. Then

(γ̃′∞,0, k̃
′
∞,0) := (γ̃∞,0, k̃∞,0) + χ

((
s−1γ̂, ε−1s−1k̂

)
− (γ̃∞,0, k̃∞,0)

)
.

Then P (γ̃′∞,0, k̃
′
∞,0; Λ) ∈ AF̂−2,∅

phg (X̃ \(K̃δ)◦;R⊕ T̃ ∗X̃) where Re F̂ > 0 since the X̂-model of

(γ̃′∞,0, k̃
′
∞,0) (i.e. the Kerr initial data) satisfies the constraint equations; and since in fact the

constraint equations are violated, modulo errors vanishing to infinite order at ε = 0, only in

the transition region supp dχ, we conclude that if χ′ ∈ C∞c (X̃) with suppχ′ b r̂−1((m−δ,m))
equals 1 near supp dχ, then we can write

P (γ̃′∞,0, k̃
′
∞,0; Λ) = χ′Err0 + Err1

where Err1 ∈ Ċ∞ is supported in r̂ > m−δ, and Err0 ∈ AF̂−2,∅
phg . Let K ′ b r̂−1((m−δ,m)) ⊂

X̃ be a smoothly bounded domain with suppχ′ ⊂ (K ′)◦. Using arguments as in the proof

of [Hin24, Theorem 6.2], we can then correct (γ̃′∞,0, k̃
′
∞,0) in generalized Taylor series at

X̂◦ by tensors (h̃′, q̃′) with support contained in K ′ with vanishing restriction to X̂, at the
expense of admitting a failure of the constraints which lies in some fixed finite-dimensional
space; that is,

P (γ̃′∞,0 + h̃′, k̃′∞,0 + q̃′; Λ)− E1(c̃′) = Err′1,

where Err′1 ∈ Ċ∞ has support in r̂ > m − δ, while c̃′ = c̃′(ε) with c̃′(0) = 0 is polyhomo-

geneous and E1 is a linear map from CN into C∞c ((K ′)◦;R⊕ T̃ ∗X̃) whose range spans the

cokernel of the linearization of the constraints map around (γ̂, k̂) on 00-Sobolev spaces on
(K ′)◦ with exponentially decaying weights at ∂K ′.

One can then correct (γ̃′∞,0 + h̃′, k̃′∞,0 + q̃′) further by tensors (h̃′′, q̃′′) to a true solution

of the constraints except for the presence of E1(c̃′ + c̃′′) on the right hand side (instead of

0) by following the arguments of [Hin24, Theorem 6.2]; here h̃′′, q̃′′ vanish identically near

r̂ = m− δ, and h̃′′, q̃′′, c̃′′ vanish to infinite order at ε = 0. The restrictions

(γ̃1, k̃1) := (γ̃′∞,0 + h̃′ + h̃′′, k̃′∞,0 + q̃′ + q̃′′)|
X̃\K̃◦

to the smaller domain X̃\K̃◦ ⊂ X̃\(K̃δ)◦ (which is disjoint from suppE1(c̃′+c̃′′)) thus satis-

fies the constraint equations for all small ε, and by construction differ from (γ̃∞,0, k̃∞,0)|
X̃\K̃◦

by tensors h̃, q̃ of class (11.9).

Finally then, we shall take h̃1 = B̃(˜̄h1) (using the second symmetric tensor power of the

map (11.6)) for a suitable choice of ˜̄h1 ∈ Ċ∞(O \ K̃◦;S2T̃ ∗X̃). Writing ˜̄h1(t) = ˜̄h1(0) +

t˜̄h′1(0)+O(t2), we only need to specify ˜̄h1(0) and ˜̄h′1(0), and the remaining Taylor coefficients

are arbitrary. The requirement that the first fundamental form (˜̄g∞+ ˜̄h1)|
X̃

= γ̃∞,0 + ˜̄h1(0)

of g̃∞ + h̃1 be equal to γ̃1 = γ̃∞,0 + h̃ forces ˜̄h1(0) = h̃. For the second fundamental form,
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we require

k̃1 = k̃∞,0 + q̃ =
(1

2
Ñ−1Lẽ0(˜̄g∞ + ˜̄h1(0) + t˜̄h′1(0))

)∣∣∣
X̃

= k̃∞,0 +
1

2
Ñ−1

(˜̄h′1(0) + Lẽ0
˜̄h1(0)

)
,

with ˜̄h1(0) on the right regarded as a t-independent section of S2T̃ ∗X̃ over Õ. This de-

termines ˜̄h′1(0) ∈ Ċ∞(X̃ \ K̃◦;S2T̃ ∗X̃) indeed; this uses that the Lie derivative along ẽ0

preserves the rapid vanishing of ˜̄h1(0) at ε = 0 in view of (11.7). �

We now improve the tensor g̃1 from Proposition 11.5 further.

