UNDERDETERMINED ELLIPTIC PDE ON ASYMPTOTICALLY
EUCLIDEAN MANIFOLDS, AND GENERALIZATIONS

PETER HINTZ

ABSTRACT. We study underdetermined elliptic linear partial differential operators P on
asymptotically Euclidean manifolds, such as the divergence operator on 1-forms or sym-
metric 2-tensors. Suitably interpreted, these are instances of (weighted) totally character-
istic differential operators on a compact manifold with boundary whose principal symbols
are surjective but not injective. We study the equation Pu = f when f has a generalized
Taylor expansion at r = oo, that is, a full asymptotic expansion into terms with radial
dependence r~**(logr)* with (z,k) € C x Ny up to rapidly decaying remainders. We
construct a solution v whose asymptotic behavior at r = oo is optimal in that the index
set of exponents (z, k) arising in its asymptotic expansion is as small as possible. On the
flipside, we show that there is an infinite-dimensional nullspace of P consisting of smooth
tensors whose expansions at r = oo contain nonzero terms r~ % (log r)k for any desired
index set of (z,k) € C x No.

Applications include sharp solvability results for the divergence equation on 1-forms or
symmetric 2-tensors on asymptotically Euclidean spaces, as well as a regularity improve-
ment in a gluing construction for the constraint equations in general relativity recently
introduced by the author.

1. INTRODUCTION

Underdetermined elliptic partial differential equations (PDE) arise frequently in geomet-
ric analysis, and its solutions are related to deformations of geometric structures; see for
example [BEM76] for some early applications on compact Riemannian manifolds, [Cor(00]
for applications to gluing problems for the constraint equations in general relativity, and
[Del12] for general results related to (linear) gluing problems. The purpose of the present
paper is to study a class of underdetermined PDE on noncompact manifolds and the be-
havior of its solutions at infinity. The following result serves as an illustration:

Theorem 1.1 (Divergence on symmetric 2-tensors). Let g be the Fuclidean metric on R,
n > 2. Given a symmetric 2-tensor h on R™, write (0gh); = — > "_; Ojhsj for its (negative)
divergence.

(1) (Sharp solvability.) Let w be a 1-form on R™ with rapid decay, that is, w; € .7 (R"™).
Then there exists a smooth symmetric 2-tensor h with 6,h = w and so that in |z| > 1
we can write hi; = |z|~"V fii (|27 f;—l) for fij € C>(]0,1) x S™71).

(2) (Infinite-dimensional nullspace.) For any a < 3, there exists infinitely many linearly
independent solutions of the homogeneous equation dgh = 0 so that h;; € S\ Sh
where S®(R™) is the standard symbol class on R"; that is, |03 h;(x)| < (x)* D1 for
all v, but these bounds fail for B in place of a. One can find h of this type which
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moreover have a full generalized Taylor expansion at |z|™' = 0 with a nontrivial
leading order term ~ |z|~%*(log |z|)* for any fized (z,k) € C x Ny.
(3) (Geometric generalization.) Suppose that g is asymptotically Euclidean in the sense
that g;; — 8i; = (x)~1gi; with §;j smooth in x, and for |x| > 1 also in |x|7!, Tl
Then the same conclusions hold, except now we can typically only find a solution
of 6yh = w € % which has an additional logarithmic subleading term; that is, we
can find a smooth solution h of the form h = hy + ha where hy ;; € |x\*"*1C°° and
haij € |z| " (log |z|)C> in |z| > 1.

See Theorem 4.3 for part (3), Remark 4.4 for its strengthening in part (1) (which can also
be proved directly using the Fourier transform), and Theorems 3.10 and 3.11 for part (2).
Our main result, Theorem 3.7, which substantially generalizes part (3) in a manner de-
scribed at the end of the introduction, also describes the asymptotic behavior of optimal
solutions when the right hand side itself has an asymptotic expansion at infinity. Our
methods for the construction of solutions with optimal asymptotics apply verbatim also to
elliptic equations (such as the Laplacian on tensors), except of course part (2) is then no
longer valid.

It is a classical result [BEM76, Theorem 1] (see also [Cho] for an exposition) that for a
differential operator P € Diff"™(U; E, F'), defined on an open set U and acting between sec-
tions of the vector bundles E and F, the nullspace of P on C2°(U; E) is infinite-dimensional
if P is underdetermined elliptic, i.e. if the principal symbol of P is surjective but not in-
jective. This applies to the divergence operator in Theorem 1.1; part (2) moreover shows
that even if one insists on lower and upper bounds on the decay at infinity, or even on the
existence of an asymptotic expansion, the nullspace remains infinite-dimensional.

The main focus of the present paper is on showing the existence of solutions of underde-
termined elliptic PDE Pu = f on a manifold M° with optimal asymptotics at infinity, as
in parts (1) and (3) of Theorem 1.1. The standard approach for studying such PDE is a
PP* argument: one seeks u of the form P*v where v solves the elliptic equation PP*v = f.
As an explicit demonstration that this method is inadequate for our aims, consider the
divergence equation for 1-forms on R3,

dw =u € L (R3). (1.1)

If one were to solve this using a PP* argument, one would first solve §6*v = ddv = Av = u;
a solution is given by v = (4r|z|™!) * u = Ypla|™! + Yl(r;—')|:v|_2 + YQ(%)M_S + ..,
where Yy, £ € Ny, is a (typically nonzero) spherical harmonic of degree ¢. Therefore the
solution w = dv of (1.1) obtained in this manner satisfies w; € [#]~2C°([0,1) -1 X S;Lﬂ;‘)
(which happens to be optimal), or w; € |2|73C> when u is orthogonal to constants. In the
latter case, however, the optimal solution is Schwartz. (This can be seen by the following
elementary argument: since [ps u(z)dz = 4(0) = 0, one can write 4(£) = Z?:1 &y (&) for
some 1; € .7 (R3), and therefore u = 2?21 Dgiuj = dyw where w; = iu; € S (R3).) As a
simple application of our results, one can find a Schwartz solution of (1.1) when u L 1 also
on asymptotically Euclidean spaces; see Theorem 4.2.

If w > 0 is a weight function on M°, such as w = ()~ on R™, one can use the PP*
method for the conjugated operator w~!Pw, i.e. one considers w™'Pw?P*w v = w™lf
and sets © = w?P*w~ . In the case P = d4 considered above, this does produce solutions
u with any desired amount of decay (x)~“ relative to L? when v L 1, and indeed with full
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asymptotic expansions into terms ~ |z|7%*(log|z|)* where the exponents (z,k) € C x Ny
depend on the weight «; but for no (polynomial) weight does this method produce a solution
with optimal (Schwartz) asymptotics.

In situations more complicated than (1.1), the asymptotics produced by a (weighted) P P*
method are weaker even at leading order than the optimal solution, whether or not the right
hand side is orthogonal to (part of) the cokernel or not. This happens for example in the
study of the linearized constraints map on asymptotically flat initial data sets in general
relativity; see the discussion of [Hin22, Propositions 4.10, 4.14]. Optimizing the asymptotic
behavior of solutions of the linearized constraints was the author’s original motivation for
the present work; see §4.2.

We shall prove that the optimal asymptotic behavior can essentially be read off from the
allowed asymptotic behavior of (approximate) elements of the nullspace of P*: when P is
the divergence on 1-forms, the nullspace of P* consists only of constants; and when P is
the divergence on symmetric 2-tensors, then the kernel of P* consists of the Killing 1-forms
on Euclidean space, i.e. translations and rotations. The asymptotic expansions of optimal
solutions of Pu = f then have (at worst) terms ~ |z|~**(log |z|)* whose behavior at infinity
just barely forbids integration by parts against elements of this approximate cokernel; this
is the origin of the |z|~("~1 asymptotics in Theorem 1.1(1).

The proof strategy is thus to first find a formal solution of Pu = f near infinity, i.e. ug
with an optimal asymptotic expansion so that f — Pug is Schwartz. (See Proposition 3.3.)
Solving away this Schwartz error then first requires adding to ug a suitable tensor u; (with
optimal asymptotics) so that f — Puy — Pu; is orthogonal to the tempered distributional
kernel of P*. (See Proposition 3.4.) Solving away the remaining Schwartz error is effected
using the mapping properties of P on Schwartz spaces (Corollary 2.7) which is obtained as a
simple application of a well-known functional analytic result (reproduced in Appendix §A)
but which may nonetheless be of independent interest.

The general setting into which we embed the analysis of geometric operators on asymptot-
ically Euclidean spaces is that of totally characteristic operators or b-differential operators
in the parlance of [MM83, Mel93]. These can be regarded as differential operators P on
noncompact manifolds M° with a specific structure near infinity: if M° is the interior of a
compact manifold M with boundary (the ‘boundary at infinity’), then the building blocks
of b-differential operators are the vector fields on M which are tangent to M. See §2 for
details, and §4.1 for the manner in which geometric operators on an asymptotically Eu-
clidean manifold fit into this setting upon compactifying the manifold radially at infinity. In
the analysis of elliptic b-differential operators P, the boundary spectrum Spec, (P) C Cx Ny
plays a key role in determining the asymptotic behavior of solutions. By contrast, in the
underdetermined elliptic case, we need to introduce the finer surjective boundary spectrum
surj-Specy, (P) for this purpose (which is typically much smaller than the boundary spectrum
of PP* or of weighted versions thereof); this captures the allowed asymptotics of elements
of the (approximate) nullspace of P*. The proofs of our main results require substantial
revisions of various arguments especially from [Mel93, §6] so as to handle the asymmetry
between P and P* in underdetermined elliptic settings.

The plan of the paper is as follows. In §2, we recall elements of the analysis of totally
characteristic differential operators and introduce some novel notions tailored to underde-
termined elliptic settings. In §3, we prove our main results (Theorems 3.7, 3.10, and 3.11).
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The aforementioned applications are discussed in §4. We have made an effort to keep the
paper self-contained (with the exception of §4.2 and the usage of basic results from elliptic
PDE theory on R™). In particular, familiarity with b-analysis is not assumed.

Acknowledgments. I would like to thank Hans Lindblad for letting me peek into [Hor]
from where I first learned about Theorem A.1, and Jure Kalignik for discussions regarding
Problem 2.8.

2. TOTALLY CHARACTERISTIC DIFFERENTIAL OPERATORS

The material in this section is largely standard (see e.g. [Mel93, Gri01]), except for the
second part of Definition 2.2 and the part starting with Corollary 2.7 and ending with
Proposition 2.10. The discussion will thus be relatively brief, but we indicate most proofs
in order to make the paper self-contained.

Let M be a compact manifold of dimension n € N with embedded and non-empty
boundary OM. For simplicity of exposition, we shall assume that OM is connected (and
thus necessarily n > 2); we leave the minor (largely notational) modifications required to
handle the case of disconnected dM to the interested reader. We write M° = M \ OM for
the manifold interior of M, and we identify

[0,1), x OM

with a collar neighborhood U C M of OM. Without loss of generality, we may assume
that p is the restriction to U of a smooth function on M which vanishes only at 9M. Local
coordinates on M will be denoted y € R"~!. Denote by E, F — M two vector bundles and
fix bundle isomorphisms E|y; = 7*(E|an), Flu = 7 (Flonm), where m: U = [0,1) x OM —
OM is the projection to the second factor. We moreover assume that E, F' come equipped
with non-degenerate Hermitian fiber inner products. We fix a smooth positive density u
on M° with the property that there exists

weR

so that p~**1y is a smooth positive density on U/; equivalently, 1 = p“’]d—ppu\ where 0 < v €
C>([0,1);C>®(OM;Q0M)) is a density on OM which depends smoothly on p. We call w
the weight of this density. Adjoints of operators on M acting between spaces of sections of
E and F are defined using these fiber inner products and the density u.

