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Abstract

We analyse the variable selection properties of the Elastic Net (EN) penalisation method in the
framework of generalized linear models (GLMs) in presence of multicollinearity. Existing literature
on variable selection properties of `1 + `2-penalized GLMs such as model selection consistency or
the grouping e↵ect is summarized. Inspired by the latter, for linear models in particular, the
joint selection of correlated variables is analysed in more detail. Specific focus is laid on settings
involving highly correlated regressors, where correct variable selection of the EN often breaks
down. As a possible remedy, we discuss the concept of Stability Selection (cp. Meinshausen and
Bühlmann (2010)). In form of a simulation study, we investigate, whether Stability Selection leads
to improved variable selection for an EN-penalized logistic regression.
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Introduction

In predictive modelling it often is of interest to obtain interpretable approximations of some un-

derlying data generating process. To this end, a first step one commonly resorts to is to conduct

penalized regression analyses. These methods are usually easily fit and, for certain choices of pe-

nalisation, provide sparse solutions, i.e. models that depend on a reduced number of explanatory

variables. In a ”large-p”-setting, where an ever growing amount of (possibly noisy) data is avail-

able, such a dimension reduction to a great extend enhances interpretability of an approximating

model as well as the actual process of interest.

Naturally, when relying on such penalisation methods, one would like to know how closely the

approximated model resembles the true one. In particular, we like to assess if the chosen model

identifies the variables that are truly relevant to the underlying data generating process. This leads

to the question of correct variable selection, which, for generalized linear models amounts to asking

whether the fitted model assigns non-zero coe�cients to truly relevant variables, while estimated

coe�cients of superfluous regressors are set to zero.

In this thesis, we like to study specifically the Elastic Net penalisation methods variable selection

properties in the framework of generalized linear models. Particular focus is laid on settings in

which explanatory variables display some sort of correlation structure, i.e. if there is multicollinear-

ity in the design.

A note on multicollinearity

We speak of multicollinearity when two or more explanatory variables in a regression model are

highly linearly related, or in other words, when there is an approximate linear relationship among

two or more of those variables. This phenomenon does not reduce the predictive power of the re-

gression model (at least for data within the training set). However, in presence of multicollinearity,

a fitted model might not give valid results about which predictors are redundant with respect to

others. Hence, in particular correct variable selection may be impaired.

Situations in which some regressor can to a high degree be linearly predicted from others therefore

are of specific interest when variable selection properties are discussed. Throughout this thesis, we

will mostly think of settings in which the pairwise correlations among at least two of the regressors

exceed a certain threshold. This includes scenarios with groups of highly correlated variables as

well as other correlation structures of the design such as the well-known Toeplitz structure.

The setting and further notation

The generalized linear model will serve as basis for subsequent discussions and shall be introduced

in the following. We consider n 2 N i.i.d. observations of both a response variable Yi and p

predictors Xi,j , j = 1, . . . , p, gathered in the design matrix X 2 Rn⇥p. We denote by Xi and X
(j)

1



2 INTRODUCTION

the ith row and jth column of X respectively. For the sake of simplicity, throughout this thesis we

use capital letters for random variables as well as their realisations. The meaning of those notions

will be clear from the context. We further assume that the variables X
(j) are standardized such

that
Pn

i=1 Xi,j/n = 0 and
Pn

i=1 X
2
i,j/n = 1, 8j 2 {1, . . . , p}. The conditional distribution of Yi

given the values of the explanatory variables Xi is assumed to be a member of the exponential

dispersion family. The corresponding density is of the form

fY (y|✓,�) = exp

✓
y✓ � b(✓)

�
+ c(y,�)

◆
, ✓ 2 R,� > 0.

We refer to ✓ and � as the canonical and dispersion parameters; c(·), b(·) are specified functions

such that b satisfies

µi ⌘ E [Yi] = b
0(✓) and V ar(Yi) = b

00(✓)�,

for b(·) su�ciently di↵erentiable. Provided that b
0(·) is invertible, ✓ may be represented as a

function of µ and hence the same holds true for b00(·). We write b
00(✓) = V (µ), where V (·) defines

the Variance function of the family. The response is then linked to the explanatory variables using

a smooth and invertible link function g(·) that transforms the expectation of the response variable

µi to the so-called linear predictor ⌘i := �0 + �
T
Xi, (�0,�) 2 Rp+1. In short we note:

Yi
id
⇠ fY , g(µi) = �0 + �

T
Xi, µi ⌘ E[Yi] i = 1, . . . , n. (1)

The model is assumed to be sparse, meaning that some explanatory variables are in fact irrelevant

to the response variable. Let I⇤ ⇢ {1, . . . , p} be the indices corresponding to the true set of covari-

ates. Then naturally �i = 0, i /2 I
⇤. Furthermore, we denote by k

⇤ = |I
⇤
| the number of non-zero

entries in �.

As mentioned before, we like to put specific focus on the case where predictors are potentially highly

correlated. In such a setting, we also allow for correlations among the true covariates indexed by I
⇤.

The rest of this thesis will be structured as follows. We start by discussing variable selection for

linear models in Chapter 1. This entails an overview of model selection consistency as well as a

detailed analysis of the Elastic Net on correlated variables including e.g. the grouping e↵ect intro-

duced in Zou and Hastie (2005). This analysis in particular shows, that the Elastic Net in linear

models may fail to correctly select true variables and discard irrelevant ones if these regressors are

highly correlated. As possible remedy to improve any selection methods stability Meinshausen and

Bühlmann (2010) introduce Stability Selection. The method, that has been shown to drastically

improve the selection properties of the Lasso in linear models for various settings is introduced in

Chapter 2. Further results on Stability Selection as obtained from Meinshausen and Bühlmann

(2010) are collected as well. An application of Stability Selection to a generalized linear model

framework is given in chapter 3, where the selection properties of the EN-penalized logistic re-

gression for settings of di↵erent correlation structures in the design are discussed by means of

a simulation study. Moreover, existing findings on model selection consistency for Elastic Net-

penalized GLMs, that reduce to findings for logistic regression only, are collected.



Chapter 1

Variable selection in linear models

There is a vast variety of work on theoretical aspects of penalisation methods for linear models,

much of which focuses on their selection properties. In the subsequent sections, we intend to sum-

marize the findings on variable selection in linear models for regularization methods involving `1

and `1 + `2 penalties i.e. for the popular Lasso and its generalisation the Elastic Net. In doing so,

we will put particular emphasis on analysing in what way multicollinearity a↵ects the estimated

model.

We start by collecting results on model selection consistency for both penalization methods in

Section 1.1. Thereafter, Section 1.2 discusses their finite sample selection properties. Finally, in

Section 1.3, we further summarise and extensively analyse findings on the methods’ selection prop-

erties considering (groups of) correlated variables. Below, the Lasso and Elastic Net estimators

shall be briefly introduced.

The Setting

Throughout this chapter we assume our data is generated by a linear regression model. In consis-

tency with the setting introduced in the previous chapter, such a model is obtained for g(·) = Id(·)

and assuming the conditional distribution of the response given the covariates to be Gaussian.

Formally, for �2
> 0, this reads as

Yi
id
⇠ N (µi,�

2), µi = �0 + �
T
Xi, i = 1, . . . , n.

The Lasso Estimator

Amongst all penalisation techniques, the Lasso, introduced in Tibshirani (1996), has received most

attention. It involves an `1-penalty, by the nature of which sparse approximations of the truly

underlying model can be recovered. The Lasso estimate �̂ = (�̂1, . . . , �̂p)T 2 Rp is obtained as the

solution to

min
(�0,�)

kY � �0 �X�k
2
2 s.t. k(�0,�)k1  t, (1.1)

with t � 0 determining the amount of regularisation. Note that the solution for �0 is �̂0 = Ȳ , thus

w.l.o.g. we set Ȳ = 0 and omit �0 in the minimisation. In what follows we will however work with

the Lagrangian form

min
�

kY �X�k
2
2 + �k�k1, (1.2)

with tuning parameter � � 0, which controls the shrinkage applied to the estimates. Typical
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4 CHAPTER 1. VARIABLE SELECTION IN LINEAR MODELS

implementations of the Lasso determine the solution to (1.2) for a specified grid of values for �.

This results in a path of solutions among which the model with the smallest prediction error in

terms of some measure of deviation such as the squared loss

SL(�̂(�)) =
nX

i=1

⇣
Yi � �̂(�)TXi

⌘2

is commonly selected as the final model. One often relies on k-fold cross validation for minimizing

the squared error for each choice of �.

The Elastic Net Estimator

The Elastic Net, introduced in Zou and Hastie (2005) and hereafter frequently referred to as EN,

is a penalized least squares method using a more general penalty consisting of both `1 and `2 term.

For non-negative �1, �2 the naive Elastic Net estimator �̂ is the minimizer of

min
�

kY �X�k
2
2 + �1k�k1 + �2k�k

2
2. (1.3)

or equivalently

min
�

kY �X�k
2
2 + �

�
(1� ↵)k�k1 + ↵k�k

2
2

�
, (1.4)

with ↵ 2 [0, 1], � � 0.

1.1 Model selection consistency

The Lasso and Elastic Net’s ability to perform automatic variable selection undoubtedly adds to

their popularity. However, when using one of these methods for such purposes, one would like to

assess under which conditions and to what extent the estimated model represents the true one. As

we will subsequently see, consistent model selection (in a sense to be clarified) can be guaranteed

under a condition that depends on the covariates’ correlations and which is not satisfied should

those attain even moderately high values.

In view of studying the penalisation methods’ selection properties, it is important to di↵er between

the notions of consistency in terms of parameter estimation and model selection. Formally, an

estimate �̂ is said to be consistent if

�̂
p

�!
n!1

�.

Consistent model selection however is said to be in place if

P
⇣
{i : �̂i 6= 0} = {i : �i 6= 0}

⌘
= P

⇣
Î = I

⇤
⌘

�!
n!1

1.

Consistency w.r.t. parameter estimation does commonly not imply consistent model selection and

vice versa. In general we like to see both consistencies fulfilled.

`1 Penalty

The question of how well the model resulting from Lasso relates to the true model has been the

topic of discussion in inter alia Zhao and Yu (2006). The following section is aimed at collecting the

most important results given in therein, whilst noting related findings on the side. In particular,



5 CHAPTER 1. VARIABLE SELECTION IN LINEAR MODELS

the setting in Zhao and Yu (2006) allows for the parameter � to change for growing sample size

n. Throughout this thesis, we will not account for this dependency in the notation and write �̂

instead of �̂n.

It was shown in Knight and Fu (2000) that for p and � fixed, i.e. independent of the sample size n,

the Lasso estimate �̂ is consistent provided that �n (which may depend on the sample size) grows

less than linear and assuming regularity conditions

C
n :=

1

n

nX

i=1

XiX
T
i �!

n!1
C and

1

n
max
1in

hXi|Xii �!
n!1

0, (1.5)

on the design matrix, with C non-negative definite. In other words, provided �n = o(n) and (1.5)

we have �̂(�n)
p

�!
n!1

�.

Interestingly, as Leng et al. (2006) point out, even in orthogonal designs and p fixed the Lasso

estimate (nonetheless being consistent in terms of parameter estimation) does not consistently

select the true model when the tuning parameter is chosen to maximize prediction accuracy.

For the purpose of further analysing the selection properties of the Lasso, the concept of Sign

Consistency is introduced in (Zhao and Yu, 2006, Section 2). Sign consistency does not assume

estimates to be consistent with respect to parameter estimation. Moreover, it is a stronger property

than consistency w.r.t. model selection which merely requires the estimate to correctly identify

the zero-entries; the regression parameters’ signs need not be matched. It is argued in Zhao and

Yu (2006) that an estimated model, that does not correctly identify the parameters’ signs, can

be misleading and hence barely qualify as correctly selected model. The reason for using sign

consistency however, is said to be of technical nature. Below, we collect the terminology used in

Zhao and Yu (2006).

Definition 1.1 (Equality in Sign) An estimate �̂ is equal in sign with the true model �, for-

mally �̂ =s �, if and only if

sign(�̂) = sign(�).

Here, the equation holds component-wise and

sign(x) =

8
><

>:

1 x > 0

0 x = 0

�1 x < 0

.

Definition 1.2 (Strong Sign Consistency) If there exists a function f of n, that does not de-

pend on either Yn or Xn, with �n = f(n) such that

lim
n!1

P
⇣
�̂(�n) =s �

⌘
= 1,

we say the Lasso is strongly sign consistent.

Definition 1.3 (General Sign Consistency) The Lasso is general sign consistent if

lim
n!1

P
⇣
9� > 0 : �̂(�) =s �

⌘
= 1.

Strong sign consistency implies that consistent model selection can be achieved via the Lasso with

a preselected, deterministic penalty �n. General sign consistency by contrast ensures that for a

random realization there exists a correct amount of regularisation that selects the true model with
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probability tending to one. While the former implies the latter, it is shown in Zhao and Yu (2006),

that both consistencies are almost equivalent to a so-called irrepresentable condition, a notion

that is almost necessary and su�cient for model selection consistency and will be defined in the

following.

Hereafter, let I
⇤ = {1, . . . , q} for some q < p i.e. �i 6= 0 for i = 1, . . . , q and �i = 0 for i =

q + 1, . . . , p. We further write �(1) = (�1, . . . ,�q), �(2) = (�q+1, . . . ,�p) and denote by X(1) and

X(2) the first q and last p� q columns of X respectively. The correlation matrix C
n as defined in

(1.5), can be expressed as

C
n =

 
C

n
11 C

n
12

C
n
21 C

n
22

!

with C
n
ij =

1
nX(i)TX(j), j = 1, 2. In what follows, we assume that Cn

11 is invertible.

Condition 1.4 (Strong Irrepresentable Condition) There exists a constant ⌘ > 0 such that

|C
n
21 (C

n
11)

�1 sign(�(1))|  (1� ⌘) · 1

where 1 is a p� q-dimensional vector of ones. The inequality is to be understood element-wise.