Proposition 11.6 (Taylor series construction at X̃). Let g̃1 be as in Proposition 11.5; thus

Ric(g̃1)−Λg̃1 ∈ Ċ∞(M̃ \ K̃◦;S2T̃ ∗M̃) and the constraint equations are satisfied at X̃. Then

there exists h̃ ∈ Ċ∞(M̃ \ K̃◦;S2T̃ ∗M̃) so that for g̃ := g̃1 + h̃, the error Ric(g̃) − Λg̃ ∈
Ċ∞(M̃ \ K̃◦;S2T̃ ∗M̃) vanishes to infinite order at X̃.

Proof. In view of Lemma 11.4, applied to each level set of ε > 0, it suffices to construct

h̃ = B̃(˜̄h) (using (11.6)) where ˜̄h ∈ Ċ∞(Õ \ K̃◦;S2T̃ ∗X̃) so that the pullback of

Ric(g̃1 + h̃)− Λ(g̃1 + h̃) (11.11)

to X̃t (i.e. the spatial components) vanishes to infinite order at t = 0. This form of h̃

ensures that lapse and shift of g̃1 + h̃ are equal to those of g̃∞. Writing the Taylor series of˜̄h(t) as
∑

j≥2
˜̄hjtj at t = 0, we can then iteratively compute the coefficients ˜̄hj , j = 2, 3, . . .,

using the formula 1
2Ñ
−1Lẽ0(g̃1 + h̃) for the second fundamental form and using the formula

for the spatial components of (11.11) from Corollary 11.3, by repeating the arguments at
the end of §11.1.2. �

This finishes the proof of Theorem 11.1, and in combination with Theorem 10.27 also the
proof of the main result of this paper, Theorem 5.4 (which is Theorem 1.1 in the setting (I)).

12. Extreme mass ratio mergers

While Theorem 5.4 allows one to glue a subextremal Kerr black hole into a given space-
time (M, g) under a genericity assumption (see Definition 5.1(4)), this assumption is not
satisfied for explicit spacetimes of physical interest such as Kerr or Kerr–(anti) de Sitter
(K(A)dS) spacetimes. The situation for initial data gluing was discussed in [Hin24, §6.2];
here we describe the analogue for our formal spacetime gluing procedure (and thereby prove
Theorem 1.1 in the setting (II)).

Recall that for Λ ∈ R and parameters m > 0, a ∈ R, the Kerr, Kerr–de Sitter, or
Kerr–anti de Sitter (depending on whether Λ = 0, Λ > 0, or Λ < 0) metric gΛ,m,a is given
by

gΛ,m,a = − µ(r)

b2%2(r, θ)
(dt− a sin2 θ dφ)2 + %2(r, θ)

( dr2

µ(r)
+

dθ2

c(θ)

)
+
c(θ) sin2 θ

b2%2(r, θ)

(
(r2 + a2)dφ− adt)2,
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µ(r) = (r2 + a2)
(

1− Λr2

3

)
− 2mr, %2(r, θ) = r2 + a2 cos2 θ,

b = 1 +
Λa2

3
, c(θ) = 1 +

Λa2

3
cos2 θ.

This solves the Einstein vacuum equations

Ric(gΛ,m,a)− ΛgΛ,m,a = 0.

We require the parameters (Λ,m, a) to be subextremal ; this means that µ(r) = 0 has four
(when Λ 6= 0), resp. two (when Λ = 0) distinct real roots. The second largest (when Λ 6= 0),
resp. largest (when Λ = 0) root r = rΛ,m,a is the radius of the event horizon. For Λ = 0, we
recover the Kerr spacetime from Definition 3.22 with different symbols for the coordinates.

