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Abstract

We prove a Hölder-type inequality (in the spirit of Joksimović–Seyfaddini

[JS22]) for the Hausdorff distance between Lagrangians with respect to the

Lagrangian spectral distance or the Hofer–Chekanov distance. This inequality

is established via methods developped by the first author [Cha23, Cha22] in or-

der to understand the symplectic geometry of certain collections of Lagrangians

under metric constraints.

1 Introduction
Let (𝑀, 𝜔) be a symplectic manifold with an 𝜔-compatible almost complex

structure 𝐽. If 𝑀 is noncompact, we assume that 𝐽 is convex at infinity. We

equip 𝑀 with the Riemannian metric 𝑔 = 𝑔𝐽 = 𝜔(·, 𝐽·) — we may assume it is

complete and geometrically bounded (cf. [CGK04]).

1.1 Main result
On one hand, Joksimović and Seyfaddini [JS22] proved a Hölder-type inequal-

ity for the 𝐶0
distance on Hamiltonian diffeomorphism groups and deduced

interesting applications to Anosov–Katok pseudo-rotations.

Namely, the inequality is the following:

𝑑𝐶0(1, 𝜑) ≤ 𝐶

√
𝛾(𝜑) | |𝑑𝜑 | |, (1)
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where | |𝑑𝜑 | | := sup{|𝑑𝜑𝑥 |op | 𝑥 ∈ 𝑀}. This inequality holds for any Hamil-

tonian diffeomorphism 𝜑 of a closed symplectic manifold for which one can

define Floer spectral invariants. These invariants and their properties are re-

viewed in Section 2. They induce, on the Hamiltonian diffeomorphism group,

the spectral pseudonorm 𝛾 which appears in the inequality. The constant 𝐶 only

depends on the choice of a Riemannian metric on the ambient manifold.

On the other hand, the first author [Cha23, Cha22] initiated the study of the

symplectic geometry of certain sets of Lagrangians under (Riemannian) metric

constraints, such as the Hofer geometry of Hamiltonian isotopic Lagrangians

with uniformly bounded curvature. Hölder inequalities on such sets between

the Hausdorff distance and a large class of metrics were also obtained. This

class of metrics contains, in particular, the Lagrangian spectral distance, also

defined via spectral invariants and denoted 𝛾 as well. This version of the

spectral distance was defined for weakly exact Lagrangians in [Lec08] and for

monotone Lagrangians with nonvanishing fundamental in [KS22].

The upshot of this note is a Hölder-type inequality for the Hausdorff dis-

tance 𝛿𝐻 between Lagrangians in the spirit of Joksimović and Seyfaddini’s

inequality, whose proof is based on the methods of [Cha23].

Theorem 1 Let 𝐿 and 𝐿′ be Hamiltonian isotopic, closed, connected Lagrangian
submanifolds of𝑀. Suppose that 𝐿— and thus 𝐿′ — is either weakly exact or monotone
with𝑁𝐿 ≥ 2 and has nonvanishing quantum homology. Let𝜓 be a symplectomorphism
of 𝑀 such that 𝜓(𝐿) = 𝐿′. There exist constants 𝛿 = 𝛿(𝑀, 𝐽, 𝐿) > 0 and 𝐶 =

𝐶(𝑀, 𝐽, 𝐿) > 0 such that whenever 𝛾(𝐿, 𝐿′) < 𝛿, then

𝛿𝐻(𝐿, 𝐿′) ≤ 𝐶
√
𝛾(𝐿, 𝐿′) | |𝑑𝜓 | | . (2)

Furthermore, when 𝑀 is compact, we may take 𝛿 = +∞.

This obviously yields the nondegeneracy of 𝛾.

Corollary 2 Let 𝐿 be a Lagrangian as in Theorem 1. Then, the Lagrangian pseudodis-
tance 𝛾 is nondegenerate on the set of Lagrangians which are Hamiltonian isotopic to
𝐿.

Thus, this provides a third proof of this result, after Kawasaki’s proof

[Kaw18] via Poisson bracket invariants à la Polterovich–Rosen [PR14] and

Kislev and Shelukhin’s proof [KS22] via energy-capacity inequalities. How-

ever, through the use of the methods of [Cha23] in Section 3 or with the more

direct approach of the alternative proof in Section 4.1, the proof does ultimately

relies on the same existence result for certain 𝐽-holomorphic curves as Kislev

and Shelukhin [KS22]. The innovation here is how we estimate the area of

those 𝐽-holomorphic curves.

Before describing in more details how this result relates to the aforemen-

tioned previous works, let us make several quick remarks.

Remark 3 (Hofer’s geometry) It is well known that 𝛾 is bounded from above by the
Hofer–Chekanov distance — see the properties of the spectral distance in Section 2.
Hence, Theorem 1 also holds when 𝛾 is replaced by the Hofer–Chekanov distance.
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Remark 4 (Symplectomorphisms) Let us emphasize the fact that Theorem 1 holds
for any — even noncompactly-supported — symplectomorphism 𝜓; 𝐿 and 𝐿′ are
required to be Hamiltonian diffeomorphic only for 𝛾(𝐿, 𝐿′) to be defined.

