
STABILITY OF THE EXPANDING REGION OF KERR–DE SITTER

SPACETIMES AND SMOOTHNESS AT THE CONFORMAL BOUNDARY

PETER HINTZ AND ANDRÁS VASY

Abstract. We give a new proof of the recent result by Fournodavlos–Schlue on the nonlinear
stability of the expanding region of Kerr–de Sitter spacetimes as solutions of the Einstein vac-

uum equations with positive cosmological constant. Our gauge is a modification of a generalized

harmonic gauge introduced by Ringström in which the asymptotic analysis becomes particularly
simple. Due to the hyperbolic character of our gauge, our stability result is local near points on the

conformal boundary. We show furthermore that, in yet another gauge, the conformally rescaled
metric is smooth down to the future conformal boundary, with the coefficients of its Fefferman–

Graham type asymptotic expansion featuring a mild singularity at future timelike infinity of the

black hole.

1. Introduction

We study the stability of expanding regions of solutions of the Einstein vacuum equations

Ric(g)− Λg = 0 (1.1)

where the cosmological constant Λ is positive; we fix Λ = 3 (which can always be achieved by
scaling). Here g is a Lorentzian metric (with signature (−,+,+,+)) on a 4-dimensional smooth
manifold M◦. The basic example is the de Sitter solution

M◦ = (0,∞)τ × R3
x, gdS =

−dτ2 + dx2

τ2
. (1.2)

The conformal rescaling τ2gdS = −dτ2 + dx2 is smooth down to the boundary of

M := [0,∞)τ × R3
x,

which is called the conformal boundary. The de Sitter metric is often encountered in a different

coordinate system t̃ = − 1
2 log(|x|2 − τ2), r̃ = |x|

τ , ω = x
|x| , where it takes the form

gdS = −(r̃2 − 1)−1 dr̃2 + (r̃2 − 1) dt̃2 + r̃2
/g, (1.3)

with /g is the standard metric on S2
ω. These coordinates are valid in the expanding region |x| > τ .

(In the static region |x| < τ , setting t = − 1
2 log(τ2−|x|2) yields the same expression for the metric.)

The Schwarzschild–de Sitter (SdS) metric describes a (non-rotating) black hole in de Sitter space.
The metric depends on a mass parameter m ∈ R and is given by

gm = −
(
r̃2 − 2m

r̃
− 1
)−1

dr̃2 +
(
r̃2 − 2m

r̃
− 1
)−1

dt̃2 + r̃2
/g

in the expanding region, which is the region where r̃ is larger than the largest real root of r̃2− 2m
r̃ −1.

Comparing this expression with (1.3), the mass m thus contributes metric coefficients of relative size
O(r̃−3) as r →∞. In the coordinates z = (τ, x), one finds that

gm = gdS + hµν
dzµ

τ

dzν

τ
(1.4)
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where hµν = hµν(r̃) = O(r̃−3); in fact, r̃3hµν is smooth in r̃−1 = τ
|x| near r̃ = ∞. The set (in

an appropriate compactification, introduced below) where t̃ < ∞, r̃−1 = 0 defines the conformal
boundary of the SdS black hole spacetime. A similar construction can be performed for the more
general Kerr–de Sitter (KdS) metric gb, b = (m, a), describing a black hole of mass m and specific
angular momentum a in de Sitter space.

We interpret this geometrically as follows: we blow up the point (τ, x) = (0, 0) in M to define a

new manifold with corners M̆ ; a neighborhood of the conformal boundary of M̆ is then covered by
the chart

[0,∞)ρ × [0,∞)R × S2
ω ⊂ M̆, ρ :=

τ

|x|
= r̃−1, R := |x|, (1.5)

with the conformal boundary being the interior of I+ := {0} × [0,∞) × S2, while the interior of
K := [0,∞) × {0} × S2 contains all points at t̃ = ∞ of the level sets of r̃ (as is evident from

R = r̃e−t̃√
r̃2−1

≈ e−t̃). See Figure 1.1. Thus, K is a blown-up version of i+.1

|x|=R=R1

r̃−1=ρ=ρ0<1

τ=τ0

I+

K
r̃=ρ−1

0

t̃≈−logR1

I+

H+

H−

H+

i+

Figure 1.1. On the left: the manifold M̆ , with level sets of the coordinates τ
(blue) and |x| = R (red) on de Sitter space; the level sets of t̃ in the region above
the solid line ρ = ρ0 < 1 (green) are approximately the same as those of R and thus
not shown. The level sets of ρ = r̃−1 are shown in green. The highlighted region is
part of the expanding region of SdS. On the right: part of the Penrose diagram of
SdS, with the part of the expanding region from the left highlighted.

The point is that while the asymptotic behavior of the de Sitter metric is the same at all points
of the conformal boundary, the description of the asymptotic behavior of a KdS metric near its
conformal boundary necessarily involves two asymptotic regimes (I+ and K).

We shall study the initial value problem for (1.1) when the initial data are given on a level set
ρ = ρ0 and asymptote to those of the KdS metric gb as R → 0 (i.e. as one approaches K ≈ i+).
Recall that initial data are the first and second fundamental forms γ, k of {ρ = ρ0}, and they are
subject to the constraint equations

Rγ − |k|2γ + (trγ k)2 − 2Λ = 0, δγk + d trγ k = 0.

(Here Rγ is the scalar curvature, and (δγk)µ = −γκλkµκ;λ.) Note that in the de Sitter and KdS
geometries, the endpoints of future causal curves starting at a point on ρ = ρ0 lie in the interior of
I+ and are thus far from K. It is thus natural to expect that the spacetime metric evolving from
such initial data still asymptotes to the same KdS metric gb at K. On the other hand, away from
K, we are, in a sense, studying a perturbation of de Sitter space. (This is rigorously true when
R ≥ R1 > 0 and ρ = ρ0 � 1 is small depending on R1.) Thus classical theorems by Friedrich [Fri86]
and Ringström [Rin08] allow one to control the evolution of this part of the initial data. (We recall
these results below.)

1We use the letter K since i+ is too similar to I+.
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I+

K

Figure 1.2. Initial data are given on the green (spacelike) hypersurface. In the
blue region, one can easily control the evolution of asymptotically-KdS data: the
metrics remain asymptotic to the same KdS metric at K. In the red region, stability
results for de Sitter space apply. In a neighborhood of the corner, new methods are
needed.

The main difficulty is thus to control the evolving spacetime metric near the corner K ∩ I+;
see Figure 1.2. This was first overcome in the recent work of Fournodavlos–Schlue [FS24] who
considered initial data posed on a cylinder Rt̃ × S2

ω on which the data asymptote to KdS data near
{±∞} × S2 (see Figure 1.3 below). Concretely, [FS24, Theorem 1] shows that, under a smallness
condition on the initial data relative to some fixed KdS data (measured in a Sobolev space with
exponential weights as |t̃| → ∞), the evolving spacetime metric g can be written in the form

g(s, x) = −Φ(s, x)ds2 + gij(s, x)dxi dxj , s ≥ 0,

where x = (t̃, ω) denotes points on the cylinder R× S2. (The rough translation to present notation

is ρ ∼ e−s and R ∼ e−t̃.) Here gij(s, x) = g∞ij (x)e2s plus a O(1) remainder as s → ∞, while

Φ(s, x) = 1 + e−2sΦ∞(x) plus a O(e−4s) remainder. Furthermore, the various pieces of Φ, gij ,
including Φ∞, g∞ij , differ from their KdS reference values by decaying amounts as t̃ → ±∞, i.e. as
one approaches either of the two KdS black holes. This entails convergence to the de Sitter type
metric −ds2 + e2sg∞ij (x)dxi dxj (which for g∞ij = δij is the same as (1.2) with τ = e−s) as s → ∞.
We highlight two features of the result and approach of [FS24].

(1) A parabolic gauge is used in which Φ is coupled to the mean curvature of the slices s = const.
The non-hyperbolic nature of this gauge explains why Fournodavlos–Schlue work with a
complete initial data set. It would be interesting to see if the arguments in [FS24] can be
adapted to handle incomplete initial data sets.

(2) Passing to ρ = e−s, we have ρ2g = −dρ2 + g∞ij (x)dxi dxj + O(ρ); thus, the conformally
rescaled metric is Lipschitz down to τ = 0, but no higher order regularity is obtained (and
it is not clear how much regularity one can expect in the chosen gauge).

We revisit the stability problem of the expanding region of KdS spacetimes with the following
goals in mind:

(1*) We use a generalized wave coordinate condition closely related to that of [Rin08]. The
hyperbolic character of this gauge condition allows us to prove a localized stability result.

(2*) We show how to upgrade the rough asymptotic control on the metric arising in the basic
stability proof to smoothness of the conformally rescaled metric.

Furthermore,

(3*) we introduce a robust framework for analyzing wave equations near the corner I+ ∩ K;
see §1.2.2. This includes (higher order) energy estimates as well as a simple linear algebra
mechanism (based on indicial roots) for obtaining sharp decay and asymptotic expansions.
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In order to state our main result, we define the following norm for functions u = u(R,ω) defined
for R ≤ R0:

‖u‖2RαHkb :=
∑

j+|γ|≤k

∫
S2

∫ R0

0

|R−α(R∂R)jV γu(R,ω)|2 dR

R
d/g; (1.6)

here V is the set of vector fields on S2 which generate rotations around the three coordinate axes.

Since R ∼ e−t̃, the regularity here is regularity in t̃ and the angular variables.2 Below, we use the
same notions for norms of tensors, and mean by that the sum of norms of their coefficients in smooth
coordinate charts. We write RαHk

b for the space of all functions with finite ‖ · ‖RαHkb -norm, and set

RαH∞b =
⋂
k∈N0

RαHk
b . Furthermore, in order to ensure compatibility of the KdS metric gb with

the precise asymptotic expansion of the dynamical metric g at I+, we denote by

gFG
b

a presentation of the KdS metric gb which is in Fefferman–Graham form at I+ (a notion we explain
after the statement of the Theorem).

Theorem 1.1 (Main theorem, rough version). Let R0 > 0, and let ρ0 > 0 be such that Σ◦ρ0,R0
:=

{ρ0} × (0, R0]× S2
ω is spacelike for the KdS metric gb; denote the initial data on Σ◦ρ0,R0

induced by

gb by γb, kb. Suppose γ, k are initial data on Σ◦ρ0,R0
(i.e. solutions of the constraint equations) so

that γ̃ := γ − γb, k̃ := k − kb lie in RαH∞b , and have RαHd
b-norms < ε where ε > 0 is small and

d ∈ N is large. Then the maximal globally hyperbolic development of the data γ, k contains a region
isometric to

(Ω◦ρ0,R0
, g),

where:

(1) Ω◦ρ0,R0
is the domain defined by the inequalities ρ ≤ ρ0, ρR ≥ ρ0R0 − 1

2 (R0 − R), and the

boundary hypersurfaces Σ◦ρ0,R0
and Σ+,◦

ρ0,R0
:= {ρR = ρ0R0− 1

2 (R0−R)} are spacelike for g;

(2) the metric g is of the form g = gFG
b + h, where, in the frame τ∂τ , τ∂xi (i = 1, 2, 3),3 the

coefficients of h = h(ρ,R, ω) are smooth down to ρ = 0 and of class RαH∞b in (R,ω).

More precisely, there exist hm = hm,ij
dxi

τ
dxj

τ for m = 0, 2, 3, 4, . . . with hm,ij = hm,ij(R,ω) ∈ RαH∞b
so that for all N ∈ N we have

g −
(
gFG
b + h0 +

N∑
m=2

ρmhm

)
= O(ρN+1), (1.7)

in the sense that this is the restriction of an element of ρN+1C∞
(
[0, ρ0];RαH∞b ([0, R0] × S2)

)
to

Ω◦ρ0,R0
. Furthermore:

(1) h2 is nonzero unless the metric g(0) := dx2 + h(0), h(0) := h0,ij(|x|, x|x| ) dxi dxj, on {0 <

|x| ≤ R0} ⊂ R3 is flat;
(2) denote by g3 the ρ3 coefficient of g. Then the tensor g(3) := g3,ij(|x|, x|x| )dx

i dxj is a weighted

TT (transverse-traceless) tensor, meaning trg(0) g(3) = 0 and δg(0)(|x|−3g(3)) = 0.

See Theorem 4.2 for the full result, and Figure 1.3 for an illustration of the domain on which
we work. Our approach to the proof is discussed in §§1.2–1.3 below. The broader context of the
precise asymptotic expansion (1.7), the weighted TT property, and the sense in which Theorem 1.1

2The relationship of this norm with pointwise bounds is as follows. For k ≥ 2, ‖u‖RαHk
b
< ∞ implies |u| . Rα;

see Lemma 2.9. Conversely, Rα upper bounds for u and k of its derivatives imply u ∈ Rα′Hk
b for all α′ < α.

3We recall that x = Rω and τ = Rρ.
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is optimal are explained in §1.1. We immediately point out that the expansion (1.7) is devoid of
logarithmic terms; it therefore implies in particular that

the conformally rescaled metric τ2g, expressed in the frame τ∂τ , τ∂x1 , τ∂x2 , τ∂x3 , is smooth
across I+ = {ρ = 0}.

We now explain what it means for gFG
b to be in Fefferman–Graham form: gFG

b has an expansion

gFG
b ∼ gb,0 +

∑
m≥2

ρmgb,m, ρ→ 0 (1.8)

(i.e. equality of Taylor series at ρ = 0), where gb,m = (gb,m)ij
dxi

τ
dxj

τ , with each (gb,m)ij a smooth

function on [0,∞)R × S2
ω, and with gb,(3) := (gb,3)ijdx

i dxj a weighted TT tensor with respect to

dx2. (The existence of such a presentation gFG
b of the KdS metric is shown in Proposition 4.15(1).)

Σ +
,◦ρ

0 ,R
0Σ ◦

ρ0 ,R
0

KdSm,a

R0

Ω◦ρ0,R0

KdSm,a KdSm′,a′

R0

t̃

Figure 1.3. On the left: the Cauchy hypersurface Σ◦ρ0,R0
(green), and the domain

Ω◦ρ0,R0
(blue) on which the spacetime metric is controlled. On the left: Theorem 1.1.

On the right: [FS24, Theorem 1].

Remark 1.2 (Original of initial data). We do not concern ourselves here with the construction of
initial data γ, k satisfying the hypotheses of Theorem 1.1. Recall however that the nonlinear stability
of the exterior region (more precisely, a neighborhood of the domain of outer communications—not to
be confused with the cosmological region) of slowly rotating Kerr–de Sitter black holes was proved in
[HV18, Fan21] (with nontrivial initial data constructed in [HV18, §11.3]). The region on which these
stability results apply extends to any fixed finite value r̃+ exceeding the radius of the cosmological
horizon (with the required smallness of the initial data in the proofs of the references depending
on r̃+). The data induced by the spacetime metric on the corresponding level set ρ = ρ0 = r̃−1

+

then satisfies the assumptions of Theorem 1.1. While subextremality is a crucial requirement for
the nonlinear stability of KdS, the black hole parameters b = (m, a) are unrestricted in the setting
of Theorem 1.1: it does not matter whether they are subextremal, extremal, superextremal, or
even have negative mass, since only the asymptotic (de Sitter) geometry as r̃ → ∞ (which is
valid regardless of b) matters for present purposes. We refer the reader to Remark 3.3 for further
discussion.

Remark 1.3 (Stability of de Sitter space). Our methods apply directly to the stability of (parts of)
de Sitter space in (3+1)-dimensions and thus yield a new proof of [Rin08] (restricted to the case that
the scalar field vanishes identically). In fact, our proof simplifies since one can work with standard
Sobolev spaces on sets of bounded x: there is no more need for R-weights and b-regularity. More
precisely, if τ0 > 0, then the spacetime evolving from sufficiently small and regular perturbations of
the de Sitter initial data at4 {τ = τ0, |x| < 4τ0} contains a region of the form

{τ ≤ τ0, |x| < 3τ0 − 2(τ0 − τ)}

4For simplicity, we give ourselves plenty of room; posing data at |x| < τ0 + δ for any fixed δ > 0 would suffice for

the evolving spacetime to contain a piece of the conformal boundary.
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equipped with a metric g which has a full Taylor expansion

g(τ, x) ∼ −dτ2

τ2
+ (δij + h0,ij(x))

dxi

τ

dxj

τ
+
∑
m≥2

hm,ij(x)
dxi

τ

dxj

τ

at τ = 0, where hm,ij ∈ C∞(R3
x) and h3,ij(x)dxi dxj is transverse-traceless with respect to (δij +

h0,ij(x))dxi dxj . Also the global stability of de Sitter space −dt2 + (cosh t)2gS3 , as first proved in
[Fri86], follows from (a simpler version of) our arguments. — We point out that we are able to
obtain a conformally smooth solution by suitably modifying (in a constructive, and thus essentially
explicit, manner) an already constructed solution in generalized harmonic gauge. In particular,
we expect our approach to allow one to obtain sharp (Fefferman–Graham type) asymptotics for
perturbations of de Sitter space also in odd spacetime dimensions (where the existing results of
[Fri86, And05] do not apply, and logarithmic singularities are known to necessarily appear); we
leave this to future work. Analogous results in the Riemannian setting of conformally compact
Poincaré–Einstein metrics were obtained in [CDLS05]; see [FG85, Kic04] for the analytic setting
and [And03] for the 4-dimensional case.

Remark 1.4 (Stability of larger regions). The methods apply with only minor notational modifica-
tions to the initial data of [FS24]. The main change is that one now needs to work with two weights,
one for each of the boundary hypersurfaces K and K′ corresponding to future timelike infinity of the
two KdS black holes (see Figure 1.3); the proof of our main energy estimate (Proposition 3.11) is
robust enough to handle this setting with only notational modifications. The conclusion is that on
the blue region on the right in Figure 1.3 we can put the dynamical spacetime metric into a form so
that an expansion completely analogous to (1.7) holds, where the coefficients hm are now elements
of a doubly weighted Sobolev space on the cylinder Rt̃ × S2. We remark that due to the domain-
dependence of the gauge condition we use, we cannot simply patch together the local solutions which
are produced when applying our proof of Theorem 1.1 to various incomplete patches (such as Σ◦ρ0,R0

or the data of Remark 1.3) of initial data, as the various local solutions are constructed in what
might well be (slightly) different gauges; instead we must prove stability directly in the full desired
region.

Valiente Kroon and collaborators have been developing an approach for studying the stability of
the cosmological region of Schwarzschild–de Sitter spacetimes based on an extension of Friedrich’s
conformal field equations [Fri86]. In Friedrich’s equations, the conformal factor (τ in present nota-
tion) is one of the unknowns, and the equations (and their solutions) extend non-degenerately across
the conformal boundary. This allowed Friedrich to reduce the global nonlinear stability of de Sitter
spacetime to a standard local-in-time result for his symmetric hyperbolic system. In the SdS case
however, the conformal field equations cease to be regular at future timelike infinity i+ of the SdS
black hole (essentially because the SdS metric is not smooth in τ, x there, cf. the discussion of (1.4)),
and thus the results obtained using this approach are, at present, incomplete: [GK17] constructs
asymptotically SdS cosmological regions using an asymptotic initial value problem (closely related
to [Fri86, Theorem (3.2)]), and [MK23] controls solutions of initial value problems with near-SdS
data in the domain of dependence of cylinders [−T, T ]t̃ × S2 in the notation of [FS24] and Fig-
ure 1.3 which, in particular, does not contain a neighborhood of the corner K∩I+ (see also [MK23,
Figure 4]).

Another possible avenue towards the stability of the cosmological region, based on geometric
foliations and control of the Weyl tensor, was explored by Schlue in [Sch19, Sch16]. For scalar waves
propagating in the cosmological region of subextremal KdS spacetimes, decay results were obtained
in [Sch15]. Bernhardt [Ber24] continued the study of linear scalar waves in this setting and obtained
a partial asymptotic expansion at the conformal boundary (analogous to (1.7) for N = 3, and with
α = 0) as well as a scattering result.

The plan for the remainder of this introduction is as follows.
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(1) In §1.1, we put the asymptotic expansion (1.7) into context and explain its optimality.
(2) In §1.2, we explain the basic ideas behind the analysis of wave equations near conformal

boundaries, in both the de Sitter type and KdS type settings.
(3) In §1.3, we apply these ideas to the Einstein equations and explain our gauge choices,

constraint damping, and the mechanism underlying the existence of the expansion (1.7).

1.1. Stability of de Sitter space and asymptotics at the conformal boundary. Friedrich’s
stability result for de Sitter space [Fri86] demonstrates that small perturbations of de Sitter initial

data evolve into a spacetime (M, g) where M ⊂ M̃ := R × S3 is given by the set {Ω > 0},
and Ω2g extends smoothly to M̄ ⊂ M̃ (and beyond). (Note that de Sitter space itself is of this
form for Ω = cos s and Ω2g = −ds2 + gS3 .) Moreover, [Fri86, Theorem (3.2)] establishes a 1-1
correspondence (at least near the conformal boundary) between such asymptotically simple solutions
of the field equations and scattering data defined at the future conformal boundary S ⊂ Ω−1(0),
also in cases where the spatial manifold S is an arbitrary compact orientable 3-manifold: these data
are a Riemannian metric g(0) and a TT tensor g(3) on S. (These are the restriction of Ω2g and
certain components of the rescaled Weyl tensor of g to S.)

Now, given such g(0), g(3), it is a classical result by Fefferman–Graham [FG85, FG12] that one
can construct a formal solution of the Einstein vacuum equations (1.1) of the Fefferman–Graham
form (as described after Theorem 1.1)

g ∼ τ−2

(
−dτ2 + g(0)(x, dx) +

∑
m≥2

τmg(m)(x, dx)

)
, τ → 0; (1.9)

furthermore, the terms in the expansion (1.9) are uniquely determined by g(0), g(3). It was moreover
shown in [RSR18, Hin24a] that this formal power series is the Taylor expansion of a true solution
defined for τ < τ0(x) for some sufficiently small positive continuous function τ0 > 0. In combination
(albeit in a rather indirect fashion), we can thus conclude that smooth perturbations of de Sitter
space are described by a metric of the form (1.9). (See also [GL91, Kic04, GS20] for the construction
of true solutions in the Riemannian setting.)

With this background, it is now clear that the description (1.7) is optimal: the power series
gFG
b +h0 +

∑
m≥2 ρ

mhm at ρ = 0 is in Fefferman–Graham form and thus its coefficients are uniquely

determined by the scattering data g(0) = dx2 +h(0) and gb,(3) +h(3) in the notation of Theorem 1.1
and (1.8) and the subsequent discussion. We remark that the weighted TT property of h(3), i.e. the

TT property of h\3(x, dx) := |x|−3h(3)(x, dx), becomes consistent with (1.9) once we observe that

this tensor appears in the Taylor expansion of g at the conformal boundary I+ via (τ−2 times)

ρ3h(3) = (ρ|x|)3h\3 = τ3h\3.

Remark 1.5 (Black holes from scattering data). The work of Mars–Peón-Nieto [MPN22] discusses
the characterization of KdS metrics via their data at the conformal boundary. Also the construction
of de Sitter spacetimes containing several black holes in [Hin21, Ver24] is, at least on a conceptual
level, based on this scattering perspective.

It is then natural to make the following conjecture.

Conjecture 1.6 (Scattering data). Fix KdS parameters b. Suppose we are given tensors h(m),ij =

h(m),ij(R,ω) ∈ RαH∞b for m = 0, 3 and R ≤ R0, with small norms in RαHd
b for some sufficiently

large d, so that g(3) := gb,(3) + h(3) is a weighted TT tensor with respect to g(0) := dx2 + h(0). Then

there exists a solution g of the Einstein vacuum equations in a neighborhood of {R ≤ R0} ⊂ I+

with scattering data g(0), g(3) which is asymptotic to the KdS metric with parameters b at K.

Applying the uniqueness statements of [Hin24a] to the restriction of the scattering data g(0), g(3)

to R ≥ δ > 0 and letting δ ↘ 0, the solution g in Conjecture 1.6 is easily seen to be necessarily
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unique (up to isometries) on an appropriate domain of dependence; see Figure 1.4. For the proof of
a version of Conjecture 1.6 for linear scalar waves with α = 0, see [Ber24, Theorem 1.4].

I+

K

R0

H+

Figure 1.4. The domain on which an asymptotically KdS metric is expected to
exist, given scattering data on a part of the conformal boundary (highlighted in
green). The dashed line indicates the cosmological horizon of KdS; to avoid blueshift
instabilities when solving backwards, we stop at a positive distance from there.

1.2. Analysis near conformal boundaries. Our analysis of the Einstein equations will build
on a perspective which turns asymptotic analysis near conformal boundary into problems in linear
algebra. In de Sitter type settings, this perspective already played an important role in many works
including [FG85, Ren04, Vas10, HX21], and in elliptic settings in [MM87, GL91, Maz91]. A novelty
of the present paper is an extension of this perspective which allows one to deal with singularities
on the conformal boundary of the type given by future timelike infinity i+ of KdS.

1.2.1. de Sitter space. For concreteness, we study the following toy model. Fix a smooth Riemannian
metric (g(0))ij(x)dxi dxj on the torus x ∈ T3, and consider

�φ :=
(
−(τ∂τ )2 + 3τ∂τ + τ2gij(0)(x)∂xi∂xj

)
φ(τ, x) = 0. (1.10)

(For gij(0) = δij , this is the covariant wave operator for the metric (1.2).) The initial data, at

τ = 1, say, are assumed to be smooth in x; one can also allow for a nontrivial right hand side (with
appropriate regularity and decay requirements as τ → 0), though we shall not do so here for the
sake of exposition. If one only keeps the τ∂τ terms of �, one obtains the indicial operator, here

I(τ∂τ ) := −(τ∂τ )2 + 3τ∂τ ,

which is a constant coefficient regular-singular (or Fuchsian) ordinary differential equation (ODE).
The indicial family is its characteristic polynomial, so I(λ) := −λ2 + 3λ, and the indicial roots are
its roots, λ = 0, 3. Since therefore �(τλu) = O(τλ+1) for λ = 0, 3 and any u = u(x), one anticipates
that solutions of (1.10) have the form φ(τ, x) = τ0φ0(x) + τ3φ3(x) + · · · , where ‘· · · ’ indicates terms
that (at least in Taylor series at τ = 0) can be computed from φ0, φ3.

This heuristic can be made rigorous, as shown in the references above. We outline here a two-step
strategy which generalizes easily to the more singular setting of the present paper.

Step 1.1. Basic energy estimate. One can easily obtain a spacetime energy bound

‖φ‖2τ−NH1
0

:=

∫
T3

∫ 1

0

|τNφ|2 + |τNτ∂τφ|2 + |τNτ∂xφ|2
dτ

τ
dx . data (1.11)

for some N > 0. The particular value of N will be of no concern to us; this will be advantageous when
passing to tensorial equations for which precise energy estimates may be more difficult to obtain
(e.g. due to computational complexities). The notation τ−NH1

0 reflects the weight (φ is allowed to
grow like τ−N ) and the notion of regularity (τ∂τ , τ∂x), which is 0-regularity on [0,∞)τ ×T3

x in the
parlance of Mazzeo–Melrose [MM87]. Importantly, the same value of N works if � is perturbed by
terms which, relative to τ∂τ , τ∂x, decay at τ = 0; we write such terms as O(τ) below.
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Step 1.2. Higher regularity. Discarding x-derivatives in the above heuristic requires τ∂xφ to be
of lower order (in the sense of decay) than τ∂τφ. The estimate (1.11) does not entail this. We
thus need to improve (1.11) to a higher regularity estimate, with the same weight τ−N , in which we
control ∂x-derivatives of φ. Concretely, we claim that

‖φ‖2
τ−NH1;k

0;b

:=
∑

j+|α|≤k

‖(τ∂τ )j∂αxφ‖2τ−NH1
0
. data. (1.12)

(The notation H1;k
0;b reflects the derivative types: we now control k b-derivatives (τ∂τ , ∂x) in the

parlance of [Mel81, MM83, Mel93] in addition to 1 0-derivative.) We accomplish this via a highly
robust commutation argument which only relies on the structural properties of τ∂τ , τ∂x and their
relationships with τ∂τ , ∂x. We illustrate this only for k = 1: we then have the commuted equations

�(τ∂τφ) = τ∂τ�φ− 2τ2gij(0)(x)∂xi∂xjφ = O(τ · τ∂x)∂xφ,

�(∂xφ) = ∂x�φ+ τ2(∂xg
ij
(0))∂xi∂xjφ = O(τ · τ∂x)∂xφ.

Therefore, the vector Φ := (τ∂τφ, ∂xφ) satisfies a principally scalar system of equations which is

(�+O(τ))Φ = 0.

To this equation, the estimate (1.11) applies with the same value of N , giving (1.12) for k = 1.

Remark 1.7 (General situation: triangular structure). If one replaced 3τ∂τ in (1.10) by (3+a(x))τ∂τ ,
the equation for ∂xφ would have an additional term (∂xa)τ∂τφ on the right hand side, whose
coefficients do not decay. Instead, one now gets a strictly lower triangular system of the schematic
form ((

� 0
∂xa �

)
+O(τ)

)
Φ = 0. (1.13)

For this system, one can still prove (1.11) for the same N , essentially by using (1.11) for each
component of Φ separately (with the ‘data’ term now involving a norm on a spacetime source term)
and taking a weighted sum of the two estimates to absorb the size of ∂xa. In the tensorial equations
of interest in this paper, we do encounter variable coefficients of this type (although they will leave
the indicial roots unaffected, unlike (3 + a)τ∂τ here).

Step 2. Decay. Having arbitrarily many b-derivatives—in particular, x-derivatives—under con-
trol, we can now justify putting x-derivatives of φ on the right hand side of (1.10). This leads
to

I(τ∂τ )φ = O(τ2)∂2
xφ.

If φ ∈ τ−NH1;k
0;b , the right hand side lies in τ−N+2H1;k−2

0;b . Integrating this ODE in τ , with x acting

merely as a parameter, gives φ ∈ τ−N+2H1;k−2
0;b , when the indicial roots 0, 3 fall outside of the

interval [−N,−N + 2]. Iterating this argument thus allows one to show φ ∈ τ−δH1;k−J
0;b for some

J (depending only on the growth rate N allowed for by the basic energy estimate) for any δ > 0;
repeating the argument one more time, the indicial root 0 enters and produces

φ(τ, x) ≡ φ0(x) mod τ2−δH1;k−J−2
0;b , φ0 ∈ Hk−J−2(T3). (1.14)

One can easily continue this scheme further and extract a full asymptotic expansion for φ. This is
the place where logarithmic terms can arise due to repeated roots and integer coincidences; see in
particular [Vas10, Cic23, Ber24]. In our proof of a basic nonlinear stability result (see Theorem 3.1),
it will suffice to get a leading order term plus a decaying remainder, and therefore we stop here.
(The Fefferman–Graham asymptotics are largely obtained via formal arguments at ρ = 0 and thus
of a different flavor; see §1.3.3 below.)

