EXERCISES FOR PART 1/2 OF SCATTERING THEORY (SNAP 2019)

PETER HINTZ

Exercise 1. (Free resolvent in one dimension, physical space approach.)
(a) Let A € C, Im A > 0. Find a distribution uy(z) € 2'(R,) such that
(=07 — M)ux(z) = 6(x), (1)

and so that |uy(z)| — 0 as |z| — oo.
(b) For ¢ € C°(R), set

RaWipla) = [ o =)ot dy. @)
Show that (—92 — A2)Ro(\)p = . We call Ry()\) the free resolvent of —92.
(c) Show that Ro()\): L?(R) — L?(R) for Im A > 0.
(d) Prove that Rp(\) extends from Im A > 0 to a meromorphic family of operators
Ro(\): CE(R) — 2'(R), XecC. (3)

(This means: for all ¢,1) € R, the complex-valued function X\ — [p Ro(N)¢(z) -
¥ (x) dz is meromorphic in A.) Find its poles.
(e) For X\ # 0, show that Ry(\) extends by continuity to a continuous map

Ro(A): LE(R) — Lipc(R). (4)

loc

(This means: for any smooth cutoff function p € C(R), the cutoff resolvent
pRo(\)p: C*(R) — Z'(R) extends to a bounded linear map pRo(A)p: L*(R) —
L2(R).)

(f*) Show the following improvement of (4):

Ro(\): LI(R) — Hio(R), A #0. (5)

Exercise 2. (Waves in one dimension.) By solving the one-dimensional free wave equation
explicitly, we will justify the phenomenon seen in the lecture: the solution becomes constant
in any fixed compact set for late enough times.

Consider a function u € C*°(R?) in two variables (¢, z) satisfying the free wave equation
in (1+ 1) dimensions:

(0F = )u(t,z) = 0. (6)

(a) By changing coordinates in equation (6) to (w,z) = (t + x,t — x), show that there
exist smooth functions ur,ur € C*°(R) of one variable such that

u(t,z) =ur(t+ ) + ugr(t — ). (7)

Conversely, show that every function of this form satisfies the wave equation (6).
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(b) Produce an explicit formula of the solution of the initial value problem
(0? — P)u(t,r) =0, t>0, z €R,
u(0,z) =0, x € R, (8)
8,571,(0,.%') = UO(x>7 TE R?
for up € C*(R).

(¢) Let R, R’ > 0. Suppose ug € C°(B(0, R)). Show that there exists T = T(R, R') > 0
such that u(t,x) is constant for ¢t > T, |z| < R'.

Exercise 3. (Free resolvent in three dimensions.) Let ¢ € C2°(R?). As in lecture, set

eiMx_yl
Ro(A = —_ d AeC. 9
(W)= [ el s, A€ )
Prove by direct calculation that
(=A = X)Ro(Np = ¢. (10)

Exercise 4. (Estimates in the upper half plane.)

(a) Show that there exists a constant C' > 0 such that for all A € C, Im A > 0, the
following estimate holds (d denoting Euclidean distance):

d(X\?,[0,00)) > C|A| Tm \. (11)

(b) Let V € L*°(R;C). Show that there exists C’ > 0 such that the following holds: if
A€C, Im\ >, and if w € H?(R3) solves (—A +V — A?)w = 0, then w = 0.

Exercise 5. (Analytic Fredholm theory for matrices.) Let N € N, and let Q C C denote
a connected open set. Suppose A()\) € CN¥*V is an analytic matrix-valued function of
A € Q. Prove that either A()) is not invertible for any A € C, or the inverse A(\)~! is a
meromorphic matrix-valued function on € (that is, its entries are meromorphic complex-
valued functions).

Exercise 6. (An application of analytic Fredholm theory.) Let K: X — Y be a compact
operator between two Banach spaces X,Y. By considering the analytic family C > z —
I + zK of Fredholm operators, prove that the spectrum of K is discrete and can only
accumulate at 0.

Exercise 7. (Meromorphic continuation in one dimension.) Let V' € L°(R; C). Following
the arguments presented in lecture, show that the resolvent

Ry(\) = (=02 +V =M™ L2(R) —» LA(R), ImA> 1, (12)
admits a meromorphic continuation to a family of operators

Ry(\): L2(R) — L (R), XeC. (13)

loc

(This means: pRy ()\)p is a meromorphic family of operators on L?(R) for any cutoff function
p € C(R).) Make sure you carefully treat the pole of Ry(A) at A =0.)

Exercise 8. (Symmetry of resonances for real-valued potentials.) Let V € L°(R%;R) be
real-valued. Show that if A € C is a resonance, then so is —\, the reflection of A across the
imaginary axis. (Use complex conjugation.)
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Exercise 9. (Meromorphic continuation for decaying potentials.) Let 7' > 0, and let
V € L*(R?) be a bounded potential satisfying |V (z)] < Ce~TI*| for some constant C.
Show (by carefully following the proof in lecture for V' € L°(R3)) that the resolvent
Ry(A) = (=A+V — A?)~! extends from Im A > 1 to a meromorphic family

Ry(\): L2(R) — L} (R), X€C, ImA> —T. (14)

loc

Exercise 10. (Calculation of resonances in one dimension.) Fix V5 € R and L > 0, and
define the potential V' € L*(R) by

—L L
V(z) = {Vg, <z <L,

15
0, |z|>L. (15)

(a) Derive a necessary and sufficient criterion for A € C to be a resonance of —92 + V..
(Use the characterization of resonant states (—92 +V — A?)u = 0, u(z) = upe®l,
+2 > L.) This will take the form of a transcendental equation.