That this is a nontrivial improvement, one can see with a simple example. For exam-
ple, take 𝑓 (𝑥) = sin(2𝜋𝑥) and consider 𝐿 = graph( 𝑓 ′) and 𝐿′ = graph(− 𝑓 ′) in 𝑇∗𝑆1.
If we equip 𝑇∗𝑆1 with the flat metric, then the symplectomorphism 𝜓(𝑥, 𝑦) = (−𝑥,−𝑦)
sends 𝐿 to 𝐿′ and is also an isometry, i.e. | |𝑑𝜓 | | = 1. However, the only nontrivial
isometries of the flat cylinder which are in the connected component of the identity
(in Diff(𝑇∗𝑆1)) are translations, none of which are Hamiltonian diffeomorphisms.
Therefore, every Hamiltonian diffeomorphism 𝜑 sending 𝐿 to 𝐿′ must have | |𝑑𝜑 | | > 1.

Remark 5 (Variant with the norm of the inverse diffeomorphism) When 𝑀 is
compact, there is also an inequality involving | |𝑑𝜓−1 | |:

𝛿𝐻(𝐿, 𝐿′) ≤ 𝐶
√
𝛾(𝐿, 𝐿′) | |𝑑𝜓−1 | |2. (3)

This variant of inequality (2) will be proved in Section 4.2.

1.2 Main techniques and relations to previous work
Theorem 1 is a specialization of the first author’s inequality from [Cha23],

which we now recall. For any metric 𝐷 in a large class of metrics, said of

Chekanov type and which includes 𝛾, if 𝐷(𝐿, 𝐿′) < 𝛿 = 𝛿(𝑔, 𝑔 |𝐿 , 𝑔 |𝐿′), then

𝛿𝐻(𝐿, 𝐿′) ≤ 𝐶(𝑔, 𝑔 |𝐿 , 𝑔 |𝐿′)
√
𝐷(𝐿, 𝐿′) . (4)

By the above notation, we mean that 𝛿 and 𝐶 depend only on Riemannian

bounds of 𝑀, 𝐿, and 𝐿′, e.g. the sectional curvature of the first and the 𝐿∞-

norm of the second fundamental form of the two latter. The improvement in

this note is that we get rid of the dependance of 𝐶 on metric invariants of 𝐿′ at

the price of an extra | |𝑑𝜓 | | term.

Note that the first author (Lemma 5 in [Cha22]) partially improved (4) to

𝑠(𝐿; 𝐿′) ≤ 𝐶(𝑔, 𝑔 |𝐿)
√
𝛾(𝐿, 𝐿′) (5)

whenever 𝛾(𝐿, 𝐿′) < 𝛿 = 𝛿(𝑔, 𝑔 |𝐿), where

𝑠(𝐿; 𝐿′) := sup

𝑥∈𝐿
𝑑𝑀(𝑥, 𝐿′) = sup

𝑥∈𝐿
inf

𝑦∈𝐿′
𝑑𝑀(𝑥, 𝑦) . (6)

Since 𝛿𝐻(𝐿, 𝐿′) = max{𝑠(𝐿; 𝐿′), 𝑠(𝐿′; 𝐿)}, the left-hand side in (5) is in general

smaller than the one in (4). It is through this inequality that Theorem 1 is

proved (see Section 3).

1.3 Relations to Joksimović and Seyfaddini’s inequality
Theorem 1 is a Lagrangian generalization of Joksimović and Seyfaddini’s afore-

mentioned inequality (1) for Hamiltonian diffeomorphisms 𝜑 on closed sym-

plectic manifolds.
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Note that their inequality directly implies

𝛿𝐻(𝐿, 𝐿′) ≤ inf

𝜑(𝐿)=𝐿′
𝑑𝐶0(1, 𝜑) ≤ 𝐶 inf

𝜑(𝐿)=𝐿′

(√
𝛾(𝜑) | |𝑑𝜑 | |

)
.

However, in general, the inequality

inf

𝜑(𝐿)=𝐿′

√
𝛾(𝜑) | |𝑑𝜑 | | ≥ inf

𝜑(𝐿)=𝐿′

√
𝛾(𝜑) · inf

𝜑(𝐿)=𝐿′
| |𝑑𝜑 | | =

√
𝛾(𝐿, 𝐿′) · inf

𝜑(𝐿)=𝐿′
| |𝑑𝜑 | |

is strict. Therefore, our inequality gives a better bound in the Lagrangian case,

even when 𝜑 is a Hamiltonian diffeomorphism1.

One notable exception to this is when 𝐿 is the diagonal in𝑀×𝑀, and 𝐿′ is the

graph of 𝜑. Then, by work of the second author and Zapolsky [Lec08, LZ18],

we know that 𝛾(𝐿, 𝐿′) = 𝛾(𝜑), so that equality follows. The constant we get

here is however hard to compare to theirs.

On the other hand, we present below a different proof of a variant of (2),

based on the method from [JS22] which gives a less natural, but more easily

comparable, constant see Section 4.1.

