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Für meine Eltern, Michael, Michaela und Hannah Zsofia Hazel.

Abstract. Convenient analysis is enlarged by a powerful theory of Hille-Yosida type. More precisely
asymptotic spectral properties of bounded operators on a convenient vector space are related to the
existence of smooth semigroups in a necessary and sufficient way. An approximation theorem of
Trotter-type is proved, too. This approximation theorem is in fact an existence theorem for smooth
right evolutions of non-autonomous differential equations on convenient locally convex spaces and
crucial for the following applications.

To enlighten the generically ”unsolved” (even though H. Omori et al. gave interesting and concise
conditions for regularity) question of the existence of product integrals on convenient Lie groups, we
provide by the given approximation formula some simple criteria. On the one hand linearization is
used, on the other hand remarkable families of right invariant distance functions, which exist on all
up to now known Lie groups, are the ingredients: Assuming some natural global conditions regularity
can be proved on convenient Lie groups. The existence of product integrals is an essential basis
for Lie theory in the convenient setting, since generically differential equations cannot be solved on
non-normable locally convex spaces.

The relationship between infinite dimensional Lie algebras and Lie groups, which is well under-
stood in the regular case, is also reviewed from the point of view of local Lie groups: Namely the
question under which conditions the existence of a local Lie group for a given convenient Lie algebra
implies the existence of a global Lie group is treated by cohomological methods. It is shown that the
considerations do not depend on the convergence of the Campbell-Baker-Hausdorff-Formula as in the
original paper of W.T. van Est and Th.J. Korthagen.
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Hermes-Baby tippte, möchte ich danken, natürlich für die vielen interessanten Diskussionen, für die
neuen Zugänge zum Leben, für seine fortwährende Unterstützung und die Liebe zur K-Theorie.
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Niko Wahl und Gregor Weiss möchte ich für die Tatsache danken, mir die Bibel und das Kapital
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Introduction

Er war weniger wissenschaftlich als menschlich verliebt in die Wissenschaft. Er sah, daß sie in
allen Fragen, wo sie sich für zuständig hält, anders denkt als gewöhnliche Menschen. Wenn man statt
wissenschaftlicher Anschauungen Lebensanschauung setzen würde, statt Hypothese Versuch und statt
Wahrheit Tat, so gäbe es kein Lebenswerk eines ansehnlichen Naturforschers oder Mathematikers,
das an Mut und Umsturzkraft nicht die größten Taten der Geschichte weit übertreffen würde. Der
Mann war noch nicht auf der Welt, der zu seinen Gläubigen hätte sagen können: Stehlt, mordet,
treibt Unzucht - unsere Lehre ist so stark, daß sie aus der Jauche eurer Sünden schäumend helle
Bergwässer macht; aber in der Wissenschaft kommt es alle paar Jahre vor, daß etwas was bis dahin
als Fehler galt, plötzlich alle Anschauungen umkehrt oder daß ein unscheinbarer und verachteter
Gedanke zum Herrscher über ein neues Gedankenreich wird, und solche Vorkommnisse sind dort
nicht bloß Umstürze, sondern führen wie eine Himmelsleiter in die Höhe.

(Robert Musil, Der Mann ohne Eigenschaften)

Mathematics is not politics, but the universe of mathematics has been influencing in a subtle and
silent way, but revolutionary in result, the discourses of human beings in this century. Mathematics
is the most dangerous science. Here I do not think of people exploiting mathematical knowledge for
their own purposes, I have the cold mathematical universe in mind, where every thinkable thought
can be thought. Mathematics is the end of cynicism and this century is also characterized by the fact,
that the most cynical thoughts about human beings have been realized with scientific consequence
as some recent historical research on ”technocrats” in the national socialist and stalinist hierarchy
explains. Today’s neoliberal world is much more subtle, but nevertheless governed by the structures
of mathematics, which might mean liberty and prison. Unfortunately it is very difficult to find a book
on history of mathematics discussing the aspect of possible sociological and psychological influences
of the progress in mathematics, even marxist historicians do not although they definitively should.

The mathematical fin de siècle is in particular marked by the famous antinomies of naive set
theory by Georg Cantor and Bertrand Russell, the naive concept of a set broke down. The set of all
sets and the set of all sets not containing itself led to paradox situations. As a consequence David
Hilbert proposed as one of his famous 23 problems at the international congress of mathematics
in Paris, 1900, a program to set the fundaments of mathematics rigorously. These discoveries and
their fascinating consequences changed the view towards the queen of sciences essentially, since her
fundaments were in danger to be contradictory. However, the insight obtained in the following years
forced the point of view, that mathematical formalism has its intrinsic limits and that there are no
natural and obvious ways to choose the axioms of mathematical theories. In a way the platonic book
of mathematics was closed and disappeared forever. More precisely the platonic book of mathematics
was replaced by an infinity of platonic books, for number theory, for functional analysis, based on
some axioms of a mathematical theory with some pages on undecideable assertions added just for fun.
Some of them will maybe never be discovered, there existence is belief. The pride of mathematics
was corrected to a more modest and pragmatic position.

The reason why I try point out these ideas is my constant reading of Robert Musil’s ”Der Mann
ohne Eigenschaften” during the work on my thesis, from where I got the idea to connect the con-
sequences of several of Robert Musil’s ideas with the topics of the chapters of my thesis relating
to their historical development and application. Relations are given by the way of mathematical
reasoning, its universality and its arbitrary basis, on the one hand. On the other hand the progress
in mathematics provided the background of the immense technical development and moral changes
characterizing this century. Questions of responsibility of the scientists arise at first, more substantial
questions about the future of these developments follow. Science is an adventure in mind, mystic
in the best sense, so scholastics of the modern world could be mathematics, but what about the
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viii INTRODUCTION

consequences? Application is the magic word in research proposals, however, this way we get per-
sonally involved. In the highly specialized universe of a working mathematician division of labour is
completely realized, which is an older phenomenon with some new decisive features: Thinking and
working in a defined area without questions about what other people do with your results has never
been completely accepted in this century in the western world, but has some remarkable success. The
spirit of mathematics is exactly given by this technocratic mentality. Richard P. Feynman resumes
the question of his responsibility for the consequences of the work done in Los Alamos creating the
first atomic bomb by the principle of active social irresponsibility of scientists, as John von Neumann
(a professor of mine always insisted in any occasion on Johann von Neumann) did, although his
situation as jew and a type of patriot is different. He solves problems he is interested in, applications
- good or bad - are realized by other people, who are responsible. One can imagine the fascinated
and original physicist, who proved to be a very independent character in the investigations of the
Challenger catastrophe, in his universe thinking about physical problems without responsibility. Has
he failed? The progress of his point of view is that he does not defend his work by some stupid
patriotic or ideological arguments, the step back is that he does not think about the consequences of
this ”division of labour”-moral.

In my thesis convenient analysis represents the abstract playground, Hille-Yosida-Theory the
dangerous, but seemingly harmless application, historically driven by the necessity to solve concrete
problems. So convenient analysis is the mystics of a mathematician, motivation cames from the
theory and the wish to make it as simple and as stringent as possible. Hille-Yosida-Theory has this
beautiful aspects, too, but motivation is enriched by concrete problems and the wish to solve them.
It can be done in a harmless way, but it is not in fact. Beauty is closely related to symmetry-groups
as Hermann Weyl stated in his definition ”Beauty is sligthly broken symmetry”: Lie groups are a
modern beauty, ”superficially” investigated, but deeply understood. I insist on ”superficially” since
the mathematical way to think about beauty is absolutely not the cognitive one, but it sometimes
helps to understand it. So the analysis of what we call beautiful cognitively leads to something which
does not reproduce this coginitive beauty. The soul of our world is to analyze the phenomena in
exactly this way, ”die Entzauberung der Welt”.

The history of infinite dimensional analysis traces back to Bernhard Riemann in the theory of
manifolds and Sophus Lie concerning transformation groups. However, the development of functional
analysis by Stefan Banach, Maurice Fréchet, Hans Hahn, David Hilbert, Johann von Neumann,
Norbert Wiener and many others was necessary to base the ideas rigourosly. In many respects the
persons, who contributed to the development of modern functional analysis and differential geometry,
were involved in a passive or active way in the different political revolutions and tragedies of this
century. So John von Neumann awarded the strange honor to provide the idea of Dr. Strangelove
in Stanley Kubrick’s ”Dr. Strangelove or how I learned to love the bomb”. Hans Hahn was one of
the fathers of the famous circle of Vienna unifying subtle neopositivism and socialdemocratic ideas.
Functional analysis is both, in several respects very close to applications in physics and technics and
a chapter of the book of deep pure mathematics, since functional analysis was condensed from the
analytic art of solving equations appearing in applications. With the discovery of quantum mechanics
functional analysis became the playground of modern physics.

One can categorize the progress in infinite dimensional differential geometry in the following way:
The first insight was the discovery of interesting questions with infinite dimensional model spaces
by Bernhard Riemann and Sophus Lie. Next and independently the vector space character of many
classical analytical problems was discovered and successfully discussed, Richard Courant and David
Hilbert wrote the first comprehensive books on these topics. It is worth mentioning that in the
early days of functional analysis rather general classes of locally convex spaces were investigated
to obtain solutions of differential equations formulated on them. The polish school around Stefan
Banach and Julius Schauder and the french school around Maurice Fréchet and Jacques Hadamard
discovered independently the basics of modern functional analysis. The development of useful theory
then concentrated on Banach and Hilbert spaces, where the theorems of Stone and Hille-Yosida were
found. Banach space geometry explained how rich already this ”narrow” setting is. However rather
simple problems led naturally to Fréchet spaces and sophisticated methods as hard implicit function
theorems were developed to solve them, done by Jürgen Moser, John Nash, Vladimir Arnold and
others. From this rich background it was a small, but clever step towards a powerful calculus to



INTRODUCTION ix

base the concept of infinite dimensional manifolds, which was done by Alfred Frölicher and Andreas
Kriegl. Nevertheless there are some meta-statements asserting that any theorem on general locally
convex spaces is trivial in each concrete case, which is not my opinion.

Infinite-dimensional geometry is a beautiful subject unifying classical analysis and differential
geometry in several ways. The Korteweg-deVrieß-equation is a geodesic equation on the Virasoro-
Bott-group, Hamilton dynamics on a symplectic manifold can be viewed as a smooth one-parameter
subgroup of the group of symplectomorphisms and fluid-mechanics of incompressible media has the
Lie group of volume-preserving diffeomorphisms as essential scene. These few examples argue the
importance of infinite-dimensional geometry and underline the necessity of subtle methods in this
area. By a theorem of Hideki Omori an effective and transitive action of a Banach-Lie-group on
a compact finite-dimensional manifold only is possible if the Banach-Lie-group is already finite-
dimensional ([KM97] for more examples and details on this topic and [Omo78]). This striking
result demonstrates that interesting infinite-dimensional geometry is always modeled on at least
Fréchet spaces.

Fréchet spaces behave remarkably bad with respect to the solvability of differential equations.
This is due to the fact that there is no genuine inverse function theorem, only in some tame cases.
One can prove by ”non-tame” methods that a so called hard inverse function theorem is valid. On
the behalf of Lie groups this problem was surrounded by the invention of the concept of strong
ILB-groups by Hideki Omori (see [Omo97]). This concept leads the Fréchet space problems as
near as necessary to the Banach-space-case, such that all obvious differential equations are solvable,
some inverse function theorem is valid and even some Frobenius theorem, but a weaker and simpler
to prove version as the hard implicit function theorems of Nash and Moser. However, the methods
involved are rather technical and neither the geometric nor the topological properties of the given
Fréchet-Lie group are illuminated, because the point of view is an analytic one.

In my thesis I tried to emphasize two aspects: First one should try to enligthen the situation
concerning differential equations on a given convenient space. This leads in fact to inverse function
theorems and related methods, which is not pointed out here. I tried to develop a theory of Abstract
Cauchy Problems on convenient vector spaces in the spirit of Hille-Yosida-Miyadera-Feller. Approx-
imations by product integrals are considered, too, since this provides the background of numerical
solutions of given equations and is useful on convenient geometries guaranteeing in a natural way the
existence of approximations. Second one should try to relate the geometry of an infinite-dimensional
manifold to the analytic questions. More precisely, it is necessary for the solvability of globally given
differential equations to implement the geometrical and topological properties of the given manifold.
In other words it could be interesting to find some geometro-analytic theory of non-linear differen-
tial equations appearing naturally on infinite-dimensional objects. In finite-dimensional theory it is
possible and therefore useful to separate local and global questions.

The first chapter is devoted to convenient analysis: Smooth and analytic calculus are explained
and the basics of infinite dimensional differential geometry are set. The second chapter starts with
the classical concepts of Hille-Yosida theory in the strongly continuous and holomorphic case to ex-
plain how universal and limited the methods of this theory are. Then convenient Hille-Yosida-Theory
is explained and an extract of the rich universe of examples on locally convex spaces is given. The
main theorem of this part is the approximation theorem providing a possibility to conclude on con-
venient locally convex spaces the existence of time evolutions of non-autonomuous linear differential
equations. The advantage of this theorem is its universality since convenient vector spaces cover the
reasonable spaces of analysis on the one hand. On the other hand it is not necessary to prove an
additional property of the convenient vector space under consideration, which would be very difficult
in general. The third chapter is devoted to the fundamental question of my thesis: Under which
conditions a convenient Lie group possesses an exponential map or even an evolution map. Several
approaches, by linearization of the problem or by assuming the existence of so called Lipschitz-
metrics, are discussed and provide a somehow successful approach to the problem of regularity. Here
the power of the approximation theorem is widely applied. The fourth chapter concentrates on the
special feature of infinite dimensional Lie group theory that local Lie groups are not necessarily
enlargible to global ones, a phenomenon unknown in the finite dimensional case by Ado’s theorem.

The title ”Infinite dimensional Lie Theory from the point of view of Functional Analysis” is
explained by the fact that Lie Theory originally starts if one is able to define a bijective mapping
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from the set of smooth one parameter subgroups of a topological smooth group G to a Lie algebra.
The transported linear structure on the set of smooth one parameter subgroups should be expressed
by Sophus Lie’s famous formula

lim
n→∞

(exp(
t

n
X) exp(

t

n
Y ))n = exp(t(X + Y )

which is a deep non-linear functional analytic question on the group G. The thesis is devoted to the
analysis of this question.

Josef Teichmann, Vienna in July 1999



CHAPTER 1

Convenient Analysis

Aber ich glaube, daß die Menschen in einiger Zeit einesteils sehr intelligent, andernteils Mystiker
sein werden. Vielleicht geschieht es, daß sich unsere Moral schon heute in zwei Bestandteile zerlegt:
Ich könnte auch sagen: In Mathematik und Mystik. In praktische Melioration und unbekanntes
Abenteuer.

(Robert Musil, Der Mann ohne Eigenschaften)

Convenient analysis provides the widest framework for analysis and is therefore of particular im-
portance in today’s border regions of differential geometry, for example the theory of diffeomorphism
groups.

The concept of a smooth curve is obvious on locally convex spaces. The class of locally convex
spaces where weakly smooth curves are exactly smooth curves is given by convenient vector spaces.
A locally convex space is called convenient if and only if it is Mackey-complete, a weak concept of
completeness. The final topology with respect to all smooth curves is called the c∞-topology. If E is a
convenient space, c∞E need not be a topological vector space, since addition might be discontinuous,
however up to Fréchet spaces E = c∞E. A mapping f : U → F , where U is c∞-open and F is a
convenient vector space is called smooth if smooth curves are mapped to smooth curves, which is even
on R2 obviously equivalent. The differential of a smooth mapping is simply given by its derivative
along affine lines. Holomorphic calculus will be developed along these lines without surprises. For
the matters of analysis and geometry we have to pay attention to the infinite dimensional features,
namely, that no inverse function theorems are given in general and complementary subspaces are
difficult to obtain. Furthermore the naturally given smooth topology on convenient vector spaces
does not commute with products!

This first chapter is a mainly self-contained condensation of parts of ch.1, ch.2 and ch.6 of [KM97]
with all necessary details. As a reference book for functional analytic fundaments we propose [Jar81].

1. Smooth Calculus

The setting of convenient vector spaces was introduced by Andreas Kriegl and Alfred Frölicher
(see [FK88] and [KM97] for details and excellent references) to set up a useful calculus in infinite
dimensions beyond Banach spaces. The necessity of a new foundation of calculus grew out of the
analysis of infinite dimensional objects in differential geometry, e.g. diffeomorphism groups of finite
dimensional manifolds or loop groups. The solution is as simple as beautiful and provides us with a
useful tool to handle infinite dimensional questions. In fact we try to answer the question on which
spaces it is possible to draw the conclusion

weakly smooth (holomorphic)⇒ smooth (holomorphic)

In the sequel N denotes the natural numbers including zero, R the real numbers, N+ the positive
natural numbers and R>0 the positive real numbers. By E,F,G, ... we denote separated locally
convex spaces.

A subset of a locally convex space is said to be bounded if and only if it is absorbed by every
zero neighborhood. Recall that a locally convex space is normable if some zero neighborhood is
bounded (Kolmogorow’s theorem, see [Jar81]). The system of bounded sets is determined by the
locally convex topology, but - given this system of sets - there are different locally convex topologies
having the same system of bounded sets, which will be called the bornology of the space. Two locally
convex topologies on a vector space shall be called compatible if the associated bornologies are the
same.

We call a sequence {xn}n∈N Mackey-converging to x with quality {µn}n∈N, where the µn are
non-negative real numbers converging to 0, if there is a bounded set B such that xn − x ∈ µnB.

1



2 1. CONVENIENT ANALYSIS

Analogously we call a sequence {xn}n∈N a Mackey-Cauchy-sequence if there is a sequence {tnm}n,m∈N
with tnm positive real numbers and tnm → 0 for n,m → ∞ so that xn − xm ∈ tnmB , where B is
bounded. If every Mackey-Cauchy-sequence converges in E we speak of a Mackey-complete vector
space. On a Mackey-complete vector space there is in general no natural locally convex topology
reproducing only this concept of convergence (see [KM97], ch.1), but there is a finest topology in the
set of locally convex topologies compatible with the system of bounded sets, called the bornological
topology Eborn. When we talk of a closed set in a convenient vector space we mean that the set is
closed with respect to the topology of Eborn. Given a bounded, absolutely convex set B ⊂ E we
can look at the localization EB := span(B) with the Minkowsky norm pB as norm (see [Jar81],
ch.6). Remark that convenient vector spaces are exactly those locally convex spaces, which are
locally complete, i.e. for every closed, bounded and absolutely convex set B the normed space EB is
a Banach space. Mackey-completeness is consequently an apparently weak concept of completeness
(see [KM97], ch.1).

A linear mapping a : E → F is said to be bounded if bounded sets are mapped to bounded sets.
This is a concept more general than continuity and the appropriate concept with respect to differential
calculus. A locally convex vector space E where every bounded linear mapping is continuous is called
bornological; Fréchet spaces are bornological. By L(E,F ) we denote the vector space of bounded
linear maps from E to F , we have a natural system of bounded sets given on this space, namely
the sets of linear maps uniformly bounded on bounded sets, and a natural locally convex topology,
namely the topology of uniform convergence on bounded sets; they are compatible. By E′ we denote
the space of bounded functionals on E, real- or complex valued, respectively. Recall that already
continuous linear functionals on locally convex spaces detect bounded sets. The space of continuous
linear functionals on a locally convex space is denoted by E∗. On Mackey-complete vector spaces we
have a uniform boundedness principle asserting that pointwise bounded families of bounded linear
maps between Mackey-complete vector spaces are uniformly bounded (see [KM97], ch.1). Given a
pointwise bounded set of bounded linear maps in L(F,G), then we can restrict the bounded linear
maps to the Banach space EB for an absolutely convex bounded and closed set B. So we obtain
a pointwise bounded set of continuous linear maps in L(EB, F ), where we can apply the classical
uniform boundedness principle, indeed we apply directly the Baire theorem (see [Jar81], ch.11).
Consequently the set of bounded linear maps is uniformly bounded.

Beyond Banach spaces several different differential calculi have been developed, most of them
rather complicated. The main difficulty is that the composition of continuous linear mappings on
locally convex spaces stops to be jointly continuous at the level of Banach spaces for any compatible
topology, so a useful calculus should be working for some non-continuous mappings, too. The historic
development is very well written down in [KM97], ch.1. In the sequel we define the main concepts
of Frölicher-Kriegl-calculus to be able to apply them to our problems:

The concept of a smooth curve poses no problems in any locally convex space: A curve is called
smooth if all derivatives up to arbitrary order do exist. The crucial observation is that the set of
smooth curves C∞(R, E) only depends on the bornology of the locally convex space. This is due to
the following mean value theorem, which guarantees that the convergence of the difference quotient
to the respective derivative is Mackey, consequently smoothness only depends on the bornology.

1.1. Lemma. Let E be a locally convex space and c : [a, b] = I → E be a continuous curve
differentiable except at points in a countable subset D ⊂ I. Let A be a closed convex subset of E with
c′(t) ∈ A for t ∈ I \D, then

c(b)− c(a) ∈ (b− a)A

Proof. (see [KM97], p. 10) By the theorem of Hahn-Banach we can reduce the problem to the
case E = R. Let l be a continuous linear functional such that

l(c(b)− c(a)) /∈ l((a− b)A)

under the assumption that the assertion is not satisfied. However l ◦ c satisfies the hypotheses of the
one-dimensional mean value theorem with convex set l(A). So we conclude by contradiction.