Using a change of coordinates t = t− T (r) and ϕ = φ− Φ(r) for suitable functions T,Φ
(see [Hin21b, Equation (1.5)] for the case Λ > 0), the metric gΛ,m,a extends analytically
across the two largest roots rΛ,m,a < rcΛ,m,a (the event and cosmological horizons) when

Λ > 0, resp. the largest root rΛ,m,a (the event horizon) when Λ = 0, and indeed to the
manifold

M = M2η, Mδ := Rt × [rΛ,m,a − δ,∞)× S2
θ,ϕ

for sufficiently small η > 0; here δ ∈ (0, 2η]. We can select T so that moreover the level sets
of t are spacelike; set then

X = X2η, Xδ := {0} × [rΛ,m,a − δ,∞)× S2
θ,ϕ.

The black hole exterior (or domain of outer communications) is the subset Mext of M where
r ∈ (rΛ,m,a, r

c
Λ,m,a) when Λ > 0, resp. r > rΛ,m,a when Λ = 0; similarly, we set

Xext =

{
{0} × (rΛ,m,a, r

c
Λ,m,a)× S2, Λ > 0,

{0} × (r0,m,a,∞)× S2, Λ ≤ 0.

The part of the black hole interior contained in M is the region where r < rΛ,m,a. In the
case Λ < 0, we replace M by the domain of dependence of {t = 0} in order to avoid having
to impose boundary conditions at the conformal boundary.

Theorem 12.1 (Gluing a small black hole along a timelike geodesic in a subextremal
Kerr(–de Sitter) spacetime). Let Λ ∈ R, m > 0, a ∈ R be subextremal K((A)dS) parameters,
and let g = gΛ,m,a. Let p ∈ Xext, let v ∈ TpM be a future timelike unit vector, and write
C ⊂M for the maximally extended geodesic with initial conditions p, v, and let U◦M ⊂M be
a smoothly bounded precompact connected open neighborhood of p so that U◦M ∩X contains
a point in X2η \X 3

2
η. Let92 m̂ > 0 and â ∈ TpM , â ⊥ v, with |â| < m̂, be subextremal Kerr

parameters. Then the conclusions of Theorem 5.4 hold on M̃η \ K̃◦ (with m̂, â in place of

m, a), with K̃ defined as in point (8) in §5. That is, there exists a ((3, ∗), (1, 0)+ ∪ (3, ∗))-
smooth total family g̃ on M̃η \ K̃◦ with respect to g and with M̂p-model equal to the Kerr
metric ĝm̂,â for all p ∈ C (as in point (8) in §5) so that:

(1) Ric(g̃)−Λg̃ is a smooth section of S2T̃ ∗M̃ over M̃η \ K̃◦ which vanishes to infinite

order at M̂ , M◦, and X̃;
(2) g̃ = g outside the union of the causal past and future of a compact subset of U◦M ∩X;

(3) eg̃ is equal to the Kerr metric at M̂ modulo quadratically vanishing error terms.

92We use hats here to notationally distinguish the small black hole parameters from those of (M, g).
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With only minor notational modifications (concerning the definitions of X,M , specif-
ically defining their extensions across the event horizon up until a spacelike boundary
hypersurface), one can also treat the case of extremal black holes.

Theorem 12.1 can be applied to produce formal solutions (as ε ↘ 0) of the Einstein
vacuum equations describing extreme mass ratio mergers. See Figure 12.1. A fortiori, by

definition of M̃η, the restriction of g̃ to the ε-level set of M̃η is ε-close to the K((A)dS)
metric g outside any fixed neighborhood of C, whereas an ε−1-rescaling of g̃ near a point
on C is ε-close to any fixed compact subset of a Kerr spacetime with parameters m̂, â.

r

ε

r
=
r Λ
,m
,a
−
η

r
=
r Λ
,m
,a

g̃ = gΛ,m,a+O(ε)

g̃µν = (ĝm̂,â)µ̂ν̂+O(ε)

Figure 12.1. Illustration of Theorem 12.1. The front face arises by blowing
up a timelike geodesic C—which here passes the event horizon of the ambient
K((A)dS) black hole, indicated in green—inside [0, 1)ε ×Mη at ε = 0. The
restriction of g̃ to an ε-level set is ε-close to the K((A)dS) metric gΛ,m,a

away from the front face, whereas the metric coefficients (in Fermi normal
coordinates t, x) near the front face, arising by blowing up the timelike
geodesic C in [0, 1)ε ×Mη at ε = 0, are ε-close to those of a Kerr metric

(with respect to the ‘fast’ coordinates t̂ = t−t0
ε , x̂ = x

ε near any point (t0, 0)
along C). The red dashed lines form a spacelike hypersurface bounding a
coordinate sphere in the interior of the small black hole which we excise,
much like we excise the ball r < rΛ,m,a − η in the interior of the ambient
K((A)dS) black hole.