Organization and acknowledgements
After reviewing necessary preliminaries in Section 2, we prove Theorem 1 in

Section 3. Finally, Section 4 presents the proofs of two inequalities similar to

(2), the first one based on Joksimović and Seyfaddini’s method in Section 4.1,

the second one involving the inverse norm of 𝜓 as mentioned in Remark 5; see

Section 4.2.

The main lines of this project were drawn during a stay of the first author at

the Institut Mathématique d’Orsay. We thank the Laboratoire Mathématique

d’Orsay for making that stay possible.

2 Preliminaries
We fix a symplectic manifold (𝑀, 𝜔) and consider different types of Lagrangian

submanifolds. They are characterized by two functions defined on the second

homotopy group of 𝑀 relative to 𝐿, i.e. the symplectic area and the Maslov

class of disks in 𝑀 with boundary in 𝐿:

𝜔𝐿 : 𝜋2(𝑀, 𝐿) → R and 𝜇𝐿 : 𝜋2(𝑀, 𝐿) → Z .

A Lagrangian submanifold 𝐿 is called weakly exact if 𝜔𝐿 and 𝜇𝐿 vanish iden-

tically. Otherwise, 𝐿 is called (positively) monotone whenever there exists a

positive constant 𝜅𝐿 > 0 such that 𝜔𝐿 = 𝜅𝐿 · 𝜇𝐿. In that case, 𝜅𝐿 is called the

monotonicity constant of 𝐿.

When 𝐿 is monotone, we define its minimal Maslov number 𝑁𝐿 to be the

positive generator of ⟨𝜇𝐿 ,𝜋2(𝑀, 𝐿)⟩ = 𝑁𝐿Z, and we require 𝑁𝐿 ≥ 2.

1Recall indeed that inequality (2) also holds when 𝜑 is a non-Hamiltonian symplectomorphism.
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In what follows, we fix a Lagrangian as above and consider the set ℒHam(𝐿)
of all Lagrangian submanifolds which are Hamiltonian isotopic to 𝐿. We now

recall how the two metrics on ℒHam(𝐿) of interest in this note are defined.

2.1 The Hofer–Chekanov distance
The Hofer norm was introduced by Hofer [Hof90] on Hamiltonian diffeo-

morphism groups and extended as a distance to sets of the type ℒHam(𝐿) by

Chekanov [Che00].

First define the energy of a Hamiltonian function 𝐻 : [0, 1] ×𝑀 → R as its

𝐿(1,∞)
-norm:

E(𝐻) =
∫

1

0

(
max

𝑀
𝐻𝑡 − min

𝑀
𝐻𝑡

)
𝑑𝑡, (7)

where 𝐻𝑡 := 𝐻(𝑡 , ·). Then, define the Hofer norm of a Hamiltonian diffeomor-

phism as

∥𝜑∥Hof = inf

{
E(𝐻)

��𝜑1

𝐻 = 𝜑
}
.

Here, {𝜑𝑡
𝐻
}𝑡∈[0,1] is the Hamiltonian flow of 𝐻, i.e. 𝜑0

𝐻
= 1𝑀 and

𝑑
𝑑𝑡
𝜑𝑡
𝐻

=

𝑋 𝑡
𝐻
◦ 𝜑𝑡

𝐻
, where 𝑋 𝑡

𝐻
is the unique time-dependent vector field of 𝑀 such that

𝜄(𝑋 𝑡
𝐻
)𝜔 = −𝑑𝐻𝑡 .

Hofer’s norm then yields a distance on ℒHam(𝐿) by setting

𝑑Hof(𝐿, 𝐿′) = inf {∥𝜑∥Hof | 𝜑(𝐿) = 𝐿′} = inf

{
E(𝐻)

��𝜑1

𝐻(𝐿) = 𝐿′
}

for any 𝐿′ ∈ ℒHam(𝐿).
Remark 6 As noted by Usher [Ush15], replacing the Hofer energy E(𝐻) in the above
expression by the smaller quantity E𝐿(𝐻), defined as in (7) but with oscillations taken
only on 𝐿 rather than on the whole ambient manifold 𝑀, yields the same distance.

2.2 The Lagrangian spectral distance
This distance is based on the theory of spectral invariants initiated by Viterbo

[Vit92] via generating functions and adapted to Floer homology theories by

Schwarz [Sch00] and Oh [Oh05] in the case of Hamiltonian diffeomorphism

groups. The Lagrangian version which is of interest to us here was developed

by the second author [Lec08] in the weakly exact setting and by Zapolsky and

the second author [LZ18] in the monotone case — see also work by Fukaya,

Oh, Ohta, and Ono [FOOO19], which is based on more advanced techniques

such as virtual fundamental cycles and Kuranishi structures.