By the mean value theorem we conclude that for a smooth curve c the curve

t 7→ 1
t
(
c(t)− c(0)

t
− c′(0))
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is bounded on bounded intervals which means Mackey-convergence. Furthermore for scalarly smooth
curves into to a locally convex vector space the difference quotients are Mackey-Cauchy-nets, which
can simply be tested scalarly by looking at the boundedness of

1
t− s

(
c(t)− c(0)

t
− c(s)− c(0)

s
)

The Riemann integral is defined canonically for continuous curves, the fundamental theorem of
calculus is valid and continuous functionals commute with the integral. Furthermore the Riemann
sums form a Mackey-Cauchy net for smooth curves.

1.2. Lemma (special curve lemma). Let E be a locally convex space and {xn}n∈N a sequence
converging fast to zero, then the infinite polygon through xn can be smoothly parametrized, i.e. there
is a smooth curve with c( 1

n) = xn.

Proof. (see [KM97], p. 18) Let φ : R → R be a smooth curve with φ(t) = 0 for t ≤ 0 and
φ(t) = 1 for t ≥ 1. We parametrize as follows:

c(t) :=


x for t ≤ 0

xn+1 + φ(
t− 1

n+1
1
n
− 1
n+1

)(xn − xn+1) for 1
n+1 ≤ t ≤

1
n

x1 for t ≥ 1

This parametrization has the desired properties due to fast convergence.

The special curve lemma is useful in many proofs of convenient analysis, for example to show
that a linear map between locally convex spaces is bounded if and only if it maps smooth curves
to smooth curves. One direction is given by the above statements, the other direction is proved by
contradiction. Assume that a linear map f : E → F carries smooth curves to smooth ones and
that there is a bounded set B with f(B) unbounded, then there is a sequence {bn}n∈N in B with
|l ◦ f(bn)| ≥ nn+1 for n ∈ N and some l ∈ F ′. {n−nbn}n∈N converges fast to 0 in E and lies by the
special curve lemma on the compact part of a smooth curve, but consequently f(n−nbn) should be
bounded.

1.3. Definition. Let E be a locally convex space. E is said to be convenient if one of the
following equivalent conditions is satisfied:

1. For c ∈ C∞(R, E) the Riemann-integral
∫ 1

0 c(t)dt exists.
2. A curve c : R→ E is smooth if and only if λ ◦ c ∈ C∞(R,R) for all λ ∈ E′.
3. E is Mackey-complete.

Similarly the concept of a Lipn-curve depends only on the bornology of the space. c : R → E
is called Lipn for n ∈ N if c is n-times differentiable and c(n) is locally Lipschitz on R. The set of
Lipn-curves to E is denoted by Lipn(R, E). By adapting the order of Lipschitz-differentiability we
can proof similar statements for Lipschitz curves as stated for smooth curves. Obviously smooth
curves are Lipn for all orders. A Lipn-curve c : R → E ”factors” over compact intervals J into a
normed space of the type EB ↪→ E for some absolutely convex bounded set B as a Lipn-curve.

We fix the locally convex topology of uniform convergence of all derivatives on compact subsets
of R on the space of smooth curves C∞(R, E) into a convenient vector space E. This is the initial
topology with respect to the maps

C∞(R, E) dk→ C∞(R, E)→ l∞(K,E)

with k ∈ N and K a compact subset of the real line. l∞(K,E) is the space of bounded maps from K
to E with uniform convergence of K. Remark that this topology coincides with the usual topology
on C∞(R,Rn).

1.4. Lemma (general curve lemma). Let E be a convenient vector space and {cn} a sequence
of curves in C∞(R, E) converging fast to 0. Let sn ≥ 0 be a sequence of real numbers with

∑
n∈N+

sn <

∞, then there is a smooth curve c : R→ E and a converging sequence {tn}n∈N+ with

c(t+ tn) = cn(t) for |t| ≤ sn
for t ∈ R and n ∈ N+.



4 1. CONVENIENT ANALYSIS

Proof. (see [KM97], 12.2.) Let rn :=
∑

1≤k<n( 2
k2 + 2sk) and tn := rn+rn+1

2 . Let h : R→[0, 1]
be smooth with h(t) = 1 for t ≥ 0 and h(t) = 0 for t ≤ −1. We put hn(t) := h(n2(sn+t))h(n2(sn−t))
and

c(t) :=
∑
n∈N+

hn(t− tn)cn(t− tn)

which exists since for any t there is at most one non-zero summand. The series of derivatives of k-th
order is uniformly converging on R, consequently c is a smooth curve.

The final topology with respect to all smooth curves (or Lipschitz curves) is denoted by c∞E.
Up to Fréchet spaces c∞E = E topologically, but for more general convenient vector spaces c∞E
even fails to be a topological vector space. The bornological topology is the finest locally convex
topology coarser than the c∞-topology. c∞-open subsets are the natural domains of definition of
smooth mappings (see [KM97], ch.1) . We shall refer to this topology as smooth topology on a
convenient vector space.

It is useful to deeply understand the c∞-topology on a convenient vector space, because this
is the natural topology for analytic questions on convenient vector spaces. A subset A of a locally
convex vector space is c∞-closed if the inverse image under smooth curves is closed. This is equivalent
to the statement that all Mackey-converging sequences in A with fixed quality {µn}n∈N of positive
real numbers have limits in A. The equivalence is established via the special curve lemma: Given
a Mackey-converging sequence in A with quality {µn}n∈N, then we can choose a fast converging
subsequence, which lies on a compact part of a smooth curve, consequently the limit lies in A. If the
limits of all Mackey-converging sequences in A with fixed quality {µn}n∈N lie in A, then the inverse
image of a smooth curve has to be closed, because the limits c(t)→ c(s) for t→ s are Mackey-limits
with quality |t− s|, so one obtains any quality.

1.5. Remark. E is convenient if and only if E is c∞-closed in any locally convex vector space,
where E is assumed to be embedded. Let E be embedded in a locally convex vector space F . If
E is convenient, then a fast falling sequence in E lies on a compact part of a smooth curve in
E by the special curve lemma, consequently the limit lies in E and E is c∞-closed. E can be
embedded naturally in L(E∗equ,R), the space of all linear functionals on E∗, which are bounded on
equicontinuous sets of continuous linear functionals, via δ(x)(l) = l(x). By the bipolar theorem we
see that this is a homeomorphism and L(E∗equ,R) is complete, so convenient. If E is c∞-closed in this
space any Mackey-Cauchy-sequence in E has a limit in E. C∞(R, E) is convenient if and only if E
is convenient. E can be embedded into C∞(R, E) via constant curves as a c∞-closed subspace, so E
is convenient if C∞(R, E) is convenient. Denote by l∞(R, E) the projective limit of the restrictions
to the compact subsets, then we obtain a convenient vector space, which can be seen directly. The
mapping c 7−→ (c(n))n∈N is an embedding of C∞(R, E) to a closed subspace of

∏
n∈N l

∞(R, E).

1.6. Remark. A sequence is c∞-convergent if and only if any subsequence has a subsequence,
which is Mackey-convergent. One direction is clear since Mackey-convergence implies c∞-convergence.
We show that there is a Mackey-converging subsequence of a c∞-converging sequence: A := {xn |n ∈
N} is assumed not to contain the limit without loss of generality, so it can not be c∞-closed, so there
is a subsequence converging Mackey to some x′ ∈ E, which is a fortiori equal to x. If every c∞-
converging sequence has a Mackey-converging subsequence, then every subsequence of this sequence
has one. On Fréchet spaces we have consequently c∞E = E, because every converging sequence
converges Mackey, so the identity id : c∞E → E, which is continuous, has a sequentially continuous
inverse, but this means continuous on a Fréchet space.

1.7. Remark. Let E be a non-normable convenient bornological vector space, then c∞(E×E′)
is not a topological vector space, but c∞(E × Rn) = c∞E × c∞Rn. The pairing 〈., .〉 : E × E′ → R

is a bounded bilinear map, so smooth and 〈., .〉 : c∞(E × E′) → R is continuous. Assume that
addition + : c∞(E×E′)×c∞(E×E′)→ c∞(E×E′) were continuous, then via the natural inclusions
c∞E → c∞(E × E′), c∞(E′) → c∞(E × E′) one could write the pairing on c∞E × c∞(E′) as a
composition of continuous maps

c∞E × c∞(E′)→ c∞(E × E′)× c∞(E × E′) +→ c∞(E × E′) 〈.,.〉→ R
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So there exist open 0-neighborhoods U ⊂ c∞E, V ⊂ c∞(E′) with |〈U, V 〉| ⊂ [0, ε[ for any ε > 0. The
inclusion remains if one replaces the open sets by their absolutely convex hulls, but convex c∞-open
sets are open in the bornological topology. Hence U is scalarwise bounded, since V is absorbing, so
U is bounded. Consequently E has to be normable by Kolmogorow’s theorem. Nevertheless for all
n ≥ 1 we have c∞(E × Rn) = c∞E × Rn.

1.8. Remark. There is a unique convenient vector space Ẽ and a bounded linear injection
i : E → Ẽ such that each bounded linear mapping l : E → F can be extended along i. Furthermore
i(Ẽ) is dense in the c∞-topology (see [KM97], 4.29.).

1.9. Definition. Let E,F be locally convex vector spaces and f : U ⊂ E → F a mapping, where
U ⊂ E is c∞-open in E. f is said to be smooth if

∀ c ∈ C∞(R, U) : f ◦ c ∈ C∞(R, F )

The first derivative df : U × E → F is simply defined by the well known formula df(x)(v) :=
d
dtf(x + tv)|t=0 for x ∈ U, v ∈ E. Let n ∈ N be a natural number. A mapping f : U → F , where
U ⊂ E is c∞-open, is called Lipn if

∀ c ∈ C∞(R, U) : f ◦ c ∈ Lipn(R, F )

1.10. Remark. The composition of smooth maps is smooth by definition and smooth maps
detect smooth curves by composition. This vice versa relation will be axiomatized by the concept
of Frölicher spaces. Given a convenient vector space E and a subset F of E′ of bounded linear
functionals, such that the elements of F detect the bounded sets in E. Then a curve c : R → E is
smooth if and only if l ◦ c is smooth for all l ∈ F (see uniform S-boundedness principle, [KM97],
5.22.).

1.11. Remark. The composition of Lipk-maps is Lipk, which can be seen by the general curve
lemma. We show the Lip0-case: Given a Lip0-function f : U → R and suppose that there is a
Lip0-curve d : R → U such that f ◦ d is not Lip0 around 0, then there are sequences {un}n∈N and
{vn}n∈N with un 6= vn, |un| ≤ 1

4n and |vn| ≤ 1
4n such that

|f ◦ d(un)− f ◦ d(vn)| ≥ |un − vn|2nn
By the general curve lemma we find a smooth curve c associated to sn = |un − vn|2n and cn(t) =
d(un) + td(vn)−d(un)

|(vn−un)|2n . Around 0 the curve maps to U and consequently we obtain

|f ◦ c(tn + sn)− f ◦ d(tn)|
sn

=
|f ◦ d(un)− f ◦ d(vn)|

sn
≥ n

which is a contradiction. The rest is done by a sophisticated induction.

The concept of smoothness follows an idea of Boman [Bom67]. Up to Banach spaces this concept
of smoothness coincides with all reasonable concepts, but even on R2 the proof of this assertion is
not trivial:

1.12. Proposition. Let f : R2 → R be a mapping, then the following statements are equivalent:
1. All iterated partial derivatives exist and are continuous.
2. All partial derivatives exist and are locally bounded.
3. For v ∈ R2 the iterated directional derivatives

dnvf(x) :=
∂n

∂tn
|t=0f(x+ tv)

exist and are locally bounded with respect to x.
4. For all smooth curves c the composite f ◦ c is smooth

Proof. For the proof see [Bom67] or [KM97], 3.4: 1.⇒ 2. is obvious and 2.⇒ 1. is given by
integration, we get continuity immediately via

f(s, t)− f(0, 0) = s

∫ 1

0
∂1f(σs, t)dσ + t

∫ 1

0
∂2f(0, τ t)dτ

1.⇒ 4.: by the classical chain rule.
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4. ⇒ 3.: existence of the iterated directional derivatives is clear. Assume that there is a fast
converging sequence {xn}n∈N with |dpvf(xn)| ≥ 2n

2
. By the general curve lemma there is a smooth

curve c with c(tn+ t) = xn+ t
2n v locally with tn converging to 0 (by translation), then (f ◦c)(p)(tn) =

dpvf(xn) 1
2np , which yields a contradiction. Remark that this argument is valid on c∞-open subsets of

a locally convex space.
3. ⇒ 1.: First we show the continuity of dpvf by induction on p. For p = 0 we refer to 2. ⇒ 1.,

for p > 0 we apply that dpvf(. + tv) − dpvf(.) = t
∫ 1

0 d
p+1
v f(. + tτv)dτ → 0 for t → 0 uniformly on

bounded sets. Assume that there is a sequence {xn}n∈N converging to x with dpvf(xn)− dpvf(x) ≥ ε,
then there is δ > 0 such that for |t| < δ

dpvf(xn + tv)− dpvf(x+ tv) ≥ ε

2

Integration
∫ δ

0 dt leads to

dp−1
v f(xn + δv)− dp−1

v f(x)− (dp−1
v f(x+ δv)− dp−1

v f(x)) ≥ εδ

2
but by induction the left hand side converges to 0. By convolution with a Dirac sequence we can
conclude: fε := f ∗ φε → f in C(R2,R) for any continuous function f . fε is smooth, furthermore
(dpvf)ε = dpvfεby the properties of convolution and the uniform convergence on bounded sets. There is
a universal formula expressing iterated partial derivatives by iterated directional derivatives depend-
ing on the v’s inserted. So we know that the iterated partial derivatives of fε converge to continuous
functions, but then we can easily prove that f is smooth.

Remark that all these statements could be made in the case of vector-valued functions by testing
scalarly.

The exponential law is a categorical statement of the type ZX×Y = (ZX)Y , where XY denotes
the morphisms from Y to X (which should be in the category). First we provide C∞(U,F ) with the
initial locally convex structure given through

C∞(U,F ) c∗→ C∞(R, F ) for all c ∈ C∞(R, U)

This locally convex structure can be tested by evaluation of smooth functions along smooth curves.
It coincides with the usual structure on C∞(Rn,Rm). In our case we shall prove C∞(E × F,G) =
C∞(E,C∞(F,G)). In order to do this it is sufficient to prove the simplest case of the exponential
law:

1.13. Theorem. Let f : R2 → R be an arbitrary mapping, then all partial derivatives exist and
are locally bounded if and only if the associated map f̌ : R→ C∞(R,R) exists as a smooth curve.

Proof. We show the theorem in several steps (see [KM97], 3.2.): By Boman’s theorem we know
that the existence of all partial derivatives with respective local boundedness means the existence
of the associated map f̌ : R → C∞(R,R). We observe that (dq( f̌(t)))(s) = ∂q2f(t, s). To prove
smoothness of f̌ we look at c(t) = f̌(t+a)−f̌(a)

t for t 6= 0 and c(0)(s) = ∂1f(a, s) and prove continuity
of c : R→ C∞(R,R). This can be tested by looking at dq ◦ c : R→ C(R,R). By the exponential law
C(R2,R) =C(R, C(R,R)) we arrive at d̂q ◦ c : R2 → R. If these functions are continuous, then c is
continuous. However, the formulation is already the proof, since

d̂q ◦ c(t, s) =
∫ 1

0
∂1∂

q
2f(tτ, s)dτ for all (t, s)

which is continuous on R2. The rest is done by induction, because df̌ = ˇ∂1f .
The other direction can be easily checked by writing down what has to be shown.

To be able to handle more general structures and to give a more abstract, but coherent idea of
convenient calculus we introduce Frölicher spaces (smooth spaces).

1.14. Definition. A non-empty set X, a set of curves CX ⊂Map(R, X) and a set of mappings
FX ⊂Map(X,R) are called a Frölicher space if the following conditions are satisfied:

1. A map f : X → R belongs to FX if and only if f ◦ c ∈ C∞(R,R) for c ∈ CX .
2. A curve c : X → R belongs to CX if and only if f ◦ c ∈ C∞(R,R) for f ∈ FX
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Let X be a Frölicher space, then CX is called the set of smooth curves, FX the set of smooth real
valued functions. Mappings between Frölicher spaces are called smooth if they map smooth curves
to smooth curves. Let X,Y be Frölicher spaces then C∞(X,Y ) has a natural structure of a Frölicher
space due to the following requirement:

C∞(X,Y )
C(f,c)→ C∞(R,R) λ→ R

is a smooth map for c ∈ CX , f ∈ FY and λ ∈ C∞(R,R)′, where C(f, c)(φ) := f ◦φ ◦ c. The Frölicher
space structure generated by these smooth maps is the canonical structure on C∞(X,Y ).

1.15. Remark. Let U be c∞-open in a convenient vector space, then the structure

[U,C∞(R, U), C∞(U,R)]

constitutes a Frölicher space. Given a convenient vector space F , the Frölicher space structure on
C∞(U,F ) coincides with the structure given through the convenient structure of C∞(U,F ). We
show that the smooth curves and the smooth functions are the same: A curve d : R→C∞(U,F ) is
smooth with respect to the convenient structure if and only if λ ◦ l∗ ◦ c∗ ◦ d : R→ R is smooth for all
c ∈ C∞(R, U) and l ∈ F ′, λ ∈ C∞(R,R)′. This is equivalent to the smoothness of λ◦f∗◦c∗◦d : R→ R

for λ ∈ C∞(R,R)′, f ∈ C∞(F,R) and c ∈ C∞(R, U). Smooth maps are defined in the same way,
consequently they coincide, since in both categories smooth functions determine smooth curves.

1.16. Proposition. The category of Frölicher spaces is complete, cocomplete and cartesian
closed.

Proof. (see [KM97], 23.2.) We can look at the respective limits in the category of sets and
provide them with an obvious respective Frölicher structure which is a fortiori the (co)limit in the
category of Frölicher spaces.

The exponential law asserts that the natural map

i : C∞(X,C∞(Y, Z))→ C∞(X × Y, Z)

exists and is a diffeomorphism. Given f : X × Y → Z, g : X → C∞(Y, Z) smooth we investigate,
when i−1(f) = f̌ , i(g) = ĝ is smooth:

f̌ is smooth ⇐⇒
f̌ ◦ cX is smooth for all cX ∈ CX ⇐⇒
C(fZ , cY ) ◦ f̌ ◦ cX ∈ C∞(R,R) for all cX ∈ CX , cY ∈ CY , fZ ∈ FZ ⇐⇒

̂C(fZ , cY ) ◦ f̌ ◦ cX = fZ ◦ f ◦ (cX × cY ) = fZ ◦ ̂(c∗Y ◦ f̌ ◦ cX) : R2 → R is smooth for all cX ∈ CX ,
cY ∈ CY , fZ ∈ FZ by the simplest case of the exponential law.

Each smooth curve into X × Y (cX , cY ) is of the form (cX × cY ) ◦∆ where ∆ : R → R
2denotes

the diagonal map. So f̌ is smooth if and only if f is smooth, which implies existence of i.
By this observation we already get that i is a diffeomorphism, because

C∞(R, C∞(X,C∞(Y, Z)) = C∞(R×X × Y, Z) = C∞(R, C∞(X × Y, Z))

via the mapping i.

Convenience is not preserved by colimits, so the cocompleteness statement in the category of
convenient vector spaces with smooth maps has to be replaced by a weaker one. Namely, convenience
is preserved by direct limits, strict inductive limits of sequences of closed embeddings.

Sometimes it is very instructive to have good counterexamples in mind, especially in these rather
subtle matters (see [KM97], ch.1):

1.17. Theorem. The following statements are false:
1. The c∞-closure of a subset or a linear subspace is given by the limits of all Mackey-converging

sequences of the respective set in the total space.
2. A c∞-dense subspace of a convenient vector space has this space as c∞-completion.
3. If a space is c∞-dense in a total space, then it is c∞-dense in all linear spaces lying in-between.
4. Every bounded linear functional on a subspace can be extended to a bounded linear functional

on the total space.
5. A linear subspace of a bornological locally convex space is bornological.
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In the following theorem we collect the relevant statements on convenient calculus, which shall
be applied in the thesis (see [KM97], ch.1 for more detailed proofs):

1.18. Theorem. Let E,F,G be convenient vector spaces, U ⊂ E, V ⊂ F c∞-open, then we
obtain:

1. Multilinear mappings are smooth if and only if they are bounded.
2. If f : U → F is smooth, then df : U × E → F and df : U → L(E,F ) are smooth.
3. The chain rule holds.
4. The vector space C∞(U,F ) of smooth mappings f : U → F is again a convenient vector space

with the following initial topology:

C∞(U,F ) c∗→
∏

c∈C∞(R,U)

C∞(R, F ) λ∗→
∏

c∈C∞(R,U), λ∈F ′
C∞(R,R)

5. The exponential law holds, i.e.

i : C∞(U,C∞(V,G)) ∼= C∞(U × V,G)

is a linear diffeomorphism of convenient vector spaces. Usually we write i(f) = f̂ and i−1(f) =
f̌ .

6. Taylor’s formula is true, if by applying cartesian closedness and obvious isomorphisms one
defines the multilinear-mapping-valued higher derivatives dnf : U → Ln(E,F ) of a smooth
function f ∈ C∞(U,F ), more precisely for x ∈ U, y ∈ E so that [x, x + y] = {x + sy|0 ≤ s ≤
1} ⊂ U we have the formula

f(y) =
n∑
i=0

1
i!
dif(x)y(i) +

∫ 1

0

(1− t)n

n!
dn+1f(x+ ty) (y(n+1))dt

for all n ∈ N.
7. The smooth uniform boundedness principle is valid: A linear mapping f : E → C∞(V,G) is

smooth (bounded) if and only if evv◦f : E → G is smooth for v ∈ V , where evv : C∞(V,G)→ G
denotes the evaluation at the point v ∈ V .