Condition 1.5 (Weak Irrepresentable Condition) The inequality

|C
n
21 (C

n
11)

�1 sign(�(1))|  1,

with 1 a p� q-dimensional vector of ones, holds element-wise.

Remark 1.6 Conditions 1.4 and 1.5 closely relate to a regularization constraint on the OLS-

estimate obtained when regressing any of the superfluous covariates X(2) on the relevant covariates

X(1). When the signs of � are unknown, for Condition 1.4 to hold true, any component of the

regression estimates needs to be smaller than one. To see this note that in order for 1.4 to hold

true for all possible signs, we need

���
⇣
C

n
21 (C

n
11)

�1 sign(�(1))
⌘

i

���  (1� ⌘), 8i 2 {1, . . . , p� q}

for any value of sign(�(1)). Hence we demand for each i = 1, . . . , p� q

qX

j=1

����
⇣
C

n
21 (C

n
11)

�1
⌘

i,j

���� |sign(�(1)j)| 
qX

j=1

����
⇣
C

n
21 (C

n
11)

�1
⌘

i,j

����  1� ⌘,

meaning that the sums of the rows of Cn
21 (C

n
11)

�1, or equivalently the columns of
⇣
C

n
21 (C

n
11)

�1
⌘T

are bounded by 1� ⌘. This however implies that

���
�
X(1)TX(1)

��1
X(1)TX(2).,i

���  (1� ⌘)1, 8i 2 {1, . . . , p� q}.

We now have everything at hand to state the main results obtained in Zhao and Yu (2006) (see

proofs given therein), which relate Conditions 1.4 and 1.5 to strong and general sign consistency. We

initially focus on a setting when p, q and � remain unchanged with growing sample size. In such a

framework, the regularity Conditions 1.5 are assumed to be in place, whereby the covariance matrix

C shall be positive definite. In the case of a random design, we require those conditions to hold
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almost surely. For this setting, the following results on su�ciency and necessity of irrepresentable

conditions 1.4 respectively 1.5 have been shown.

Theorem 1.7 For q, p and � fixed, let regularity Conditions (1.5) hold true with C positive definite

and assume 1.4 to be in place. Then the Lasso is strongly sign consistent. More precisely, 8�n

such that �n
n �!

n!1
0 and �n

n
1+c
2

�!
n!1

1 for any 0  c < 1, we have

P
⇣
�̂(�n) =s �

⌘
= 1� o (exp (nc)) .

Proof. Cp. (Zhao and Yu, 2006, Theorem 1). ⇤

Hence, the probability of the Lasso selecting the true model tends to 1 exponentially fast, provided

Condition 1.4 holds true. Recall that by Knight and Fu (2000), for �n = o(n) the Lasso is consistent

w.r.t. parameter estimation as well. Thus, both consistencies are allowed for simultaneously under

the strong irrepresentable condition when choosing the regularisation parameter accordingly.

Theorem 1.8 For q, p and � fixed, let regularity Conditions (1.5) hold true with C positive definite

and assume the Lasso is general sign consistent. Then there exists an N 2 N such that the weak

irrepresentable condition 1.5 is satisfied for all n > N .

Proof. Cp. (Zhao and Yu, 2006, Theorem 2). ⇤

Combining the above we obtain:

strong IC =) strong sign consistency =) general sign consistency =) weak IC.

In case both the number of overall covariates p as well as the one of true variables q is allowed to

grow with increasing sample size n, regularity conditions (1.5) are not sensible any more. Instead,

we assume the following:

Assumption 1.9 There exist constants 0  c1 < c2  1 and Mi > 0, i = 1, . . . , 3 such that

1

n
hX

(i)
|X

(i)
i  M1, 8i = 1, . . . p, (1.6)

↵
T
C

n
11↵ � M2, 8k↵k2 = 1, (1.7)

q = O(nc1), (1.8)

n
1�c2

2 min
i=1,...,q

|�i| � M3. (1.9)

By normalizing the covariates, condition (1.6) immediately is satisfied. Condition (1.7) imposes a

lower bound on the eigenvalues of the correlation matrix corresponding to the relevant covariates.

The third assumption (1.8) characterizes the required sparsity of the true model. Finally, condition

(1.9) ensures that the smallest entry of � decreases at most at a rate of n� 1�c2
2 . Since noise terms

aggregate at a rate of n� 1
2 , this additional gap of at least size n

c2 prevents estimation from being

dominated by these noise terms.

In the present setting, Zhao and Yu (2006) showed the following.

Theorem 1.10 Under Assumption 1.9, let there exist a non negative constant c3 such that c3 <

c2 � c1 and p = O(exp(nc3)). Then strong irrepresentable condition 1.4 implies that the Lasso is

strongly sign consistent. In particular, for �n / n
1+c4

2 with c3 < c4 < c2 � c1,

P(�̂(�n) =s �) � 1� o(exp(nc3)).
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In other words, given some regularity conditions, strong IC still su�ces for the probability of the

Lasso to select the true model to converge to 1 at an exponential rate, even if p is large. Necessity

of IC however, could not be obtained in this setting.

In either case, for consistent model selection, we hence like to see strong IC in place for every

possible value of sign(�). At this point, the covariates’ correlation structure comes into play. Con-

dition 1.4 depends on both the (sample) correlations between relevant and superfluous variables,

C
n
21, and amongst the true variables themselves, Cn

11. Su�cient conditions for strong IC given in

Zhao and Yu (2006) for di↵erent correlation structures generally put restrictions on the size of

both correlation matrices’ indices. To obtain an upper bound smaller than one to every compo-

nent of |Cn
21 (C

n
11)

�1 sign(�(1))|, such constraints on the entries of Cn
11 are needed in order to obtain

a su�ciently large lower bound on its eigenvalues, which in turn restricts the eigenvalues of the

inverse (Cn
11)

�1 to smaller sizes. Entries of Cn
21, which 1.4 linearly depends on, should naturally be

kept low to guarantee a low upper bound. Exemplarily, we state two of the su�cient conditions

for strong IC for specific designs given in (Zhao and Yu, 2006, Corollary 3 & Corollary 4).

Corollary 1.11 (Su�cient Conditions for Strong IC)

• Let Cn
i,j = ⇢

|i�j|
n , i, j = 1, . . . , p with |⇢n|  c < 1. Then strong irrepresentable condition 1.4

holds.

• Consider the block-wise design

C
n =

0

BB@

B
n
1 · · · 0
...

. . .
...

0 · · · B
n
k

1

CCA

with regression coe�cient � = (b1, . . . , bk) corresponding to the di↵erent blocks. Then we

have:

strong IC holds () 90 < ⌘  1 : strong IC holds for all Bn
j , bj , j = 1, . . . , k.

The need of such restrictions however highlights one potential problem: if a superfluous predictor

is highly correlated with a true covariate, the Lasso may not be able to uncover its irrelevance. This

already becomes evident in the simple simulation study (Zhao and Yu, 2006, 3.1) with correlations

of block-wise design.

`1 + `2 Penalty

The selection consistency of the Elastic Net has been studied much less intensively. Bunea (2008)

give an asymptotic result for both the Lasso and Elastic Net in linear and logistic regression models.

Their results are based on a study of variable selection properties for said settings in finite samples,

which shall be summarized in the subsequent Section 1.2. To conclude this section, we merely state

the asymptotic result for the EN-penalized linear regression (cp. (Bunea, 2008, Corollary 3.6.)).

Corollary 1.12 Let �1 = O(
q

log(n)
n ) and assume minj2I⇤ |�| = O(

q
log(n)

n ). Assume further

that the conditions of part 2. of Theorem 1.20 are met. Then, we have

lim
n!1

P
⇣
Î
EN = I

⌘
= 1.
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1.2 Variable selection in finite samples

The finite sample accuracy of variable selection via `1 and `1+`2 penalisation in linear and logistic

regression models has been the topic of interest in Bunea (2008). The upcoming sections seek to

separately summarize the findings given therein for both penalisation methods in linear models.

Note that the setting considered in Bunea (2008) allows for both p and I
⇤ (the index-set of true

covariates) to depend on the sample size n. As before, this dependence will not be indicated in

the notation. Moreover, in alignment with Bunea (2008), we henceforth assume that there is a

constant L > 0 such that |Xij | < L for all i, j almost-surely.

The question addressed in Bunea (2008) is then:

Given a level of confidence 1 � �, the number of variables p and the sample size n,

under which assumptions on the design matrix, for which strength of the signal, and

for what values of the tuning parameters do we identify the true model at the given

level of confidence?

Formally, if Î is an estimate of I⇤, conditions that yield P
⇣
Î = I

⇤
⌘
� 1� � are of interest. Since

P(I⇤ = Î) � 1� P(I⇤ * Î)� P(Î * I
⇤), we want to find Î such that

P
⇣
I
⇤
✓ Î

⌘
� 1� �1 and P

⇣
Î ✓ I

⇤
⌘
� 1� �2, (1.10)

with � = �1+�2. In other words, we seek to bound from below by a large margin the probabilities

of correctly including all of the true variables in the selected set and selecting a subset of the truly

relevant regressors. (Bunea, 2008, Lemma 3.1.) gives the following result on what governs the

former for both the Lasso and Elastic Net and which follows directly from the definitions of Î and

I
⇤.

Lemma 1.13 Let �̂ be either the Lasso or Elastic Net estimate as introduced in Chapter 1 and Î

be the index set corresponding to the non-zero components of �̂. Then

P
⇣
I
⇤ * Î

⌘
 P

✓
k�̂ � �k1 � min

l2I⇤
|�l|

◆
.

The probability bound given above in Lemma 1.13 is needed in a later part, where conditions for

correct inclusion of all true variables is linked to specific conditions on the regression parameter.

In preparation of discussing the accuracy of variable selection in such terms, Bunea (2008) start o↵

by giving results on the predictive performance of the estimator. More precisely, an upper bound

for the `1�distance between the respective estimate �̂ and the true parameter � is established.

Intuitively, an estimate should be in near proximity to the true �, in order to recover the true

coe�cient set I⇤ with high probability. Bunea (2008) especially note however, that given conditions

on the design matrix and as long as this distance can be controlled for in some sense, the true

subset I⇤ can be estimated correctly. This in particular sets apart the problem of correct variable

selection from correct parameter estimation.

In order to establish an upper bound for k�̂ � �k1, (Bunea, 2008, Section 2) first introduces

conditions on the design matrix somewhat similar to the irrepresentable conditions given in Zhao
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and Yu (2006). Recall the definition of

C
n
kj :=

1

n

nX

i=1

XkiX
T
ij , 1  j, k  p.

The first condition guarantees separation of the true variables from one another as well as the

irrelevant ones, in terms of the corresponding correlation coe�cients’ sizes.

Condition 1.14 (Condition Identif) There exists a constant 0 < d  1 such that

P
✓

max
j2I⇤,k 6=j

|C
n
kj | 

d

k⇤

◆
= 1.

Define further the set

V↵,✏ =

8
<

:v 2 Rp :
X

j /2I⇤

|vj |  ↵

X

j2I⇤

|vj |+ ✏

9
=

; .

A relaxation of Condition Identif is given by:

Condition 1.15 (Condition Stabil) Let ↵, ✏ > 0 be given. There exists 0 < b  1 such that

P

0

@v
T
C

n
v � b

X

j2I⇤

v
2
j � ✏

1

A = 1, 8v 2 V↵,✏.

One possible interpretation of Condition Stabil becomes evident when setting ✏ = 0. If the matrix

D
n
� bD is positive definite almost surely, formally P

�
v
T (Dn

� bD)v � 0, 8v 2 Rp
�
= 1 where D

is a p ⇥ p diagonal matrix with ones at positions I⇤ and zeros else, Condition 1.15 holds true. In

other words, this states that the correlation matrix remains non-negative definite, if the diagonal

elements corresponding to the true variables are slightly decreased and may be regarded as a

stability requirement on the correlation structure. Note that Condition 1.15 is even less strict, as

it merely demands P
�
v
T (Dn

� bD)v � 0, 8v 2 V↵,✏

�
= 1.

As is pointed out in Bunea (2008), for the special case of the Lasso in the linear regression setting

the two Conditions 1.14 and 1.15 are linked as follows: if Condition 1.14 holds for some d, then

Condition 1.15 holds for 0 < b  1�7d . Note however, that this imposes the restriction 0 < d <
1
7

and hence allows for only very little correlation among the covariates (cp. Condition 1.14).

Hereafter, let �̂L and �̂
EN denote the Lasso and Elastic Net estimator respectively. Moreover we

write Î
L and Î

EN whenever we specifically speak of the index sets corresponding to the selected

variables of said methods.

Sparse `1-balls

A central result is then given by (Bunea, 2008, Theorem 2.2.) that specifies the upper bound to

the `1 ball k�̂L
� �k1 and shall be given below. Recall, that �2 = V ar(Y ).

Theorem 1.16 Assume Condition 1.15 corresponding to V↵,✏ with ✏ = 0 and ↵ = 3 is satisfied

for some 0 < b  1. If we choose

�

2
� max

8
<

:4L�

s
log

� 4p
�

�

n
, 8L

log
� 4p

�

�

n

9
=

; ,
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then the Lasso estimate �̂
L satisfies

P
✓
k�̂

L
� �k1 

2

b
�k

⇤
◆

� 1� �.

Qualitatively, if Condition Stabil holds true for only very small values of b, the bound on k�̂
L
��k1

becomes large. As was shown in Bunea (2008) the Elastic Net estimator resulting from least squares

minimisation including `1 and `2 penalisation terms already is less a↵ected by such small values

for b. The upcoming theorem gives the corresponding `1-bound for said EN-estimate.

