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ABSTRACT

Picard-Lefschetz theory is an important tool in complex geometry developed in
the beginning of the XX century in order to study the topology of smooth
projective variety over C. It has now greatly diversified, and has seen important
generalizations for variety over finite fields and symplectic manifolds. In this
report, we introduce the main ideas of the theory in the complex setting, and
prove the Picard-Lefschetz formulas in odd dimension; these formulas form the
pinnacle of the local theory. We conclude with a brief discussion on Lefschetz
fibrations and symplectic Picard-Lefschetz theory.
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I. INTRODUCTION

Morse theory is nowadays one of the most celebrated part of differential topol-
ogy. It is based on a simple, yet powerful observation: one can recover topological
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data of a smooth manifold M from the critical points of a nice enough smooth
function f: M — R.

Let us first recall some definitions in order to give a more precise statement of
what has just been said.

Definition 1 Let f : M — R be a smooth function and x € M be a critical point
of f, i.e. the differential df, of f at x is 0. Then, there is a naturally-defined bilinear
symmetric form on T, M, called the Hessian of f at x, given by

Hess (f)(u,v) := U(V f)(z),

where U and V' are extensions of u and v, respectively, on some neighborhood of x
in M — in local coordinates, this is just the bilinear form defined by the matrix of
second derivatives of f at x.

We say that x is a nondegenerate critical point of f if Hess,(f) is a nondegen-
erate bilinear form. We say that f is a Morse function if all of its critical points are
nondegenerate.

The next theorem resumes the main points of classical Morse theory in the
case when M is compact — there are similar statement for noncompact manifolds
or manifolds with boundaries, but these are beyond the illustrative scope of the
theorem.

Theorem 1 (see [Mil63]) Every Morse function f : M — R defines a CW-decom
-position of M such that each cell corresponds to a critical point, its dimension being
given by the signature of the Hessian of f at the critical point. In particular, one
can recover the homotopy type of M from any of its Morse function.

Moreover, the set of Morse functions is open and dense in the space of smooth
functions of M.

This is a very nice result, and one could be tempted to try to generalize this
result to complex manifolds and holomorphic functions. Indeed, replacing real vari-
ables by complex ones makes perfect sense in the definitions given above, and thus
we can talk about the complex Hessian —now C-bilinear— of a holomorphic function
f: M — C at a critical point. We define complex Morse functions as holomorphic
functions with only nondegenerate critical points. However, we quickly run into a
problem:

Lemma 1 (Complex Morse lemma) Let f : M — C be a holomorphic function, and
z € M be a nondegenerate critical point of f. Then, there exist local holomorphic
coordinates z1,...,z, centered at z such that

fz1, ) = F0)+ > 2. (1)
=1
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We will not prove the statement here, since the proof is almost the same as for the
real Morse lemma, and is not very informative for what will follow (the stubborn
reader can find a proof in [Voi03]).

As a consequence of the complex Morse lemma, there are no local invariant of
critical points of complex Morse functions. Going back to theorem 1, one realize
that a direct generalization was always doomed: the CW-decomposition of M is
determined by the signature of the Hessians, but this is a trivial invariant in the
complex case. Even if this fails, can one still extract some sort of information out
of these critical points?

II. THE MONODROMY OF A NONDEGENERATE CRITICAL POINT

II.A. MONODROMY AND VARIATION OPERATORS

Let M be a complex manifold of dimension n > 2, and f : M — C be a
holomorphic function with a nondegenerate critical point z € M. Without loss of
generality, f(z) = 0.

Let € > 0 be such that the equality (1) holds for Y, |z]? < 4. At the price
of a multiplication of f and the z;’s by e*!, we can suppose that ¢ = 1. Fixing
such local coordinates for the rest of the section, we will denote by B,, r < 2, the
closed 2n-ball in these coordinates. Likewise, for the rest of the section, we will take

f:f|B2'

Since there are no critical point of f on 0B, f|op, is a submersion onto Do,
the disk of radius r in C, with a compact domain. Therefore, by Ehresmann’s
theorem (see [B.J82] for example), it is a fiber bundle over Ds. Furthermore, since
Dy is contractible, the bundle is trivial. The same argument implies that f gives a
(potentially nontrivial) fiber bundle By \ f~1(0) — D?\ {0}.

