Local exactness and C^0 Lagrangian topology

Jean-Philippe Chassé

joint work with R. Leclercq and M. Attalah, E. Shelukhin

ETH Zürich

LG&TBQ2 June 3rd, 2025

Outline

1 Definitions

2 Some questions

3 Some answers

- A negative one
- A few positive ones

Plan

1 Definitions

2 Some questions

3 Some answers

- A negative one
- A few positive ones

Symplectic manifolds

Definition

A symplectic manifold is a couple (M, ω) , where M is a smooth manifold and ω is a nondegenerate closed 2-form.

Symplectic manifolds

Definition

A symplectic manifold is a couple (M, ω) , where M is a smooth manifold and ω is a nondegenerate closed 2-form.

It amounts to saying that ω is $\mathit{locally}$ of the form

$$\omega_0(v_1, v_2) := \begin{pmatrix} x_2 & y_2 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$

for $v_i = (x_i, y_i)$.

Symplectic manifolds

Definition

A symplectic manifold is a couple (M, ω) , where M is a smooth manifold and ω is a nondegenerate closed 2-form.

It amounts to saying that ω is $\mathit{locally}$ of the form

$$\omega_0(v_1, v_2) := \begin{pmatrix} x_2 & y_2 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$

for $v_i = (x_i, y_i)$.

Example

A 2-dimensional symplectic manifold is a surface with an area form.

Hamiltonian diffeomorphisms

Definition

A symplectomorphism of M is a diffeomorphism $\psi:M\to M$ such that $\psi^*\omega=\omega.$

Hamiltonian diffeomorphisms

Definition

A symplectomorphism of M is a diffeomorphism $\psi: M \to M$ such that $\psi^* \omega = \omega$.

It is said to be **Hamiltonian** if there exists a smooth function $H:[0,1]\times M\to\mathbb{R}$ such that $\psi=\varphi^1_H$, where the isotopy $\{\varphi^t_H\}$ is defined via

$$\iota_{\frac{d\varphi_H^t}{dt} \circ (\varphi_H^t)^{-1}} \omega = -dH_t$$

for all $t \in [0,1]$.

Hamiltonian diffeomorphisms

Definition

A symplectomorphism of M is a diffeomorphism $\psi: M \to M$ such that $\psi^* \omega = \omega$.

It is said to be **Hamiltonian** if there exists a smooth function $H:[0,1]\times M\to\mathbb{R}$ such that $\psi=\varphi^1_H$, where the isotopy $\{\varphi^t_H\}$ is defined via

$$\iota_{\frac{d\varphi_{H}^{t}}{dt}\circ(\varphi_{H}^{t})^{-1}}\omega=-dH_{t}$$

for all $t \in [0, 1]$. We denote $\operatorname{Ham}(M) := \{ \varphi_H^1 \mid H : [0, 1] \times M \to \mathbb{R} \}.$

Definition

A half-dimensional submanifold L of a symplectic manifold M is said to be ${\bf Lagrangian}$ if

 $\omega|_{TL} \equiv 0.$

Definition

A half-dimensional submanifold L of a symplectic manifold M is said to be ${\bf Lagrangian}$ if

$$\omega|_{TL} \equiv 0.$$

Example

• A diffeomorphism ψ of M is symplectic if and only if graph ψ is Lagrangian in $(M \times M, \omega \oplus -\omega)$

Definition

A half-dimensional submanifold L of a symplectic manifold M is said to be ${\bf Lagrangian}$ if

$$\omega|_{TL} \equiv 0.$$

Example

- A diffeomorphism ψ of M is symplectic if and only if graph ψ is Lagrangian in $(M \times M, \omega \oplus -\omega)$
- When $\dim M = 2$, a Lagrangian is simply a curve.

Definition

A half-dimensional submanifold L of a symplectic manifold M is said to be ${\bf Lagrangian}$ if

$$\omega|_{TL} \equiv 0.$$

Example

- A diffeomorphism ψ of M is symplectic if and only if graph ψ is Lagrangian in $(M \times M, \omega \oplus -\omega)$
- When $\dim M = 2$, a Lagrangian is simply a curve.
- The zero-section of $(T^*L, d\lambda_0)$, where $\lambda_0 = \sum_i p_i dq_i$.

The Hausdorff metric

Definition

Let A and B be closed subsets of a metric space M. The **Hausdorff distance** between them is

 $\delta_H(A,B) := \inf\{\varepsilon > 0 | A \subseteq B_\varepsilon(B), \ B \subseteq B_\varepsilon(A)\},\$

where $B_{\varepsilon}(A)$ is the ε -neighbourhood of A.

The Hausdorff metric

Definition

Let A and B be closed subsets of a metric space M. The **Hausdorff distance** between them is

$$\delta_H(A,B) := \inf\{\varepsilon > 0 | A \subseteq B_\varepsilon(B), \ B \subseteq B_\varepsilon(A)\},\$$

where $B_{\varepsilon}(A)$ is the ε -neighbourhood of A.