Lagrangian spectral invariants The Lagrangian spectral invariants ℓ (𝛼;𝐻)
associated to 𝐿 are defined for any nonzero quantum homology class 𝛼 ∈
QH∗(𝐿) — see [BC09] for the construction of this homology. Since the La-

grangian spectral distance only relies on spectral invariants corresponding to

the quantum fundamental class of 𝐿, we do not review the construction of the

quantum homology of a Lagrangian, nor define spectral invariants in full gen-

erality. Instead, we assume that the quantum fundamental class of 𝐿, denoted

[𝐿], is nontrivial and only present the properties of ℓ+ := ℓ ([𝐿], · ).

5



The function ℓ+ : 𝐶0([0, 1] ×𝑀) → R satisfies the following properties.

1. Continuity. For any Hamiltonians 𝐻 and 𝐾, we have that∫
1

0

min

𝑀
(𝐾𝑡 − 𝐻𝑡) 𝑑𝑡 ≤ ℓ+(𝐾) − ℓ+(𝐻) ≤

∫
1

0

max

𝑀
(𝐾𝑡 − 𝐻𝑡) 𝑑𝑡 .

2. Triangle inequality. For all 𝐻 and 𝐾, ℓ+(𝐻♯𝐾) ≤ ℓ+(𝐻) + ℓ+(𝐾).
3. Lagrangian control. If 𝐻𝑡 |𝐿 = 𝑐(𝑡) ∈ R (resp. ≤, ≥) for all 𝑡, then

ℓ+(𝐻) =
∫

1

0

𝑐(𝑡) 𝑑𝑡 (resp. ≤, ≥).

4. Non-negativity. For all 𝐻, ℓ+(𝐻) + ℓ+(𝐻) ≥ 0.

5. Homotopy invariance. If 𝐻 is normalized, ℓ+(𝐻) only depends on the

homotopy class relative to endpoints of the isotopy {𝜑𝑡
𝐻
}𝑡∈[0,1], i.e. the

class [{𝜑𝑡
𝐻
}𝑡∈[0,1]] ∈ �

Ham(𝑀, 𝜔).
6. Symplectic invariance. For all 𝐻 and all 𝜓 ∈ Symp(𝑀, 𝜔), ℓ+(𝐻) =

ℓ ′+(𝐻 ◦ 𝜓−1).

Let us make a few comments about these properties and the notation used

above.

• In Properties 2 and 4 respectively, 𝐻♯𝐾 denotes the Hamiltonian function

𝐻𝑡(𝑥) + 𝐾
(
(𝜑𝑡

𝐻
)−1(𝑥)

)
which generates the isotopy {𝜑𝑡

𝐻
𝜑𝑡
𝐾
}𝑡∈[0,1], and 𝐻

is the Hamiltonian function 𝐻𝑡(𝑥) = −𝐻𝑡

(
(𝜑𝑡

𝐻
)−1(𝑥)

)
which generates{

(𝜑𝑡
𝐻
)−1

}
𝑡∈[0,1]. Properties 1 to 4 are part of Theorem 3 in [LZ18].

• Property 3 directly implies that for all 𝐻,∫
1

0

min

𝐿
𝐻𝑡 𝑑𝑡 ≤ ℓ+(𝐻) ≤

∫
1

0

max

𝐿
𝐻𝑡 𝑑𝑡 .

• In Property 5, the normalization refers to the fact that for all 𝑡,
∫

1

0

𝐻𝑡𝜔𝑛 = 0.

This property appears as Proposition 4 in [LZ18].

• Finally, concerning Property 6, note that any symplectomorphism 𝜓 in-

duces an isomorphism 𝜓∗ : QH∗(𝐿) → QH∗(𝐿′) with 𝐿′ = 𝜓(𝐿). The

fundamental class of 𝐿 is mapped to that of 𝐿′ through this action (up

to possible multiplication by a unit of the coefficient field). The nota-

tion ℓ ′+ denotes the Lagrangian spectral invariant associated to 𝐿′ (and its

fundamental class). Now, Symplectic invariance only expresses the fact

that spectral invariants agree with the action of 𝜓 by conjugation on the

Hamiltonian diffeomorphism group: for any Hamiltonian function 𝐻,

𝜑𝑡
𝐻◦𝜓 = 𝜓−1𝜑𝑡

𝐻
𝜓. This result is part of Theorem 35 in [LZ18].
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The Lagrangian spectral distance The properties of ℓ+ above show that not

only ℓ+ defines a function on
�
Ham(𝑀, 𝜔) with similar properties (see Theorem

41 in [LZ18]), but also a pseudodistance on ℒHam(𝐿).
Indeed, following [KS22], first define the length of a Hamiltonian isotopy

{𝜑𝑡
𝐻
}𝑡∈[0,1] by 𝛾𝐿(𝐻) = ℓ+(𝐻) + ℓ+(𝐻), then take the infimum over all Hamilto-

nian isotopies which map 𝐿 to 𝐿′:

𝛾(𝐿, 𝐿′) = inf{𝛾𝐿(𝐻) | 𝜑1

𝐻(𝐿) = 𝐿′} .