Definition 2.1 (Totally characteristic operators). Let m € Ng. An m-th order totally
characteristic differential operator (or b-differential operator) P on M acting between sec-
tions of £ and F is an m-th order differential operator on M®°, acting between sections of
E|pre and F|p0, with smooth coefficients (i.e. P € Diff"(M°; E, F')) so that in U we can
write

m
P =3 Pi(p)(pDy),  Pj € C™([0,1),; Difi"™ (OM: Eloar, Floar)),
§=0
where D = i~19. The space of such operators is denoted Diff]*(M; E, F). The normal
operator of such a P € Diff]'(M; E, F) is defined as

N(P) =" P(0)(pD,)’ € DIfi([0,00), x OM; 7" Elons, 7" Floas).
j=0
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and the Mellin-transformed normal operator family is

N(P,z) =Y P;(0)2) € Dii"™(0M; E|oas, Flom), 2z € C.
j=0

Note that N(P) is invariant under dilations (p,y) — (ap,y), a > 0. Moreover, P —
N(P) € pDifff* on Y. Thus, elements u € ker N (P, z) give rise to elements p**u in the kernel
of N(P), and thus (upon cutting them off to a neighborhood of M) in the approximate
kernel of P.

Definition 2.2 (Generalized boundary data). Let P € Diff)*(M; E, F'). The generalized
boundary data of P are the spaces

F(P,z):=qu= Y p**(logpyu;: ¢ € No, uj € C*(OM;Elors), N(P)u =0
0<j<q
for z € C. If j is the largest possible exponent of log p with nonzero coefficient u; among
all u € F(P,z), then we define the order of z to be ord(P, z) := j + 1; and the rank of z is
rank(P, z) := dim F\(P, z). (If F(P,z) = {0}, we set ord(P, z) = 0.) If ord(P, z) < oo, resp.
ord(P*,zZ 4+ iw) < oo for all z € C, we define the injective, resp. the surjective boundary
spectrum of P by"
inj-Specy, (P) = {(iz, k) € C x Ny: k < ord(P, 2)},
surj-Specy, (P) = {(iz, k) € C x Ng: k < ord(P*, z + iw)}.

We set inj-spec,,(P) = mi(inj-Spec,,(P)) and surj-spec, (P) = m1(surj-Spec,,(P)) where
m: C x Ng — C is the projection.

In local coordinates y € R~ on M, we can write

P=>">" pjalpy)(pD,) D

J=0|a|<m—j

for coefficients pj, which are smooth bundle maps from E to F'. The principal symbol of
P in these coordinates is then the homogeneous polynomial

Pa™(P)(pyi&n) = > pialp ), (0,0)# (&) eRxXR™ O (21)
jtlal=m
with values in Hom(E, ), F(,, ). In local coordinates x € R™ in M°, the principal symbol
of P = Zlmgmpﬁ(az)Dg is defined in the usual manner as P (P)(x;¢) = o™ (P)(z;¢) =
2 18l=m pp(z)€P € Hom(E,, Fy) for 0 # ¢ € R™. We say that P is

(1) left elliptic if its principal symbol is injective, i.e. "™ (P)(x;€): E, — Fy, £ # 0,
and Po™(P)(p,y;&,m): Epyy = Floy) (§,m) # (0,0), are injective for all z,{ and

P, Y, €105
(2) right elliptic if its principal symbol is surjective;

IThe surjective boundary spectrum is independent of the choice of volume density: if one passes to a
volume density with a different weight w’, then adjoints of differential operators are changed via conjugation
by p“’fw, accounting for the difference in weights—which is exactly balanced by the change of the argument
of ord(P*,- ) from z + iw to z + iw'.
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(3) elliptic if its principal symbol is invertible.

If P is left but not right elliptic, one calls P overdetermined elliptic, and if P is right but
not left elliptic, one calls P underdetermined elliptic. Note that if P is underdetermined
elliptic, then necessarily rank E > rank F'.

Lemma 2.3 (Consequences of ellipticity). Let P € Diff{'(M; E, F).

(1) If P has injective principal symbol, then inj-Specy, (P) is well-defined (i.e. ord(P, z) <
oo for all z € C) and discrete, and its intersection with a strip {z € C: |[Imz| < C}
is a finite set for all C.

(2) If P has surjective principal symbol, then the conclusions of part (1) hold for
surj-Specy, (P) in place of inj-Specy, (P).

(3) P is elliptic, i.e. has invertible principal symbol, then we have inj-Specy (P) =
surj-Specy, (P) =: Specy (P).

Proof. Part (1) follows from part (3) by considering the elliptic operator P*P; note that
ker P C ker P*P, and therefore F(P,z) C F(P*P,z). Similarly, part (2) follows by con-
sidering the elliptic operator PP*. Part (3) finally is standard, see e.g. [Mel93, §§5.2—
5.3]; in brief, the ellipticity of P implies that for C' > 0, the operator family N(P,z) €
Diff™(OM; E|anr, Floar) is elliptic with large parameter z € C in the strip | Im z| < C, and
therefore it is invertible for |Re z| > C’" with C” depending on C; see e.g. [Shu87, Chapter
I1.9]. The inverse N(P, z)~! is finite-meromorphic.

For the equality inj-Spec, (P) = surj-Spec;,(P), note that N (P, 2)* = (p~*N(P)p*)* =
p~ZN(P)*p**, where the adjoint on the right is taken with respect to a dilation-invariant
(thus weight 0) density [0, 00) x OM which equals p~"u to leading order at p = 0. Passing
to the weight w density p on M, this is equal to p~#p¥ N (P*)p~%p* = N(P*,zZ+iw). The
claim then follows from the characterization

F(P,z) = {Res,—, N(P, 2)71f(2): f is a polynomial with values in C*(OM; Flom)},

which implies that ord(P, zp) is the order of the pole of (the finite-meromorphic operator
family) N(P,2)~! = (N(P*, z +iw)~!)* at z = z. O

If P € Diff'(M; E, F') has injective principal symbol, then for all s,C € R there exist
Cs, C’ so that

(BM;E|51\/I) S CS<Z>7m”N(P7 Z)UHH&S;Tl(aMyEW@]\/{)? ’Imz, < C7 ’R’ez‘ > C/'

(2.2)
The function space is defined via a partition of unity by means of the R"-version H}(R"),
h > 0, which is defined to be H*(R") but with norm |[ul|gs®n) = H(h@sql(f)HLg; here,
(&) denotes the Fourier transform of u. Indeed, the estimate (2.2) follows for elliptic P
from the ellipticity with large parameter of N (P, z), which implies that A™ N (P, z), with
h = (z)~! is an elliptic semiclassical operator on M. If a € R is such that N(P,)) is
invertible for all A € C with Im A = —a, then the estimate (2.2) holds for all Im A = —a:
for bounded A, this estimate is a consequence of the ellipticity and injectivity of N (P, \).
If P merely has injective principal symbol, then (2.2) follows by applying what we have
already shown to the elliptic operator P*P.

HUHH‘(‘;)_I

Definition 2.4 (Function spaces). We write C*°(M) C C®(M) for the Schwartz space
on M, i.e. the subspace of all smooth functions which vanish to infinite order at M.
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Elements of the dual space C~°(M) = C>(M)* are tempered distributions on M. Let

X € CX([0,1) x OM) be equal to 1 near {0} x OM. Define for s € R the space Hg’w/Q(M, 1)
as the space of all u € C™*°(M) so that (1 — x)u € H}] (M°), and so that all localizations
of xu to products of [0,1), with local coordinate charts on M using a partition of unity

lie in H{([0,00), x R™ 1) which we define to be the pullback of H*(R x R"~1) under the
map

(py) = (2,y) := (= log p,y). (2.3)
We further let Hy“(M,p) = po‘_w/QHﬁ’w/Q(M, p) = {p* "y u € Hﬁ’w/Q(M, w)} for
o € R. Spaces Hy* (M, p; E) of sections of E are defined via a partition of unity and local
trivializations of E. Finally, we write HZ(M,u; E) = H]‘;’O(M, w; E).

This definition ensures that H)(M,p) = L?*(M, u); note indeed that the preimage of
|dz dy| is |%dy\, so the two spaces agree when g has weight 0, and the general case follows
from this. For k € Ny, the space Hf(M, u) consists of all u € HY(M, u) so that Pu €
HY(M, ) for all P € Diff"(M). Furthermore, since D, = —pD,, and since the coefficients
of P € Diff{*(M) in local coordinates near dM push forward to uniformly bounded (with
all derivatives) smooth functions on R x R""!, we have P: H,*(M;E) — H; "“(M;F)
for P € Diffi'(M; E,F). One can endow Hg’w/Q(M, w) with the structure of a Hilbert
space by taking as a squared norm the sum of the squares of H®-norms in a finite system
of local coordinates on supp(1 — x) C M° plus the squared H*-norms of the pushforwards
to R x R"! of the localizations to coordinate charts near the boundary. This induces a
Hilbert space structure on H,'*(M, ) for all a € R. The L?*(M, p)-inner product induces
an isomorphism between H, *~“(M, ) and the dual of H, (M, p).

Finally, using the Mellin transform (z,y) = [;° p~*u(p,y) d—p”, we have

2
Il ~ |

mz=—(a—7%)

(215 -k our = (24)

i.e. the left and right hand sides are bounded by a u-independent multiple of each other.
This follows from the analogous statement

1l (mxrn-1) = A<z>25\lﬁ<z,—>!!%;z>1(Rn1)dz

where (z,y) = [ €“*u(x,y)dz is the Fourier transform (up to a sign) of u in the first
coordinate; this in turn uses that (2)25((2)7'n)2 = (14 |2|2 + |n|?).

Proposition 2.5 ((Semi-)Fredholm property). Let P € Diffy'(M; E,F) and s,a € R;
consider P as a bounded linear map

P: HY(M, p; E) — HE™™(M, 3 F). (2.5)

(1) If P has injective principal symbol and o — 5 ¢ Reinj-spec, (P), then (2.5) has
finite-dimensional kernel and closed range.

(2) If P has surjective principal symbol and oo — § ¢ Resurj-specy,(P), then the range
of (2.5) is closed and has finite-dimensional codimension.

(3) If P is elliptic, and oo — 3 ¢ Respecy,(P), then (2.5) is Fredholm.

In each of these cases, the range of (2.5) is equal to the L?(M,u; F)-annihilator of the
kernel of P* on Hy ™™™ %(M, u; F).
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Proof. Define by pg = p~"p a density with weight 0; then H,®(M,u) = Hy“ (M, uo)
where ag = a — 5. Moreover, if Py denotes the adjoint of P with respect to pg, then
P* = p7“PFyp¥. We can thus reduce the Proposition to the case that p has weight 0.

Furthermore, replacing P by p~*Pp%, we may assume « = 0.