Theorem 1.17 Assume Condition 1.15 corresponding to V↵,✏ with ✏ = 0 and ↵ = 4 is satisfied for

some 0 < b  1. If there is some B > 0 independent of the sample size n such that maxj2I⇤ |�j |  B

and if we choose

�1

2
� max

8
<

:4L�

s
log

� 4p
�

�

n
, 8L

log
� 4p

�

�

n

9
=

; , �2 =
�1

4B

then the EN estimate �̂
EN satisfies

P
✓
k�̂

EN
� �k1 

2.125

b+ �2
�1k

⇤
◆

� 1� �.

We observe, that even if b ⇡ 0, the bound on k�̂
EN

� �k1 stays finite for any given p, n. In

dependence of �1 and B however, �2 may still become quite small and the resulting bound rather

large. In particular, �2 can not be chosen too big, for then the `2 penalty would become prevalent

resulting in the selection of all given variables.

We may now analyse when it is possible to find estimates of � close to this true value as in Theorems

1.16 and 1.17 such that additionally we have P(I⇤ = Î) � 1� � for some � > 0. In view of (1.10),

we start by summarizing conditions such that with high probability all true variables are included

in the estimated index-set Î (cp. (Bunea, 2008, Section 3.1. )).

Correct inclusion of true variables

With Lemma 1.13 and Theorems 1.16-1.17 we obtain:

Corollary 1.18 Let 0 < �1 < 1 be fixed. Assume further Condition 1.15 holds for the parameters

specified in Theorems 1.16-1.17.

• `1-penalty:

If minj2I⇤ |�j | �
4
b�k

⇤ with � as in Theorem 1.16, then P(I⇤ ✓ Î
L) � 1� �1.

• `1 + `2-penalty:

If there exists some B > 0 such that

2.125

b+ �2
�1k

⇤
 min

j2I⇤
|�j |  max

j2I⇤
|�j |  B

with �1,�2 given by Theorem 1.17, then P(I⇤ ✓ Î
EN ) � 1� �1.

Note that the lower bounds on the minimum size of the true coe�cients are of the form C�k
⇤

(C�1k
⇤) for some constant C. If C ⇡ 1 and k

⇤ is rather low, satisfying �k
⇤
< 1 (�1k

⇤
< 1), then

moderately sized signals can be correctly identified. In general however, C and k
⇤ may take large
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values, resulting in lower bounds on the coe�cient size that are too conservative.

Up to now, we have made use of Condition Stabil only to derive the above results. As is shown

in Bunea (2008), these lower bounds on the signal strength can be weakened if one imposes more

conditions on the design of the matrix. More precisely, weaker signals can be detected when

assuming the more restrictive Condition Identif instead. Hence, the price to pay for improved

accuracy of variable selection in finite samples is to allow for less correlation among the true and

irrelevant, and the true variables themselves. Intuitively, if a signal is very weak and correlations

involving true variables are high, one can not hope to unveil the truly underlying model with high

probability.

In more detail, Bunea (2008) derive the following: If Condition 1.14 is met, coe�cients of sizes

above the noise level
p
n can be recovered. Specifically, consider 0 < � < 1 fixed and K be an

upper bound on k
⇤ (one may choose p = K in case k

⇤ is unknown as a conservative bound).

Proposition 1.19

1. `1-penalty:

Let

�

2
� max

8
>><

>>:
4L�

vuut log
⇣

4pK
�

⌘

n
, 8L

log
⇣

4pK
�

⌘

n

9
>>=

>>;
,

and assume that

min
j2I⇤

|�j | � �.

If Condition Identif is satisfied for d 
1
15 then

P
⇣
I
⇤
✓ Î

L
⌘
� 1� � �

�

p
.

2. `1 + `2-penalty:

Let

�1

2
� max

8
>><

>>:
4L�

vuut log
⇣

4pK
�

⌘

n
, 8L

log
⇣

4pK
�

⌘

n

9
>>=

>>;
,

and assume that

min
j2I⇤

|�j | � �1.

Assume further, that maxj2I⇤ |�j |  B for some B > 0 and choose �2 = �1
4B . If Condition

Identif is satisfied for d 
1+�2
17.5 , then

P
⇣
I
⇤
✓ Î

EN
⌘
� 1� � �

�

p
.

Note that assuming Condition Identif instead of Condition Stabil yields a substantial relaxation

of the lower bound on the size of the true coe�cients. In particular, the lower bound �1 now no

longer depends on either the possibly large k
⇤ or the possibly small b.

As Bunea (2008) point out, Proposition 1.19 allows immediate comparison of the Lasso and Elastic

Net in terms of variable selection. The di↵erence lies in the restriction on the constant d that

becomes of importance in Condition 1.14. We observe that slightly larger values are allowed for
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with the EN-estimate. Hence correct variable inclusion can be guaranteed for the EN under less

restrictive assumptions on the correlations of the design than for the Lasso. In other words, if the

correlations involving true variables attain slightly larger values than is permitted for the Lasso,

the EN may provide an alternative. Note however, that although one would like to increase the

value of �2 in order to allow for a higher degree of correlation, this would ultimately lead to not

setting any of the estimated coe�cients to zero.

Correct Subset Selection

We now state conditions (almost identical to the ones given in Proposition 1.19) that guarantee

P(Î ✓ I
⇤) � 1� �2, thereby guaranteeing P(Î = I

⇤) � 1� � (see (Bunea, 2008, Theorem 3.5.)).

Theorem 1.20 Let K be an upper bound on k
⇤.

1. `1-penalty:

Let

�

2
� max

8
>><

>>:
4L�

vuut log
⇣

4pK
�

⌘

n
, 8L

log
⇣

4pK
�

⌘

n

9
>>=

>>;
,

and assume that

min
j2I⇤

|�j | � �.

If Condition Identif is satisfied for d 
1
15 then

P
⇣
Î
L = I

⇤
⌘
� 1� 3� �

�

p
.

2. `1 + `2-penalty:

Let

�1

2
� max

8
>><

>>:
4L�

vuut log
⇣

4pK
�

⌘

n
, 8L

log
⇣

4pK
�

⌘

n

9
>>=

>>;
,

and assume that

min
j2I⇤

|�j | � �1.

Assume further, that maxj2I⇤ |�j |  B for some B > 0 and choose �2 = �1
4B . If Condition

Identif is satisfied for d = 1+�2
17.5 , then

P
⇣
Î
EN = I

⇤
⌘
� 1� 3� �

�

p
.

As derived in the previous Sections 1.1 and 1.2, both the Lasso’s and the Elastic Net’s ability to

select the true model (in finite samples and asymptotically) can be characterized by a condition

that depends on the sample correlation among relevant and superfluous covariates. The results all

show, that correct variable selection is not guaranteed, should these correlations be too high. We

now like to gain further insight on which regressors are in fact selected among a group of correlated

variables. The following section intends to collect the findings on the penalisation methods’ variable

selection properties in presence of multicollinearity.
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1.3 The Lasso and Elastic Net on correlated variables

One of the Lasso penalty’s main benefits is that it causes coe�cients to be set exactly zero thus

providing simple estimated models. The Elastic Net similarly induces sparsity, even though its

penalty is somewhat less aggressive. Intuitively, this becomes evident considering the geometry

of the penalisation methods. Figure 1.1 is a simple visualisation of the setting in (1.1) in two

dimensions with t = 1.

-4 -2 0 2 4

-4

-2

0

2

4

b1

b2

Figure 1.1: Two-dimensional estimation picture for the Lasso and Elastic Net. For t = 1, the
constraint region of the Lasso is depicted in grey, while that of the EN is indicated by the dashed
black line. The contours of the objective are given in blue.

We now like to further investigate settings in which groups of variables are correlated and compare

the penalisation methods w.r.t. their selection properties. Frequently, in the existing literature it

is claimed that: Out of a group of variables whose pairwise correlations are very high the Lasso

tends to select only one variable, essentially at random. (see i.a. Zou and Hastie (2005),Grave

et al. (2011)). The EN on the other hand is able to jointly select groups of correlated variables.

This phenomenon, referred to as ’grouping e↵ect’ by Zou and Hastie (2005), shall be made precise

below.

1.3.1 Grouping E↵ect

A regression model exhibits the grouping e↵ect, if among a group of highly correlated regressors

all variables tend to be assigned regression coe�cients, that are equal up to a change of sign if

negatively correlated. In particular, the coe�cients of exactly identical variables should be identical

as well. In concordance with Zou and Hastie (2005) we consider the following linear regression

model with a universal penalty J(·) and tuning parameter � � 0

min kY �X�k
2
2 + �J(�). (1.11)
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The penalty J(·) is assumed to be positive for � 6= 0. Denote by �̂(�) the corresponding minimizer.

In such a setting, for the extreme case of identical variables, we have the following result (see (Zou

and Hastie, 2005, Lemma 2.)).

Lemma 1.21 Assume that two variables are identical i.e. there exist i, j 2 {1, . . . , p} such that

X
(i) = X

(j).

• If J(·) is strictly convex, then �̂i(�) = �̂j(�), 8� > 0.

• If J(�) = k�k1, then �̂i�̂j � 0 and for any s 2 [0, 1], �̃(s) is another minimizer of (1.11),

whereby

�̃k(s) =

8
>><

>>:

⇣
�̂i + �̂j

⌘
s k = i.

⇣
�̂i + �̂j

⌘
(1� s) k = j.

�̂k else.

Hence, by the above lemma, penalisation methods involving strictly convex penalties such as the

Elastic Net are guaranteed to display the grouping e↵ect as desired for two identical variables. The

Lasso however, does not even have a unique solution. In particular, the set of valid solutions in

the Lasso case includes estimates where either one or none of the coe�cients corresponding to the

identical variables is set to zero.

In theory, by the above, for every ↵ 2 (0, 1], the EN should display said grouping e↵ect for any

choice of penalty � � 0. What can be observed in practice however, is the following: while for

pure ridge (i.e. ↵ = 1) the estimated coe�cients of identical variables indeed almost coincide, this

e↵ect wears o↵ for smaller values of ↵. As ↵ tends to zero and the Lasso penalty’s influence on

the parameter estimates rises, the estimated coe�cients increasingly di↵er. This phenomenon can

be observed for any value of �, however, the di↵erence is of increasing magnitude for lower values

of the penalty parameter �.

To see this, consider the following simple simulation. We generate N = 1000 data points from

the linear model Y = X1 +X2 + ✏ with regressors X1, X2 being realistaions of independent stan-

dard normal random variables and noise term ✏ ⇠ N (0, 1). Then, we like to fit Y regressing

on X = (X1, X2, X2) using as penalisation methods the pure Lasso, pure ridge and some EN-

versions. We do so using cv.glmnet() of the R-package glmnet() that performs cross-validated

elastic net penalisation. For given values of ↵ and �, a solution to the penalized minimisation is

obtained using cyclical coordinate descent (see Friedman et al. (2010)). K-fold cross validation is

then applied to obtain a mean cross-validation error including a confidence bound for a number

of �-values. Among those, one can identify the amount of penalisation that minimizes the mean

cross-validation error, referred to as �min. Within this simulation study, we inspected the esti-

mated coe�cients for ↵ 2 {0, 0.01, 0.1, 0.2, 0.5, 1} and three di↵erent values for � chosen from the

grid suggested by cv.glmnet(). More precisely, the smallest and largest given values (denoted by

�L and �S respectively) and �min were chosen. Table 1.1 shows the absolute di↵erence between

the estimated coe�cients �̂2, �̂3 of the identical regressors X2.

Moreover, according to Lemma 1.21, the Lasso solution for settings where two variables are identi-

cal is not unique and could vary from either coe�cient being zero to both being equal. Implemented

algorithms that yield a Lasso solution however seem to favour sparse solutions, i.e. they mostly set

one of the coe�cients to (almost) zero. The actual values for the coe�cients �̂2 and �̂3 obtained

by fitting a pure Lasso on the simulated data from above using cv.glmnet() are given in Table 1.2.
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↵ �min �L �S

(lasso) 0 0.851 0.085 1.002
(ridge) 1 0.001 0.000 0.006

0.5 0.007 0.000 0.031
0.2 0.030 0.003 0.080
0.1 0.063 0.008 0.136
0.01 0.444 0.083 0.556

Table 1.1: Absolute di↵erence of estimated coe�cients of identical regressors for di↵erent values
of EN and penalty parameters ↵ respectively �.

�min �L �S

�̂2 0.851 0.085 1.002
�̂3 0.000 0.000 0.000

Table 1.2: Estimated Lasso coe�cients of identical regressors for di↵erent values of penalty pa-
rameter �.

In general, we are more interested in scenarios where two regressors are highly correlated rather

than exactly identical. Zou and Hastie (2005) give a quantitative description of the di↵erence

(in a sense to be subsequently defined) between the EN-coe�cient paths of two covariates. More

precisely, an upper bound to said distance is established, that depends on the regressors’ sample

correlation. The result (cp. (Zou and Hastie, 2005, Theorem 1.)) is stated below. As usual, we

assume the response Y to be centred and the predictors X to be standardized.

Theorem 1.22 Let �̂
EN (�1,�2) be the EN-estimate for regularisation parameters �1,�2 � 0.

Assume for some i, j 2 {1, . . . , p} and some �1,�2 that �̂EN
i (�1,�2)�̂EN

j (�1,�2) > 0 and define

Di,j(�1,�2) :=
1

kY k1
|�̂

EN
i (�1,�2)� �̂

EN
j (�1,�2)|.

Then

Di,j(�1,�2) 
1

�2

q
2(1� ⇢i,j),

where ⇢i,j = X
(i)T

X
(j) is the sample correlation.

Hence, if predictors i and j are highly correlated with ⇢i,j ⇡ 1, the di↵erence of their coe�cient

paths is almost zero. In case ⇢i,j < 0, we analogously obtain a bound on the di↵erence in the

absolute values of the estimated coe�cients considering -X(j) in the above theorem. Thus, for

⇢i,j ⇡ �1 the distance of the absolute value of the coe�cients in the above sense will become

arbitrarily small. Note however, that the strength of the bound also depends on how powerful the

`2-norm is in the minimisation. The more weight the `2-penalty receives, i.e. the larger �2, the

stronger is the grouping e↵ect.

