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Remark 1 I am omitting some measure theoretic details in the arguments and
only refer to the relevant literature when the statements are non-trivial. I hope
that the arguments are clear enough, so that you could add the details if you
wanted to. In that case, the definition of SCMs by Bongers et al. [2021] might

be a good starting point.

Definition 2 Let € be an SCM over variables X with X,Y € X. We say that
there is a (total) causal effect from X to Y if there evists a random variable

NX s.t. ~
XYY  in pSd(X=Nx)

Proposition 3 Let € be an SCM over variables X with X, Y € X. Consider

(i) There is a total causal effect from X to Y.

;ao I:fll'A ; do ::ZD
(ii) There are x* and x5 such that PS’d (x ) # Pg’d (x )
;do ::xA
(i4i) There is x* such that Pg’d (x ) # PE.

(iv) XYY in PG =N)

We then have (iv) = (i) < (ii) = (i4).

for any Nx whose distribution has full support.

To prove this proposition, we first consider the following lemma.

Lemma 4 Let € be an SCM over variables X with X,Y € X and consider a
noise variable Nx. Then,

(PEAX:=2)(y ¢ )), is a cond. distribution for Y given X in plido(X=Nx)

*Many thanks to Joris Mooij and Michael Law for helpful discussions and providing ideas
for Example 5(¢3) and (%), respectively.



Proof. Let G be the graph induced by the SCM. Substituting, iteratively, the
structural assignments into each other (but not the one for X), we obtain that
there is a function g s.t.

Y = g(X, Nay),
where Asf = ANY \ {X} and G* equals G after removing the edges incoming
into X. We have that X I N,x in pide(X:=Nx), Therefore, the substitution

theorem of conditional probabilities [Rgnn-Nielsen and Hansen, 2014, Theo-
rem 2.1.1] states that

(PE(X=NN) (g(2, Nyx) € o (1)

is a conditional probability for Y given X in pEdo(X:=Nx) Byt (1) equals
(PQi;do(X::m) (Y e ))x;

which concludes the proof of Lemma 4. O

We are now ready to prove Proposition 3.
Proof. The implications (iv) = (i) and (#4) = (i4) are trivial.
To prove (i) = (ii), assume that (i7) does not hold. Then, there exists a
function ¢ s.t. for all z and for all measurable B
pEa=2)(y € B) = ¢(B).
Thus, for all measurable A and B, we have
PC;do(X::NX)(X €AY € B) :/ PQ;dO(X;:m)(Y € B) dp)'i(;do(X::NX)
A
— ¢(B)PEU(X=Nx) (X ¢ A),

()

where for the first equality we have made use of Lemma 4. But this implies
¢(B) = PEP(X:=Nx)(y ¢ B),
which shows that X and Y are independent in pEido(Xi=Nx)
To prove (i) = (i), assume that (ii) holds and let z* and 2 be values and
B be a measurable set such that
Cdo( X:=a2) ;do( X:=a")
Py (B) # P (B).
Consider a random variable Ny with P(Nx = 22) = 1/2 = P(Nx = z7). We
then have

PC;do(X::NX)(X _ .’EA7Y c B) :/ PC;do(X::w) (Y c B) dP;?do(X::NX)((E)
{z2}
— %PC;dO(X:ZxA)(Y E B)
1_,. —
7§ §P¢,do(X._zD)(Y c B)

— PQ;dO(X::NX)(X — .TD,Y 6 B)7



where, again, we have made use of Lemma 4. This implies that X and Y are
not independent in pEido(X:=Nx) (if they were, then the first and last term

should both equal 1/2 - PQdO(X:zNX)(Y € B). This concludes the proof of
Proposition 3. O

Example 5 (i) Let € be an SCM over (X,Y) with

X := Ny (2)
Y= 1o(X) + Ny, (3)

where Nx and Ny are i.i.d. N(0,1) and 19(0) =1 and 1o(x) = 0 for all
x #0. Then, (ii) of Proposition 3 is satisfied but not (iv).

(ii) Let € be an SCM over (X,Y) with

7 = Ny (4)
X:=Z (5)
Y :=sg(X) -sg(Z) + Ny, (6)

where Nz and Ny are i.i.d. N(0,1) and sg(xz) = 1 for all x > 0 and
sg(x) = —1 for all x < 0. Then, (iii) of Proposition 3 is satisfied but not

(i4).
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