We emphasize that the proofs of the (higher order) energy estimates in Step 1 do not rely on
any particular structure of the underlying operator beyond the fact that it is built from τ∂τ , τ∂x; in
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particular, they apply immediately to tensorial wave equations (with arbitrary lower order terms) as
well. Similarly, the arguments in Step 2 only rely on the properties of the indicial family I(λ), which
in the case of tensorial equations is a polynomial with values in square matrices of the appropriate
dimension; the asymptotic behavior of φ is then determined by the indicial roots (λ ∈ C with
det I(λ) = 0) and the corresponding spaces ker I(λ) of indicial solutions.5

This approach to linear decay estimates can easily be combined with simple nonlinear methods
(Moser-type product estimates, tame estimates combined with bootstrap arguments or a Nash–
Moser iteration) to show the small data global well-posedness of suitable nonlinear equations,
where ‘suitable’ refers to the requirement that the nonlinear terms, when applied to φ of the
form (1.14) given by linear theory, produce decaying spacetime terms. (A simple toy example
is �φ = (τ∂τφ)(τ∂xφ).) The proof of tame estimates in the present paper is essentially straight-
forward, although it does cause a significant bookkeeping overhead; thus we shall not comment on
these standard nonlinear issues in the remainder of this introduction, instead referring the interested
reader directly to §3.2.

1.2.2. Expanding regions of de Sitter black hole spacetimes. We wish to apply a similar approach
in the expanding region of SdS and KdS spacetimes. As a consequence of the structure (1.4), the
scalar wave operator �gm will again be a 0-differential operator, i.e. built from τ∂τ , τ∂x, but its

coefficients will no longer be smooth in (τ, x) (i.e. on M) but only in ρ,R, ω (i.e. on M̆), as defined
in (1.5). The expressions for τ∂τ , τ∂x in terms of ρ,R, ω are linear combinations of

ρ∂ρ, ρR∂R, ρ∂ω, (1.15)

where we schematically write ∂ω for derivatives on S2. (In R & 1, i.e. in the cosmological region
far from i+ ≈ K, these are ρ∂ρ ∼ τ∂τ and ρ∂R, ρ∂ω ∼ τ∂x; on the other hand, in ρ & 1, i.e. far
from the conformal boundary, they are ∂ρ ∼ ∂r̃, R∂R ∼ ∂t̃, and ∂ω, i.e. the natural derivatives for
analysis in spatially compact regions of a(n asymptotically) stationary black hole spacetime.) The
wave operator is thus of the form

�gm =
∑

i+j+|γ|≤2

`ijγ(ρ,R, ω)(ρ∂ρ)
i(ρR∂R)j(ρ∂ω)γ , `ijγ ∈ C∞([0, ρ̄]ρ × [0, R0]R × S2).

(Here ρ̄, R0 > 0. The key point is that the coefficients `ijγ are smooth down to ρ = 0 and R = 0.)

Analogously to (1.10), we consider an initial value problem for

�gmφ = 0,

with initial data posed at ρ = ρ0 > 0 (i.e. r̃ = ρ−1
0 ), which we assume to be a spacelike hypersurface

as in Figure 1.1; this happens for sufficiently large r̃. The analogues of the 2 steps in §1.2.1 are as
follows. (For easier readability, we are imprecise with the specification of domains of integrations
etc. below; they are to be taken according to domain of dependence considerations.)

Step 1.1. Basic energy estimate. Since we now need to distinguish weights near the black hole
(K) from weights at the conformal boundary (I+), we work with doubly weighted norms

‖φ‖2ρ−NRαH1
0,b

:=

∫
S2

∫ R0

0

∫ ρ0

0

|ρNR−α(ρ∂ρ, ρR∂R, ρ∂ω)≤1φ|2 dρ

ρ

dR

R
d/g.

(The notation reflects the 0-nature—i.e. the vanishing—of the derivatives (1.15) at ρ = 0, and the
b-nature—i.e. the tangency to R = 0—at R = 0. Note also that the integral over ρ = ρ0 without

5In full generality, the indicial roots may depend on x, as they do in the setting of Remark 1.7. This does not
happen in the settings considered in the present paper. Asymptotic expansions in the presence of variable indicial

roots are studied in [KM13].
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the ρ∂ρ-derivative matches (1.6).) For fixed α, given by the decay rate (or growth) of the initial
data of φ, there then exists N so that

‖φ‖ρ−NRαH1
0,b
. data.

The initial data norm here is the RαH1
b ⊕RαH0

b-norm. For the proof of this estimate, one can use
the (future timelike) vector multiplier −R−2αρ2Nρ∂ρ for which the bulk term (deformation tensor)
has a good sign when N is large enough. (See Step 1 in the proof of Proposition 3.11.)

Step 1.2. Higher regularity. This step is completely analogous to before: one now considers the
system of commuted equations satisfied by ρ∂ρφ, R∂Rφ, ∂ωφ (which away from R = 0 are equivalent
to τ∂τφ, ∂xφ as known from the de Sitter discussion, and away from ρ = 0 to ∂r̃φ, ∂t̃φ, ∂ωφ). Due
entirely to structural properties of the vector fields (1.15) in relation to the vector fields ρ∂ρ, R∂R,
∂ω, this system has, at worst, a lower triangular structure analogous to (1.13). This gives

‖φ‖2
ρ−NRαH1;k

0,b;b

:=
∑

i+j+|γ|≤k

‖(ρ∂ρ)i(R∂R)j∂γωφ‖2ρ−NRαH1
0,b
. data,

where N is fixed and k is only limited by the regularity of the initial data. (See Step 2 in the proof
of Proposition 3.11.)

Step 2. Decay. We can now regard all derivatives in the expression for �gm except for those only
involving ρ∂ρ as error terms. That is, we rewrite the equation for φ as

I(ρ∂ρ, R, ω)φ = error ∈ ρ−N+1RαH1;k−2
0,b;b , I(ρ∂ρ, R, ω) :=

2∑
i=0

`i00(0, R, ω)(ρ∂ρ)
i.

This is a family of ODEs in ρ with parametric dependence on R,ω, and can be integrated from
initial data (or indeed from ρ = ρ1 for any ρ1 ∈ (0, ρ0)). Since gm and gdS agree to leading order
at the conformal boundary ρ = 0, the indicial operator is in fact the same as for the wave equation
on de Sitter space (and in the toy model under consideration here independent of R,ω). Therefore,
the asymptotic behavior of φ = φ(ρ,R, ω) at ρ = 0 is fully determined by the indicial roots (here
0, 3). In the present case, if −N < 0 < −N + 1, we encounter the indicial root 0 and thus obtain

φ(ρ,R, ω) ≡ φ0(R,ω) mod ρ−N+1RαH1;k−2
0,b;b , φ0 ∈ RαHk−2

b .

(See Proposition 3.13 for details.) The only differences to the de Sitter setting are thus:

(1) the expansion is in terms of powers of ρ, not τ = ρR;
(2) the terms in the expansion do not lie in standard Sobolev spaces in x, but in RαHk

b (with
the same α for all terms in the expansion).

We stress that the asymptotics of φ at K = {R = 0} and I+ = {ρ = 0} are completely decoupled:
the decay rate α (or growth rate, if negative) of the initial data at K propagates along K, but it has
no bearing on the powers of ρ appearing in the asymptotic expansion at the conformal boundary.

1.3. The Einstein equations, gauges, constraint damping. Analogously to §1.2, we first con-
sider the de Sitter setting (in (3 + 1) dimensions) before explaining the simple modifications (given
the framework explained in §1.2.2) required for the Schwarzschild–de Sitter case.

1.3.1. de Sitter space. The Einstein vacuum equations (1.1) being nonlinear, we first consider their
linearization

LgdS := DgdSRic− Λ

around gdS; this is 1
2 times �gdS

+ 2RgdS − δ∗gdSδgdSGgdS − 2Λ where (�gu)µν = −gκλuµν;κλ is

the tensor wave operator, RgdS
is a curvature operator, and we write (δ∗gω)µν = 1

2 (ωµ;ν + ων;µ),

(δgh)µ = −gκλhµκ;λ, and Ggh = h− 1
2g trg h.
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Expressing metric perturbations in (the symmetric second tensor power of) the frame dτ
τ , dxi

τ
(i = 1, 2, 3), one can then write LgdS

as a matrix of 0-differential operators (i.e. built from τ∂τ , τ∂x).
(It is not of wave type and not principally scalar, due to gauge issues addressed below.) The indicial
family I(LgdS

, λ) is correspondingly a matrix-valued second order polynomial in λ (see (4.16) for the
explicit expression). It is not invertible for any λ, corresponding to the infinitesimal diffeomorphism
invariance of the linearized Einstein equations, i.e. LgdS ◦ δ∗gdS = 0 (so ran I(δ∗gdS , λ) ⊂ ker I(LgdS , λ)
for all λ). Since one wishes to disregard infinitesimal diffeomorphisms (Lie derivatives) as unphysical
and expects to be able to eliminate them by suitable gauge choices, the more pertinent question is
then to characterize the quotient space

ker I(LgdS , λ)/ ran I(δ∗gdS , λ). (1.16)

This is a simple problem in linear algebra and solved in Lemma 4.10. The upshot is that this space
(with a mild modification required for the special value λ = −1) is trivial unless λ = 0, 3.6 (This
is already highly suggestive of the fact that the asymptotic degrees of freedom of perturbations
of de Sitter space are the coefficients g(0), g(3) in expansions such as (1.9).) Furthermore, the

quotient space for λ = 0, 3 is spanned by tangential-tangential tensors hij
dxi

τ
dxj

τ which are trace-free

(
∑3
i=1 hii = 0). For now, our aim is to understand the nonlinear stability, in particular asymptotics

and decay (however mild) towards τ = 0, and thus we focus on the indicial root λ = 0. Since the
indicial family governs asymptotics at each point of the conformal boundary individually, one may
thus reasonably expect that a perturbation of de Sitter space asymptotes to a metric of the form

gdS + h0 = −dτ2

τ2
+ τ−2(dx2 + h0,ij(x)dxi dxj), h0 = h0,ij(x)

dxi

τ

dxj

τ
. (1.17)

To go beyond heuristics, we need to supplement the (linearized) Einstein equations with a gauge
condition in order to turn them into a wave equation admitting a well-posed initial value problem.

Gauges, I: eliminating non-decaying pure gauge solutions. We deal with the diffeomorphism
invariance by working with a (generalized) harmonic gauge. To motivate our particular choice,
consider first the simple wave map (or DeTurck [DeT82]) gauge

Υµ(g; gdS) := gµνg
κλ(Γ(g)νκλ − Γ(gdS)νκλ) = 0. (1.18)

(This is a well-defined 1-form since the difference of two connections is a tensor; see (3.2) for a
manifestly covariant expression.) The standard procedure for solving Ric(g)− Λg = 0 in the gauge
Υ(g; gdS) = 0 is then to consider the gauge-fixed Einstein equation

P0(g) = Ric(g)− Λg − δ∗gΥ(g; gdS) = 0.

Given initial data γ, k, one then constructs Cauchy data for g inducing γ, k at ρ = ρ0 for which
moreover Υ(g; gdS) = 0 at ρ = ρ0; once one has solved P0(g) = 0, the constraint equations imply
that also the transversal derivative of Υ(g; gdS) at ρ = ρ0 vanishes, and since the second Bianchi
identity δgGgRic(g) = 0 implies the decoupled equation δgGgδ

∗
gΥ(g; gdS) = 0, we conclude that

Υ(g; gdS) = 0 and thus Ric(g)− Λg = 0.

Consider now the linearization L0 := DgdSP0. (This equals 1
2�gdS + RgdS −Λ and is thus a wave

operator on symmetric 2-tensors.) Let us determine the residual gauge freedom by computing those
indicial solutions which are ‘pure gauge’: this amounts to computing the indicial roots of

I
(
D1|gdS

Υ(·; gdS) ◦ δ∗gdS , λ
)

= I(−δgdSGgdS ◦ δ∗gdS , λ). (1.19)

It turns out that λ = 1
2 (3−

√
33) ∈ (−2,−1) is one of them, with indicial solution denoted ω. Thus,

solutions of L0h = 0 typically feature τλ growth (with spatial profile an x-dependent multiple of the
symmetric 2-tensor I(δ∗gdS

, λ)ω).

6We argue that this should be regarded as the correct statement of mode stability in the de Sitter context!
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It is advantageous (see also Remark 1.8 below) to devise a better gauge condition, namely one
for which all ‘pure gauge’ indicial roots have Reλ > 0. This would ensure that, modulo decaying
remainders, solutions of L0h = 0 are free of non-decaying gauge artefacts (and thus should be of

the form h0,ij(x)dxi

τ
dxj

τ + o(1), following the previous discussion). We arrange this by working with
the gauge condition

ΥE(g; gdS) := Υ(g; gdS) + EgdS(g − gdS) = 0,

where EgdS
is a suitably chosen bundle map mapping 1-forms to symmetric 2-tensors; the require-

ment is simply that ‘pure gauge mode stability holds’, i.e. all indicial roots of (1.19) with ΥE in
place of Υ are all positive. A possible choice for EgdS is given in (3.2).7

Remark 1.8 (Harmonic gauge). In [HV18, Appendix C], the nonlinear stability of the static patch

of de Sitter space, or more precisely of the slightly larger region |x|
τ < 1 + δ, is proved using an

unmodified harmonic gauge. The indicial root 1
2 (3−

√
33) arises there as a resonance. The nonlinear

iteration scheme of [HV18] is capable of dealing with growing modes of the linearized equation by
means of a black-box mechanism which, from a growing pure gauge mode δ∗ω, computes a 1-form
modification θ = θ(ω) of the gauge condition so that in the gauge condition Υ − θ = 0, the mode
δ∗ω does not arise at that particular iteration step. (The modification θ in which global stability
ultimately holds is thus part of the unknown.) — In the present setting, where we are interested in
the stability of a region of de Sitter space which contains a nonempty open subset of the conformal
boundary, the required gauge modifications would need to lie in an infinite-dimensional space in order
to eliminate the x-dependent growing mode contribution δ∗ω at all points (0, x) on the conformal
boundary at once. It is, however, not clear at present how to implement the black-box mechanism
in this infinite-dimensional setting in a sufficiently robust manner so that it applies in a nonlinear
iteration scheme.

Remark 1.9 (Ringström’s gauge, I). In [Rin08, (46)–(50)], Ringström introduces a gauge condition
which is expressed in the particular global coordinate system (− log τ, x), namely gαβΓ(g)µαβ −
3g0µ = 0. (Since gαβdS Γ(gdS)µαβ = −3δ0µ = 3(gdS)0µ, this gauge condition, at least for metrics with

g0µ = −δ0µ + o(1), is equivalent to gαβΓ(g)µαβ − gαβdS Γ(gdS)µαβ = 0.) While somewhat similar
to (1.18), it has the conceptual disadvantage of not being covariant. Nonetheless, pure gauge mode
stability does hold for this gauge (see Remark 3.8), albeit just barely since 0 is an indicial root.

Remark 1.10 (Weak global stability via patching static patches). In the context of Remark 1.9, we
remark that one could modify the nonlinear stability proof of [HV18, Appendix C] to take place in
Ringström’s gauge (and with constraint damping, discussed below); one could then dispense of all
gauge modifications (i.e. work in the fixed gauge), and allow the final metric to deviate from the
de Sitter model. Applying such a result on each static patch (parameterized by the point (0, x) on
the conformal boundary) separately, one would thus obtain a global stability result for de Sitter
space since all perturbed static patches would automatically fit together. However, the regularity of
the resulting solution would only be b-regularity in each static patch, meaning 0-regularity globally,
which is far too weak to draw conclusions such as strong asymptotic expansions (1.7). See however
[HV15, §4.5] for such an approach for the solution of nonlinear toy models.

Gauges, II: adjusting the background metric. For the linearization of

P1(g) := Ric(g)− Λg − δ∗gΥE(g; gdS) (1.20)

around g = gdS, the ‘physical’ indicial root at 0 (cf. the discussion following (1.16)) persists, and

indeed one may expect solutions to asymptote to some tensor h0 = h0,ij(x)dxi

τ
dxj

τ . (It turns out that

7There is a small caveat, namely −1 is an indicial root, regardless of the choice of gauge modification, since

(∂xi )
[ = τ−2dxi = τ−1 dxi

τ
(corresponding to spatial translations) is a Killing 1-form on de Sitter space. Since

the symmetric gradient of this vanishes, it does not contribute non-decaying terms to solutions of the linearized

gauge-fixed Einstein equations. See §3.1.1.
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general solutions of the linearized equation still grow due to the existence of an indicial root which
is not physical or pure gauge, but rather arises from an unfortunate cancellation of the Einstein and
the gauge part of the operator; we deal with this using constraint damping below, and ignore this
issue for the time being.) In a nonlinear iteration scheme, one might, in the next step, expect to

have to consider the linearization of P1 around a metric of the form g = gdS + h0 + h̃ (cf. (1.17)),

with h̃ decaying towards τ = 0.

It turns out, however, that the gauge condition ΥE(gdS +h0 + h̃; gdS) = 0 (and also Υ(gdS +h0 +

h̃; gdS)) cannot hold, even to leading order at τ = 0 (i.e. ignoring h̃), for general h0.8 The idea is
thus to replace the background metric gdS, which no longer captures the correct final geometry, by
the new final geometry gdS + h0. We implement this by regarding the leading order term h0 and
the decaying tail h̃ as separate unknowns, thus considering

P2(h0, h̃) := Ric(g)− Λg − δ∗gΥE(g; g0), where g = gdS + h0 + h̃, g0 = gdS + h0.

For any fixed h0, this is a quasilinear wave equation for h̃. The change of the final background metric
from gdS to gdS + h0 couples to the decaying remainder h̃ of the spacetime metric when evaluating
the gauge 1-form ΥE ; this necessitates the introduction of a further, decaying, gauge modification
θ. (Concretely, θ will lie in τβHk

b ([0, 1)× T3
x) for some β ∈ (0, 1).) See Lemma 3.15.

Remark 1.11 (Ringström’s gauge, II). An advantage of Ringström’s gauge [Rin08, (46)–(50)] is that
it is satisfied to leading order at τ = 0 for all metrics of the form gdS + h0. Thus, no adjustments
of the gauge condition at τ = 0 are needed in this case. The fact that in our more geometric
gauge we do adjust the background metric ultimately leads to significantly simpler computations of
the indicial families (which end up being independent of the background metric in suitable bundle
splittings, see (3.29)), at a very minor technical expense (essentially Lemma 3.15).

Constraint damping. For now, we return to the linearization L1 of the operator (1.20) around
g = gdS. In the above discussion, we have in effect assumed that solutions of L1h = 0 are sums of
physical solutions (as in (1.17)), pure gauge solutions, and decaying remainders. This is, however,

not true: there is a negative indicial root, again at λ = 1
2 (3 −

√
33) ∈ (−2,−1), for which the

corresponding indicial solution neither lies in ker I(DgdSRic−Λ, λ) nor satisfies the linearized gauge
condition. The corresponding growing (O(τλ)) solution would arise for general initial data, which
one does need to consider in a Nash–Moser iteration scheme for the solution of the nonlinear equation
(or when solving the gauge-fixed Einstein equations numerically, as already pointed out in [Rin08]).

The fix, going back to [BFHR99, GCHMG05, Pre05], is to modify the symmetric gradient δ∗g
coupling the gauge condition and the Ricci tensor. This was also used in an ad hoc fashion in
[Rin08, (51)–(54)], and played a crucial role in the nonlinear stability proof [HV18]. (In a bootstrap
approach, it can be avoided [Fan21], but since it is easy to arrange, we might as well arrange it.)

To wit, we replace δ∗g in (1.20) by δ̃∗g := δ∗g + Ẽ for a suitably chosen bundle map from symmetric
2-tensors to 1-forms. The only requirement is that

all indicial roots of I(δgdSGgdS ◦ δ̃∗gdS , λ) are positive. (1.21)

Possible choices of Ẽ are given in (3.4) (corresponding to [Rin08, (51)–(54)]) or [HV18, (C.8)] (see

Remark 3.7). We then consider the linearization L̃1 of

P̃1(g) := Ric(g)− Λg − δ̃∗gΥE(g; gdS).

8More precisely, in the second step of the iteration, h(0) = h0,ijdx
i dxj is trace-free with respect to dx2, as

discussed before (1.17); this saves the gauge condition Υ = 0 at τ = 0. But the next step would involve the

linearization around gdS + h0 + h′0 where h′0 is trace-free with respect to dx2 + h(0); but h(0) + h′
(0)

is typically no

longer trace-free with respect to dx2. This is why we need to study the gauge condition for gdS + h0 assuming only
that h0 is tangential-tangential.
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The utility of (1.21) is the following: if λ < 0 and I(L̃1, λ)h = 0, then the linearized second Bianchi

identity implies that also I(δgdS
GgdS

◦ δ̃∗gdS , λ)η = 0 where η = I(D1|gdSΥE(·; gdS), λ)h measures the
extent to which h violates the linearized gauge condition. But then η must vanish in view of (1.21),
and thus h is in fact automatically an indicial solution of the linearized Einstein vacuum equations,
i.e. I(DgdS

Ric − Λ, λ)h = 0. Since λ < 0, it is pure gauge, and since the gauge condition disallows
growing pure gauge solution, it must vanish.

For the gauge-fixed Einstein equation with gauge modification and constraint damping,

P (h0, h̃, θ) := Ric(g)− Λg − δ̃∗g(ΥE(g; g0)− θ),

where g = gdS + h0 + h̃, g0 = gdS + h0,
(1.22)

we thus expect that all indicial roots are ≥ 0; and this is indeed the case. See Lemma 3.9.

Using the analytic techniques explained in §1.2, one can then prove the existence of a global
solution h0, h̃, θ of P (h0, h̃, θ) = 0 with given (gauged) initial data close to those of de Sitter space.
(See Theorem 3.1 for the black hole case.) The strategy is to obtain precise asymptotics for solutions

of the linearization of P in h̃ (which is a tensorial wave equation), read off updates for h0 (related to

the final spatial metric), h̃ (the decaying remainder of the metric perturbation), and θ (the decaying
gauge modification), and close the iteration using a Nash–Moser scheme.

1.3.2. Expanding regions of de Sitter black hole spacetimes. The considerations in §1.3.1 are entirely
on the level of indicial roots (except for the adjustment of the background metric). Using the analytic
modifications needed to pass from de Sitter to KdS already discussed in §1.2.2, it is thus clear that
we can prove the nonlinear stability of the expanding region of KdS using the same nonlinear
operator (1.22), except we need to replace gdS by the KdS metric gb. See Theorem 3.1 for the
resulting nonlinear small data global existence result.

Remark 1.12 (Ringström’s gauge, III). It is conceivable that one can prove the nonlinear stability
of the expanding region entirely in Ringström’s gauge, though for reasons of conceptual clarity (as
explained in Remarks 1.9 and 1.11) we do not pursue this here.

1.3.3. Fefferman–Graham type expansion at the conformal boundary. Having solved the Einstein
equations (1.1) in a gauge ΥE(g; g0) − θ = 0, the spacetime metric g is typically not conformally
smooth. At this point, we disregard the evolution character of the initial value problem, and instead
aim to construct diffeomorphisms φ = Id +O(ρβ) (β ∈ (0, 1)) so that φ∗g becomes as regular as
possible at the conformal boundary ρ = 0. We do this in two steps.

Step 1. Simplify the gauge condition. The idea is that, for φ = eV with V = O(ρβ) a small 0-vector
field, ΥE(φ∗g; g0) differs from ΥE(g; g0) by a term which is roughly equal to D1|gΥE(LV g; g0); this is
a wave operator acting on V . By inverting the indicial operator of this wave operator, one can then
find successively better choices of V so that ΥE(φ∗g; g0) has successively higher orders of vanishing
at ρ = 0. A Borel lemma type argument produces a diffeomorphism φ with ΥE(φ∗g; g0) ≡ 0
(i.e. infinite order vanishing at ρ = 0); see Proposition 4.4. Once this is done, an indicial root
based analysis of the gauge-fixed Einstein equations shows that φ∗g is log-smooth down to ρ = 0
(Lemma 4.7).

Step 2. Obtaining Fefferman–Graham asymptotics. This part of the argument applies to any
solution of Ric(g)−Λg = 0 which asymptotes to an asymptotically de Sitter metric at the conformal
boundary and is log-smooth there. To wit, we consider each term in the generalized Taylor expansion
of g separately (starting with the ρ(log ρ)m terms); using the Einstein equation and simple linear
algebra based on the description of (1.16), one can easily eliminate all ρ1 and all ρ2(log ρ)m, m ≥ 1,
terms. The ρ3 and ρ4 levels are more delicate due to the fact that the solvability theory for
I(DRic − Λ, λ)h = f for λ = 3, 4 is somewhat delicate and requires f to have a special structure
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which must be verified. The elimination of log terms at subsequent levels (ρ5, ρ6, etc.) is again
straightforward using the triviality of the quotient space (1.16). The details are given in (the proof
of) Proposition 4.15.

The full nonlinear stability result for the Einstein equations is then Theorem 4.2.

1.4. Outline of the paper. In §2, we discuss 0-, b-, and (0,b)-operators (as motivated in §1.2)
in more detail, and how to describe de Sitter and Kerr–de Sitter metrics using related notions.
Furthermore, we define the corresponding weighted Sobolev spaces and prove some of their properties
as required for linear and nonlinear analysis.

In §3, we analyze the gauge-fixed Einstein vacuum equations (in the form motivated in §1.3.1)
in detail. This includes the study of the indicial roots of their linearizations, and the proofs of
(higher order) energy estimates and sharp asymptotics, with tame estimates, for solutions of their
linearizations (following the outline given in §§1.2.1–1.2.2). This section concludes with a proof of
Theorem 3.1, i.e. small data global existence for the gauge-fixed Einstein equations.

In §4, we demonstrate how to improve the asymptotic behavior of the spacetime metrics g pro-
duced by Theorem 3.1 when they arise from initial data satisfying the constraint equations (and
thus g satisfies the Einstein vacuum equations). The main result are the precise asymptotics stated
in Theorem 4.2.

Acknowledgments. The authors would like to thank Grigorios Fournodavlos and Volker Schlue
for many fruitful conversations on the topic of this paper. A.V. gratefully acknowledges support from
the National Science Foundation under grant number DMS-2247004 as well as a Simons Visiting
Professorship at the Mathematisches Forschungsinstitut Oberwolfach.

2. Kerr–de Sitter space and 0-b-structures

2.1. Kerr–de Sitter metrics as asymptotically de Sitter metrics. Recall from (1.2) that the
half space model of (1 + 3)-dimensional de Sitter space is

M◦ := (0,∞)τ × R3
x, gdS :=

−dτ2 + dx2

τ2
. (2.1)

(This is more commonly expressed in terms of τ = e−t∗ as −dt2∗ + e−2t∗dx2.) The Kerr–de Sitter
metric gb [Car68] with parameters b = (m, a), m, a ∈ R, and Λ = 3 is

gb = −µ(r)

%2

(
dt− a sin2 θ

∆0
dφ
)2

+ %2
( dr2

µ(r)
+

dθ2

∆θ

)
+

∆θ sin2 θ

%2

(r2 + a2

∆0
dφ− adt

)2

,

µ := (r2 + a2)(1− r2)− 2mr, ∆0 := 1 + a2, ∆θ := 1 + a2 cos2 θ, %2 := r2 + a2 cos2 θ.

(2.2)

(This differs from the expression in Boyer–Lindquist coordinates by a constant rescaling of t by ∆0;
cf. [Sch15, (5.2)–(5.4)].) Both metrics satisfy (1.1) with Λ = 3. To explain the sense in which gb
can be regarded as a black hole in de Sitter space, tending to a point p on the conformal boundary
of de Sitter space (2.1), say (τ, x) = (0, 0) at p, we first rewrite the dS metric in two steps. The first
step, following [Hin21, §2.1], is to introduce polar coordinates

R := |x| ∈ [0,∞), ω :=
x

|x|
∈ S2, (2.3)

so dx2 = dR2 +R2/g where /g is the standard metric on S2, and then defining

t̃ := −1

2
log(R2 − τ2), r̃ :=

R

τ
. (2.4)
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(This change of variables is valid outside the cosmological region, not in the whole region where the

metric (2.1) is defined.) Write θ̃, φ̃ for polar coordinates on S2. In the coordinates (t̃, r̃, θ̃, φ̃), we
then have

gdS = −(r̃2 − 1)−1dr̃2 + (r̃2 − 1) dt̃2 + r̃2(dθ̃2 + sin2 θ̃ dφ̃2). (2.5)

The second step, following [Sch15, Appendix B], is to define t, r, θ, φ in r̃ > 1 via9

t̃ = t, r̃2 =
1

∆0
(r2∆θ + a2 sin2 θ), r̃ cos θ̃ = r cos θ, φ̃ = φ− at. (2.6)

In the ‘co-rotating coordinates’ t, r, θ, φ, one then finds10

gdS = (r2 + a2 sin2 θ − 1)dt2 +
%2

(r2 + a2)(1− r2)
dr2 +

%2

∆θ
dθ2 +

r2 + a2

∆0
sin2 θ dφ2

− 2a
r2 + a2

∆0
sin2 θ dtdφ.

Comparing this with (2.2), we find that

gb = gdS + hb, hb =
2mr

%2

(
dt− a sin2 θ

∆0
dφ
)2

+
2mr%2

µ|m=0µ
dr2. (2.7)

Note that the coefficients of hb are of size r−1, and the coefficient of dr2 is of size r−5.

We interpret this on a structural level as follows. Define first the manifold

M := [0,∞)τ ×X, X = R3
x, (2.8)

whose boundary ∂M = τ−1(0) is the future conformal boundary of dS. We recall from [MM87] that

the 0-cotangent bundle is the smooth vector bundle 0T ∗M → M with frame dτ
τ , dxi

τ (i = 1, 2, 3).
In the present paper, we always work in the splitting

0T ∗M = R
dτ

τ
⊕ τ−1T ∗X. (2.9)

Correspondingly, we split the second symmetric tensor power of this bundle via

S2 0T ∗M = R
dτ2

τ2
⊕
(

2
dτ

τ
⊗s τ−1T ∗X

)
⊕ τ−2S2T ∗X. (2.10)

In this splitting, the dS metric is thus given by (−1, 0,dx2).

Next, blow up the point p ∈ M given by (τ, x) = (0, 0). This produces a manifold with cor-
ners [Mel96], in which we will only work in the region where |x| > τ . Concretely, we introduce
(consistently with (2.3)) the coordinates

R := |x| ∈ [0,∞), ρ :=
τ

|x|
∈ [0, 1), ω :=

x

|x|
∈ S2.

In terms of R, ρ, the expressions in (2.4) become

t̃ = − logR− 1

2
log(1− ρ2), r̃ = ρ−1. (2.11)

9The equation for r̃2 can be solved for r using sin2 θ = 1− r̃2 cos2 θ̃
r2

; explicitly,

r2 =
r̃2(1 + a2 sin2 θ̃)− a2

2
+

√√√√( r̃2(1 + a2 sin2 θ̃)− a2

2

)2

+ a2r̃2 cos2 θ̃.