Moreover, Theorem 1.22 requires the estimated coe�cients to be non-zero. Therefore, we do not

gain information on the distance between the estimates for regularisation parameters that set either

one coe�cient of correlated variables to zero. Nonetheless, by the geometry of the specific problem

(1.3), this may happen. However, depending on the amount of correlation, this e↵ect can only

occur for some choices of penalty parameters �1 and �2. As ⇢i,j ! 1, such a selection may happen

only if the `1-penalty is given enough weight in expense of the `2 penalty.
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Numerically, this can be validated as well. To that end, we simulate N = 103 data points according

to Y = 2X1 +X2 +4Z + ✏, with X1, X2 realisations of centred Gaussian variables with correlation

⇢ = 0.9 and Z, ✏ both independent standard normal realisations. For di↵erent values of elastic

net parameter ↵, we then perform the optimisation where cross-validation is used to optimize the

penalty parameter �. Table 1.3.1 shows the resulting coe�cient estimates �̂1, �̂2 for X1 and X2

for both �min and a more restrictive �L. We observe that for any value of ↵ < 1 there is a value of

� only one of the coe�cients of the correlated variables is set to zero. When the penalty consists

of the `2-term only, the estimated coe�cients again tend to be of similar size.

�̂i(↵) �min �L

�̂1(1) 1.538 0.004
�̂2(1) 1.197 0.004

�̂1(0.5) 1.966 0.176
�̂2(0.5) 0.911 0.000

�̂1(0.2) 1.997 0.237
�̂2(0.2) 0.841 0.000

�̂1(0.1) 2.013 0.254
�̂2(0.1) 0.818 0.000

Table 1.3: Coe�cient estimates of highly correlated variables for �min and a comparably larger
penalty parameter �L and each of ↵ 2 {0.1, 0.2, 0.5, 1}.

Joint selection of correlated variables

Motivated by the above, we like to further elaborate on whether or not the EN jointly selects

correlated variables. More precisely, we investigate in what way the correlation between two

regressors influences their selection when an EN is fitted with fixed penalty parameters. For our

analysis we consider the following setting: let X = (X1, X2) 2 L2(R2) be a two-dimensional

random vector of explanatory variables with ⇢ := Cor(X1, X2), V ar(Xi) = 1 and E [Xi] = 0,

i = 1, 2. Y 2 L2(R) be the centred response variable. Our goal is to obtain EN-estimates

�̂1(⇢), �̂2(⇢) for � = (�1,�2)T as minimizers to

min
�

kY �X�k
2
2 + �

�
(1� ↵)k�k1 + ↵k�k

2
2

 
,

or equivalently

min
�

V ar(Y )� 2�T

 
Cov(X1, Y )

Cov(X2, Y )

!
+ �

T

 
1 ⇢

⇢ 1

!
� + �

�
(1� ↵)k�k1 + ↵k�k

2
2

 
, (1.12)

with � > 0,↵ > 0 fixed in dependence of ⇢. In what follows, we often will refer to the objective

function of problem (1.12) as cost function and write

C(�, ⇢) := V ar(Y )� 2�T

 
Cov(X1, Y )

Cov(X2, Y )

!
+ �

T

 
1 ⇢

⇢ 1

!
� + �

�
(1� ↵)k�k1 + ↵k�k

2
2

 
. (1.13)

For some fixed value of ⇢ and ↵ > 0 the objective function C(·, ⇢) is strictly convex. Only for

↵ = 1 however, it is di↵erentiable on R2. Whenever the `1-penalty receives positive weight,
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di↵erentiability breaks down at � = 0 and standard results from constraint optimisation can not

be applied. For convex objectives however, one may resort to subgradient methods. See chapter A

of the appendix for a collection of the results on subgradients and their use in convex optimization

that we refer to in the following.

By Theorem A.6, the estimate �̂ is optimal for problem (1.12) with ⇢ fixed i↵ zero is included

in the cost function’s subdi↵erential at this point, that is 0 2 @C(�̂, ⇢). With Remark A.2 and

Lemma A.3 we obtain the set

@C(�, ⇢) = �2

 
Cov(X1, Y )

Cov(X2, Y )

!
+2

 
1 ⇢

⇢ 1

! 
�1

�2

!
+�

(
(1� ↵)

 
g`1(�)1

g`1(�)2

!
+ 2↵

 
�1

�2

!)
, � 2 R2

,

whereby g`1(·) defines the subdi↵erential of the `1-norm according to Example A.5. Setting

@C(�, ⇢) = 0 we obtain the following representations of the minimizers �̂(⇢):

�̂2 = �
1 + �↵

⇢
�̂1 +

1

⇢


Cov(X1, Y )�

�(1� ↵)

2
g`1(�̂)1

�
, (1.14)

�̂1 = �
1 + �↵

⇢
�̂2 +

1

⇢


Cov(X2, Y )�

�(1� ↵)

2
g`1(�̂)2

�
. (1.15)

Consider now the following: for ⇢ = 1, by Lemma 1.21 we have that �̂1(⇢) = �̂2(⇢). Without loss

of generality, assume that �̂i(⇢) > 0, for i = 1, 2 (and ⇢ = 1). We then ask the following: is there

some value ⇢
⇤
< 1 such that either one of the coe�cients �̂i(⇢⇤), i = 1, 2 is set to zero while the

other is not?

In order to examine the parameter estimates �̂i(⇢), i = 1, 2 for ⇢ < 1, we derive a continuity result

on Lemma 1.23. For simplicity, we hereafter suppress the optimal parameter’s dependency on ⇢ in

the notation and only indicate the corresponding value for ⇢ when necessary.

Lemma 1.23 Let C(·, ·) be the cost function as defined in (1.13), that is

C : [�1, 1]⇥ R2
! R

(⇢,�) 7! V ar(Y )� 2�T

 
Cov(X1, Y )

Cov(X2, Y )

!
+ �

T

 
1 ⇢

⇢ 1

!
� + �

�
(1� ↵)k�k1 + ↵k�k

2
2

 
.

The function

F : [�1, 1] ! R2

⇢ 7! argmin
�2D(t)

C(�, ⇢)

with D(t) =
�
� 2 R2 : (1� ↵)k�k1 + ↵k�k

2
2  t

 
is continuous.

Proof. For any ⇢ 2 [�1, 1] the set argmin
�2D(t)

C(�, ⇢) is non-empty and consists of one element only,

as C(⇢, ·) is strictly convex. Therefore, F is well-defined.

To show continuity, let (⇢n)n2N be a convergent sequence in [�1, 1] such that ⇢n �!
n!1

⇢. Denote

by �̂(⇢n), �̂(⇢) the minimizers of C(⇢n, ·) and C(⇢, ·) respectively. We like to show that F (⇢n) �!
n!1

F (⇢), or equivalently �̂(⇢n) �!
n!1

�̂(⇢). Since for any n, �̂(⇢n) 2 D(t), �̂(⇢n)n2N is a bounded

sequence. By Bolzano-Weierstrass, there exists a convergent subsequence and hence the set of

accumulation points of �̂(⇢n)n2N is non-empty. Let �̂
⇤ be an accumulation point. Then there
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exists a subsequence �̂(⇢nk)k2N such that �̂(⇢nk) �!
k!1

�̂
⇤. By continuity of the objective function

we obtain

C(⇢, �̂⇤) = lim
k!1

C(⇢nk , �̂(⇢nk)) = lim
k!1

min
�

C(⇢nk ,�) = min
�

C(⇢,�),

and thus �̂
⇤ is a minimizer of C(⇢, ·). Since the argument minimizing problem (1.12) is unique

we obatin �̂
⇤ = �̂(⇢). Hence we have shown, that the non-empty set of accumulation points is a

singleton and thus

lim inf
n!1

�̂(⇢n) = lim sup
n!1

�̂(⇢n) = lim
n!1

�̂(⇢n) = �̂(⇢).

⇤

Proceeding with our analysis, by Lemma 1.23, there must be some ⇢⇤ 2 [�1, 1) such that �̂(⇢) > 0

component-wise 8⇢ 2 (⇢⇤, 1]. Moreover, by continuity, ⇢⇤ is the largest possible correlation such

that �̂i(⇢⇤) = 0 for either one or both of i = 1, 2.

We first elaborate on the case where only one of the coe�cients is set to zero. In other words,

we are interested to know whether there exists some ⇢
⇤2

2 [�1, 1) such that �̂2(⇢⇤2) = 0 and

�̂1(⇢⇤2) > 0, and if so, how it can be characterized. Inserting (1.15) into (1.14) yields

�̂2 =
⇢

h
Cov(X1, Y )� �(1�↵)

2 g`1(�̂)1
i
� (1 + �↵)

h
Cov(X2, Y )� �(1�↵)

2 g`1(�̂)2
i

⇢2 � (1 + �↵)2
. (1.16)

Letting �̂2 ! 0 with �̂1 > 0 in the above, we have

� = lim
�̂2!0

g`1(�̂)2 =
Cov(X2, Y )� ⇢

(1+�↵)

h
Cov(X1, Y )� �(1�↵)

2

i

�(1�↵)
2

.

The above limit is only valid if |�| < 1 or equivalently

U2 > ⇢ > L2 , if Cov(X1, Y ) > �(1�↵)
2 , (1.17)

L2 > ⇢ > U2 , if Cov(X1, Y ) < �(1�↵)
2 , (1.18)

|Cov(X2, Y )| <
�(1� ↵)

2
, if Cov(X1, Y ) = �(1�↵)

2 , (1.19)

with

U2 :=
(1+�↵)[Cov(X2,Y )+�(1�↵)

2 ]
Cov(X1,Y )��(1�↵)

2

,

L2 :=
(1+�↵)[Cov(X2,Y )��(1�↵)

2 ]
Cov(X1,Y )��(1�↵)

2

.

Hence, for ⇢⇤2 satisfying either of the three conditions (1.17)-(1.19), and provided that |⇢⇤2|  1,

we have

lim
⇢#⇢⇤2

�̂2(⇢) = 0,

lim
⇢#⇢⇤2

�̂1(⇢) =

h
Cov(X1, Y )� �(1�↵)

2

i

1 + �↵
.
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Analogous results are obtained, for �̂1 ! 0. The corresponding boundaries for ⇢⇤1 are given by:

U1 =
(1 + �↵)

h
Cov(X1, Y ) + �(1�↵)

2

i

Cov(X2, Y )� �(1�↵)
2

,

L1 =
(1 + �↵)

h
Cov(X1, Y )� �(1�↵)

2

i

Cov(X2, Y )� �(1�↵)
2

.

With ⇢
⇤1 such that |⇢⇤1| < 1 and either one of

U1 > ⇢ > L1 , if Cov(X2, Y ) > �(1�↵)
2 , (1.20)

L1 > ⇢ > U1 , if Cov(X2, Y ) < �(1�↵)
2 , (1.21)

|Cov(X1, Y )| <
�(1� ↵)

2
, if Cov(X2, Y ) = �(1�↵)

2 , (1.22)

hold true, we similarly obtain

lim
⇢#⇢⇤1

�̂1(⇢) = 0,

lim
⇢#⇢⇤1

�̂2(⇢) =

h
Cov(X2, Y )� �(1�↵)

2

i

1 + �↵
.

Note, that for either ⇢
⇤1 or ⇢

⇤2 to be a valid correlation |⇢
⇤1
| < 1 or |⇢

⇤2
| < 1 are necessary.

The condition, say |⇢
⇤1
| < 1, is met for some ⇢

⇤1 satisfying one of (1.20)-(1.21) if and only if the

boundaries satisfy (L1, U1) ✓ [�1, 1] or (U1, L1) ✓ [�1, 1] respectively. Hence conditions U1 < 1

and L1 > �1 or L1 < 1 and U1 > �1 are required. Those equivalently yield

Cov(X1, Y ) +
�(1� ↵)

2
<

Cov(X2, Y )� �(1�↵)
2

1 + �↵| {z }
>0, if L1<U1

(1.23)

Cov(X1, Y )�
�(1� ↵)

2
> �

Cov(X2, Y )� �(1�↵)
2

1 + �↵| {z }
<0, if L1<U1

, (1.24)

for L1 < U1 and

Cov(X1, Y ) +
�(1� ↵)

2
< �

Cov(X2, Y )� �(1�↵)
2

1 + �↵| {z }
>0, for U1<L1

(1.25)

Cov(X1, Y )�
�(1� ↵)

2
>

Cov(X2, Y )� �(1�↵)
2

1 + �↵| {z }
<0, for U1<L1

, (1.26)

whenever U1 < L1. In any case, two equations that heavily depend on the choice of penalty pa-

rameters need to be fulfilled. For strong penalisation (� large) U1 < 1 and L1 > �1, and hence

also scenarios in which one coe�cient is set to zero while the other is not are less likely to happen.

Likewise, larger values of ↵ contribute to less occurrences of such phenomena. In other words, the

Lasso (↵ = 0) is more likely to set only one coe�cient to zero than any EN. Moreover, �̂1 is more

easily set to zero while �̂2 is not, if the correlation of X2 and Y is significantly larger than that
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between X1 and Y .

Whenever condition (1.22) is met, this implies an indirect condition on the correlation ⇢
⇤1. Anal-

ogous results hold for |⇢⇤2| < 1.

Setting both coe�cients to zero is equivalent to equations

0 =
1

⇢

2

64Cov(X1, Y )�
�(1� ↵)

2
g`1(0)1| {z }
=:�1

3

75 () �1 = Cov(X1, Y )
2

�(1� ↵)
,

0 =
1

⇢

2

64Cov(X2, Y )�
�(1� ↵)

2
g`1(0)2| {z }
=:�2

3

75 () �2 = Cov(X2, Y )
2

�(1� ↵)
,

being satisfied. As all elements of g`1(0) must be smaller than one in absolute value, we require

|�i| < 1 for i = 1, 2 or equivalently

|Cov(Xi, Y )| <
�(1� ↵)

2
, i = 1, 2. (1.27)

Although this condition does not seem to explicitly depend on ⇢ the correlation between X1 and

X2 still has an impact on the covariances in (1.27). Intuitively speaking, when both covariates are

positively (or negatively) correlated with the target, letting their correlation tend to -1 will reduce

these correlations. Similarly, given either one of the regressors is positively or negatively correlated

with the dependent variable, changing the correlation ⇢ ! 1 will reduce the initial correlations

Cor(Xi, Y ), i = 1, 2. Simulation 2 below describes such a scenario.