The Non-negativity property of ℓ+ ensures that 𝛾(𝐿, ·) takes non-negative

values. Symplectic invariance ensures that for any symplectomorphism 𝜓
and any Lagrangian 𝐿′ ∈ ℒHam(𝐿), 𝛾(𝐿, 𝐿′) = 𝛾(𝜓(𝐿),𝜓(𝐿′)). Combined with

Triangle inequality, this shows that for all 𝐿′ and 𝐿′′ in ℒHam(𝐿),

𝛾(𝐿, 𝐿′′) ≤ 𝛾(𝐿, 𝐿′) + 𝛾(𝐿′, 𝐿′′) .

Finally, note that if 𝐿′ = 𝜑1

𝐻
(𝐿), then 𝐿 = 𝜑1

𝐻
(𝐿′) and

𝛾𝐿′(𝐻) = ℓ ′+(𝐻) + ℓ ′+(𝐻)
= ℓ+(𝐻 ◦ 𝜑1

𝐻) + ℓ+(𝐻 ◦ 𝜑1

𝐻)

= ℓ+(𝐻 ◦ 𝜑1

𝐻
) + ℓ+(𝐻 ◦ 𝜑1

𝐻)
= 𝛾𝐿(𝐻 ◦ 𝜑1

𝐻),

where the second line follows from Symplectic invariance, whilst the third one

is a direct computation using the fact that 𝜑1

𝐻◦𝜑1

𝐻

= (𝜑1

𝐻
)−1𝜑1

𝐻
𝜑1

𝐻
= 𝜑1

𝐻
. Since

𝛾(𝐿′, 𝐿) is defined by taking the infimum over all possible Hamiltonians whose

diffeomorphism sends 𝐿′ to 𝐿, this implies symmetry for 𝛾. This justifies the

following definition.

Definition Let 𝐿 be a weakly exact Lagrangian or a monotone Lagrangian with
𝑁𝐿 ≥ 2 and nonzero quantum fundamental class. The Lagrangian spectral distance

between 𝐿0 and 𝐿1 ∈ ℒHam(𝐿) is 𝛾(𝐿0 , 𝐿1).

The fact that this actually defines a nondegenerate distance is, as usual, the

“hard” part. This was proven fairly simultaneously in [Kaw18] (via Poisson

bracket invariants) and [KS22] (via energy-capacity inequality). This is also a

consequence of the main result of the present note.

Finally, let us emphasize the fact that the Continuity property of ℓ+ obvi-

ously yields the well-known fact that

for all 𝐿′ ∈ ℒHam(𝐿), 𝛾(𝐿, 𝐿′) ≤ 𝑑Hof(𝐿, 𝐿′) .

3 Proof of Theorem 1
Fix a Lagrangian submanifold 𝐿which satisfies the assumptions of Theorem 1.

Let 𝐿′ = 𝜑1

𝐻
(𝐿) ∈ ℒHam(𝐿) for some Hamiltonian function 𝐻, and let 𝜓 ∈

Symp(𝑀, 𝜔) be such that 𝐿′ = 𝜓(𝐿). Notice that 𝜓−1(𝐿) ∈ ℒHam(𝐿) since
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the Hamiltonian function 𝐻 ◦ 𝜓 generates the isotopy {𝜓−1𝜑𝑡
𝐻
𝜓} which maps

𝜓−1(𝐿) to 𝐿 at time 1.

Recall from (6) that the Hausdorff distance between 𝐿 and 𝐿′ is defined as

𝛿𝐻 = max{𝑠(𝐿; 𝐿′), 𝑠(𝐿′; 𝐿)}, where 𝑠(𝐴; 𝐵) is the supremum of the distance to

𝐵 of a point in 𝐴.

From (5), i.e. Lemma 5 of [Cha22], we get some constants 𝛿 = 𝛿(𝑔, 𝑔 |𝐿) > 0

and 𝐶 = 𝐶(𝑔, 𝑔 |𝐿) > 0 such that

𝑠(𝐿;𝜓(𝐿)) ≤ 𝐶

√
𝛾(𝐿,𝜓(𝐿)) and 𝑠(𝐿;𝜓−1(𝐿)) ≤ 𝐶

√
𝛾(𝐿,𝜓−1(𝐿))

whenever 𝛾(𝐿,𝜓(𝐿)) and 𝛾(𝐿,𝜓−1(𝐿)) are smaller than 𝛿.

Let ℓ (𝑐) denote the length of a smooth path 𝑐 : [0, 1] → 𝑀. Then,

𝑠(𝜓(𝐿); 𝐿) = max

𝑦∈𝜓(𝐿)
min

𝑐(0)=𝑦
𝑐(1)∈𝐿

ℓ (𝑐)

= max

𝑥∈𝐿
min

𝑐(0)=𝑥
𝑐(1)∈𝜓−1(𝐿)

ℓ (𝜓 ◦ 𝑐)

≤ ||𝑑𝜓 | | max

𝑥∈𝐿
min

𝑐(0)=𝑥
𝑐(1)∈𝜓−1(𝐿)

ℓ (𝑐)

= | |𝑑𝜓 | | 𝑠(𝐿;𝜓−1(𝐿)) .