Moreover, (1 + a2 cos2 θ)r2 = (1 + a2)r̃2 − a2 sin2 θ ≥ (1 + a2)r̃2 − a2 sin2 θ r̃2 = (1 + a2 cos2 θ)r̃2 implies that r ≥ r̃,
and thus θ ∈ (0, π) is well-defined if we require θ − π

2
have the same sign as θ̃ − π

2
.

10The coefficient of dθ2 is erroneously given as %2

∆2
θ

in [Sch15, (B.6)], [Hin21, §4.1].
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Definition 2.1 (Manifold). We define

M̆ := [0, ρ̄]ρ × [0,∞)R × S2
ω, (2.12)

where ρ̄ = ρ̄(b) ∈ (0, 1) is chosen so that gb is well-defined and d(ρ−1) is timelike on M̆◦ :=
(0, ρ̄]× (0,∞)× S2. We denote the blow-down map by

β : M̆ →M, (ρ,R, ω) 7→ (τ, x) = (ρR, ωR),

and the boundary hypersurfaces of M̆ by

I+ := ρ−1(0), K := R−1(0). (2.13)

We moreover define I+
R0

:= I+ ∩ {R ≤ R0} = [0, R0]× S2 ⊂ I+.

See Figure 2.1. The requirements on ρ̄ > 0 in Definition 2.1 are satisfied for all sufficiently small

ρ̄ since d(ρ−1)
ρ−1 = dr̃

r̃ is timelike, and indeed has squared norm 1 − r̃−2 ≥ 3
4 for gdS in r̃ > 2 (by

inspection of (2.5)); in view of the decay of hb in (2.7) as r →∞ (equivalently, r̃ →∞), this timelike
character persists for sufficiently small r̃−1.

τ = 0

τ

p

τ = c

x = x0

M̆

I+

K
τ = c

ρ = c

R = c

Figure 2.1. On the left: the de Sitter spacetime manifold M and its conformal
boundary at τ = 0; some level sets of τ are shown in red, and level sets of x in blue.
The image β(M̆) ⊂ M is shaded in gray. On the right: the blow-up [M ; {p}], the

manifold with corners M̆ (in gray), and level sets of τ (dashed red), R = |x| (blue),
ρ (green).

The benefit of working with M̆ for the purpose of studying the KdS metric is thus that smooth
functions of r̃−1, say, are smooth on M̆ , whereas they are singular on M near p; we return to this
below. Since τ = ρR and x = Rω, we can write elements of 0T ∗M as linear combinations (with

smooth coefficients on M̆) of dτ
τ = dρ

ρ −
dR
R , τ−1dR, and τ−1R dω, or equivalently in terms of dρ

ρ ,
dR
ρR , and dω

ρ . This motivates the following definition, which is studied further in §2.2 below.

Definition 2.2 (0-b-cotangent bundle). We define the 0-b-cotangent bundle over the manifold M̆
defined by (2.12) to be the direct sum

0,bT ∗M̆ := R
dρ

ρ
⊕ R

dR

ρR
⊕ ρ−1T ∗S2. (2.14)

By this we mean that 0,bT ∗M̆ = R ⊕ R ⊕ T ∗S2 as a vector bundle where R = M̆ × R is the
trivial bundle; and an element (a, b, η) with a, b ∈ R and η ∈ T ∗S2 is identified with the covector

adρ
ρ + bdR

ρR + ρ−1η ∈ T ∗M◦.

The above discussion shows that the identity map on T ∗M◦ over M̆◦ extends to a smooth bundle
isomorphism11

0,bT ∗M̆ ∼= β∗(0T ∗M) over M̆. (2.15)

11As an illustration, gdS is a smooth non-degenerate Lorentzian signature section of S2 0,bT ∗M̆ ; explicitly,

gdS = −
(dρ

ρ

)2
− 2ρ

dρ

ρ

dR

ρR
+ (1− ρ2)

(dR

ρR

)2
+

/g

ρ2
.
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From (2.11) and (2.6), it follows that e−t = e−t̃ = R
√

1− ρ2 and r−1 are smooth positive

multiples of R and ρ on M̆ . Therefore, the coefficients of hb in (2.7) in the frame r dt, dr
r , r dθ,

r dφ are smooth multiples of r−3 on M̆ ; and this persists in the frame r̃ dt̃, dr̃
r̃ , r̃ dθ̃, r̃ dφ̃. Since

r̃ dt̃ = −dR
ρR + dρ

1−ρ2 and dr̃
r̃ = −dρ

ρ , we conclude that in the decomposition of hb according to (2.14)

(or equivalently according to (2.10), i.e. into dτ2

τ2 , 2dτ
τ ⊗s

dxi

τ , dxi

τ ⊗s
dxj

τ ), each component is ρ3

times a smooth function on M̆ . Using (2.15), we can summarize our discussion as follows.

Lemma 2.3 (Structure of KdS and dS metrics). Define gdS by (2.1), and define gb as a metric on

M̆◦ by (2.2) via the coordinate transformations (2.3), (2.4), and (2.6). Then12 gb, gdS are smooth

Lorentzian signature sections of S2 0,bT ∗M̆ = β∗(S2 0T ∗M) over M̆ , and

gb − gdS ∈ ρ3C∞(M̆ ;S2 0,bT ∗M̆) = ρ3C∞
(
M̆ ;β∗(S2 0T ∗M)

)
.

Furthermore, dρ
ρ is uniformly timelike for gb in the sense that

0 > gb

(dρ

ρ
,

dρ

ρ

)
∈ C∞(M̆). (2.16)

The perturbations of gb arising in the solution of nonlinear stability problem will similarly be
considered as sections of β∗(S2 0T ∗M) with suitable regularity and decay properties on M̆ . For
concreteness, we fix the types of domains on which we will study perturbations of gb as follows:

Definition 2.4 (Domains with spacelike boundaries). We use the notation of Definition 2.1. Let
R0 ∈ (0,∞). For all ρ0 ∈ (0, ρ̄] so that Σ+

ρ0,R0
:= {ρ ≤ ρ0, ρ = R−1(ρ0R0− 1

2 (R0−R))} is spacelike
for gb, we set

Ωρ0,R0
:=
{

(ρ,R, ω) ∈ M̆ : ρ ≤ ρ0, R ≤ R0, ρ ≥ R−1
(
ρ0R0 − 1

2 (R0 −R)
)}
. (2.17)

We denote by Σρ0,R0 := {(ρ,R, ω) : ρ = ρ0, R ≤ R0} the initial boundary hypersurface of Ωρ0,R0 .
The final boundary hypersurface is Σ+

ρ0,R0
.

Note that the final inequality in the definition of Ωρ,R0 is equivalent to τ = ρR ≥ ρ0R0− 1
2 (R0−R);

the hypersurface Σ+
ρ0,R0

(which intersects τ = 0 at R = (1− 2ρ0)R0) is a spacelike hypersurface for
gdS, and therefore it is also one for gb in the region where ρ ≤ ρ0, provided ρ0 is sufficiently small.
Moreover, the future timelike vector field ∂r is outward pointing, and thus it is a final boundary
hypersurface for purposes of solving wave equations (i.e. no data need to be imposed there). We
will pose initial data at Σρ0,R0

. See Figure 2.2.

Σ
ρ0 ,R

0 ⊂ {ρ = ρ0}

Σ +
ρ
0 ,R

0

R = R0I+
(1−2ρ0)R0

K

Ωρ0,R0

Figure 2.2. Illustration of a domain Ωρ0,R0
⊂ M̆ , only showing the coordinates ρ,R.

12This sharpens [Hin21, §4.1] insofar as we now control gb, gdS and their difference uniformly down to K.
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2.2. Basics of 0-b-analysis; weighted b-Sobolev spaces. We now introduce the operator
classes and function spaces used in the analysis of the stability problem. For definiteness, we
work on the 4-dimensional manifold M̆ from Definition 2.1, although all notions and results in this
section admit straightforward generalizations to the case of general dimensions.

2.2.1. Vector fields and operators. The bundle dual to (2.14) is the 0-b-tangent bundle

0,bTM̆ = R(ρ∂ρ)⊕ R(ρR∂R)⊕ ρTS2.

The space of its smooth sections is denoted V0,b(M̆); it is spanned over C∞(M̆) by ρ∂ρ, ρR∂R,

and ρΩ where Ω ∈ V(S2). Thus, a smooth vector field V on M̆ is a 0-b-vector field (i.e. lies in

V0,b(M̆)) if and only if V vanishes at I+ = ρ−1(0) (hence the subscript ‘0’ [MM87]) and is tangent
to K = R−1(0) (hence the subscript ‘b’ [MM83, Mel93]).

Definition 2.5 (0-b-operators). For m ∈ N0, we write Diffm0,b(M̆) for the space of all differential

operators on M̆ which are finite sums of up to m-fold compositions of elements of V0,b(M̆). If

E → M̆ is a vector bundle, we write Diffm0,b(M̆ ;E) for operators C∞c (M̆◦;E) → C∞c (M̆◦;E) which
in each local trivialization of E are matrices of operators of class Diffm0,b.

In this paper, we only work with trivial(ized) bundles, and thus with matrices of scalar opera-
tors. A scalar operator can conversely be regarded as an operator on a trivialized bundle by acting
component-wise. We will henceforth only discuss scalar operators explicitly, leaving the straightfor-
ward notational modifications to operators on trivial(ized) bundles (and the simple generalization
to non-trivial bundles) to the reader.

By duality from (2.15), we can equivalently define V0,b(M̆) to be the C∞(M̆)-span of the set
{V |M̆◦ : V ∈ V0(M)} of 0-vector fields on M ; here V0(M) consists of all smooth vector fields on M
which vanish at ∂M , and we thus have V0(M) = C∞(M ; 0TM) where 0TM = R(τ∂τ )⊕ τTX is the
dual bundle to 0T ∗M in (2.9).

A larger class of operators is

Diffmb (M̆),

which is defined analogously to Diffm0,b(M̆) but using b-vector fields Vb(M̆), which are precisely

those smooth vector fields on M̆ which are tangent to all boundary hypersurfaces I+,K of M̆ .
Thus, Vb(M̆) is spanned over C∞(M̆) by ρ∂ρ, R∂R, and V(S2).13 One can also consider spaces of
weighted operators

RαρβDiffm0,b(M̆) = {RαρβL : L ∈ Diffm0,b(M̆)},

similarly for RαρβDiffmb (M̆). Elements of these spaces define bounded linear maps on C∞c (M̆◦).

Fixing a finite spanning set V = {Va} ⊂ V(S2) over C∞(S2) (e.g. rotation vector fields around

coordinate axes), we can express any L ∈ Diffm0,b(M̆) in the form

L =
∑

j+k+|α|≤m

`jkα(ρ,R, ω)(ρ∂ρ)
j(ρR∂R)k(ρV )α, `jkα ∈ C∞(M̆); (2.18)

here (ρV )α := (ρV1)α1(ρV2)α2 · · · . The indicial operator of L is defined by

I(L) :=
∑
j≤m

`j00(0, R, ω)(ρ∂ρ)
j ∈ Diffmb (M̆);

13The benefit of the definitions of V0,b, V0, Vb solely in terms of the smooth structure of M̆ is that it allows one to

determine frames for 0,bTM̆ in local coordinates on M̆ without the need for, say, change of variables computations.
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it is a family (parameterized by (R,ω) ∈ I+) of elements of Diffmb ([0,∞)ρ). We shall often regard
a function u = u(R,ω) as a function (ρ,R, ω) 7→ u(R,ω) (without spelling this out explicitly); with
this convention, we have `j00 − `j00|ρ=0 ∈ ρC∞. Since ρR∂R, ρVa ∈ ρVb, we thus conclude that

L− I(L) ∈ ρDiffmb (M̆),

that is, I(L) captures L to leading order at I+ as a b-differential operator. The indicial family is
obtained by formally conjugating I(L) by the Mellin transforming in ρ, thus

I(L, λ) :=
∑
j≤m

`j00(0, R, ω)λj .

For each (R,ω) ∈ I+, this is a polynomial in λ whose roots are called indicial roots. (They can
depend on (R,ω), though the indicial roots of all operators appearing in this paper will be constant
along I+.)

The wave operators of main interest in this paper will be of 0-b type, but their solutions will
be shown to be regular under application of b-vector fields (which are stronger). One underlying
structural reason is the following.

Lemma 2.6 (Ideal). V0,b(M̆) ⊂ Vb(M̆) is an ideal. That is, if V ∈ V0,b(M̆) and W ∈ Vb(M̆), then

[W,V ] ∈ V0,b(M̆).

Proof. If the conclusion holds for V , then it also holds for fV where f ∈ C∞(M̆) since [W, fV ] =
(Wf)V + f [W,V ], with both summands lying in V0,b. Similarly, if the conclusion holds for W ,

then for f ∈ C∞(M̆) we have [fW, V ] = f [W,V ] − (V f)W ; note then that V f ∈ ρC∞(M̆), and

therefore (V f)W ∈ ρVb(M̆) ⊂ V0,b(M̆). It thus suffices to consider V = ρ∂ρ, ρR∂R, ρVa and
W = ρ∂ρ, R∂R, Va, in which case the membership [W,V ] ∈ V0,b is straightforward to check. �

2.2.2. Function spaces. We fix on M̆ and I+ the (unweighted b-)densities |dρρ
dR
R d/g| and |dRR d/g|,

respectively.

Definition 2.7 (b- and (0,b)-spaces). Fix a finite spanning set V = {Va} ⊂ V(S2). Let Ω ⊂ M̆
be compact and equal to the closure of its interior Ω◦. Then for α, β ∈ R and k ∈ N0, we define
RαρβHk

b (Ω) to be the space of elements of L2
loc(Ω◦) with finite norm14

‖u‖RαρβHkb (Ω) :=
∑

j+l+|γ|≤k

‖R−αρ−β(ρ∂ρ)
j(R∂R)lV γu‖L2(Ω).

The space RαρβHk
0,b(Ω) is defined analogously but using (ρ∂ρ)

j(ρR∂R)l(ρV )γ ; and the space

RαρβCkb(Ω) is defined analogously but using the C0
b(Ω)-norm which is defined to be the sup norm on

the space C0
b(Ω) of all bounded continuous functions on Ω \ (K∪I+). We similarly define RαHk

b (U)

for precompact U ⊂ I+ with U = U◦, with norm

‖u‖RαHkb (U) :=
∑

l+|γ|≤k

‖R−α(R∂R)lV γu‖L2(U),

and analogously RαCkb(U).

When Ω ⊂ [0,∞)× U , operator classes with non-smooth coefficients are denoted

RαρβHk
b (Ω)Diffm0,b(Ω), RαHk

b (U)Diffm0,b(Ω);

14While this definition uses a concrete set ρ∂ρ, R∂R,V of vector fields to test for b-regularity, we remark that
any other finite set which spans the set Vb(Ω) of smooth vector fields tangent to I+ and K over C∞(Ω) produces

equivalent norms. Similarly, the functions R and ρ used as weights can be replaced by any smooth defining functions
of K and I+, respectively, without changing the norms (up to equivalence). In this sense, the function spaces defined
here only depend on the structure of Ω as a smooth manifold with corners.
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elements of these spaces are finite sums of products aL where a lies in the stated function space and
L ∈ Diffm0,b(Ω). (Recall here our convention of regarding a function of (R,ω) as a ρ-independent

function of (ρ,R, ω).) Given L ∈ RαρβHk
b (Ω)Diffm0,b(Ω), we define its norm as follows: there is a

unique way of writing

L =
∑

j+|γ|≤m

`jγ(τ∂τ )j(τ∂x)γ , `jγ ∈ RαρβHk
b (Ω),

and we then set

‖L‖RαρβHkb (Ω)Diffm0,b(Ω) :=
∑

j+|γ|≤m

‖`jγ‖RαρβHkb (Ω); (2.19)

similarly for L ∈ RαHk
b (U)Diffm0,b(Ω). Since Vb(M̆) is spanned over C∞(M̆) by τ∂τ , ρ−1τ∂xi = R∂xi ,

we can similarly define15 the norm of L ∈ RαρβHk
b (Ω)Diffmb (Ω) via

L =
∑

j+|γ|≤m

`jγ(τ∂τ )j(R∂x)γ =⇒ ‖L‖RαρβHkb (Ω)Diffmb (Ω) :=
∑

j+|γ|≤m

‖`jγ‖RαρβHkb (Ω). (2.20)

We next discuss the algebra properties of weighted b-Sobolev spaces. For concreteness, we
henceforth work only on U = I+

R0
:= I+ ∩ {R ≤ R0} = [0, R0]R × S2 and domains Ω = Ωρ0,R0 from

Definition 2.4. (In particular, [0,∞)ρ × U ⊃ Ω.) As a useful technical tool, we introduce extension

operators. We write Ċ∞(Ω) for the space of smooth functions which vanish to infinite order at
I+∪K; we stress that we do not require its elements to vanish at any other boundary hypersurfaces
of Ω.

Lemma 2.8 (Extension operators). Let 0 < R0 < R+ < R1, 0 < ρ0 < ρ+ < ρ1. Then there exists

a continuous linear map Ξ: Ċ∞(Ωρ0,R0
)→ Ċ∞(Ωρ1,R1

) with the following properties.

(1) (Extension.) For all u ∈ Ċ∞(Ωρ0,R0
), we have (Ξu)|Ωρ0,R0

= u.

(2) (Support.) For all u ∈ Ċ∞(Ωρ0,R0), we have supp(Ξu) ⊂ Ωρ+,R+ .

(3) (Boundedness.) Ξ defines a bounded map RαρβHk
b (Ωρ0,R0

) → RαρβHk
b (Ωρ1,R1

) for all
α, β ∈ R and k ∈ N0, similarly for weighted Ckb -spaces.

There exist extension operators Ċ∞(I+
R0

)→ Ċ∞(I+
R1

) with the analogous properties.

Proof. This is a variant of Seeley’s theorem [See64]. We only discuss the extension problem near the
boundary hypersurface y := R(1−2ρ)−R0(1−2ρ0) = 0 of Ωρ0,R0

, and thus consider u with support
in −δ ≤ y ≤ 0 and 0 ≤ ρ ≤ δ. (Local extension operators can be patched together using a partition
of unity.) Write r = − log ρ, and denote by ω ∈ R2, |ω| < 2, local coordinates on S2. Set B(0, 1) =
{ω ∈ R2 : |ω| < 1}. Then the norm of a function u ∈ C∞c ([− log δ,∞)r × (−δ, 0]y ×B(0, 1)ω) on Hb

and Cb spaces are L2-, resp. C0-norms of the derivatives of u along ∂r, ∂y, ∂ω. Fix χ ∈ C∞c ((−1, 0])
to be equal to 1 near 0, and with suppχ ⊂ (−min(δ, η), 0] for some small η > 0 fixed below. Set
then

ũ(r, y, ω) :=

{
u(r, y, ω), y < 0,∑∞
l=0 clχ(−y/δl)u(r,−y/δl, ω), y > 0,

where we take δl = 3−l and define cl via sin(π2 z) =
∑∞
l=0 clz

l. This ensures that
∑∞
l=0 clδ

−j
l = (−1)j

and
∑∞
l=0 |cl|δ

−j
l <∞ for all j ∈ N0, and thus ũ is smooth across y = 0. Moreover, by the support

property of χ, we have ũ = 0 for y ≥ η, which implies supp ũ is contained in (the intersection of
{r ≥ − log δ, ω ∈ B(0, 1)} with) Ωρ+,R+

when η is sufficiently small. The boundedness of u 7→ ũ on
Hb- and Cb-spaces follows by direct differentiation. �

15We take advantage of the particular geometry of M̆ here. A more systematic approach towards defining a norm,
which ends up giving an equivalent norm, is to cover Ω by coordinate charts and to sum the norms of the coefficients

in the local coordinate chart expressions of L as a b-differential operator.
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Lemma 2.9 (Boundedness, restriction, and algebra properties). Write dm := dm+1
2 e for the small-

est integer larger than m
2 , so d4 = 3 and d3 = 2. We write Dp

b for any p-fold composition (p ∈ N0)

of elements of {ρ∂ρ, R∂R, Va}, resp. {R∂R, Va} acting on a function on Ω = Ωρ0,R0 , resp. U = I+
R0

.

(1) (Sobolev embedding.) For every k ∈ N0, there exist constants CSΩ,k, CSU,k so that

‖u‖Ckb (Ω) ≤ CSΩ,k‖u‖Hk+d4b (Ω)
, ‖v‖Ckb (U) ≤ CSU,k‖v‖Hk+d3b (U)

. (2.21)

(2) (Restrictions.) Let ρ1 ∈ (0, ρ0], and write Σ := Ωρ0,R0 ∩{ρ = ρ1}. Then the restriction map
u 7→ u|Σ defines a bounded linear map

Hk
b (Ω)→ Hk−1

b (Σ), k ∈ N. (2.22)

(3) (Estimates for products.) For every k ∈ N0, there exist constants CΩ,k, CU,k, and CΩ,U,k
so that for all functions u1, u2 on Ω and v1, v2 on U , and for a, b ∈ N0 with a + b = k, we
have

‖(Da
bu1)(Db

bu2)‖L2(Ω) ≤ Ck,Ω
(
‖u1‖Hd4b (Ω)

‖u2‖Hkb (Ω) + ‖u1‖Hk+d4b (Ω)
‖u2‖L2(Ω)

)
, (2.23a)

‖(Da
bv1)(Db

bv2)‖L2(U) ≤ Ck,U
(
‖v1‖Hd3b (U)

‖v2‖Hkb (U) + ‖v1‖Hk+d3b (U)
‖v2‖L2(U)

)
, (2.23b)

‖(Da
bv1)(Db

bu2)‖L2(Ω) ≤ Ck,Ω,U
(
‖v1‖Hd3b (U)

‖u2‖Hkb (U) + ‖v1‖Hk+d3b (Ω)
‖u2‖L2(Ω)

)
. (2.23c)

(4) (Estimates for nonlinear expressions.) Let δ > 0, and let F : [−δ, δ] → R be a smooth
function which vanishes at 0. Then for all u ∈ Hk

b (Ω) with16 ‖u‖
H
d4
b

≤ δ/CSΩ,d4 , we have

F (u) ∈ Hk
b (Ω) and

‖F (u)‖Hkb (Ω) ≤ Ck,Ω,F ‖u‖Hk+d4b (Ω)
.

Similarly, for v ∈ Hk
b (U) with ‖v‖

H
d3
b

≤ δ/CSU,d3 we have F (v) ∈ Hk
b (U), with norm bounded

by a constant times ‖v‖
H
k+d3
b (U)

.

It is straightforward to prove stronger bounds using classical Moser estimates, see e.g. [Tay11,
Chapter 13]; we opt for weaker statements which have simple self-contained proofs.

The estimates in this Lemma admit straightforward generalizations to weighted spaces, for exam-
ple ‖u‖RαρβCkb (Ω) ≤ CΩ,k,α,β‖u‖RαρβHk+d4b (Ω)

for all α, β ∈ R, which we do not spell out here (but

use frequently in §3 below). Regarding (2.22), the weighted generalization reads RαρβHk
b (Ω) →

RαHk−1
b (Σ) where α, β ∈ R; note that the ρ-weight is irrelevant since we restrict to ρ = ρ1 > 0.

The main application of part (4) is to control 1
f+u where f is a smooth function bounded away

from 0 and u ∈ Hk
b (Ω). (This arises when inverting matrices with Sobolev-regular coefficients.)

Note that 1
f+u = 1

f (1− F (u/f)) where F (x) = x
1+x is smooth on [−δ, δ] for any δ < 1; if ‖u‖

H
d4
b

≤
δ

CSU,d4
‖f‖L∞ , we thus obtain ‖ 1

f+u −
1
f ‖Hkb ≤ Cf,k,δ,Ω‖u‖Hkb .

Proof of Lemma 2.9. Defining ũ1 := Ξu1 using the extension operator from Lemma 2.9, and defining
ũ2, ṽ1, ṽ2 similarly, it suffices to prove the claimed estimates with Ω,U replaced by Ωρ1,R1

, I+
R1

(where
ρ1 > ρ0 and R1 > R0 are arbitrary), and with all functions now vanishing near the boundary
hypersurfaces of Ω, resp. U at ρ = ρ1, R(1− 2ρ) = R1(1− 2ρ1), resp. R = R1. We now relabel ρ1,
R1, ũ1, etc. as ρ0, R0, u1, etc.

In the coordinates t = − logR and r = − log ρ then, we have ρ∂ρ = −∂r and R∂R = −∂t.
Therefore, the estimates in (2.21) are simply instances of standard Sobolev embedding on Rt×Rr×
S2, resp. Rt × S2. Similarly, part (2) is an instance of the standard trace theorem, in the form of

16It suffices to assume ‖u‖L∞ ≤ δ (which is implied by the stated Sobolev bound), though we do not need this
(classical) result here.
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the continuity of the restriction map Hs(R×R× S2)→ Hs− 1
2 (R× {0} × S2), s > 1

2 ; we work only
with integer orders here and thus a fortiori obtain (2.22).

We follow the proof of [Hin23a, Lemma 3.33] for part (3). Introducing local coordinates ω ∈ R2 on
S2, we need to prove estimates for functions on R4

t,r,ω, resp. R3
t,ω. It suffices to consider compactly

supported ui, vi. We write x = (t, ω), and we write ∂ ∈ {∂t, ∂ω1 , ∂ω2 , ∂r} for any coordinate
derivative. Then

‖∂u‖2L2 =

∫∫
∂(u∂u) dxdr +

∫∫
u∂2udxdr =

∫∫
u∂2udxdr ≤ ‖u‖L2‖∂2u‖L2 ,

which implies for any 0 ≤ p < q the estimate

‖∂pu‖L2 ≤ Cpq‖u‖
q−p
q

L2 ‖∂qu‖
p
q

L2 . (2.24)

Passing back to b-spaces in our notation, we now estimate

‖(Da
bu1)(Db

bu2)‖L2 ≤ ‖Da
bu1‖L∞‖Db

bu2‖L2 ≤ C‖Da
bu1‖Hd4b

‖Db
bu2‖L2

(using Sobolev embedding), further ‖Da
bu1‖Hd4b

≤ C
∑d4
d=0 ‖D

a+d
b u1‖L2 , and finally, for d = 0, . . . , d4

and recalling that a+ b = k,

‖Da
b(Dd

bu1)‖L2‖Db
bu2‖L2 . ‖Dd

bu1‖
b
k

L2‖Dk+d
b u1‖

a
k

L2 · ‖u2‖
a
k

L2‖Dk
bu2‖

b
k

L2

.
(
‖u1‖Hd4b

‖u2‖Hkb + ‖u1‖Hk+d4b

‖u2‖L2

)
,

which is (2.23a). The proofs of (2.23b)–(2.23c) are completely analogous, now using Sobolev em-
bedding on R3

x.

To prove part (4), write F (x) = xF1(x); then F (u) = uF1(u) with F1(u) bounded (since
‖u‖L∞ < δ), and therefore ‖F (u)‖L2 . ‖u‖L2 . Next, Dk

bF (u) is a sum of terms of the form∏N
j=1(D

kj
b u)F (N)(u) where k1, . . . , kN ≥ 1 with

∑N
j=1 kj = k (thus N ≤ k). It thus remains to

estimate, via Sobolev embedding on the first N − 1 factors,

‖(Dk1
b u) · · · (DkN

b u)‖L2 .
d4∑
d=0

‖Dk1
b (Dd

bu)‖L2 · · · ‖DkN−1

b (Dd
bu)‖L2‖DkN

b u‖L2

.
d4∑
d=0

‖Dd
bu‖

k−k1
k

L2 ‖Dd
bu‖

k1
k

Hkb
· · · ‖Dd

bu‖
k−kN−1

k

L2 ‖Dd
bu‖

kN−1
k

Hkb
‖u‖

k−kN
k

L2 ‖u‖
kN
k

Hkb

. ‖u‖
kN
k

H
d4
b

‖u‖
k−kN
k

H
k+d4
b

‖u‖
k−kN
k

L2 ‖u‖
kN
k

Hkb
,

which is bounded by C‖u‖Hk+db
, as claimed. �

For Nash–Moser purposes, we record:

Lemma 2.10 (Smoothing operators). Let α, β ∈ R. There exist continuous linear maps

Sθ : RαρβL2(Ωρ0,R0)→ RαρβH∞b (Ωρ0,R0), θ > 1,

so that

k ≤ k′ =⇒ ‖Sθu− u‖RαρβHkb ≤ Ck,k′θ
k−k′‖u‖RαρβHk′b ,

k ≥ k′ =⇒ ‖Sθu‖RαρβHkb ≤ Ck,k′θk−k
′
‖u‖RαρβHk′b .

There exist continuous linear maps RαL2(I+
R0

)→ RαH∞b (I+
R0

) with the analogous properties.
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Proof. Given u ∈ RαρβL2(Ωρ0,R0), set ũ := Ξu where Ξ is an extension operator from Lemma 2.8.
Pass to t = − logR and r = − log ρ, and work in local coordinates ω ∈ R2, |ω| < 3 on S2; using
a partition of unity, we only consider the case that ũ is supported in the subset {|ω| < 1} of R4

z

where z = (t, r, ω). Fix φ ∈ C∞c (R4) so that its Fourier transform φ̂(ζ) is equal to 1 near ζ = 0. Let
χ ∈ C∞c (R2

ω) be equal to 1 for |ω| < 2 and supported in {|ω| < 3}. We then define

(Sθu)(z) := χ(ω)

∫
R4

θ4φ(θw)u(z − w) dw, z = (t, r, ω).

Without the cutoff χ, this is the same construction as in [SR89, Appendix]. With the cutoff χ
present, only the estimate on Sθu − u requires a bit of care; but the point is simply that (1 −
χ(ω))

∫
R4 θ

4φ(θw)u(z−w) dw is bounded in every Sobolev space by θ−N for all N since the supports
of 1−χ and u are disjoint. (See [Hin24b, Lemma 6.12] for details in a more precise construction.) �

3. Initial value problems for the gauge-fixed Einstein equations

We study perturbations of the KdS metric gb from (2.2) on the domain Ωρ0,R0
from Definition 2.4,

with initial data posed at Σρ0,R0 . We fix cutoffs

χ = χ(ρ) ∈ C∞c ([0, 1
2ρ0)), χ|[0, 14ρ0] = 1, χ̃ = χ̃(ρ) ∈ C∞c ([0, ρ0)), χ|[0, 12ρ0] = 1, (3.1)

and regard them as functions on M̆ (which thus equal 1 near I+). We shall work in the generalized
harmonic gauge Υ(g; g0) +Eg0(g− g0) = 0 for a suitable (dynamically chosen) ‘background metric’
g0 where

Υ(g; g0) := g(g0)−1δgGgg0

(
in coordinates: Υ(g; g0)µ = gµνg

κλ(Γ(g)νκλ − Γ(g0)νκλ)
)
,

Eg0h := χe0(−2 trg0 h− h(e0, e0)), e0 := τ∂τ , e0 :=
dτ

τ
.