Simulation 1

In the following, we consider a simple simulation to verify the above results numerically. For

an equidistant sequence of values for ⇢ 2 [�1, 1] with step-size � = 0.05, we simulate N = 103

data-points according to

(X1, X2)
T
⇠ N2

  
0

0

!
,

 
1 ⇢

⇢ 1

!!

and set the explained variable to Y = X1 + ✏ with independent noise ✏ ⇠ N (0, 1). For each

value of ⇢, we then fit an EN with � = ↵ = 0.5. Figure 1.2 shows the estimated coe�cients in

dependence of the correlation ⇢. We observe the following: first, in line with Lemma 1.21, for

⇢ = ±1 the coe�cients (almost) coincide in absolute value. Second, as can be quickly verified, the

boundary conditions on the distance of the absolute values of the estimated coe�cients according

to Theorem 1.22 are satisfied. Third, we like to verify whether for values of the correlation ⇢ in

between the boundaries L2, U2 (in this simulation Cov(X1, Y ) > 0.53 and thus equation (1.17)

should be satisfied) the coe�cient �2 is indeed set to zero. In Figure 1.2, the orange vertical

lines indicate whether correlations that lie within those respective boundaries have been used for

estimation. We note that indeed, for any such ⇢ 2 (L2, U2) the estimate �̂2 is set to zero while �̂1

is not. The blue and green lines identify correlations that are close to either margin L2 or U2 with

a tolerance of 0.01 and 0.1 respectively. Interestingly, although the above result does not cover

such cases, also for correlations that are close to lying in their respective interval we have �̂2 = 0
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and �̂1 > 0.
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Figure 1.2: Estimated coe�cients in dependence of the correlation in the explanatory variables.
The vertical lines in orange indicate correlations that lie within the optimal interval (L2, U2) ✓

[�1, 1]. Correlations, which are close to either one boundary with a tolerance of 0.05 and 0.1 are
identified by the blue and green vertical lines respectively.

Simulation 2

As a second example, consider for ⇢, X and ✏ as before the target Y = X1 + X2 + ✏ which now

includes both regressors with equal weight. Figure 1.3 again shows the estimated coe�cients cor-

responding to the sequence of values for the correlation ⇢ with step-size � = 0.05, as obtained by

fitting an EN with � = ↵ = 0.5. Within this setting, none of the correlations considered lies within

the respective optimal interval (L2, U2) or (L1, U1). Consequently, none of the coe�cients is set to

zero while the other one is (significantly) di↵erent from zero. In general, we observe that for any

value of ⇢ the estimated parameters do not di↵er much in size. Moreover, for ⇢ 2 [�1,�0.8], both

coe�cients are set to (almost) zero. The vertical lines indicate for which of those correlations the

conditions for both coe�cients to be zero (1.27) are satisfied (assuming a tolerance of 0.05 and 0.1

for the green and blue lines respectively).

Within the previous section, situations in which exactly one among the estimated coe�cients of

two correlated covariates is set to zero were characterized. Therefore it may happen that the coe�-

cients corresponding to correlated regressors have di↵ering signs and the bound on their di↵erence

in Theorem 1.21 can not be obtained. Nonetheless, scenarios in which the correlations satisfy the

conditions for said phenomenon can not take arbitrarily high values. In particular, as a direct con-

sequence of the continuity result 1.23, there will always be a certain threshold such that for ⇢ ⇡ 1

both estimates share the same sign. This can also observed in Simulation 1, where for any ⇢ > 0.5

neither one of the conditions (1.17)-(1.19) is met and the estimated coe�cients’ signs are matching.
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Figure 1.3: Estimated coe�cients in dependence of the correlation in the explanatory variables.
The orange vertical lines indicate correlations for which conditions (1.27) hold true. The green
and blue lines show correlations for which those conditions are satisfied with a tolerance of 0.05
and 0.1 respectively.

For the pure Lasso penalty, an analogous bound as in Theorem 1.22 can not be easily obtained, in

fact, as is claimed in Zou and Hastie (2005), the Lasso in general does not assign similar coe�cients

to correlated variables. A theoretical explanation is said to be obtained from Efron et al. (2004),

that introduces a computationally feasible variable selection algorithm, a simple modification of

which yields the entire Lasso solution path. In the following section, we collect the related findings

given therein.

1.3.2 Least Angle Regression

Least angle regression is a model selection algorithm similar to forward stepwise regression, in

which variable selection is less greedy. As in forward stepwise, least angle regression starts with

the intercept, identifies the variable most correlated with the response, and moves the coe�cient of

this variable continuously toward its least squares estimate. The di↵erence however being, that the

largest step possible is taken until some other predictor has as much correlation with the current

residual and enters the so-called active set. Then, the algorithm proceeds in a direction equiangular

between all elements of the updated active set. In further steps, the algorithm sequentially

1. identifies the variable having as much correlation with the current residual as the variables

in the active set and

2. moves the coe�cient of this variable continuously along the updated equiangular direction

until some other predictor joins the active set.

This way, only “as much information about a predictor as deserved” is added into the model.

Moreover, the equiangular directions guarantee that coe�cients of variables in the active set are

moved in a way that keeps their correlations tied and decreasing.
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Formally, a LARS step can be described as follows. Let Ak�1 ⇢ {1, . . . , p} and µ̂k�1 denote the

active set and the LARS estimate at the end of the k � 1th step respectively.

1. Considering the p�dimensional vector of so-called current correlations1 c = X
T (Y � µ̂k�1),

we determine the new active set Ak as the index set of variables with maximal absolute

correlation w.r.t. the current residual, i.e.

Ak =
n
j 2 {1, . . . , p} : |cj | = max

i
|ci| =: C

o
.

2. The next update µ̂k of µ̂k�1 is then obtained as

µ̂k := µ̂k�1 + �̂uAk , with uAk := AAk ·XAk(X
T
Ak

XAk)
�11Ak , (1.28)

with

• n⇥ p matrix XAk =
�
. . . , sjX

(j)
, . . .

�
j2Ak

where sj = sign(cj),

• normalizing constant AAk =
�
1T
Ak

(XT
Ak

XAk)
�11Ak

�� 1
2 and

• |Ak|-dimensional vector of ones 1Ak .

Before we clarify the value of �̂, we show that uAk as defined above is normed and equiangular

w.r.t. the columns of XAk .

Lemma 1.24 The vector uAk of (1.28) confines equal angles less than 90� with X
(j)
Ak

, j 2 Ak.

Moreover, it is normed.

Proof. By

kuAkk
2
2 = A

2
Ak

�
(XAk(X

T
Ak

XAk)
�11Ak)

T
XAk(X

T
Ak

XAk)
�11Ak

�

= A
2
Ak

�
1T
Ak

(XT
Ak

XAk)
�11Ak

�
= 1,

uAk is normed. Since X
T
Ak

uAk = AAk1Ak , we have for each column X
(j)
Ak

, j 2 Ak that

X
(j)T

Ak
uAk = AAk 2 (0, 1). Hence the enclosed angle ↵ := arccos(X(j)T

Ak
uAk) 2 (0, ⇡

2 ). ⇤

The variable �̂ in (1.28) is defined as

�̂ := min
j2Ac

k

⇢
C � cj

AAk � aj
,

C + cj

AAk + aj

�+

, where a = X
T
uAk . (1.29)

The + indicates that the minimum is taken over positive components only. Defining �̂ as

above, in fact yields the smallest possible value of � > 0 such that some new index joins the

active set. This result is shown next.

Lemma 1.25 In the course of a LARS update as in (1.28), the smallest possible step into

the equiangular direction uAk such that a new variable joins the current active set is given

by �̂, as defined in (1.29).

1Note that by the definition of c, its components cj are proportional to the correlation between the covariate

X(j) and the current residual vector Y � µ̂k�1, meaning that Cor(X(j), Y � µ̂k�1) =
cj

kY �µ̂k�1k2
.
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Proof. Consider the updated LARS estimate in dependence of � > 0

µk(�) = µ̂k�1 + �uAk .

The current correlations are then given by

cj(�) = X
(j)T (Y � µk(�)) = cj � �aj , j 2 {1, . . . , p}.

For j 2 Ak, we have that

|cj(�)| = |sjC � �X
(j)T

uAk| {z }
=sjAAk

| = C � �AAk .

For j 2 A
c
k we naturally have |cj(�)| = |cj � �aj |  C � �AAk . Hence, cj(�) equals its

maximal value at � = (C � cj)/(AAk � aj). Similarly, �cj(�), the current correlation of

�X
(j), is maximal at � = (C + cj)/(AAk + aj). ⇤

As emphasized in Efron et al. (2004), LARS even permits highly correlated predictors to be included

in the estimated model. In order to analyse the selection properties of the Lasso in correlated

settings, we first give a modification of the LARS algorithm that yields the Lasso solution path.

The Lasso Modification

It was shown in (Efron et al., 2004, Section 3.1.), that via a simple adjustment to the LARS

algorithm the full set of Lasso solutions can be obtained. Below, we collect the results given

therein.

For some fixed � > 0, consider the lasso estimate �̂
L as a solution to (1.2). Moreover, let cj =

X
(j)T (Y � X�̂

L) be the correlation between the jth predictor and the current residual. As was

derived in (Efron et al., 2004, Lemma 8), the sign of any non-zero component of �̂L and the one

of cj must match, i.e.

sign(�̂L
j ) = sign(cj) =: sj , 8j : �̂L

j 6= 0. (1.30)

This restriction however, is not enforced by the LARS algorithm per se. Consider once more

a LARS step as described earlier in this section. Suppose we have completed the k � 1th step

with active set Ak�1 and LARS estimate µ̂k�1 that now corresponds to a Lasso solution, i.e.

µ̂k�1 = X�̂
L. Assume further, that we have identified a covariate that joins the active set next,

to give Ak. The updated LARS estimate in dependence of the step size � > 0 is then given by

µ(�) = µ̂k�1 + �uAk

(1.28)
= X�̂

L + �XAk!Ak , (1.31)

with !Ak = AAk(X
T
Ak

XAk)
�11Ak a |Ak|-dimensional vector. Defining p-dimensional vectors d and

�(�) as

dj :=

(
sj(!Ak)j j 2 Ak�1,

0 else,
and �j(�) := �̂

L
j + �dj ,

equation (1.31) can be further refined to give

µ(�) = X�(�).
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By definition, some component �j will change sign at �j = ��̂
L
j /dj . The first such change will

occur at

�̃ := min
�j>0

�j ,

whereby �̃ is set to infinity whenever {j 2 {1, . . . , p} : �j > 0} = ;.

Recall that the sign sj remains unchanged within a single LARS step. Thus, whenever the minimal

step size for which the coe�cient of some covariate (say X
(j̃)) changes sign (�̃) is less than the

one taken by a LARS step (�̂), the sign of �j̃(�) changes while the one of cj̃ does not. Hence for

� > �̃ the sign restriction (1.30) is violated and �(�) can not be a Lasso solution. This motivates

the following Lasso modification:

2. (Lasso modification): If �̃ < �̂ with minimizing index j̃, instead of (1.28) set

µ̂k := µ̂k�1 + �̃uAk and Ak := Ak�1\{j̃}.

In other words, within the Lasso adaptation, if a non-zero coe�cient becomes zero, the correspond-

ing variable is dropped from the active set and the equiangular direction is recomputed.

Within the original LARS framework, the active set A grows monotonically larger as the algorithm

progresses. The Lasso modification introduced above allows A to decrease as well. In order for

the modified algorithm to yield the entire solution path of the Lasso, one needs the additional

assumption that those increases and decreases involve one single index only. Below we restate the

corresponding finding from Efron et al. (2004).

Theorem 1.26 Under the Lasso modification, assuming that changes to the active set emerge by

the inclusion or exclusion of a single index only, the LARS algorithm yields all Lasso solutions.

By the above theorem, the modified LARS algorithm can be considered to view Lasso’s selection

properties from a di↵erent angle. Among correlated variables, the LARS-Lasso algorithm in fact

first selects the one that shows higher correlation with the current residual. This may indeed

happen at random as, depending on the noise, either regressor could appear to be said candidate.

The algorithm then proceeds to obtain as much information as possible from the chosen predictor,

leaving the other correlated predictor’s coe�cient at zero. Only for smaller penalty parameter will

it be included in the model. This is di↵erent to the behaviour of the EN and even more so to the

pure `2-penalized optimisation, in which the coe�cients of correlated predictors are shrunk towards

each other. Thereby, covariates that are not included in the true model may borrow strength from

relevant correlated variables.

This instability of the Lasso has often been criticised. In fact, the property of the EN to increase

stability of estimated coe�cients was ranked among the method’s main advantages in its intro-

ductory paper Zou and Hastie (2005). Besides the EN, many alternatives to the Lasso have been

introduced each of which are proven to enhance stability of variable selection. As such an alterna-

tive, Meinshausen and Bühlmann (2010) introduces Stability Selection being a generic method to

stabilize and improve variable selection in regression. This method yields a promising approach to

improve stability of the Lasso in linear models, however it can be applied to more general settings

and introduces a novel possibility to perform variable selection in penalized GLMs for any kind

of regularisation that introduces sparsity. In particular, we will analyse Stability Selection for the

Elastic Net in generalized linear models in chapter 3.
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The details on Stability Selection shall be covered in chapter 2. Thereafter, we turn to the analysis

of variable selection in generalized linear models in chapter 3. For said framework existing findings

are collected and an application of Stability Selection is discussed.