8. The smooth detection principle is valid: f : U → L(F,G) is smooth if and only if evx ◦f : U →
G is smooth for x ∈ F (This is a reformulation of the smooth uniform boundedness principle
by cartesian closedness).

9. Let E be a normed space and f : U → F be a Lip0-mapping, then f is locally Lipschitz, i.e.
for every point x ∈ U there is a neighborhood V ⊂ U with

{f(x)− f(y)
‖x− y‖

|x 6= y ∈ V } is bounded in F

Proof. 1. Apply the exponential law L2(E,F ) = L(E,L(E,F )) inductively.
2. Smoothness is clear by definition, the rest is given by the exponential law. By the uniform

boundedness principle for convenient vector spaces the point evaluations are sufficient.
3.-6. has already been proved, where Taylor’s formula is obtained via a scalar proof.
7.-8. We need bounded linear functionals on L(F,G) which detect the bornology. However, that

the point evaluations detect the bornology is the assertion of the uniform boundedness principle on
convenient vector spaces.

9. We assume that for a point z ∈ U there are sequences {xn}n∈N, {yn}n∈N and a linear bounded
functional l ∈ F ′ with ||xn − z|| ≤ 1

2n , ||yn − z|| ≤ 1
2n , xn 6= yn and

|l(f(xn))− l(f(yn))| ≥ ||xn − yn||n

Now we take a Lip0-curve with c(t) = x1 for t ≤ 0, then c runs with constant speed from x1 to y1

in the time interval [0, ||x1 − y1||], then c runs from y1 to x2 with constant speed on the interval
[||x1 − y1||, ||x1 − y1||+ ||y1 − x2||] and so on. The construction finishes at a certain point t∞ where
we continue by z. We obtain consequently ||c(t)− c(s)|| ≤ |t− s|. Around t∞ the Lip0-curve lies in
U , so we can look at l ◦ f ◦ c, but this yields a contradiction by construction.
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2. Analytic Calculus

The concepts of smooth convenient calculus can be easily carried over to the holomorphic world
(see [KM97], ch.2 for details and references). In this section we assume all convenient vector spaces
to be complex or equivalently that on a real convenient vector space E there is a bounded linear map,
the complex structure , J : E → E with J2 = −idE , which will be referred to as complex structure.
Holomorphic curves to locally convex vector spaces are a common concept, i.e. for all |z| < 1 the
limit c(z+w)−c(z)

w exists in E for w → 0 on the unit disk. By E∗ we denote the space of complex linear
functionals, a complex linear functional, i.e. l ◦ J = i · l, is uniquely determined by its real part, so
E′
R
' E∗. By D we denote the unit disk in C. Complex linear functionals detect boundedness, too.
Given a sequence {an}n∈N in a convenient vector space, then by Abel’s theorem, the boundedness

of

{rnan |n ∈ N} for all |r| < 1

in E is equivalent to strong and weak convergence of the power series
∑

n∈N z
nan on D, the conver-

gence is Mackey and uniform on compact subsets.
If a curve on the unit disk is weakly holomorphic, then for any continuous l ∈ E∗ the difference

quotient l( c(z+w)−c(z)
w ) extends to a holomorphic function in w on a small neighborhood of 0, so it

is locally Lipschitz and consequently the difference quotient forms a Mackey-Cauchy net. If c is
holomorphic, then for all continuous l ∈ E∗ l ◦ c is weakly holomorphic with derivative l ◦ c′, so
1
z ( c(z)−c(0)

z − c′(0)) is complex differentiable by the previous statement. Consequently l(1
z ( c(z)−c(0)

z −
c′(0))) is locally bounded for a bounded complex linear functional l.

The equivalence of weak and strong complex differentiability yields immediately that many the-
orems of classical complex analysis can be carried to the generic case: So holomorphic curves have
a Taylor representation as power series, Cauchy’s theorem is valid. A curve is holomorphic if and
only if it is Lip1 and the first derivative is complex linear. Furthermore if a curve c is holomorphic,
then for B ⊂ E bounded, absolutely convex and closed c factors as holomorphic curve to EB, since
it factors as Lip1-curve and the derivative is complex linear.

Holomorphic mappings on c∞-open subsets of a convenient vector space are those mapping holo-
morphic curves to holomorphic ones.

2.1. Proposition (Hartog’s theorem). Let E1, E2 be convenient vector spaces with U c∞-
open in E1 × E2, then f : U → F is holomorphic if and only if it is separately holomorphic.

Proof. (see [KM97], 7.9.) Since incl−1
y (E1×{y}∩U ) is c∞-open in E1 f(., y) is holomorphic.

Assume that f is separately holomorphic: For any holomorphic curve (c1, c2) : D→U we consider
the holomorphic mapping c1 × c2 : D2→E1 × E2, which is smooth. So (c1 × c2)−1(U) is open in D2.
Given l ∈ F ∗ we know that l ◦ f ◦ (c1 × c2) : (c1 × c2)−1(U) → C is separately holomorphic and
consequently holomorphic by the classical Hartog’s theorem. Composition with the diagonal map
yields the result.

Let f : U → F be a holomorphic mapping, then the derivative df(v)(w) = d
dz |z=0f(v + zw) is

complex linear in w and holomorphic in both variables. Complex linearity follows from composition
with a bounded complex linear functional and restriction to a two-dimensional subspace.

A multilinear mapping between convenient vector spaces is bounded if and only if it is holomor-
phic. Since this can be tested separately by Hartog’s theorem it is sufficient to check it for complex
linear functionals: One direction is already clear, assume that a complex linear functional is holo-
morphic: Given a sequence {an}n∈N with |f(an)| > 1 and {2nan| n ∈ N} is bounded in E. The power
series c(z) :=

∑
n∈N+

(an − an−1)(2z)n describes a holomorphic curve in E, so f ◦ c is holomorphic
and has a power series expansion (f ◦ c)(z) =

∑
n∈N bnz

n, however,

bn = (f(an)− f(an−1))2n

by linearity, so 0 = f(0) = f(c(1
2)) =

∑
n∈N+

f(an)− f(an−1) = limn→∞ f(an), which is a contradic-
tion.

To finish with the basics of convenient calculus we need some properties of power series on
convenient vector spaces: Let fk be k-linear symmetric scalar valued bounded mappings on a Fréchet
space E for k ∈ N, then the following statements are equivalent by the Baire property (see [KM97],
7.14.):
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1.
∑

k∈N fk converges pointwise on an absorbing subset of E.
2.
∑

k∈N fk converges uniformly and absolutely on some neighborhood of 0.
3. {fk(xk) | k ∈ N, x ∈ U} is bounded on some neighborhood U of 0.
4. {fk(x1, ..., xk) | k ∈ N, xj ∈ U} is bounded on some neighborhood U of 0.
If a power series

∑
k∈N fk converges pointwise on a convenient vector space and the resulting

mapping is bounded on bounded sets, then the convergence is uniform on bounded sets.

2.2. Theorem. Let f : U ⊂ E → F be a mapping from a c∞-open subset, then the following
assertions are equivalent:

1. f is holomorphic.
2. For all l ∈ F ′ and all absolutely convex closed and bounded subsets B the mapping l◦f : EB →
C is holomorphic.

3. f is holomorphic along (complex) affine lines and is bounded on bornologically compact subsets.
4. f is holomorphic along (complex) affine lines and is c∞-continuous.
5. f is holomorphic along (complex) affine lines and at each point the first derivative is a bounded

complex linear mapping.
6. f is given c∞-locally by a convergent series of bounded homogeneous complex polynomials.
7. f is holomorphic along (complex) affine lines and in every connected component of U there is

at least one point where all derivatives are bounded complex multilinear mappings.
8. f is smooth and the derivative is complex linear at any point.
9. f is Lip1 and the derivative is complex linear at any point.

Proof. (see [KM97], 7.19.) Since holomorphic curves factor over some EB-spaces the first and
second assertion are equivalent, consequently we can reduce the prove to the scalar valued case and
to the case of a Banach space E, with exception of 6., which will be proved to be equivalent at the
end of the proof:

1. ⇒ 5.: The complex derivative is holomorphic in both variables, consequently bounded and
complex linear in the second.

1.⇒ 6.: We choose a fixed point z ∈ U , along the affine lines through z the mapping f is given
by a pointwise convergent power series, by classical Hartog’s theorem this is true for all affine finite
dimensional subspaces in U . The mapping df : U → E′ is well-defined and holomorphic, since this
can be tested by point evaluation, consequently we can proceed by induction to obtain that the higher
derivatives are bounded complex multilinear mappings at each point, representing the function by a
power series converging pointwise (see power series on Fréchet spaces).

6. ⇒ 3.: By the above remarks uniform convergence follows immediately on a Banach space E
and the resulting function is continuous.

3.⇒ 4.: is obvious.
4.⇒ 5.: By the one-dimensional Cauchy integral formula

df(z)(v) =
1

2πi

∫
|λ|=1

f(z + λv)
λ2

dλ

the first derivative at a point z is bounded for compact sets K for which {z+λv ∈ U | v ∈ K, |λ| ≤ 1},
consequently a bounded linear functional.

6.⇒ 1.: Composing the power series of a curve and a power series yields a holomorphic curve on
Fréchet spaces again by the Baire property.

6.⇒ 7.: is obvious.
7. ⇒ 1.: By Hahn’s theorem (see [KM97], 7.18) the limit of a sequence of almost continuous

functions on a Baire space is almost continuous. The first derivative as a limit of difference quotients
is almost continuous, so continuous since it is linear. Consequently the set where f is holomorphic
near a point contains with a point z the star around z in U around by 5.⇒ 1.. The set is not empty
since near the point where all derivatives are bounded multilinear the function is holomorphic. So f
is holomorphic since every connected component is polygonally connected.

8.⇒ 9.: is obvious
9.⇒ 3.: f is holomorphic along (complex) affine lines and c∞-continuous
1.⇒ 8.: All derivatives are again holomorphic and thus locally bounded and smooth.
For the case of a convenient space E we have to show the equivalence of the equivalent other

assertions:



3. CONVENIENT MANIFOLDS 11

6. ⇒ 1.: f |U∩EB is locally the pointwise limit of some polynomials, so holomorphic on U ∩ EB,
consequently it is holomorphic, since holomorphic curves factor to some EB as holomorphic curves.

1. ⇒ 6.: Let f be holomorphic on U . The mapping f |U∩EB satisfies all equivalent assertions
of the theorem for each closed absolutely convex bounded B, so f is smooth and its Taylor series
converges pointwise on a c∞-open neighborhood, since it converges on the star around z in U .

By the real chain rule and the previous theorem we obtain that the chain rule holds. The space
H(U,F ) is a closed subspace of the smooth functions, since complex linearity is preserved by limits
in C∞(U,F ). We provide it with the induced convenient vector space structure:

2.3. Theorem (Cartesian closedness). For convenient vector spaces E1, E2 and F , Ui ⊂ Ei
the following convenient vector spaces are isomorphic via the ”unifying map”

i : H(U,H(V,G)) ∼= H(U × V,G)

Proof. (see [KM97], 7.22.) For given f the mapping i−1(f) = f̌ is smooth. Its derivative is
canonically associated to the first partial derivative, which is complex linear, so f̌ is holomorphic.
If f̌ is holomorphic, then we conclude by cartesian closedness that f is smooth, the derivative is
complex linear as composition of complex linear maps:

df(x, y)(u, v) = ((df̌)(x)v)(y) + (d ◦ f̌)(x)(y)w

The map i is bibounded by smooth cartesian closedness and the closedness of the holomorphic
functions in C∞(U,F ).

Analytic calculus will be useful in determining the convergence of the exponential series in the
second chapter.

3. Convenient Manifolds

Convenient Calculus was designed as a basis for infinite dimensional geometry (see [KM97] for
details and references). The concept of a convenient manifold is common, only some topological
questions have to be answered more precisely. As far as vector fields are concerned one already feels
the difficulties of infinite dimensional differential geometry, whereas differential forms can be defined
straight forward after some subtle investigations. A chart on a set M is a mapping u : U → u(U) ⊂
EU , where EU is a convenient vector space and U ⊂ M , u(U) ⊂ EU is c∞-open. For two charts
(uα, Uα), (uβ, Uβ) the chart changing uαβ := uα ◦u−1

β : uαβ(Uαβ)→ uαβ(Uαβ), where Uαβ := Uα∩Uβ
. An atlas is a collection of charts such that the Uα form a cover of M and the chart changings are
defined on c∞-open subsets of the respective convenient spaces. A C∞-atlas is an atlas with smooth
chart changings. Two C∞-atlases are equivalent is their union is an C∞-atlas, a maximal C∞-atlas is
called a C∞-structure on M (maximal is understood with respect to some carefully chosen universe
of sets). A smooth (convenient) manifold is a set together with a C∞-structure.

A smooth mapping f : M → N between smooth manifolds is defined in the canonical way, i.e.
for any x ∈M there is a chart (V, v) with f(x) ∈ V , a chart (U, u) of M with x ∈ U and f(U) ⊂ V ,
such that v ◦ f ◦ u−1 is smooth. This is the case if and only if f ◦ c is smooth for all smooth curves
c : R→M , where the concept of a smooth curve is easily set upon.

The final topology with respect to smooth curves or equivalently the final topology with respect to
all inverses of chart mappings is the canonical topology of the smooth manifold. We assume manifolds
to be smoothly Hausdorff (see the discussion in [KM97], p. 265), i.e. the real valued smooth functions
on M separate points. In fact we shall often assume smooth regularity (see appendix 1), i.e. the
smooth functions generate the topology on M , but we do not add to the general definition of a
manifold. The product of smooth manifolds is defined canonically by building up the product of the
atlases, however the canonically associated topology of the product of two smooth manifolds may be
finer than the product topology of them, since this is true for convenient vector spaces. Smoothly
regular manifolds are Frölicher spaces with the real valued smooth functions and the smooth curves
as structure elements.

The concept of tangent vector is natural, but poses already several problems (see [KM97],28.):
The kinematic tangent vectors given as equivalence classes by touching at a point of smooth curves
induce bounded derivations on the algebra of germs of smooth functions at a point. Nevertheless
the convenient vector space of bounded derivations of the algebra of germs at a point, the so called
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operational tangent vectors , cannot generically be identified with the kinematic tangent space, since
there are much more. We denote the kinematic tangent space by TaM , the operational tangent space
by DaM for a ∈ M , they are canonically isomorphic to Eα and D0Eα for the modelling space Eα
around a.

The concept of a vector bundle over smooth manifolds is well-known: Let p : E → M be a
smooth mapping between smooth manifolds. A vector bundle chart is a pair (U,ψ), where U is an
open subset in M and ψ is a fiber preserving diffeomorphism ψ : E|U := p−1(U) → U × V with
pr1 ◦ψ = p, where V is a convenient vector space. Two vector bundle charts are called compatible if
(ψ1 ◦ ψ−1

2 )(x, v) = (x, ψ12(x)v) is a fiber linear isomorphism on U1 ∩U2. The mapping ψ1,2 : U1 ∩U2

→ GL(V ) is called the transition function between the two vector bundle charts. Atlases are defined
in an obvious way. A vector bundle (E, p,M) is a smooth mapping p : E → M with an equivalence
class of vector bundle atlases. p turns out to be a surjective map with a smooth right inverse, the
0-section.

A vector bundle homomorphism φ : (E, p,M) → (F, q,N) over φ̃ : M → N is a fiber linear
smooth map with q ◦ φ = φ̃ ◦ p. Vector bundle homomorphisms over id are simply referred to as
vector bundle homomorphisms.

There is a simple formal classification of vector bundles with standard fiber V over M . Given a
cover (Uα) of M associated to an atlas, then the transition functions ψα,β : Uα∩Uβ → GL(V ) satisfy
the cocycle condition

(C)
{
ψα,β(x)ψβ,γ(x) = ψα,γ(x) for x ∈ Uα ∩ Uβ ∩ Uγ
ψαα(x) = id for all x ∈ Uα

Given another atlas over the same cover with chart mappings (Uα, φα), then the functions (φα ◦
ψ−1
α )(x, v) = (x, τα(x)v) for some τα : Uα → GL(V ) satisfy

τα(x)ψα,β(x) = φα,β(x)τβ(x) for x ∈ Uα ∩ Uβ

We call such cocycles cohomologuous, the cohomology classes of all cocycles form a set
Ȟ1((Uα), GL(V )), the first Čech cohomology class of the open cover (Uα) with values in the sheaf
C∞(., GL(V )) = GL(V ). By refining the cover we can form a directed system, the direct limit is
denoted by Ȟ1(M,GL(V )). This set is isomorphic to the set of all isomorphism classes of vector
bundles with typical fiber V over M by standard arguments.

By the above description we can easily write down several basic constructions with vector bundles:
Given a covariant functor F from the category of convenient spaces with bounded linear maps, such
that L(V,W )→ L(F(V ),F(W )) is smooth. We will refer to such a functor as smooth functor. For
a cocycle (Uα, φα) of the vector bundle (E, p,M) with typical fiber V we define via F(φα,β)(x) =
F(φα,β(x)) a new cocycle. The cocycle condition and cohomology are preserved by covariance and the
functor properties, consequently there is a smooth vector bundle F((E, p,M)) over M with typical
fiber F(V ). The same construction is valid for contravariant functors via F(φα,β)(x) = F(φ−1

α,β(x)),
we take as cocycle F(φ−1

α,β), such that the cocycle condition is satisfied. So many known functors of
linear algebra can be extended to the curved vector bundle case.

The pullback (f∗E, f∗p,M) of a vector bundle (E, p,N) along f : M → N is defined in an
analogous way by pulling back the cocycles to a cocycle over the pulled back cover.

The definition of the kinematic and operational tangent bundle is now straight forward. Given
a smooth manifold with atlas (M ⊃ Uα

uα→ Eα), then we consider the equivalence relation ∂α ∼ ∂β if
and only if D(uαβ)∂β := ∂β(uαβ)∗ = ∂α for derivations ∂α ∈ D(uα(Uα)) and ∂β ∈ D(uβ(Uβ)) on the
disjoint union

tαD(uα(Uα))

with D(V ) = V ×D0E, where V ⊂ E is c∞-open. The quotient set is called the operational tangent
bundle DM with the obvious footpoint projection πM : DM →M . We define DUα := π−1

M (Uα) and
Duα : DUα → D(uα(Uα)) via Duα(∂α) = ∂α, consequently Duα(∂β) = D(uαβ)∂β. So the charts are
given by (DUα, Duα) and they form a smooth atlas since the chart changings are given by

Duβ ◦Du−1
α = D(uαβ) : D(uα(Uα))→ D(uβ(Uβ))



3. CONVENIENT MANIFOLDS 13

by D(uαβ)(x, ∂) = (uαβ(x), D(uαβ)∂). So DM becomes a smooth manifold since DM is auto-
matically smoothly Hausdorff if M is. The kinematic tangent bundle is constructed in the finite
dimensional manner without any problems.

The tangent mappings are given in the following way: For f : M → N a smooth mapping
Df : DM → DN is defined via Dxf(∂x)(h) = ∂x(h ◦ f) for h a smooth germ around f(x) for x ∈M .
Df is a smooth mapping and restricts to the kinematic tangent space, where we obtain a smooth
mapping Tf : TM → TN . This tangent map can be given classically via mapping curves. All known
functorial properties are preserved in this general setting.

C∞(M,F ) is a convenient vector space with the obvious convenient structure given by the set of
smooth curves, the spaces of sections to vector bundles carry convenient structures, too, by pointwise
given addition and scalar multiplication, which can be extended to smooth mappings on the whole
bundle. We shall not review these structure since we only need the simple fact. We conclude the
section by a collection of definitions and results on kinematic vector fields, differential forms and
the de Rham-complex: Vector fields are defined as derivations of the sheaf of smooth functions on
open sets of a smooth manifold M . If M is smoothly regular, then the vector fields coincide with
the derivations of the algebra of smooth functions on M by standard arguments. The vector fields
are the smooth sections in the operational tangent bundle DM . The situation becomes again more
complicated since the commutator of smooth vector fields, the Lie bracket, is well-defined, but there
are some structural problems with the preservation of the degree of the vector field (see [KM97],
ch.6, section 28). However it is true, that the commutator of two kinematic vector fields is a kinematic
one.

Two vector fields X ∈ X(M), Y ∈ X(N) are called f -related for a smooth map f : M → N if
Df ◦X = Y ◦ f . We obtain a bounded Lie algebra homomorphism f∗ : X(N)→ X(M) if f is a local
diffeomorphism f : M → N (i.e. Txf is invertible on each fiber for x ∈ M). In terms of smooth
sections Y ∈ C∞(N ← DN) the pull back reads as follows: (f∗Y )(x) = (Txf)−1(Yf(x)).

By definition only kinematic vector fields can have integral curves, i.e. a curve c : J → M with
d
dtc(t) = X(c(t)). A flow of a kinematic vector field X is a smooth map FlX : U ⊂M ×R→M with
the following properties:

-U ∩ ({x} × R) is a connected open interval for x ∈M .
-If FlXs (x) exists, then FlXt+s(x) exists if and only if FlXt (FlXs (x)) exists, and they are equal.
-FlX0 (x) = x for x ∈M .
- ddtFl

X
t (x) = X(FlXt (x))

Each kinematic vector field X possessing a flow has a maximal flow FlX producing integral curves,
furthermore X is FlXt -related for any t. The Lie derivative along a vector field can be defined in terms
of flows, but we need for later purposes a slightly more general concept: Let φ : U ⊂M×R→M such
that (t, x) 7→ (t, φ(t, x)) is a diffeomorphism of two open subsets U and V in M × R. Furthermore
φ0(x) = x and d

dt |t=0φt(x) = X(x). Then we can define LXf = d
dt |t=0φ

∗
t f and LXY = d

dt |t=0φ
∗
tY for

f ∈ C∞(M,R) and a vector field X ∈ C∞(M ← DM). We obtain LXf = Df ◦X and LXY = [X,Y ].
This important alternative definition of the Lie bracket will be useful to define a Lie algebra structure
on the right (or left) invariant vector fields of a Lie group.