(3.2)

For sections h0 of β∗(τ−2S2T ∗X) over I+
R0

(which will capture the leading order change to gb at

I+) and h̃ of β∗(S2 0T ∗M) over Ωρ0,R0
(which will capture further decaying corrections to gb), we

then define the gauge-fixed Einstein operator

P (h0, h̃, θ) := 2
(

Ric(gb + χh0 + h̃)− Λ(gb + χh0 + h̃)

− δ̃∗
gb+χh0+h̃

(
Υ(gb + χh0 + h̃; gb + χh0) + Egb+χh0 h̃− χ̃θ

))
,

(3.3)

where (for g = gb + χh0 + h̃) we set

δ̃∗g = δ∗g + Ẽ, Ẽω := χ
(
2ω(e0)e0 ⊗ e0 − 4e0 ⊗s ω

)
. (3.4)

The structure of this operator was already motivated in §1.3.1. The specific choices for the gauge
modification Eg0 and the modified symmetric gradient δ̃∗g will be explained in §3.1.1 below. The

choice gb +χh0 of background metric ensures that, for h̃ = g−g0 which decay towards I+ (together
with their derivatives along 0-vector fields), the gauge condition is always satisfied to leading order

at I+. The decision to use the modified symmetric gradient with respect to gb + χh0 + h̃ is due
to the fact that then its indicial operator involves the induced boundary metric dx2 + h(0) (where

h(0) = τ2h0), which is geometrically more natural than just dx2 (cf. (3.23) below) and thus ultimately
makes the computation of the indicial roots Lh(0),h̃

in Lemma 3.9 more transparent.

The main goal of this section, achieved in §3.3, is the global solution of small data initial value
problems for P in the following sense.

Theorem 3.1 (Solution of the gauge-fixed Einstein equations in the cosmological region). Let
α > 0, d ∈ N, δ0 > 0. Then there exist D ∈ N0 and ε > 0 so that the following holds. Let

¯
h0,

¯
h1 ∈ RαH∞b (Σρ0,R0

;β∗(S2 0T ∗M)),
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and suppose that ‖hΣ,j‖RαHDb < ε, j = 0, 1. Let β ∈ (0, 1). Then there exist

h0 ∈ RαH∞b
(
I+
R0

;β∗(τ−2S2T ∗X)
)
,

h̃ ∈ RαρβH∞b
(
Ωρ0,R0

;β∗(S2 0T ∗M)
)
,

θ ∈ RαρβH∞b
(
Ωρ0,R0 ;β∗(0T ∗M)

)
,

(3.5)

with weighted Hd
b-norms less than δ0, so that P (h0, h̃, θ) = 0, and so that h̃ (and thus also χh0 + h̃)

satisfies the initial conditions h̃|Σρ0,R0
=

¯
h0, (L−ρ∂ρ h̃)|Σρ0,R0

=
¯
h1.

The nonlinear stability of the expanding region Ωρ0,R0
of KdS is a simple consequence. This is

proved in §4, together with sharper asymptotics for the metric in this case.

Remark 3.2 (Domain of definition of h0). Since R ≤ R0 on Ωρ0,R0
, the tensor gb + χh0 + h̃ is

well-defined on Ωρ0,R0
. Note that Ωρ0,R0

∩ I+ = I+
(1−2ρ0)R0

( I+
R0

; thus, h0 is defined on a larger

set than the set where asymptotic data for h should live or be relevant. In the proof, h0 will simply
arise via an extension operator from Lemma 2.8 applied to a tensor on I+

(1−2ρ0)R0
.

Remark 3.3 (Origin of initial data). The nonlinear stability result for slowly rotating KdS black
holes proved in [HV18, Fan21] produces a solution of the (gauge-fixed) Einstein vacuum equations
in a neighborhood {r− − δ− ≤ r ≤ r+ + δ+}, δ± > 0, of the domain of outer communications of the
black hole; here r− and r+ are the radii of the event and cosmological horizon, respectively. In fact,
δ+ > 0 can be taken to be arbitrarily large (but fixed), with the smallness requirement on the initial
data depending on δ+. The set {ρ = ρ0, R < R0} is then contained in r−1((r+, r+ + δ+]), and the
decay assumptions on the initial data correspond exactly to exponential decay of the coefficients of
hin in the frame ∂t, ∂r, ∂ω in t̃ = t ∼ − logR (cf. (2.11)) together with all coordinate derivatives. —
More generally, without assuming that gb is slowly rotating, if initial data for (1.1) of class RαH∞b
are posed at ρ = ρ0, then these data can be evolved in a standard generalized harmonic gauge (i.e.
Υ(g; gb) = 0 in the notation of (3.2) below) up to any fixed hypersurface ρ = ρ1, provided the data
are sufficiently small (depending on ρ0, ρ1) in the RαHN

b -norm for some fixed N . This holds more
generally for the solution of the corresponding gauge-fixed Einstein equations, without the need to
require the validity of the constraint equations at ρ = ρ0. This follows easily from energy estimates
with multipliers R−2αe−Cr∂r (or e2αte−Cr∂r) for sufficiently large C > 1, due to the timelike nature
of dr in the cosmological region; we leave the details to the reader. In a similar vein, one can evolve
RαH∞b -perturbations of KdS data posed at r = r0, with r0 larger than the largest root of µ(r)
in (2.2) up to r = r1 for any fixed finite r1 > r0, and thus again cover the set {ρ = ρ0, R < R0}.

Remark 3.4 (Gauge choices here and in [HV18]). Theorem 3.1 will yield the nonlinear stability of
the expanding region in the gauge

Υ(g; g0) + Eg0(g − g0)− χ̃θ = 0. (3.6)

Near the Cauchy hypersurface Σρ0,R0
, this reduces to Υ(g; gb) = 0. By contrast, the gauge in which

the asymptotically KdS metric g is found in [HV18] is

Υ(g; gb0)−Υ(gb; gb0)− θ′ = 0, (3.7)

where b = (m, a) denotes the parameters of the final KdS black hole, b0 := (m, 0), and θ′ ∈
C∞c (M◦;T ∗M◦). To make the output of [HV18] directly compatible with the input of Theorem 3.1
(and Theorem 4.2 below), one can simply modify the present gauge condition (3.6) so that near
Σρ0,R0—and thus away from ρ = 0 which is the main focus of the current work—it becomes (3.7).
A concrete such choice is

Υ(g;χg0 + (1− χ)gb0)− (1− χ)Υ(gb; gb0)− (1− χ)θ′ + Eg0(g − g0)− χ̃θ = 0. (3.8)

The unperturbed KdS case corresponds to h0 = h̃ = 0 and θ′ = 0, in which case the gauge 1-form
(i.e. the left hand side of (3.8), with θ = 0) equals θ0 := Υ(gb;χgb + (1− χ)gb0)− (1− χ)Υ(gb; gb0)
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(which satisfies θ0 = χ̃θ0). In the proof of Theorem 3.1 with general initial data, one thus constructs
θ in the form θ0 + θ[, with θ[ ∈ RαρβH∞b determined by the iteration scheme.

For the remainder of this section, we fix α > 0 and β ∈ (0, 1).

3.1. Linearized gauge-fixed Einstein operator I: structure and indicial family. Assuming
that g := gb +χh0 + h̃ and g0 := gb +χh0 are Lorentzian metrics on Ωρ0,R0

∩M̆◦, we can use [GL91,

§2] to compute the linearization of P (h0, ·) at h̃ to be

Lh0,h̃
:= D2P |h̃(h0, ·) = �g − 2Λ + 2ẼδgGg + 2Rg + 2δ̃∗g ◦ (Eg;g0 − Eg0),

+ (Dg δ̃
∗
· )(Υ(g; g0) + Eg0 h̃)

(3.9)

(Rgu)µν = Riem(g)κµνλu
κλ +

1

2

(
Ric(g)µλuν

λ + Ric(g)νλuµ
λ
)
,

(Eg;g0u)µ =
(
Γ(g)λκν − Γ(g0)λκν

)(
gµλu

κν − uµλgκν
)
,

where we raise and lower indices using g; moreover, (Dg δ̃
∗
· )η = (Dgδ

∗
· )η, for a fixed 1-form η, maps

a symmetric 2-tensor h to d
ds (δ∗g+shη)|s=0. We recall Λ = 3 and record

D1Υ|g(·; g0) = −δgGg − Eg;g0 . (3.10)

Proposition 3.5 (Structure of Lh0,h̃
; indicial operator). Let k ≥ 2 and

h0 ∈ RαHk
b (I+

R0
;β∗(S2T ∗X)), h̃ ∈ RαρβHk

b (Ωρ0,R0
;β∗(S2 0T ∗M))

Suppose that ‖h0‖RαHd3+2

b

< δ0 and ‖h̃‖
RαρβH

d4+2

b

< δ0 for some small δ0 > 0 (independently of k).

Set g := gb + χh0 + h̃ and g0 := gb + χh0.

(1) (Structure.) As differential operators on Ωρ0,R0
acting on sections of β∗(S2 0T ∗M), we can

write

Lh0,h̃
= L0,0 + L(0),h0

+ L̃h0,h̃
,

L0,0 ∈ Diff2
0,b, L(0),h0

∈ RαHk−2
b (I+

R0
)Diff2

0,b, L̃h0,h̃
∈ RαρβHk−2

b (Ωρ0,R0
)Diff2

0,b,
(3.11)

where L(0),h0
and L̃h0,h̃

satisfy the tame estimates

‖L(0),h0
‖RαHk−2

b Diff2
0,b
≤ Ck‖h0‖RαHk+d3b

,

‖L̃h0,h̃
‖RαρβHk−2

b Diff2
0,b
≤ Ck

(
‖h0‖RαHk+d3b

+ ‖h̃‖
RαρβH

k+d4
b

) (3.12)

in the notation of Lemma 2.9 and equation (2.19).
(2) (Indicial operator.) Write

g(0) = g(0)(x, dx) := dx2 + h(0), h(0) := τ2h0 = h0(τ∂xi , τ∂xj ) dxi dxj , (3.13)

for the (rescaled) β∗(τ−2S2T ∗X) part of g|I+R0

in the splitting (2.10). Then the indicial

operator of Lh0,h̃
is given by

Ig(0)(ρ∂ρ) := (ρ∂ρ)
2 − 3ρ∂ρ + 2 ·

−2ρ∂ρ + 5 0 (ρ∂ρ − 2) trg(0)
0 −2ρ∂ρ + 6 0
−g(0) 0 g(0) trg(0)

 , (3.14a)

in the sense that we can write

Lh0,h̃
− Ig(0)(ρ∂ρ) = R0 + R̃h0,h̃

,

R0 ∈ ρDiff2
b, R̃h0,h̃

∈ RαρβHk−2
b Diff2

b,
(3.14b)

and so that

‖R̃h0,h̃
‖RαρβHk−2

b Diff2
b
≤ Ck

(
‖h0‖RαHk+d3b

+ ‖h̃‖
RαρβH

k+d4
b

)
. (3.14c)
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Proof. We work with the (dual) frames

e0 =
dτ

τ
, ei =

dxi

τ
, e0 = τ∂τ , e

i = τ∂xi (3.15)

of 0T ∗M and 0TM , respectively. We use Greek letters for spacetime indices 0, 1, 2, 3 and Latin
letters for spatial indices 1, 2, 3. The metric coefficients are

gµν = g(eµ, eν) = (gb)µν + χ(h0)µν + h̃µν = (g0)µν + h̃µν ,

where the coefficients of h0 and h̃ are real-valued functions of class RαHk
b (I+

R0
) and RαρβHk

b (Ωρ0,R0
),

respectively, and (h0)µν = 0 if at least one of µ, ν equals 0. In the splitting (2.10), this means

g = (gdS + h0) + (gb − gdS) + h̃ ∈ (−1, 0,dx2 + h(0)) + ρ3C∞ +RαρβHk
b .

The components gµν = g−1(eµ, eν) of the inverse metric (which is well-defined when h0, h̃ are small

in L∞) are given by Cramer’s rule; and we have g−1 = g−1
0 − g−1

0 h̃g−1, which implies that

(g−1)µν − (g−1
0 )µν ∈ RαρβHk

b (Ωρ0,R0), (3.16)

with norm bounded by Ck‖h̃‖RαρβHk+d4b

by Lemma 2.9. Similarly, the norm of g−1
0 − gb =

−χg−1
b h0g

−1
0 ∈ RαHk

b (I+
R0

) is bounded by Ck‖h0‖RαHk+d3b

. In the bundle splitting (2.10), we

therefore have

Gg ≡

 1
2 0 1

2 trg(0)
0 I 0

1
2g(0) 0 I − 1

2g(0) trg(0)

 mod ρ3C∞ +RαHk
b (I+

R0
) +RαρβHk

b (Ωρ0,R0) (3.17)

as an endomorphism of β∗(S2 0T ∗M).

• Structure of Lh0,h̃
. We note that [e0, e0] = 0 = [ei, ej ] and [e0, ei] = ei = −[ei, e0]. Moreover,

e0(h0)µν = e0(gdS)µν = 0; by Lemma 2.3, we thus have e0(gb)µν ∈ ρ3C∞ and e0gµν ≡ e0(gb)µν mod

RαρβHk−1
b . We can now compute the connection coefficients

Γ(g)λµν = g(∇geµeν , eλ)

= 1
2

(
eµgνλ + eνgµλ − eλgµν − g(eµ, [eν , eλ])− g(eν , [eµ, eλ]) + g(eλ, [eµ, eν ])

)
.

Recall that e0, ei ∈ V0(M) and thus e0, ei ∈ V0,b(M̆) ⊂ Vb(M̆). Therefore,

Γ(g)000 = 1
2e0g00, Γ(g)`00 = (e0 − 1)g0` − 1

2e`g00,

Γ(g)0i0 = 1
2eig00, Γ(g)`i0 = 1

2 (eig0` + e0gi` − e`g0i)− gi`,
Γ(g)00j = 1

2ejg00 + g0j , Γ(g)`0j = 1
2 (e0gj` + ejg0` − e`g0j),

Γ(g)0ij = 1
2 (eig0j + ejg0i − e0gij) + gij , Γ(g)`ij = 1

2 (eigj` + ejgi` − e`gij);

(3.18)

and we have

Γ(g)λµν − Γ(g0)λµν ∈ RαρβHk−1
b (Ωρ0,R0),

Γ(g)λµν − Γ(gb)λµν ∈ RαHk−1
b (I+

R0
) +RαρβHk−1

b (Ωρ0,R0
).

In particular, Γ(g)λµν ∈ ρ3C∞ + RαHk−1
b + RαρβHk−1

b for all µ, ν, λ. In view of (3.16), we also
obtain

Γ(g)κµν − Γ(g0)κµν ∈ RαρβHk−1
b , Γ(g)κµν − Γ(gb)

κ
µν ∈ RαHk−1

b +RαρβHk−1
b ,

and Γ(g)κµν ∈ ρ3C∞ + RαHk−1
b + RαρβHk−1

b . This implies the same memberships but with k − 2

in place of k − 1 for the components of Riem(g)−Riem(g0) (here Riem(g)λκµν = eµΓλνκ − eνΓλµκ +
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ΓλµρΓ
ρ
νκ−ΓλνρΓ

ρ
µκ), Riem(g)−Riem(gb), and Riem(g) itself. By expressing �g, δg, Gg, δ̃∗g , Rg, Eg;g0

in the frame eµ, and noting that for η := Υ(g; g0) + Eg0 h̃ ∈ RαρβHk−1
b (Ωρ0,R0) we have

((Dg δ̃
∗
· )η)µν : h 7→ − 1

2 (hµ
κ

;ν + hν
κ

;µ − hµν ;κ)ηκ,

we thus obtain (3.11). The tame bounds (3.12) follow easily from Lemma 2.9.

• Indicial family. Since ei ∈ τVb(M̆), we only need to keep track of the e0-derivatives (including
those of order 0) acting on the argument of Lh0,h̃

, whereas all ei-derivatives can be dropped. More-

over, all contributions to Lh0,h̃
arising from h̃ are (a fortiori) of class RαρβHk−2

b Diff2
b and thus do

not contribute to the indicial operator either; thus, we only need to compute the indicial operator
of Lh0,0, which amounts to working with g = g0; the terms involving Eg;g0 and Dg δ̃

∗
· in (3.9) thus

vanish. Now, Γ(g)λµν ≡ 0 mod ρ3C∞ +RαρβHk−1
b for all λ, µ, ν except for

Γ(g)`i0 ≡ −gi`, Γ(g)0ij ≡ gij ,

and therefore also Γ(g)λµν ≡ 0 except for

Γ(g)`i0 ≡ −δ`i , Γ(g)0
ij ≡ −gij . (3.19)

(Carefully note that Γ(g)`0i ≡ 0. The connection coefficients in the frame eµ are not symmetric.)

This gives Rκµνλ = g(eκ, ([∇eν ,∇eλ ]−∇[eν ,eλ])eµ) ≡ 0 mod ρ3C∞+RαρβHk−2
b except for R0m0` ≡

−gm`, Rkmn` ≡ gkngm` − gk`gmn, and those coefficients obtained from these via the symmetries
Rκµνλ = −Rµκνλ = −Rκµλν . Therefore, Ric(g)00 ≡ −3, Ric(g)m` ≡ gm`, Ric(g)0` ≡ 0; that is,
Ric(g) ≡ 3g. From this, one easily computes that, in the bundle splitting (2.10),

Rg ≡

 3I 0 trg(0)
0 4I 0
g(0) 0 4I − g(0) trg(0)

 . (3.20)

(Cf. [Hin21, Lemma 2.4].)

Next, we compute the indicial operator of �g. If u is a section of β∗(S2 0T ∗M), then modulo
operators acting on u which do not contribute to the indicial operator, we have �gu ≡ uµν;00 −
gk`uµν;k`. Using (3.19) and uµν;κ = ekuµν − Γρκµuρν − Γρκνuµρ, we then compute

u00;0 ≡ e0u00, u00;k ≡ 2u0k,

u0j;0 ≡ e0u0j , u0j;k ≡ ujk + gjku00,

uij;0 ≡ e0uij , uij;k ≡ u0jgik + ui0gjk,

and then

u00;00 ≡ e0e0u00, u00;k` ≡ 2u0`;k + gk`u00;0,

u0j;00 ≡ e0e0u0j , u0j;k` ≡ u`j;k + u00;kgj` + u0j;0gk`,

uij;00 ≡ e0e0uij , uij;k` ≡ gi`u0j;k + gj`ui0;k + gk`uij;0.

In the splittings (2.9) and (2.10), this gives

�g ≡ e0e0 − 3e0 +

 −6 0 −2 trg(0)
0 −6 0

−2g(0) 0 −2

 , δg ≡
(
e0 − 3 0 − trg(0)

0 e0 − 4 0

)
. (3.21)

The modification terms Eg0 and Ẽ in (3.2) and (3.4) are given by

Eg0 ≡
(

1 0 −2 trg(0)
0 0 0

)
, Ẽ ≡

−2 0
0 −2
0 0

 . (3.22)
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Similarly, if ω is a 1-form, we compute the covariant derivatives ωµ;ν = eνωµ − Γκνµωκ to be ω0;0 ≡
e0ω0, ω0;j ≡ ωj , ωi;0 ≡ e0ωi, ωi;j ≡ gijω0, and therefore

δ∗g ≡

 e0 0
0 1

2 (e0 + 1)
g(0) 0

 , δ̃∗g ≡

e0 − 2 0
0 1

2 (e0 − 3)
g(0) 0

 . (3.23)

With the indicial operator of Lh0,h̃
being equal to that of �g − 2Λ + 2ẼδgGg + 2Rg − 2δ̃∗g ◦ E, we

thus obtain (3.14b). �

As a by-product of the computations in the above proof, we record:

Lemma 3.6 (Mapping properties of P ). For h0, h̃, θ as in (3.5), with ‖h0‖RαHd3+2

b

< δ0 and

‖h̃‖
RαρβH

d4+2

b

< δ0 for some small δ0 > 0, we have

P (h0, h̃, θ) ∈ RαρβH∞b (Ωρ0,R0 ;β∗(S2 0T ∗M)).

Moreover, for all k ∈ N0, we have the tame estimate

‖P (h0, h̃, θ)‖RαρβHkb ≤ Ck
(
‖h0‖RαHk+2

b
+ ‖h̃‖RαρβHk+2

b
+ ‖θ‖RαρβHk+1

b

)
.

3.1.1. Indicial roots of the constraint propagation and gauge potential wave operators. Before con-
tinuing the study of Lh0,h̃

, we make the following observations regarding the linearization LdS of

g 7→ 2(Ric(g) − Λg − δ̃∗g(Υ(g; g0) + Eg0(g − g0)) around g = g0 = gdS. (This is the linear operator
one would need to invert when using a Newton type iteration to study the stability of de Sitter
space.) These observations are only made to motivate the choices of Eg0 , Ẽ in (3.2) and (3.4).

To wit, if LdSh = 0, then by the linearized second Bianchi identity, we have 2δgGg δ̃
∗
gη = 0 where

η = D1|gΥ(h; g0) + Eg0h. Refining the splitting (2.10) using

S2T ∗X = Rg(0) ⊕ ker trg(0) , (3.24)

we can use (3.17) and (3.21)–(3.23) to compute the indicial family of 2δgGg δ̃
∗
g as

(
λ− 3 0 −3 0

0 λ− 4 0 0

)
1
2 0 3

2 0
0 1 0 0
1
2 0 − 1

2 0
0 0 0 1




λ 0
0 1

2 (λ+ 1)
1 0
0 0

+


−2 0
0 −2
0 0
0 0




=

(
(λ− 2)(λ− 3) 0

0 (λ− 3)(λ− 4)

)
.

(3.25)

Its indicial roots are thus λ = 2, 3, 4 and in particular all positive. Therefore, for any indicial solution
of I(LdS, λ)h = 0 with Reλ ≤ 0 (or more generally Reλ < 2), i.e. LdS(τλh) = O(τλ+1), the gauge
1-form η defined above necessarily vanishes modulo O(τλ+1). Therefore, h is an indicial solution also
for the linearization of the ungauged operator Ric(g)−Λg around g = gdS, and in particular satisfies
an indicial operator version of the linearized constraints. (Moreover, it satisfies the linearized gauge

condition on the indicial operator level.) Thus, the particular choice of Ẽ in (3.4) leads to a damping
of violations of the constraints, and in this sense acts as constraint damping.

Remark 3.7 (Origin of the choice of Ẽ). The choice (3.4) corresponds exactly to the damping terms
Mµν in [Rin08, (51)–(53)]. Another choice is the one made in [HV18, Appendix C.3–C.4], which

amounts to Ẽω = −2e0⊗s ω+ω(e0)g0 (which now depends on g0), the indicial operator of which is
−1 0
0 −1
−1 0
0 0

 .
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The indicial roots of 2δgGg δ̃
∗
g for this choice would be 1, 4, 6. — There is of course an open set

of choices with the same damping effect, and for all such choices our arguments below go through
(except for possibly having to reduce β > 0 if an indicial root λ in the right half plane gets close to
{Reλ = 0}).

Next, we consider the linearization −(δgGg−Eg0) of the gauge 1-form g 7→ Υ(g; g0) +Eg0(g− g0)
around g = g0 = gdS (cf. (3.10)), and specifically ask about the indicial solutions which are pure
gauge. By this we mean indicial solutions of the form I(δ∗g , λ)ω where ω is an indicial solution of
the gauge potential wave operator 2(δgGg − Eg0)δ∗g—whose indicial family, using (3.22), is(λ− 3 0 −3 0

0 λ− 4 0 0

)
1
2 0 3

2 0
0 1 0 0
1
2 0 − 1

2 0
0 0 0 1

− (1 0 −6 0
0 0 0 0

)

λ 0
0 1

2 (λ+ 1)
1 0
0 0


=

(
(λ− 2)(λ− 3) 0

0 (λ− 4)(λ+ 1)

)
.

(3.26)

The indicial roots are thus −1, 2, 3, 4, and the indicial root −1 corresponds, on exact de Sitter space,
to the fact that ∂xi = τ−1ei is a Killing vector field. (More generally δ∗g(τ−1ei) = o(τ−1) for general
g of the form studied in Proposition 3.5, as follows from (3.23).)

Remark 3.8 (Origin of the choice of Eg0). We found the modification Eg0 of the (generalized)
harmonic gauge by trial and error. The gauge modification used in [Rin08, (50)] corresponds to

E[Rin08]
g0 =

(
0 0 −3 0
0 −2 0 0

)
. (3.27)

This leads to the gauge potential wave operator having an indicial root at 0 (see Remark 3.10 for
the consequence of this for the gauge-fixed linearized Einstein equation); our choice avoids this. If

one took Eg0 = 0, then there would, for example, be an indicial root at 1
2 (3 −

√
33) ∈ (−2,−1),

corresponding to an exponentially growing pure gauge solution which would need to be removed
from the asymptotics of the linearized metric perturbation by a gauge modification, as done in static
patches in [HV18, Appendix C], as discussed in Remark 1.8.

3.1.2. Indicial family of the linearized gauge-fixed Einstein operator. We now compute the indicial
roots of the linearized gauge-fixed Einstein operator (3.9).

Lemma 3.9 (Indicial roots of Lh0,h̃
). Let h0, h̃ be as in Proposition 3.5, define g(0), h(0) by (3.13),

and write Ig(0)(λ) = I(Lh0,h̃
, λ). Then the indicial roots of Lh0,h̃

are 0, 2, 3, 4. The space of indicial

solutions corresponding to the root 0 is ker Ig(0)(0) = τ−2 ker trg(0) (as a subbundle of β∗(S2 0T ∗M)

over I+
R0

); and the root 0 is simple in that Ig(0)(λ)−1 has a simple pole at λ = 0.

Proof. We split

S2T ∗X = Rg(0) ⊕ ker trg(0) (3.28)

(so τ−2S2T ∗X = Rτ−2g(0) ⊕ τ−2 ker trg(0) ⊂ β∗(S2 0T ∗M)). From (3.14a), we then have

Ig(0)(λ) = λ2 − 3λ+ 2 ·


−2λ+ 5 0 3(λ− 2) 0

0 −2λ+ 6 0 0
−1 0 3 0
0 0 0 0

 . (3.29)

The solutions of det Ig(0)(λ) = 0 are λ = 0, 2, 3, 4. Moreover, ker Ig(0)(0) is spanned by ker trg(0) .
The final statement is a consequence of the fact that the determinant of the 4× 4 matrix given by
the right hand side of (3.29) has a simple zero at λ = 0. �
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Remark 3.10 (Comparison with Ringström’s operator). Using the gauge modification (3.27) from
[Rin08], one finds that Ig(0)(λ) is diagonal and given by diag((λ − 2)(λ − 3), (λ − 2)(λ − 3), λ(λ −
3), λ(λ− 3)). Thus, the space of indicial solutions at λ = 0 now consists of all tangential-tangential
tensors.

3.2. Linearized gauge-fixed Einstein operator II: estimates for solutions. The control of
solutions of initial value problems for Lh0,h̃

lies at the heart of our stability proof. We proceed in
two steps.

(1) First, we obtain an estimate on a space allowing for growth at I+ but with arbitrary
regularity (Proposition 3.11).

(2) We then use the information about the indicial operator of Lh0,h̃
from Lemma 3.9 to improve

decay while giving up regularity (Proposition 3.13).

For definiteness, we fix V ⊂ V(S2) to be the set V = {V1, V2, V3} where Va is the rotation vector
field around the a-th coordinate axis in R3 ⊃ S2. Throughout this section, we assume that α > 0,
β ∈ (0, 1), and

‖h0‖RαH2d3+4

b (I+R0
;β∗(τ−2S2T∗X))

< δ0, ‖h̃‖
RαρβH

2d4+4

b (Ωρ0,R0
;β∗(S2 0T∗M))

< δ0, (3.30)

and δ0 > 0 is small. Under these assumptions, we have Hd4
b - and thus C0-bounds on the coefficients

of Lh0,h̃
by (3.12).

3.2.1. High regularity estimate on growing spaces. Following the strategy outlined in §1.2, we prove:

Proposition 3.11 (Tame bounds on growing spaces). There exists N > 0 so that the following
holds. Let

v0, v1 ∈ RαH∞b (Σρ0,R0
;β∗(S2 0T ∗M)), f ∈ Rαρ−NH∞b (Ωρ0,R0

;β∗(S2 0T ∗M)),

and define the norm

‖(f, v0, v1)‖Dk,α,β := ‖f‖RαρβHkb + ‖v0‖RαHk+1
b

+ ‖v1‖RαHkb .

Then the initial value problem

Lh0,h̃
v = f, (v,L−ρ∂ρv)|Σρ0,R0

= (v0, v1), (3.31)

has a unique solution v ∈ Rαρ−NH∞b (Ωρ0,R0
;β∗(S2 0T ∗M)) which, moreover, for all k ∈ N0 satisfies

the tame estimate

‖v‖Rαρ−NHkb ≤ Ck
(
‖(f, v0, v1)‖Dk,α,−N

+
(
‖h0‖RαHk+2d3+2

b

+ ‖h̃‖
RαρβH

k+2d4+2

b

)
‖(f, v0, v1)‖D0,α,−N

)
.

(3.32)

Proof. We first prove an energy estimate on the level of H1 (or more precisely weighted H1
0,b).

Higher regularity follows by commuting b-vector fields through the equation (3.31) and using an
H1-level energy estimate for a system of wave equations (each of which involves Lh0,h̃

). To facilitate
this second step, we immediately phrase the basic energy estimate for such systems.

• Step 1. Basic energy estimate. Let K ∈ N, and suppose that AIJ , 1 ≤ I, J ≤ K, is a first

order differential operator acting on sections of β∗(S2 0T ∗M) over Ωρ0,R0 which is of the form

AIJ = A0,IJ +A(0),IJ + ÃIJ where

A0,IJ ∈ Diff1
0,b, A(0),IJ ∈ RαC0

b(I+
R0

)Diff1
0,b, ÃIJ ∈ RαρβC0

b(Ωρ0,R0
)Diff1

0,b.
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Assume moreover that A = (AIJ)1≤I,J≤K has an lower triangular structure at I+ in that17

I ≤ J =⇒ A0,IJ ∈ ρDiff1
0,b, A(0),IJ = 0.

For the system
L := (δIJLh0,h̃

+AIJ)1≤I,J≤K , (3.33)

we then consider the initial value problem

Lv = f, (v,L−ρ∂ρv)|Σρ0,R0
= (v0, v1), (3.34)

where now f and v0, v1 are K-tuples of elements of Rαρ−NH∞b and RαH∞b , respectively. We claim

that there exists a constant N which is independent of h0, h̃, K, AIJ so that

‖v‖Rαρ−NH1
0,b
≤ C‖(f, v0, v1)‖D0,α,−N . (3.35)

(The constant C is allowed to depend on K,AIJ .)