Let F) = f~!()\) be the fiber in By over A € Do. If X # 0, i.e. if A is a regular
value of f, then F) is a compact complex manifold of dimension n—1 with boundary
OF) = F)\ N 0By. Consider a loop 7 : [0,1] — D3\ {0} based at 1. Since the bundle
flgz : 8% = D? is trivial, we can take diffeomorphisms g; = g(—,t) : 0Fy — 0F,
such that g; = 1. Then, by the relative homotopy lifting property of fibrations
(see [Hat09] for example), there exists a map I' : F} x [0,1] — By \ Fy making the
following diagram commute:

(Fy x {0}) U (0F, x [0,1]) % By \ F,

Fix[0,1] —— Dy\ {0}

where the bottom arrow does nothing with the F} variable, but is equal to v in the
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[0, 1] one. In particular, I'; := I'(—,t) sends F} to F ;). Note that, up to homotopy,
I' only depends on the homotopy class of 7 as a loop in Ds \ {0}.

Definition 2 The transformation h. :=1'1 : F1 — Fy is called the monodromy of v,
whilst the induced morphism (h~). on homology (with integer coefficients) is called
the monodromy operator.

The mononodromy operator of a loop v : [0,1] — Dy \ {0} induces a morphism
Ho(F1,0F1) — H4(F1) as follows. Let § be a relative cycle of (Fy,0F)), i.e. § €
Co(F1) and 00 € Co_1(0F); any element of He(F1, 0F}) can be represented by such
a chain. By construction, hy|sr = Lo, . Therefore, h,6 — ¢ is an actual cycle of Fi,
and thus defines a class vary[d] in Ho(F7). A direct calculation shows that var,[d]
does not depend on the relative cycle representing the homology class.

Definition 3 The ensuing group homomorphism
var- : H.(Fl, 8F1) — H.(Fl)
is called the variation operator of

Note that we have the relations

(hy)s =1+ (vary)j and (h{)), =1+ j(var,), (2)

where hgr) is just h., but seen as a relative map (F1,0F1) — (F1,0F1), and j :

Ho(F1) — Ho(F1,0F)) is the canonical map. Furthermore, these operators are
well-behaved with respect to concatenation of loops:

(hyia)s = (Bl )us (BT ), = (WD) (A,

Valy,y, = Valy, + Valy, + Val,y, J vary, .

(3)

The first two formulas follow from the observation that h.,, may be chosen to be the
concatenation of h., and h.,, which is homotopic relative to dF; to the composition
of the two; the last formula then follows directly.

These three operators will precisely be what we will be interested in for the
rest of this section. However, before continuing our investigation, let us look at an
explicit example.

II.B. THE CASE n = 2: AN ILLUSTRATIVE EXAMPLE

All this abstract nonsense can somewhat be visualized when n = 2. Indeed,
making the change of variable = 21 +izp and y = 2 —izp, the equation 2?4232 = \
becomes xy = A. Therefore, in the real 2-ball in these coordinates, the fiber take on
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(a) A< 0 (b) A =0 () A>0

Figure 1: Real pictures of F}.

a familiar shape, as shown in Figure 1. Intuitively, one should think of opposing pair
of points in the real picture as being the intersection of a circle in C? with R? C C?.
Therefore, the nonsingular fibers are cylinders, and the singular one is a cone.

To make matters a bit more rigorous, identify F\ with the Riemann surface
associated with the holomorphic function w = v/ A — 2% over Dy. For \ # 0, this
surface is obtained by making a cut in two copies of Dy along the line from —v/\ to
VA, and gluing to two disks along the boundary created by the cut. Topologically,
this just corresponds to gluing compact cylinders along one of their border, which
just produces another cylinder. Furthermore, as A goes to 0, the edge along which
we glue becomes a point; the singular fiber is thus a cone. In particular, we get

7 ifk=0,1

0 otherwise

\V4 \V4 \V4
Yl Vol Yl

(a)t=0 (b) t=

7 ifk=1,2

, and Hp(F,0F) = .
b v {O otherwise

Hy(F1) = {

(c)t=1

N

Figure 2: Image of A and V under TI';.

Consider the loop v(t) = €2™ in D \ {0}; since [y] generate 71 (Ds \ {0}),
it follows from properties (3) that we only need to look at this loop in order to
understand the monotonicity operator. We can then take its lift I'; : F1 — F,4) to
be

: 2 2
emitx(a Pzl

Ii(21,22) = 21, 22),

where x : [0,4+00) — [0,1] is a smooth map such that x| = 1 and X|[3 100) =
0. Taking representatives A and V of the generator of Hy(Fy) and Hi(Fy,0F)),
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respectively, such that their intersection product if V- A = 1, we can see the effect
of I'; on them.