Let X,Y ∈ X(M) be two vector fields admitting local flows, which are f -related by a smooth
map f : M → M , then f ◦ FlXt = FlYt ◦ f whenever both sides are defined. This is the basis of the
theory of first integrals of differential equations.

For differential forms there are several approaches, which seem to be exchangeable from the finite
dimensional point of view (see [KM97], 33.). However the infinite dimensional setting forces us to a
definite choice of the definition if we want to make the following operations work on differential forms:
The Lie derivative along a vector field X, the pull back along a smooth map and the differential d . We
define differential forms as smooth sections in the vector bundle of alternating bounded multilinear
mappings from the tangent bundle to the trivial bundle M× R.

The wedge product of two differential forms is given by the wedge product of two forms, which is
a classical concept, the antisymmetrization of the tensor product of two forms. We obtain a graded
commutative convenient algebra. The insertion operator is well-defined, too.
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The pull-back along a function f : M → N is given in classical terms, the differential d, too: For
ω ∈ C∞(M ← Lkalt(TM,M × R)) we have

(dω)(x)(X0, ..., Xk) =
k∑
i=0

(−1)iXi(ω ◦ (X0, ..., X̂i, ..., Xk)) +∑
i<j

(−1)i+jω ◦ ([Xi, Xj ], X0, ..., X̂i, ..., X̂j , ..., Xk)

The Lie derivative along a kinematic vector field is well-defined via

(LXω)(X1, ..., Xk) = X(ω(X1, ..., Xk))−
k∑
i=1

ω(X0, ..., [X,Xi], ..., Xk))

for kinematic vector fields X,X0, ..., Xk. The Lie derivative is again given by
d

dt
|t=0φ

∗
tω = LXω

where we apply the above notation. Differential forms of order k are denoted by Ωk(M) and form a
convenient vector space. We can collect the crucial results (see [KM97], 33.18.):

3.1. Theorem. Let M be a smooth manifold, then on the graded commutative algebra of differ-
ential forms the following assertions are valid:

1. iX , d are derivations of degree −1,+1
2. LX is a derivation of degree 0.
3. [LX , d] = 0
4. [iX , d] = LX
5. [LX , LY ] = L[X,Y ]

6. [LX , iY ] = i[X,Y ]

7. [iX , iY ] = i[X,Y ]

where [., .] denotes the graded commutator for graded derivations.

Naturally the Poincaré Lemma is valid for star-shaped domains on a smooth manifold and the
Mayer-Vietoris sequence is exact, so all ingredients of de Rham’s cohomology theory have been
developed in this fairly general setting.

Smooth regularity (see appendix 1) asserts that the smooth topology on N is initial with respect
to the smooth functions in C∞(N,R), which is not apriori clear, since there need not be enough
global smooth functions. Smooth regularity is indeed a reasonable assumption for smooth manifolds,
since otherwise it is impossible to make the rare possible conclusions from local to global in infinite
dimensions. If M is smoothly regular, then each germ at a point has a global representative (see
[KM97], 27.21).

3.2. Lemma. Given a convenient manifold N . Let {cn}n≥0 ⊂ C∞(M,N) be a sequence of
smooth mappings from a finite dimensional compact manifold M to N , such that for all m ∈ M
the sequence {cn(m)}n≥0 lies in a sequentially compact set with respect to the topology c∞N . Let
furthermore c∗n : C∞(N,R)→ C∞(M,R) be a Mackey-Cauchy sequence:

1. Since N is smoothly Hausdorff by the definition of a smooth manifold, there is a smooth curve
c ∈ C∞(M,N) with cn(m) n→∞→ c(m) for all m ∈M .

2. If N is additionally smoothly regular, then for any m ∈M there is a chart (u, U) around c(m)
such that almost all cn lie locally around m (at some fixed open neighborhood V of m) in U
and all derivatives of u ◦ cn converge Mackey uniformly on V to the derivatives of u ◦ c.

Proof. For any point m there exists at least one adherence point of {cn(m)}n≥0. By c∗n :
C∞(N,R) → C∞(M,R) Mackey-Cauchy convergent to some bounded linear map A the adherence
point has to be unique since smooth functions are continuous with respect to c∞N and they sep-
arate points by definition of a smooth manifold, we denote the unique adherence point by c(m).
Consequently there is a mapping c : M → N which is the pointwise limit of {cn}n≥0. The limit
of {f ◦ cn}n≥0 is a smooth functions and by continuity equal to f ◦ c for all f ∈ C∞(N,R), so c is
smooth by the defintion of smoothness. This proves the first assertion.



3. CONVENIENT MANIFOLDS 15

For the second assertion we need a non-negative bump function f with respect to a chart (u, U)
around c(m) taking the value 1 at a small neighborhood of c(m). By uniform convergence of f ◦cn to
f ◦c on a small closed neighborhood V of m we see that on V almost all cn lie in U . By multiplication
of f ◦ u−1 with any linear functional l on the model space we get gobal functions on N representing
locally around c(m) each linear functional. Consequently we obtain that all derivatives of u ◦ cn
converge at the point m Mackey to the respective derivative of u ◦ c by l ◦ u ◦ cn → l ◦ u ◦ c Mackey
in all derivatives and a quality independent of l.
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CHAPTER 2

Convenient Hille-Yosida-Theory

Man hat eine zweite Heimat in der alles, was man tut, unschuldig ist.
(Robert Musil, Der Mann ohne Eigenschaften)

Much work has been done to make a theory on strongly continuous semigroups on locally convex
spaces, however, some main ingredients for useful theories on locally convex spaces have been ne-
glected: First the appropriate setting of calculus should be fixed. This is not really easy due to the
surprising fact that some natural mappings on locally convex spaces behave like smooth mappings,
but are not continuous. Second the appropriate class of semigroups should be specified: Banach
spaces are like a simple piano with one single key, the norm, one can play with. Locally convex
spaces are like an organon with infinitely many keys, which can be used to encode the properties of
a problem, but additionally a more complicated instruments allows higher symmetry of the pieces
played with. Third the appropriate approximation procedures should be specified to be able to
produce complex solutions from simple ones.

1. Classical concepts and modern points of view

In the fifties the fundaments of solvability of initial value problems were laid down by connecting
knowledge of spectral properties with the solvability of Abstract Cauchy Problems. The old method of
solving ordinary differential equations by Laplace transforms awarded new merits. These fundaments
were enriched by additional assumptions on the considered Banach spaces as for example lattice
structures or C∗-algebra-structures. In this section X,Y denote Banach spaces, T, S C0-semigroups
of continuous linear operators. A semigroup homomorphism is understood to map the identity to
the identity. As reference books for strongly continuous semigroups we propose [EN99], [Kan95]
and [Nag86].

1.1. Definition (Abstract Cauchy Problem). Let (A,D(A)) be a closed operator on a Ba-
nach space X, the Abstract Cauchy Problem (ACP ) associated to A with initial value f ∈ D(A) is
the solution of

u ∈ C1(R≥0, X)

u(0) = f and u(t) ∈ D(A) for t ≥ 0
d

dt
u(t) = Au(t)

1.2. Definition (C0-semigroup). A strongly continuous semigroup of linear operators on a
Banach space X is a semigroup homomorphism T : R≥0 → L(X) with

lim
t↓0

Ttx = x

These semigroups are often referred to as C0-semigroups.

1.3. Remark. T is a strongly continuous semigroup if and only if T : R≥0 → L(X)s is continu-
ous, where the bounded linear operators carry the strong topology. By Banach-Steinhaus (uniform
boundedness principle) there are constants M ≥ 1 and ω ∈ R such that

||Tt|| ≤M exp(ωt) for t ≥ 0

The smallest possible value of ω is called the growth bound ω(T ) and might be −∞, the formula

ω(T ) = lim
t↓0

ln ||Tt||
t

17
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is valid. A semigroup T is called bounded if ||Tt|| ≤M for t ≥ 0 , T is called contraction semigroup
if M = 1 is a possible choice (see [Nag86] for details).

1.4. Definition. Let T be a strongly continuous semigroup, then the infinitesimal generator
(A,D(A)) is defined in the following way:

D(A) = {x ∈ X | lim
t↓0

Ttx− x
t

exists }

Ax = lim
t↓0

Ttx− x
t

for x ∈ D(A)

1.5. Remark. Generically the operator (A,D(A)) is unbounded on the Banach space X. The
subtle relation between the infinitesimal generator and the global object, the strongly continuous
semigroup, is the subject of Hille-Yosida-Theory.

1.6. Theorem. Let (A,D(A)) be the generator of a strongly continuous semigroup, then the
following assertions are valid:

1. If x ∈ D(A), then Ttx ∈ D(A) for t ≥ 0
2. The map t 7→ Ttx is differentiable if and only if x ∈ D(A):

d

dt
Ttx = ATtx = TtAx for x ∈ D(A)

3. For x ∈ X and φ ∈ C∞(R≥0,R) the integral
∫ t

0 φ(s)Tsxds lies in D(A) for any t ≥ 0 and

A

∫ t

0
φ(s)Tsxds = φ(t)Ttx− φ(0)x−

∫ t

0
φ′(s)Tsxds

4. The domain D(A) is dense in X and (A,D(A)) is a closed operator. Furthermore (D(An), ||.||+
||A.||+ ...+ ||An.||) are Banach spaces with D(An) dense in X. The intersection ∩n≥1D(An) is
dense in X and equipped with the initial topology via An : ∩n≥1D(An)→ X, n ∈ N a Fréchet
space.

5. There is only one semigroup with infinitesimal generator A.

Proof. The first and second statement are clear by definition: The integral exists and for h < t
we obtain

Th − id
h

∫ t

0
φ(s)Tsxds =

1
h

(
∫ t+h

h
φ(s− h)Tsxds−

∫ t

0
φ(s)Tsxds) =

= −
∫ t+h

h

φ(s)− φ(s− h)
h

Tsxds+
1
h

(
∫ t+h

h
φ(s)Tsxds−

∫ t

0
φ(s)Tsxds) =

= −
∫ t+h

h

φ(s)− φ(s− h)
h

Tsxds+
1
h

∫ t+h

t
φ(s)Tsxds−

1
h

∫ h

0
φ(s)Tsxds)

h→0→

= −
∫ t

0
φ′(s)Tsxds+ φ(t)Ttx− φ(0)x

which proves the third assertion. Taking a Dirac sequence {φε}ε>0 right from zero with support in
R>0 we see that

∫ 1
0 φε(s)Tsxds→ x for x ∈ X and

A

∫ 1

0
φε(s)Tsxds =

∫ 1

0
φ′ε(s)Tsxds

Consequently all domains D(An) and their intersection are dense in X. Closedness of A will be
proved directly. Ttx − x =

∫ t
0 TtAxdt by 2. and if xm → x and Axm → y, then by continuity

Ttx − x =
∫ t

0 Ttydt, so x ∈ D(A) and y = Ax. So (D(A), ||.|| + ||A.||) is a Banach space. Assume
that (D(An), ||.|| + ||A.|| + ... + ||An.||) is a Banach space as inductive hypothesis. By 2. D(An)
is Tt-invariant, we can restrict the semigroup to D(An) and obtain a semigroup of bounded linear
operators, which is strongly continuous in the complete topology. The infinitesimal generator is
A|D(An+1), which is closed by induction. So (D(An+1), ||.||+ ||A.||+ ...+ ||An+1.||) is a Banach space.
This establishes by the way the completeness of the intersection as a Fréchet space.
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Assume that there is another strongly continuous semigroup S with infinitesimal generator A,
then

Ttx− Stx =
∫ t

0

d

ds
(St−sTsx)ds =

∫ t

0
(St−sTs)(Ax−Ax)ds = 0

for x ∈ D(A), consequently by continuity S = T .

1.7. Remark. (see [Nag86] for detailed comments) The abstract Cauchy Problem associated
to a closed operator A is uniquely solvable for every f ∈ D(A) if and only if (A1, D(A2)) is the
infinitesimal generator of a strongly continuous semigroup T 1 on the Banach space E1 := (D(A), ||.||+
||A.||). A1f = Af for f ∈ D(A2). Assume unique solvability on D(A) of the abstract Cauchy problem
associated to A. Then we can associate a strongly continuous semigroup T 1 of linear operators. We
have to prove that T 1

t is continuous and that the infinitesimal generator is (A1, D(A2)): We denote
the unique C1-solution of (ACP ) with initial value f by u(., f). T 1

t f = u(t, f) for f ∈ D(A)
and t ≥ 0. We investigate η : E1 → C([0, t], E1), f 7→ u(., f): Let fn → f and η(fn) → v
be sequences, then u(s, fn) = fn +

∫ s
0 Au(r, fn)dr → v(s) = f +

∫ s
0 Avdr, then v is continuously

differentiable on [0, t]. Continuing by T 1 gives the desired v(s) = u(s, f) by uniqueness on [0, t].
So η has closed graph and is consequently continuous, evaluation at s ∈ [0, t] yields that T 1 is
a strongly continuous semigroup of bounded linear operators. Denote the infinitesimal generator
of T 1by B. First we show that T 1

t Af = AT 1
t f for f ∈ D(A2). v(t) := f +

∫ t
0 u(s,Af)ds, then

d
dtv(t) = u(t, Af) = Af +

∫ t
0 Au(r,Af)dr = Av(t), so v(t) = u(t, f) and Au(t, f) = d

dtv(t) = u(t, Af).
The rest is given by stating the definitions.

Assume that there is a strongly continuous semigroup T 1 with infinitesimal generator A1, then
unique solvability follows from the definitions directly.

The existence of a strongly continuous semigroup T with infinitesimal generator A, a closed
operator, is equivalent to unique solvability of (ACP ) on D(A) and ρ(A) 6= ∅, because (λ − A)−1 :
E → E1 is an equivalence between the two semigroups if they exist in the sense of represenation
theory.

The relation between spectral properties of the infinitesimal generator and C0-semigroups is
clarified by the Laplace transform. The existence of the Laplace transform leads to several strong
properties of the resolvent and these strong asymptotic properties are seen to be sufficient for the
existence. For φλ(t) = exp(−λt) we see that for λ > ω the limit t→∞ exists, consequently we arrive
at the formula by 1.6.2.:

(λ−A)
∫ ∞

0
exp(−λt)Ttxdt = x

for all x ∈ X and λ > ω. This formula is valid for complex Banach spaces, too. In this case we can
assert the half-plane right from ω lies in the resolvent set, we will emphasize further properties of
the resolvent set in the case of analytic semigroups.

Consequently the Laplace transform for λ > ω is the resolvent R(λ,A) := (λ − A)−1 of the
infinitesimal generator. If the resolvent set ρ(A) of a closed operator A on a complex Banach space
is not empty, then it is open and the resolvent is analytic and satisfies the resolvent equation

R(λ,A)R(µ,A)(µ− λ) = R(λ,A)−R(µ,A)

for λ, µ ∈ ρ(A). Immediately this functional equation leads to

R(λ,A)(n) = (−1)nn!R(λ,A)n+1

On the other hand by n-fold differentiation of the Laplace transform one obtains∫ ∞
0

(−1)ntn exp(−λt)Ttxdt

The identity leads to the well-known condition:

R(λ,A)n+1x =
∫ ∞

0

tn

n!
exp(−λt)Ttxdt
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for <λ > ω and x ∈ X , n ∈ N. The estimate of the right hand side via the exponential growth
constants of T leads to the Hille-Yosida-condition by partial integration:

||R(λ,A)n|| ≤ M

(<λ− ω)n

for <λ > ω and n ∈ N. Surprisingly this simple asymptotic condition on the resolvent is already
sufficient for the existence of a strongly continuous semigroup with infinitesimal generator A, which
is the contents of the Feller-Hille-Miyadera-Philipps-Yosida-Theorem:

1.8. Theorem (Hille-Yosida-Theorem). Let X be a Banach space and
(A,D(A)) a densely defined closed operator, then the following assertions are equivalent:

1. A is the infinitesimal generator of a strongly continuous semigroup.
2. There are constants M ≥ 1, ω > 0 such that ]ω,∞[⊂ ρ(A) and

||R(λ,A)n|| ≤ M

(λ− ω)n

for n ∈ N and λ > ω.

Proof. (see [Kan95], 1.17.) Necessity was already shown by the previous remarks, so we assume
2.: We define Aλ := λAR(λ,A) = λ(λR(λ,A)− id), so a continuous operator. For x ∈ D(A)

||AR(λ,A)x|| = ||R(λ,A)Ax|| ≤ M

λ− ω
||Ax|| λ→∞→ 0

||AR(λ,A)|| = ||λR(λ,A)− id|| ≤ λM

λ− ω
+ 1

and by denseness of D(A) we can conclude that AR(λ,A)x → 0 for x ∈ X, so λR(λ,A)x → x for
x ∈ X. This means finally Aλx = λR(λ,A)Ax → Ax for x ∈ D(A). Since Aλ is bounded the
exponential exists and satisfies the following estimate on ]2ω,∞[

|| exp(tAλ)|| ≤ exp(−λt)
∑
n∈N

tnλ2n

n!
||R(λ,A)n||

≤ exp(−λt)
∑
n∈N

tnλ2n

n!
M

(λ− ω)n

≤M exp(t
ωλ

λ− ω
) ≤M exp(2ωt)

for t ≥ 0. Consequently we can hope for convergence if λ tends to infinity:

|| exp(tAλ)x− exp(tAµ)x|| ≤ ||
∫ t

0

d

ds
(exp((t− s)Aλ) exp(sAµ))xds||

≤ ||
∫ t

0
exp((t− s)Aλ) exp(sAµ)(Aµx−Aλx)ds||

≤M2 exp(4ωt)t||Aµx−Aλx|| → 0

as λ, µ tend to infinity uniformly on bounded intervals for x ∈ D(A). By the exponential boundedness
exp(tAλ)x converges uniformly on bounded intervals to Ttx for all x ∈ X, where the limit Ttx is a
continuous curve and Tt is a bounded linear operator. The semigroup property is preserved by the
limit, too. We have to show, that the generator A′ of the strongly continuous semigroup T is A. The
formula exp(Aλt)x− x =

∫ t
0 exp(Aλs)Aλxds tends to

Ttx− x =
∫ t

0
TsAxds

as λ → ∞ for x ∈ D(A). Consequently x ∈ D(A′) and A′x = Ax. By the asymptotic properties of
exp(Aλt) we know by application of the Laplace transform that λ−A′ = λ−A are both one-to-one
and onto X for λ > 2ω, so A = A′.
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1.9. Corollary. (A,D(A)) is the generator of a contraction semigroup if and only if ]0,∞[⊂
ρ(A) and

||R(λ,A)|| ≤ 1
λ

for λ > 0.

To calculate semigroups associated to perturbations approximation formulas are of great impor-
tance in the theory of strongly continuous semigroups. In many respects the first appearance of a
common perturbation formula is Sophus Lie’s

lim
n→∞

(exp(
t

n
A) exp(

t

n
B))n = exp(t(A+B))

which was enlarged in several directions in this century.

1.10. Theorem (Chernoff’s approximation Theorem). Let X be a Banach space,
c : R≥0 → L(X) curve of uniformly power-bounded operators, i.e. there is s0 > 0 and M ≥ 1 such
that ||c(t)n|| ≤M for t ∈ [0, s0] and n ∈ N. If there is a dense subset D ⊂ X such that

lim
t↓0

c(t)x− x
t

= Ax for x ∈ D

and there is λ0 > 0 with (λ0−A)D is dense in X, then A is the infinitesimal generator of a strongly
continuous semigroup T and

s-limn→∞c(
t

n
)
n

= Tt

uniformly on compact subsets of R≥0.

Proof. (see [EN99], ch.3, 5.2.) The essential estimate is a simple consideration on power-
bounded operators. Let S ∈ L(X) be power-bounded via ||Sn|| ≤M with given M ≥ 1, then

|| exp(n(S − id))x− Snx|| ≤
√
nM ||Sx− x||

for n ∈ N and x ∈ X. Let n ≥ 1 be fixed, then

exp(n(S − id))− Sn = exp(−n)
∞∑
k=0

nk

k!
(Sk − Sn)

but ||Skx− Snx|| ≤ |n− k|M ||Sx− x|| by telescoping. So we can estimate

|| exp(n(S − id))x− Snx|| ≤ exp(−n)
∞∑
k=0

(
nk

k!
)

1
2 (
nk

k!
)

1
2M |n− k| · ||Sx− x||

≤M exp(−n)(
∞∑
k=0

nk

k!
)

1
2 (
∞∑
k=0

nk

k!
|n− k|2)

1
2 · ||Sx− x||

≤M exp(−n) exp(
n

2
)
√
n exp(

n

2
) · ||Sx− x||

≤
√
nM ||Sx− x||

where we applied the Cauchy-Schwarz inequality and the identity
∑∞

k=0
nk

k! |n− k|
2 = n exp(n).