(1.1) Energy estimate for the scalar wave equation. Note that dρ
ρ is timelike with respect to

g = gb + χh0 + h̃ on Ωρ0,R0 ; this follows from the corresponding property for gb in (2.16) since,

by Sobolev embedding, h0, h̃ are small in L∞ as sections of β∗(S2 0T ∗M) (which implies that

(χh0 + h̃)(dρ
ρ ,

dρ
dρ ) is small in L∞). This timelike nature implies that a weight ρN can be used to give

a positive bulk term in an energy estimate. In order to ensure that the value of N required to get
this positivity does not depend on the terms A0,IJ and ÃIJ of L (which are lower order not just in
the differential order, but importantly also in the sense of decay at ρ = 0), we employ an additional

weight ezρ
2β/2β . For any fixed value of z, this additional weight is smooth and bounded away from

0 and ∞, but choosing z � 1 allows us to give less weight to energy densities close to ρ = 0 than
near ρ = ρ0, and thus gain some additional positivity for the bulk term away from I+ (see (3.36)
below); moreover, this weight allows us to absorb lower order terms (in the sense of decay) to wave
operators (see e.g. the discussion of (3.39) below). Let thus

V0 := −R−2αρ∂ρ, V := ω2V0, ω = ω(ρ) := ezρ
2β/2βρN ,

acting component-wise both in the index I and in the trivialization of β∗(S2 0T ∗M) induced by

e0 = dτ
τ , ei = dxi

τ (i = 1, 2, 3).

We first prove an estimate for the scalar wave operator �g; so consider �gv = f , with initial
data (v0, v1) for v. The stress-energy-momentum tensor T = T [v] of v is Tµν = (eµv)(eνv) −
1
2gµνg

κλ(eκv)(eλv) where we recall e0 = τ∂τ , ei = τ∂xi . The J-current associated with v and V is

(V )J = T (V, ·), divg(
(V )J) = −(�gv)V v + (V )K, (V )K = T · LV g,

with ‘·’ denoting tensor contraction (using g). For ρ1 ∈ (0, ρ0), define the domain

Ωρ1ρ0,R0
:= Ωρ0,R0

∩ {ρ ≥ ρ1},

with boundary hypersurfaces Σρ0,R0
= {ρ = ρ0} and Σρ1ρ0,R0

= {ρ = ρ1} ∪ {(2−R)ρ = (2−R0)ρ0}.
Then ∫

Σ
ρ1
ρ0,R0

〈(V )J, ν〉dσ +

∫
Ω
ρ1
ρ0,R0

(V )K dg

=

∫
Σρ0,R0

〈(V )J, ν〉dσ +

∫
Ω
ρ1
ρ0,R0

(�gv)V v dg

where ν denotes the future unit normal at the respective boundary hypersurface. Since R2αV0 is
future timelike uniformly down to R = 0, the integral over Σρ0,R0 is bounded in absolute value by

17In the actual setting arising in Step 2 below, the indexing is by b-derivatives applied to v solving (3.31). The
lower triangular structure will arise from the inclusion of V0,b ↪→ Vb, with the treatment of elements of Vb which are

in the range of this inclusion (i.e. ρ∂ρ) different from those which are not (R∂R, spherical derivatives). Cf. also the

discussion of higher regularity in §1.2.



34 PETER HINTZ AND ANDRÁS VASY

‖v0‖2RαH1
b

+‖v1‖2RαL2 . The integral over Σρ1ρ0,R0
is non-negative, and will be dropped in the estimate

below. Now,
(V )K = (ω2V0)K = ω2 · (V0)K + 2ωT (∇ω, V0),

where we further compute

T (∇ω, V0) = R−2αρω′(ρ)T
((dρ

ρ

)]
,−ρ∂ρ

)
.

Since dρ
ρ and−ρ∂ρ are are uniformly (future) timelike in Ωρ0,R0

, there exists a constant c0 > 0 so that

T ((dρ
ρ )],−ρ∂ρ) ≥ c0

∑3
µ=0(eµv)2. Using the simple upper bound |(V0)K| ≤ C0R

−2α
∑3
µ=0(eµv)2,

we thus obtain (upon taking ρ1 → 0) the energy estimate∫
Ωρ0,R0

R−2α(c0ρω
′ − C0ω)ω

3∑
µ=0

(eµv)2 dg

≤ C
(
‖v0‖2RαH1

b
+ ‖v1‖2RαL2

)
+

∫
Ωρ0,R0

R−2αω2|�gv||ρ∂ρv|dg

(The choice ω = ρN where N > 2C0

c0
would ensure that the term in parentheses on the left is bounded

from below by C0ω, and thus one immediately gets an Ḣ1 type estimate.) We compute

ρω′ = (N + zρ2β)ω. (3.36)

We control v itself by integrating (i.e. via a version of the Hardy inequality which is uniform in
z); to wit, for W = ω2W0 where W0 = R−2αρ∂ρ, we have

divgW = ω2 divgW0 + 2ωg(∇ω,W0)

= ω2 divgW0 + 2ωρω′(ρ)R−2α = ω2
(
divgW0 + 2(N + zρ2β)R−2α

)
.

In the identity ∫
Σ
ρ1
ρ0,R0

〈v2W, ν〉dσ +

∫
Ω
ρ1
ρ0,R0

divg(v
2W ) dg =

∫
Σρ0,R0

〈v2W, ν〉dσ,

we then note that 〈W, ν〉 is bounded from above and below by a positive multiple of R−2αρ2N (and
it is positive on Σρ1ρ0,R0

), while divgW ≥ ( 3
2N+zρ2β)R−2αω2 for sufficiently large N (independently

of z); this uses that |divgW0| . R−2α. Since divg(v
2W ) = v2 divgW +2vWv, this gives (for a larger

constant C0)∫
Ωρ0,R0

R−2α

(
(N + zρ2β)ω2v2 + (c0ρω

′ − C0ω)ω

3∑
µ=0

|eµv|2
)

dg

≤ CN,z
(
‖v0‖2RαH1

b
+ ‖v1‖2RαL2

)
+

∫
Ωρ0,R0

R−2αω2|�gv||ρ∂ρv|dg.
(3.37)

We leave this estimate as it is, but point out that choosing N large enough and applying Cauchy–
Schwartz to the final term, one would obtain an estimate of the form ‖v‖Rαρ−NH1

0,b(Ωρ0,R0
) ≤

C‖�gv‖Rαρ−NL2(Ωρ0,R0
).

(1.2) The case that A0,IJ ∈ ρDiff1
0,b, A(0),IJ = 0 for all I, J . Write

Lh0,h̃
= �g ⊗ IdR10 +Q, Q = Q0 +Q(0) + Q̃,

Q0 ∈ Diff1
0,b, Q(0) ∈ RαC0(I+

R0
)Diff1

0,b, Q̃ ∈ RαρβC0(Ωρ0,R0
)Diff1

0,b,

with 10 being the rank of β∗(S2 0T ∗M); here Q0 is independent of h0, h̃, while Q(0) and Q̃ have
small coefficients in view of (3.30). Applying (3.37) to a 10-component vector v, the replace-
ment of �gv on the right by Lh0,h̃

creates error terms: the term arising from Q0 is bounded by
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CQ0

∫
Ωρ0,R0

R−2αω2(v2 +
∑
µ=0(eµv)2) dg, while the terms arising from Q(0) and Q̃ are bounded

by the same expression (in fact with a small constant in view of (3.30)). We put these terms on
the left hand side and estimate

∫
Ωρ0,R0

R−2αω2|Lh0,h̃
v||e0v|dg using Cauchy–Schwartz; this way we

obtain the estimate (3.37) for Lh0,h̃
in place of �g, with a new constant C0 which can be taken to

be independent of h0, h̃. Using (3.36), we have

c0ρω
′ − C0ω = (Nc0 − C0 + zρ2β)ω,

so fixing N with, say,

Nc0 − C0 ≥ 1,

we obtain, with |∂≤1v|2 := v2 +
∑3
µ=0(eµv)2,∫

Ωρ0,R0

R−2αω2(1 + zρ2β)|∂≤1v|2 dg

≤ C‖R−αωLh0,h̃
v‖2L2 + CN,z

(
‖v0‖2RαH1

b
+ ‖v1‖2RαL2

)
.

(3.38)

The estimate (3.37) holds also for L = �g ⊗ IdR10K (with 10K being the rank of the direct
sum of K copies of β∗(S2 0T ∗M)). Under the present assumptions on the AIJ , we can write the
operator (3.33) in the form

L = �g ⊗ IdR10K +Q⊗ IdRK +A,

A = (AIJ)1≤I,J≤K ∈ ρDiff1
0,b +RαρβC0(Ωρ0,R0

)Diff1
0,b.

Now, the estimate (3.38) holds, with the same constants, also for the operator L when A = 0. The
contribution of A can be estimated by

C‖R−αωAv‖2L2 ≤ CA
∫

Ωρ0,R0

R−2αρ2βω2|∂≤1v|2 dg. (3.39)

For sufficiently large z, this can be absorbed into the left hand side of (3.38).

(1.3) The general lower triangular case. Writing v = (v1, . . . , vK), the estimate (3.38) can be

applied to each vI separately. The equation for vI reads Lh0,h̃
vI = f I −

∑K
J=1AIJv

J . Splitting the

sum into
∑
J<I AIJ +

∑
J≥I AIJ , we thus get∫

Ωρ0,R0

R−2αω2(1 + zρ2β)|∂≤1vI |2 dg

≤ CK
(
‖R−αωf I‖2L2 + CA

∑
J<I

∫
Ωρ0,R0

R−2αω2|∂≤1vJ |2 dg

+ CA
∑
J≥I

∫
Ωρ0,R0

R−2αρ2βω2|∂≤1vJ |2 dg

)
.

Calling this estimate (∗I), we then consider the sum of estimates
∑K
I=1 ε

I(∗I) with ε > 0 to be de-

termined. The left hand side of the resulting estimate controls a weighted norm of
∑K
I=1 ε

I |∂≤1vI |2,

while the second term on the right hand side is bounded by CKCA
∑K
I=2

∑I−1
J=1 ε

I |∂≤1vJ |2 ≤
KCKCAε

∑K
J=1 ε

J |∂≤1vJ |2; this can be absorbed into the left hand side when KCKCAε <
1
2 .

Having thus fixed ε, we can then argue as in Step (1.2) in order to absorb also the last term on the
right (arising from the sums over J ≥ I) into the left hand side upon choosing z sufficiently large.
This completes the proof of the estimate (3.35).

• Step 2. Higher regularity. Trivializing β∗(S2 0T ∗M) using the frame eµ, we have

Lh0,h̃
=

∑
j+|γ|≤2

`jγ(τ∂τ )j(τ∂x)γ , `jγ = `0,jγ + `(0),jγ + ˜̀
jγ ,
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`0,jγ ∈ C∞(Ωρ0,R0), `(0),jγ ∈ RαH∞b (I+
R0

), ˜̀
jγ ∈ RαρβH∞b (Ωρ0,R0

), (3.40)

where the coefficients are 10 × 10 matrices, with `(0),jγ and ˜̀
jγ satisfying tame estimates in terms

of h0, h̃; this is the content of (3.12). It is more transparent to pass to the coordinates R = |x|,
ρ = τ

|x| , and ω = x
|x| . We thus write

Lh0,h̃
=

∑
j+|γ|+i≤2

`jγi(ρ,R, ω)(ρR∂R)j(ρV )γ(ρ∂ρ)
i,

where
`jγi = `jγi(ρ,R, ω) = `0,jγi(ρ,R, ω) + `(0),jγi(R,ω) + ˜̀

jγi(ρ,R, ω) (3.41)

analogously to (3.40). We study the initial value problem (3.31).

(2.1) Warm-up: gaining 1 b-derivative. Step 1 gives ‖v‖Rαρ−NH1
0,b
≤ C‖(f, v0, v1)‖D0,α,−N . We

claim that for all k ∈ N,

‖v‖Rαρ−NH1;k
0,b;b

:= ‖v‖Rαρ−NHkb + ‖τ∂τv‖Rαρ−NHkb + ‖τ∂xv‖Rαρ−NHkb
≤ Ck

(
‖h0‖RαHk+2+2d3

b

, ‖h̃‖
RαρβH

k+2+2d4
b

)(
‖(f, v0, v1)‖Dk,α,−N + ‖v‖Rαρ−NH1;k−1

0,b;b

)
,

(3.42)

which gives

‖v‖Rαρ−NH1;k
0,b;b
≤ Ck

(
‖h0‖RαHk+2+2d3

b

, ‖h̃‖
RαρβH

k+2+2d4
b

)
‖(f, v0, v1)‖Dk,α,−N . (3.43)

We shall prove this for k = 1 to illustrate the structural properties of (0,b)-differential operators
and their interaction with b-regularity. (We do not use the estimate (3.42) later on, and thus leave
the discussion of k ≥ 2 to the interested reader. Only the tame estimate, proved in Step 2.2 below,
will be used.)

To wit, we consider the equations satisfied by b-derivatives of v. The derivatives along ρ∂ρ and
R∂R, Va (a = 1, 2, 3) play different roles (cf. Remark 1.7, with τ∂τ and ∂x playing the roles of ρ∂ρ
and R∂R, Va). Thus,

Lh0,h̃
(ρ∂ρv) = ρ∂ρf + [Lh0,h̃

, ρ∂ρ]v

= ρ∂ρf −
∑

j+|γ|+i≤2

(ρ∂ρ`jγi)(ρR∂R)j(ρV )γ(ρ∂ρ)
iv

−
∑

j+|γ|+i≤2

`jγi(j + |γ|)(ρR∂R)j(ρV )γ(ρ∂ρ)
iv,

(3.44a)

Lh0,h̃
(R∂Rv) = R∂Rf −

∑
j+|γ|+i≤2

(R∂R`jγi)(ρR∂R)j(ρV )γ(ρ∂ρ)
iv, (3.44b)

Lh0,h̃
(Vav) = Vaf −

∑
j+|γ|+i≤2

(Va`jγi)(ρR∂R)j(ρV )γ(ρ∂ρ)
iv

−
∑

j+|γ|+i≤2

`jγi(ρR∂R)j [Va, (ρV )γ ](ρ∂ρ)
iv.

(3.44c)

Those terms on the right hand sides in which j+|γ|+i ≤ 1 can be estimated in the space R−αρ−NL2

by
∑
j,γ,i ‖`jγi‖C1b‖v‖R−αρ−NH1;0

0,b;b
. By Sobolev embedding (Lemma 2.9) and using (3.12) (with

the values k − 2 = 1 + d3, resp. k − 2 = 1 + d4), this is bounded by C(1 + ‖h0‖RαH3+2d3
b

+

‖h̃‖
RαρβH

3+2d4
b

)‖v‖R−αρ−NH1;0
0,b;b

.

Consider thus the terms with j + |γ| + i = 2. In the first sum of (3.44a), note that ρ∂ρ
annihilates the leading order terms of `jγi at ρ = 0, so ρ∂ρ`jγi ∈ ρC∞ + RαρβH∞b , with the

RαρβCb
0 -norm of the non-smooth contribution ρ∂ρ ˜̀

jγi (cf. (3.41)) bounded by ‖˜̀jγi‖RαρβC1b ≤
C‖˜̀jγi‖RαρβH1+d4

b

≤ C ′(‖h0‖RαH3+2d3
b

+ ‖h̃‖
RαρβH

3+2d4
b

). When i = 1 or 2, we can thus regard
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(ρ∂ρ`jγi)(ρR∂R)j(ρV )γ(ρ∂ρ)
i−1 as a contribution to A11 (i.e. this is applied to ρ∂ρv) in the nota-

tion of (3.33) (where K = 1 + 1 + 3). When i = 0 on the other hand, and j ≥ 1, say, then the term
(ρ∂ρ`jγi)(ρR∂R)j−1(ρV )γ ◦ρR∂R gives rise to a contribution ρ(ρ∂ρ`jγi)(ρR∂R)j−1(ρV )γ to A12 (i.e.

this is applied to R∂Rv), and more precisely to Ã12 in view of the vanishing factor of ρ; when j = 0

and |γ| = 2, we instead get an analogous contribution to A1a (in fact, to Ã1a) for a = 3, 4, 5.

Turning to the second sum of (3.44a), note that now at least one of j, |γ| is nonzero. Say j ≥ 1
(the case |γ| ≥ 1 being completely analogous); then we can write

(ρR∂R)j(ρV )γ(ρ∂ρ)
i = ρ(ρR∂R)j−1(ρV )γ(ρ∂ρ)

i ◦R∂R, (3.45)

and thus regard ρ`jγi(j + |γ|)(ρR∂R)j−1(ρV )γ(ρ∂ρ)
i as a further contribution to A12 (i.e. this acts

on R∂Rv), more precisely to Ã12—note again the presence of the factor ρ here.

Turning to (3.44b), we can regard those terms for which i ≥ 1 as contributions to A21 (i.e. acting
on ρ∂ρv) by writing them as (R∂R`jγi)(ρR∂R)j(ρV )γ(ρ∂ρ)

i−1 ◦ ρ∂ρ. (The coefficient R∂R`jγi is of
class C∞ + RαH∞b + RαρβH∞b ; it does not need to vanish at ρ = 0, which is why we allowed for
such lower-triangular terms in Step 1.) When i = 0 and thus one of j, |γ| is nonzero, say j ≥ 1,
we again write (3.45) to obtain a contribution to A22 (with coefficient vanishing at ρ = 0). The
equation (3.44c) is treated completely analogously (using that18 [Va, Vb] = εabcVc).

Altogether, we thus obtain a 5 × 5 system of the form (3.33)–(3.34), with v and f replaced by
v′ := (ρ∂ρv,R∂Rv, V1v, V2v, V3v) and f ′ = (fI)1≤I≤5, respectively, where f1, f2, fa+2 (a = 1, 2, 3)
is given by the right hand sides of (3.44a)–(3.44c) without the terms with j + |γ| + i = 2. The
initial datum v′|Σρ0,R0

can be computed in terms of v0, R∂Rv0, Vav0, v1. For the initial datum

(ρ∂ρv
′)|Σρ0,R0

, we only need to determine (ρ∂ρ)
2v|ρ=ρ0 ; but

(ρ∂ρ)
2v =

1

`200

(
Lh0,h̃

v −
∑

j+|γ|+i≤2
i≤1

`jγi(ρR∂R)j(ρV )γ(ρ∂ρ)
iv

)
. (3.46)

Note that `200 = −g−1(dρ
ρ ,

dρ
ρ ) ≡ −g−1

b (dρ
ρ ,

dρ
ρ ) mod RαH∞b (I+

R0
) + RαρβH∞b (Ωρ0,R0) is equal to

−g−1
b (dρ

ρ ,
dρ
ρ ) > 0 (cf. Definition 2.1) plus a small correction (by (3.30)), and thus bounded away

from 0. Furthermore, the restriction of Lh0,h̃
v = f ∈ Rαρ−NH1

b to ρ = ρ0 lies in RαL2(Σρ0,R0) by

Lemma 2.9(2). The estimate (3.35), with C depending on the AIJ , now gives (3.42) for k = 1.

(2.2) Higher b-regularity with tame estimates. We claim that

‖v‖Rαρ−NH1;k
0,b;b

≤ Ck
(
‖(f, v0, v1)‖Dk,α,−N

+
(
‖h0‖RαHk+2+2d3

b

+ ‖h̃‖
RαρβH

k+2+2d4
b

)
‖v‖Rαρ−NH1

0,b
+ ‖v‖Rαρ−NH1;k−1

0,b;b

)
.

(3.47)

For the proof, we commute the equation Lh0,h̃
v = f with

W ζ := (ρ∂ρ, R∂R, (V1, V2, V3))ζ , ζ = (m,n, σ), |ζ| := m+ n+ |σ| = k.

On the set K := {ζ ∈ N5
0 : |ζ| = k}, we introduce a weak ordering by declaring ζ = (m,n, σ) ≤ ζ ′ =

(m′, n′, σ′) if and only if m ≥ m′. For ζ = (m,n, σ) with |ζ| = k, consider then

Lh0,h̃
(W ζv) = W ζf − [W ζ , Lh0,h̃

]v = W ζf −
∑

j+|γ|+i≤2

[W ζ , `jγi(ρR∂R)j(ρV )γ(ρ∂ρ)
i]v

18It is not important that the Va are rotation vector fields here; it suffices that, by virtue of them spanning V(S2)

over C∞(S2), we can write [Va, Vb] =
∑
c f

c
abVc for some fcab ∈ C

∞(S2).
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= W ζf −
∑

j+|γ|+i≤2

[W ζ , `jγi](ρR∂R)j(ρV )γ(ρ∂ρ)
iv

−
∑

j+|γ|+i≤2

`jγi[W
ζ , (ρR∂R)j(ρV )γ(ρ∂ρ)

i]v.
(3.48)

(2.2.1) Lower order terms I. On the right hand side of (3.48), consider first the terms with
i+ |γ|+ j ≤ 1. We shall estimate these in Rαρ−NL2(Ωρ0,R0). By Lemma 2.6, we can write

[W ζ , (ρR∂R)j(ρV )γ(ρ∂ρ)
i] =

∑
j′+|γ′|+i′≤1

|ζ′|≤k−1

cζ,jγiζ′,j′γ′i′W
ζ′(ρR∂R)j

′
(ρV )γ

′
(ρ∂ρ)

i′

for suitable cζ,jγiζ′,j′γ′i′ ∈ C∞(M̆). Therefore,

‖`jγi[W ζ , (ρR∂R)j(ρV )γ(ρ∂ρ)
i]v‖Rαρ−NL2 ≤ C‖`jγi‖L∞‖v‖Rαρ−NH1;k−1

0,b;b
;

and ‖`jγi‖L∞ ≤ C(1 + ‖h0‖RαHd3+2

b

+ ‖h̃‖
RαρβH

d4+2

b

) by Sobolev embedding and (3.12). Turning

to [W ζ , `jγi] and writing W ζ = W1 · · ·Wk where Wi ∈ {ρ∂ρ, R∂R, V1, V2, V3}, we note that, for any
function `,

[W ζ , `] =

k∑
p=1

∑
ItJ={1,...,k}
|I|=p

(WI`)WJ , (3.49)

where I = {i1, . . . , ip} with 1 ≤ i1 < i2 < · · · < ip ≤ k and J = {j1, . . . , jk−p} with 1 ≤ j1 <
j2 < · · · < jk−p ≤ k, and WI := Wi1Wi2 · · ·Wip . Therefore, schematically writing Dp

b for a p-fold
composition of b-vector fields,

‖[W ζ , `jγi](ρR∂R)j(ρV )γ(ρ∂ρ)
iv‖Rαρ−NL2

≤ C
k∑
p=1

‖(Dp
b`jγi)(D

k−p
b (ρR∂R)j(ρV )γ(ρ∂ρ)

iv)‖L2 .

We split `jγi as in (3.41). The contribution from `0,jγi is bounded by C‖v‖Rαρ−NH1;k−1
0,b;b

. The

contributions from `(0),jγi and ˜̀
jγi can be bounded using Lemma 2.9(3) (applied with a = p − 1,

v1 = Db`(0),jγi, resp. u1 = Db
˜̀
jγi and b = k − p, u2 = (ρR∂R)j(ρV )γ(ρ∂ρ)

iv) by a constant times(
‖Db`(0),jγi‖Hd3b

+ ‖Db
˜̀
jγi‖Hd4b

)
‖v‖Rαρ−NH1;k−1

0,b;b

+
(
‖Db`(0),jγi‖Hk−1+d3

b

+ ‖Db
˜̀
jγi‖Hk−1+d4

b

)
‖v‖Rαρ−NH1

0,b
,

which in view of (3.12) and (3.30) is bounded by a constant times

‖v‖Rαρ−NH1;k−1
0,b;b

+
(
‖h0‖RαHk+2+2d3

b

+ ‖h̃‖
RαρβH

k+2+2d4
b

)
‖v‖Rαρ−NH1

0,b
.

(2.2.2) Lower order terms II. We now turn to the terms in the first sum on the right in (3.48)
with i + |γ| + j = 2; we expand [W ζ , `jγi] using (3.49). Those terms with p = |I| ≥ 2 and thus
|J | ≤ k− 2 can be estimated, using V0,b ⊂ Vb and writing D0,b for a derivative along an element of
V0,b, by

‖(WI`jγi)WJ(ρR∂R)j(ρV )γ(ρ∂ρ)
iv‖Rαρ−NL2 ≤ C‖(Dp

b`jγi)(D
k−p+1
b D0,bv)‖Rαρ−NL2 .

Lemma 2.9(3) (now with a = p − 2, v1 = D2
b`(0),jγi, resp. u1 = D2

b
˜̀
jγi) allows us to estimate this

further by a constant times(
‖D2

b`(0),jγi‖Hd3b

+ ‖D2
b

˜̀
jγi‖Hd4b

)
‖v‖Rαρ−NH1;k−1

0,b;b

+
(
‖D2

b`(0),jγi‖Hk−2+d3
b

+ ‖D2
b

˜̀
jγi‖Hk−2+d4

b

)
‖v‖Rαρ−NH1

0,b
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. ‖v‖Rαρ−NH1;k−1
0,b;b

+
(
‖h0‖RαHk+2+2d3

b

+ ‖h̃‖
RαρβH

k+2+2d4
b

)
‖v‖Rαρ−NH1

0,b
.

(We use here that ‖D2
b`(0),jγi‖Hd3b

≤ C‖h0‖H(d3+2)+(d3+2)

b

by (3.12), which is the origin for the

assumption (3.30); similarly for h̃.)

(2.2.3) Remaining terms; lower triangular structure. Continuing the study of those terms in the
first sum in (3.48) with i+ |γ|+ j = 2, and using the notation introduced for (3.49), it remains to
deal with

(Wq`jγi)W1 · · · Ŵq · · ·Wk(ρR∂R)j(ρV )γ(ρ∂ρ)
iv

where the hat indicates the omission of a term. By Lemma 2.6, the commutator of W1 · · · Ŵq · · ·Wk

with (ρR∂R)j(ρV )γ(ρ∂ρ)
i is schematically of the form Dk−2

b D2
0,b and thus a fortiori of the form

Dk−1
b D1

0,b. Therefore, its contribution is bounded by ‖Db`jγi‖L∞‖v‖Rαρ−NH1;k−1
0,b;b

. Up to terms

with these bounds, we can thus freely rearrange all vector fields. Suppose first that Wq = ρ∂ρ; then

Wq`jγi ∈ ρC∞ + RαρβH∞b , so we can write (Wq`jγi)(ρR∂R)j(ρV )γ(ρ∂ρ)
iW1 · · · Ŵq · · ·Wkv as the

action of

(ρ∂ρ`jγi)D0,b ∈ ρDiff1
0,b +RαρβC0

bDiff1
0,b

(which contributes to the appropriate Aζζ′ term, ζ ′ ∈ K, in (3.33)) on Dk
bv. On the other hand,

when Wq = R∂R (and similarly when Wq = V1, V2, V3), we need to distinguish two cases: the first
case is that i = 2, in which case we have the term

(Wq`jγi)ρ∂ρ(ρ∂ρW1 · · · Ŵq · · ·Wkv),

which contributes (Wq`jγi)ρ∂ρ to Aζζ′ where ζ ′ = (m + 1, n − 1, σ) < ζ (by which we man that
ζ ≤ ζ ′ does not hold). (Thus Aζζ′ is a strictly lower triangular term, with coefficients that need not
vanish at ρ = 0.) When i ≤ 1, then among the two factors in (ρR∂R)j(ρV )γ(ρ∂ρ)

i there is at least
one (namely, one of ρR∂R and ρV ) of the form ρDb, and thus we get a term (Wq`jγi)D0,bρ(Dk

bv),
which is again a trivial contribution to A = (Aζζ′) due to the factor of ρ.

Finally, consider the terms in the second sum in (3.48) with i + |γ| + j = 2. Upon expand-
ing the commutator, i.e. applying (3.49) with WI` for ` = (ρR∂R)j(ρV )γ(ρ∂ρ)

i now meaning

[Wi1 , [Wi2 · · · [Wip , `] · · · ]], all terms with |I| = p ≥ 2 are of the schematic form D2
0,bD

k−p
b v, so a

fortiori D0,bD
k−1
b v, and can thus be estimated by ‖`jγiD1

0,bD
k−1
b v‖Rαρ−NL2 . ‖`jγi‖L∞‖v‖H1;k−1

0,b;b
.

It thus suffices to analyze the terms

[Wq, (ρR∂R)j(ρV )γ(ρ∂ρ)
i]W1 · · · Ŵq · · ·Wkv. (3.50)

When |γ| ≥ 1 and Wq = V1, V2, V3, the commutator is a sum of terms which are of the form

(ρR∂R)j(ρV )γ
′
(ρ∂ρ)

i where |γ′| = |γ|. We then shift one factor of V to the right and obtain a term
of the form

ρ`jγi(ρR∂R)j(ρV )γ
′′
(ρ∂ρ)

i(VaW1 · · · Ŵq · · ·Wkv), |γ′′| = |γ| − 1;

thus ρ`jγi(ρR∂R)j(ρV )γ
′′
(ρ∂ρ)

i is a trivial contribution to the appropriate coefficient Aζζ′ . If
Wq = R∂R, the commutator in (3.50) vanishes. If Wq = ρ∂ρ, the commutator is equal to (j +
|γ|)(ρR∂R)j(ρV )γ(ρ∂ρ)

i; for it to be nonzero, we must have j + |γ| ≥ 1. Say j ≥ 1; then we
can shift one factor of R∂R to the right and remain with (j + |γ|)ρ`jγi(ρR∂R)j−1(ρV )γ(ρ∂ρ)

i ◦
(R∂RW1 · · · Ŵq · · ·Wkv), with the operator on the left again giving a trivial contribution (due to
the factor of ρ) to the appropriate Aζζ′ (here ζ ′ = (m− 1, n+ 1, σ))

Altogether, we have shown that there exist Aζζ′ = A0,ζζ′ + A(0),ζζ′ + Ãζζ′ for ζ, ζ ′ ∈ K with

A0,ζζ′ ∈ Diff1
0,b, A(0),ζζ′ ∈ RαC0

b(I+
R0

)Diff1
0,b, and Ãζζ′ ∈ RαρβC0

b(Ωρ0,R0)Diff1
0,b, with the following

properties:

• for ζ ≤ ζ ′, we have A0,ζζ′ ∈ ρDiff1
0,b, A(0),ζζ′ = 0;
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• by Sobolev embedding to control Wq`jγi in L∞ spaces, and again using (3.12),

‖A(0),ζζ′‖RαC0bDiff1
0,b
, ‖Ãζζ′‖RαρβC0bDiff1

0,b
≤ Ck

(
‖h0‖RαH2d3+4

b

+ ‖h̃‖
RαρβH

2d4+4

b

)
,

which are in turn bounded by (3.30);
• set

L := (δζζ′Lh0,h̃
−Aζζ′)ζ,ζ′∈K , v′ := (W ζv)ζ∈K , (3.51)

then Lv′ = f ′ where f ′ satisfies the bound

‖f ′‖Rαρ−NL2(Ωρ0,R0
)

≤ Ck
(
‖f‖Rαρ−NHkb +

(
‖h0‖RαHk+2+2d3

b

+ ‖h̃‖
RαρβH

k+2+2d4
b

)
‖v‖Rαρ−NH1

0,b

+ ‖v‖Rαρ−NH1;k−1
0,b;b

)
.