 C^0 goal: Understand the Hamiltonian orbit \mathcal{L} Ham := Ham $(M) \cdot L$ of some Lagrangian L, equipped with δ_H .

Plan

1 Definitions

2 Some questions

3 Some answers

- A negative one
- A few positive ones

Question (A)

Let \mathcal{W} be a (small) neighbourhood of some Lagrangian L. If $L' \in \mathcal{L}$ Ham and $L' \subseteq \mathcal{W}$, is there a Hamiltonian isotopy from L to L' supported in \mathcal{W} ?

Question (A)

Let \mathcal{W} be a (small) neighbourhood of some Lagrangian L. If $L' \in \mathcal{L}$ Ham and $L' \subseteq \mathcal{W}$, is there a Hamiltonian isotopy from L to L' supported in \mathcal{W} ?

• Easy to build non-Lagrangian counterexamples.

Question (A)

Let \mathcal{W} be a (small) neighbourhood of some Lagrangian L. If $L' \in \mathcal{L}$ Ham and $L' \subseteq \mathcal{W}$, is there a Hamiltonian isotopy from L to L' supported in \mathcal{W} ?

- Easy to build non-Lagrangian counterexamples.
- \bullet Positive answer implies local path connectedness of $\mathcal{L}\mathrm{Ham}.$

Question (A)

Let \mathcal{W} be a (small) neighbourhood of some Lagrangian L. If $L' \in \mathcal{L}$ Ham and $L' \subseteq \mathcal{W}$, is there a Hamiltonian isotopy from L to L' supported in \mathcal{W} ?

- Easy to build non-Lagrangian counterexamples.
- \bullet Positive answer implies local path connectedness of $\mathcal{L}\mathrm{Ham}.$
- Hamiltonian version of the question only known for surfaces [Fathi, '80] and B^{2n} [Seyfaddini, '13].

Why small?

Take $(M, \omega) = (\mathbb{R}^2, \omega_0)$. Then, $\operatorname{Ham} = \{ \text{or. \& area-pres. diffeo.} \}$, and L and L' are circles.

Why small?

Take $(M, \omega) = (\mathbb{R}^2, \omega_0)$. Then, $Ham = \{$ or. & area-pres. diffeo. $\}$, and L and L' are circles.

Why small?

Take $(M, \omega) = (\mathbb{R}^2, \omega_0)$. Then, $\operatorname{Ham} = \{ \text{or. \& area-pres. diffeo.} \}$, and L and L' are circles.

Fact: We can identify a neighbourhood of L in (M, ω) with a neighbourhood of the zero-section in $(T^*L, d\lambda_0)$.

Fact: We can identify a neighbourhood of L in (M, ω) with a neighbourhood of the zero-section in $(T^*L, d\lambda_0)$.

Question (B)

For L, L', and W as above, is L' exact in W, i.e. does there exist $f: L' \to \mathbb{R}$ such that $\lambda_0|_{L'} = df$?

Fact: We can identify a neighbourhood of L in (M, ω) with a neighbourhood of the zero-section in $(T^*L, d\lambda_0)$.

Question (B)

For L, L', and W as above, is L' exact in W, i.e. does there exist $f: L' \to \mathbb{R}$ such that $\lambda_0|_{L'} = df$?

• Weaker than Question A; equivalent if NLC holds on T^*L .

Fact: We can identify a neighbourhood of L in (M, ω) with a neighbourhood of the zero-section in $(T^*L, d\lambda_0)$.

Question (B)

For L, L', and W as above, is L' exact in W, i.e. does there exist $f: L' \to \mathbb{R}$ such that $\lambda_0|_{L'} = df$?

- Weaker than Question A; equivalent if NLC holds on T^*L .
- Positive answer implies that $L \cap L' \neq \emptyset$ [Gromov, '85].

Fact: We can identify a neighbourhood of L in (M, ω) with a neighbourhood of the zero-section in $(T^*L, d\lambda_0)$.

Question (B)

For L, L', and W as above, is L' exact in W, i.e. does there exist $f: L' \to \mathbb{R}$ such that $\lambda_0|_{L'} = df$?

- Weaker than Question A; equivalent if NLC holds on T^*L .
- Positive answer implies that $L \cap L' \neq \emptyset$ [Gromov, '85].
- Trivial if $H^1(L; \mathbb{R}) = 0$ or L is exact in M.

The closure of the Hamiltonian orbit

Question (C)

Is \mathcal{L} Ham δ_H -closed as a subspace of all Lagrangians of M?

The closure of the Hamiltonian orbit

Question (C)

Is \mathcal{L} Ham δ_H -closed as a subspace of all Lagrangians of M?

Hamiltonian version — the C⁰ flux conjecture — of the question only known in few cases [Lalonde–McDuff–Polterovich, '97; Buhovsky, '14; Atallah-Shelukhin, in progress].

A negative one A few positive ones

Plan

1 Definitions

2 Some questions

3 Some answers

- A negative one
- A few positive ones

A negative one A few positive ones

The bad news

Theorem

In any symplectic manifold of dimension $2n \ge 6$, there is a Lagrangian torus L for which all questions have a negative answer.