Now we define Asx := c(s)x−x
s for s0 ≥ s > 0 and x ∈ D. || exp(tAs)|| ≤ M for t ≥ 0 by the

boundedness condition on c. As in the proof of the Hille-Yosida-Theorem we conclude that there is
a semigroup T and s-limn→∞ exp(A t

n
t) = Tt uniformly on compact subsets of R≥0 with infinitesimal

generator A′, furthermore we know that A′ is a closed extension of A. There is λ0 > 0 with (λ0−A)D
dense, but (λ0−A′) is invertible as continuous operator, consequently the closure of A is A′. Anyway,

|| exp(A t
n
t)x− c( t

n
)
n

x|| = || exp(n(c(
t

n
)− id))x− c( t

n
)
n

x|| ≤

≤
√
nM ||c( t

n
)x− x|| ≤ t√

n
||A t

n
x|| → 0

for x ∈ D and n → ∞. By the boundedness properties we conclude strong uniform convergence on
compact intervals in R≥0.
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The investigation of different classes of C0-semigroups leads immediately to the rich and applicable
class of analytic semigroups. All Banach spaces are assumed to be complex in the sequel:

1.11. Remark. On complex Banach spaces the following assertions are equivalent for a closed
operator (A,D(A)) due to the Laplace integral formula in the complex case:

1. A is the infinitesimal generator of a strongly continuous semigroup.
2. There are constants M ≥ 1, ω > 0 such that ]ω,∞[⊂ ρ(A) and

||R(λ,A)n|| ≤ M

(λ− ω)n

for n ∈ N and λ > ω.
3. There are constants M ≥ 1, ω > 0 such that {λ ∈ C | <λ > ω} ⊂ ρ(A) and

||R(λ,A)n|| ≤ M

(<λ− ω)n

for n ∈ N and λ > ω.

1.12. Definition. A closed linear operator (A,D(A)) with dense domain D(A) in a Banach
space X is called sectorial of angle δ if there exists 0 < δ < π

2 such that the sector

Σπ
2

+δ = {λ ∈ C | | arg(z)| < π

2
+ δ} \ {0}

is contained in the resolvent set ρ(A) and for each ε ∈]0, δ[ there exists Mε such that

‖R(λ,A)‖ ≤ Mε

|λ|
for all λ ∈ Σπ

2
+δ

1.13. Definition (Analytic Semigroups). Let 0 < δ ≤ π
2 be given. A family of bounded

linear operators {T (z)}z∈Σδ∪{0} is called analytic semigroup if it is a semigroup homomorphism on
Σδ ∪ {0}, analytic on Σδ and if it is strongly continuous on Σδ′ ∪ {0} for 0 < δ′ < δ. If additionally
the analytic semigroup is uniformly bounded on Σδ ∪{0}, then we call it bounded analytic semigroup.

1.14. Remark. Let T be an analytic semigroup on Σδ, then there are constants Mε and ωε such
that

‖T (z)‖ ≤Mε exp (ωε|z|) for all z ∈ Σε

with ε ∈]0, δ[. The proof is an application of the Banach-Steinhaus-theorem on Banach spaces
(uniform boundedness principle). Therefore we can create bounded analytic semigroups on the given
sector Σε with infinitesimal generator A − ωε, consequently it is sufficient to analyze the theory of
bounded analytic semigroups (see [EN99] for detailed comments and examples).

For sectorial operators and appropriate paths γ the exponential formula can be given by a Cauchy
integral formula.

1.15. Definition. Let (A,D(A)) be a sectorial operator of angle δ, define T0 = id and continuous
operators T (z) for z ∈ Σδ by

T (z) :=
1

2πi

∫
γ

exp (µz)R(µ,A)dµ

where γ is any piecewise smooth curve in Σπ
2

+δ going from +∞ exp (−i(π2 + δ′)) to +∞ exp (i(π2 + δ′))
for some δ′ ∈]| arg(z)|, δ[.

We obtain the following properties of the operators T (z):

1.16. Theorem. Let (A,D(A)) be a sectorial operator of angle δ. Then the bounded linear
operators satisfy the following assertions:

1. ‖T (z)‖ is uniformly bounded for z ∈ Σδ′ if 0 < δ′ < δ.
2. T is analytic on Σδ.
3. T is a semigroup homomorphism from the semigroupunder addition Σδ ∪{0} to the semigroup

of bounded linear operators on X.
4. The map z 7→ T (z) is strongly continuous in Σδ′ ∪ {0} for 0 < δ′ < δ.
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Proof. (see [EN99], ch.2, 4.3.) First we show that the integral is well-defined and produces
a uniformly bounded family of continuous linear operators. We verify that the integral converges
uniformly for z ∈ Σδ′ if 0 < δ′ < δ. We choose a special path γr = γ1,r + γ2,r + γ3,r, coming in from
∞ with angle −(π2 + δ − ε) until the radius r = 1

|z| is reached, then moving along the circle with

radius r to the angle (π2 + δ − ε) and passing along the radius to ∞, where ε = δ−δ′
2 .

We collect the following estimates

1
|µz|
<(µz) = cos(arg µ+ arg z) ≤ cos(

π

2
+ ε) = − sin ε for µ ∈ γ3,r ∪ γ1,r, z ∈ Σδ′

| exp(µz)| ≤ exp(−|µz| sin ε) for µ ∈ γ3,r ∪ γ1,r, z ∈ Σδ′

and put them together in the integral

||
∫
γr

exp (µz)R(µ,A)dµ|| ≤ 2Mε

∫ ∞
1
|z|

1
ρ

exp(−ρ|z| sin ε)dρ+ 2πeMε ≤

≤ 2Mε

∫ ∞
1

1
ρ

exp(−ρ sin ε)dρ+ 2πeMε

for z ∈ Σδ′ . Consequently the integral converges uniformly on compact subsets for z ∈ Σδ′ and is
uniformly bounded on Σδ′ . Furthermore by the Cauchy theorem of complex analysis the contour can
be chosen ”arbitrarily” and the resulting mapping T is holomorphic on Σδ.

The semigroup property follows from the resolvent equation: We choose some constant c > 0
such that γ1 ∩ (γ1 + c) = ∅, then for z1, z2 ∈ Σδ′ we obtain via (γ = γ1)

T (z1)T (z2) =
1

(2πi)2

∫
γ

∫
γ+c

exp (µz1)R(µ,A) exp (λz2)R(λ,A)dµdλ

=
1

(2πi)

∫
γ

exp (µz1)R(µ,A)(
1

(2πi)

∫
γ+c

exp (λz2)
λ− µ

dλ)dµ−

− 1
(2πi)

∫
γ

exp (λz2)R(λ,A)(
1

(2πi)

∫
γ+c

exp (µz1)
λ− µ

dµ)dλ

=
1

(2πi)

∫
γ

exp (µ(z1 + z2))R(µ,A)du

which is the desired relation. Strong continuity is proved by the following simple observation:

T (z)x− x =
1

2πi

∫
γ

exp (µz)(R(µ,A)x− 1
µ
x)dµ

=
1

2πi

∫
γ

exp (µz)
µ

R(µ,A)Axdµ→ 1
2πi

∫
γ

1
µ
R(µ,A)Axdµ = 0

as z → 0 in Σδ′ by Lebeque’s dominated convergence theorem.

The generator of the semigroup restricted to R≥0 T defined by the Cauchy formula is the sectorial
operator (A,D(A)). We calculate the Laplace transform of T for λ > 2∫ t0

0
exp(−λt)T (t)xdt =

1
2πi

∫
γ

exp(t0(µ− λ))− 1
µ− λ

R(µ,A)xdµ

= R(λ,A)x+
1

2πi

∫
γ

exp(t0(µ− λ))
µ− λ

R(µ,A)xdµ

by Fubini’s theorem, but the last term tends to zero as t0 →∞, consequently the resolvents coincide.
We shall collect some already rather complicated results on analytic bounded semigroups:

1.17. Theorem. Let (A,D(A)) be a closed operator on a Banach space X, then the following
assertions are equivalent:

1. A generates a bounded analytic semigroup on some Σδ ∪ {0}.
2. There exists θ ∈]0, π2 [ such that exp(±iθ)A generate bounded strongly continuous semigroups.



24 2. CONVENIENT HILLE-YOSIDA-THEORY

3. A generates a bounded strongly continuous semigroup T such that T (t)(X) ⊂ D(A) for t > 0
and

M := sup
t>0
||tAT (t)|| <∞

4. A generates a bounded strongly continuous semigroup T and there exists a constant C > 0
such that for r > 0 and s 6= 0

||R(r + is, A)|| ≤ C

|s|

5. A is a sectorial operator.

Proof. ( see [EN99], ch. 2, 4.6.) We shall prove 1.⇒ 2.⇒ 4.⇒ 5.⇒ 3.⇒ 1.:
1. ⇒ 2.: For θ ∈]0, δ[ we define T θt = Texp(iθ)t which is a strongly continuous semigroup of

continuous linear operators on X. By Laplace transform we obtain R(1, A) = exp(iθ)R(exp(iθ), Aθ)
where Aθ denotes the infinitesimal generator of T θ. Consequently exp(iθ)A = Aθ. Substituting θ by
−θ yields the assertion.

2. ⇒ 4.: exp(−iθ) = a − ib for a, b > 0. Applying the Hille-Yosida-Theorem to the semigroup
T−θ we obtain

||R(r + is, A)|| = || exp(−iθ)R(exp(−iθ)(r + is), exp(−iθ)A)||

≤ C1

ar + bs
≤ C

s
for r, s > 0

Analogously for s < 0 with the generator exp(iθ)A.
4.⇒ 5.: The formula

||R(λ,A)|| ≥ 1
dist(λ, σ(A))

for λ ∈ ρ(A)

which is valid for any closed operator with non-empty resolvent set by investigating the Taylor series
of the analytic function R

R(λ,A) =
∞∑
n=0

(λ− µ)n(−1)nR(µ,A)n+1

Hence we obtain that iR \ {0} ⊂ ρ(A). Since Σπ
2
⊂ ρ(A) by the property that A generates a bounded

strongly continuous semigroup. Furthermore ||R(λ,A)|| ≤ M
|λ| for <λ ≥ 0 and λ 6= 0 by combining

the given estimate and the Hille-Yosida estimate. So we can apply the Taylor series of the analytic
function R to extend it to the sector Σπ

2
+δ−ε for some constants with the necessary estimates.

5. ⇒ 3.: The sectorial operator A generates a bounded analytic semigroup and consequently
TtX ⊂ D(A) for t > 0. The operator ATt is continuous by the closed graph theorem, by the
resolvent equation and Cauchy theorem we can estimate along γ 1

t
:

||ATt|| = ||A
∫
γ 1
t

exp(µt)R(µ,A)dµ|| =

= ||
∫
γ 1
t

exp(µt)(µR(µ,A)− id)dµ|| =

= ||
∫
γ 1
t

exp(µt)µR(µ,A)dµ|| ≤

≤ M

t

for t > 0.
3. ⇒ 1.: T is smooth on R>0 by assumption, furthermore (AT t

n
)n = AnTt = T

(n)
t for n ≥ 0 and

t > 0, hence 1
n! ||T

(n)
t || ≤ (nt )nMn ≤ ( eMt )n by Stirling’s formula. Consequently we can estimate the
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remainder in Taylor’s formula

Tt+hx =
n∑
k=0

hk

k!
T

(k)
t x+

1
n!

∫ t+h

t
(t+ h− s)nT (n+1)

s xds for |h| < t

and extend the semigroup analytically to a sector Σδ, all the desired properties follow easily.

1.18. Remark. If A generates a bounded strongly continuous group T , then A2 generates a
bounded analytic semigroup S of angle π

2 . By the Hille-Yosida-Theorem there is a constant M such
that

||R(λ,A)n|| ≤ M

|λ|n

for λ 6= 0. R(−λ,A)R(λ,A) = −(λ2−A)−1 for λ 6= 0, consequently ]0,∞[⊂ ρ(A2). Since A generates
a bounded group there is a constant N ≥ 1 such that

||R(λ,A2)|| ≤ N2

(<
√
λ)2
≤ 1
|λ|

(
|λ|N2

(<
√
λ)2

) ≤ Mδ

|λ|

for λ ∈ Σπ
2
−δ with Mδ = N2

cos2(π−δ
2

)
. So A2 generates a bounded analytic semigroup. Take Lp(Rn, X)

for a Banach space X and 1 ≤ p <∞. The strongly continuous translation groups in direction of the
canonical basis T i commute and are contraction, so their generators ∂

∂xi
commute and ∂2

∂xi2
generate

bounded analytic semigroups Si in each direction: S = S1 · ... · Sn is an analytic semigroup with
infinitesimal generator the closure of the Laplace operator in the respective space ∆p. So the solution
of the heat equation is analytic of angle π

2 . Nevertheless there is no way to continue the semigroup
strongly continuously to the left, because there we find the spectrum of the Laplace operator σ(∆p) =
[−∞, 0], but there exists an idea how the semigroup should behave on the left hand side. This
discussion shall be continued after the second section.

2. Smooth semigroups

A convenient algebra is a convenient vector space with smooth associative multiplication. Fur-
thermore we always assume it to be unital. Smooth Semigroups are smooth homomorphisms from
R≥0 to a convenient algebra A. In this chapter we develop a theory of asymptotic resolvents by
which one can provide a necessary and sufficient criterion wether a smooth semigroup exists given
the infinitesimal generator. Furthermore we argue why it is convenient to consider this theory in
the case of C0-semigroups on a convenient topological vector space applying some smooth vector
arguments.

For the purpose of estimates we need some Landau-like terminology in convenient vector spaces.
We shall only apply the symbol O:

2.1. Definition (Landau symbol O). Let E be a convenient vector space, c : D → E for
D ⊂ R

n some non-empty subset, an arbitrary mapping. Let d : D → R be some non-negative
function, then we say that c has growth d on D if there is a closed absolutely convex and bounded
subset B ⊂ E so that

c(x) ∈ d(x)B for all x ∈ D .

We write c = O(d) on D or c(x) = O(d(x)), applying Landau’s symbol O.

The next lemma provides us with the basic rules of Landau’s symbol, which will be applied to
prove the version of the Hille-Yosida-Theorem comfortably:

2.2. Lemma. Let E be a convenient vector space, D ⊂ Rn some non-empty subset, c1, c2 : D →
E some arbitrary mappings, d1, d2 : D → R some non-negative functions:

1. If ci = O(di) for i = 1, 2, then c1 + µc2 = O(d1 + |µ|d2) for all µ ∈ K.
2. If c1 = O(d1) and c2 = O(d2) and d1 ≤ d2, then c1 = O(d2).
3. Let c : D → E be some function, d : D → R some non-negative function, φ : E → F a bounded

linear map. If c = O(d), then φ ◦ c = O(d).
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4. Let {cλ}λ∈[a,b] be a pointwise Riemann-integrable family of mappings from D to E and
{dλ}λ∈[a,b] a pointwise Riemann-integrable family of positive mappings from D to R. If c =
O(d) on D × [a, b], then ∫ b

a
cλdλ = O(

∫ b

a
dλdλ)

Remark that the last property is sufficient for pointwise Mackey-convergence to
∫∞
a cλdλ if the

hypotheses of 4. are satisfied and
∫∞
a dλdλ exists pointwise.

Proof. Since the absolutely convex hull of closed, bounded subsets of a convenient vector space
is closed, bounded and absolutely convex the first two properties are true, the third one is the
generalization. The fourth property is due to the convergence of Riemannian sums and the first two
properties. By the fourth property we obtain pointwise Mackey-convergence on D to a limit in E by
the convergence of

∫∞
a dλdλ.

2.3. Definition. Let A be a convenient algebra and T : R≥0 → A a smooth semigroup homo-
morphism referred to as smooth semigroup, then

a := lim
h↓0

Th − e
h

is called the infinitesimal generator of the smooth semigroup T . Given b > 0 the family {R(λ)}λ>0

with

R(λ) :=
∫ b

0
exp (−λt)Ttdt

is a called a standard asymptotic resolvent family of a. We omit the dependence on b.

2.4. Proposition. Let A be a convenient algebra, T a smooth semigroup, then the following
formulas are valid:

1. Let a be the infinitesimal generator of T , then d
dtTt = aTt = Tta for all t ∈ R≥0.

2. The semigroup is uniquely determined by a.
3. For all b ∈ R>0 the following integral exists in A:

R(λ) =
∫ b

0
exp (−λt)Ttdt for all λ ∈ R

4. For all λ, µ ∈ R, b ∈ R>0 we obtain:

(λ− a)R(λ) = id− exp(−λb)Tb
R(λ)R(µ) = R(µ)R(λ)

R(λ)a = aR(λ)

5. R : R>0 → A is real analytic and the set

{λ
n+1

n!
R(n)(λ) | λ > 0 and n ∈ N}

is bounded in A.

Proof. The first assertion follows from boundedness of the multiplication:

Tta = Tt lim
h↓0

Th − id
h

= lim
h↓0

Tt+h − Th
h

=
d

dt
Tt = lim

h↓0

Th − id
h

Tt = Tta

Suppose that there is another semigroup associated to a, more precisely, let S, T be smooth semi-
groups in A with

a = lim
h↓0

Th − id
h

= lim
h↓0

Sh − id
h

then the curve c(r) = T (t−r)S(r) on [0, t] for t > 0 arbitrary is smooth and c′(r) = −ac(r)+c(r)a = 0,
consequently Tt = c(0) = c(t) = St.
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The existence of the integral and the commutation relations are clear, the only assertion to prove
is the asymptotic condition:

(λ− a)R(λ) =
∫ b

0
exp (−λt)(λ− a)Ttdt =

=
∫ b

0
− d

dt
(exp (−λt)Tt)dt = id− exp (−λb)Tb

Differentiation under the integral yields

λn+1

n!
R(n)(λ) = (−1)nλn+1

∫ b

0
exp (−λt) t

n

n!
Ttdt

T = O(1) on any bounded interval in R≥0, so

λn+1

n!
R(n)(λ) = O

(
λn+1

∫ b

0
exp (−λt) t

n

n!
dt

)
= O(1)

for all λ > 0 and n ∈ N. So the estimate and real analyticity are proved, since the remainder of the
Taylor series converges to zero.

2.5. Definition. Let a ∈ A be a given element of the convenient algebra A, a smooth map
R : R>ω → A is called asymptotic resolvent for a ∈ A if

1. aR(λ) = R(λ)a and R(λ)R(µ) = R(µ)R(λ) for λ, µ > ω.
2. (λ− a)R(λ) = e+ S(λ) with S : R>ω → A smooth and there is are constants b > 0 so that the

set

{exp (bλ)
bk

S(k) | λ > ω and k ∈ N}

is bounded in A.

2.6. Remark. By Proposition 2.4 the standard asymptotic resolvent family is an asymptotic
resolvent. The estimate of Definition 2.5 can be generalized to the assertion that

{exp (bλ)
ck

S(k) | λ > ω and k ∈ N}

is bounded in A with some c ≥ b > 0. The following theorems stay valid, but the calculations
get more complicated. We restrict ourselves to Definition 2.5. The case S = 0 is equivalent to the
choice b = ∞, which is not always possible, because there are semigroups with rapid growth and
infinitesimal generators without classical spectral theory, respectively. For the standard asymptotic
resolvent S(λ) = − exp (λb)Tb.

The following theorem is the generalization of the Hille-Yosida-Theorem to the convenient case,
it is useful in the analysis of Abstract Cauchy Problems on locally convex vector spaces (see [Ouc73]
for the idea of the proof).

2.7. Theorem (convenient Hille-Yosida-Theorem). Let A be a convenient algebra and a ∈
A an element, then a is the infinitesimal generator of a smooth semigroup T in A if and only if there
is an asymptotic resolvent R for the operator a ∈ A with

{λ
n+1

n!
R(n)(λ) | λ > ω and n ∈ N}

a bounded set in A (Hille-Yosida-condition).

Proof. If a is the infinitesimal generator of a smooth semigroup in A, then there is by prop.
2.4. an asymptotic resolvent so that the above conditions are satisfied.

Let R be an asymptotic resolvent defined on R>ω satisfying the hypotheses, then λR(λ) =
e + aR(λ) + O(exp(−bλ)) by 2.5.2, consequently limλ→∞ λR(λ) = e is a Mackey-limit. aλ := −λ +
λ2R(λ) = λ(−e+λR(λ)) = λR(λ)a+O(λ exp (−bλ))→ a as Mackey-limit for λ→∞. Differentiating
the equation (λ − a)R(λ) = e + S(λ) (k + 1)-times we obtain (λ − a)R(k+1)(λ) + (k + 1)R(k)(λ) =
S(k+1)(λ) for k ∈ N. Multiplication with R(λ) yields

R(k+1)(λ) + (k + 1)R(λ)R(k)(λ) = R(λ)S(k+1)(λ)− S(λ)R(k+1)(λ)
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for k ∈ N. Putting together the hypotheses R(λ)S(k+1)(λ) = O( exp (−λb)bk+1

λ ) and S(λ)R(k+1)(λ) =
O(exp (−λb) (k+1)!