(2.2.4) Initial data for the commuted equation. It remains to control the Cauchy data of v′

in (3.51) at Σρ0,R0
⊂ {ρ = ρ0}. Since R∂R, Va are tangent to Σρ0,R0

, we only need to prove a tame

estimate for v0,p := (ρ∂ρ)
pv|ρ=ρ0 in RαHk+1−p

b (Σρ0,R0
), p = 0, . . . , k + 1. For p = 0, 1, we simply

have v0,p = vp. For p ≥ 2, we use the spacetime identity (3.46), written as

(ρ∂ρ)
2v =

1

`200

(
f − L0v − L1(ρ∂ρv)

)
, Lq :=

∑
j+|γ|≤2−q

`jγq(ρR∂R)j(ρV )γ , q = 0, 1,

to deduce that

v0,p =

p−2∑
a=0

(
p− 2

a

)(
(ρ∂ρ)

p−2−a 1

`200

)(
(ρ∂ρ)

af − (ρ∂ρ)
aL0v − (ρ∂ρ)

aL1(ρ∂ρv)
)∣∣∣

Σρ0,R0

. (3.52)

We claim that

‖v0,p‖RαHk+1−p
b (Σρ0,R0

)

≤ Ck
(
‖(f, v0, v1)‖Dk,α,−N

+
(
‖h0‖RαHk+2+2d3

b

+ ‖h̃‖
RαρβH

k+2+2d4
b

)
‖(f, v0, v1)‖D0,α,−N

)
.

(3.53)

We shall only prove this estimate for the term in (3.52) with a = p− 2, and indeed for `200 := 1; we
leave the simple modifications required to treat the full expression (based on further applications of
the tame product estimates of Lemma 2.9) to the reader.

The term in (3.52) involving f is bounded using Lemma 2.9(2) by

‖(ρ∂ρ)p−2f‖RαHk+1−p
b (Σρ0,R0

) ≤ C‖(ρ∂ρ)
p−2f‖Rαρ−NHk+2−p

b (Ωρ0,R0
)

≤ C ′‖f‖Rαρ−NHkb (Ωρ0,R0
).

For the estimate of the RαHk+1−p
b -norm of the term involving L1 (the term L0 is treated similarly

and left to the reader), we only consider derivatives along (R∂R)k+1−p; derivatives along (R∂R)qV γ

for q+ |γ| ≤ k+1−p can then be handled in the same fashion with purely notational modifications.
We thus need to prove a bound in RαL2(Σρ0,R0

) for (R∂R)k+1−p(ρ∂ρ)
p−2L1(ρ∂ρv), which is a sum

of terms of the form (
(R∂R)q

′
(ρ∂ρ)

p′`jγ1

)
· (R∂R)q

′′
(ρR∂R)j(ρV )γ(ρ∂ρ)

p′′+1v,

where q′ + q′′ = k + 1− p and p′ + p′′ ≤ p− 2, and j + |γ| ≤ 1; schematically, this is thus

(Dq′+p′

b `jγ1|Σρ0,R0
)(Dq′′+1

b v0,p′′+1).

Since p′′+ 1 ≤ p−1, we can iteratively express v0,p′′+1 using the formula (3.52), and proceed in this
fashion until we obtain an expression involving only f , v0,0 = v0, v0,1 = v1, and the coefficients of
Lh0,h̃

. We discuss here only the case p′′ = 0 and p′ = p − 2, in which case we can use Lemma 2.9
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(specifically, the estimate (2.23b), which also applies on U = Σρ0,R0) and Lemma 2.9(2) (which gives

an estimate ‖˜̀jγ1‖RαHmb (Σρ0,R0
) ≤ C‖˜̀jγ1‖RαρβHm+1

b (Ωρ0,R0
)) to bound

‖(Dq′+p−2
b `jγ1|Σρ0,R0

)(Dq′′+1
b v0,1)‖RαL2

.
(
1 + ‖`(0),jγ1‖RαHd3b

+ ‖˜̀jγ1‖RαρβHd4b

)
‖v0,1‖RαHkb

+
(
1 + ‖`(0),jγ1‖RαHk+d3b

+ ‖˜̀jγ1‖RαρβHk+d4b

)
‖v0,1‖RαL2

. ‖(0, 0, v1)‖Dk,α,−N +
(
‖h0‖RαHk+2+2d3

b

+ ‖h̃‖
RαρβH

k+2+2d4
b

)
‖(0, 0, v1)‖D0,α,−N ;

here we use (q′ + p− 2) + (q′′ + 1) = k. In this fashion one proves (3.53).

We can finally apply the estimate (3.35) to the initial value problem for L′v′ = f ′ to finish the
proof of (3.47) and thus of the Proposition. �

3.2.2. Asymptotics and decay. We continue assuming (3.30), and drop the bundle β∗(S2 0T ∗M)
from the notation. We recall the cutoff χ from (3.1). Starting from the estimate (3.32) (for large
k) for the solution of an initial value problem for Lh0,h̃

v = f , we now extract stronger information

about the asymptotic behavior of v near ρ = 0 (assuming appropriate decay for f) using an indicial
operator argument.

It is convenient to straighten out the domain Ωρ0,R0
from Definition 2.4: introduce

ρ′ = ρ, R′ = (1− 2ρ)R, (3.54)

and set R′0 := (1− 2ρ0)R0, then

Ωρ0,R0 = {ρ′ ≤ ρ0, R
′ ≤ R′0} = [0, ρ0]ρ′ × [0, R′0]R′ × S2.

The product nature of Ωρ0,R0
in these coordinates is closely related to the fact that the vector field

ρ′∂ρ′ = ρ∂ρ + c(ρ)ρR∂R, c(ρ) :=
2

1− 2ρ
, (3.55)

is tangent to the (final spacelike) boundary hypersurface Σ+
ρ0,R0

= {(1 − 2ρ)R = (1 − 2ρ0)R0} of
Ωρ0,R0

. It is in these adapted coordinates that we now discuss the inversion of the indicial operator.

Lemma 3.12 (Inversion of the indicial operator). Let α ∈ R and ρ1 ∈ (0, ρ0), further η1 < η2 < 1
with η1, η2 6= 0, and k ∈ N0. Recall the operator Ig(0) from Proposition 3.5(2), where g(0) = dx2+h(0)

is defined as in (3.13). Suppose v ∈ Rαρη1Hk
b (Ωρ0,R0

) vanishes for ρ ≥ ρ1 > 0, and Ig(0)(ρ
′∂ρ′)v ∈

Rαρη2Hk
b (Ωρ0,R0).

(1) (Improving the weight.) If η1 < η2 < 0 or 0 < η1 < η2 < 1, then v ∈ Rαρη2Hk
b (Ωρ0,R0

) and

‖v‖Rαρη2Hkb ≤ Ck
(
‖Ig(0)v‖Rαρη2Hkb + ‖h0‖RαHk+d3b

‖Ig(0)v‖Rαρη2L2

)
. (3.56)

(2) (Extracting asymptotics.) If η1 < 0 < η2, then there exist v0 ∈ RαHk
b (I+

R0
; τ−2 ker trg(0)),

ṽ′ ∈ Rαρη2Hk
b (Ωρ0,R0) so that

v(ρ′, R′, ω) = χ(ρ′)v0(R′, ω) + ṽ′(ρ′, R′, ω), (3.57)

and ‖v0‖RαHkb + ‖ṽ′‖Rαρη2Hkb is bounded by the right hand side of (3.56).

The proof, given below, relies on a contour shifting argument on the Mellin transform side. Our
convention for the Mellin transform is

(Mv)(λ,R′, ω) :=

∫ ∞
0

ρ′−λv(ρ′, R′, ω)
dρ′

ρ′
.

This intertwines Ig(0)(ρ
′∂ρ′) with Ig(0)(λ). The Plancherel theorem gives an isomorphism

M : ρ′ηL2
(
(0,∞)ρ′ × I+

R′0

)
→ L2

(
{Reλ = η};L2(I+

R′0
)
)
, (3.58)
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where on I+
R′0

we use the density µ := |dR
′

R′ d/g|, and on the left the density |dρ
′

ρ′ | ⊗ µ. The inverse

Mellin transform is

(M−1
η w)(ρ′, R′, ω) :=

1

2πi

∫ η+i∞

η−i∞
ρ′λw(λ,R′, ω) dλ.

For λ ∈ C, let us write Hk,α
b,λ (I+

R′0
) for the space Hk,α

b (I+
R′0

) = RαHk
b (I+

R′0
) with norm

‖w‖2
Hk,αb,λ (I+

R′0
)

:=
∑

j+|γ|+i≤k

‖R−α(R∂R)jV γλiw‖2
L2(I+

R′0
)
.

Then (3.58) generalizes to the isomorphism

M : Rαρ′ηHk
b ([0,∞)ρ′ × I+

R′0
)→ L2

(
{Reλ = η};Hk,α

b,λ (I+
R′0

)
)
; (3.59)

the b-Sobolev space on the left is defined via testing with ρ′∂ρ′ , R
′∂R′ , Va (a = 1, 2, 3).

Proof of Lemma 3.12. Write f := Ig(0)(ρ
′∂ρ′)v. For clarity, we write Ig(0)(λ,R

′, ω) for the indicial

family; this is, for fixed R′, ω, a linear map on the fiber of β∗(S2 0T ∗M) over (R′, ω) ∈ I+ ⊂ M̆ .
Since by Lemma 3.9 Ig(0)(λ,R

′, ω) is invertible when Reλ < 1, λ 6= 0, and thus in particular for
Reλ = η1, we can then express

v(ρ′, R′, ω) =
1

2πi

∫ η1+∞

η1−i∞
ρ′λIg(0)(λ,R

′, ω)−1(Mf)(λ,R′, ω) dλ. (3.60)

Since f vanishes for large ρ′, its Mellin transformMf(λ, ·) is holomorphic in Reλ < η2 with values
in RαHk

b (I+
R′0

).

We aim to exploit the meromorphicity of Ig(0)(λ,R
′, ω)−1 in Reλ < 1, with only a simple pole at

λ = 0. It is convenient to use the expression (3.29) in the g(0)-dependent splitting (3.28) of S2T ∗X.
Now, (3.29) has a (3 + 1) × (3 + 1) block structure, with a 3× 3 minor without poles in Reλ < 1,
while the (4, 4) entry is λ−1(λ− 3)−1. The map S2T ∗X → Rg(0) ⊕ ker trg(0) is given by

S2T ∗X 3 h 7→
(

1
3g(0) trg(0) h, h− 1

3g(0) trg(0) h
)
.

Therefore, we can write

Ig(0)(λ,R
′, ω)−1 = λ−1(λ− 3)−1Ag(0)(R

′, ω) +Bg(0)(λ,R
′, ω)

where Ag(0) = diag(0, 0, I − 1
3g(0) trg(0)) in the splitting (2.10), while the matrix coefficients of Bg(0)

are rational functions of λ without poles in Reλ < 1 whose coefficients are linear combinations
of constants, g(0) (third row), trg(0) (third column), and g(0) trg(0) ((3, 3) entry). Fixing any fixed

positive definite fiber inner product on β∗(S2 0T ∗M), we moreover have19

‖Bg(0)(λ,R
′, ω)‖ ≤ C, η1 ≤ Reλ ≤ η2.

Using Lemma 2.9(3), specifically the estimate (2.23b), we can now estimate∥∥(R∂R)jV γ
(
Bg(0)(λ, ·)(Mf)(λ, ·)

)∥∥
RαL2(I+

R′0
)

≤ C
(

(1 + ‖h0‖RαHd3b

)‖(Mf)(λ, ·)‖
RαH

j+|γ|
b

+ (1 + ‖h0‖RαHj+|γ|+d3b

)‖(Mf)(λ, ·)‖RαL2

)
.

Multiplying this with λi and summing over all j, γ, i with j + |γ|+ i ≤ k, we obtain (using (3.30))

‖Bg(0)(λ, ·)(Mf)(λ, ·)‖Hk,αb,λ

19The bound can be sharpened to C(1 + |λ|)−2, though this will not be of use in what follows.
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≤ C
(
‖(Mf)(λ, ·)‖Hk,αb,λ

+

k∑
p=0

‖h0‖RαHp+d3b

‖(Mf)(λ, ·)‖Hk−p,αb,λ

)
.

In the sum, the estimate (2.24) shows that it suffices to keep the terms with p = 0, k, and thus

‖Bg(0)(λ, ·)(Mf)(λ, ·)‖Hk,αb,λ
≤ C

(
‖(Mf)(λ, ·)‖Hk,αb,λ

+ ‖h0‖RαHk+d3b

‖(Mf)(λ, ·)‖RαL2

)
.

The same estimate applies for Ag(0)(·) in place of Bg(0)(λ, ·).
In part (1) then, we shift the contour in the integral (3.60) to η2 + i(−∞,∞) and use these

estimates together with (3.59) to conclude. The proof of part (2) is completely analogous, except
now the pole of Ig(0)(λ, ·)−1 at λ = 0 causes a contribution due to the residue theorem given by

− 1
3Ag(0)(R

′, ω)(Mf)(0, R′, ω) =: v0(R′, ω), while the integral over the final contour η2 + i(−∞,∞)

gives rise to w̃ ∈ Rαρ′η2Hk
b ([0,∞)ρ′ × I+

R′0
); we then set ṽ′ := χw̃ + (1− χ)v0 to conclude. �

In order to switch back to the original ρ,R coordinates in (3.57), we first use Lemma 2.8 to
extend v0 to an element of RαHk

b (I+
R0

). We then have

v = χ(ρ)v0((1− 2ρ)R,ω) + ṽ′ = χv0(R,ω) + ṽ,

where20

ṽ := ṽ′ + χ
(
v0((1− 2ρ)R,ω)− v0(R,ω)

)
= ṽ′ − 2ρχ

∫ 1

0

R∂Rv0((1− 2ρs)R,ω) ds

∈ Rαρη2Hk
b (Ωρ0,R0

) + ρRαHk−1
b (I+

R0
) ⊂ Rαρη2Hk−1

b (Ωρ0,R0
);

and we have the tame estimate

‖v0‖RαHkb (I+R0
) + ‖ṽ‖Rαρη2Hk−1

b (Ωρ0,R0
)

≤ Ck
(
‖Ig(0)v‖Rαρη2Hkb + ‖h0‖RαHk+d3b

‖Ig(0)v‖Rαρη2L2

)
.

(3.61)

Proposition 3.13 (Tame bounds on decaying spaces). There exists d ∈ N so that the following

holds whenever ‖h0‖RαHdb , ‖h̃‖RαρβHdb < 1. The unique solution v of the initial value problem

Lh0,h̃
v = f ∈ RαρβH∞b (Ωρ0,R0

),

(v,L−ρ∂ρv)|Σρ0,R0
= (v0, v1) ∈ RαH∞b (Σρ0,R0

)⊕RαH∞b (Σρ0,R0
)

can be written as

v = χv0 + ṽ,

where v0 ∈ RαH∞b (I+
R0

) and ṽ ∈ RαρβH∞b (Ωρ0,R0
) satisfy for all k ∈ N0 a tame estimate

‖v0‖RαHkb + ‖ṽ‖RαρβHkb ≤ Ck
(
‖(f, v0, v1)‖Dk+d,α,β

+
(
‖h0‖RαHk+db

+ ‖h̃‖RαρβHk+db

)
‖(f, v0, v1)‖D0,α,β

)
.

(3.62)

Remark 3.14 (Value of d). An inspection of the proof produces a concrete value for d ≥ 2d4 + 2.
For example, any number d ≥ 2Nβ + 16 works. Thus, if in Proposition 3.11 one obtained a specific

value for N (by applying more care in the basic energy estimate for �g), one could specify d also
here. (The value of β can be fixed arbitrarily close to 1, cf. the statement of Theorem 3.1.)

20If one worked from the outset with the coordinates ρ′, R′, the loss of one derivative here would be avoided.
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Proof of Proposition 3.13. Let d′ ∈ N0 (chosen at various places in the argument below to ensure the

positivity of all differentiability orders); and let k ∈ N0 be arbitrary. Given (f, v0, v1) ∈ Dk+d′,α,β ,

we have v ∈ Rαρ−NHk+d′

b (Ωρ0,R0), with a tame estimate (3.32), so

‖v‖
Rαρ−NHk+d

′
b

≤ Ck
(
‖(f, v0, v1)‖Dk+d′,α,β

+
(
‖h0‖RαHk+d′+2d3+2

b

+ ‖h̃‖
RαρβH

k+d′+2d4+2

b

)
‖(f, v0, v1)‖D0,α,β

)
.

(3.63)

In the notation used in Proposition 3.5(2), we now rewrite the equation Lh0,h̃
v = f as

Ig(0)(ρ∂ρ)(χv) = −
(
Lh0,h̃

− Ig(0)(ρ∂ρ)
)
(χv) + [Lh0,h̃

, χ]v + χf. (3.64)

Replacing ρ∂ρ on the left by ρ′∂ρ′ = ρ∂ρ+ρR, R := c(ρ)R∂R ∈ Vb(M̆) (cf. (3.55)), creates a further
error term given by the action on χv of the operator

Ig(0)(ρ∂ρ)− Ig(0)(ρ
′∂ρ′) = Ig(0)(ρ∂ρ)− Ig(0)(ρ∂ρ + ρR);

this operator is of class ρDiff2
b + ρRαHk

b Diff2
b (by inspection of (3.14a)) and can be written and

estimated in the same fashion as (3.14b)–(3.14c). In the estimates below, we continue writing Rαρβ

for weights (for notational simplicity—the weight R′αρ′β is a positive smooth multiple), but we
write Ig(0) := Ig(0)(ρ

′∂ρ′).

By slightly increasing N , we can ensure that for

J :=

⌊
N

β

⌋
,

we have −N + Jβ ∈ (−β, 0). For easier bookkeeping, we moreover require J ≥ 1.

• Step 1. Almost boundedness. We shall prove that for all j ∈ N0, j ≤ J (so with −N + jβ < 0),

we have v ∈ Rαρ−N+jβHk+d′−2j
b , with a tame estimate. For j = 0, this is the content of (3.63).

For the inductive step, we assume that, for some j ≥ 1, we have v ∈ Rαρ−N+(j−1)βH
k+d′−2(j−1)
b .

We require d′ ≥ 2j. We can then estimate the right hand side of (3.64), with ρ′∂ρ′ in place of ρ∂ρ,
using (3.14b)–(3.14c) by

‖Ig(0)(χv)‖
Rαρ−N+jβHk+d

′−2j
b

≤ ‖R0(χv)‖
Rαρ−N+jβHk+d

′−2j
b

+ ‖R̃h0,h̃
(χv)‖

Rαρ−N+jβHk+d
′−2j

b

+ ‖[Lh0,h̃
, χ]v‖

Rαρ−N+jβHk+d
′−2j

b

+ ‖χf‖
Rαρ−N+jβHk+d

′−2j
b

.

The first term is bounded by C‖v‖
Rαρ−N+jβ−1H

k+d′−2(j−1)
b

. Using Lemma 2.9, we can estimate the

second term by

‖R̃h0,h̃
(χv)‖

Rαρ−N+jβHk+d
′−2j

b

≤ Cj
(
‖χv‖

Rαρ−N+(j−1)βH
k+d′−2(j−1)
b

+
(
‖h0‖RαHk+d′+2+d3

b

+ ‖h̃‖
RαρβH

k+d′+2+d4
b

)
‖χv‖Rαρ−N+(j−1)βL2

)
.

For the third term, we note that [Lh0,h̃
, χ] ∈ ρDiff2

b + RαρβH∞b Diff2
b, with the second summand

obeying tame estimates by (3.12). Altogether, we therefore obtain

‖Ig(0)(χv)‖
Rαρ−N+jβHk+d

′−2j
b

≤ Cj
(
‖f‖

RαρβHk+d
′−2j

b

+ ‖v‖
Rαρ−N+(j−1)βH

k+d′−2(j−1)
b

+
(
‖h0‖RαHk+d′+2+d3

b

+ ‖h̃‖
RαρβH

k+d′+2+d4
b

)
‖v‖Rαρ−N+(j−1)βL2

)
.

(3.65)
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We can now apply Lemma 3.12(1) and deduce that χv ∈ Rαρ−N+jβHk+d′−2j
b , with norm bounded

by the right hand side of (3.65) but with L2 replaced by H2
b (arising from the low regularity term

in (3.56) which we estimate using (3.65) with k = 0, d′ = 2j). Since (1−χ)v ∈ RαρN ′Hk+d′−2(j−1)
b

for all N ′, we conclude that

‖v‖
Rαρ−N+jβHk+d

′−2j
b

≤ Cj
(
‖f‖

RαρβHk+d
′−2j

b

+ ‖v‖
Rαρ−N+(j−1)βH

k+d′−2(j−1)
b

+
(
‖h0‖RαHk+d′+2+d3

b

+ ‖h̃‖
RαρβH

k+d′+2+d4
b

)
‖v‖Rαρ−N+(j−1)βH2

b

)
.

(3.66)

As a special case, for j ≥ 1 we take k = 0 and d′ = 2j + q to get the low regularity estimate

‖v‖Rαρ−N+jβHqb
≤ C

(
‖f‖RαρβHqb +

(
1 + ‖h0‖RαH2j+d3+q

b

+ ‖h̃‖
RαH

2j+d4+q

b

)
‖v‖Rαρ−N+(j−1)βHq+2

b

)
.

(3.67)

Consider now (3.66) for j = J (which requires taking d′ ≥ 2J). The high regularity norm (the
second term on the right) will be bounded using the estimate for j = J − 1. The low regularity
norm (the norm on v in the third term on the right) on the other hand can be bounded using (3.67)
with j = J −1, q = 2 in terms of ‖v‖Rαρ−N+(J−1)βH4

b
, which again using (3.67) with j = J −2, q = 4

is bounded by ‖v‖Rαρ−N+(J−2)βH6
b
, and so on, until after J such applications of (3.67) we obtain a

bound by ‖v‖Rαρ−NH2J+2
b

, which in turn we bound using (3.63) with d′ = 0, k = 2J + 2; in this last

step, we use 2J + 2d4 + 4 many derivatives on h̃. Altogether then, we have thus proved

‖v‖
Rαρ−N+JβHk+d

′−2J
b

≤ Ck
(
‖(f, v0, v1)‖Dk+d′,α,β

+
(
‖h0‖RαHk+d′+2+d3

b

+ ‖h̃‖
RαρβH

k+d′+2+d4
b

)
‖(f, v0, v1)‖D0,α,β

)
,

where d′ ≥ 2J is any fixed integer; here Ck is a constant which is allowed to depend on the low
regularity norms ‖h0‖RαH2J+4+2d3

b

, ‖h̃‖
RαρβH

2J+4+2d4
b

. (In the statement of the Proposition, we shall

thus in particular take d ≥ 2J + 4 + 2d4 = 2J + 10.)

• Step 2. Leading order term and decaying remainder. The estimate (3.65) remains valid for j =
J+1, in which case we get an estimate for Ig(0)(χv) in a decaying space since −N+(J+1)β ∈ (0, β).

We can thus apply Lemma 3.12(2) in the form (3.61) to show that

v = χv0 + ṽ,

where v0 ∈ RαHk+d′−2(J+1)
b (I+

R0
; τ−2 ker trg(0)) and ṽ ∈ Rαρ−N+(J+1)βH

k+d′−2(J+1)−1
b , with norms

obeying tame estimates. (Here we require d′ ≥ 2(J + 1) + 1.) Plugging this expression for v

into (3.64), the right hand side lies in RαρβH
k+d′−2(J+2)−1
b (with tame estimates), where for the

control of the first term we use (2.23c). Applying Lemma 3.12(2) yet again thus shows that ṽ ∈
RαρβH

k+d′−2(J+2)−2
b . Setting d′ = 2(J + 2) + 2 and d = (2(J + 2) + 2) + 4 + 2d4 = 2J + 16, the

proof is now complete. �

3.3. Solution of the gauge-fixed Einstein equations: proof of Theorem 3.1. We begin by
explaining how Proposition 3.13 fits into a solution scheme for the gauge-fixed Einstein equation.
Recalling (3.3), we thus consider

P (h0, h̃, θ) = 2
(

Ric(g)− Λg − δ̃∗g
(
Υ(g; g0) + Eg0(g − g0)− χ̃θ

))
,

g := gb + χh0 + h̃, g0 := gb + χh0,

where χ, χ̃ are as in (3.1), and h0, h̃, θ are as in (3.5). Let us write D2|h̃P (h0, v, θ) := d
dsP (h0, h̃ +

sv, θ), similarly D1,2|h̃0,h̃
P (v0, ṽ, θ) := d

dsP (h0 + sv0, h̃+ sṽ, θ) (which is the sum of D1|h0
P (v0, h̃, θ)
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and D2|h̃P (h0, ṽ, θ)), and so on. Then Proposition 3.13 shows that the solution of the initial value
problem

D2|h̃P (h0, v, θ) = f (3.68)

with f ∈ RαρβH∞b (Ωρ0,R0
) and initial data in RαH∞b (Σρ0,R0

) can be written as v = χv0 + ṽ where
v0 ∈ RαH∞b (I+

R0
;β∗(τ−2 ker trg(0))) and ṽ ∈ RαρβH∞b (Ωρ0,R0

); such an initial value problem will

arise in a nonlinear iteration scheme. Since we require h̃ ∈ RαρβH∞b , the metric perturbation v is

not an acceptable correction to h̃; we thus need to rewrite (3.68) so that the only arguments of the

linearization of P are elements of the same spaces as h0, h̃, θ. To this end, we note that

1

2
D1|h0

P (v0, h̃, θ) = DgRic(χv0)− Λχv0 − (Dg δ̃
∗
· )(χv0)

(
Υ(g; g0) + Eg0(g − g0)− χ̃θ

)
− δ̃∗g

(
D1|gΥ(χv0; g0) +D2|g0Υ(g;χv0) + (Dg0E·)(χv0)(g − g0)

)
,

1

2
D2|h̃P (h0, ṽ, θ) = DgRic(ṽ)− Λṽ − (Dg δ̃

∗
· )(ṽ)

(
Υ(g; g0) + Eg0(g − g0)− χ̃θ

)
− δ̃∗g

(
D1|gΥ(ṽ; g0) + Eg0 ṽ

)
,

1

2
D3|θP (h0, h̃, θ̇) = −δ̃∗g(χ̃θ̇).

Therefore, (3.68) is equivalent to

f = D1,2|h̃,h0
P (v0, ṽ, θ) + 2δ̃∗g

(
D2|g0Υ(g;χv0)− Eg0(χv0) + (Dg0E·)(χv0)h̃

)
(3.69)

= Dh̃,h0,θ
P (v0, ṽ, θ̇), θ̇ = −D2|g0Υ(g;χv0) + Eg0(χv0)− (Dg0E·)(χv0)h̃. (3.70)

Note here that for this definition of θ̇, we have supp θ̇ ⊂ suppχ and thus χ̃θ̇ = θ̇. We make the
following important observation regarding the size of θ̇.

Lemma 3.15 (Bounds on the gauge modification). Let h0 ∈ RαH∞b (I+
R0

;β∗(S2T ∗X)) and h̃ ∈
RαρβH∞b (Ωρ0,R0

;β∗(S2 0T ∗M)); suppose that ‖h0‖RαHd3+2

b

< δ0 and ‖h̃‖
RαρβH

d4+2

b

< δ0 for some

small δ0 > 0. Define g(0), h(0) by (3.13), and suppose that

v0 ∈ RαH∞b
(
I+
R0

;β∗(τ−2 ker trg(0))
)
.

Define θ̇ by (3.70). Then θ̇ ∈ RαρβH∞b (Ωρ0,R0 ;β∗(0T ∗M)), and we have a tame estimate

‖θ̇‖RαρβHkb ≤ Ck
(
‖v0‖RαHk+1

b
+
(
‖h0‖RαHk+1+d3

b

+ ‖h̃‖
RαρβH

k+1+d4
b

)
‖v0‖RαL2

)
. (3.71)

Proof. We write

θ̇ = −D(g;g0)Υ(χv0;χv0) +D1|gΥ(χv0; g0) + Eg0(χv0)− (Dg0E·)(χv0)h̃. (3.72)

The first summand is equal to minus

d

ds
Υ
(
g0 + χ(h0 + sv0) + h̃; g0 + χ(h0 + sv0)

)∣∣
s=0

.

The metrics in both arguments of Υ(·; ·) agree up to the term h̃ ∈ RαρβH∞b , and thus the same
holds true for the inverse metrics. Evaluating the Christoffel symbols of the two metrics in the
frame eµ as in the proof of Proposition 3.5 and using the expression for Υ given in (3.2) implies
that −D(g;g0)Υ(χv0;χv0) ∈ RαρβH∞b , and it satisfies the tame bound (3.71).

We evaluate the second and third summand of (3.72) using the formula (3.10). Write v(0) =

τ2v0 = v0(τ∂µ, τ∂ν) dxµ dxν . The indicial operator of D1|gΥ(·; g0) + Eg0 can be computed us-
ing (3.17) and (3.21) to be

−
(
e0 − 3 0 − trg(0)

0 e0 − 4 0

) 1
2 0 1

2 trg(0)
0 I 0

1
2g(0) 0 I − 1

2g(0) trg(0)

+

(
1 0 −2 trg(0)
0 0 0

)
; (3.73)
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the key point is that this annihilates (0, 0, v(0)) since trg(0) v(0) = 0. The difference between

D1|gΥ(·; g0) + Eg0 and its indicial operator is of class (ρC∞ + RαρβH∞b )Diff1
b (with tame esti-

mates for its coefficients), and thus the sum of the second and third summands of (3.72) lies in
RαρβH∞b indeed.

Finally, the fourth summand of (3.72) is of class RαρβH∞b as a consequence of h̃ ∈ RαρβH∞b .
This proves (3.71). �

Remark 3.16 (Origin of the decay of θ̇). In view of the formula (3.72), the fact that θ̇ decays (even
though the input χv0 in (3.69) does not) has an entirely conceptual explanation. First of all, the
vanishing of the first and fourth terms in (3.72) is automatic since the solution metric and the
background metric (i.e. the first and second argument of Υ, and the argument of Eg0) are changed
in lockstep. The second ingredient is the fact that the indicial operator of D1|gΥ+Eg0 annihilates v0.
This is also automatic by the following reasoning: the term v0 arises as an indicial solution of Lh0,h̃

,

corresponding to the indicial root 0. By virtue of constraint damping, as discussed after (3.25),
it must therefore necessarily satisfy the linearized gauge condition on the indicial operator level,
i.e. I(D1|gΥ + Eg0 , 0)v0 = 0. (The computation (3.73) merely verifies this through an explicit
computation.)