Part (3) is standard, see e.g. [Mel93, Theorem 5.40]. In brief, elliptic estimates (for P if
P is elliptic, and for P*P when P merely has injective principal symbol) in M° as well as
elliptic estimates for the uniformly elliptic operators on R x R"~! arising via pushforward
along (2.3) of localizations of P or P*P to coordinate charts near M imply for any sy € R
an estimate

llizgaizy < € (1Pl g arsry + Il o ) -

We take sp < s — 1. Using (2.2) and (2.4), we can then further estimate HUHHio(ME) <

(1 - X)uHHf)O”l(M;E) + HXUHH{:O(M;E) and then (with C' changing from line to line)

Ixull3peo sy < C/R<Z>2SOH>@(27—)||?{<50>_1(8M;E3M) dz
<O | ()20 |N(P, 2)Xu(z, =) eoom d
< A(z) |N (P, z)Xu(z, )HH<2>_1(8M;F|6M) i

< CINPY ) o sy

Replacing N(P) by P and commuting P through x, we arrive at

HUHHﬁ(M;E) <C <”PUHH§*'”(M;F) + HUHHS*L*(M;E» .

Since by the Rellich-Kondrakhov theorem the inclusion Hy(M;E) — Hg_l’_l(M E) is
compact, this implies that P has finite-dimensional kernel and closed range; this proves
part (1). When P is elliptic, an analogous estimate for P* implies also the finite-codimen-
sionality of the range of P.

For part (2), we consider the elliptic operator PP*; note then that the range of (2.5),

which contains the closed and finite-codimensional space PP*(H{ "™ (M, po; F)), is itself
closed. g

Corollary 2.6 (Generalized right inverse). Suppose P € Dift]'(M; E,F) has surjective
principal symbol. Let o € R be such that a — 5 ¢ Resurj-spec,(P). Then there ex-
ists an operator G which is continuous as map G: Hy "*(M,; F) — Hy® (M, 1; E) for
all s € R and which is a generalized right inverse of P in the sense that PGf = f for
all f € H ™M, p; F) for all f which are orthogonal to (the finite-dimensional space)

kengo,fa(M’mF) P* (equivalently: for all f in the range of P on H“(M,u; E)).

Proof. We may reduce to the case w = 0. We then formally solve the equation Pu = f via
u = p**P*p~ %, Tov=p %f, To:=(p *PpY)(p *Pp*)*. (2.6)
Note then that
N(Ty,z) = N(P,z —ia)N(P*,z +ia) = N(P*,Z +ia)"N(P*, z + i«)

is invertible for » € R, and therefore Ty: HY*(M; F) — Hy *™°(M; F) is Fredholm for
all s € R. The L?(M; F)-orthogonal complement of its range (as well as its kernel) is
(0% * (0% * . . . .

P keng,fa(M;F)P =p kengo,fa(M;F)P (using elliptic regularity). O
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Corollary 2.7 (Mapping properties on Schwartz spaces). Let P € Diff]'(M; E, F), and
consider P, P* as bounded linear maps

P:C®(M;E) = C®(M;F),  P*:C ®(M;F)—C *(M;E).

Suppose that the principal symbol of P is injective, surjective, or elliptic. Then P has closed
range, and P(C*°(M; E)) is the annihilator of kerc—oo(pr,py P*.

Proof. We first consider the case that P has surjective principal symbol. Fix sequences
55 — 00, aj — oo to that a; — 3§ ¢ Resurj-spec,,(P) for all j. By Sobolev embedding, we
have C°(M; E) = N; Hy ™ (M, i; E). In the notation of Theorem A.1, we need to show
that

P*(C™*(M;F))NU; CC™(M;E)
is weak* closed, where

Uy = {u € (M3 B)s (u', )| < llullyesms VueC*(M;E)}

(M, ,E)
is the unit ball in H, (M, u; E). Since C™(M; E) is separable, the weak* topology
on Uj is metrizable. Suppose now that P*f} = u; € U; is a weak™® convergent sequence
in C™°(M; E); its limit satisfies «* € U;. Then for all u € ker 55,05 (MM.E)P we have
b sH
(up,u) = (P*ff,u) = (fy,Pu) = 0 and therefore (u*,u) = 0. But this implies that
u* € P*(Hbfsﬁm’*aj(M,u;F)) by Proposition 2.5 (applied to P*), finishing the proof
that P has closed range. The case that P has injective principal symbol is handled in a
completely analogous manner. O

Problem 2.8 (Right inverse). When P € Diffy'(M; E, F) is underdetermined elliptic, does
P:C®(M;E) — C>®(M;F) have a continuous right inverse on its range, i.e. a continuous
right inverse P(C*°(M; E)) — C>®(M;E)?

This is equivalent to the existence of a complementary subspace of kerc-oo(M, ) P in

COO(M ; ). When P is left elliptic, this is clear since keréoo( M:E) P is finite-dimensional and
thus complemented.

Remark 2.9 (Right inverse on closed manifolds). A right elliptic differential operator @ €
Diff"™(X;G, H) on a closed manifold X, with G, H — X smooth vector bundles, always
has a continuous right inverse defined on its range. This follows from the existence of
an L?(X;G)-orthogonal splitting C*°(X;G) = kercoo (x;qy @ @ Q*(C*°(X; H)), with both
summands closed in C*°(X;G). The proof of the latter is similar to that of [BE69, Corol-
lary 4.2] which treats the case that @ is left elliptic: the orthogonal splitting L?(X;G) =
kerpo(x,q) @ ® Q*(H™(X; H)) implies for u € C*(X;G) the splitting u = up + Q*uy
with ug € kerpz(x,q) @ and vy € H™(X; H); but then Qu = QQ*u; € C*(X; H) im-
plies u; € C®(X; H) by elliptic regularity and thus also uy € C*(X;G). Furthermore,
Q*(C>®(X;H)) is closed since Q*uy, — f € C*(X; H) implies that f, like all Q*uy, is or-
thogonal to keryz(x,q) @ and thus equal to Q*u for some u € H™(X; H), which must then
lie in C*°(X; H) by elliptic regularity.

The case of underdetermined elliptic totally characteristic differential operators appears
to be more subtle. (For example, the H)®(M; E)-orthogonal splitting H;*(M, u; E) =
kergso(ay m) P © p* P*(HT™ (M, u; F)), for s € RU {co} and a ¢ Resurj-Specy, (P),
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cannot be used in a fashion analogous to Remark 2.9.) Absent an affirmative resolution of
Problem 2.8, we record instead the following result, which is sufficient for most applications:

Proposition 2.10 (Smooth solvability for finite-dimensional families). Let B be a finite-
dimensional smooth manifold. Let P € Diff}'(M; E, F) be left or right elliptic. Let F €
C®(B;C®(M;F)), and suppose F(b,—) € annkerg-—co(ps,py P* for all b € B. Then there
exists U € C®(B;C®(M; E)) so that P(U(b,—)) = F(b,—) for allb € B.

See [Tre67, Theorems 52.5 and 52.6] for general results of this type; we give a direct
proof in the present setting.

Proof of Proposition 2.10. When P is left elliptic or elliptic, this follows from the exis-
tence of a continuous right inverse on P(C®°(M;E)). If P is underdetermined elliptic,
we argue as follows. Using a partition of unity on B, a Seeley extension argument in
case B has boundary, and using the linearity of P, it suffices to consider the case that
B is the N-torus. Denoting by PP € Difff"(B x M;n3E,n5F) (with mo: B x M — M
the projection) the operator defined by (PgU)(b,—) = P(u(b,—)), we shall show using
Theorem A.1 that (PP)*: C~°(B x M;m3F) — C~°°(B x M;75E) has weak* closed
range. Suppose (PB)*Fy = Uy € H % (B;H, " “(M,;; E)) is a weak* convergent
sequence with limit U*; we need to show that U* lies in the range of (P®)*. Let us
employ the Fourier transform in B, denoted by a hat, to pass to spaces of polynomially
weighted ¢%-sequences, parameterized by a momentum variable 8 € ZY, with values in
Hbfsj’faj(M,u; E). Necessarily then, [/J\,;k(ﬁ, —) lies in the L?(M, u; E)-orthogonal comple-

ment of kerHEjaO‘j(M7u;E) P. Since the kernel of P* on Hb_Sjer’_aj(M,,u; F) has a com-

plement given by V := p*ZO‘J'P(Hb_Sme’aj (M, u; E)), there exists a unique (8, —) €
V, with norm bounded by a (S-independent constant times that of ﬁ,’:(ﬂ,—), so that
P*I*:',j(ﬁ, -) = (/]\,j(ﬁ, —). Since (/]\,;“ is a Cauchy sequence, so is Z:",j, and the limit F* is
the Fourier transform of F* € H~ % (B; Hb_sﬁm’_aj (M, u; F)) where (PB)*F* = U*.

Finally, note that if U* € C~°°(B x M;m}F) lies in ker(P?)*, then ﬁ(ﬁ,—) € ker P*
for all 5 € Z~. The Proposition now follows from the fact that PZ(C®(B x M;n3E))
kere-—co gy aimy ) (PP)*.

o

Our main interest in this paper is in the mapping properties of P on spaces of polyho-
mogeneous distributions.

Definition 2.11 (Conormality and polyhomogeneity). (1) For a € R, welet AY(M) =
{u: Au € p*L>*(M) VA € Diff,(M)} be the space of conormal functions with
weight a.

(2) An index set is a subset £ C C x Ny so that (z,k) € £ implies (z + 1,k) € £ and
also (z,k—1) € £ when k > 1, and for all C' € R the set of (z,k) € £ with Rez < C
is finite. Let x € C°([0,1), x OM) be identically 1 near p = 0. We then define the

space Aghg(M) of E-smooth functions (or polyhomogeneous conormal functions with

index set ) to consist of all u € C*°(M®) for which there exist u(, ) € C*(OM),
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(z,k) € €, so that for all C' € R, we have

ulpy)— Y. pP(logp)rui(y) | x € AY([0,1) x OM). (2.7)
(z,k)€€, Rez<C

(Polyhomogeneous) conormal sections of a smooth vector bundle E — M are defined
analogously, now with wu, 5y € C*(9M; E|anr).

If £ is an index set and we are given u(, ;) € C*°(OM), (z,k) € £, then there exists u €

Aghg(M ) so that (2.7) holds. (This is a variation of Borel’s lemma.) More generally, given

index sets &1, &, ... with Cj 1= min(; g)cg;, Rez — 00 as j — oo, and given u; € Aiflg(M),
there exists u € .Aghg(M), &=U;&;, so that u — S uy € A91(M) for all J; such a u

3 J=1
is unique modulo C*°(M), and is called an asymptotic sum of the u;.

Lemma 2.12 (Polyhomogeneous nullspace). Suppose P € Diff[(M; E, F) has injective
principal symbol. Let u € C~°°(M;E) and suppose Pu = 0 (or more generally Pu €
C®(M;E)). Then there exists a € R so that u € A*(M;E). Denote by ag € R U {400}
the supremum of all such «a; then u € Aghg(]\/[; E) where € = E(P, ap) U E+ (P, ), where?
Eo(P,ap) = {(2,k) € inj-Specy,(P): Rez = ap}, while E4(P,ap) is an index set with
Rez > ag for all (z,k) € £, (P, ap). (If ag = +00, this means u € C*°(M; E).)

Proof. The first part of the proof follows [Mel93, Proposition 5.61]. Let f = Pu. Since
C~>°(M;E) is the union of all weighted b-Sobolev spaces, there exist s, € R so that
u € HS’B(M, u; E). But then elliptic regularity for P* Pu = P* f implies u € H};X”B(M, w; E),
which by Sobolev embedding implies u € A%(M; E) for a = 8 — 5. If ap, as defined in the

statement of the Lemma, equals 400, then u € C°°(M ; £) and we are done. Otherwise,
u € A" ¢(M; E) for all € > 0.