λk+2 ) we arrive at

R(k+1)(λ) + (k + 1)R(λ)R(k)(λ) = O(exp (−λb)(k + 1)! + (bλ)k+1

λk+2
)

for k ∈ N and λ > ω. Now we try to define out of these data a smooth semigroup T . Let t ∈ [0, b4 ],
then

Tt(λ) := exp (−λt)

(
e+

∞∑
k=0

(−1)k

k!
(λ2t)k+1

(k + 1)!
R(k)(λ)

)

for λ > ω. Looking at the growth for λ > ω and t ∈ [0, b4 ] we obtain

Tt(λ) = O(exp (−λt)(1 +
∞∑
k=0

(λt)k+1

(k + 1)!
)) = O(1)

for k ∈ N and λ > ω by the Hille-Yosida-condition, which implies the existence of Tt(λ) uniformly on
compact intervals in λ and t as a Mackey-limit by the Cauchy condition on the convergence of infinite
series. By inserting the Hille-Yosida condition in the termwise derived series we obtain the uniform
convergence by the Cauchy condition on compact intervals in λ and t, which leads to smoothness of
Tt(λ) in t, even at the boundary points t = 0 and t = b

4 : We obtain

d

dt
Tt(λ) =− λTt(λ) + λ2 exp (−λt)(

∞∑
k=0

(−1)k

k!
(λ2t)k

k!
R(k)(λ))

=− λTt(λ) + λ2 exp (−λt)(R(λ) +
∞∑
k=0

(−λ2t)k+1

(k + 1)!(k + 1)!
R(k+1)(λ))

=− λTt(λ) + λ2 exp (−λt)

(
R(λ) +

∞∑
k=0

(−1)k
(λ2t)k+1

(k)!(k + 1)!
R(λ)R(k)(λ)

)

+ λ2 exp (−λt)
∞∑
k=0

(−λ2t)k+1

(k + 1)!(k + 1)!
Sk(λ)

with Sk(λ) = R(k+1)(λ) + (k + 1)R(λ)R(k)(λ). The last sum on the right hand side is of order

λ2 exp (−λt)
∞∑
k=0

(λ2t)k+1

(k + 1)!(k + 1)!
exp (−λb)(k + 1)! + (bλ)k+1

λk+2

This term can be estimated by

=λ exp (−λ(t+ b))

( ∞∑
k=0

(
(λ2tb)k+1

(k + 1)!(k + 1)!
+
∞∑
k=0

(λt)k+1

(k + 1)!

)
≤λ
(

exp (−λ(
√
t−
√
b)

2
) + exp (−λb)

)
≤2λ exp (−λb

4
)

for t ∈ [0, b4 ], since (
√
t−
√
b)

2
attains the minimum b

4 . The middle term equals

λ2 exp (−λt)

(
R(λ) +

∞∑
k=0

(−1)k
(λ2t)k+1

(k)!(k + 1)!
R(λ)R(k)(λ)

)
= R(λ)λ2Tt(λ)

by definition. Consequently we arrive at the equation by aλ = −λ+ λ2R(λ):

d

dt
Tt(λ) = aλTt(λ) +O(λ exp (−λb

4
))



2. SMOOTH SEMIGROUPS 29

for t ∈ [0, b4 ] and λ > ω. Finally we can calculate the difference

Tt(λ)− Tt(µ) =
∫ t

0

d

ds
(Ts(λ)Tt−s(µ)) ds

because T0(λ) = e and so by the commutation relations

Tt(λ)− Tt(µ) =
∫ t

0
Ts(λ)Tt−s(µ)(aλ − aµ)ds+O(λ exp (−λb

4
)) +O(µ exp (−µb

4
))

we are lead to uniform Mackey-convergence on [0, b4 ] of Tt(λ) as λ→∞. We denote the limit by Tt.
Due to uniform convergence on [0, b4 ] and the Mackey-property of the limits we obtain Tt(λ)aλ → Tta,
consequently the first derivatives of Tt(λ) converge uniformly in t to aTt = Tta, which guarantees
Lipschitz-differentiability of order Lip1 of Tt with derivative aTt. Since multiplication with a is a
bounded operation we see that the first derivative is Lip1, too. Consequently Tt is smooth on [0, b4 ].
Given t, s ∈ [0, b4 ] with t+ s ∈ [0, b4 ], then

Tt+s − TtTs =
∫ t

0

d

du
(Tt−uTs+u) du =

∫ t

0
Tt−uTs+u(a− a)du = 0 .

So T is a smooth semigroup in A with generator a, which is the desired assertion.

2.8. Remark. If A is a convenient algebra, then also l∞(R, A) (mappings bounded on compact
sets), C∞(R, A). In all cases the application of the theorem yields some results on locally bounded
(smooth) families of smooth semigroups. However, the relations on the infinitesimal generators in
the smooth case cannot be written down without involving derivatives in the parameter.

The following theorem provides a reproduction formula, given an asymptotic resolvent, we can
calculate the smooth semigroup. The formula is apparently complicated, but all the known repro-
duction formulas from classical theory follow (see [Ouc73] for the idea of the proof):

2.9. Theorem (Reproduction formula). Let a ∈ A be an element, R : R>ω → A an asymp-
totic resolvent of a satisfying the Hille-Yosida condition and T the associated smooth semigroup by
2.7, then

lim
n→∞

(−1)n−1

(n− 1)!
(
n

t
)
n
R(n−1)(

n

t
) = Tt

uniformly on compact intervals in [0, b[ as Mackey-limit, where at t = 0 the term is given by e.

Proof. First we show that the term can be continued by e at t = 0, therefore we apply the
formula

R(k+1)(λ) + (k + 1)R(λ)R(k)(λ) = O

(
exp (−λb)(k + 1)! + (bλ)k+1

λk+2

)
for k ∈ N and λ > ω from the proof of Theorem 2.7. We prove that

lim
λ→∞

(−1)nλn+1

n!
R(n)(λ) = e

is a Mackey-limit. For n = 0 the assertion was proved at the beginning of the previous demonstration,
we assume by induction, that it is valid for some n ≥ 0. With the formula of the proof of theorem
2.7. we obtain by applying the commutation relations

(−1)n+1λn+2

(n+ 1)!
R(n+1)(λ) =

(−1)nλn+1

n!
R(n)(λ)R(λ)λ

+O(exp (−λb)(n+ 1)! + (bλ)n+1

(n+ 1)!
)

and we can insert the hypotheses of induction. Letting λ tend to infinity we arrive at the limit result
by induction (we need the case n = 0 and the induction hypothesis), the Mackey-property is also
proved.

Sn(t) :=
(−1)n−1

(n− 1)!
(
n

t
)
n
R(n−1)(

n

t
)
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is defined for t ∈ [0, b[ and n > bω. Remark that

Sn(t) = O(1)

for n > bω and t ∈ [0, b[ by the Hille-Yosida condition. Let 0 < t < b be given, then

d

dt
Sn(t) =− n

t
Sn(t) +

(−1)n

(n− 1)!
(
n

t
)
n
R(n)(

n

t
)
n

t2
=

=− n

t
Sn(t) +

(−1)n−1

(n− 1)!
(
n

t
)
n+2

R(n−1)(
n

t
)R(

n

t
) +

1
n!

(
n

t
)
n+2

Gn(t) =

=an
t
Sn(t) +

1
n!

(
n

t
)
n+2

Gn(t)

by the above formula with Gn(t) := O(exp (−n
t b)(

t
nb
n + ( tn)n+1

n!)):

1
n!

(
n

t
)
n+2

exp (−n
t
b)
(
t

n
bn + (

t

n
)
n+1

n!
)

= exp (−n
t
b)(

1
n!

(
n

t
)
n+1

bn +
n

t
) ≤

≤ K1 exp (−n
t
b)(

1
n!

(
nb

t
)
n+1

+
n

t
)

with a constant K1 ≥ 1. Now we apply Stirling’ s formula n! ∼ nn exp (−n)
√

2πn (see [Kno51], ch.
14, for remarkable details), consequently

≤K2 exp (−n
t
b)(exp (n)

√
n(
b

t
)
n+1

+
n

t
)

=K2

(
exp (n(1− b

t
))
√
n(
b

t
)
n+1

+ exp (−n
t
b)
n

t

)
The function f(x) = xm exp (−nx) is decreasing on the interval [mn ,∞[. Given 0 < t0 < b,

t ∈ [0, t0], n ∈ N with β := b
t0
≥ 1 + 1

n , then

exp (−nb
t
)(
b

t
)
n+1

≤ βn+1 exp (−nβ)

exp (−nb
t
)(
b

t
) ≤ β exp (−nβ)

Inserted in our formula we arrive at

≤ K3(
√
nβn+1 exp (n(1− β)) + nβ exp (−nβ))

However, β exp (1− β) < 1 for β > 1, so the term in question tends to zero as n → ∞ uniformly in
t on compact intervals in [0, b[. The following formula prepares the result:

Sn(t)− Tt =
∫ t

0

d

ds
(Sn(s)Tt−s) ds =

=
∫ t

0
Sn(s)Tt−s(an

s
− a)ds+

∫ t

0

1
n!

(
n

t
)
n+2

Gn(s)ds

for n > bω. Given t ∈ [0, t0] we obtain by boundedness of Sn and the above convergence of the
perturbation 1

n!(
n
t )n+2Gn(s) the result and the Mackey-property.

3. ACP and Zoology of locally convex Spaces

Semigroups will be denoted by S, T, ..., their infinitesimal generators by a, b. We use the conven-
tions of semigroup theory: Tt = T (t). The interest in semigroup theory stems from properties of the
solutions of Abstract Cauchy Problems on convenient vector spaces. Let E be a convenient vector
space, a ∈ L(E) a bounded operator, then, given x ∈ E, a solution of ACP (a) (Abstract Cauchy
Problem associated to a) is a curve x : R≥0 → E satisfying

x ∈ Lip1(R≥0, E) and x(0) = x

d

dt
x(t) = ax(t) for all t ∈ R≥0
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If ACP (a) has a unique solution for every x ∈ E, one can form a semigroup T of linear mappings
on E, we call such an Abstract Cauchy Problem well-posed. If the space E is webbed in a locally
convex topology compatible with the bornology on E, then the semigroup is a smooth semigroup of
bounded linear mappings on E:

3.1. Proposition. Let E be a webbed locally convex vector space, such that Eborn is Baire,
a ∈ L(E) a bounded, linear operator, then the following assertions are equivalent:

1. For any x ∈ E the Abstract Cauchy Problem ACP (a) has a unique solution with initial value
x.

2. The mapping T : R≥0 → L(E) , t 7→ (x 7→ x(t)), where x(t) denotes the value of the unique
solution of ACP (a) with initial value x at time t, is well-defined, smooth and

d

dt
Tt = aTt

for t ∈ R≥0.

Proof. The step from the second to the first assertion is valid in general for any locally convex
space E. The other direction is a little bit more complicated:

We denote by T.x the unique solution with initial value x ∈ E. Remark that by definition this
solution is smooth, so T.x ∈ C∞([0,∞[, E). Furthermore by uniqueness the family {Tt}t∈R≥0

is a
semigroup of linear operators on E. We define η : Eborn → C∞([0,∞[, Eborn) by η(x) = T.x, which
is a linear mapping. We show that it has closed graph. Let {xi}i∈I be a converging net with limit
x ∈ Eborn and η(xi)→ y with y ∈ C∞([0,∞[, Eborn), then

η(xi)(s) = xi +
∫ s

0
aη(xi)(t)dt

for s ≥ 0. Passing to the limit we obtain

y(s) = x+
∫ s

0
ay(t)dt

for s ≥ 0. So y is a solution of ACP (a) with initial value x, consequently y = η(x) and η has a
closed graph. If E is webbed, Eborn is webbed and Baire by assumption, consequently η continuous.
evt ◦ η = Tt is continuous on Eborn, so T is a smooth semigroup of bounded linear operators.

Proposition 3.1 justifies the introduction of the notion of a smooth semigroup. A smooth semi-
group on E is a smooth semigroup in L(E). On webbed spaces with Eborn Baire it is sufficient to
have a theory of smooth semigroup to be able to handle well posed Abstract Cauchy Problems.

In the category of sequentially complete locally convex spaces one can associate to each strongly
continuous semigroup of continuous operators a smooth semigroup of bounded operators on the
sequentially complete vector space of smooth vectors, consequently we only treat smooth semigroups,
as the concept of strongly continuous semigroups only makes sense for calculation on sequentially
complete vector spaces.

3.2. Definition. Let E be a convenient locally convex vector space, T a semigroup of continuous
linear operators. T is called C0-semigroup if limt↓0 Ttx = x for x ∈ E.

The theory of C0-semigroups on convenient vector spaces can be developed analogously to the
theory of smooth semigroups, if enough smooth vectors exist. Remark that this is the case if the
space is sequentially complete. Anyway we do not need local equicontinuity as assumed in most of
the articles on the subject.

3.3. Proposition. Let E be a convenient locally convex vector space, T a C0-semigroup of con-
tinuous linear operators on E, such that the ”smooth vectors” S(φ, t)x =

∫ t
0 φ(s)Tsxds exist for t ≥ 0

and φ ∈ C∞c (R>0), then the linear subspace

E∞ := {x ∈ E | t 7→ Ttx is smooth }
of smooth vectors is dense in E. Let a denote the infinitesimal generator of T . The initial locally
convex topology (a|E∞)n : E∞ → E for n ∈ N is convenient and the restriction T |E∞ is a smooth
semigroup with infinitesimal generator a|E∞.
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Proof. The proof is done by standard semigroup theory:

D(a) := {x ∈ E | lim
t↓0

1
t
(Ttx− x) exists }

ax := lim
t↓0

1
t
(Ttx− x) for x ∈ D(a)

By continuity we obtain aTtx = Ttax for x ∈ D(a) and that a is a closed operator, furthermore the
smooth vectors commute with a. Another easy calculation gives

a

∫ t

0
φ(s)Tsxds = −

∫ t

0
φ′(s)Tsxds

for φ smooth with support in R>0 (for the arguments see the proof of theorem 1.6). Consequently the
notion ”smooth vector” is justified as the image under a again lies in D(a). However these vectors lie
dense in E as we can choose a Dirac sequence right from zero and hence D(a) is dense in E. Providing
D(a) with the graph norm yields a new convenient locally convex space, where we can apply the same
procedure: The semigroup T (1) steming from T via restriction is a strongly continuous semigroups
of continuous linear opearators and smooth vectors exist in D(a). E∞ is given as the intersection of
all these spaces and equivalently as the domain of definition of all ak for k ∈ N. The above described
topology is a convenient locally convex topology as it lies in the domain of definition of all ak, k ∈ N.
Again by the smooth vectors we conclude that E∞ is dense.

Remark that this proof can be generalized to strongly continuous group homomorphisms of finite
dimensional Lie groups to continuous linear operators on locally convex spaces (see [KM97], compare
to 49.4.) assuming the existence of smooth vectors.

The rest of this section is devoted to the analysis of examples. Therefore we need a principle
referred to as Holmgren’s principle (see [LS93], p. 133-158 for details) concerned with the dual ACP
on the space E′ of bounded functionals on E. The pairing will be denoted by 〈., .〉:

3.4. Proposition. Let E be a convenient vector space, a ∈ L(E) a linear operator:

1. If ACP (a) is uniquely solvable for every initial value on E and ACP (a′) is uniquely solvable for
every initial value on E′, then the solutions determine smooth semigroups of bounded operators
on E and E′, respectively. They are dual to each other.

2. Let x : R≥0 → E be a (nontrivial) solution of ACP (a) with initial value x(0) = 0, then for
every solution y : R≥0 → E′ of ACP (a′) we have:

∀s, t ∈ R≥0 , n ∈ N : 〈x(n)(s), y(t)〉 = 0

3. Let y : R≥0 → E′ be a (nontrivial) solution of ACP (a′) with initial value y(0) = 0, then for
every solution x : R≥0 → E of ACP (a) we have:

∀s, t ∈ R≥0 , n ∈ N : 〈x(s), y(n)(t)〉 = 0

In other words the non-uniqueness of the ACP associated to a or a′, respectively, determines
forbidden zones for the dual problem, that means subspaces where solutions of the dual problems
cannot pass by.

Proof. The first assertion follows from the observation that the semigroups of (possibly un-
bounded) operators T on E and S on E′ are dual to each other, consequently bounded. For the
proof we look at the following curve. Let t > 0, x ∈ E, y ∈ E′ be fixed, then

c(s) := 〈Tt−sx, Ssy〉 for s ∈ [0, t]

is a smooth curve with derivative zero, because of the boundedness of the pairing, so c(0) = 〈Ttx, y〉 =
c(t) = 〈x, Sty〉. A mapping is bounded if the composition with all bounded functionals is bounded,
consequently the given semigroups are semigroups of bounded linear maps.

For the last two assertions we have to examine a classical object, the shift semigroup on
C∞(R≥0,R) given by

(Ssf)(t) = f(t+ s) for all t, s ≥ 0 .
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This is a smooth semigroup for the convenient vector space C∞(R>0,R) associated to ∂
∂t , so the

solutions of the associated Abstract Cauchy Problem are unique. Taking the data from point 2. we
can define f(t, s) := 〈x(s), y(t)〉:

∂

∂s
f(t, s) = 〈ax(s), y(t)〉 = 〈x(s), a′y(t)〉 =

∂

∂t
f(t, s)

for s, t ≥ 0. Using cartesian closedness we obtain that fs := f(., s) for s ≥ 0 is a solution of the
abstract Cauchy problem given above. This means that

f(t, s) = (Ssf0)(t) = f0(t+ s) = 0

because x(0) = 0. Derivations in s-direction give the desired assertion. Taking the data of 3. we can
proceed in the same manner by interchanging the roles.

As a corollary we obtain the following relaxation of the hypotheses in 3.4.

3.5. Corollary. Let E be a convenient vector space, a ∈ L(E) a linear operator. If ACP (a) is
solvable for every initial value on E and ACP (a′) is solvable for every initial value on E′, then the
solutions determine smooth semigroups of bounded operators on E and E′, respectively.

Proof. By Proposition 3.4 we obtain that the solutions have to be unique, because they exist
for all initial values. Therefore we can apply 1 of 3.4.

The question wether the exponential of a bounded operator exists as a series is solved by the
following useful proposition:

3.6. Proposition. Let E be a complex convenient vector space, a ∈ L(E) a linear bounded
operator with ACP (a) and ACP (ia) uniquely solvable by a smooth group of bounded operators, re-
spectively, then the exponential series converges to a holomorphic mapping exp(ta) uniformly on
compact sets in C.

Proof. (see [LS93], p. 146 for the idea of the proof) Let T be the semigroup associated to a
and S be the semigroup associated to ia, then we investigate the mapping (s, t) 7−→ TsSt, which
satisfies the differential equations

∂

∂s
f(s, t) = i

∂

∂t
f(s, t)

Consequently the Cauchy-Riemann equations for the given mapping are satisfied. Consequently the
mapping in question is weakly holomorphic and by convenience holomorphic. However this already
guarantees the convergence of the exponential series.

The following examples explain the problems which can occur within the analysis of ACP on even
well-examined convenient vector spaces. Non-uniqueness and Non-solvability are generic phenomena
in this setting, but sometimes only non-normable spaces provide a good basis to analyze a problem.

3.7. Example (rapid growth). Let E be the space of entire functions on the complex plane
H(C) and define a to be the multiplication operator by the function id, then the (ACP )(a)

∂

∂t
f(t, z) = zf(t, z)

is solvable. Nevertheless the solution exp(zt)f(z) grows faster in t than any exponential in the natural
topology of uniform convergence on compact sets on H(C) for any non-zero initial value.

3.8. Example (non-solvability). Let E be the Fréchet space of rapidly decreasing sequences
with values in R. We shall analyze the following ACP associated to the operator a : s→ s given by

a(x1, x2, x3, ...) = (0, 12x1, 22x2, 32x3, ...)

for a sequence x = (x1, x2, ...) ∈ s. The dual space of s is a inductive limit of Banach spaces, namely
the space of slowly increasing sequences, more precisely: Let d ∈ N+ be fixed, then the Banach space
Ed is defined in the following way:

Ed := {y ∈ R∞| pd(y) <∞} ,
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where pd(y) := supk∈N+
| yk
kd
| is a norm. s′ = inj limd→∞Ed. Applying the pairing we can calculate

the adjoint of a:

a′(y1, y2, y3, ...) = (12y2, 22y3, 32y4, ...)

for a sequence y ∈ s′. Now we can try to solve the ACP associated to a and a′. In both cases
we can solve the equations componentwise, supposing that solutions exist, we start with the adjoint
problem: Let y : R≥0 → s′ be a smooth solution of the differential equation, then

d

dt
yk(t) = k2yk+1(t)

for all k ∈ N+. So y1 determines all other components by derivation. Given f ∈ C∞(R≥0,R), then

yk :=
1

(k − 1)!2
f (k)

for k ∈ N+ is a solution of the componentwise problem. We obtain a solution for any initial value in
s′ by a direct argument, but we do not obtain unicity. Some functions infinitely flat at zero provide
us with enough nontrivial solutions to the initial value zero in s′. To prove these statements one
has to investigate carefully the derivatives of functions with compact support on R. The following
theorem is a special case of Theorem 1.4.2. in [Hör83]:

Let I ⊂ R be an open interval and K ⊂ I a compact subset, d := inf{|x−y| |x ∈ K, y ∈ {I}. Let
{dj}j∈N+ be a sequence of positive real numbers so that

∑∞
j=1 dj < d, then there exists a function

φ ∈ C∞0 (I,R), 0 ≤ φ ≤ 1 and φ equal to 1 in a neighborhood of K, such that

|φ(k)(x)| ≤ Ck 1
d1d2 . . . dk

for k ∈ N+ and x ∈ I. C = 2 is one possible choice, in general it depends on the dimension of the
space.