Chapter 2

Stability Selection

In this chapter, we elaborate on Stability Selection, a generic subsampling approach to perform reg-

ularisation for structure estimation introduced in Meinshausen and Bühlmann (2010). Although

the technique is applicable to estimation of discrete structure in a number of di↵erent contexts, we

focus on its application to variable selection in regression.

2.1 The method

For the ensuing analysis we consider the following setting. We assume to be given data Z(1)
, . . . , Z

(n)

as i.i.d. realisations of Z = (X,Y ), with p-dimensional covariate X and univariate response Y .

Let � be a p-dimensional unknown vector of parameters that the variable of interest Y depends

on1. We further assume that � is sparse, with q < p non-zero components. We denote the set

of indices corresponding to these non-zero (’true’) and vanishing (’redundant’) components by

I
⇤ := {k 2 {1, . . . , p} : �k 6= 0} and N := {k 2 {1, . . . , p} : �k = 0} respectively.

Furthermore, in a generic variable selection technique, we have a tuning parameter � 2 ⇤ ✓ R+

that determines the amount of regularisation. For any � 2 ⇤ a universal selection method yields a

structure estimate Î
�
✓ {1, . . . , p}. Note, that for any regularisation parameter � 2 ⇤ the selected

set Î� depends on the sample S = {1, . . . , n} considered for estimation. To avoid complex notation,

we only refer to this dependence and write Î
� = Î

�(S) when necessary. The declared aim is then

to determine whether there exists a � 2 ⇤ such that Î� = I
⇤ with high probability and to identify

this corresponding regularisation parameter.

To that end, Meinshausen and Bühlmann (2010) start by defining the notion of stability paths,

that are the probability for each variable X
(1)

, . . . , X
(p) to be selected when randomly subsampling

from the data. Just as a regularisation path consists of the values of the estimated coe�cients over

all regularisation parameters � 2 ⇤, i.e.
n
�̂
�
k ,� 2 ⇤, k = 1, . . . , p

o
, the stability path shows the

probability of being selected (see definition below) for each variable over all possible � 2 ⇤, i.e.n
⇧̂�

k ,� 2 ⇤, k = 1, . . . , p
o
.

Definition 2.1 (Selection probabilites) Let S be a random subsample of {1, . . . , n} of size

bn/2c, drawn without replacement, and � 2 ⇤ be some penalisation parameter. For every set

1In general, any kind of regression can be thought of here. We like to keep in mind representation (1), as it will
be the setting in chapter 3.

28
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K ✓ {1, . . . , p}, the probability of being selected is

⇧̂�
K := P

⇣
K ✓ Î

�
⌘
.

Note that the probability P in Definition 2.1 accounts for all possible sources of randomness that

co-determine Î
� including e.g. the random subsampling as well as possibly random algorithms.

With the above, one could also define paths for groups of variables. Considering, for instance,

the probability of at least one variable being selected among a group of related covariates per

penalisation parameter � 2 ⇤.

The idea of Stability Selection then is motivated as follows: in traditional variable selection meth-

ods, one model (one value for the penalty parameter �) is usually chosen from the set

{Î
�
,� 2 ⇤} (2.1)

according to some optimality criterion. This can be problematic in two regards. First, the correct

model I⇤ might not be included in (2.1). Second, even if the correct model is included, it is not clear

how to determine the corresponding correct amount of penalisation �
⇤ or the amount necessary to

select a close approximation of I⇤.

By contrast, with Stability Selection one does not select a model from (2.1). Instead the data

are perturbed (e.g. via subsampling) a number of times, and for each of these perturbed sets the

selection method in question is performed. Those variables that occur in a large fraction of the

resulting selection sets are then finally selected. Definition 2.2 gives a more precise characterisation

of the variables that are chosen with Stability Selection.

Definition 2.2 Consider a set of regularisation parameters ⇤ and some cuto↵ ⇡thr 2 (0, 1). The

set of stable variables is defined as

Î
stable :=

⇢
k 2 {1, . . . , p} : max

�2⇤
⇧̂�

k � ⇡thr

�
.

In other words, a variable is kept in the model, if there exists at least one penalty parameter

among the ones considered, such that its probability of being selected exceeds a certain threshold.

Variables that exhibit low selection probabilities for all of the penalty parameters in question are

not considered. The threshold ⇡thr is a tuning parameter that needs to be optimized. However, as

Meinshausen and Bühlmann (2010) show, the results vary little for sensible choices of thresholds

within a certain range.

2.2 Choice of regularisation and error control

In (Meinshausen and Bühlmann, 2010, Section 2.4), finite sample error control is addressed. In

particular it is shown how to arrive at the correct amount of regularisation such that the expected

number of falsely selected variables can be conservatively controlled. The aim of this section is to

summarize these findings. We start by providing the notation necessary for the analysis.

Definition 2.3 The set of selected variables when varying the regularisation parameter � in the

region ⇤ be defined as

Î
⇤ :=

[

�2⇤

Î
�
.
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Denote further the average number of selected variables by q⇤ := E(|Î⇤(S)|). The number of falsely

selected variables with Stability Selection is given by

V =
���N \ Î

stable
��� .

We are now interested in controlling E [V ]. In general however, the distribution of the estimator �̂

is not readily available, as it depends on many unknown quantities. Under simplifying assumptions,

Meinshausen and Bühlmann (2010) arrive at the following:

Theorem 2.4 (Error control) Assume that the distribution of
�

k2Î� , k 2 N
 
is exchangeable

for any � 2 ⇤, i.e. that for any � 2 ⇤ it holds that

�
k2Î� , k 2 N

 (d)
=

�
k2Î� , k 2 �(N)

 
,

for all finite permutations �. Moreover, assume that the original selection method is not worse

than random guessing, that is
E(|I⇤ \ Î

�
|)

E(|N \ Î�|)
�

E(|I⇤|)
E(|N |)

.

The expected number of falsely selected variables is then bounded by

E [V ] 
1

2⇡thr � 1

q
2
⇤

p
. (2.2)

Remark 2.5 The expected number of falsely selected variables E [V ] sometimes is referred to as

per-family error rate (PFER) in multiple testing. Similarly, the per-comparison error rate (PCER)

in multiple testing is given by E [V ] /p.

Meinshausen and Bühlmann (2010) further elaborate on the assumptions required for the error

bound (2.2). First, it is required for the original procedure to be no worse than random guessing,

a quite weak assumption, that, as is argued, should be fulfilled anyhow. Second and more im-

portantly, exchangeability of k2Î� for k 2 N is needed. As Meinshausen and Bühlmann (2010)

claim, this assumption is fulfilled for any standard variable selection technique in linear regres-

sion if the design X is random and the distribution of (Xk)k2N is exchangeable. In particular,

the latter is satisfied for (Xk)k2N independent. Another setting in which exchangeability holds is

(Xk1 , . . . , Xkp�q ) ⇠ Np�q with Cov(Xk, Xl) = ⇢ for all k 6= l, k, l 2 N with ⇢ 2 (0, 1). In general

however, for real data or more general models, there is no guarantee that the assumption of ex-

changeability is satisfied. Nonetheless, Meinshausen and Bühlmann (2010) show that the bound

(2.2) holds up quite well for real data in linear models.

As already mentioned, the threshold parameter ⇡thr has to be tuned. Meinshausen and Bühlmann

(2010) show however, that its influence is very small, that is for reasonable values such as ⇡thr 2

(0.6, 0.9) results tend to be similar. Once the value of the cuto↵ ⇡thr is fixed, one may choose

the region of regularisation parameters ⇤ such that the error bound (2.2) is of some desired form.

More precisely, choosing ⇤ such that q⇤ =
p
(2⇡thr � 1)p will control E [V ]  1. Conversely, one

could first fix the regularisation region ⇤ and then proceed to choose ⇡thr accordingly to achieve

the desired error bound.

In order to perform the tuning of the parameters ⇡thr and ⇤ as suggested, knowledge of the gener-

ally unknown quantity q⇤ is necessary. Depending on the selection procedure however, the number

s of selected samples may depend on the domain of regularisation in some way that is s = s(⇤).
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With `1 or `1 + `2 penalties, the number s is given by the number of variables that enter the

regularisation path for � 2 ⇤ s =
S

�2⇤ Î
�.

2.3 Computational requirements and pointwise control

With Stability Selection, it is necessary to perform a given selection method for every � 2 ⇤

multiple times, depending on the number of subsamples considered. In practice, 100 subsamples

seem su�cient to evaluate selection probabilities according to Meinshausen and Bühlmann (2010).

For the example of the Lasso with p > n it is shown that Stability Selection is roughly three times

more expensive than 10-fold cross validation. For p < n this factor even increases to approximately

5.5.

In some cases, repeated evaluation of Î
� for di↵erent subsets can already be computationally

demanding for a single value of � 2 ⇤. The results from section 2.2 immediately apply to ⇤ = �.

For selection methods that incrementally select structures, i.e. for which Î
�
✓ Î

�0
for all � � �

0

pointwise control is equivalent to setting ⇤ := [�,1), as ⇧̂� is monotonically increasing as �

decreases. Meinshausen and Bühlmann (2010) argue that pointwise control is especially successful

if � is chosen such that the set Î� is rather to large, in that with high probability I
⇤
✓ Î

�.

2.4 Consistent variable selection for the Lasso

As is successfully argued in (Meinshausen and Bühlmann, 2010, Chapter 3) by the example of the

linear model, Stability Selection can markedly improve consistent variable selection. Below, we

collect their results. Throughout this section, we resume the setting of Chapter 1, i.e.

Yi
id
⇠ N (µi,�

2), µi = �0 + �
T
Xi, i = 1, . . . , n.

with �
2
> 0 and normalized predictors collected in the n ⇥ p-matrix X. In particular, p � n is

allowed for.

In Section 1.1 of Chapter 1 we elaborated on necessary and su�cient conditions for the Lasso

to consistently select the correct model. This boiled down to the need for irrepresentable condi-

tions (1.5) and (1.4), that put strong restrictions on the correlations among the covariates. As

Meinshausen and Bühlmann (2010) show, these conditions can be circumvented by using Stability

Selection. Moreover, it is argued that ”adding some extra randomness” to the optimisation can

lead to consistent variable selection even though the ICs are violated. To achieve this, Meinshausen

and Bühlmann (2010) propose the randomised Lasso, a new generalisation of standard Lasso that

shall be introduced next.

Definition 2.6 (Randomised Lasso) The randomised Lasso with weakness ↵ 2 (0, 1] is a regu-

larisation method for which one solves

min
�2Rp

kY �X�k
2
2 + �

pX

k=1

|�k|

Wk
, (2.3)

with Wk i.i.d. random variables in [↵, 1] for k = 1, . . . , p and penalisation parameter � 2 R.
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While standard Lasso penalizes the absolute value of every component �k using the same penalty-

parameter �, randomised Lasso applies a custom penalty randomly chosen from [�,�/↵]. In Mein-

shausen and Bühlmann (2010) the following distribution for the weights Wk is proposed and shall

be assumed throughout this section: Wk is sampled as Wk = ↵ with some probability pW 2 (0, 1)

and Wk = 1 otherwise. Since with D = diag(W1, . . . ,Wp)

min�2Rp kY �X�k
2
2 + �

pX

k=1

|�k|

Wk

() min�2Rp kY �XDD
�1

�k
2
2 + �

pX

k=1

����
�k

Wk

����

() min�̃2Rp kY �XD�̃k
2
2 + �

pX

k=1

|�̃|

(2.3) is solved using algorithms for the standard Lasso on the re-scaled predictors XD. As Mein-

shausen and Bühlmann (2010) surprisingly show, this random re-scaling can be very powerful

when combined with resampling. The condition for selection consistency derived therein makes

use sparse eigenvalues, a notion that is introduced below.

Definition 2.7 For some K ✓ {1, . . . , p}, let XK = (X(i))i2K be the restriction of X to columns

in the index set K. The minimal sparse eigenvalue �min is then defined for k  p as

�min(k) = inf
a2Rdke,K✓{1,...,p}:|K|dke

kXkak2

kak2
.

Similarly, the maximal sparse eigenvalue �max is for k  p given by

�min(k) = sup
a2Rdke,K✓{1,...,p}:|K|dke

kXkak2

kak2
.

In order to give the main result, we need the following assumption:

Assumption 2.8 (Sparse eigenvalues) There exists some C > 1 and some  � 9 such that

�max(Cq
2)

�
3/2
min(Cq2)

<

p
C


, q = |I

⇤
|.

Within this chapter’s setting, that is for the linear model, Meinshausen and Bühlmann (2010)

then obtain the following result on variable selection for the randomised Lasso (cp. (Meinshausen

and Bühlmann, 2010, Theorem 2)). It is shown, that for specific choice of weakness ↵ Stability

Selection with the randomised Lasso satisfies that no noise variables are selected for � exceeding

some specified threshold �min on a set with probability tending to one as the sample size increases.

That is there exists some � = �q 2 (0, 1) such that for all ⇡thr � 1� � one has

N \ Î
stable
� = ;,

with Î
stable
� = {k : ⇧̂�

k � ⇡thr}, � � �min (on a set ⌦A with P (⌦A) !
n!1

1). Moreover, on the

same set ⌦A, all variables with su�ciently large coe�cient are selected, i.e.

(I⇤I⇤small,�) ✓ Î
stable
� ,
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where I
⇤
small,� = {k : |�k|  0.3(Cq)3/2�}.

Remark 2.9

• Consistent variable selection can be achieved for the randomised Lasso, even if irrepresentable

condition 1.4 is violated. Provided that the minimal non-zero coe�cient is bounded from below

by mink2I⇤ |�k| � (Cq)3/20.3� one has

P
⇣
I
⇤ = Î

stable
�

⌘
�! 1, as p ! 1 or n ! 1.

If such a lower bound does not hold, the method might miss variables of the set I⇤small,�.

• Randomised Lasso with Stability Selection is rather conservative towards selecting false posi-

tives.(Meinshausen and Bühlmann, 2010, Theorem 2) holds for all � � �min, and hence even

if � is chosen considerably larger than �min, no noise variables will be selected.