We now work in the collar neighborhood [0,1),x0M of M, and let x € C°([0,1) x OM)
denote a cutoff which is identically 1 near p = 0. Passing to the Mellin transform in the
equation N(P*P)(xu) = f1 := xP*f+(N(P*P)—P*P)(xu)+[P*P, x|Ju € A%~<1(]0,1) x
OM; Flan) gives

N(P*P,2)xu(z) = fi(z),  Imz> —aq,

where fl(z) is holomorphic in Im z > —ag — 1, takes values in C*°(0M; F'|spr), and vanishes
rapidly at real infinity. Since N(P*P,z)~! is meromorphic and satisfies the bounds (2.2),
we conclude that Yu(z) extends meromorphically to Im z > —ag — 1 as well and vanishes
rapidly at real infinity. Shifting the contour in the inverse Mellin transform

1

xlps) =5 [ FEN(P*P,2)  fi(2) e
2 Imz=—ag+e

to Imz = —ag — 1 + € where € € (0,1) is such that no poles of N(P*P,z)~! have Imz =
—ag + €,—ag — 1 + €, we conclude that yu is polyhomogeneous modulo a remainder in
A%=1+€(M; E). Tterating this argument establishes the polyhomogeneity of u.

2Note that Eo(P, ap) is not an index set.
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To get precise information about the leading order part of the index set of u, we return
to Pu = f and observe that

N(P,2)xu(z) = fa(z), Imz > —ap—1,
where fo = xf + (N(P) — P)(xu) + [P, x]u € A%~1%€([0,1) x OM; F|spr). Note that Fa(z)
is holomorphic for Im z > —ag — 1. Therefore, if z € C with Imz € (—ap — 1, —ay] is a pole
of xu(z) of order j > 1, then (iz,j — 1) € inj-Spec;,(P). This completes the proof. O
3. SOLUTIONS OF UNDERDETERMINED ELLIPTIC PDE WITH SHARP ASYMPTOTICS

We continue using the notation from the previous section. Let P € Diftf]'(M; E, F).

3.1. Formal solutions. For j € Np and 29 € C, we define

Z—Zo uk:UO,...,UjECOO(aM;E’,gM),

F(PZ() { =

OM“

(3.1)
N (P, z)u(z) is holomorphic at z = zo},

Fij)(P, z0) := {L.o.t.(@): @ € F(P, z9)} C C®(OM; Elos);

here we set L.o.t.(@i(2)) := u; for @(z) as in (3.1).> We moreover set F_1(P, z9) = {0} and
]3'[_1] (P, zp) = {0}. Thus, for j > 0, L.o.t.: Fj(P, 20) — F[j] (P, zp) is surjective with kernel
F;_1(P, ). We note that

(z — 20) Fj41(P, 20) € Fj(P,z0) C Fjza(P,z0),  Fjy(P,20) D Fljyy(P, 20) (3.2)
for all j. For a(z) = Zizo(z — z0) " Fluy, € F’-(P, 29) we have

i .
Res.—, (p :Z “ (log p)*uy € ker N(P), (3.3)

as follows by applying N (P) under the integral sign to 5L- fzo p*ii(z) dz where we integrate

counterclockwise over a small circle around zg. The space Fj (P, zp) is thus isomorphic to
the subspace

J
Fy(P, z) = { F(P,z), u=Y_p™(logp) uk} = kerp(pzy) (pDp — 20T (3.4)
k=0

of F(P,zy) via Fj(P, z9) 3 @ = Res,—, (p"*i(2)) € Fj(P, z0). (In particular, if ord(P, z) =
J < 00, then Fj(P, 20) = Fy_1(P, 20) = F(P, z) for j > J —1.)

Lemma 3.1 (Nondegenerate pairings). Let P € Diff)*(M; E, F'), and suppose that the
principal symbol of P is injective or surjective. Let j € Ng. Then the sesquilinear map

b] F[]](P7 ZO) X F[j] (P*>70+ Z’UJ) - (Cv (u7U*) = <N(Pa Z)a(z)’u*>L2(8M;F|3AI)‘Z:z07

where @ € Fj(P,z) has L.o.t.(@) = u, is well-defined (i.e. independent of the choice of @).
Moreover:

3Thus, the map L.o.t. depends on j, but we do not make this explicit in the notation.



UNDERDETERMINED ELLIPTIC PDE 13

(1) bj(u,u*) =0 for all u* € ﬁ'[j](P*,zT) +iw) iff u € F[j+1] (P, 2p).

(2) bj(u,u*) =0 for allu € F[j](P, 20) iff ut € F[j+1] (P*,z0 + iw).

(3) The map Fi;)(P*,zo + iw)/ Fi; 1 (P*, Z0 +iw) — (Fj(P, z0)/ Fij31) (P, 20))" induced
by u* +— bj(—,u") is an (antilinear) isomorphism of finite-dimensional vector spaces.

This is closely related to [Mel93, Proposition 6.2]. When P and thus N (P, z) is underde-
termined elliptic, then F[O}(P, 20) = kerceo(anr;Blyn) NV (P 20) is infinite-dimensional for all
2o € C (and thus rank(P, zp) = o0); see [BEM76, BE69] and also the proof of Theorem 3.10
below. Since for J = ord(P*,Zp + iw) we have F[j} (P*,Zo +iw) = 0 for all j > J, part (3)
of the Lemma implies that the space F [ﬂ(R 29) does not depend on j for j > J —1 and has
infinite dimension. Thus, ord(P, zp) = oo for all zy € C.

Proof of Lemma 3.1. We consider the case that the principal symbol of P is surjective; the
injective case is analogous. Assuming that J = ord(P*,Zg + iw) > 1, we then have a chain

0= Fiy(P*, % +iw) € Fly_y(P*, %0 +iw) C -+ C Fig(P*, % + iw) = ker N(P*, % + iw)

of finite-dimensional subspaces of C*°(OM; F|anr).

If 5 = 0, then @(2) := (2 — 20) 'u is the unique choice of @, and one has bg(u,u*) =
(0;N (P, zo)u,u*). This vanishes for all u* € F[O](P*,TO + iw) = ker N(P*,Z5 + iw) =
ker N (P, z9)* if and only if 0.N (P, zg)u € C*(OM; F|gps) lies in the range of N (P, zg) on
C>®(0M; E|anr); this uses that N(P,zp) has injective or surjective principal symbol. But
the existence of u; € C*(M; E|gpr) with 0, N (P, zo)u = —N (P, zp)u; is equivalent to (z —
20) 2u+ (2 — 20) "y € Fy(P, %), sou € F[l](P, 20). This proves (1). The argument for (2)
is analogous. Since (1) implies that the map F[O] (P, zo)/F[l](P, 20) — F[O] (P*,Zp + iw)*
induced by b; is injective, the domain is finite-dimensional (since the codomain is), and
therefore its adjoint is surjective. This proves the surjectivity of the map in (3), and its
injectivity follows from (2).

Suppose now we have established the Lemma for j—1 > 0 in place of j. If @, 4 € Fj(P, 20)
have the same leading order term u € F[j](P, 20), then @ — @ € Fj,l(P, 20); thus, for
u* € F;)(P*, % + iw) we have (N(P,z)(@ — @),u*) = bj_1(L.o.t.(a — @),u*) = 0 by
part (2). This shows that b; is well-defined.

Given u € Fm(P, 20), choose now u € Fj(P, zp) with L.o.t.(d) = u =: u;. Suppose
bj(u,u*) =0 for all u* € FM(P*,ZT)—F iw). Then the map

F[j,l}(P*,zT)—i— iw) 3 u* — (N(P,2)u(z),u")] ;=2 € C (3.5)

induces an element of (F[j_l}(P*,zT) + iw)/ﬁ[j](P*,% + tw))*; by part (3), we may thus
modify @ via addition of an suitable element of Fj_1(P,zp) so as to ensure that (3.5)
vanishes. Allowing next in (3.5) inputs u* € Fj;_g(P*,Z + iw), we obtain an element
of (Fjj—o(P* 20 + iw)/Fj;_y(P*,Z0 + iw))*, which upon adding a suitable element of
Fj_o(P, z9) to @ we can arrange to be 0; and so on. Ultimately, we obtain a new u(z) =
S _o(z—20) " F € F;(P, 29), still with L.o.t.(@) = u, so that (N (P, 2)i(z), u*)| .=z = 0
for all u* € F(P*,Z0 + iw) = ker N(P*,Zp + iw). But this means that there exists
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u_1 € C*®(0OM; E|snr) so that

j
1
Z i+ 1)'8§+1N(P, 20)up = —N (P, 20)u_
k=0 ’

Therefore 0(z) := Z]H( 20) Py € ﬁ'jH(P, zp), and hence v = u; € F[j+1] (P, 2p).
Conversely, given u € F[]_H] (P, 2p), take 0(z) € FjH(P, 2p) of this form with L.o.t.(0) = u;
then b;(u, u*) = (N (P, 20)(z — 20)0(2), u*)| .=z, = 0. This establishes part (1).

Given u* € F[j}(P*,%+iw), let u*(2) = f;zo(z—(zfo—i—iw)) F=lyr e E; i (P*, Zg+iw) with
L.o.t.(@") = uj = u*. Since N(P*,2)a*(z) is holomorphic at z = zo + w, the expression
N(P*,%Z + iw)@*(Z + iw) is anti-holomorphic at z = 2. Thus, for @(z) € Fj(P,z) with
L.o.t.(a) = u, we obtain the symmetric expression

bj(u,u*) = (N(P,2)a(2), (z = Z) @ (2 + iw))|z=z
= (5 = 20 (i(z), NP, 2" (2 + 1) s (3.6)
= (u, N(P*,Z +iw)u" (Z + iw) )| =2,
= (u, N(P", 2)u" (2)) | s=zg+iw-
Repeating the above arguments mutatis mutandis shows (2). The statement (3) follows
from (1)-(2) and the finite-dimensionality of the Fj;(P*,Z + iw). O

Corollary 3.2 (Solvability of the normal operator). Suppose P € Dift]'(M; E,F) has
surjective principal symbol. Let zg € C and put J = ord(P*,Zg + iw). Let k € Ny, and let
fos-ooy fu € C°(OM; Flopr). Then there exist ug,...,uxry € C®(OM; Elgp), depending

linearly and continuously on (fo,..., fr), so that Pu = f where
Itk ' koo 4
ulp,y) =>_ p™(ogpVui(y),  floy) =Y p*(ogp) f(y).
j=0 j=0

Proof. Relabeling and rescaling f; and u;, we must show, in view of (3.3), the existence of
uj so that N (P, z)u(z) — f(z) is holomorphic at z = zy, where f(z) = Z?ZO(Z —20) 7071
is given, and we seek u(z) = Z;’ié“(z — 20) 7~ lu;. By a simple induction on k, it suffices
to prove this for £ = 0.