From this, we immediately get that

𝛿𝐻(𝐿, 𝐿′) ≤ max

{
𝑠(𝐿;𝜓(𝐿)), | |𝑑𝜓 | | 𝑠(𝐿;𝜓−1(𝐿))

}
≤ 𝐶 | |𝑑𝜓 | | max

{√
𝛾(𝐿,𝜓(𝐿)),

√
𝛾(𝐿,𝜓−1(𝐿))

}
(8)

since | |𝑑𝜓 | | ≥ 1 for any symplectomorphism 𝜓. Indeed, a symplectic matrix

must always have an eigenvalue with absolute value at least 1.

By Symplectic invariance, we know that 𝛾(𝐿,𝜓−1(𝐿)) = 𝛾(𝜓(𝐿), 𝐿), and (8)

gives us the expected inequality (2):

𝛿𝐻(𝐿, 𝐿′) ≤ 𝐶∥𝑑𝜓∥
√
𝛾(𝐿, 𝐿′)

under the condition 𝛾(𝐿, 𝐿′) < 𝛿.

To get rid of this condition when 𝑀 is compact, we use Joksimović and

Seyfaddini’s trick [JS22]: take 𝐶 large enough so that

𝐶 ≥ Diam(𝑀)√
𝛿

.

Then, if 𝛾(𝐿, 𝐿′) ≥ 𝛿, we trivially get

𝐶
√
𝛾(𝐿, 𝐿′) | |𝑑𝜓 | | ≥ Diam(𝑀) ≥ 𝛿𝐻(𝐿, 𝐿′),

since | |𝑑𝜓 | | ≥ 1. Here, we have made use of the fact that the distance between

two closed subsets of 𝑀 is at most the diameter of 𝑀.

This ends the proof of Theorem 1. □
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4 Alternative versions of inequality (2)
We conclude with two alternative versions of inequality (2): the first one is

established by adapting to the Lagrangian setting Joksimović and Seyfaddini’s

proof from [JS22], and the other one by using methods explored by Chassé and

leading to inequality (4) from [Cha23], rather than using directly inequality (5)

from [Cha22].

4.1 Joksimović and Seyfaddini’s approach
We could have adapted Joksimović and Seyfaddini’s [JS22] proof of (1) to the

Lagrangian context to get an analogous inequality. We give here the broad idea

on how such an inequality is proven.

For each 𝑥 ∈ 𝐿, take a Darboux chart 𝜓𝑥 : 𝑈𝑥 → R2𝑛
sending 𝐿 ∩ 𝑈𝑥 to

R𝑛 × {0}. Take also compact neighborhoods 𝐾𝑥 and 𝐾′
𝑥 of 𝑥 in 𝑀 such that

𝐾𝑥 ⊆ int(𝐾′
𝑥) ⊆ 𝐾′

𝑥 ⊆ 𝑈𝑥 .

By compactness of 𝐿, we may take a finite subset {𝜓𝑖}1≤𝑖≤𝑘 of these charts, so

that {int(𝐾′
𝑖
)}1≤𝑖≤𝑘 still covers 𝐿. Then, setting

𝜀 := min

1≤𝑖≤𝑘
min

𝑥∈𝜕𝐾𝑖
𝑥′∈𝜕𝐾′

𝑖

𝑑(𝑥, 𝑥′) and 𝐴 := max

1≤𝑖≤𝑘

������𝑑𝜓−1

𝑖

��
𝜓𝑖 (𝐾′

𝑖
)

������ ,
we get the inclusion

𝜓−1

𝑖 (𝐵2𝑛
𝑟 (𝜓𝑖(𝑥))) ⊆ 𝐵𝐴𝑟(𝑥)

for 𝑟 = 2

√
𝛾(𝐿,𝐿′)

𝜋 if 𝛾(𝐿, 𝐿′) < 𝛿 = 𝜋𝜀2

4𝐴2
. Here, 𝐵2𝑛

denotes the Euclidean ball

in R2𝑛
, whilst 𝐵 is the metric ball in 𝑀. But then, if 𝐴𝑟 < 𝑑(𝑥, 𝐿′), the map

𝜓−1

𝑖
|𝐵2𝑛
𝑟 (𝜓𝑖 (𝑥)) would be a symplectic embedding of a ball of radius 𝑟 with real

part along 𝐿 not crossing 𝐿′, so that

𝛾(𝐿, 𝐿′) ≥ 𝜋
2

𝑟2 = 2𝛾(𝐿, 𝐿′)

by the proof of Theorem E of [KS22], which is of course a contradiction. There-

fore, we must have

𝑑(𝑥, 𝐿′) ≤ 2𝐴

√
𝛾(𝐿, 𝐿′)

𝜋
.

This gives an inequality analogous to (5) — but with a constant depending on

local charts — by taking the maximum over all 𝑥 ∈ 𝐿.

4.2 An inequality with the inverse norm
When 𝑀 is compact, there is also an inequality with ∥𝑑𝜓−1∥:

𝛿𝐻(𝐿, 𝐿′) ≤ 𝐶
√
𝛾(𝐿, 𝐿′) ∥𝑑𝜓−1∥2. (9)

The proof of (9) follows the scheme of the proof of (4) appearing in [Cha23].