A negative one A few positive ones

The bad news

Theorem

In any symplectic manifold of dimension $2n \ge 6$, there is a Lagrangian torus L for which all questions have a negative answer.

The proof relies on the classification of product tori in \mathbb{C}^n [Chekanov, '96].

A negative one A few positive ones

The bad news

Theorem

In any symplectic manifold of dimension $2n \ge 6$, there is a Lagrangian torus L for which all questions have a negative answer.

The proof relies on the classification of product tori in \mathbb{C}^n [Chekanov, '96].

It uses, in a fundamental way, that these tori bound disks whose area are $\mathbb{Q}\text{-linearly}$ independent.

A negative one A few positive ones

Some nicer Lagrangians

Since $\omega|_{TL} \equiv 0$, the morphism

$$\omega: H_2(M, L; \mathbb{Z}) \longrightarrow \mathbb{R}$$
$$A \longmapsto \int_A \omega$$

is well defined.

A negative one A few positive ones

Some nicer Lagrangians

Since $\omega|_{TL} \equiv 0$, the morphism

$$\omega: H_2(M, L; \mathbb{Z}) \longrightarrow \mathbb{R}$$
$$A \longmapsto \int_A \omega$$

is well defined.

Definition

We say that L is H-rational if the image of the morphism is discrete.

A negative one A few positive ones

A positive answer to Question B

Theorem

There is a class of diffeomorphism types \mathscr{C} with the following property. If $L \in \mathscr{C}$ is *H*-rational, then Question B has a positive answer on $\mathcal{L}\text{Ham}(L)$.

A negative one A few positive ones

A positive answer to Question B

Theorem

There is a class of diffeomorphism types \mathscr{C} with the following property. If $L \in \mathscr{C}$ is *H*-rational, then Question B has a positive answer on $\mathcal{L}\text{Ham}(L)$.

Some properties of \mathscr{C} :

A negative one A few positive ones

A positive answer to Question B

Theorem

There is a class of diffeomorphism types \mathscr{C} with the following property. If $L \in \mathscr{C}$ is *H*-rational, then Question B has a positive answer on $\mathcal{L}\text{Ham}(L)$.

Some properties of \mathscr{C} :

• $S^1 \in \mathscr{C}$, and $L \in \mathscr{C}$ if $H^1(L; \mathbb{R}) = 0$.

A negative one A few positive ones

A positive answer to Question B

Theorem

There is a class of diffeomorphism types \mathscr{C} with the following property. If $L \in \mathscr{C}$ is *H*-rational, then Question B has a positive answer on $\mathcal{L}\text{Ham}(L)$.

Some properties of \mathscr{C} :

- $S^1 \in \mathscr{C}$, and $L \in \mathscr{C}$ if $H^1(L; \mathbb{R}) = 0$.
- $\bullet \ {\mathscr C}$ is closed under products.

A negative one A few positive ones

A positive answer to Question B

Theorem

There is a class of diffeomorphism types \mathscr{C} with the following property. If $L \in \mathscr{C}$ is *H*-rational, then Question B has a positive answer on $\mathcal{L}\text{Ham}(L)$.

Some properties of \mathscr{C} :

- $S^1 \in \mathscr{C}$, and $L \in \mathscr{C}$ if $H^1(L; \mathbb{R}) = 0$.
- $\bullet \ {\mathscr C}$ is closed under products.
- If $L \in \mathscr{C}$ and $L \to L'$ is a cover, then $L' \in \mathscr{C}$.

A negative one A few positive ones

A positive answer to Question C

Theorem

If $L \in \mathscr{C}$ is *H*-rational (in *M*) and the NLC holds on T^*L , then $\mathcal{L}Ham(L)$ is δ_H -closed in the space $\mathcal{L}(L)$ of all Lagrangians of *M* diffeomorphic to *L*.

A negative one A few positive ones

A positive answer to Question C

Theorem

If $L \in \mathscr{C}$ is *H*-rational (in *M*) and the NLC holds on T^*L , then $\mathcal{L}\text{Ham}(L)$ is δ_H -closed in the space $\mathcal{L}(L)$ of all Lagrangians of *M* diffeomorphic to *L*.

Remarks

In many cases, the NLC on T^*N is in fact *equivalent* to the above δ_H -closedness statement, for H-rational L of the same diffeomorphism type as N.

A negative one A few positive ones

Back to Question A

Using the cases where we know the NLC holds [Hind, '06; Hind–Pinsonnault–Wu, '12; Rizell–Goodman–Ivrii, '16], we get the following.

Back to Question A

Using the cases where we know the NLC holds [Hind, '06; Hind–Pinsonnault–Wu, '12; Rizell–Goodman–Ivrii, '16], we get the following.

Corollary

Questions A and C have a positive answer if L is

- (a) a H-rational \mathbb{T}^2 , or
- (b) any S^1 , S^2 , or $\mathbb{R}P^2$.

Thank you for your attention!

I will be happy to answer your questions.