We claim that there exists @ € Fy_1(P, z9) (depending continuously on fo) so that
(N(P, 2)0(2),u") L2003 F | gpr) | 2=20 = (f0, U) L2037 00) (3.7)

for all u* € ker(P,z9)* = ker N(P*,Zzg + iw) = F[O](P ,Z0 + tw); using such a @, we
can then find ug € C*®(9M; E|sp) (depending continuously on fy, cf. Remark 2.9) with
(fo — N(P,2)@(2))|2=2 = N(P,20)up and conclude that N(P, 2)((z — zo) ta(z) + (z —
20) " tug) — (2 — 20) "1 fo is holomorphic at zo.

Requiring (3.7) merely for all u* € F[J_” (P*,Zp + iw) is equivalent to by_q(uj_1,—) =
(fo,—) € (F[J_l](P*,zT) + iw))* where uy_; = L.o.t.(a). By Lemma 3.1(3), this has a
(unique) solution uj_1 € F[J,H(P, 20). Pick tj_1 € FJ,l(P, 2z9) with L.o.t.(4y-1) = uj_1,
and let f1 := fo — (N(P,2)tj-1(2))|2=2- Consider then the equation

(N (P, 2)is-2(2),u")]s=z = (f1,u). (3-8)
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For all u* € F[J_l] (P*,Zp + tw), the left, resp. right hand side vanishes when @;_o €
Fj_5(P, ) in view of Lemma 3.1(2) with j = J—2, resp. by construction of f1. Solving (3.8)
for u* € F[J,Q](P*,% + iw) is thus equivalent to solving

by_a(uj_a,—) = (f1,—) € (Fl;_o(P*, % + iw)/Fj;_y(P*, % + iw))”

foruj_o = L.o.t.(4j—2) € F[J_Q}(P7 20) (where @y_y € Fy_o(P, 2)). Lemma 3.1(3) provides
us with a solution u;_o which is unique modulo Fj;_1)(P,20). We then set fo = f1 —
(N(P,z)tuj-2(2))|2=2, etc. In this manner, we obtain @; € Fj(P, z) for j = J —1,...,0,
and find for a(z) = Z}]:_ol @;(z) that fo — (N(P,2)u(2))|.=s is orthogonal to all u* €
Flo)(P*,Z0 + iw), as required in (3.7). This completes the proof. O

Proposition 3.3 (Formal solution). Let P € Diffy'(M; E, F') be an operator with surjective
principal symbol. Let F C C x Ny be an index set. Define the index set E(P,F) C C x Ny
by

J
E(P,F):={ (z+jik+0): (z,k) € F, j€Ng, £< > ord (P*, Ziz+q) +iw>
q=0
(3.9)

Then for all f € AI]):hg(M;F), there exists u € Aiﬁg’}—)(M;E), depending continuously on

f, so that Pu— f € C(M;F).

This generalizes (and in the elliptic setting also sharpens) [Mel93, Lemma 5.44]. In the
applications discussed in §4, the orders of P* are zero at all but finitely many points in C,
and therefore £ is only a modest enlargement of F. We conjecture that for generic P, f,
the index set £ is the smallest one for which the conclusion holds.

Proof of Proposition 3.3. Since the result is local near M, we may work in a collar neigh-
borhood of OM and assume that f = x f where x € C°([0,1), x M ). Moreover, by a Borel
lemma argument, it suffices to consider the case that f is replaced by any individual term
of its polyhomogeneous expansion, so f = xfo where fo(p,y) = p*(log p)kf(z,k)(y) with
fzk) € C(OM; Flanr). By Corollary 3.2, there exist uop, ..., Uok+j, € C(OM; Elonr),

jo = ord(P*, —iz + iw), so that N(P)ug = fo for ug = Zfiéo p?(log p)ug j. Therefore,

f = P(xuo) = x(fo — Puo) — [P, x]uo = —x(P — N(P))uo — [P, x]uo

is the sum of xf1, f1 :== —(P — N(P))up € A{fﬁg([o, 1) x OM), and the commutator term

which has compact support in M°; here 71 = {(z + 1+ j,k'): j € No, ¥ <k + jo}.

We can then similarly solve away f1 term by term to leading order, producing u; =
E?:(J)Oﬂl p* T (log p)luy j with uy ; € C*°(OM; Elonr), j1 = ord(P*, —i(z + 1) +iw), so that
N(P)u; = fi; and so on. Taking u to be an asymptotic sum of xug, xui, ... finishes the
proof. ([

3.2. Solutions for rapidly decaying forcing; proof of the main result. It remains
to examine the solvability of Pu = f for rapidly vanishing f.
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Proposition 3.4 (Solution for Schwartz forcing). Suppose P € Diff}'(M; E, F') has sur-

jective principal symbol. Let f € C>°(M; F'). Suppose there exists a« € R so that
(fsu")2(vpsry = 0 for all u* € ker P*NAT*"Y(M; F),

and let ag € RU {400} be the supremum of all such a.. Set

E(P, ayp) ::{(z + 7, k+10): (2,k) € surj-Spec,,(P), Rez > ay,
(3.10)

J
< Zord (P*, —i(z +q) —|—z'w> }
q=1

Then there exists u € Ag(P’ao)(M; E) (when ag = 400, this means u € C*°(M; E)) so that

phg
Pu=f.

By Lemma 2.12 applied to P*, the existence of « is guaranteed for all f € COO(M;F)
if and only if no u* € ker P* vanishes to all orders at dM (i.e. u* € C®°(M;F), P*u* =0
implies u* = 0), i.e. if and only if unique continuation at 9M holds for elements of the
nullspace of P*.

Remark 3.5 (Smooth solvability for finite-dimensional families). If f depends smoothly on a
finite-dimensional parameter (similarly to Proposition 2.10), and satisfies the assumptions
of Proposition 3.4 for all values of the parameter (with «q fixed), then one can find a
solution u of the stated class which moreover depends smoothly on this parameter.

We prepare the proof of Proposition 3.4 with the following technical result:

Lemma 3.6 (Nondegenerate pairings #2). Suppose P € Diffy'(M; E, F) has surjective
principal symbol. Let zg € C and J = ord(P*,Zg + iw). Define the sesquilinear map

b: FJ_l(P, 20) X Fj_l(P*,zT)—l— iw) — C,
(u, @) — Res.—., (N (P, z)u(z),u"(z + iw)>L2(8M;F\3M)-
Then the linear map Fj_1(P,z0) > @ — b(i, —), taking values in the space of antilinear
functionals on Fj_1(P*,Zg + iw), is surjective and has a continuous linear right inverse.
Proof. Since F 7—1(P*,Zp + iw) is finite-dimensional, it suffices to prove that the adjoint
map 4* + b(—,@*) is injective. Let thus @* € F;_1(P*,Zy + iw) be such that
b(a,a*) =0 Y aeF_ (P, z).

For @& = (2 — 29) lu, u € F[J,l](P, 20), we have 0 = b(u,u*) = by_1(u,L.o.t.(a*)) in the
notation of Lemma 3.1 (see also (3.6)); by Lemma 3.1, this implies L.o.t.(a*) € F[J] (P*, Zo+

iw) = {0}. Therefore, @* € Fj_o(P* Zg + iw). Repeating this argument with @(z) =
(z — 20) 'u, u € Fiy_o)(P, 20), implies L.o.t.(a*) € F;_y)(P*, 7z + iw), i.e. we can write

u*(z) = (z— (Zo+iw))u7_q(2)+u5_5(2), iy € Fy(P*, Zg4+iw) (0 =J—1,J—-3). (3.11)
For @(z) = (2 — 20) 'u, u € F[J_g](P, 20), we find

0=0b(a,a") = by_s(u,L.o.t.(a_3)) + by—2(u,L.ot.((z — (Z0 + iw))as_;));
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by Lemma 3.1, the second term vanishes, and thus the vanishing of the first term implies
L.o.t.(@5_3) € Fly_y(P*, % + iw). Therefore, @5_5 € (2 — (20 + iw))Fy_o(P*, % + iw) +
F;_4(P*, 7y + iw), which implies that we can improve the decomposition (3.11) to @*(z) =
(z—(Zo+iw))u_,(z)+u*_4(2) for suitable a; € Ey(P*, z+iw) (¢ = J—1, J—4). Continuing
in this fashion, we ultimately find that we can write @*(2) = (2 — (Zo + w))a’_(2),
uy_, € Fj_1(P*, %y + iw). We have thus shown that @* is one order less singular at
z = Zg + 1w than assumed initially.

Repeating the above arguments for @ = (z — 2z0) ~2u where u € Fj(P, 20),j=J—-1,J—
2,... implies @* € (z — (Zg 4 iw))?Fy_1(P*,Z + 4w). Continuing in this fashion until the
exponent 2 is improved to J, we get @* = 0, finishing the proof. (|

Proof of Proposition 3.4. If ag = +00, the claim follows from Corollary 2.7, so let us assume
that g < 0o. Let ag < a1 < ... be the finite or countably infinite sequence of real numbers
with

{Rez: z € surj-spec,(P), Rez > ap} = {ap, a1,...}.
For j > 0, let K] = {u* € (oA " (M;F): P'u* = 0}. (Each K7 is finite-
dimensional by Proposition 2.5, but the union of all £¥ may be infinite-dimensional.) We

need to show that there exists v’ with v’ € Aphgao)(M; E), Pu' € C>®*(M; F), and so that

<PUI,U >L2(M,/F (f,u >L2(M wF) (3.12)
for all u* € IC;'-‘, j > 0. Given such a v/, we then conclude that f — Pu' € COO(M;F) is
orthogonal to kerc—oo(py,) P* = ;50 Kj. By Corollary 2.7, we then have f — Pu’ = Pu”
for some u” € C*°(M; E), and hence u = v’ 4+ u” is of the required form.

We now turn to the task of finding «’ so that (3.12) holds. Let x € C°([0,1), x IM) be
identically 1 near p = 0. Define the finite set {(zq, kq)} = {(2,k): z € surj-spec,(P): Rez =
ap, k= ord(P*, z+ iw) — 1}, and let

G(P*,—ag — @ F(P*, —izg + iw).

(This is a finite-dimensional vector space.) Con51der first v* € Kj. By Lemma 2.12, we
have u* = xug +u* where ug € F(P, Tzq +iw) and u* € A=+ for some § > 0.
We have u; = 0 for all g if and only if u* = v € K2} = U gkerg-ao—wtearry P
and in thls case, we have (f,u*) = 0 by assumption. Therefore, we have an injective map
K§/K:, — G(P*, —ap — w), [u] = (uy), and the antilinear functional (f, —)r2(ar,u;) on
K4 induces an antilinear functional on KCj /KC*; which we can then extend to an antilinear
functional Ay on G(P*, —ap — w).