(b*) By approximately solving this equation, find an approximate formula for resonances
A with large real part.

Exercise 11. (Potentials with a prescribed resonance.) The goal of this exercise is to show
that resonances can appear anywhere in the complex plane.

(a) Construct a potential V' € C°(R3;R) such that 0 is a resonance of —A + V.
(b) Let A € C. Construct a potential V € C°(R3;C) such that )\ is a resonance of
-A+V.
(c*) Let A € C, Im A < 0. Construct a real-valued potential V' € C°(R3; R) such that A
is a resonance of —A + V.

Exercise 12. (Waves and resolvents in three dimensions.) Let U(t) := sin(tv/—A)/v/—A.

(This is defined using the Fourier transform F by F(U(t) f)(§) = %}-ﬂf), fes(R3).)

(a*) Show that

I =g [ rwasw, o (16)

(b) (Strong Huygens principle.) Suppose f € CX(B(0,R)). Prove that B(0,R) N
suppU(t)f = 0 for t > 2R.
(c) Let Im A > 0. Show that Ry(A\): L%(R3) — L?(R?®) can be expressed as

Ro(\) = /O TNy () dt, (17)

with convergence in operator norm.
(d) Let p € C°(B(0, R)). Show (using the strong Huygens principle and analytic con-
tinuation) that for all A € C,

2R
pRo(N)p = / e pU (t)p dt. (18)
0
(e) Show that ||U(t)|| 2 = (1 +t2)Y/2. Deduce that
IpRo(Npllgapp < Ce2ROmA-. (19)

(f) Make sure you understand the arguments given in lecture proving that for j = 0,1, 2,

lpRo(N)pll g2y s < C2REMN=(2)771, (20)
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Exercise 13. (Solving the wave equation using the resolvent.) Let V € LP(R3 C). Let
ug € HX(R3), u; € L2(R?), and consider the wave equation

O+ V)u= (0 — Ags + V)u =0,
U(Oa ZL‘) = Uo(ZIT), (21)
Ou(0, ) = ui(x).
This has a unique solution u € CO(R; H(R?)) N CH(R; L2(R?)). Let H(t) denote the Heav-
iside function (H(t) =1 for t > 0 and H(t) = 0 for ¢t < 0), and put a(t,x) := H(t)u(t, x).
(a) Show that (O + V)u(t,x) = f(t,z) := 0'(t)uo(z) + 0(t)ur(x).
(b) For C > 0 sufficiently large, show that

v(t,x) = ! / e" MRy (N (ug — iug) dA (22)
Im A =C

2m
is well-defined (as a distribution) and satisfies (O+V)v = f. (Pick C so that Ry ()
satisfies good estimates for Im A > C' and has no resonances there.)

(¢) Using the Paley—Wiener theorem, or arguing directly, show that v(¢,z) = 0 for ¢t < 0.

(d) Show that the difference w(t,z) := a(t,x) — v(t,x) vanishes. (By construction,
w(t,x) = 0 for t < 0; moreover (O + V)w(t,z) = 0. Use energy estimates to
conclude.) Therefore, @(t, x) is given by (22).

Exercise 14. (Regularity of solutions of wave equations.) Let V € C*(R?;C),! and sup-
pose u(t,z) is the unique solution of the wave equation

(0?2 — A+ V)u=0, teR, z€R3,
u(0,2) = up(z) € HI(R3), (23)
Ou(0, ) = uy(z) € L2(R3);
we have v € CO(R; H'(R3)) N CY(R; L?(R3)). If R > 0 is such that suppug U suppu; C
B(0, R), show that u € C*>°(Q2) in the domain
Q={(t,z): |z| < |t| — R}. (24)

In particular, u(t, z) is smooth in any fixed compact subset of R when ¢ is large enough.
(It suffices to prove this for ¢ > 0. Using the previous exercise, reduce to a statement about
solutions of (9?2 — A +V)u = f € 2'(R*) where t > 0 on supp f and on suppu. Then use
the microlocal propagation of singularities.)

Exercise 15. (Resonances for real-valued potentials.) Let V € L2(R;R), Py = —02 + V.

(a) (Absence of embedded eigenvalues.) Show that Py, has no non-zero real resonances.
(Given a resonant state u(x) corresponding to a resonance 0 # A € R, evaluate
f_RR(PV —M)u-td—u-(Py—N)udz for R > 1 in two different ways using that
u(z) = are™ for £2 > 1.)

(b) Suppose V' > 0. Show that the resonances A of Py satisfy A = 0 or ImA < 0.
(You only need to study Im A > 0. Given a resonant state u, integrate by parts in
0= ((Py — \})u,u) r2(r) and consider real and imaginary parts.)

(¢) If V> 0 on a set of positive measure, show that 0 is not a resonance of Py .

(d) Prove the last two results in three spatial dimensions.

1The compact support assumption can be dropped easily here.