Indeed, as Figure 2 reveals (disks have been changed to squares for ease of
visualization), A stays unchanged, whilst V gets a twist in the opposite direction of
A. We can write this more properly in homological terms:

(h)o(A) = A and  (B).(V) =V — j(A),

thus
vary (V) = —A,

where we have made the slight abuse of notation of using the same symbol for the
homology class and its representative. The variation operator is of course trivial in
other degree, since Hy(Fy,0F1) = 0 and Ho(Fy) = 0. This turns out to be quite
representative of the general behavior, but we still need more work in order to prove
it.

II.c. THE VANISHING CYCLE AND THE PICARD-LEFSCHETZ FORMULAS
Note that the (n — 1)-sphere (of radius 1) embeds in the fiber F\, A € Do\ {0},
as the set

S(A) =4 (21,...,20) € By | zj = |)\|e%arg(”\)mj, zj € R, Zm? =1
j=1

Furthermore, the embedding depends smoothly on A € Dy \ [—2,0].

Definition 4 The homology class A € H,,_1(F}) represented by S(1) C F} is called
the vanishing cycle.

The next lemma shows that the nomenclature is well-chosen: A is precisely the
homology class of Fy that vanishes as A — 0. Going back to the case n = 2, one
should have the image in mind of a nonsingular fiber as a cylinder getting pinched
along a parallel as we approach the singular fiber.

Lemma 2 The embedding S"~! — F\ extends to a diffeomorphism from a disk
subbundle of TS™ ! onto F}.

Proor:. We will only prove the case A = 1, as the general case is very similar.
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Writing z; = u; + ivj, for uj,v; € R, we have

n n
F1: ZZ]QZI, Z|ZJ|2§4
Jj=1 J=1

n n

n
=22 =) =1 > =0, 3 (uf+v) <4
j=1

= j=1
n n n 3
2 2
=2 w =1 D my =0, ) yi<5 o,

where x = ug/4 /> ; uj2 and yr = vi. But the last set naturally identifies with the

radius \/g disk subbundle of TS™~! C R?"; the inverse morphism

(1, s Ty Y1y ooy Yn) — | 21 /1+Zy]2-+iy1,...,xn /1+Zy]2+iyn
J J

is thus the diffeomorphism we were looking for. O

Corollary 1 We have,

7 ifk=0,n—1

0 otherwise

Z ifk=n—1,2(n—1
and Lh(fH,afﬁ)::{ ifk=n-12n-1)

0 otherwise

Hy(F1) = {

In particular, the variation operator is zero on all degree except n — 1 for any path
in DQ \ {O}

PRrROOF:. The calculation of the homology of F} follows from the fact that a disk
bundle deformation retracts onto the image of the zero section, which is naturally
identified with S"~1. The one on the relative homology of (Fy,0F;) then follows
from Poincaré-Lefschetz duality (see [Hat09] for example). O

As suggested by the illustrations in Section II.b, the variation operator can be
nontrivial in degree n — 1; but what is the precise relation? In order to know, let
us fix the generator V of H,,_;(F1,0F1) such that V- A = 1, where - denotes the
intersection product. Furthermore, by the relations (3), we only need to look at the
case y(t) = >, so we will omit it from the notation.

Theorem 2
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Using the fact that H,—1(F}) = Z-A and H,,—1(F1,0F)) = Z-V, and relations
(2), we thus get formulas for the monodromy and variation operators:

Corollary 2 (Picard-Lefschetz formulas) For any a € H,_1(F},0F;) and b €
H,_1(F1), we have

var(a) = (—1)n(n2+1) (a-A)A
K@) = at (1) 5 (- A)j(A)

Although the full proof of theorem 2 is beyond the scope of this report, we can
give a neat quick proof when n is odd; this will hopefully convince the skeptical
reader if Section II.b was not enough. However, before going in, we need a simple
lemma.

Lemma 3 The self-intersection number of A is given by

(n=1)(n=2)

AA=(-1)""=  (1+(=1)")
0 ifn=0 mod 2
=<2 ifn=1 mod4.
—2 ifn=3 mod4

PROOF:. Remember that the self-intersection number of a manifold in its tangent
space is given by the Euler characteristic, which is 1+ (—1)""! for the (n—1)-sphere.