Define now
G (P, ap) @ F; kq —izq),

and consider for v = (vy) € G(P, ap) (1dent1ﬁed with the finite sum > vg, which is poly-
homogeneous on [0,1) x M) and u* € K§ the pairing (P(xv),u")2(ar,u;r)- Defining the
approximate identity ¢. = 1 — x. where xc(p,y) = x(2,y), we rewrite this (using that
suppdg. C x (1) for sufficiently small € > 0) as

(P(xv). ') = lim ((P(), ) = (xo, 6cP"u')) = = lim [P, o, )
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=-1%<[N(P)y¢e]xv7xu>—11H1(<¢e (P)(xv), xu®) = (dexu, N (P*)(xu")))

= (N(P)(xv), xu") — (xv, N(P*)(xu")).
This vanishes for u* € K*,, as follows by integrating by parts on the left hand side.
Moreover, the final expression in the first line implies that this pairing only depends on

the leading order terms of v and w*. Therefore, for v € G(P, ap) we obtain another linear
functional on G(P*, —ag — w). The heart of the proof is thus to show that the map

G(P,ag) 3 v B(v,-) = (N(P)(xv), x) r2(msry — X0 N(P)XC) 2y (3:13)
into the space of antilinear functionals on G(P*, —ap —w) is surjective. Once this is shown,
we select v so that B(-,v) = A¢; this implies for «' = xv the validity of (3.12) for all u* € K.
In order to remedy the defect that P(xv) typically does not vanish to infinite order at OM,
we apply Proposition 3.3 to the forcing term —P(xv) = —xN(P)v — x(P — N(P))v =
—X(P—N(P))v to find v' € .A Pao)(M; E)Nso A%H1¢(M; E) so that Puj) € C(M; F)

where uf, = xyv + v’ € Ag(Pao)(M; E). We still have (Pug, u*)r2(arpum) = (f> ") 2(0,5)
for all u* € K since the contribution of v’ to the pairing vanishes (via integration by parts)
But this means that f — Puy, € C°°(M ; ) satisfies the same hypotheses as f, except now
(f = Pug, u*) r2(ar,57) = 0 holds not only for all u* € K~ |, but for all u* € Kf. An inductive
procedure gives u/; € .Aphgaj)(M' E)C Aph§a0)(M E) so that (f — P(ug+---+uj),u*) =0
for all u* € K. Taking u' € A Pao (M E) to be an asymptotic sum of the u , 7 € No,

arranges (3. 12) for all u* € U]eNo

It remains to show the surjectivity of (3.13). Note that N(P)(xv), resp. N(P*)(xu*)
vanish to one order more at M than yv € A% ¢(M;E) and yu* € A= ""¢(M; E).
Using the Mellin transform, Plancherel’s theorem and the fact that xv(z) and yu*(z) are
meromorphic and vanish rapidly at real infinity allow us to write

1 - — .
Blou) = 5 f ((N(P)O)) (), X0+ 50)) 1o ong oy 42
1 * *\\ -~/ = .
= 37 (TE), (VP4 0 g1 05
where v > 0 is the unique dens1ty on OM with the property that p="1u(p0,, ) = v at p =0,
and where v is the union of {Imz = —agp — €} (traversed in the direction of increasing
real part) and {Imz = —ap + €} (traversed in the direction of decreasing real part). If

v € Fy, (P, —izg) and u* € F(P*, —izy +iw) with ¢ # ¢/, the integrand is holomorphic and
thus B(v,u*) = 0. Thus, B is block-diagonal. For ¢ = ¢’ on the other hand, we have

Bo,u) = o- ?{ (NP () (), X 2+ 10)) gy 2 = 005,
in the notation of Lemma 3.6, where © € qu(P, —izg) and U* € qu (P*, —izq + iw) corre-
spond to v and u* via (3.3). (That is, xv(z) — 9() is holomorphic at z = z;, and similarly
xu*(z) — @*(2) is holomorphic at z = Zq +iw.) Here, the integration contour is a small
circle around z,, traversed counter-clockwise. By Lemma 3.6, 0 — b(0, —) surjects onto
the space of antilinear functionals on Fy, (P*, —izg 4+ iw)*. This completes the proof. [

Combining Propositions 3.3 and 3.4, we now obtain:
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Theorem 3.7 (Solution with sharp asymptotics). Suppose P € Diffy'(M; E, F') has sur-
jective principal symbol. Let F C C x Ny be an index set, and define the index sets
E(P,F) and E(P,aq) (for ap € RU{+00}) by (3.9) and (3.10); put aF := min(, g)cr Re 2.
Let f € .Aphg(M; F). Let —00 < aeoker < aF be the supremum of all o < arx so that
(fsu*) r2mpsry = 0 for all u* € ker g—a—w(pr,p) P*. Suppose that acoxer > —00. Finally, if
Qcoker € Resurj-specy (P), set ag = Qeoker; Otherwise, let g € [Qicokers +00] be the upper
bound of the largest interval with lower bound ccoker which is disjoint from Re surj-specy, (P).

Then there erists u € Aphg]: DEE, Oéo)(.M E) with Pu = f.

The only assumption on f in this result is the finiteness of aoker- This is always satisfied
if and only if unique continuation at M holds for elements of the smooth nullspace of P*,
as already discussed after Proposition 3.4.
S B,
In the further special case that F = (), one obtains a solution u € COO(M ; E). Thus,
Theorem 3.7 generalizes (but of course its proof relies on) Corollary 2.7.

In the case that one can take ay = 400, we have E(P,ap) = 0, so u € AL

We also note that if f depends smoothly on a finite-dimensional parameter, then one
can find u of the stated class with smooth dependence on the parameter, similarly to
Proposition 2.10 and Remark 3.5.

Proof of Theorem 3.7. First, we use Proposition 3.3 to find ug € Aphg (M E) so that
f1:= f — Pug € C*(M;F). Since ming; geg(pF) Rez = ming; gyer Re 2z = ar > acoker, an
integration by parts shows that (fi,u*) = 0 for all u* € ker 4~a—w(ps,p) P*, @ < Qcoker- In
the case that g > acoker, the kernel ker y—a—w(ps,p) P* is independent of a € [Qcokers Q0)-

Therefore, Proposition 3.4 applies and gives u; € Aph{; ao)(M E) with f; = Puy. Setting
u = ug + w1 finishes the proof. O

Remark 3.8 (Comparison with PP* arguments). Fix on M a positive density with weight
0. Using the notation of Theorem 3.7, fix any a < acoker With o # Resurj-specy (P); then
[ € H*(M; F) is orthogonal to the nullspace of P* on H”"“(M;F). We may then
attempt to solve Pu = f via (2.6) by means of inverting the elliptic operator T,. The
assumptions on f, a imply that this elliptic equation indeed has a solution v € H°(M; F'),
and thus v € H.O(M; E). (In other words, u = Gf in the notation of Corollary 2.6.)
Furthermore, v is polyhomogeneous since f is, and the index set of v is enlarged relative to
that of f by adding elements related to Specb( ), cf. [Mel93, Proposition 5.61]. The index
set of v and thus of u depends in a complicated manner on the choice of a; and indeed the
polyhomogeneous expansion of u at M typically has many more terms than the solution
produced by Theorem 3.7. An example of this phenomenon is given in the introduction
around equation (1.1). See also [Hin22, Proposition 4.10, 4.14, and Remark 4.15].

Remark 3.9 (Parametrices and ps.d.o.s). We do not address here the interesting problem
to construct, in the context of Theorem 3.7, a right parametrix, or indeed a (generalized)
right inverse, of P in the large b-calculus [Mel93] whose index sets are as small as possible.
Theorem 3.7, applied to effect the right inversion of the normal operator at the front face of
the b-double space of M, is likely useful for this purpose. The main benefit of a parametrix
would be that it gives mapping properties on coarser function spaces (such as weighted
b-Sobolev or Holder spaces); but for such purposes, Corollary 2.6 is typically sufficient in
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applications. We also do not consider here the problem of generalizing our arguments to
the case that P is a right elliptic b-pseudodifferential operator; this largely only requires
notational changes.

3.3. Infinite-dimensionality of the kernel. Complementing Theorem 3.7, we now prove
two results which show that the kernel of P on conormal or polyhomogeneous functions
is infinite-dimensional (and thus solutions of Pu = f are non-unique) in rather dramatic
ways.

Theorem 3.10 (Infinite-dimensional conormal nullspace). Let P € Diff'(M; E, F') be
underdetermined elliptic. For a € R, set K® = ker ga(prr,p) P. Then for all a < 3, the

space K*/KP is infinite-dimensional.

Theorem 3.10 is a special case of Theorem 3.11 below; we include it nonetheless, since
it (and its proof) generalizes to a larger class of operators P, such as uniform differential
operators on manifolds with cylindrical ends [1, 00), XY which asymptote to an r-translation
invariant operator at an exponential rate as r — oo and have (uniformly) surjective principal
symbols. (The relationship is via p = e™", so 0, = —pd,, with totally characteristic
operators having smooth coefficients in p > 0, whereas uniform operators have coeflicients
which are uniformly bounded on [1,00) x Y together with all derivatives along 0,.)

Proof of Theorem 3.10. Fix a density of weight 0 on M which in a collar neighborhood
of OM is given by ’%V‘ where v is a positive density on M. Since H,~“(M;E) C
AX(M;E) C H* (M;E) for all € > 0, it suffices to prove the claim for K*%/K5
K5 = kergse g P, when s = co. By subdividing the interval («, ) into any finite
number of nonempty subintervals, it further suffices to prove that K° /K> is nontrivial,
i.e. that K°® D K°#, Furthermore, we may increase o and decrease 8 by arbitrarily small
amounts to as to ensure that «, § ¢ Resurj-spec,,(P). Finally, upon conjugating P by p~?,
we may reduce to the case that oo < 0 = .
We have H{"(M; E) = kergm(ar,p) P ® P* (HZ™(M; F)) since both summands are closed
by Proposition 2.5. Moreover, there exists C' > 0 so that
lull e (ary < ClPullgoassey:  w € PHHE™(M; F)). (3.14)
We similarly have the splitting H°(M; E) = K=Y & P*(H°(M; F)), for if H®(M; E) >
u=u+ P* with v’ € H™"(M; E), Pu' =0, and v’ € H?™(M; F), then Pu= PP*u" €
H°(M; F) implies u” € H°(M; F'), and thus also v’ = u— P*u" € H°(M; E). Moreover,
P*(H*(M; F)) is closed since u; € H*(M;F), P'uj — f € H°(M;E) implies the
existence of u € HZ™(M; F) with f = P*u, and thus v € H°(M; F) by elliptic regularity.
Suppose now, for the sake of contradiction, that K°® = K°:. Then the continuous
inclusion map (K>, || - HHSO,O(M;E)) — (K% || - | geee(am)) is a bijection of Fréchet

spaces, and hence an isomorphism; therefore, there exists m’ € R (which may well be larger
than m) so that

lull vy < C’HUHH?/,Q(M;E), u € K0,

Together with (3.14) for u € P*(Hp°(M; F')), we obtain

el < € (IPulagare + 6l ) @€ HEOGE).  (3.15)
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The proof is complete once we show that this implies the injectivity of bG(P) over OM. To
this end, we work in a local chart RZ‘I on OM. Let ¢ € C°((0,1)) and ¢ € C°(OM; E|anr)

with support in the chart so that fol |6(p)|? dT)f’ =1 and |¢[|r2(a01: By, = 1- Let (0,0) #

(&,m) € R x R"™'. We apply the estimate (3.15) to us(p,y) = ¢(5)1(y)p e 2 where
5 € (0,1) and X\ > 1; there then exist ¢, C’ > 0 (with ¢ independent of ¢, ) so that

eA™ — C'Am < c( |Po (P)(p.yre Ao (8) ()|

Here we use that p~¢(§) = 07%(5)"“#(%) has norm bounded by C'0™ as a multiplication
operator on any weighted b-Sobolev space. Take 6 = A~7 where «v > 0 is chosen large enough
such that m’ + oy < m.* Dividing by A\ and letting A — oo gives

¢ < CPa™(P)(0, &MY ()l 2(ar )

Since ¢ (with norm 1 and support in the coordinate chart on M) is arbitrary, this implies
the injectivity of "o™(P)(0,y,&,n) for all y in the coordinate chart. O

+ oA C’a—axm’> .
L2(M;F)

Theorem 3.11 (Arbitrary index sets for elements of the kernel). Let P € Diff}'(M; E, F)
be underdetermined elliptic. Then for any index set £ C C x Ny, there exist an index set
E" D & and a solution u € Af);lg(M;E) of Pu = 0 with the property that u ¢ Alfhg(M; E)
for all index sets F which do not contain £. In this sense, polyhomogeneous elements of
ker P can have arbitrary index sets.