We fix the interval I =] − 3, 3[, K = {0} and choose dj = (1
j )

3
2 . Then we get by the lemma a

function φ satisfying the above estimates. If we define c : R→ s′ via

c0
k(t) :=

1
(k − 1)!2

φ(k)(t) for k ∈ N+

then we obtain a smooth curve factoring for example over E2 ↪→ s′, one can take the norming linear
functional l(x) =

∑∞
i=0

xk
k2 for x ∈ E2 to prove the assertion. This curve has compact support and

is consequently a nontrivial solution with initial value zero. Given l ∈ N, we apply the indefinite
integral operator

∫ t
0 .dt l-times to φ, the result is denoted by φl, φ0 = φ. φl verifies the following

translated estimates:

|φl(k)(x)| ≤ Ck−l 1
d1d2 . . . dk−l

for x ∈ R and k ≥ l. So we can define curves cl : R → s′ factoring over E2 ↪→ s′ by the same
procedure. We can show directly that each polynomial on R can be used to produce a solution. Now
we continue inductively: c1 is a curve with compact support having initial value e1. Translating this
solution in R we obtain a curve d1 having initial value zero and attaining e1 in some distance from
t = 0. c2 has initial value e2, but does no longer have compact support, however far away from zero
c2

1 is given by a polynomial of first degree. We translate the curve and subtract the solution formed
by the polynomial, so we obtain a curve d2 having initial value zero and attaining somewhere the
value ce1 + e2, c ∈ R. This procedure can be continued and we get a sequence of nontrivial solutions
{dn}n∈N+

with initial value zero. For each n ∈ N+ there is a t > 0 so that dn(t) =
∑n−1

i=1 ciei + en
with ci ∈ R. With this sequence we can exclude all possible nontrivial initial values for ACP (a) with
respect to the existence of a solution, by a refinement of Proposition 3.4 we can assert that not even
on an interval, there is a solution of the problem.

As one example we try to solve ACP (a) for initial value e1. Suppose a smooth solution x exists,
so we can look at it componentwise:

d

dt
xk(t) = (k − 1)2xk−1(t)
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for k ≥ 2. d
dtx1(t) = 0. Solving this recursive problem yields xk(t) = (k − 1)!tk−1 for k ∈ N+ and

t ∈ R>0, which is not in s for t > 0.

3.9. Example (nearly non-solvability). We analyze the heat equation on C∞(Tn,C) for neg-
ative time direction: Remark that the Laplacian generates an analytic semigroup of angle π

2 on
Lp(Tn,C) for 1 ≤ p < ∞ by the looking at the bounded strongly continuous translation groups.
The smooth functions on the n-torus are the smooth vectors of the Laplacian with respect to
Lp(Tn,C), which can be calculated by Sobolev space methods or by looking at Fourier series on
L2(Tn,C), where we see that the smooth vectors are exactly those falling faster than any ”poly-
nomial” to zero: Transforming the smooth vectors by Fourier development we obtain on s(Zn,C)
the operator ∆((xα)α∈Zn) = (−||α||22xα)α∈Zn , which is bounded. The resolvent is given through
R(λ,∆) = (λ + ||α||22)−1. The smooth semigroup exp(∆t) is well behaved and can be easily in-
verted on the dense subspace of finite sequences. We obtain a pointwise smooth semigroup of un-
bounded linear operators on the finite sequences in s(Zn,C), the trajectories are unbounded for a
non-zero starting vector. Nevertheless on the sequence space of ”very, very fast” falling sequences
(xα = O(exp(−n||α||22) for all n ≥ 1 on Zn) the heat equation can be solved by a smooth group in
real time direction, but also in the imaginary time direction, so the exponential exists in the given
sequence space.

Nevertheless there are vector spaces, where all Abstract Cauchy Problems are solvable, but not
uniquely. The following theorem treats some infinite products of real or complex lines, which have
this property, even more. Let a ∈ L(E) be some bounded linear operator, f ∈ C∞(R≥0, E) some
function, then a Lip1-curve x : R≥0 → E is the solution of the inhomogeneous Abstract Cauchy
Problem ACP (a, f) with initial value x if x(0) = x and d

dtx(t) = ax(t) + f(t). Remark that such a
solution has to be smooth.

3.10. Proposition. Let B be a non-empty set, a ∈ L(KB) a bounded linear operator, f ∈
C∞(R≥0,K

B), then there is a solution of ACP (a, f) for any initial value x ∈ KB.

Proof. (see [Shk92] for the idea of the proof) The proof is based on an inductive procedure
involving the adjoint map a′ ∈ L(K(B)). First we take B = N. We construct an algebraic basis of
K

(N):

V0 := 〈{a′ke0 | k ∈ N}〉K(N)

There are two possibilities, either V0 is finite dimensional, then there is n ∈ N+ minimal with
a′ne0 ∈ 〈{a′ke0 | 0 ≤ k ≤ n − 1}〉, or V0 is infinite dimensional, then the family {a′ne0}n∈N is
linearly independent. Remark that there is a canonical basis in V0, namely t0

i = a′ie0. We obtain
a′t0

i = t0
i+1 if i < dimV0 and a′t0

dimV0−1 ∈ 〈{t0
i | 0 ≤ i ≤ dimV0 − 1}〉 if dimV0 < ∞. This is the

first step of induction. Assuming that we have constructed V0 ⊂ V1 ⊂ · · · ⊂ Vm−1 for m ≥ 1 with
{e0, . . . , em−1} ∈ Vm−1 and the following properties: a′Vi ⊂ Vi for 0 ≤ i ≤ m − 1, a′tki = tki+1 if
i < dimVk/Vk−1 and a′tkdimVk/Vk−1−1 ∈ 〈{t

k
i | 0 ≤ i ≤ dimVk/Vk−1 − 1}〉 if dimVk/Vk−1 < ∞ for

1 ≤ k < m. We define r := min{n ∈ N | en /∈ Vm−1} and Ṽm := 〈{a′ker | k ∈ N}〉. There are two
cases to be worked out:

If a′ker /∈ 〈Vm−1 ∪{a′ier | 0 ≤ i < k}〉 for k ∈ N, then Vm := 〈Vm−1 ∪ Ṽm〉. If the condition is not
satisfied, we take the smallest k ∈ N, where it is broken and define Vm := 〈Vm−1∪{a′jer | 0 ≤ j < k}〉.
In both cases there is an appropriate basis satisfying the above properties. By induction we obtain
that there is an algebraic basis tki of K(N), which we can order to a matrix

B :=

t0
0

T

t0
1

T

...


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representing an element of L(KN). By construction of the algebraic basis we obtain that B has a left
inverse C, CB = id, C ∈ L(KN) and that Ba = JB with a matrix J of the following type

J =




0 1

0 1
0 1

∗ ∗ ∗ 0




0 0 0 0
0 0

0 0
0

 . . .


0

0
0

∗ ∗ ∗ ∗




0 1
0 1

0 1
∗ ∗ ∗ 0

 . . .

...
...

. . .


which explains the interest in the procedure. Remark that in the case that the width of a step
is infinite the last line of unknown entries vanishes, because there is no last line. Now we are
able to transform the inhomogeneous Abstract Cauchy Problem reasonably to a solvable problem:
d
dtx(t) = ax(t) + f(t) is the regarded equation. Assuming that there is a solution x, then Bx =: y
satisfies the equation d

dty(t) = Jy(t) +Bf(t) and if this equation has a solution y, then Cy satisfies
the original equation. The transformed equation can easily be solved by finite dimensional methods
for all times.

The general step is made by transfinite induction by well-ordering the given set B. The procedure,
however, remains the same as in the denumerable case: B can be assumed to be the set of all
ordinals not exceeding some infinite ordinal number ρ. Given f ∈ C∞(R,RB) we write the system
to solve x′α =

∑ρ
β=1 aαβxβ + fα, where the initial value is given by xα. (aα.) ∈ R(B) and the set

Nα := {β ∈ B | aαβ 6= 0} is finite. By transfinite induction we construct sets of smooth function
Xα = (xα)α∈Mα for α ∈ B such that

1. If β ≤ α, then β ∈Mα and Mβ ⊂Mα.
2. If β ∈Mα, then Nβ ⊂Mα and

x′β =
∑
γ∈Nβ

aβγxγ + fβ, xβ(0) = xβ

As induction base we apply the following construction: M0
1 = {1}, Mn

1 = Mn−1
1 ∪ (∪α∈Mn−1

1
Nα)

for n ∈ N, then M1 := ∪k∈NMk
1 , which is a countable set, furthermore we can consider the restriction

of a to RM1 due to the construction. So we find a solution set of smooth functions verifying 1. and 2.
by the countable case. The induction case splits into two subcases: Let 1 < γ ≤ ρ be a given ordinal
number, such that for all β < γ the sets Mβ and Xγ are constructed. If γ ∈ ∪β<γMβ, then we define
Mγ := ∪β<γMβ and Xγ := (xα)α∈Mγ and all the properties are satisfied. If γ /∈ ∪β<γMβ =: Kγ , then
we construct via M0

γ := Kγ ∪ {γ} and Mn
γ = Mn−1

γ ∪ (∪α∈Mn−1
γ

Nα) a sequence of sets, whose union

is denoted by Mγ . Remark that Mγ \Kγ is countable, we look at the Cauchy problem at RMγ\Kγ by
inserting the given solutions over Kγ and solve it by the solution theorem in the countable case, so
we arrive by transfinite induction at a solution set Xρ.

This is one extreme case of solvability on a special type of locally convex spaces. Remark that this
restricts solvability on the dual space, because the solutions maybe non-unique. Another extreme
case is given by so called LN -spaces (see [LS93], p. 148-155 for the proof in the case X = R): This
indicates a class of nuclear Fréchet spaces E, where for all a ∈ L(E) the exponential exp(at) exists for
all times t, which is a surprising fact. We summarize first some properties of sequence spaces to derive
finally the results: An infinite matrix (apn)p,n≥1 with the properties ap+1n ≥ apn ≥ 1, apn ≤ apn+1

and
∑

n≥1
apn
ap+1n

< ∞ is the starting point of our considerations. The sequence space L(apn, X) is
the linear space of sequences of Banach space vectors (xn) with ||(xn)||p = supn≥1 apn||xn|| < ∞.
With these norms we obtain a nuclear complex Fréchet space. The norms ||(xn)||(p) =

∑
n≥1 apn||xn||

are equivalent via ||(xn)||p ≤ ||(xn)||(p) and ||(xn)||(p) =
∑

n≥1 apn||xn|| =
∑

n≥1
apn
ap+1n

||(xn)||p+1 for
p ≥ 1. Providing L(apn) with the ||.||p-norms we obtain for an infinite matrix T = (tij) of linear
continuous operators on X defining an operator in L(L(apn, X)) to be continuous if and only if for
p ≥ 1 there is q ≥ 1 such that supi≥1

∑
j≥1 ||tij ||

bpi
apj

=: ||T ||pq < ∞. Providing L(apn) with the
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||.||(p)-norms we obtain analogously for an infinite matrix of linear continuous operators T = (tij) to

be continuous if and only if for p ≥ 1 there is q ≥ 1 such that supj≥1

∑
i≥1 |tij |

bpi
apj

=: ||T ||(p)(q) < ∞.
The two conditions are equivalent by the equivalence of the Fréchet space topologies. The following
simple assertions can be proved immediately (see [LS93]):

1. Let T 1 and T 2 be matrices with T 2 continuous and ||t1ij || ≤ ||t2ij ||, then T 1 is continuous. The
deeper fact behind is that we work in a type of Fréchet lattice if X is a Banach lattice.

2. A sequence of matrices Tn converges to T if and only if for p ≥ 1 there is q ≥ 1 such that
||Tn − T ||pq → 0 (or equivalently ||Tn − T ||(p)(q) → 0).

3. A family of matrices (Tα) is equicontinuous if and only if the supremum-matrix (supα ||tαij ||)
is continuous on L(apn) := L(apn,R).

4. The linear map diag : L(L(apn))→ L(L(apn)) mapping a matrix to the matrix of its diagonal
entries is continuous.

3.11. Lemma. If the matrix of a sequence space L(apn, X) has the property

∀p1, p2 ≥ 1∃q ≥ 1 : sup
n≥1

ap1nap2n

aqn
<∞((C))

then the following assertions are equivalent:

1. For each p ≥ 1 there is q ≥ 1 such that supn≥1
exp(apn)
aqn

<∞.
2. For all T : L(apn, X) → L(apn, X) continuous and linear the linear continuous operator
diag(T ) has the property that its exponential series converges.

Proof. (see [LS93], p. 148-155) The equivalence is easily established: Assume that 1. holds,
given a continuous diagonal matrix (λi) with λi linear continuous operators, then there is p ≥ 1 with
supn≥1 ||λn||a1n

apn
< ∞, so ||λn|| ≤ Mapn for a positive constant M > 0 and n ≥ 1. By 1. there is

a constant C > 0 and p1 ≥ 1 such that exp(apn) ≤ Cap1n, by condition (C) for all p2 ≥ 1 there is
q ≥ 1 such that

∀p1, p2 ≥ 1∃q ≥ 1 : sup
n≥1

ap1nap2n

aqn
<∞

consequently for |t| ≤ 1
M

sup
n

exp(tλn)
ap2n

aqn
≤ exp(apn)

ap2n

aqn
<∞

which means continuity of the diagonal operator with entries exp(tλn) for |t| ≤ 1
M . By looking

at the norming linear functionals lp((xn)) :=
∑

n≥1 apnxn we can prove that the application of the
diagonal matrix on an element is smooth, so the diagonal operator is smooth by the smooth detection
principle. By complexification of the space the same conclusion is valid for (iλn), so the exponential
series converges.

Assume that 2. holds, then for any p ≥ 1 the diagonal operator with entries apn is continuous by
(C) and the diagonal operator with entries exp(apn) is continuous, hence for all p ≥ 1 there is some
q ≥ 1 such that supn exp(apn)a1n

aqn
<∞, which proves the desired assertion.

3.12. Definition. A sequence space with values in a Banach space X is called of class LSN if
the following four conditions are satisfied:

1. For all 1 ≤ p < q and for all n ≥ 1: apn+1

aqn+1
≤ apn

aqn
.

2. There is r ≥ 1 such that for any q ≥ 1 there is p ≥ 1 with supn≥1
aqn+1

apn+1

apn
arn

<∞.
3. For all p ≥ 1 there is q ≥ 1 such that for all r ≥ 1: supn≥1

apn+1

aqn+1

arn
apn

<∞.

4. For all p ≥ 1 there is q ≥ 1 such that supn≥1
exp(apn)
aqn

<∞.

3.13. Proposition. If the sequence space L(apn, X) belongs to the class LSN , then condition
(C) is satisfied and for any continuous linear map with zero diagonal ||T ||pp <∞ for p large enough.

Proof. The rather technical proof can be found in [Lob79].

Now we can prove the main theorem of this constructive theory:
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3.14. Theorem. Let E be a sequence space of class LSN, then any inhomogeneous non-auto-
nomous Cauchy problem with smooth entries

x′(t) = A(t)x(t) + f(t)

is uniquely solvable for all times by a smooth curve x for any initial value x0 at time t0.

Proof. (see [LS93], p. 148-155) First we observe that unique solvability of the homogenous
non-autonomous Cauchy problem implies the inhomogeneous assertion, since the smooth evolution
family R(t, t0)x0 (unique solution with initial value x0 at time t0) produces via

φ(t) := R(t, t0)x0 +
∫ t

t0

R(t, s)f(s)ds

a solution of the inhomogeneous problem:

φ′(t) = A(t)R(t, t0)x0 +R(t, t)f(t) +
∫ t

t0

A(t)R(t, s)f(s)ds = A(t)φ(t) + f(t)

Uniqueness follows directly. Consequently the non-autonomous case has to be solved: Given a smooth
curve of operators A(t), then we can form A1(t) = diag(A(t)) and A2(t) = A− A1(t), both smooth
curves. First we solve the equation for A1on an open finite interval ]a, b[. The supremum of A1 over
the interval will be denoted by (λn) = B := (supa≤t≤b ||Ann(t)||) and is a continuous operator since
A1 is an equicontinuous family on the interval ]a, b[. Hence the diagonal matrix with entries

exp(
∫ t

t0

Ann(s)ds)

is continuous since all entries are bounded by exp((b−a)λn), which constitutes a continuous diagonal
matrix by the LSN -properties. Evaluating at one point x0 and combining with the linear functional
lp yields smoothness of the constructed evolution operator R(t, t0). We can immediately extend this
operator to the whole real line. The equation y′(t) = H(t)y(t) with H(t) = R(t, t0)A2(t)R(t0, t) can
be solved by the observation that H(t) has zero diagonal and therefore - by the LSN -conditions -
for large p ||H(t)||pp <∞. Consequently we can pass to the Banach space (E, ||.||p), where we obtain
a Lipschitz curve for large p, so the equation is classically solvable there and we get back smooth
unique solutions for any initial value at time t0. The solutions of the equations y′(t) = H(t)y(t)
for t0 and the equation x′(t) = A(t)x(t) for initial value x0 at t0, respectively, are mapped to each
other via x(t) = R(t0, t)y(t), which follows from an easy calculation. So the desired existence and
uniqueness assertions are proved.

3.15. Remark. Defining apn = bpn! with bp1 = p and bpn+1 = pbpn for n ≥ 1 provides an example
of a LSN -space (see [LS93], p.150).

3.16. Remark. On LSN -spaces even non-linear equations x′(t) = f(x(t)) for smooth functions
on an open subset admit a local flow on the open subset (see [LS93], pp. 158-163). So manifolds
modelled on LSN -spaces admit local flows for any vector field.

3.17. Remark. Many classical differential operators on compact manifolds can be transformed
to continuous operators on sequence spaces. LSN -spaces provide an example of a sort of common
domain of definition, where all Cauchy problems are solvable for all times.

4. The Trotter approximation theorem for product integrals

In the sequel we apply the Landau-like symbols to shorten the proof as in section 2: Given a
mapping c from a set M to a convenient vector space E we write c = O(d) if there is a mapping
d : M → R≥0 and a bounded absolutely convex set B ⊂ E such that c(m) ∈ d(m)B for all m ∈ M .
Remember that a sequence {xn}n∈N is Mackey-convergent if there is a sequence of positive real
numbers {µn}n∈N with µn ↓ 0 such that xn = O(µn), see section 2.1.

Given a smooth curve X : R→A we try to solve the following ordinary differential equation
d

dt
x(t) = X(t)x(t)(R)

with initial value x(s) = xs at the point s for t ≥ s. If there is a smooth family of solutions cs for
initial value e at any point s, then there is a smooth family of solutions for all initial values x at any
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point s given through the curves t 7→ cs(t)x for t ≥ s. If there is a smooth family of smooth solutions
cs for initial value e at any point s with the propagation condition

cs(t)cr(s) = cr(t) for t ≥ s ≥ r

then the solutions of the equation are unique for all initial values at any point in time. From the
defining property of the solution family cs(t) we obtain

0 =
d

ds
cs(t)cr(s) = (

d

ds
cs(t))cr(s) + cs(t)X(s)cr(s)

which yields evaluated at s = r

d

ds
cs(t) = −cs(t)X(s)

for s ≤ t. So s 7→ cs(t) is a smooth family of solutions for initial value e at any point in time of a
ordinary differential equation of the type

d

ds
y(s) = y(s)Y (s)(L)

but in the negative time direction. Consequently we obtain by looking at another smooth solution
c̃r(t) from r to t

d

ds
cs(t)c̃r(s) = (

d

ds
cs(t))c̃r(s) + cs(t)X(s)c̃r(s) = 0

which allows the desired conclusion of unicity. If a smooth solution family satisfying the propagation
condition exists for (R) we call it the right evolution of the curve X. If a smooth solution family
satisfying the propagation condition exists for (L), we call it the left evolution of the Y .

With the concept of product integrals (see [Mil83], [Omo97] on Lie groups) we try to approxi-
mate right evolutions of a given curve X and obtain in fact an existence theorem.

4.1. Definition (Product integral). Let A be a convenient algebra. Given a smooth curve X:
R→ A and a smooth mapping h : R2 → A with h(s, 0) = e and ∂

∂t |t=0h(s, t) = X(s), then we define
the following finite products of smooth curves

pn(s, t, h) :=
n−1∏
i=0

h(s+
(n− i)(t− s)

n
,
t− s
n

)

for a, s, t ∈ R. If pn converges in all derivatives to a smooth curve c : R → A, then c is called the
product integral of X or h and we write c(s, t) =

∏t
s exp(X(s)ds) or c(s, t) =:

∏t
s h(s, ds). The case

h(s, t) = c(t) with pn(s, t, h) = c( t−sn )n is referred to as simple product integral .

4.2. Theorem (Approximation theorem). Let A be convenient algebra. Given X : R → A
and a smooth mapping h : R× R≥0 → A with h(r, 0) = e and ∂

∂t |t=0h(r, t) = X(r). Suppose that for
every fixed s0 ∈ R, there is t0 > s0 such that pn(s, t, h) = O(1) on N×{(s, t) ∈ [s0, t0]2 | s ≤ t}. Then
the product integral

∏t
s h(r, dr) exists and the convergence is Mackey in all derivatives on compact

(s, t)-sets for s ≤ t. Furthermore the product integral is the right evolution of X.