Within a simulation example the enhanced selection accuracy of randomised Lasso is demonstrated.

Moreover, (Meinshausen and Bühlmann, 2010, Chapter 4) numerically assesses the e↵ects of Sta-

bility Selection. In various settings, the probability of selecting a certain proportion of the true

variables while leaving the coe�cients of all redundant variables at zero is determined for regression

and classification combined with each of pure Lasso, Lasso with Stability Selection and randomised

Lasso with Stability Selection. The analysed scenarios include di↵erent structures of correlations.

In all cases, Stability Selection was able to identify at least as many of the correct variables as the

underlying methods themselves. In fact, most of the probabilities resulting from Stability Selection

surpassed the ones obtained by the ordinary procedures, only for independent predictor variables

were the approaches almost equivalent.

This promising result for the Lasso in linear models serves as motivation to deploy Stability Selec-

tion jointly with EN-penalisation in generalized linear models. In the following chapter, we like to

numerically assess by means of a simple simulation, whether Stability Selection leads to improved

variable selection within the framework of EN-penalized logistic regression. Prior to this simula-

tion, the first part of the ensuing chapter aims at collecting existing findings on variable selection

in GLMs. The particular choice of logistic regression for the simulation study is on one hand due to

its frequent use in predictive modelling, and on the other, most of the results on variable selection

in GLMs cover logistic regression only.



Chapter 3

Variable selection in GLMs

While the literature is rich on variable selection properties of `1+`2-penalized linear models, hardly

any theoretical results on EN-penalized generalized linear models are to be found. Studying the

grouping e↵ect in a more general set-up, with non-quadratic loss functions quickly becomes more

intricate. In particular, obtaining a similar bound on the di↵erence of estimated coe�cients in

dependence of their correlation as in Section 1.3 is not as straightforward as it is for quadratic

loss. While Lemma 1.21 still is applicable to GLMs, it is unclear how to obtain conditions on the

correlations that characterize scenarios in which one or both of two correlated regressors is set to

zero as in Section 1.3.1. Nonetheless, theoretical results on selection consistency have been obtained

in Bunea (2008) for specifically `1- and `1 + `2-penalized logistic regression. These findings will

be subsequently summarized. Moreover, we will follow a simulation-based approach to assess the

variable selection properties for the specific choice of logistic regression in settings with di↵erent

covariance structures in the design. Below, we briefly give the definitions of the Lasso and EN

estimates in the GLM framework.

Recall the GLM setting (1) given in the introduction:

Yi
id
⇠ fY , g(µi) = �0 + �

T
Xi, µi ⌘ E[Yi] i = 1, . . . , n,

with g a suitable link function and density fY a member of the exponential dispersion family. The

Lasso estimator in this general framework is obtained as solution to

min
�

`(�;X,Y ) + �k�k1,

for some � > 0, where ` denotes the negative log-likelihood function corresponding to density fY .

Likewise, the EN estimator minimizes

min
�

`(�;X,Y ) + �1k�k1 + �2k�k
2
2,

with non-negative penalty parameters �1, �2. Equivalently, this minimisation can be re-parametrized

as

min
�

`(�;X,Y ) + �
�
(1� ↵)k�k1 + ↵k�k

2
2

�
,

with ↵ 2 [0, 1], � � 0.

34
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3.1 Model selection consistency for logistic regression

Similarly to Chapter 1, we start noting the findings on selection consistency. As existing literature

focuses on logistic regression within this framework, we restrict ourselves to the following setting:

Yi
id
⇠ Ber(µi), g(µi) = �0 + �

T
Xi, µi ⌘ E[Yi] i = 1, . . . , n,

with link function

g : (0, 1) ! R, g(x) = log

✓
x

1� x

◆
.

The negative log-likelihood is in this case given by

`(�;X,Y ) =
1

n

nX

i=1

�
� YiX

T
i � + log

�
1 + exp

�
X

T
i �

�� �
.

As in Section 1.2, we will in what follows collect the results on accuracy of variable selection in finite

samples including asymptotic results for `1- and `1 + `2-penalized logistic regression as presented

in Bunea (2008). Recall, that the setting therein allows for both the number of regressors p and

the index set of true covariates I⇤ to be dependent on the sample size n. We again note, that the

notation will not account for this dependence. Moreover, we once more require the covariates to

be a.s.-bounded by a common constant, i.e. we assume:

Assumption 3.1 There is a constant L > 0 such that |Xij | < L for all i, j with probability 1.

Sparse `1-balls

In what follows, let �̂L and �̂
EN be the Lasso- and EN-penalized GLM-estimates and � be the true

parameter vector. Analogously to Section 1.2, we start by giving conditions for which the `1-ball

k�̂
L
� �k can be bounded by a quantity that only depends on the (unknown) number of truly

non-zero coe�cients k⇤. To that end, we further assume that the true coe�cient is `1-bounded:

Assumption 3.2 There exists some D > 0 such that k�k1 < D.

Assumptions 3.1 and 3.2 in particular imply that µi(Xi) is bounded away from zero and one for

all realisations Xi and i = 1, . . . , n.

Theorem 3.3 Assume Condition 1.15 corresponding to V↵,✏ with

✏ =
log(2)

2(p_n)+1

2

�

and ↵ = 3 is satisfied for some 0 < b  1. If we choose

�

2
� (6 + 4

p
2)L

r
2 log(2(p _ n))

n
+ 2L

s
2 log( 1� )

n
+

1

4(p _ n)
,

then the Lasso estimate �̂
L satisfies

P
✓
k�̂

L
� �k1 

2

sb
�k

⇤ +

✓
1 +

2

�

◆
✏

◆
� 1� �.

Here, s = s(L,D) is a constant which decreases with D.
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Once more, the bound on k�̂
L
��k becomes large, if Condition Stabil is satisfied for small values of

b. This serves as motivation to study the `1 + `2-penalty in the framework of logistic regression as

well. Moreover, Bunea (2008) remark that for large values of D, the constant 1
s can be very large

too, leading to a less stringent upper bound. It is shown that an improved bound can be obtained

at least within an asymptotic statement, where 1
s is replaced by a constant that is arbitrarily close

to one. To obtain this asymptotic result, a condition needs to be fulfilled that in essence requires

Condition 1.15 to hold for a weighted version of Cn with

C
n
kj :=

1

n

nX

i=1

XkiX
T
ij , 1  j, k  p.

Consider the weighting function

g : R ! [0, 1], g(z) =
exp(z)

1 + exp(z)
.

Define further the p⇥ p-matrix C̃
n via

C̃
n
kj :=

1

n

nX

i=1

g
0(XT

i �)XkiXij , 1  j, k  p.

Condition 3.4 (Condition LStabil) Let ↵ > 0,� > 0 be given. There exists 0 < b  1 such

that

P

0

@v
T
C̃

n
v � b

X

j2I⇤

v
2
j � ✏

1

A = 1, 8v 2 V↵,✏.

Finally, the following was shown (cp. (Bunea, 2008, Theorem 2.6.)):

Theorem 3.5 Let Condition 3.4 be satisfied for some 0 < b  1 and � > 0 such that

�

2
� (6 + 4

p
2)L

r
2 log(2(p _ n))

n
+ 2L

s
2 log( 1

�n
)

n
+

1

4(p _ n)
,

for any sequence �n �!
n!1

0. If there is some B > 0 independent of n such that maxj2I⇤ |�j |  B

and �k
⇤
�! 0, then

P
✓
k�̂

L
� �k1 

2

wb
�k

⇤ +

✓
1 +

2

�

◆
✏

◆
�!
n!1

1,

for a constant w arbitrarily close to one.

Similar to Section 1.2, for the EN-estimate Bunea (2008) obtain a bound on k�̂
EN

� �k that is

less a↵ected by small values of b and s. Note, that we still require Assumptions 3.1 and 3.2 to hold

true.

Theorem 3.6 Assume Condition 1.15 corresponding to V↵,✏ with

✏ =
log(2)

2(p_n)+1

2

�

and ↵ = 4 is satisfied for some 0 < b < 1. Let s > 0 be the constant given in Theorem 3.3.
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Furthermore, let B > 0 such that maxj2I⇤ |�j |  B and take

�1

2
� (6 + 4

p
2)L

r
2 log(2(p _ n))

n
+ 2L

s
2 log( 1� )

n
+

1

4(p _ n)
, �2 =

�1

4B
.

Then the EN estimate �̂
EN satisfies

P
✓
k�̂

EN
� �k1 

2.125

sb+ �2
�1k

⇤ +

✓
1 +

2

�1

◆
✏

◆
� 1� �.

Note that here too, the penalisation parameter �2 corresponding to the `2-norm should not be

chosen too big, to prevent losing sparsity in the resulting estimate. Moreover, Bunea (2008)

remark, that asymptotic results almost identical to 3.5 can be obtained for the EN-estimate as

well.

Correct inclusion of true variables

The introductory remarks in Section 1.2 including Lemma 1.13 apply in the same manner for

GLMs. Having specified upper bounds on both k�̂
L
� �k1 and k�̂

EN
� �k1, Bunea (2008) obtain

the following corollary that gives conditions on when with high probability all true variables are

included in the estimated index-sets ÎL and Î
EN respectively (cp. Corollary 1.18).

Corollary 3.7 Let 0 < �1 < 1 be fixed. Assume further Condition 1.15 holds for the parameters

specified in Theorems 3.3-3.6.

• `1-penalty:

If minj2I⇤ |�j | �
4
sb�k

⇤ +
�
1 + 2

�

�
✏ with s,� and ✏ as in Theorem 3.3, and if Assumptions

3.1 and 3.2 hold true, then P(I⇤ ✓ Î
L) � 1� �1.

• `1 + `2-penalty:

If there exists some B > 0 such that

2.125

sb+ �2
�1k

⇤ +

✓
1 +

2

�1

◆
✏  min

j2I⇤
|�j |  max

j2I⇤
|�j |  B

with �1,�2 and ✏ chosen as in Theorem 3.6, and if Assumptions 3.1 and 3.2 hold true, then

P(I⇤ ✓ Î
EN ) � 1� �1.

Up to a small additive ✏-term, the lower bounds on the minimum size of the true coe�cients are of

the form C�k
⇤ (C�1k

⇤) for some constant C, just as in Corollary 1.18. Thus, the previous remarks

apply here as well.

Moreover, as Bunea (2008) show, the lower bound on the minimum signal size can also be improved

within the framework of logistic regression. To do so, one requires an adjusted identifiability

condition. Similarly to when Condition Stabil was replaced by Condition LStabil, we now require

that a weighted correlation matrix exhibits the separation properties introduced for the ordinary

correlation matrix in Condition Identif.
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In what follows, let � > 01, ✏ > 0 be such that

�

2
� (6 + 4

p
2)L

r
2 log(2(p _ n))

n
+ 2L

s
2 log( 2p� )

n
+

1

4(p _ n)
, (3.1)

✏ =
log(2)

2(p_n)+1

2

�
, (3.2)

for 0 < �  1, p and n given. Let further d be as required by Condition 1.14. By (Bunea, 2008,

Lemma 2.1.), for any such d 2 (0, 1), there exists some b 2 (0, 1) for which Condition 1.15 holds.

For this b 2 (0, 1) and s > 0 as in Theorem 3.3 define the set

U :=

⇢
a 2 Rn : max

1in

��ai � �
T
Xi

�� 
2�Lk⇤

sb
+ L

✓
1 +

2

�

◆
✏

�

The condition then reads as folows:

Condition 3.8 (Condition Lidentif) Let d be the constant required by Condition 1.14 and con-

sider the weighting function

g : R ! [0, 1], g(z) =
exp(z)

1 + exp(z)
.

We assume that

sup
a2U

P
 

max
j2I⇤,k 6=j

|
1

n

nX

i=1

g
0(ai)XijXik| 

d

k⇤

!
= 1.

Note that if the weighting function g is the linear link, i.e. if g(x) = x for x 2 R, then Condition

Lidentif reduces to Condition Identif. Finally, we have everything at hand to state the result on

detection of weaker signals for logistic regression obtained in Bunea (2008).

Proposition 3.9 Let � > 0 (�1 > 0 respectively) be chosen to satisfy (3.1) and ✏ > 0 be as in

(3.2). Furthermore, consider s > 0 as specified in Theorem 3.3 and let Assumptions 3.1 and 3.2

hold true.

1. `1-penalty:

Assume Conditions 1.14 and 3.8 are met with d 
s

16+2s(7+✏) and set U with b  1�d(7+ ✏).

If

min
j2I⇤

|�j | � 1.75�+ 3

✓
1 +

2

�

◆
✏,

then

P
⇣
I
⇤
✓ Î

L
⌘
� 1� 3�.

2. `1 + `2-penalty:

Let B > 0 and choose �2 = �1
B . Furthermore, assume Conditions 1.14 and 3.8 are met with

d 
s+�2

17+2s(8+✏) and set U with b  1� d(8 + ✏).If

min
j2I⇤

|�j | � 1.75�1 +

✓
1 +

2

�1

◆
✏,

then

P
⇣
I
⇤
✓ Î

EN
⌘
� 1� 3�.

1In the EN case, we require the same condition on the penalisation parameter �1 > 0.
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Bunea (2008) remark, that (neglecting the exponentially small ✏) the minimum size of the true

coe�cients required by the above theorem for bounding the probability of correctly including true

variables in the estimated set essentially is minj2I⇤ |�j | � 1.75� (minj2I⇤ |�j | � 1.75�1 respec-

tively). As with linear models, we hence observe that one can detect weaker signals under the

more restrictive conditions 1.14 and 3.8 on the correlation structure. However, for appropriate

choice of penalisation �2, correct variable inclusion can be guaranteed for the EN under less lim-

iting assumptions on the correlations of the design than for the Lasso. Moreover, Bunea (2008)

remark that replacing the possibly small s by a term close to 1 and thereby refining the result is

possible if one passes to asymptotic statements.