The additional sign comes from the fact that the orientation of 7.S™~! induced
by the embedding in R?" differs from the one induced by the complex structure.
Indeed, at (1,0,...,0) — it does not matter at which point we look at the change
of orientation, might as well take a nice one — the base (ug,...,up,v2,...,0y) is
positively oriented in the orientation coming from R?", whilst it is (ug, va, . . . , Upn, Vp)
which is positively oriented in the complex orientation. Getting from one oriented
base to the other requires a permutation of sign (—1)%, which gives the right
formula. O

PROOF OF THEOREM 2 IN ODD DIMENSION: Consider the lift Fy — F ) of y(t) =
e2™ given by

ﬂ'it(

Q21 ...y 2n) = €™ (21, ..., 2n).

The map Q; clearly does not fix dF}, but it is homotopic to one since all lift are.
Therefore, it can be used in order to calculate h,. But 1 = —1, which is just the
reflection of S(1) about its center. Hence,

hae(B) = ()(A) = A,
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since —1: S"~1 — S"~! has degree (—1)" (once again, see [Hat09]).
On the other hand, by lemma 3, we have

(n—=1)(n—2)
2

JA)-A=A-A=2(-1)
Since the pairing H,_1(F1,0F1) ® H,_1(F1) — Z induced by the intersection prod-
uct is nondegenerate, as all the homology groups are free by corollary 1 — and that

we have chosen generators of H,_1(Fy,0F;) and H,_1(F}) such that V-A =1 —
this implies that

(n=1)(n=2)
2

J(A) = 2(-1)

This is the part that really requires to be in odd dimension. Indeed, in even dimen-
sion, we get j(A) = 0, and cannot conclude anything from that.

Let m € Z be such that var(V) = mA. Putting the two last bit together, we
get

“A = h(A)
= A +var(j(A))

(n—1)(n—2)
=A+2(-1)" =2z  var(V)

(n=1)(n—2)

- (1 + 2(—1)fm) A,

where we have used relations (2) in order to get from the first to the second line.
. . . n(ntl) .
This of course implies that m = (—1)" 2, just as desired. O

REMARK: The local information of an isolated nondegenerate critical point can be
used in order to study degenerate critical points. Indeed, suppose that f: X — C,
where X C C" is an quasi-affine smooth variety, is a regular function with a unique
critical point. One can then show that, for any linear function g : C" — C and any
A > 0 small enough, f + Ag is a complex Morse function with critical values in Ds.
Therefore, it suffices to study these nondegenerate critical points, and their behavior
as A — 0, in order to understand the one critical point of f. This is the road taken
in the second chapter of [AGZV&8], but we will not go down it any further.

III. FROM LOCAL TO GLOBAL: A ROUGH PICTURE

III.A. LEFSCHETZ PENCILS AND FIBRATIONS

After all that talk about Morse theory in the introduction, one would be
tempted to ask whether it is possible to recover global topological information from
the monodromy of the critical points of a complex Morse function. The answer is
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mostly yes, but it is not as direct as in the real case. We give here a rough picture
on how to do it.

Suppose that M C PN = IPg is a smooth projective variety. Suppose we
are given two hyperplanes Hy and H; of PV with defining polynomials Fy and Fj,
respectively. Then, for each [t : s] € P!, one can define

M[t:s] =V (tFy+ sF1) N M.

If Hy and H; are in general position, it is quite easy to see that M = Up.gcpt M.y,
and that each M.y has at most one ordinary double point as singularity. In that
case, we say that { M| [t:5] }[t: sjept 1s a Lefschetz pencil in M — these can more generally
defined via linear systems of divisors, but we will not need such generality here.

The base locus of a Lefschetz pencil { M4 }.5cpr 18

B:= () Myy=HonH NM.
[t:s]ePt

By transversality arguments, for Hy and H; in general position, B is a smooth
subvariety of M of codimension 2. In fact, the map sending a point z € M \ B to the
point [t : s] € P! such that z € M) actually defines a rational map f: M --» P!
with indeterminacy locus B. By blowing up M along B, one gets a regular map
f: M — P!, called a Lefschetz fibration.

Note that a Lefschetz fibration is neither a fiber bundle nor a fibration in the
sense of homotopy theory; one should think more of it as some sort of generalization
of a branched cover. Actually, the fact that M.y only has at most one ordinary

double point as singularity means that f has at most one critical point per fiber, and
that such a point admits local coordinates of the form (1). Therefore, one should
think of f as a meromorphic Morse function.

We will not go any further than this when speaking about Lefschetz fibrations,
as setting up the appropriate theory would go beyond the scope of this report.
However, it is important to know that one can then extract a lot of topological
information of M from a Lefschetz fibration, e.g. one can use this construction to
prove Lefschetz’s theorem on hyperplane sections (see [Voi03] for example).