We can now prove the main result of this section.

Proof of Theorem 3.1. Let d ∈ N be as in Proposition 3.13. For k ∈ N0, we define the spaces

Bk := RαHk
b (I+

R0
;β∗(τ−2S2T ∗X))⊕RαρβHk

b

(
Ωρ0,R0

;β∗(S2 0T ∗M)
)

⊕RαρβHk
b

(
Ωρ0,R0 ;β∗(0T ∗X)

)
,

Bk := RαρβHk
b

(
Ωρ0,R0

;β∗(S2 0T ∗M)
)

⊕RαHk
b

(
Σρ0,R0

;β∗(S2 0T ∗M)
)
⊕RαHk

b

(
Σρ0,R0

;β∗(S2 0T ∗M)
)
.

For k ≥ d and (h0, h̃, θ) ∈ B∞ with ‖(h0, h̃, θ)‖B3d < δ0 for δ0 > 0 sufficiently small, set

Φ(h0, h̃, θ) :=
(
P (h0, h̃, θ), h̃|Σρ0,R0

, L−ρ∂ρ h̃|Σρ0,R0

)
− (0,

¯
h0,

¯
h1),

which is a map from a subset of B∞ to B∞. The task is then to solve

Φ(h0, h̃, θ) = 0. (3.74)

We accomplish this by applying the main result of [SR89] (see also [SR89, Remark on p. 220]).
The required tame estimates for Φ follow from Lemma 3.6 and, for the initial data part of Φ, from
Lemma 2.9(2). The required low regularity estimates for the linearization and second derivative of
Φ are straightforward consequences of the algebra properties of Hd

b . The right inverse of Dh0,h̃,θ
Φ

is constructed using Proposition 3.13 via (3.69)–(3.70) (using Lemma 3.15): this produces, for
f ∈ RαρβH∞b (Ωρ0,R0

) and v0, v1 ∈ RαH∞b (Σρ0,R0
), tensors v0 ∈ RαH∞b , ṽ ∈ RαρβH∞b , and a

1-form θ̇ ∈ RαρβH∞b so that

Dh0,h̃,θ
Φ(v0, ṽ, θ̇) =

(
Dh0,h̃,θ

P (v0, ṽ, θ̇), ṽ|Σρ0,R0
,L−ρ∂ρ ṽ|Σρ0,R0

)
= (f, v0, v1);

and v0, ṽ, θ̇ satisfy tame estimates. Using the smoothing operators from Lemma 2.10, applied
component-wise to v0, ṽ, θ̇ in the bundle splitting induced by the frame eµ, we can thus apply
the Nash–Moser iteration of [SR89] to solve the desired equation (3.74). �

4. Nonlinear stability; smoothness at the conformal boundary

We continue working on the domains Ωρ0,R0
from Definition 2.4. In this section, we will work with

the gauge-fixed Einstein operator P = P (h0, h̃, θ) from (3.3) to solve initial value problems for the

Einstein vacuum equations (1.1); the metric solving the Einstein equations will be g = gb +χh0 + h̃,
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with the KdS metric gb defined by Lemma 2.3, and with χ = χ(ρ) ∈ C∞c ([0, 1
2ρ0)) equal to 1 on

[0, 1
4ρ0] as in (3.1). We remark that in this section, we use Theorem 3.1 as a black box; our goal

is to get sharper control on the solution g given by this Theorem via careful modifications of the
gauge.

Note that given a solution h0, h̃, θ of the initial value problem for P (h0, h̃, θ) = 0 as in Theorem 3.1,
the fact that θ lies in RαρβH∞b and in particular does not necessarily have an asymptotic expansion

at I+ means that also h̃ does not necessarily have an asymptotic expansion. When, however,
g = gb + χh0 + h̃ solves the Einstein vacuum equations Ric(g) − Λg = 0 (in the gauge Υ(g; g0) +
Eg0(g−g0)− χ̃θ = 0), we will begin by demonstrating how to exploit the diffeomorphism invariance
of these equations and pull back g by suitable diffeomorphisms to put it into the same type of gauge
but now with θ vanishing to infinite order at ρ = 0 (see Proposition 4.4 below). In this new gauge
then, we can prove that g is log-smooth at I+ (Lemma 4.7). We can then eliminate all logarithms
via further pullbacks (Proposition 4.15). For a comparison with the method of proof of [CDLS05]
in the Riemannian setting, see Remarks 4.9 and 4.16 below.

The initial data of g at the Cauchy hypersurface Σρ0,R0
of Ωρ0,R0

are its first and second funda-
mental form, denoted γ and k, respectively. To capture the behavior of γ, k uniformly down to the
boundary at infinity K∩Σρ0,R0 of Σρ0,R0 , we work with the b-cotangent bundle of Σρ0,R0 , which is

bT ∗Σρ0,R0
= R

dR

R
⊕ T ∗S2.

Lemma 4.1 (Initial data of gb). Denote by γb and kb the first and second fundamental form of gb
at Σρ0,R0 , respectively. Then

γb, kb ∈ C∞(Σρ0,R0
;S2 bT ∗Σρ0,R0

),

with γb positive definite.

Proof. Recall that gb ∈ C∞(M̆ ;S2 0,bT ∗M̆) is a Lorentzian signature section over Ωρ0,R0 . Near

Σρ0,R0
, where ρ is bounded away from 0, local frames of 0,bT ∗M̆ are given by dρ, dR

R , and a frame

of T ∗S2. Since dρ = d(r̃−1) is timelike for gb, with 0 > g−1
b (dρ,dρ) ∈ C∞(Σρ0,R0

), the future

unit normal vector to Σρ0,R0
is an element of C∞(Σρ0,R0

; 0,bTM̆) with negative squared length.
This implies the statement about γb. The membership of kb now follows, for example, from the
smoothness of the Christoffel symbols in the (smooth) frame (3.15) of 0,bTM̆ . �

Proposition 4.15(1), proved in §4.2 (which is self-contained, i.e. does not rely on any other results

proved here), produces a smooth diffeomorphism φ of M̆ which preserves I+ pointwise and maps K
to itself so that

gFG
b := φ∗gb (4.1)

is in Fefferman–Graham form (see the explanation after Theorem 1.1) and still satisfies gFG
b − gdS ∈

ρ3C∞(Ωρ0,R0 ;β∗(S2 0T ∗M)). We shall then prove:

Theorem 4.2 (Nonlinear stability of the cosmological region). Let R0 > 0 and ρ0 ∈ (0, ρ̄] in the
notation of Definitions 2.1 and 2.4. Let α > 0 and d = d4 + 2 (or more generally d ∈ N). Then
there exists D ∈ N so that the following holds. For all β ∈ (0, 1) and δ0 > 0, there exists an ε > 0
so that if

γ = γb + γ̃, k = kb + k̃, γ̃, k̃ ∈ RαH∞b (Σρ0,R0
;S2 bT ∗Σρ0,R0

),

with ‖γ̃‖RαHDb < ε and ‖k̃‖RαHDb < ε, and with (γ, k) satisfying the constraint equations, the maximal

globally hyperbolic development of the initial data γ, k contains a region isometric to

(Ωρ0,R0 , g), g = gFG
b + h,

where h is as follows. There exist h0,µν , h̃i,µν ∈ RαH∞b (I+
R0

), i = 2, 3, . . ., so that, in the frame
{eµ} = {τ∂τ , τ∂x1 , τ∂x2 , τ∂x3}:
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(1) h0 and h̃i are tangential-tangential tensors, i.e. h0,µν = h̃i,µν = 0 unless µ, ν ≥ 1;
(2) for all N ∈ N, we have

hµν(ρ,R, ω)− h0,µν(R,ω)−
N∑
i=2

ρih̃i,µν(R,ω) ∈ RαρNH∞b
(
Ωρ0,R0 ;β∗(S2 0T ∗M)

)
;

(3) write h(0) := h0,ijdx
i ⊗s dxj. Then h̃2 6= 0 unless g(0) := dx2 + h(0) is flat;

(4) h(3) := h̃3,ijdx
i ⊗s dxj is weighted transverse traceless, i.e.

trg(0) h(3) = δg(0)(|x|
−3h(3)) = 0; (4.2)

(5) ‖h0,µν‖RαHdb < δ0 and ‖hµν − χh0,µν‖RαρβHdb < δ0.

The smallness of the low regularity norms in part (5) implies, by Sobolev embedding, that the
geometry of (Ωρ0,R0

, g) is qualitatively the same as that of (Ωρ0,R0
, gb), so in particular the boundary

hypersurfaces Σρ0,R0 and Σ+
ρ0,R0

are spacelike. As already remarked in §1, the weight |x|−3 in (4.2)
is due to the fact that we Taylor expand not in the defining function τ of the conformal boundary
of de Sitter space, but in the defining function ρ = τ |x|−1 of the conformal boundary I+ ⊂ M̆ of
Kerr–de Sitter.

Proof of Theorem 4.2. Write Σ := Σρ0,R0 .

• Step 1. Construction of Cauchy data. We need to prove the existence of

¯
h0,

¯
h1 ∈ RαH∞b

(
Σ;β∗(S2 0T ∗M)

)
,

with RαHD−1
b -norms bounded by a constant times ε, so that for a metric g with (g− gb,L−ρ∂ρ(g−

gb))|Σ = (
¯
h0,

¯
h1), the first and second fundamental form of g at Σ are γ and k, respectively, and

furthermore the gauge condition Υ(g; gb) = 0 is satisfied at Σ.

We proceed as in the proof of [HV18, Proposition 3.10]. We work in a product neighborhood

(− 1
2ρ0,

1
2ρ0)t ×Σ of Σ where t := ρ0 − ρ; we can thus regard S2bT ∗Σ as a subbundle of S2 0,bT ∗ΣM̆ .

Writing gb = a dt2 + 2 dt⊗s b+ γb where a ∈ C∞(Σ) and b ∈ C∞(Σ;T ∗Σ), we then set

¯
h0 := γ̃ ∈ RαH∞b (Σ;S2 0,bT ∗ΣM̆).

Thus g0 := gb +
¯
h0 = a dt2 + 2 dt ⊗s b + γ has first fundamental form γ at t = 0 indeed. If νb

and ν denote the future unit normals at Σ for gb and g0, respectively, we then have ν = νb + ν̃
where ν̃ ∈ RαH∞b (Σ; 0,bTΣM̆). To match the desired second fundamental form, we require for all
X,Y ∈ bTΣ the equality

k(X,Y )
!
= g(∇gXY, ν)

= gb(∇gbXY, νb) +
¯
h0(∇gbXY, νb) + g(∇gbXY, ν̃) + g

(
(∇gX −∇

gb
X)Y, ν

)
,

where we write g := gb +
¯
h0 + t

¯
h1 = g0 + t

¯
h1; equivalently,

g0

(
(∇g0+t

¯
h1

X −∇g0X )Y, ν
)

= k̃(X,Y )−
¯
h0(∇gbXY, νb)− g0(∇gbXY, ν̃)− g0

(
(∇g0X −∇

gb
X)Y, ν

)
. (4.3)

Since k̃,
¯
h0 ∈ RαH∞b , the right hand side of this equation is the evaluation of an element of

RαH∞b (Σ;S2 bT ∗Σ) on (X,Y ), which is moreover small in RαHD−1
b due to the smallness assumption

on γ̃ ∈ RαHD
b . To ensure the desired gauge condition, we need

trg0(∇g0+t
¯
h1 −∇g0) = 0. (4.4)

In any frame of 0,bTM̆ , we compute at t = 0

2
(
Γ(g0 + t

¯
h1)λµν − Γ(g0)λµν

)
= t;µ(

¯
h1)ν

λ + t;ν(
¯
h1)µ

λ − t;λ(
¯
h1)µν ,

where the indices are raised using g0.
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Let us take a frame with e0 = ν, while the ei, i = 1, 2, 3, span e⊥0 = bTΣ; then t;µ = 0 unless
µ = 0, in which case t;0 = e0t > 0 is of class C∞ + RαH∞b and bounded away from zero. The left
hand side of (4.3), for X = ei and Y = ej , equates to 1

2 (e0t)(
¯
h1)ij ; this thus uniquely determines

(
¯
h1)ij ∈ RαH∞b . The ej-component of the gauge condition (4.4) reads

0 = 2t;µ(
¯
h1)µj = 2t;0(

¯
h1)0j + 2t;i(

¯
h1)ij .

This uniquely determines (
¯
h1)0j ∈ RαH∞b . The e0-component of (4.4) finally reads

0 = 2t;µ(
¯
h1)µ0 − t;0(

¯
h1)µ

µ = −2t;0(
¯
h1)00 + 2t;i(

¯
h1)i0 +

(
t;0(

¯
h1)00 − t;0(

¯
h1)i

i
)
,

and this uniquely determines (
¯
h1)00 ∈ RαH∞b .

• Step 2. Solution of the gauge-fixed equation. We now use Theorem 3.1 to find h0, h̃, θ so that

P (h0, h̃, θ) = 0, (h̃,L−ρ∂ρ h̃)|Σ = (
¯
h0,

¯
h1). Writing

g = gb + χh0 + h̃, g0 = gb + χh0, (4.5)

we thus have

Ric(g)− Λg − δ̃∗gη = 0, η := Υ(g; g0) + Eg(g − g0)− χ̃θ.
By the support conditions on Eg, χ̃, we have η|Σ = 0. Since the initial data γ, k satisfy the con-
straint equations, a standard argument (see e.g. [CBG69, Chapter 6, Lemma 8.2]) implies that also

L−ρ∂ρη = 0 at Σ. But since η satisfies the homogeneous wave type equation δgGg δ̃
∗
gη = 0, we

conclude that η = 0 throughout Ωρ0,R0
, and therefore Ric(g) = Λg on Ωρ0,R0

as well.

• Step 3. Improved asymptotics in a new gauge. As a starting point to improve the asymptotics

of the spacetime metric, it is convenient to perform Steps 1 and 2 above for gFG
b in place of gb

(and in particular using gFG
b in the definition of the operator P in (3.3)). Applying Proposition 4.4,

Lemma 4.7, and Proposition 4.15 below then produces the desired solution h. �

4.1. Improving the gauge condition; log-smoothness. In order to facilitate the construction
of suitable pullbacks of g required to complete Step 3 of the above proof, we define a class of maps
between (subsets of) M̆ in the coordinates τ ≥ 0, x ∈ R3 on M by21

φa,b : (τ, x) 7→
(
τ(1 + a(τ, x)), x+ τb(τ, x)

)
. (4.6)

We require a (real-valued) and b (R3-valued) to be conormal on M̆ and to decay at I+. Concretely,
we will have a, b ∈ ρ3C∞ + RαρβH∞b (Ωρ0,R0

), and we always tacitly require that a, b vanish near
ρ = ρ0. If a, b are small in ρ3C1 + RαρβC1

b, then an inverse function argument shows that φa,b
restricted to Ωρ0,R0 \ (I+ ∪ K) is a diffeomorphism onto its image (whose inverse is then again of
the form φa′,b′ for some a′, b′. Note that the vector field

Va,b :=
d

ds
φsa,sb

∣∣∣
s=0

= a(τ, x)τ∂τ + b(τ, x) · τ∂x

is then a section of the bundle β∗(0T ∗M) = 0,bT ∗M̆ of class ρ3C∞ + RαρβH∞b ; this is the natural
bundle of which generators of diffeomorphisms of the metric g (which is a nondegenerate section of
β∗(S2 0T ∗M)) are sections of. In an iterative construction of a, b, we need the following result.

Lemma 4.3 (Pullbacks along φa,b). Let R1 ∈ (0, R0), α, β > 0,and α̇ ≥ α, β̇ ≥ β. Suppose that

a, b ∈ RαρβH∞b (Ωρ0,R1
) and ȧ, ḃ ∈ Rα̇ρβ̇H∞b (Ωρ0,R1

) are small in RαρβC1
b so that φa,b and φa+ȧ,b+ḃ

map Ωρ0,R1
into Ωρ0,R0

. Let u ∈ Rα̃ρβ̃H∞b (Ωρ0,R0
) where α̃, β̃ ∈ R. Then

φ∗
a+ȧ,b+ḃ

u− φ∗a,bu ≡ Vȧ,ḃu mod Rα+α̇+α̃ρβ+β̇+β̃H∞b (Ωρ0,R1
).

21In the coordinates ρ = τ
|x| , R = |x|, ω = x

|x| , the map φa,b roughly maps (ρ,R, ω) into (ρ′, R′, ω′) = (ρ +

ρO(a), R+ ρRO(b), ω + ρO(b)).
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Proof. This follows from a second order Taylor expansion. To wit,

(φ∗
a+ȧ,b+ḃ

u)(τ, x) = u(τ(1 + a+ ȧ), x+ τ(b+ ḃ))

= u(τ(1 + a), x+ τb) + ȧ(τ, x)(τ∂τu)(τ(1 + a), x+ τb)

+ ḃ(τ, x) · (τ∂xu)(τ(1 + a), x+ τb)

+
∑
|γ|=2

2

γ!

∫ 1

0

(1− s)(τ ȧ, τ ḃ)γ((∂τ , ∂x)γu)(τ(1 + a+ sȧ), x+ τ(b+ sḃ)) ds.

The first term on the right is φ∗a,bu; the last term involves quadratic expressions in ȧ and ḃ and thus

is of class Rα̃+2α̇ρβ̃+2β̇H∞b . We rewrite the second term as

(τ∂τu)(τ(1 + a), x+ τb) = (τ∂τu)(τ, x) +

∫ 1

0

((aτ∂τ + b · τ∂x)τ∂τu)(τ(1 + sa), x+ τsb) ds.

Multiplied by ȧ, the integral contributes a term of class Rα+α̇+α̃ρβ+β̇+β̃H∞b . We rewrite the third
term in an analogous fashion. �

Analogous results, with the same proof, can be obtained for other classes of u. Of particular
relevance for us is the following instance, with α̇ = α, in the notation of (4.5):

φ∗
a+ȧ,b+ḃ

g − φ∗a,bg ≡ δ∗ωȧ,ḃg0 mod R2αρβ+β̇H∞b ,

ωȧ,ḃ := 2g0(Vȧ,ḃ, ·) ∈ R
αρβ̇H∞b

(
Ωρ0,R1 ;β∗(0T ∗M)

)
.

(4.7)

(The ρ-weight arises from the fact that g is equal to a non-decaying tensor g0 plus a decaying
correction term.)

Proposition 4.4 (Improving the gauge). Suppose h0, h̃, θ are as in (3.5) with small weighted Hd
b-

norms, and let R1 ∈ (0, R0). Let g = gb+χh0+h̃ and g0 = gb+χh0, and suppose that Ric(g)−Λg = 0
and Υ(g; g0)+Eg(g−g0)−χ̃θ = 0. Let β− ∈ (0, β) and ε > 0. Then there exist a ∈ RαρβH∞b (Ωρ0,R0

)

and b ∈ RαρβH∞b (Ωρ0,R0 ;R3) with Rαρβ
−C1

b-norms less than ε (which implies that φa,b maps Ωρ0,R1

diffeomorphically into a subset of Ωρ0,R0
) so that, for g′ := φ∗a,bg, we have22

θ′ := Υ(g′; g0) + Eg′(g
′ − g0) ∈ Rαρ∞H∞b

(
Ωρ0,R1

;β∗(0T ∗M)
)
. (4.8)

Remark 4.5 (Eliminating θ′ altogether). While the infinite order vanishing of θ′ at ρ = 0 suffices
for our purposes, one may ask whether one can choose a, b so that, in fact, θ′ = 0. We expect this
to be possible by solving a suitable wave map equation backwards from I+ using extensions of the
methods of [Hin24a, Ber24], but do not pursue this question further here.

Remark 4.6 (Presentation of the KdS metric). The same conclusions hold, by the same proof, for
gFG
b in place of gb. Since we construct gFG

b only later, we formulate Proposition 4.4 with gb.

Proof of Proposition 4.4. We may assume that β is irrational by reducing it by an arbitrarily small
amount. (This ensures that kβ /∈ N for all k ∈ N, and thus avoids integer coincidences with indicial
roots.) We will iteratively construct

ȧk ∈ Rαρ(k+1)βH∞b (Ωρ0,R0
), ḃk ∈ Rαρ(k+1)βH∞b (Ωρ0,R0

;R3)

with the following properties for δ := β − β− > 0 and for all k ∈ N0:

(1) ȧk and ḃk are supported in ρ < 1
2ρ0;

(2) ‖ȧk‖Rαρ(k+1)β−δH
d4+1+k

b

< ε2−k and ‖ḃk‖Rαρ(k+1)β−δH
d4+1+k

b

< ε2−k;

22Of course, we have Ric(g′)− Λg′ = 0 as well.
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(3) setting ak :=
∑k−1
i=0 ȧi and bk :=

∑k−1
i=0 ḃi, as well as g′k := φ∗ak,bkg, we have

θ′k := ΥE(g′k; g0) := Υ(g′k; g0) + Eg′k(g′k − g0) ∈ Rαρ(k+1)βH∞b (Ωρ0,R′k) (4.9)

where R′0 := R0 > R′1 > R′2 > · · · > R1.

The radii R′k are chosen so that φak,bk maps Ωρ0,R′k into Ωρ0,R0
; in view of the smallness requirement

on the ȧk, ḃk in C1
b, a sequence R′k with the required properties will indeed exist. We also note that

ak, bk ∈ RαρβH∞b . The domains of definition of the ȧk, ḃk can be fixed to be Ωρ0,R0
since even if

they are initially defined on Ωρ0,R′k they can be extended, with controlled norms, using Lemma 2.8.
We shall thus omit the specification of domains in what follows.

Now, if for some k ∈ N0 the functions ȧi, ḃi, i = 0, . . . , k − 1, have already been constructed, we
need to find ȧk, ḃk with

ΥE(φ∗
ak+ȧk,bk+ḃk

g; g0)−ΥE(φ∗ak,bkg; g0)− θ′k ∈ Rαρ(k+2)βH∞b .

Using (4.7) with β̇ = (k + 1)β, this is equal to

ΥE(φ∗ak,bkg + δ∗g0ωȧk,ḃk + hk; g0)−ΥE(φ∗ak,bkg; g0)− θ′k

where δ∗ωȧk,ḃk
g0 ∈ Rαρ(k+1)βH∞b and hk ∈ Rαρ(k+2)βH∞b . Expanding ΥE in the first argument,

this is further equal to

D1|φ∗ak,bkgΥE(δ∗g0ωȧk,ḃk ; g0)− θ′k

modulo Rαρ(k+2)βH∞b + R2αρ2(k+1)βH∞b = Rαρ(k+2)βH∞b ; and finally we can replace the point of

linearization φ∗ak,bkg ≡ g0 mod RαρβH∞b by g0 upon committing another error in Rαρ(k+2)βH∞b .

We must therefore construct ω ∈ Rαρ(k+1)βH∞b so that

D1|g0ΥE(δ∗g0ω; g0) ≡ θ′k mod Rαρ(k+2)βH∞b . (4.10)

Once we have such an ω, the cut-off 1-form χ(ρ/εk)ω satisfies the same equation and, when εk is

chosen sufficiently small, it moreover has small norm in Rαρ(k+1)β−δHd4+1+k
b .23 One can then read

off ȧk, ḃk with the analogous properties from the coefficients of χ(ρ/εk)ω.

In order to solve (4.10), we can further replace D1|g0ΥE(δ∗g0 ·; g0) (the gauge potential wave
operator) by its indicial operator

I(D1|g0ΥE(δ∗g0 ·; g0)) = I(−δg0Gg0 + Eg0) ◦ I(δ∗g0)

whose indicial family, which we denote here by I(λ), was computed in (3.26); in particular, I(λ) is
invertible for λ /∈ {−1, 2, 3, 4}. Passing to the Mellin transform side, we are thus led to set

ω̂(λ,R, ω) := I(λ)−1(Mθ′k)(λ,R, ω), Reλ = (k + 1)β.

In view of the isomorphism (3.59), we then have ω :=M−1
(k+1)βω̂ ∈ R

αρ(k+1)βH∞b , as desired.

To complete the proof, it remains to set a :=
∑∞
i=0 ȧi and b :=

∑∞
i=0 ḃi. By construction, both

sums converge in every RαρβHN
b -norm and define elements of Rαρβ−δC1

b with small norm. Since

ΥE(φ∗a,bg; g0) ≡ ΥE(φ∗ak,bkg; g0) mod Rαρ(k+1)βH∞b lies in Rαρ(k+1)βH∞b for all k, we obtain (4.8).
�

Note that g′ can be written as g′ = gb +χh0 + h̃ where h0, h̃ are of the same class (3.5) as before

(and in fact only h̃ is changed). To avoid cumbersome notation, we now relabel g′, R1 as g,R0.

23Such an argument is familiar from proofs of Borel’s lemma.
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Lemma 4.7 (Log-smoothness in the improved gauge). Suppose h0, h̃ are as in (3.5), with small
weighted Hd

b-norms. Suppose that

P (h0, h̃, θ) = 0, θ ∈ Rαρ∞H∞b (Ωρ0,R0 ;β∗(0T ∗M)). (4.11)

Then h̃ is log-smooth down to I+; that is, for each i ∈ N there exist mi ∈ N0 and h̃i,m ∈
RαH∞b (I+

R0
;β∗(S2 0T ∗M)) so that, for all N ∈ N,

h̃(ρ,R, ω)−
N∑
i=1

mi∑
m=0

ρi(log ρ)mh̃i,m(R,ω) ∈ RαρNH∞b
(
Ωρ0,R0 ;β∗(S2 0T ∗M)

)
. (4.12)

The assumption (4.11) is satisfied by the metric produced by Proposition 4.4; in fact, both
lines of (3.3) vanish separately. The conclusion holds (with the same proof) assuming only that

P (h0, h̃, θ) ∈ Rαρ∞H∞b .

Remark 4.8 (Integer indicial roots). The fact that the indicial roots of Lh0,h̃
are integers is the

reason for the log-smoothness of h̃. This fact should, however, be regarded as coincidental. If we
used a different gauge for which, say, the indicial root 0 and the corresponding space of indicial
solutions was the same, but the remaining indicial roots in Reλ > 0 were different (non-integers,

and possibly even in complex conjugate pairs), then h̃ would be polyhomogeneous. This would still
suffice for the proof of Proposition 4.15 below to go through, as follows from part (1) of Lemma 4.10
below.

Proof of Lemma 4.7. We again arrange for β ∈ (0, 1) to be irrational by reducing it slightly if
necessary. Write g0 = gb + χh0. In the computations below, we write ‘≡’ for equality modulo
Rαρ∞H∞b . We thus have

0 = P (h0, h̃, θ) = P (h0, 0, θ) +

∫ 1

0

Lh0,sh̃
h̃ds ≡ 2

(
Ric(g0)− Λg0

)
+

∫ 1

0

Lh0,sh̃
h̃ds. (4.13)

The computations in the proof of Proposition 3.5 imply that Ric(g0) − Λg0 vanishes at ρ = 0.
Working in the splitting [0, ρ0]ρ × I+

R0
and noting that g0 ∈ C∞([0, ρ0];RαH∞b (I+

R0
)), we thus have

f := 2(Ric(g0)− Λg0) ∈ ρC∞([0, ρ0];RαH∞b ).

(See Lemma 4.14 below for a more precise statement.) Using (3.14b) with g(0) = dx2 + τ2h0 (cf.
(3.13)), we thus have

Ig(0)(ρ∂ρ)(χh̃) ≡ −f + f̃,

where f̃ arises from the action of R0,
∫ 1

0
R̃h0,sh̃

ds on h̃ and thus lies in Rαρβ+1H∞b +R2αρ2βH∞b ⊂
Rαρ2βH∞b . (The insertion of the cutoff χ produces an error [Ig(0)(ρ∂ρ), χ]h̃ which vanishes near

ρ = 0 and thus lies in Rαρ∞H∞b .) We can replace ρ∂ρ by ρ′∂ρ′ (see (3.54)–(3.55)) upon committing

a further error of the schematic form ρDiff2
b([0,∞)× I+

R0
)h̃, which thus lies in Rαρβ+1H∞b .

At this point, we pass to the Mellin transform in ρ′. The Mellin transform of f is meromorphic
with poles at the positive integers 1, 2, 3, . . .. Using the indicial root computation of Lemma 3.9 and a
contour shifting argument in the inverse Mellin transform similarly to the proof of Lemma 3.12 (but
no longer keeping track of tame estimates), we can now draw the follow conclusions. If β ∈ (0, 1

2 ),

then χh̃ ∈ Rαρ2β . If β ∈ ( 1
2 , 1), then

χh̃ = χ

m1∑
m=0

ρ(log ρ)mh̃1,m + h̃[ (4.14)

where

h̃1,m ∈ RαH∞b (I+
R0

), h̃[ ∈ Rαρ2βH∞b . (4.15)
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(The logarithmic terms arise from the residue theorem when on the Mellin transform side there is
a pole of order ≥ 2 at λ = 1.) In the former case, we repeat the same argument with 2β in place
of β until, after finitely many steps, we are in the latter case and thus extract the first term in the
expansion of h̃.

With 2β ∈ (1, 2), we now proceed inductively to extract an expansion for h̃[. The key point is that

the coefficients of Lh0,sh̃
in (4.13) inherit the partial log-smoothness of h̃, as follows by inspection

of the explicit computations in the proof of Proposition 3.5. To wit, armed with (4.14), we first use
that the coefficients of Lh0,sh̃

are log-smooth modulo Rαρ2βH∞b , and therefore the action of this

operator on χρ(log ρ)mh̃1,m is log-smooth modulo Rαρ2β+1−δH∞b for any δ > 0 (or δ = 0 when

m = 0). Since (Lh0,sh̃
− Ig(0))h̃[ ∈ Rαρ2β+1H∞b , we thus conclude that

Ig(0)(ρ
′∂′ρ)h̃

[ ≡ f̃ [ mod Rαρ2β+1−δH∞b , δ > 0,

where f̃ [ is log-smooth in ρ and of class RαH∞b in (R,ω). Using the (inverse) Mellin transform as

before, this equation allows us to extract ρ2(log ρ)m leading order terms of h̃[, with a remainder of
class Rαρ2β+1−δH∞b which thus vanishes to almost a full order more at ρ = 0 compared to (4.15).
Proceeding iteratively in this fashion produces the expansion (4.12) and finishes the proof. �

Remark 4.9 (Comparison with the Riemannian setting, I). The idea to put g into a convenient gauge
condition in order to improve its asymptotic behavior is used in [CDLS05, §4] (where a harmonic
map gauge is used), with polyhomogeneity being deduced in [CDLS05, §5] using [AC96].