Proof. Let (z,k) € €. Since the principal symbol of P, and thus of N(P,z) for all z € C,
is surjective but not injective, we have ord(P,z) = oo (as remarked after Lemma 3.1).
This allows us to pick v € Fj(P,z), J > max(k,ord(P*,z + iw)); then f = —P(xu')
is polyhomogeneous, lies in ARC*T1=¢(M: F) for all ¢ > 0, and integrates to 0 against
all u* € o9 A~ Re2wHe(M; F) with P*u* = 0 (as follows from an integration by parts).
Therefore, Theorem 3.7 applies and produces a polyhomogeneous u” with Pu” = f with the
property that the largest power of log p in the term p**(log p)* of the expansion of u” is £ <
ord(P*, z+iw) < J; hence u. := xu'+u” € (5o AR ¢(M; E)Nker P is polyhomogeneous,
and its index set contains (z,k). We may then take u = Z(%k)eg €,u, where €, tends
to 0 sufficiently fast as |z| — oo so as to ensure convergence of the sum in a space of
polyhomogeneous conormal functions, and to ensure the absence of any cancellations among
the terms in the expansions of the u, which would reduce the size of the index set of u. [

4. APPLICATIONS

4.1. Geometric operators on asymptotically Euclidean spaces. Let n € N, n > 2.
Let M° be a smooth connected n-dimensional manifold without boundary; we assume that

AThe estimate (3.15) can be viewed as an estimate for u on second microlocal b-Sobolev spaces
H{f ;YV’O‘(M ; ) which are defined via testing with b-pseudodifferential operators whose symbols are conormal
on an non-homogeneous (the degree being v > 0) blow-up of bT*M at ngMM7 with weight m, v, a at the
lift of ®S* M, the front face, and the lift of bT% M, respectively. (Such spaces with v = 1, were introduced
in [Vas21]). Then the first two orders of H;"”O‘(M; E)= Hl:'};’m/er"a(M; E) are less than the corresponding
orders of Hy'(M; E) = Hy'y"™*(M; E). From this perspective, the functions usy with = A™7 are probing
the principal symbol of P at the front face. Since P is a smooth coefficient operator on M, this is the same
as probing its principal symbol over OM.
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there exists a compact set K C M° so that M°\ K = R"\ B(0, R) with R > 0. Denote by
g € C®(M°; S*T*M°®)

an asymptotically flat metric: by this we mean that ¢ is Riemannian, and on R™ \ B(0, R)
the metric coefficients g;; (in the standard coordinates  on R™) are equal to d;; (Euclidean
X

metric) plus error terms which are smooth functions of p = |z|~! > 0 and w = o] € Snl

which vanish at p = 0.

Define M as the radial compactification of M° at infinity, i.e. M = (M° U ([0, R7!), x
S"71))/ ~ where we identify x = (x!,...,2") € R*\ B(0,R) with (p,w) = (|:C|*1,|x?|).
Thus, g;; € C*°(M \ K) and g;; — ;5 € pC®(M \ K), where we write p € C*°(M) for a
function which is positive on M° and equal to |z|~! near M. In the case M° = R"™, we then
have C®(M) = . (R") (Schwartz space) and C~°(M) = .&'(R") (tempered distributions).

Let **TM — M be the smooth vector bundle which equals TM° over M°, and which
in the collar neighborhood U = [0, R‘l)p x S"~1 of OM is trivialized by Ty M = U x R,
where (z,v) € (U \ OM) x R™ is identified with v/d,; € T,M°. That is, {9,;: 1 < j < n}
extends from M° \ K to a smooth frame of *T'M over M \ K. (This is the scattering
tangent bundle in the terminology of [Mel94].) Write ST*M for the dual bundle of ST M;
thus, {dz/: 1 < j < n} is a smooth frame over M \ K. Then g € C®(M;S?5T*M). The
metric volume density |dg| has weight w = —n.

Lemma 4.1 (Connection). The Levi-Civita connection V of g satisfies
V € pDifff (M; 5T M,*T* M @ T M).

The normal operator N (V) is the Levi-Civita connection (expressed in inverse polar coor-
dinates) on Euclidean space without the origin. Moreover, d € pDifFll)(M;K, SCT*M) where
R =M x R is the trivial bundle.

Proof. Over M°, this merely states that V is a smooth coefficient differential operator.
Near M, we work in local coordinates. In the region where ' > §|z¥|, k = 2,...,n,

0 > 0, smooth coordinates are p = ?11 >0 and y* = i—f Thus ¢;; = di; + pgij(p,y) where
gij is smooth. Since 0,¢p = —6p1p° € p2C™ and 0,y* € pC>, we have 0,09i5 € p*C>®, and
therefore the Christoffel symbols Fié of g (in 2-coordinates) lie in p?C>. Since

Op1 = _ﬁ(ﬁaﬁ + ykayk)a aa:’“ = ﬁay’“ (41)
lie in ﬁDiffllo, we conclude that
V(17 ,) = (Byev” + T, 0p) da’ ® 8,

is of the stated class. The membership for d follows from 0,; € pDiﬁ'll). (|

5The assumptions on g;; —d;; can be weakened. For mapping properties on Schwartz spaces, conormality
(i.e. infinite b-regularity) on M (defined below) suffices, whereas for polyhomogeneous results one only
needs to assume the polyhomogeneity of g;; — d;; at p = 0, though the index sets of the solutions would get
additional contributions from the index set of g;; — d;;.
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Therefore, the results in §§2-3 apply to geometric operators on (M°, g) under appropriate
assumptions on their principal symbols. The following is a small selection of simple such
results.’

Theorem 4.2 (Divergence on 1-forms). Denote by d4 is the codifferential, and consider the
equation

dgw = u.

(1) Given u € C®(M), there exists a solution w € C>°(M;*T*M) (so the components
wi = w(0,:) are rapidly decaying as |x| — o) if and only if [, udg = 0. If this
condition is violated, then there still exists a solution w € p"~1C>(M;°T*M).

(2) More generally, suppose u € A7, (M) where F C C x Ny is an index set; let

phg
arF =ming, ger Rez. If ar > n, then there exists a solution w € Affh_gl(M; SCT*M)
when [y, udg =0, and w € Aﬁl_gl(M;SCT*M) + p"IC(M;5°T* M) otherwise; if

ar < n, then there exists a solution w € .Af)}:gl(M;SCT*M) + pICo (M 5°T* M)
where € = {(z+ j,k+¥0): (z2,k) € F, j € No, £ < {(z,7)} where £(z,j) = 1 when
ze€n—Ngand z+j € n+ Ny, and (z,7) = 0 otherwise.

Proof. The symbol of (64)* = d near OM is injective, as follows from the expressions (4.1).
Moreover, if u* € C7*°(M) and du* = 0, then u* is constant. The first claim of part (1)
then follows by applying Corollary 2.7 to the operator p~'6, € Difff (M;°T*M,R). More-
over, since inj-Specy,(p~td) = {(0,0)}, we have inj-Specy,(d o p=!) = {(1,0)} and thus
surj-Specy, (p~1d4) = {(n—1,0)}. Therefore, Theorem 3.7 applies to dop™! (with ar = 400
and Qeoker = a9 = n — 1); note that E(p~10g,n — 1) = {(n — 1+ 4,0): j € Ny} and
A;(f; 1(Sg’n_l)(M; SCT*M) = p"~1C®(M;°T*M). Part (2) follows similarly from Theo-
rem 3.7. ]
Theorem 4.3 (Divergence on symmetric 2-tensors). Let o, be the (negative) divergence on
symmetric 2-tensors on (M°, g), and consider the equation

dgh = w.

Let w € C®(M;*T*M). If (M°,g) does not admit any nontrivial Killing vector fields,
or more generally if w is orthogonal to all Killing vector fields, then there exists a so-
lution h € C®(M;S?5°T*M). If this condition is violated, then there exists a solution
h € p"1C%(M; S?3¢T* M) + p™(log p)C>®(M; S%5T* M).

We leave the statement of a polyhomogeneous version of this result to the reader.

Proof of Theorem 4.3. The adjoint §; (symmetric gradient) of J, has injective principal
symbol; its (tempered) distributional kernel is given by the space of all Killing 1-forms. Thus
the first claim follows again from Corollary 2.7. The normal operator of ¢ is the Euclidean
symmetric gradient 6*, with kernel spanned by translations dz? and rotations * da’/ —z7 da’.
Thus, inj-Specy, (p~167) = {(0,0), (=1,0)} and thus inj-Spec;, (5;0p™ 1) = {(0,0), (1,0)}, and
therefore surj-Specy, (p~16,) = {(n — 1,0), (n,0)}. O

6Some parts of these results are quite elementary; we state them only as illustrations of our general
results.
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Remark 4.4 (Divergence on Euclidean space, I). If g is the Euclidean metric, or more
generally if g is spherically symmetric to leading and subleading order at M, then one
can avoid a logarithmic term in Theorem 4.3, i.e. one can find h € p"~1C>®(M; S2°T* M).
Indeed, in the proof of Proposition 3.4, the expansion term corresponding to (n —1,0) €
surj-Specy, (,0_1(59) can, via an averaging procedure, be taken to be of scalar type 1 (since the
kernel of N (,0_15;, 0) consists of scalar type 1 1-forms). The spherical symmetry assumption
then ensures that the resulting error subleading term is still of scalar type 1, and thus
orthogonal to the space of vector type 1 1-forms which the kernel of N (p_lé’;, —1)is a
subspace of, and hence can be solved away without the introduction of a logarithmic term.

Remark 4.5 (Divergence on Euclidean space, II). On exact Euclidean space, [MT22, The-
orem 4] (building on [OT19, Proposition 4.1]) produces a family of right inverses of the
divergence operators on 1-forms and symmetric 2-tensors which depends on a choice of
smooth function on S~ which encodes localization to conic regions. Acting on rapidly
vanishing right hand sides, they all produce different solutions of the divergence equation
than the one constructed here. It is an interesting problem to generalize our arguments so
as to ensure localization properties of solutions, e.g. so that in the context of Theorem 4.3
the solution A is supported in the same conic region as w.

4.2. Sharp asymptotics for initial data gluing. This section is not self-contained:
we shall only indicate how the results of the present paper can be used to obtain more
precise asymptotics in the gluing method for the constraint equations in general relativity
introduced by the author in [Hin22]. Recall that the constraint equations are P(vy,k) =0
where v is a Riemannian metric and k is a symmetric 2-tensor on an n-dimensional manifold,
and

P(’Y’ k) = (Pl(’% k)a P2(77 k))a
Puyok) o= By — K + (61, B2 Pa(,k) = 0k + d(tr, F),
with R, denoting the scalar curvature of v. We first revisit a key result in the construction

of a formal solution of the gluing problem:

Proposition 4.6 (Linearized constraints map around asymptotically flat initial data).
(Cf. [Hin22, Proposition 4.10(2)].) Let K C R", n > 3, be compact (possibly empty) and
contained in the open Euclidean ball of radius Ry > 0 around 0. Set p, = ()71 on R™ with
standard coordinates denoted &. Fiz the index set € = {(n —243,0): j € No}, and put

S={(n—-203U{(n—1+3k):jeNy, k=0,1}.