III.B. DEHN TWISTS AND SYMPLECTIC TOPOLOGY

In this section, we briefly explain how symplectic topology offers a natural
setting in which to talk about monodromy. In order to get to the meat of the
subject, we will assume that the reader knows all basic definitions of symplectic
topology; they can easily be found in any introductory reference (see [MS98] for
example). We will however note that any smooth projective variety is naturally a
symplectic manfinold, as it inherits the Fubini-Study form from P¥.
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The story begins by a very short note of Arnol’d [Arn95], where he makes a
very interesting observation: in the local model

fiQn— 5 C

(21, 2n) Hz%—%--—}-zg

the embedding S™~! < F) can be extended to a symplectomorphism (T*S™ 1, wean)
= (Fy,wp), where weay is the canonical symplectic form on the cotangent bundle,
and wy is the restriction to F of the standard symplectic form on C". In particular,
the vanishing cycle is represented by a Lagrangian sphere.

Furthermore, in 7*S™ !, the monodromy can be realized by a well-known sym-
plectomorphism: the (2n — 2)-dimensional Dehn twist. We will only describe the
time-1 map I';, but know that one may take {Ft}te[o,l] to be a path of symplec-
tomorphisms — this is at least plausible since all fibers are symplectomorphic to
T*S" 1. Let ¢ : S»1 — S§"~! be the antipodal map, i.e. multiplication by —1.
Like any diffeomorphism, it lifts to a symplectomorphism between cotangent bun-

dles W : T*S"~1 — T*S"~1  Consider the function H(q,p) = @, where the norm
is taken in the standard metric. It is well known that the Hamiltonian diffeomor-
phism ¢'; generated by H is just the geodesic flow under the canonical identification
T*Ss"—1 = 75"~ Thus, ©Y parallel transports a covector of length ¢ along the
geodesic corresponding to it at a distance ¢t. In particular, @7 acts of covector of
length 1 just like ¥. The symplectomorphism I'y = A7, is the (2n —2)-dimensional
Dehn twist; it acts like the antipodal map on the zero section, twists the fibers, but
leaves the extremities of the unit-1 disk subbundle fixed (see Figure 3). Note that
H may be modified outside of the unit disk subbundle so as to make sure that I';

extends to a compactly supported symplectomorphism on 7*S™ 1.

V> v

—
AN S A
S — >
~_! @~
(a) D*S* (b) I'1(D*Sh)

Figure 3: The Dehn twist and its effect on a fiber and the zero section.

Sadly however, one cannot in general take local coordinates on a smooth pro-
jective variety — or more generally on a Kéhler manifold — of the form of lemma 1
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which are both holomorphic and symplectic, as it would imply that the manifold is
flat in that neighborhood. Therefore, one is led to make a choice between looking at
monodromy from the complex side, or from the symplectic side. However, Arnol’d’s
observation implies that the symplectic side is the right one. Indeed, although mon-
odromy may be realized as a family of symplectomorphisms, it cannot be realized
as a family of biholomorphisms as the complex isomorphism type of the fiber F.
might change with ¢. For example, this is the case in the Lefschetz fibration coming
from a pencil of cubic curves, seen as a Lefschetz pencil in P? by embedding it in
PY using the Veronese embedding, since the nonsingular fibers will be elliptic curves
with different parameters.

In fact, by the Weinstein neighborhood theorem, as soon as one has an embed-
ded Lagrangian sphere in a symplectic manifold, one has a neighborhood symplec-
tomorphic to a disk subbundle of 7*S"~!, and thus has a generalized Dehn twist.
This simple fact has led, mainly through the work of Seidel, to a greater understand-
ing of many symplectic manifolds. For example, he proved [Sei03] that the Dehn
twist induces a long exact sequence on what is called symplectic Floer homology,
an important algebraic invariants of Lagrangian submanifolds of exact symplectic
manifolds. This long exact sequence actually comes from an exact triangle in the
famous Fukaya A..-category, which has deep links with algebraic geometry via the
homological mirror symmetry conjecture (see [Sei0g] for all details).

We conclude by noting that, since the work of Donaldson, Lefschetz pencils
and Lefschetz fibrations have also taken an important place in symplectic topology.
One can generalize these notions, by so-called topological Lefschetz pencils and fi-
brations, and use them to probe the symplectic topology of certain manifold. For
example, this has been used [Don98| to prove the existence of symplectic hypersur-
faces representing certain homology classes in a vast family of symplectic manifolds.
Also worthy of mention, is the role that these topological Lefschetz pencils have
taken in the study of 4-manifolds, where they are equivalent to the existence of
symplectic forms (more details in [Gom01]).
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