Correct subset selection

The results on how to guarantee P
⇣
Î ✓ I

⇤
⌘
� 1 � �2 for some estimated index set Î and some

�2 2 (0, 1) collected in section 1.2 continue to hold for penalized logistic regression. As Bunea

(2008) show, this requires the previously introduced conditions on the correlation matrix that are

tailored to the logistic loss function.

Theorem 3.10 Under the assumptions of Proposition 3.9 the following holds:

1. `1-penalty:

P
⇣
I
⇤ = Î

L
⌘
� 1� 5�.

2. `1 + `2-penalty:

P
⇣
I
⇤ = Î

EN
⌘
� 1� 5�.

Finally, we re-state the asymptotic result on consistent variable selection (cp. (Bunea, 2008,

Corollary 3.8.))

Corollary 3.11 Assume that minj2I⇤ |�| = O(
q

log(n)
n ) and let conditions 3.1 and 3.2 hold true.

1. `1-penalty:

If � = O

✓q
log(n)

n

◆
and the conditions on the design required for point 1. of Theorem 3.10

are met, then

lim
n!1

P
⇣
Î
L = I

⇤
⌘
= 1.

2. `1 + `2-penalty:

If �1 = O

✓q
log(n)

n

◆
and the conditions on the design required for point 2. of Theorem 3.10

are met, then

lim
n!1

P
⇣
Î
EN = I

⇤
⌘
= 1.

All in all, the results collected in the previous section for logistic regression do not di↵er much

from those summarized in Chapter 1 for linear models. Also within the penalized logistic regression

framework, correct variable selection both asymptotically and in finite samples can be guaranteed

under relatively strict conditions on the correlations of the design. It remains unclear, whether the

Lasso and Elastic Net for logistic regression are able to select the true model in presence of high

correlations among the explanatory variables such that those conditions are violated. The aim

of the following section is to get further insight on both penalisation methods’ variable selection

properties within the present setting.
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3.2 A simulation study on logistic regression

As mentioned earlier in this chapter, theoretical results on variable selection in presence of mul-

ticollinearity such as the grouping e↵ect have to the best of our knowledge not been derived for

generalized linear models. In order to nonetheless further investigate variable selection properties

of the Lasso and the Elastic Net in a GLM setting, we resort to simple simulation studies. Inspired

by the numerical studies in Meinshausen and Bühlmann (2010), we like to determine the proba-

bility that a certain share of the (known) relevant variables can be recovered without error. For

`1 + `2-penalized generalized linear regression, this means that there is no non-zero estimated co-

e�cient corresponding to a superfluous predictor. As before, we choose to consider the frequently

used logistic regression for the simulation studies. Below, we give further details on the setting

that serves as basis for the subsequent analyses.

3.2.1 Data generating process

For the ensuing studies we generate data as follows: we simulate n = 100 realisations of p-

dimensional explanatory variables with p = 10 according to Xi ⇠ Np(0,⌃), i = 1, . . . , n. Three

di↵erent scenarios are considered concerning the correlation structure among the regressors:

a) Independent setting: ⌃ = I10.

b) Block structure:

⌃ =

0

B@
B1 0 0

0 B2 0

0 0 I4

1

CA , with B1 =

0

B@
1 0.99 0.99

0.99 1 0.99

0.99 0.99 1

1

CA and B2 =

0

B@
1 0.5 0.5

0.5 1 0.5

0.5 0.5 1

1

CA .

c) Toeplitz design: ⌃i,j = ⇢
|i�j|, 1  i, j  10, with ⇢ = 0.99.

Simulated values for the target variable are then determined based on a logistic regression model

with true coe�cient vector � = (1, 1, 0, 1, 0, 0, 1, 0, 0, 1)T , i.e.

Yi
id
⇠ Ber(pi), ln

✓
pi

1� pi

◆
= �

T
Xi, i = 1, . . . , n.

3.2.2 Probability of success for the Elastic Net

With the simulated data at hand, we then assess the probability that � · q of the q = 5 relevant

variables can be recovered without error, with � 2 {0.2, 0.4, 0.6, 0.8, 1}, by the Elastic Net solving

min
�

1

n

nX

i=1

�
� YiX

T
i � + log

�
1 + exp

�
X

T
i �

�� �
+ �

�
(1� ↵)k�k1 + ↵k�k

2
2

�
, (3.3)

with varying parameter ↵. In other words, for each setting a)-c) and certain choices of ↵, we

are interested in estimating the probability of the EN to give one to five true positives without

generating any false positives.

The study is conducted in R as follows: for each scenario, a dataset is generated according to

Section 3.2.1, points a)-c) respectively. Then, for ↵ 2 {0, 0.1, 0.2, 0.5, 0.7, 0.9}, a logistic regression

model is fitted using the function glmnet() for a sequence of �-values suggested by the algorithm
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itself. Successful recovery is then said to be in place for some � 2 {0.2, 0.4, 0.6, 0.8, 1}, if there

exists a value of the penalty parameter � among the proposed choices, such that the solution to

(3.3) �̂ satisfies �̂i = 0 for all i 2 I\I
⇤ and �̂i 6= 0, for at least � · q many of the true variables

I
⇤. For each scenario and each choice of � and ↵, this procedure is repeated 100 times and the

proportion of resulting successes is taken as an estimate for the desired probability. For the sake

of comparability, within each repetition the Elastic Net is fitted using the �-sequence suggested by

the first cv.glmnet()-fit.

Figure 3.1 shows the results of the simulation study outlined above. For each the orthogonal, block

and Toeplitz design and a range of ↵-values, the estimated probability of recovery without error

is depicted as a function of the desired proportion of true positives. First, we observe that for any

choice of penalty parameter ↵ the Elastic Net is able (i.e. there is at least one value among the

proposed ones for the penalty parameter �) to recover one true positive while at the same time

avoiding any false positives. However, selecting a larger number of the true variables comes at the

cost of generating false positives as well. In all three settings and for almost any choice of ↵, the

probability of correctly selecting two of the relevant variables without error already falls below 0.5.

The number of times the EN was able to recover three or more true variables without error even

ranks between zero to ten out of a hundred.

Overall, the more weight is put on the `1-norm, that is the smaller the ↵, the higher the estimated

probability of success. Surprisingly, for ↵  0.2 the EN was able to more frequently select true

coe�cients without error in a scenario with block correlations than in the orthogonal setting. With

the Toeplitz design as well, the EN with ↵  0.2 exhibits slightly improved selection properties at

least for � � 0.6.
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Figure 3.1: Probability of recovering � · 5 of the relevant variables without error, as a function of
� 2 (0, 1], for an orthogonal, block and Toeplitz design and for each ↵ 2 {0, 0.1, 0.2, 0.5, 0.7, 0.9}.

By the above, the Elastic Net tends to include noise variables when choosing a penalty parameter

� with the aim to select more of the relevant variables. As Meinshausen and Bühlmann (2010) by

the example of the `1-penalized linear model empirically show, Stability Selection can lead to large

improvements in this regard. In a similar manner, we will in what follows investigate, whether EN-

penalized logistic regression joint with Stability Selection leads to higher probabilities of successful
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recovery as introduced above.

3.2.3 Probability of success for the Elastic Net with Stability Selection

We once more consider data generated as in Section 3.2.1. In what follows, we seek to compare

the probability that � · q of the q = 5 relevant variables can be successfully recovered by the EN

and the EN with Stability Selection, for � 2 {0.2, 0.4, 0.6, 0.8, 1}. To that end, we choose ↵ = 0.5

fixed and determine the probability of success for ordinary `1 + `2-penalized logistic regression as

shown in Section 3.2.2. For the EN joint with Stability Selection, successful recovery is in place if

variables with the highest selection probability (according to a specified threshold) are all relevant.

More precisely, the analysis is conducted as follows: first, we construct 100 subsamples of size

n/2 = 50 without replacement of the dataset obtained by 3.2.1. For each subset, an EN-penalized

logistic regression with ↵ = 0.5 is fit using glmnet(). The values for � are obtained from the

sequence previously specified by the ordinary EN fit on the entire dataset. Thereafter, the value

�min is chosen among said sequence such that for all � � �min at most
p
0.8p variables are selected.

Then, for each k 2 {1, . . . , p} and every � � �min the probability of selecting the kth variable when

optimizing with penalty parameter � across samples ⇧�
k is determined. In other words, we have

⇧�
k =

P
s2S

n
�̂
�
k (s) 6= 0

o

|S|
,

with �̂
�
k (s) the estimated coe�cient vector corresponding to subsample s, S the set of subsamples

and |S| = 100 its size. Thereafter, for every variable k 2 {1, . . . , p}, the highest selection probability

over all � � �min is assessed, i.e. we determine

⇧max
k = max

���min

⇧�
k , k = 1, . . . , p.

Those p probabilities ⇧max
k are then ranked and the � ·q variables corresponding to the � ·q highest

such probabilities are selected. Finally, we speak of successful recovery (or recovery without error)

at the rate �, if all of these ultimately selected variables are relevant. As for the ordinary Elastic

Net, repeating this procedure a hundred times ultimately yields the probabilities of success.

As stated in Section 2.4, Meinshausen and Bühlmann (2010) argue by the example of the Lasso in

a linear model framework, that Stability Selection works best when adding some extra randomness.

Similarly to the randomised Lasso proposed in Meinshausen and Bühlmann (2010) (see Definition

2.6), we introduce what we call the randomised Elastic Net.

Definition 3.12 (Randomised Elastic Net) The randomised Elastic Net estimator with weak-

ness w 2 (0, 1] is obtained as solution to

min
�2Rp

`(�;X,Y ) + �

(
pX

k=1

(1� ↵)|�k|+ ↵�
2
k

Wk

)
, (3.4)

with Wk
iid
⇠ Unif(w, 1), k = 1, . . . , p and penalisation parameters � > 0 and 0 < ↵ < 1.

Here, `(·;X,Y ) may be the negative log-likelihood function corresponding to some generalized linear

model for explanatory variables X 2 Rn⇥p and target Y 2 Rn.

To extend our analysis, we additionally perform Stability Selection jointly with randomised Elas-

tic Net for ↵ = 0.5 on the given dataset. The idea being that possibly, the extra randomness
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introduced to the penalty improves variable selection in a similar way as randomised Lasso did for

linear regression.

To incorporate the random component, the procedure introduced for Stability Selection with ordi-

nary EN barely has to be altered. The function glmnet() allows for a certain penalty factor to be

specified, which, if set as the randomly generated weights (Wk)k=1,...,p, precisely works as desired

for the randomised Elastic Net (3.4).

Figure 3.2 visualizes the resulting probabilities of successful recovery for each the ordinary EN, the

Elastic Net with Stability Selection and randomised EN with Stability Selection for ↵ = 0.5 fixed

as a function of the proportion of true variables that need be selected. We observe that consider-

able improvements could only be achieved in the independent setting. Nonetheless, for � � 0.4,

i.e. if more than one true variable is to be recovered without error, both Stability Selection with

ordinary and with randomised EN yielded slightly higher probabilities of success for the scenarios

with more evolved correlations in the design as well. However, the methods involving Stability

Selection were not able to always recover one true variable without selecting any noise variables,

as is the case for ordinary EN.

Furthermore, we note that for all three settings, randomised EN performs best for � � 0.4. How-

ever, the di↵erence to Stability Selection joint with ordinary Elastic Net often is quite small.
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Figure 3.2: Comparison of ordinary EN, Elastic Net with Stability Selection and randomised EN
with Stability Selection with regards to their probability of recovering � ·5 of the relevant variables
without error, as a function of � 2 (0, 1]. With ↵ = 0.5 the methods’ selection properties are
compared within the orthogonal, block and Toeplitz settings introduced in Section 3.2.1.

We conclude, that in a small-p setting such as the one considered within this simulation, Stability

Selection only leads to improved variable selection properties, if it is of interest to recover more

than one of the true variables without error. Adding extra randomness in the sense of 3.12 only

leads to slightly higher chances of success. The true virtue of Stability Selection however, may lie

in selecting true variables while conservatively controlling for false positives in a large dimensional

setting. Such a ”large-p small-n” scenario forms the basis for an empirical study in (Meinshausen
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and Bühlmann, 2010, Section 4), where, as already mentioned in chapter 2, Stability Selection

proves to be highly beneficial.



Appendix A

Subgradients for convex

optimisation

In the following we will outline some results about subgradients and their application to optimiza-

tion of convex functions without proofs that are used throughout this thesis. These subsequent

findings are both obtained from Nesterov (2003) and the lecture notes Boyd and Vandenberghe

(2008).

Throughout this chapter, let n 2 N and f : Rn
! R be a convex, possibly non-di↵erentiable

function.

Definition A.1 A vector g 2 Rn is called the subgradient of f at x0 2 dom(f), if for any x 2

dom(f) it holds that

f(x) � f(x0) + g
T (x� x0). (A.1)

The set of all subgradients of f at x0, termed @f(x0), is called the subdi↵erential of f at x0.

Remark A.2 If the convex function f and di↵erentiable at some point x 2 dom(f), then @f(x) =

{rf(x)}, i.e. its subdi↵erential at x consists of its gradient at x only.

Lemma A.3 Let f =
Pm

i=1 fi with f1, . . . , fm convex functions. Then we have

@f(x) =
mX

i=1

@fi(x).

Example A.4 The subdi↵erential of | · | : R ! R is given by

g|·|(x) =

(
sign(x), x 6= 0

{c 2 R : |c| < 1}, x = 0
, x 2 R.

Example A.5 The subdi↵erential of the `1-norm k · k1 at some point x 2 Rn is given by

g`1(x) = {g 2 Rn : gi = sign(xi), xi 6= 0 ^ gi 2 {c 2 R : |c| < 1}, x = 0} .

Theorem A.6 (Optimality condition) The function f attains its minimum at x⇤
2 dom(f) if and

only if g = 0 is a subgradient of f at x⇤, i.e. 0 2 @f(x⇤).
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