4.2. Smoothness and precise Taylor expansion at the conformal boundary. The gauge
condition serves no further purpose now: we only used it as a means to ensure that h̃ has simple
asymptotics (namely, log-smoothness) at ρ = 0. We shall now reduce the task of further sharpening

the asymptotic behavior of h̃ to the level of indicial operators of the (ungauged) linearized Einstein
vacuum equations and the symmetric gradient (or Lie derivative), somewhat analogously to (but
simpler than) the analysis in [Hin23b, §7]. We work in the splitting (2.9) of 0T ∗M and (via combining
the splittings (2.10) with (3.24))

S2 0T ∗M = R
dτ2

τ2
⊕
(

2
dτ

τ
⊗s τ−1T ∗X

)
⊕ Rτ−2g(0) ⊕ τ−2 ker trg(0) ,

and recall Λ = 3. We thus proceed to analyze the kernel of

2I(DRic− Λ, λ) := I
(
�g0 − 2δ∗g0δg0Gg0 + 2Rg0 − 2Λ, λ

)
=


3λ− 6 0 −3λ2 + 6λ 0

0 0 0 0
−λ+ 6 0 λ2 − 6λ 0

0 0 0 λ2 − 3λ

 (4.16)

and its relationship with the range of

I(δ∗, λ) := I(δ∗g0 , λ) =


λ 0
0 1

2 (λ+ 1)
1 0
0 0

 .

(We use (3.17), (3.20), (3.21), and (3.23) to derive these expressions.) Dually, we study the range
of I(DRic− Λ, λ) and its relationship with the kernel of

2I(δG, λ) := 2I(δg0Gg0 , λ) =

(
λ− 6 0 3λ− 6 0

0 2λ− 8 0 0

)
. (4.17)

The dependence of these operators on R,ω is only through g(0), i.e. through the bundle splitting.
Note that I(DRic−Λ, λ)◦I(δ∗, λ) = 0, which is due to the diffeomorphism covariance of the Einstein
operator, and I(δG, λ)◦I(DRic−Λ, λ) = 0, which arises from the linearized second Bianchi identity.
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We proceed to analyze the above λ-dependent 4× 4 and 4× 2 matrices, which define linear maps
C4 → C4 and C2 → C4 (denoted by the same symbols). Acting on functions h = h(ρ), note that
I(DRic− Λ, ρ∂ρ)(ρ

λh) = ρλI(DRic− Λ, ρ∂ρ)h, and thus

I(DRic− Λ, ρ∂ρ)(ρ
λ(log ρ)mh) = ∂mλ

(
ρλI(DRic− Λ, λ)h

)
=

m∑
m′=0

(
m

m′

)
ρλ(log ρ)m

′
∂m−m

′

λ I(DRic− Λ, λ)h

In particular, when k ≥ 1, we have the implication

I(DRic− Λ, ρ∂ρ)

k∑
m=0

ρλ(log ρ)mhm = 0

=⇒ hk ∈ ker I(DRic− Λ, λ), ∂λI(DRic− Λ, λ)hk ∈ ran I(DRic− Λ, λ).

(4.18)

Lemma 4.10 (Kernel of linearized Einstein modulo pure gauge). Let λ ∈ C and h ∈ C4; suppose
that I(DRic− Λ, λ)h = 0.

(1) If λ 6= −1, 0, 3, then h ∈ ran I(δ∗, λ).
(2) If λ = 0, 3 and ∂λI(DRic− Λ, λ)h ∈ ran I(DRic− Λ, λ), then h ∈ ran I(δ∗, λ). Moreover,

ker I(DRic− Λ, λ)/ ran I(δ∗, λ) = span{(0, 0, 0, 1)}, λ = 0, 3. (4.19)

(3) If λ = −1, then h = ∂λI(δ∗,−1)ω0+I(δ∗, 0)ω1 for some ω0, ω1 ∈ C2 with ω0 ∈ ker I(δ∗,−1).

When λ is real, all statements hold also for real vectors.

Proof. If λ 6= 0, 3, we have

ker I(DRic− Λ, λ) = span{(λ, 0, 1, 0), (0, 1, 0, 0)}. (4.20)

This uses that when λ 6= 2, resp. λ 6= 6, the first, resp. third row of I(DRic − Λ, λ) is a nonzero
multiple of (1, 0,−λ, 0). For λ 6= −1, this equals the range of I(δ∗, λ).

We next compute

2∂λI(DRic− Λ, λ) =


3 0 −6λ+ 6 0
0 0 0 0
−1 0 2λ− 6 0
0 0 0 2λ− 3

 .

Consider the case λ = 0. The basis elements of

ker I(DRic− Λ, 0) = span{(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}
get mapped by 2∂λI(DRic− Λ, 0) to (0, 0, 0, 0), (6, 0,−6, 0) (0, 0, 0,−3). But ran I(DRic− Λ, 0) =
span{(1, 0,−1, 0)}. It remains to observe that (0, 1, 0, 0), (0, 0, 1, 0) ∈ ran I(δ∗, 0).

The arguments for λ = 3 are similar: now the basis elements of

ker I(DRic− Λ, 3) = span{(0, 1, 0, 0), (3, 0, 1, 0), (0, 0, 0, 1)},
get mapped by 2∂λI(DRic−Λ, 3) to (0, 0, 0, 0), (−3, 0,−3, 0), (0, 0, 0, 3). But ran I(DRic−Λ, 3) =
span{(1, 0, 1, 0)}. The claim then follows from (0, 1, 0, 0), (3, 0, 1, 0) ∈ ran I(δ∗, 3).

The final part follows again from (4.20), now for λ = −1, and the observation that (−1, 0, 1, 0) ∈
ran I(δ∗,−1), while (0, 1, 0, 0) = ∂λI(δ∗,−1)(0, 2) with (0, 2) ∈ ker I(δ∗,−1). �

Remark 4.11 (Indicial roots modulo pure gauge and stability of de Sitter space). Lemma 4.10 is a
mode stability statement for de Sitter space: all modes, i.e. here indicial solutions of the linearization
of Ric−Λ, with Reλ ≤ 0, λ 6= 0, are pure gauge; and in fact the only modes which are not pure gauge
occur at λ = 0, 3. Moreover, modulo pure gauge solutions, the λ = 3 mode lies in ker trg(0) , i.e. it is

a trace-free tangential-tangential tensor. Once one puts back the (R,ω)-dependence, one can draw
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further conclusions related to the results in [Fri86] (see also [FG85, FG12, Hin24a]) concerning the
asymptotic degrees of freedom of asymptotically de Sitter type metrics solving the Einstein vacuum
equations, which are given by a Riemannian metric (g(0)) and a transverse-traceless tensor (i.e. an
element of ker trg(0) ∩ ker δg(0)) on the conformal boundary; we recover one direction of this in (4.23)
below.

Note that by basic linear algebra (or by an inspection of the proof), Lemma 4.10 also applies to
families. Thus, if h depends on a parameter (R,ω) ∈ I+

R0
in an RαH∞b fashion, then in part (1),

one can find ω with the same parameter dependence so that I(δ∗g0 , λ)ω = h; similarly in the other
parts.

For brevity, we now focus on λ > 0, as positive indicial roots are the only ones of interest in our
quest to improve the asymptotic behavior of the decaying tensor h̃. We study generalized mode
solutions, i.e. those which may feature log ρ factors.

Corollary 4.12 (Quasihomogeneous nullspace modulo pure gauge). Let λ > 0. Let h0, . . . , hk ∈ R4

and set h(ρ) :=
∑k
m=0 ρ

λ(log ρ)mhm. Suppose that I(DRic − Λ, ρ∂ρ)h = 0. Then there exist

ω0, . . . , ωk ∈ R2 so that for ω(ρ) :=
∑k
m=0 ρ

λ(log ρ)mωm, the following holds.

(1) In the case λ 6= 3: h = I(δ∗, ρ∂ρ)ω.
(2) In the case λ = 3: h− I(δ∗, ρ∂ρ)ω is a scalar multiple of {(0, 0, 0, 1)}.

Proof. We have hk ∈ ker I(DRic − Λ, λ). When λ 6= 3, this implies the existence of ωk ∈ R2 with
hk = I(δ∗, λ)ωk. Therefore,

h− I(δ∗, ρ∂ρ)
(
ρλ(log ρ)kωk

)
= ρλ(log ρ)k

(
hm − I(δ∗, λ)ωm︸ ︷︷ ︸

=0

)

+

k−1∑
m=0

ρλ(log ρ)mhm − kρλ(log ρ)k−1∂λI(δ∗, λ)ωk

is of the same form as h except with k reduced by 1. An iterative argument thus finishes the proof
in this case.

For λ = 3, the same argument eliminates hk, provided that k ≥ 1. We thus find ωk, . . . , ω1 ∈ R2

so that h− I(δ∗, ρ∂ρ)(
∑k
m=1 ρ

λ(log ρ)mωm) =: h0 is ρ-independent. Using then (4.19), we can find
ω0 ∈ R2 so that h0 − I(δ∗, ρ∂ρ)ω0 lies in the span of (0, 0, 0, 1). �

We now turn to the range of I(DRic−Λ, λ), which is necessarily contained in ker I(δG, λ). Again
we only consider λ > 0.

Lemma 4.13 (Solvability of linearized Einstein). Let λ > 0 and f ∈ R4; suppose that I(δG, λ)f = 0.

(1) If λ 6= 3, 4, then f ∈ ran I(DRic − Λ, λ), and indeed we can find a solution h of f =
I(DRic− Λ, λ)h of the form h = (0, 0, h3, h4).

(2) If λ = 3 and f = (0, f2, 0, 0), then f2 = 0.
(3) If λ = 4 and f = (f1, 0, f3, f4), then we can write f = I(DRic − Λ, λ)h for some h of the

form h = (0, 0, h3, h4).

The assumptions on the form of f in the second and third part will arise from evenness consid-
erations.

Proof of Lemma 4.13. For λ 6= 3, the range of I(DRic − Λ, λ) is 2-dimensional due to (4.20), and
so is the kernel of I(δG, λ) when λ 6= 4 due to (4.17). To prove the full statement of the first part,
we compute for λ 6= 3, 4

ker I(δG, λ) = span{(3λ− 6, 0,−λ+ 6, 0), (0, 0, 0, 1)}
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and note that

(3λ− 6, 0,−λ+ 6, 0) = 2I(DRic− Λ, λ)(0, 0,−λ−1, 0),

(0, 0, 0, 1) = 2I(DRic− Λ, λ)(0, 0, 0, (λ2 − 3λ)−1).
(4.21)

For λ = 3, the non-vanishing of 2λ − 8 in (4.17) implies the second part. For λ = 4, the
assumptions on f imply −2f1 + 6f3 = 0, so f ∈ span{(3, 0, 1, 0), (0, 0, 0, 1)} ⊂ ran I(DRic − Λ, 4);
and the existence of h = (0, 0, h3, h4) solving I(DRic− Λ, 4)h = f follows from (4.21). �

As a final preparation, we record:

Lemma 4.14 (Ricci tensor of g0). We work in the frame (3.15) on M̆ , and with the frame
dx1,dx2,dx3 on I+. Consider a tensor h0 ∈ RαH∞b (I+

R0
;β∗(τ−2S2T ∗X)) with small RαC2

b-norm.

Set g0 = g′b + χh0 where24 g′b ≡ gdS mod ρ3C∞(Ωρ0;R0
;β∗(S2 0T ∗M)) and g(0) = g(0)(x, dx) =

dx2 + h(0) where h(0) = h(τ∂µ, τ∂ν) dxµ dxν . Modulo ρ3C∞ +Rαρ∞H∞b (Ωρ0,R0
), we then have

(Ric(g0)− Λg0)µν ≡

{
τ2Ric(g(0))ij , (µ, ν) = (i, j),

0 otherwise.
(4.22)

(We recall that the indices µ, ν run from 0 to 3, and the indices i, j from 1 to 3.)

Proof. For the computation, we can drop the cutoff χ and consider g0 = gb + h0. The result
then follows from the expressions in the proof of Proposition 3.5, which give, modulo ρ3C∞,
Γ(g0)λµν ≡ 0 except for Γ(g0)`i0 ≡ −(g(0))i`, Γ(g0)0ij ≡ (g(0))ij , and Γ(g0)`ij ≡ τΓ(g(0))`ij , and

therefore Γ(g0)λµν ≡ 0 except for Γ(g0)`i0 ≡ −δ`i , Γ(g0)0
ij ≡ −(g(0))ij , and Γ(g0)`ij ≡ τΓ(g(0))

`
ij . This

gives (4.22) after a short computation. �

Proposition 4.15 (Taylor expansion at the conformal boundary). Let

h0 ∈ RαH∞b (I+
R0

;β∗(τ−2S2T ∗X)),

with small RαHd
b-norm. Suppose h̃ ∈ RαρβH∞b (Ωρ0,R0

;β∗(S2 0T ∗M)) (where β ∈ (0, 1) is arbi-

trary) is log-smooth at I+, i.e. it satisfies (4.12) for all N . Suppose that g := gb + χh0 + h̃ satisfies

Ric(g)− Λg = 0 on Ωρ0,R0
.

Let R1 ∈ (0, R0). Then there exist

a ∈ ρ3C∞(Ωρ0,R0) +RαρβH∞b (Ωρ0,R0),

b ∈ ρ3C∞(Ωρ0,R0
;R3) +RαρβH∞b (Ωρ0,R0

;R3)

which are log-smooth at I+, small in ρβC1
b, and vanish for ρ ≥ ρ0

2 so that (recalling the definition of

φa,b from (4.6)) the pullback metric φ∗a,bg ∈ C∞+RαρβH∞b is smooth down to I+. More precisely,
there exist

h̃2 ∈ RαH∞b (I+
R0

;β∗(τ−2S2T ∗X)), h̃i ∈ (C∞ +RαH∞b )(I+
R0

; τ−2S2T ∗X), i = 3, 4, . . . ,

so that, for all N ∈ N,

(φ∗a,bg)(ρ,R, ω)− gdS(ρ,R, ω)−
N∑
i=2

ρih̃i(R,ω) ∈ RαρNH∞b
(
Ωρ0,R1 ;β∗(S2 0T ∗M)

)
, (4.23)

and so that g(3) := h̃3(τ∂µ, τ∂ν) dxµ dxν is a weighted transverse-traceless tensor, that is,

g(3) ∈ (C∞ +RαH∞b )
(
I+
R0

; ker trg(0)
)
, δg(0)

(
|x|−3g(3)

)
= 0. (4.24)

24We shall first apply this with g′b = gb; this is the case that will be used for the proof of the existence of gFG
b in

Proposition 4.15(1) below. Only once gFG
b has been constructed will we use Lemma 4.14 with g′b = gFG

b .
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Moreover, (4.23) is sharp in the sense that h̃2 6= 0 unless the metric g(0) = dx2 + h(0) on I+ is flat;
here h(0) = h0(τ∂µ, τ∂ν) dxµ dxν . Furthermore:

(1) if h0 = h̃ = 0, so g = gb, then the conclusions hold with a, b ∈ ρ3C∞, h̃2 = 0, and h̃i ∈ C∞,
i ≥ 3. This produces gFG

b := φ∗a,bgb with gFG
b − gb ∈ ρ3C∞(Ωρ0,R0

;β∗(S2 0T ∗M));

(2) if g = gFG
b + χh0 + h̃, then the conclusions hold with a, b ∈ RαρβH∞b and h̃i ∈ RαH∞b ,

i = 2, 3, 4, . . ., with gdS in (4.23) replaced by gFG
b , and with g(3) equal to the ρ3 coefficient of

g.25

Proof. We discuss the general case and scenario (1) simultaneously. In scenario (1), the arguments
simplify since gb has no logarithmic terms in its Taylor expansion at ρ = 0, and all tensors on I+

R0

arising in the proof in this case are smooth. Once gFG
b has been constructed, the same arguments

then apply if we replace gb by gFG
b throughout the proof; all smooth terms, starting with ȧb,3, ḃb,3 ∈

C∞ prior to (4.32) below, can then be taken to be equal to 0 since the relevant smooth metric
coefficients (which are the Taylor coefficients of gFG

b ) are already free of logarithmic terms and valued
in β∗(τ−2S2T ∗X) (and β∗(τ−2 ker trg(0)) in the case of the ρ3 term). With these modifications in

mind, the reader may thus read the following proof as is, or with h0 = 0, h̃ = 0 (for scenario (1)),
or with gFG

b in place of gb (for scenario (2)) throughout.

We write g0 = gb + χh0 and

0 = Ric(g0 + h̃)− Λ(g0 + h̃) = (Ric(g0)− Λg0) +

∫ 1

0

Dg0+sh̃Ric(h̃)− Λh̃ds. (4.25)

• Step 1. Eliminating the ρ1 terms. We work modulo log-smooth terms with almost ρ2 decay at

I+ (and RαH∞b behavior in (R,ω))—we shall write ‘almost-O(ρ2)’ in short (and omit the ‘almost’
if there are no log terms at leading order). We can thus replace Dg0+sh̃Ric − Λ in (4.25) by the

indicial operator I(DRic− Λ, ρ∂ρ). In view of Lemma 4.14, we obtain the equation

I(Dg0Ric− Λ, ρ∂ρ)

m1∑
m=0

ρ(log ρ)mh̃1,m = 0.

Corollary 4.12, applied with RαH∞b -dependence on (R,ω) ∈ I+
R0

, then produces 1-forms ω1,m ∈
RαH∞b (I+

R0
;β∗(0T ∗M)), m = 0, . . . ,m1, so that

m1∑
m=0

ρ(log ρ)mh̃1,m = −I(δ∗g0 , ρ∂ρ)

m1∑
m=0

ρ(log ρ)mω1,m.

Writing ω1,m = ωȧ1,m,ḃ1,m in the notation (4.7), with ȧ1,m, ḃ1,m ∈ RαH∞b (I+
R0

), we then set

ȧ1 =

m1∑
m=0

ρ(log ρ)mȧ1,m, ḃ1 =

m1∑
m=0

ρ(log ρ)mḃ1,m,

and a1 = ȧ1, b1 = ḃ1. But then, modulo almost-O(ρ2),

φ∗a1,b1g ≡ g + δ∗g0ωa1,b1 ≡ g0 +
(
h̃+ I(δ∗g0 , ρ∂ρ)ωa1,b1

)
.

The term in parentheses is log-smooth, and its generalized Taylor expansion now starts with ρ2

(times logarithmic factors).

25Since the ρ3 coefficient of gdS vanishes, this is consistent with the definition of g(3) in the other settings considered

in this Proposition.
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• Step 2. Simplification of the ρ2 terms. Repeating Step 1 but starting with φ∗a1,b1g− g0 in place

of h̃ in (4.25), the main change is now that τ2Ric(g(0)) from (4.22) gives rise to a forcing term, i.e.
we need to analyze

I(Dg0Ric− Λ, ρ∂ρ)

m2∑
m=0

ρ2(log ρ)mh̃2,m = ρ2f, (4.26)

where f = f(R,ω) ∈ RαH∞b (I+
R0

;β∗(τ−2S2T ∗X)). We have f ∈ ker I(δg0Gg0 , 2): this follows
directly from (4.17), and more conceptually from the second Bianchi identity. By Lemma 4.13, we
can find

h̃2 ∈ RαH∞b
(
I+
R0

;β∗(τ−2S2T ∗X)
)

(4.27)

with I(Dg0Ric − Λ, 2)h̃2 = f . By Corollary 4.12,
∑m2

m=0 ρ
2(log ρ)mh̃2,m − ρ2h̃2 ∈ ker I(Dg0Ric −

Λ, ρ∂ρ) can be expressed as −I(δ∗g0 , ρ∂ρ)
∑m2

m=0 ρ
2(log ρ)mω2,m. Extracting ȧ2, ḃ2 from the 1-forms

ω2,m as above and setting a2 = a1 + ȧ2, b2 = b1 + ḃ2, we then find that, modulo almost-O(ρ3),

g′2 := φ∗a2,b2g ≡ φ
∗
a1,b1g + δ∗g0ωȧ2,ḃ2 ≡ g0 + ρ2h̃2. (4.28)

Note also that if Ric(g(0)) = 0, which due to dim I+ = 3 is equivalent to Riem(g(0)) = 0, i.e. g(0)

being flat, then f = 0, and thus we can take h̃2 = 0.

• Step 3. Simplification of the ρ3 terms. The deviation of the KdS metric from the dS metric
appears at this stage in view of Lemma 2.3. This will be the reason why (except in setting (2))
the corrections to the diffeomorphism φa2,b2 already constructed will involve C∞(I+

R0
)-terms (with

powers ρ3, ρ4, etc.), in addition to the log-smooth RαH∞b -terms which already appeared in previous
steps. We thus write

g0 = gb + χh0 = g′0 + hb, g′0 := gdS + χh0, hb = gb − gdS ∈ ρ3C∞.

From (4.28), we thus get g′2 = g′0 + ρ2h̃2 + h̃[ where h̃[ = h̃[(ρ,R, ω) is thus the sum of hb ∈ ρ3C∞
and an almost-O(ρ3) term. Now,

0 = Ric(g′2)− Λg′2 ≡ Ric(g′0 + ρ2h̃2)− Λ(g′0 + ρ2h̃2) + I(Dg′0
Ric− Λ, ρ∂ρ)h̃

[ (4.29)

modulo almost-O(ρ4) terms. In particular, setting g2 := g′0 + ρ2h̃2,

f := Ric(g2)− Λg2

is almost-O(ρ3); since g2 is smooth in ρ, we in fact have

f ≡ ρ3f3, f3 ∈ RαH∞b (I+
R0

;β∗(S2 0T ∗M)),

modulo O(ρ4). In the frame (3.15), we moreover claim that

(f3)00 = (f3)ij = 0, 1 ≤ i, j ≤ 3. (4.30)

This uses the information (4.27), which implies that the (0, j) and (i, 0) components of g2 vanish:
from (3.18), we then see that Γ(g2)λµν is even, resp. odd in ρ if and only if the number of indices
λ, µ, ν which are ≥ 1 is even, resp. odd. The same is then true for Γ(g2)λµν . Consider then

Ric(g2)κν = eλΓλνκ − eνΓλλκ + ΓλλρΓ
ρ
νκ − ΓλνρΓ

ρ
λκ. (4.31)

Note that e0 preserves parity (i.e. evenness and oddness), whereas ei, i = 1, 2, 3, maps even functions
to odd functions and vice versa. For κ = ν = 0, the term eλΓλ00 = e0Γ0

00 +eiΓ
i
00 is thus even, likewise

for e0Γλλ0. Similarly, ΓλλρΓ
ρ
00 is even since, upon expanding the sum, every term features an even

number of indices ≥ 1; likewise for the final term Γλ0ρΓ
ρ
λ0. The same considerations apply in the case

(κ, ν) = (i, j) since now 2 (thus, an even number of) further indices are ≥ 1. Thus Ric(g2)00 and
Ric(g2)ij are even. Since (ρ3f3)00 and (ρ3f3)ij are evidently odd, (4.30) follows. (For an alternative
argument, see [Hin24a, (A.5)].)
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Returning to (4.29), we have, modulo ρ4C∞ plus almost-O(ρ4),

I(Dg′0
Ric− Λ, ρ∂ρ)h̃

[ ≡ −ρ3f3.

The second Bianchi identity gives δg2Gg2f = 0, which implies f3 ∈ ker I(δg′0Gg′0 , 3). In view of (4.30),

we can apply Lemma 4.13(2) to conclude that, in fact, f3 = 0. Therefore, the ρ3 leading order term∑m3

m=0 ρ
3(log ρ)mh̃[m of h̃[ satisfies

I(Dg′0
Ric− Λ, ρ∂ρ)

m3∑
m=0

ρ3(log ρ)mh̃[m = 0.

In view of Corollary 4.12, we can thus find coefficients ȧ3 = ȧb,3 +
∑m3

m=0 ρ
3(log ρ)mȧ3,m and ḃ3 =

ḃb,3 +
∑m3

m=0 ρ
3(log ρ)mḃ3,m, with ȧb,3, ḃb,3 ∈ C∞(I+

R0
) and ȧ3,m, ḃ3,m ∈ RαH∞b (I+

R0
), so that, for

a3 = a2 + ȧ3 and b3 = b2 + ḃ3,

g′3 := φ∗a3,b3g ≡ g
′
0 + ρ2h̃2 + ρ3h̃3, h̃3 ∈ (C∞ +RαH∞b )

(
I+
R0

;β∗(τ−2 ker trg(0))
)
, (4.32)

modulo ρ4C∞ plus almost-O(ρ4). Henceforth, we re-define ‘almost-O(ρk)’ to mean ‘ρkC∞ plus
almost-O(ρk)’.

• Step 4. Simplification of the ρ4 terms. Writing g′3 := g2 + ρ3h̃3 + h̃[ where now h̃[ is almost-

O(ρ4), we have

0 = Ric(g′3)− Λg′3

≡ Ric(g2 + ρ3h̃3)− Λ(g2 + ρ3h̃3) + I(Dg′0
Ric− Λ, ρ∂ρ)h̃

[ (4.33)

≡ (Ric(g2)− Λg2) +
(
Dg′0

Ric(ρ3h̃3)− Λρ3h̃3

)
+ I(Dg′0

Ric− Λ, ρ∂ρ)h̃
[ (4.34)

modulo almost-O(ρ5).

The parity arguments used to show (4.30) imply that the ρ4-coefficient f4 of the first parenthesis
Ric(g2)−Λg2 on the right in (4.34) has mixed coefficients equal to 0, i.e. (f4)i0 = 0 for all 1 ≤ i ≤ 3.
Since every element in the range of I(Dg′0

Ric−Λ, λ) has vanishing mixed coefficients as well (cf. the

vanishing of the second row of (4.16)), we conclude that the same must be true for the ρ4-coefficient

f̃4 =
(
ρ−4(Dg′0

Ric(ρ3h̃3)− Λρ3h̃3)
)∣∣
ρ=0

of the second parenthesis in (4.34). Note first, however, that the sum of the first two parentheses
on the right in (4.34), which is almost-O(ρ4), gets mapped to almost-O(ρ5) by I(δg′0Gg′0 , ρ∂ρ) due

to the second Bianchi identity for g2 + ρ3h̃3 (applied to (4.33)). The hypotheses of Lemma 4.13(3)

are thus satisfied for f := f4 + f̃4. Arguing as after (4.26), we can thus use Corollary 4.12 to find

ȧ4, ḃ4 (quasi-homogeneous of degree 4 in ρ) so that, for a4 = a3 + ȧ4, b4 = b3 + ḃ4, we have

g′4 := φ∗a4,b4g ≡ g
′
0 + ρ2h̃2 + ρ3h̃3 + ρ4h̃4, h̃4 ∈ (C∞ +RαH∞b )

(
I+
R0

;β∗(τ−2S2T ∗X)
)
,

modulo almost-O(ρ5).

We extract further information from vanishing of the mixed (i.e. (i, 0)-)coefficients of f̃4. These are

equal to the mixed coefficients of the ρ4 term of Ric(g′0 +ρ3h̃3)−Ric(g′0). We compute, using (3.18)

for g′0 + ρ3h̃3 and g′0, that Γλµν = 0 except for

Γ0
ij = 1

2ρ
3(g(3))ij − (g(0))ij , Γ`i0 ≡ 1

2ρ
3(g(3))i

` − δ`i ,

Γ`0j ≡ 3
2ρ

3(g(3))j
`, Γ`ij ≡ τΓ(g(0))

`
ij +O(ρ4),

where we raise indices using g(0), and ‘≡’ means equality modulo O(ρ6). Therefore, we can use (4.31)

for g′0 + ρ3h̃3 and g′0 to compute, modulo O(ρ5),26

Ric(g′0 + ρ3h̃3)i0 − Ric(g′0)i0

26The right hand side of [Hin24a, (A.6)] should feature −n
2

instead of n.
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≡ τ∂`
(

3
2ρ

3(g(3))i
`
)

+ τΓ(g(0))
`
`k

3
2ρ

3(g(3))i
k − τΓ(g(0))

k
`i

3
2ρ

3(g(3))k
`

= − 3
2τδg(0)(ρ

3g(3))i.

Recalling that ∂` are (spatial) coordinate derivatives in the coordinates τ, x1, x2, x3 valid on the

interior of M̆ , and recalling moreover that ρ = τ |x|−1, the ρ4-coefficient of this tensor vanishes if
and only if δg(0)(|x|−3g(3)) = 0, which is (4.24).

• Step 5. Simplification of the remaining terms; completion of the construction. From this point
onwards, we do not need any further careful considerations since we can use the simplest parts
(namely, those which apply for λ > 4) of Corollary 4.12 and Lemma 4.13. To wit, the almost-O(ρ5)-

term h̃[ := g′4 − (g′0 + ρ2h̃2 + ρ3h̃3 + ρ4h̃4) satisfies an equation

I(Dg′0
Ric− Λ, ρ∂ρ)h̃

[ ≡ ρ5f

modulo almost-O(ρ6), where f ∈ (C∞ + RαH∞b ) ∩ ker I(δg′0Gg′0 , 5). We can therefore find ȧ5, ḃ5 so

that, upon setting a5 = a4 + ȧ5 and b5 = b4 + ḃ5,

φ∗a5,b5g ≡ g
′
0 +

5∑
i=2

ρih̃i

modulo almost-O(ρ6). Proceeding in this fashion produces ȧi, ḃi, i = 6, 7, 8, . . .. Taking a and b

to be asymptotic sums of ȧ1, ȧ2, . . . and ḃ1, ḃ2, . . ., respectively, the conclusions of the Proposition
follow. �

With this result, the proof of Theorem 4.2 is now complete, with a small caveat: fixing any
ρ1 ∈ (0, ρ0) and R1 ∈ (0, R0), the arguments thus far produce a metric g which is defined only on
the union of Ωρ0,R0 ∩ {ρ ≥ ρ1} and {ρ ≤ ρ1, R ≤ R1} where ρ1 ∈ (0, ρ0) and R1 ∈ (0, R0) are fixed
but arbitrary. For R1 close to R0 and ρ1 > 0 small, this domain is thus slightly smaller than Ωρ0,R0

itself. This can easily be fixed. One way is to pull back g along a diffeomorphism which is the
identity near K∪Σρ0,R0

and a map (τ, x) 7→ (τ, λ(x)x) near I+ for a suitable map λ with λ(x) = 1
for small |x| and λ(x) < 1 for |x| near R0. Another way is to solve the original gauge-fixed Einstein
equations from the outset on a slightly larger domain (replacing 1

2 in (2.17) by 3
4 , say); then the

pullback arguments in this section produce a metric which is well-defined on Ωρ0,R0 .

Remark 4.16 (Comparison with the Riemannian setting, II). The construction of a coordinate
system in which the conformally rescaled metric, initially only known to be polyhomogeneous, has
optimal regularity is done in the Riemannian setting in [CDLS05, §6] in one go via Fermi (or
boundary normal) coordinates and an appeal to the formal computations of [FG85, FG12]. Our
approach avoids an analysis of special coordinate systems (which would be delicate near I+ ∩ K)
in favor of a more direct argument which in particular directly handles the relevant parts of the
Fefferman–Graham argument.
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asymptotically stable constraint propagation. Journal of Mathematical Physics, 40(2):909–923, 1999.

https://doi.org/https://doi.org/10.1016/S0001-8708(02)00075-0
https://doi.org/https://doi.org/10.1016/S0001-8708(02)00075-0


62 PETER HINTZ AND ANDRÁS VASY
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