Let (5, k) be E-asymptotically flat initial data; that is, ¥ € pQ_ZCOO(W\f(O; S2seT*R7) and
k € pn=tC>®(R™\ K°; S?5°T*R™) solve the constraint equations P(4,k) = 0. Denote by Lj

the linearization of P(—,—) at (3,k). If G C C x Ny is an index set, and if f € AIT2(R"),

_ T ~ phg
Jj€ Agﬂg(R”;SCT*R”) vanish in a neighborhood of |#| < Ry, then there exist’

he ASTS R, S2T*R7), e ASDSTL(R™, 52T*Rw) (4.2)

so that Lw;(iz, q) = (f,j), and so that h and § vanish in a neighborhood of |z] < Ry.

"We use here the extended union of index sets, EUF := EUFU{(z,k+ L+ 1): (z,k) € €, (2,0) € F}.
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The index set & is particularly natural since the initial data of (higher-dimensional)
Schwarzschild and Kerr metrics have the regularity and decay required for (¥, l%), as demon-
strated in [Hin22, Lemma 6.1] in the case n = 3. Of course, one can (but we shall not)
similarly sharpen [Hin22, Proposition 4.10(2)] (and thus also [Hin22, Theorem 5.2], as dis-

cussed below) for asymptotically flat data with general index sets £.

Proof of Proposition 4.6. Setting @ = diag(p;2, p; 1), the operator L := Lw%w is a totally
characteristic operator whose principal symbol, in the Douglis—Nirenberg sense as an ele-
ment of (Diffg+si)i,j:172, t1 =t2 =0, s1 = 2, s9 = 1, is surjective; see [Hin22, Lemmas 4.2
and 4.7]. By [Hin22, Lemma 4.6], its normal operator is block-diagonal and given by
diag(Ly, Ly)w where L; = Atr+06 and L, = 6 +d tr are geometric operators on Euclidean
space R” \ {0} and w = diag(|z|?, |z|'). Then [Hin22, Lemma 4.8] computes the injective
boundary spectrum of L* to be {(—1,0), (0,0)}; since the volume density of 4 has weight
—n, this gives surj-Specy, (L) = {(n,0), (n +1,0)}.

If it were not for the support requirements on il,(j (and the possible presence of K ), an
application of Theorem 3.7 to the equation L(h/,q") = ( f,j) would finish the proof upon
setting h = p32h', ¢ = p;'¢’. (In fact, the asymptotic behavior produced by Theorem 3.7
is slightly stronger still than (4.2) as far as the powers of log p, in subleading terms are
concerned.) We briefly sketch how to account for the support requirements. One first uses
Proposition 3.3 to produce, locally near OR™, a formal solution of the linearized constraint
equations. To solve away the remaining Schwartz errors, one works on suitable weighted
b-00-Sobolev spaces on the closure in R” of {|# > Ry + 1} for some small 7 > 0, on
which the cokernel of L is finite-dimensional; upon eliminating the cokernel as in the proof
of Proposition 3.4, one can apply a variant of Corollary 2.7 on such Sobolev spaces (with
rapid vanishing at OR”, with a fixed weight at |#| = Ro+n, and with infinite b-00-regularity)
to conclude. O

In a similar vein, one can sharpen [Hin22, Proposition 4.14(2)] so as to ensure that the
index set of the solution of the linearized constraint equations on the punctured manifold
Xo = [X;{p}] (in the notation of the reference) is log-smooth at the conic point (the lift of
{p}) when the right hand side is.

Corollary 4.7 (Log-smoothness of the glued data). We use the notation and terminology
of [Hin22, Theorem 5.2] and make the same assumptions, with index set € as in Proposi-
tion 4.6; that is, the boundary data are a smooth solution (v, k) of the constraint equations
on a smooth n-dimensional manifold X subject to a local genericity condition (absence of
KIDs) near a pointp € X, and an &-asymptotically flat solution (¥, /AC) as in Proposition 4.6.
Then there exist index sets & C (1 +Ng) x Ng and & C (n — 2+ Ng) x Ng for which the
conclusions of [Hin22, Theorem 5.2] hold. That is, there exists a log-smooth total family
(V: k) = (Ve ke)ce(o,e;) on the total gluing space (see [Hin22, Definition 3.1]), with boundary

data (v, k) and (¥, k), which solves the constraint equations.

Proof. We follow [Hin22, §5.1] to construct a formal solution of the constraint equations
on the total gluing space, except we now use Proposition 4.6 instead of [Hin22, Propo-
sitions 4.10(2)], and the similarly sharpened version of [Hin22, Proposition 4.14(2)]; this
ensures the log-smoothness. (We leave the problem of obtaining bounds on the exponents
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of the logarithms to the interested reader.) The correction of the formal solution to a true
solution is done exactly as in [Hin22, §5.2]. O

APPENDIX A. CHARACTERIZATION OF THE CLOSED RANGE PROPERTY

For completeness, we prove here a classical functional analytic result about bounded
linear operators between Fréchet spaces. References include [Tre67, §37], [SW99, Chap. IV,
6.4 and 7.7], and [KN76, 21.9 and 22.7]. For the convenience of the reader, we give self-
contained proofs here, following [Hor].

Let E, F be Fréchet spaces, and let T: £ — F be a continuous linear operator. Denote
by p1 < pa < --- a family of seminorms on E so that U,, = {z € E: pj(z) < 1} is a
decreasing fundamental system of neighborhoods of 0 € E; let ¢1 < g2 < --- denote an
analogous family of seminorms on F'. For a continuous seminorm p on F, define by

Up={ € E*: |\z)| <p(z) Vo € E} C E*
the polar of {z € E: p(z) < 1}.

Theorem A.1 (Characterization of the closed range property). The rangeranT =T (E) C
F is closed if and only if the set ranT* NU,, C E* is weak™® closed for all n € N. In this
case, ranT = annker T and annkerT' = ranT™.

This is an immediate consequence of the following two results:

Proposition A.2 (Closed range and adjoints). T(E) C F' is closed if and only if ran T* C
E* is weak™ closed. In this case ranT = annker T* and annker T = ran T*.

Proof. Suppose ranT is closed. If A = T*u for p € F*, then for x € kerT we have
AMz) = (T*p)(z) = p(Tz) = 0. If on the other hand p € annker T, then p induces a
bounded linear map [u]: E/kerT — C. Set Ag: ranT — C, \(Tx) = p(x) = [p]([z]),
where [x] = x + kerT € E/ker T'; this is well-defined since T'x = 0 implies [x] = 0. But by
the Open Mapping Theorem, the map E/kerT — ranT induced by T is an isomorphism,
and therefore its inverse Tz — [z] is continuous. Therefore, Ao is continuous, and by the
Hahn-Banach theorem has a continuous extension A € F*. By construction, (T*\)(z) =
AMNTz) = M(Tx) = p(zx) for all x € E, so T*\ = p.

Conversely, suppose ranT* is weak™ closed. Then for V = annranT* = ker T C E, we
have ann V' = ranT*. Factor now T' = Tym, where T1: E/V — F is the (injective) map
induced by T, and 7: E — E/V is the projection. Then T = 7n*T}, with 7*: (E/V)* — E*
being injective with range ann V' = ranT™. Therefore, T} is surjective. Replacing T', E' by
Ty, E/V, we may thus assume that 7T is injective and T™ is surjective.

We first show that if () en is a sequence in £ with Tx; — 0, then z; — 0. For alln € N,
we have p,(Tz;) — 0, and thus we may inductively find j; < jo < ... so that p,(Tz;) < %
when j > j, (and thus pp,(Tz;) < % for m < n). Let ¢ = % for j, < j < jn+i,
which thus satisfies €; — 0; then Tz;/e; is bounded. Given any p € F*, the sequence
pu(Txzj/e;) = (T*p)(xj/€;) is then bounded; since T is surjective, this implies that A(x;/¢;)
is bounded for all A € E*. We claim that this implies that x;/¢; is bounded in E. To see this,
note that if p is any continuous seminorm on E, then the subset E; C E* of A € E* which
are continuous with respect to p is a Banach space with norm [[All, = sup,ep, pa)=1 1A (@)]-
But zj/e;: Ey — C, A = Azj/¢€;), is continuous in view of [A(z;/€;)| < [[A|pp(ws/€;),
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and it is pointwise bounded; therefore, it is uniformly bounded by the Banach—Steinhaus
theorem. This implies that p(x;/€;) is bounded, and therefore x; — 0 since p was arbitrary.

Finally, if Tx; — y € F', then via a diagonal argument we can find a subsequence, again
denoted z;, so that ¢, (Tzj+1 — Tx;) < 27% for all j > n. Thus T(2/(zj41 — ;) — 0,
which implies that 27 (211 —z;) — 0, and therefore 21 + P 277(27(zj11 —x4)) converges
in E to a limit  which satisfies Tx = y. The proof is complete. O

Proposition A.3 (Weak* closed subspaces). A linear subspace W C E* is weak* closed if
and only if W N U,, is weak™ closed for all n € N.

Proof. Since U, is weak® compact by the Banach-Alaoglu theorem, one implication is
obvious. Conversely, suppose W N U, is weak* closed, thus weak* compact, for all n € N.
Let \g ¢ W. We first claim that there exists a sequence (z;)jeny with ; — 0 so that
A€ B,

[A(z5) = Ao(wj)] < 1 (A1)
for all j implies that A ¢ W. Let N be such that Ay € CU,, for some C > 0. By relabeling
CpN,CPN+1, ... as p1, P2, ..., we may assume that Ao € Uy, (and thus \g € Up,, for all n).
Define W,, := W N (Up,, + Ao) C W N Uy, , which is weak* compact. Suppose that we have
found z1,...,z; € E so that (A.1) for 1 < j < k implies A ¢ W,,; for n = 1, we can find
such elements of E since W7 is weak™® closed and A\g ¢ Wi. Note then that

WpiN{X e E*: ’)\(.CCJ) — )\o(xj)’ <1, j=1,...,k}

is a weak® compact subset of W, that is disjoint from W),; it has empty intersection
with (Vyep, p.()<1 Cz = Up, + Ao where we define the weak® closed set C; = {A €
E*: |\(x) — Ao(x)| < 1}. By the finite intersection property, there thus exist finitely many
Thtl, -, Tt € E with py(z5) <1, k+1 < j <k +1, with the desired property.

Next, let ¢y denote the space of complex-valued null sequences, with the supremum norm
| - loo- Define the map

(25: Ef — Co, A= ()\(wj))jeN.

Then ||¢(+)]|o is a continuous seminorm on E*, and ||¢(Ag)||cc > 1. By the Hahn-Banach
theorem, there exists a linear map f: E* — C so that

flw=0,  fldo) =1, (A.2)

and |f(A)] < Cll¢(N)||loo- Applying the Hahn—-Banach theorem again, we can thus extend
the map co > ¢(A\) — f(A) € C to a continuous linear functional a € (cg)* = ¢!. That is,
a = (an)nen is absolutely summable, and

FA) =D and(Nn=Ax), 2:=) anz,€E.
n=1

n=1

In view of (A.2), this implies that Ao has a weak™ neighborhood disjoint from W, finishing
the proof. O
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