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Remark 1 I am omitting some measure theoretic details in the arguments and
only refer to the relevant literature when the statements are non-trivial. I hope
that the arguments are clear enough, so that you could add the details if you
wanted to. In that case, the definition of SCMs by Bongers et al. [2021] might
be a good starting point.

Definition 2 Let C be an SCM over variables X with X,Y ∈ X. We say that
there is a (total) causal effect from X to Y if there exists a random variable
ÑX s.t.

X ⊥̸⊥ Y in PC;do(X:=ÑX).

Proposition 3 Let C be an SCM over variables X with X,Y ∈ X. Consider

(i) There is a total causal effect from X to Y .

(ii) There are x△ and x□ such that P
C; do(X:=x△)
Y ̸= P

C; do(X:=x□)
Y .

(iii) There is x△ such that P
C; do(X:=x△)
Y ̸= PC

Y .

(iv) X ⊥̸⊥ Y in P
C; do(X:=ÑX)
X,Y for any ÑX whose distribution has full support.

We then have (iv) ⇒ (i) ⇔ (ii) ⇒ (iii).

To prove this proposition, we first consider the following lemma.

Lemma 4 Let C be an SCM over variables X with X,Y ∈ X and consider a
noise variable ÑX . Then,

(PC;do(X:=x)(Y ∈ ·))x is a cond. distribution for Y given X in PC;do(X:=ÑX).

∗Many thanks to Joris Mooij and Michael Law for helpful discussions and providing ideas
for Example 5(ii) and (i), respectively.

1



Proof. Let G be the graph induced by the SCM. Substituting, iteratively, the
structural assignments into each other (but not the one for X), we obtain that
there is a function g s.t.

Y = g(X,NAX
Y
),

where AX
Y := ANG∗

Y \ {X} and G∗ equals G after removing the edges incoming

into X. We have that X ⊥⊥ NAX
Y

in PC;do(X:=ÑX). Therefore, the substitution

theorem of conditional probabilities [Rønn-Nielsen and Hansen, 2014, Theo-
rem 2.1.1] states that

(PC;do(X:=ÑX)(g(x,NAX
Y
) ∈ ·)x (1)

is a conditional probability for Y given X in PC;do(X:=ÑX). But (1) equals

(PC;do(X:=x)(Y ∈ ·))x,

which concludes the proof of Lemma 4. □

We are now ready to prove Proposition 3.
Proof. The implications (iv) ⇒ (i) and (ii) ⇒ (iii) are trivial.

To prove (i) ⇒ (ii), assume that (ii) does not hold. Then, there exists a
function c s.t. for all x and for all measurable B

PC;do(X:=x)(Y ∈ B) = c(B).

Thus, for all measurable A and B, we have

PC;do(X:=ÑX)(X ∈ A, Y ∈ B) =

∫
A

PC;do(X:=x)(Y ∈ B) dP
C;do(X:=ÑX)
X (x)

= c(B)PC;do(X:=ÑX)(X ∈ A),

where for the first equality we have made use of Lemma 4. But this implies

c(B) = PC;do(X:=ÑX)(Y ∈ B),

which shows that X and Y are independent in PC;do(X:=ÑX).
To prove (ii) ⇒ (i), assume that (ii) holds and let x△ and x□ be values and

B be a measurable set such that

P
C;do(X:=x△)
Y (B) ̸= P

C;do(X:=x□)
Y (B).

Consider a random variable ÑX with P (ÑX = x△) = 1/2 = P (ÑX = x□). We
then have

PC;do(X:=ÑX)(X = x△, Y ∈ B) =

∫
{x△}

PC;do(X:=x)(Y ∈ B) dP
C;do(X:=ÑX)
X (x)

=
1

2
PC;do(X:=x△)(Y ∈ B)

̸= 1

2
PC;do(X:=x□)(Y ∈ B)

= PC;do(X:=ÑX)(X = x□, Y ∈ B),
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where, again, we have made use of Lemma 4. This implies that X and Y are

not independent in PC;do(X:=ÑX) (if they were, then the first and last term

should both equal 1/2 · PC;do(X:=ÑX)(Y ∈ B). This concludes the proof of
Proposition 3. □

Example 5 (i) Let C be an SCM over (X,Y ) with

X := NX (2)

Y := 10(X) +NY , (3)

where NX and NY are i.i.d. N (0, 1) and 10(0) = 1 and 10(x) = 0 for all
x ̸= 0. Then, (ii) of Proposition 3 is satisfied but not (iv).

(ii) Let C be an SCM over (X,Y ) with

Z := NZ (4)

X := Z (5)

Y := sg(X) · sg(Z) +NY , (6)

where NZ and NY are i.i.d. N (0, 1) and sg(x) = 1 for all x ≥ 0 and
sg(x) = −1 for all x < 0. Then, (iii) of Proposition 3 is satisfied but not
(ii).
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