We thus recall the idea of said proof.
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(1) From the proof of Theorem E of [KS22], we know that there exist, for any

𝑥 ∈ 𝐿 and any 𝑥′ ∈ 𝐿′, 𝐽-holomorphic strips 𝑢𝑥 and 𝑢𝑥′ with boundary

along 𝐿 and 𝐿′ — modulo arbitrarily small Hamiltonian perturbations —

and passing through 𝑥 and 𝑥′, respectively. Furthermore, their area is

bounded from above by 2𝛾(𝐿, 𝐿′).
(2) Using a version of the monotonicity lemma, we get that

𝜔(𝑢𝑥) ≥ 𝐴(𝑔, 𝑔 |𝐿)𝑟2

if the closed metric ball 𝐵𝑟(𝑥) does not intersect 𝐿′ and 𝑟 is smaller than

some 𝛿 = 𝛿(𝑔, 𝑔 |𝐿) > 0. There is an analogous result for 𝑢𝑥′ and 𝐿′.

In particular, if 𝛾(𝐿, 𝐿′) is small enough, the inequality holds for all 𝑟 <
𝑑𝑀(𝑥, 𝐿′). Therefore, it holds for 𝑟 = 𝑑𝑀(𝑥, 𝐿′).

(3) Taking the supremum over all 𝑥 ∈ 𝐿 of the inequalities for 𝐿, we essentially

get (5). Taking the supremum over all 𝑥′ ∈ 𝐿′ of the inequalities for 𝐿′

gives an analogous inequality for the pair (𝐿′, 𝐿). Taking the maximum

of these two inequalities, we get (4).

We thus see that the dependence of 𝐶 in (4) on metric invariants of 𝐿′ comes

from the constant𝐴 in Step 2. Therefore, proving Theorem 1 reduces to proving

the following proposition.

Proposition 7 There exist constants 𝛿 and 𝐴 depending only on metric invariants of
𝑀 and 𝐿 with the following property.

Let 𝐿′ ∈ ℒHam(𝐿) and let 𝜓 be a symplectomorphism such that 𝜓(𝐿) = 𝐿′.
Let Σ be a compact Riemann surface with boundary 𝜕Σ with corners. Consider a
nonconstant 𝐽-holomorphic curve 𝑢′ : (Σ, 𝜕Σ) → (𝐵𝑟(𝑥′), 𝜕𝐵𝑟(𝑥′) ∪ 𝐿′) for some
𝑥′ ∈ 𝐿′ and 𝑟 ≤ 𝛿

∥𝑑𝜓−1∥ such that 𝑥′ ∈ 𝑢′(Σ). Suppose that 𝑢′ sends the corners of Σ
to 𝜕𝐵𝑟(𝑥′) ∩ 𝐿′. Then,

𝜔(𝑢′) ≥ 𝐴

∥𝑑𝜓−1∥2

𝑟2 .

Indeed, Proposition 2.1 of [Cha23], Proposition 7, and Step (1) above yield

min {𝛿, 𝑑𝑀(𝑥, 𝐿′)} ≤ 𝐶
√
𝛾(𝐿, 𝐿′)

for all 𝑥 ∈ 𝐿 and

min

{
𝛿

∥𝑑𝜓−1∥
, 𝑑𝑀(𝑥′, 𝐿)

}
≤ 𝐶

√
𝛾(𝐿, 𝐿′)∥𝑑𝜓−1∥

for all 𝑥′ ∈ 𝐿′ (with 𝐶 = 1√
2𝐴

). In particular, if we suppose that 𝛾(𝐿, 𝐿′) <

𝐶−2𝛿2∥𝑑𝜓−1∥−4 ≤ 𝐶−2𝛿2
, we get that

𝑑𝑀(𝑥, 𝐿′) ≤ 𝐶
√
𝛾(𝐿, 𝐿′)

for all 𝑥 ∈ 𝐿 and

𝑑𝑀(𝑥′, 𝐿) ≤ 𝐶
√
𝛾(𝐿, 𝐿′)∥𝑑𝜓−1∥

10



for all 𝑥′ ∈ 𝐿′. Taking the maximum over all 𝑥 and all 𝑥′, we get 𝛿𝐻(𝐿, 𝐿′) ≤
𝐶
√
𝛾(𝐿, 𝐿′)max{1, ∥𝑑𝜓−1∥} as long as 𝛾(𝐿, 𝐿′) < 𝐶−2𝛿2∥𝑑𝜓−1∥−4

. This yields

(9) — with the additional 𝛾-smallness assumption — since ∥𝑑𝜓−1∥ ≥ 1.

If 𝛾(𝐿, 𝐿′) ≥ 𝐶−2𝛿2∥𝑑𝜓−1∥−4
, take 𝐶′ ≥ 𝐶𝛿−1

Diam(𝑀), so that

𝐶′√𝛾(𝐿, 𝐿′)∥𝑑𝜓−1∥2 ≥ Diam(𝑀) ≥ 𝛿𝐻(𝐿, 𝐿′),

which gives the desired result.