Remark 12.2 (Formal extreme mass ratio mergers: finite time theory). Consider the case
Λ ≥ 0. Suppose the geodesic c(s) with c(0) = p, c′(0) = v crosses the event horizon of
(M, g) at proper time s = s0 > 0. Then since dr is future timelike in r < rΛ,m,a, the

function r ◦ c(s) is monotonically decreasing for s > s0, and thus r(c(s)) < r − 3
2η for all

s > s1 > s0. Fixing s2 > s1 and letting t2 := t(c(s2)), the total family g̃ is then ε-close to
the ambient K(dS) metric g on compact subsets of Mη ∩ {t ≥ t2}. In the Kerr–de Sitter
case (Λ > 0), this in particular applies to [t2, t2 +1]× [rΛ,m,a−η, rcΛ,m,a+η]×S2; in the Kerr



GLUING SMALL BLACK HOLES ALONG TIMELIKE GEODESICS I: FORMAL SOLUTION 159

case, g̃ is equal to g on [t2, t2 + 1] × [r2,∞) × S2 for some r2 < ∞ (depending on t2), and
ε-close to g on [t2, t2 +1]× [rm,a−η, r2]×S2. This can be taken as the starting point for the
evolution of initial data ε-close to K(dS) data (but violating the constraint equations by an
amount O(ε∞)) in an η-neighborhood of the domain of outer communications. We stress
that η > 0 is fixed, and ε > 0 can be taken to be arbitrarily small, and therefore domain
of dependence considerations imply that the initial data at t2 are defined on a sufficiently
large set so as to permit, in principle, the unique global future solvability of (quasi)linear
wave equations.

Remark 12.3 (Formal extreme mass ratio mergers: nonlinear stability of the merger). Con-
tinuing Remark 12.2 and focusing on the very slowly rotating Kerr–de Sitter case Λ > 0,
| am | � 1, note that, a fortiori, the initial data of g̃ε = g̃|

(M̃η)ε
at t = t2 satisfy the constraint

equations up to O(ε∞) error terms. Therefore, we can apply [HV18, Theorem 11.2], with
(h, k) there equal to the initial data of g̃ε at t = t2, to obtain a solution g̃′ε of the gauge-fixed
Einstein vacuum equation [HV18, (11.10)] on

Ω := [t2,∞)× [rΛ,m,a − η, rcΛ,m,a + η]× S2

with the following properties:

(1) g̃′ε is equal to a Kerr–de Sitter metric plus a tail whose coefficients in standard
coordinates on Ω are bounded, together with all their coordinate derivatives, by
e−αt for some α > 0;

(2) Errε := Ric(g̃′ε)− Λg̃′ε (in the sign convention of the present paper) obeys the same
O(e−αt) bound with constants of size O(εN ) for all N , i.e. the components of Errε
are bounded by CN ε

Ne−αt together with all coordinate derivatives.

The second property is a consequence of the fact that the gauge 1-form, denoted Υ(g) −
Υ(gb0,b) − θ in [HV18], has Cauchy data at t = t2 of size O(ε∞); since it moreover lies in

ker �̃CP
g , it can be seen to decay exponentially using the extension of [HV18, Theorem 8.1]—

which in particular proves the absence of non-exponentially decaying mode solutions when
g is a subextremal Schwarzschild–de Sitter metric—to metrics which exponentially decay
to very slowly rotating Kerr–de Sitter spacetimes; this extension follows from the methods
of [HV18, §5]. Thus, we can control a formal (i.e. up O(ε∞) errors) solution of the initial
value problem for the Einstein vacuum equations with initial data given at t = 0 globally
in forward time: Theorem 12.1 provides the part of the solution for t ∈ [0, t2], and [HV18]
provides the rest. See Figure 12.2.

Proof of Theorem 12.1. We indicate the modifications required in (the proofs of) Theo-
rems 10.27 and 11.1. Fix η0 = 2η and pick ηj ∈ N with η0 > η1 > η2 > . . ., and

¯
η := infj ηj > η.

The only place in the proof of Theorem 10.27 where the absence of Killing vector fields
(or KIDs on the level of initial data sets) is used is the proof of Proposition 8.7 (which

leads to Theorem 8.1), specifically in the construction of the symmetric 2-tensors γ̇, k̇
in equation (8.14). In the present setting, we cannot solve (8.14) directly due to the
presence of a cokernel K∗ := kerC∞(U◦;R⊕T ∗Xη0 )D(γ,k)P

∗ of dimension N = dimK∗ ≥ 1;

here U◦ = U◦M ∩X. Instead, as in [Hin24, §6.2], we may fix an injective linear map

E1 : RN → C∞c (U◦ \Xη1 ;R⊕ T ∗Xη0)
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r = rΛ,m,a

t = 0

t = t2

C

Figure 12.2. Illustration of Remark 12.3 for very small but fixed ε > 0: the
metric g̃ε = g̃|

(M̃η)η
is a formal solution of the Einstein vacuum equations

and roughly speaking describes a small Kerr black hole with parameters
(εm̂, εâ) near C which merges with a given Kerr–de Sitter black hole (M, g)
with parameters (m, a). Having crossed the event horizon of the KdS black
hole at time t = t2, the metric g̃ε is ε-close to g in a fixed neighborhood of the
domain of outer communications (the exterior of the gray cylinder, with the
cosmological horizon not shown). Nonlinear stability results for the gauge-
fixed Einstein vacuum equations, applied with parametric dependence in ε,
give a formal solution g̃′ε for all subsequent times, which decays exponentially
fast to an exact Kerr–de Sitter metric.

so that the L2-pairing K∗ × ranE1 → R is nondegenerate; and then there exists a unique
solution c ∈ RN , γ̇, k̇ ∈ C∞c (U◦;S2T ∗X) of the equation

D(γ,k)P (γ̇, k̇; Λ) = (Ggf[)(ν,−) + E1(c).

Proceeding as after (8.14), the gauge 1-form η = δgGgh[ − θ still vanishes at X; but now
(Ggδ

∗
gη)(ν,−) vanishes only outside of suppE1(c) ⊂ Xη0 \Xη1 , and therefore η ∈ ker δgGgδ

∗
g

does not necessarily vanish. However, since dr is future timelike in Mint, we do have
supp η ⊂ Mη0 \Mη1 by finite speed of propagation. In conclusion, Theorem 8.1 remains
valid if we replace M by Mη0 and allow for (DgRic−Λ)h−f in equation (8.2) to be nonzero
outside Mη1 .

After the first application of Theorem 10.27 in §10.1, we restrict to Mη1 . The subsequent

solution step at M̂ is unchanged. When applying Theorem 10.27 for the first of two times
again in §10.3, we first work on Mη1 and permit violations of the constraints, and thus of
the linearized Einstein vacuum equations, outside Mη2 ; and the second time we work on
Mη2 and permit violations outside Mη3 ; and so on. In conclusion then, the analogue of

Theorem 10.27 in the present setting remains valid on M̃
¯
η.
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In the proof of Theorem 11.1, the absence of KIDs is used in the (adapted) proof of [Hin24,
Proposition 5.6] in [Hin24, Propositions 4.15] (via [Hin24, Proposition 4.21]). In the present
setting, where KIDs are present, one proceeds as in the proof of [Hin24, Theorem 6.2] to
solve the constraint equations up to an error which lies in a fixed finite-dimensional space
of smooth tensors supported in X

¯
η \ Xη. The remainder of the proof of Theorem 11.1 is

unchanged. �

Remark 12.4 (General spacetimes with noncompact Cauchy hypersurfaces: Theorem 1.2).
We again indicate the modifications required in the proofs of Theorems 10.27 and 11.1.
First, in the construction of initial data γ̇, k̇ for equation (8.14) in the proof of Proposi-

tion 8.7, we are now dropping the requirement that γ̇, k̇ ∈ C∞(X;S2T ∗X) have compact
support. The cokernel of D(γ,k)P on the corresponding dual space of compactly supported
distributions (which thus vanish on some open set due to the noncompactness of X) is then

trivial; see also [Hin23b]. Therefore, we can indeed solve (8.14) for γ̇, k̇ ∈ C∞(X;S2T ∗X).
The proof of Theorem 10.27 then goes through without any further modifications. To
deal with the possibility of KIDs in the proof of Theorem 11.1, fix a nonempty open set
W ⊂ X \ V̄ ; similarly to before, we can then solve the constraint equations up to an error
which lies in a fixed finite-dimensional space of smooth tensors supported in W .
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