Only Proposition 7 is thus now left to prove. In order to do so, we first need

a new version of the isoperimetric inequality. For an arc 𝛾′
: ([0,𝜋], {0,𝜋}) →

(𝑀, 𝐿′) whose image in contained in the metric ball 𝐵𝛿/∥𝑑𝜓−1∥(𝑥′) for some 𝑥′ ∈
𝐿′, set 𝑎(𝛾′) to be the symplectic area 𝜔(𝑢′) of any map 𝑢′ : D∩{Im 𝑧 ≥ 0} → 𝑀
such that 𝑢′(𝑒 𝑖𝜃) = 𝛾′(𝜃) and 𝑢′(D ∩R) ⊆ 𝐿′. Here, D is the unit disk in C.

First note that this definition is independent of the choice of extension 𝑢′.
To see this, take

𝛿 = min

{
𝜀,

𝜀
2

𝑟inj(𝐿),
𝜀
2

𝑟0 ,
𝜋

4

√
𝐾0

}
. (10)

if 𝐿 is 𝜀-tame (see [Cha23] for the definition) and 𝑀 has injectivity radius

bounded away from zero by 𝑟0 and sectional curvature takes values in [−𝐾0 , 𝐾0].
Here, 𝑟inj(𝐿) is the injectivity radius of 𝐿 with the Riemannian metric induced

by 𝑀. Then, for all 𝑧 ∈ D ∩ {Im 𝑧 ≥ 0}, we have that

𝑑𝑀

(
𝜓−1(𝑢(𝑧)),𝜓−1(𝑥′)

)
≤ ∥𝑑𝜓−1∥ 𝑑𝑀(𝑢(𝑧), 𝑥′) ≤ 𝛿,

i.e. 𝑢 := 𝜓−1 ◦ 𝑢′ has image in the metric ball 𝐵𝛿(𝑥) with 𝑥 := 𝜓−1(𝑥) ∈ 𝐿. Take

two extensions 𝑢′
0

and 𝑢′
1

of an arc 𝛾′
as above, and denote 𝛼′

𝑖
:= 𝑢′

𝑖
|R and

𝛼𝑖 := 𝜓−1 ◦ 𝛼′
𝑖
. Then, 𝑢0#𝑢1 is a disk whose boundary 𝛼0#𝛼1 lies in 𝐿. Here,

𝑓 (𝑎 + 𝑖𝑏) := 𝑓 (−𝑎 + 𝑖𝑏) for any map 𝑓 : 𝑈 ⊆ C → 𝑀. But by 𝜀-tameness of

𝐿, 𝛼0#𝛼1 must be a loop in a metric ball of 𝐿 (in the intrinsic metric) of radius

2𝛿
𝜀 ≤ 𝑟inj(𝐿), and must thus be contractible in the same ball. This nullhomotopy

extends to a homotopy in a metric ball of𝑀 of radius
2𝛿
𝜀 of 𝑢0#𝑢1 to a topological

sphere. Since
2𝛿
𝜀 ≤ 𝑟0, this topological sphere must be itself contractible, so that

0 = 𝜔(𝑢0#𝑢1) = 𝜔(𝑢0) − 𝜔(𝑢1) = 𝜔(𝑢′
0
) − 𝜔(𝑢′

1
),

where the last inequality follows from the fact that 𝜓 is a symplectomorphism.

In other words, 𝑎(𝛾′) is indeed well defined.

We can now prove the following isoperimetric inequality.

Lemma 8 There exist constants 𝛿 and 𝐵 depending only on metric invariants of 𝑀
and 𝐿 such that, for all arcs 𝛾′

: ([0,𝜋], {0,𝜋}) → (𝑀, 𝐿′)with image in 𝐵𝛿/∥𝑑𝜓−1∥(𝑥′)
for some 𝑥′ ∈ 𝐿′, we have that

𝑎(𝛾′) ≤ 𝐵∥𝑑𝜓−1∥2ℓ (𝛾′)2.
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Proof. As noted above, we know that 𝜓−1 ◦ 𝛾 has image in the metric ball

𝐵𝛿(𝜓−1(𝑥′)). Therefore, by said Lemma 2.1 of [Cha23], we know that

𝑎(𝜓−1 ◦ 𝛾) ≤ 𝐵(𝑔, 𝑔 |𝐿) ℓ (𝜓−1 ◦ 𝛾)2.

However, 𝑎(𝜓−1 ◦ 𝛾) = 𝑎(𝛾), since 𝜓 is a symplectomorphism, and ℓ (𝜓−1 ◦ 𝛾) ≤
∥𝑑𝜓−1∥ℓ (𝛾), which give the desired inequality. □

The proof of Proposition 7 then follows the same scheme as the proof of

Proposition 2.1 of [Cha23], excepts that we use Lemma 8 above — instead of

Lemma 2.1 of [Cha23] — to estimate the local action 𝑎(𝛾′) for arcs 𝛾′
with

boundary on 𝐿′.
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