4.3. Remark. The hypothesis on the product integrals will be referred to as boundedness con-
dition .

Proof. Literally the condition on the approximations is the following: There is an absolutely
convex bounded and closed set B such that for s0 ≤ s ≤ t ≤ t0 and n ∈ N

pn(s, t, h) ∈ B

We have to derive some more subtle boundedness conditions: Therefore we apply Taylor development
several times to get the necessary order estimates. First we show that the first derivative of the
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product integral is bounded, too.

d

dδ

n−1∏
i=0

h(s+
(n− i)δ

n
,
δ

n
) ∈

n−1∑
j=0

j−1∏
i=0

h(s+
(n− i)δ

n
,
δ

n
) · C 1

n
·
n−1∏
i=j+1

h(s+
(n− i)δ

n
,
δ

n
)

for δ ∈ [0, t0 − s0] with a closed absolutely convex bounded set C, such that

d

dδ
h(s+

(n− i)δ
n

,
δ

n
) = ∂1h(s+

(n− i)δ
n

,
δ

n
)
(n− i)
n

+ ∂2h(s+
(n− i)δ

n
,
δ

n
)
1
n

=

=
(n− i)δ
n2

∫ 1

0
∂2∂1h(s+

(n− i)δ
n

, r
δ

n
)dr

+∂2h(s+
(n− i)δ

n
,
δ

n
)
1
n
∈ C 1

n

for δ ∈ [0, t0 − s0] and n ∈ N. Remark that ∂k1h(s, 0) = 0 for s ∈ R , k ≥ 1. The other factors in the
above sum are of type pm with adjusted lower and upper bound and step width,

j−1∏
i=0

h(s+
(n− i)δ

n
,
δ

n
) = pj(s+

(n− j)δ
n

, s+ δ, h)

n−1∏
i=j+1

h(s+
(n− i)δ

n
,
δ

n
) = pn−j−1(s, s+

(n− j − 1)δ
n

, h)

so bounded by assumption on the respective intervals in [s0, t0]. This allows to conclude boundedness
of the first derivative with respect to t. Repeating this procedure we obtain by induction for k = 1, 2
that

dk

dδk

n−1∏
i=0

h(s+
(n− i)δ

n
,
δ

n
) = O(1)

for δ ∈ [0, t0 − s0] and n ∈ N, since

d2

dδ2
h(s+

(n− i)δ
n

,
δ

n
) = ∂2

1h(s+
(n− i)δ

n
,
δ

n
)
(n− i)2

n2
+ 2∂1∂2h(s+

(n− i)δ
n

,
δ

n
)
1
n

(n− i)
n

+

+∂2
2h(s+

(n− i)δ
n

,
δ

n
)

1
n2

=

=
(n− i)2δ

n3

∫ 1

0
∂2∂

2
1h(s+

(n− i)δ
n

, r
δ

n
)dr + 2∂1∂2h(s+

(n− i)δ
n

,
δ

n
)
1
n

(n− i)
n

+

+∂2
2h(s+

(n− i)δ
n

,
δ

n
)

1
n2
∈ D 1

n

and

d2

dδ2

n−1∏
i=0

h(s+
(n− i)δ

n
,
δ

n
) ∈

∑
0≤j<k≤n−1

j−1∏
i=0

h(s+
(n− i)δ

n
,
δ

n
) · C 1

n
·
k−1∏
i=j+1

h(s+
(n− i)δ

n
,
δ

n
) ·

C
1
n
·
n−1∏
i=k+1

h(s+
(n− i)δ

n
,
δ

n
) +

+
n−1∑
j=0

j−1∏
i=0

h(s+
(n− i)δ

n
,
δ

n
) ·D 1

n
·
n−1∏
i=j+1

h(s+
(n− i)δ

n
,
δ

n
)
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where D is a bounded closed absolutely convex subset of A. This means in first consequence that

h(s+ δ, δ)− pm(s, s+ δ, h) = O(δ2)(E)

by Taylor’s formula up to second order uniformly in m, since h(s, 0) = e and d
dδ |δ=0h(s+δ, δ) = X(s)

and d
dδ |δ=0

∏n−1
i=0 h(s+ (n−i)δ

n , δn) = X(s).
Now we calculate

pn(s, t, h)− pnm(s, t, h) =
n−1∑
j=0

(
j−1∏
i=0

h(s+
(n− i)(t− s)

n
,
t− s
n

)·

h(s+
(n− j)(t− s)

n
,
t− s
n

)−
(j+1)m−1∏
i=jm

h(s+
(nm− i)(t− s)

nm
,
t− s
nm

)

 ·
nm−1∏

i=(j+1)m

h(s+
(nm− i)(t− s)

nm
,
t− s
nm

)


in the spirit of the following formula

a1 · ... · an − b1 · ... · bn =
n∑
j=1

a1 · ... · aj−1(aj − bj)bj+1 · ... · bn(S)

which is true in any associative algebra. For the middle factor of the above series we observe that

h(s+
(n− j)(t− s)

n
,
t− s
n

) = h(s+
(n− j − 1)(t− s)

n
+
t− s
n

,
t− s
n

)

The other term is the m-th approximation for a product integral with lower border s+ (n−j−1)(t−s)
n

and upper border s+ (n−j)(t−s)
n :

(j+1)m−1∏
i=jm

h(s+
(nm− i)(t− s)

nm
,
t− s
nm

) = pm(s+
(n− j − 1)(t− s)

n
, s+

(n− j)(t− s)
n

, h)

Via the estimate (E) with δ = t−s
n we arrive at

pn(s, t, h)− pnm(s, t, h) = O(
(t− s)2

n
)

on {m|m ∈ N} × {(s, t) ∈ [s0, t0]2 | s ≤ t}, which provides the Mackey-Cauchy property for the
above sequence of mappings. Convergence in all derivatives follows by redoing the above program:
Calculating the derivative of order k needs the binomial formula

dk

dδk
h(s+

(n− i)δ
n

,
δ

n
) =

k∑
j=0

(
k

j

)
∂j1∂

k−j
2 h(s+

(n− i)δ
n

,
δ

n
)(

(n− i)
n

)j(
1
n

)k−j =

= X(k)(s+
(n− i)δ

n
)
δ

n
(
(n− i)
n

)k +

+ kX(k−1)(s+
(n− i)δ

n
)(

(n− i)
n

)k−1 1
n

+O(
1
n2

) =

= X(k)(s+
(n− i− 1)δ

n
)
δ

n
(
(n− i)
n

)k +

+ kX(k−1)(s+
(n− i− 1)δ

n
)(

(n− i)
n

)k−1 1
n

+O(
1
n2

)

for k ≥ 1, where we used Taylor development for the last line. The terms of order 1
n cancel away

in our summation procedure (S), since this formula holds for all smooth h with h(s, 0) = e and
∂2h(s, 0) = X(s), hence also for pm(s, s+t, h) (remark that pn(s, s+t, pm(s, s+t, h)) = pnm(s, s+t, h))
and we deal with differences of the type

dk

dδk
h(s+

(n− i)δ
n

,
δ

n
)− dk

dδk
pm(s+

(n− i− 1)δ
n

, s+
(n− i)δ

n
, h) = O(

1
n2

)
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Hence this is sufficient for convergence

∂k

∂tk
(pn(s, t, h)− pnm(s, t, h)) = O(

1
n

)

for k ≥ 1. The limit will be denoted by c(s, t) on the interval [s0, t0]. Differentiating these equations in
s we obtain the same estimates, which are sufficient for convergence, too. ”Sufficient for convergence”
will be explained symbolically: Differentiating k-times yields with the above summation procedure
(S) nk+1 terms to sum up (see the formula for the second derivative above). There are n terms
where order of differentiation k appears, O(n2) terms where two orders smaller than k appear, but
with sum k, O(n3) terms where three orders smaller than k with sum k appear,... Applying our
summation procedure (S) to the n terms where order k of differentiation appears we get n2 terms: n
terms involve k-th derivative, so the difference is of order 1

n2 , the other n2−n terms involve oridnary
factors, so the difference is of order 1

n2 , but the there is some outer factor 1
n . So we get inductively

our order estimate:

O((n2 − n)
1
n2

1
n

+ n
1
n2

+ (n3 − 2n2)
1
n2

1
n2

+ 2n2 1
n

1
n2

+

+(n4 − 3n3)
1
n2

1
n3

+ 3n3 1
n2

1
n2

+ ...+ (nk+1 − knk) 1
n2

1
nk

+ knk(
1
n2

)k) = O(
1
n

)

Consequently c(s, t) is smooth for s ≤ t in [s0, t0] and the convergence takes place as Mackey-
convergence in C∞({(s, t) ∈ [s0, t0]2 | s ≤ t}, A) with quality 1

n in each derivative.The propagation
condition follows with standard arguments on continuity with respect to the smooth topology:

c(r, t) = c(s, t)c(r, s)

for (t− r)q + r = s with q ∈ Q, 0 < q < 1 by construction and everywhere by continuity.
We calculate ∂

∂tc(s, s) = X(s) via uniform convergence of the derivative, then differentiation of
the propagation condition yields the result

∂

∂t
c(r, t) = X(t)c(r, t)

for t = s and r ≤ s ≤ t ∈ [s0, t0], so c(r, t) is smooth in t. Looking at the situation of an arbitrary
interval we can multiply existing product integrals to get an arbitrary one: Given s < t we can cover
this compact interval by intervals of length t−s

k for k large enough, such that on the cover-intervals
our estimates are valid.

pmk(s, t, h) = pm(s, s+
t− s
k

, h) · ... · pm(t− t− s
k

, t, h)

and pmk(s, t, h)− pmk+r(s, t, h) = O( t−smk ) for 0 ≤ r < k, so we get the desired boundedness condition
on the interval [s, t].

The next corollary asserts smooth dependence on the smooth curve X, which will be useful in
the sequel:

4.4. Corollary. Let A be convenient algebra. Given a smooth curve X : R2 → A and a smooth
mapping h : R2 × R≥0 → A with h(r1, r2, 0) = e and ∂

∂th(r1, r2, 0) = X(r1, r2). Suppose that for
every fixed s0 ∈ R and a compact r1-interval, there is t0 > s0 such that pn(s, t, h)(r1) = O(1) on
N×{(s, t) ∈ [s0, t0]2 | s ≤ t} and the compact r1-intervals. Then the product integral

∏t
s h(r1, r2, dr2)

exists as smooth mapping on R× {(s, t) | s ≤ t} and the convergence is Mackey in all derivatives on
compact (r1, s, t)-sets for s ≤ t.

Proof. By inheritance we obtain that C∞(R, A) is a convenient algebra and the above condition
tells in fact that the product integrals lie in a bounded set in this algebra on compact (s, t)-sets for
s ≤ t and n ∈ N. Consequently we arrive at the desired result. The boundedness in C∞(R, A) follows
from direct calculation since ∂k1h(r1, r2, t) = O(t) on compact (r1, r2)-sets.
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5. Analytic Semigroups

As in classical theory analytic semigroups provide an important setting for the analysis of distin-
guished properties of solutions of abstract Cauchy problems. Our setting is convenient for holomor-
phic semigroups, too. A holomorphic semigroup S is a holomorphic mapping from Σδ ⊂ C, where
Σδ denotes the open cone with vertex 0 and angle δ ∈ [0, π], such that S(λ1 + λ2) = S(λ1)S(λ2) for
all λ1, λ2 ∈ Σδ ∪ {0}. Furthermore S(exp(iθ)t) is smooth for t ≥ 0 and θ ∈]− δ, δ[. The infinitesimal
generator is the derivative at 0 of S(.) on the real axis. For the rest of the section we assume the
convenient spaces to be complex.

5.1. Proposition (Structure theorem for analytic semigroups). Let A be a complex con-
venient algebra, a ∈ A. Then a is the generator of a holomorphic semigroup S on Σδ for some
δ ∈]0, π2 [ if and only if exp(±iθ)a is the infinitesimal generator of a smooth semigroup for θ ∈]0, π2 [.

Proof. One direction is obvious by the uniform boundedness principle. Assume that exp(±iθ)a
is the infinitesimal generator of a smooth semigroup for θ ∈]0, π2 [: We denote the associated smooth
semigroups by T±θ, then the smooth semigroup T θktT

−θ
lt has infinitesimal generator (k exp(iθ) +

l exp(−iθ))a for k, l > 0. Consequently for any θ′ ∈] − θ, θ[ there is a smooth semigroup T θ
′

with
generator exp(iθ′)a and T is smooth for t > 0 and θ′ ∈] − θ, θ[, so T : Σθ → A is smooth and
T (exp(iθ′)t) is a smooth semigroup. Differentiating T (a+ ib) along the axes inside Σθ yields that T
is holomorphic, since i ∂∂aT (a+ ib) = ∂

∂bT (a+ ib).

5.2. Corollary. Let A be a complex convenient algebra. A semigroup T with angle δ > π
2 can

be extended to a holomorphic group T : C→ A and therefore the exponential series converges.

Proof. By the above methods there are smooth groups with generator a and ia. Consequently
the exponential series converges by proposition 3.6..

The Hille-Yosida-Miyadera-Theorem for smooth semigroups can be reformulated in the complex
case, which is the basis of the holomorphic version of the Hille-Yosida-Theorem.

5.3. Definition. Let a ∈ A be a given element of the complex convenient algebra A and δ ∈]0, π[.
A smooth map R : Σδ → A is called asymptotic resolvent for a ∈ A if

1. aR(λ) = R(λ)a and R(λ)R(µ) = R(µ)R(λ) for λ, µ ∈ Σδ.
2. (λ− a)R(λ) = e+ S(λ) with S : Σδ → A smooth and there is are constants b > 0 so that the

set

{exp (b<λ)
bk

S(k)(λ) | λ ∈ Σδ + ω and k ∈ N}

is bounded in A.

5.4. Theorem (Hille-Yosida-Theorem). Let A be a complex convenient algebra and a ∈ A
an element, then a is the infinitesimal generator of a smooth semigroup T in A if and only if there
is an asymptotic resolvent R : Σπ

2
+ ω → A for a with

{(<λ)n+1

n!
R(n)(λ) | <λ > ω and n ∈ N}

a bounded set in A (Hille-Yosida-condition).

By the above proposition we can assert the following complex version of the Hille-Yosida-Theorem,
anyway we could prove it directly by the methods of section 2:

5.5. Theorem (complex Hille-Yosida-Theorem). Let A be a complex convenient algebra
and a ∈ A an element, then a is the infinitesimal generator of a holomorphic semigroup T in A of
angle δ if and only if there is an asymptotic resolvents R : Σδ → A for a with

{|λ|
n+1

n!
R(n)(λ) |λ ∈ Σδ−ε and n ∈ N}

bounded in A for a given ε ∈]0, δ[, where the perturbation term satisfies that

{exp (b|λ|)
bk

S(k)(λ) | λ ∈ Σδ−ε and k ∈ N}

is bounded in A with a constant b > 0.
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Proof. Given a holomorphic semigroup of angle δ we obtain smooth semigroups T θ with genera-
tor exp(iθ)a for all θ ∈]−δ, δ[. Given ε ∈]0, δ[ we take the standard asymptotic resolvents associated to
T±θ for |θ| ≤ δ−ε and denote them by R±θ : R>0 → A. We define R(|λ| exp(iθ)) = R−θ(|λ|) exp(−iθ).
The asserted estimates are satisfied, since S(|λ| exp(iθ)) = exp(−|λ|b)Texp(−iθ)b.

A asymptotic resolvent satisfying the given estimates produces smooth semigroups with genera-
tors exp(iθ)a for all θ ∈] − δ, δ[, since an asymptotic resolvent satisfying the Hille-Yosida condition
for exp(iθ)a is given through

Rθ(λ) = exp(−iθ)R(exp(−iθ)λ)

for λ > 0. So there is an analytic semigroup with generator a of angle δ.

5.6. Remark. As in the Banach space case there can be given several different characterizations
of analytic semigroups of angle δ by similar methods. Especially there are formulations for expo-
nentially bounded holomorphic semigroups, where the resolvent is defined on a cone Σδ+π

2
\ {λ ∈

C | |λ| < ω}.

5.7. Example (bounded analytic semigroups). The case of bounded analytic semigroups
with angle can be treated by classical methods as in section 1: A holomorphic semigroup of angle δ
is called bounded if for any fixed ε ∈]0, δ[ Tz = O(1) on Σδ−ε. Then the resolvent exists at least on
Σδ+π

2
and satisfies the sectorial estimates

{|λ|R(λ, a) | λ ∈ Σδ+π
2
−ε}

is bounded for any ε ∈]0, δ[. Given an operator a ∈ A satisfying this estimate, then the semigroup
can be defined by the following formula: For z ∈ Σδ+π

2

T (z) :=
1

2πi

∫
γ

exp (µz)R(µ,A)dµ

where γ is any piecewise smooth curve in Σπ
2

+δ going from +∞ exp (−i(π2 + δ′)) to +∞ exp (i(π2 + δ′))
for some δ′ ∈]| arg(z)|, δ[.

6. Refinements, Applications and Examples

We analyze special unital convenient algebras and the case of simple product integrals by several
well-known examples

1. The boundedness condition is always satisfied up to the level of unital locally m-convex conve-
nient algebras A (the only completeness assumption is Mackey-completeness). Let c : R≥0 → A
be a smooth curve passing through the identity at zero. Let p : A→ R be a continuous semi-
norm satisfying p(ab) ≤ p(a)p(b) and p(e) = 1. A set of seminorms of this type can be chosen
on any unital locally m-convex convenient algebra A. Then we obtain for a given s ∈ R>0

p(c(
t

n
)
n

) ≤ p(c( t
n

))
n

≤ (1 +
Kt

n
)
n

≤ exp(Kt)

for t ∈ [0, s]. The constant K depends on c and s, indeed we obtain

K = sup
t∈[0,s]

p(c′(t))

In this case we obtain a smooth one-parameter group in each direction.
2. It is easy to construct examples, where the boundedness condition is not satisfied: Take
A = L(s) the unital convenient algebra of bounded (which is equivalent to ”continuous” on
Fréchet spaces) operators on the space of rapidly decreasing sequences s. We take for a : s→ s
the following bounded operator a(x1, x2, x3, ...) = (0, 12x1, 22x2, 32x3, ...), then the Abstract
Cauchy Problem associated to a has no nontrivial solutions. Consequently no semigroup with
generator a exists. Anyway a can be decomposed into two nilpotent operators of order 2:

a1(x1, x2, x3, ...) = (0, 12x1, 0, 32x3, 0, ...)

a2(x1, x2, x3, ...) = (0, 0, 22x2, 0, 42x4...)
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a = a1 + a2, a1
2 = 0 and a2

2 = 0. We define c(t) = exp(a1t) exp(a2t) for t ∈ R. For this
smooth curve the boundedness condition cannot be satisfied, otherwise a smooth semigroup
with generator a would exist, which is a contradiction (see example 3.8.).

Approximations of smooth semigroups are provided by Trotter formulas, which are proved to be
a type of existence theorem within the theory, since one does not need the existence of the solution
to make a Trotter approximation converge:

6.1. Corollary. Let c : R× R≥0 → A a smooth curve into a convenient algebra A with c(s, 0) = e
and for any compact s-interval there is r > 0 such that

{c(s, t
n

)n | 0 ≤ t ≤ r, n ∈ N} is bounded in A,

then the limit limn→∞ c(s, tn)n exists uniformly on compact intervals in R2 in all derivatives. Further-
more the resulting family Tt(s) is a smooth family of smooth semigroups with infinitesimal generator
∂
∂tc(s, 0) for s ∈ R.

6.2. Corollary. Let E be a convenient vector space and c : R≥0 → L(E) a smooth curve passing
through the identity at zero. There is s > 0 so that for every x ∈ E the set

{c( t
n

)
n

x|0 ≤ t ≤ s}

is bounded in E, then the boundedness condition is satisfied for c in L(E).

The main theorem of the previous part is in fact an existence theorem. The question, what is
implied by the existence of a semigroup was not treated, more precisely: Let E be a convenient
vector space, T a semigroup of bounded linear operators on E with infinitesimal generator a ∈ L(E).
If c : R≥0 → E is a smooth curve, so that c(0) = id and c′(0) = a are satisfied, does the sequence
{c( tn)n}

n∈N converge in some sense to the semigroup T ? The question seems to be difficult. First we
prove some general result in the direction, then we try to work out an additional assumption which
guarantees the positive answer to the raised question.

6.3. Proposition. Let E be a convenient vector space, T a semigroup of bounded linear operators
on E with infinitesimal generator a ∈ L(E) and c : R≥0 → E a smooth curve, so that c(0) = id,
c′(0) = a. Given s0 > 0, for every x ∈ E there exists k ∈ N and s ≥ s0, so that the set

{ 1
nk
c(
t

n
)
n

x|n ∈ N, 0 ≤ t ≤ s}

is bounded in E. Then the boundedness condition is satisfied for the given curve c, consequently the
sequence {c( tn)n}

n∈N converges to a smooth semigroup Tt uniformly on compact subsets of [0,∞[ in
all derivatives.

Proof. We apply the same methods as in the proof of the main approximation theorem, but we
use the formulas pointwise to subtilize the results. Let x ∈ E be given, then we obtain by the above

Ttx− c(
t

n
)
n

x =
n∑
i=1

T t(i−1)
n

(T t
n
− c( t

n
))c(

t

n
)
n−i

x

for n ∈ N and t ∈ R>0. The middle term is estimated in the usual way

T t
n
− c( t

n
) ∈ t2

n2
C for all k ∈ N , t ∈ [0, s] .

for a given s > 0. By hypothesis there is a bounded set B and positive number k := k(x) ∈ N so
that on [0, s] := [0, s(x)] with s(x) ≥ s0

c(
t

n
)
n

x ∈ nkB .

Inserting all estimates we obtain

Ttx− c(
t

n
)
n

x ∈ t2

n2

n∑
i=1

T t(i−1)
n

C(n− i)kB ,
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which means that the assumed estimate can be improved on [0, s]. We arrive finally at

c(
t

n
)
n

x ∈ nk−1B′

on the interval [0, s]. Repeating this procedure k times we arrive at the result that for any x ∈ E
there is s ≥ s0 so that

{c( t
n

)
n

x|n ∈ N, 0 ≤ t ≤ s}

is bounded in E.

By the same methods we can prove a version of this proposition on convenient algebras:

6.4. Proposition. Let A be a convenient algebra, T a smooth semigroup with infinitesimal gen-
erator a and c : R≥0 → A a smooth curve, so that c(0) = e and c′(0) = a. If there exists s > 0 and
k ∈ N so that

{ 1
nk
c(
t

n
)
n

|n ∈ N, 0 ≤ t ≤ s}

is bounded in A, then the boundedness condition is satisfied for the given curve c.

These two propositions provide us with sufficient conditions on a curve to guarantee the conver-
gence to the given semigroup, nevertheless this property need not be true in general.

The classical Hille-Yosida-Theorem is another corollary of the approximation theorem:

6.5. Corollary. Let X be a Banach space, A : D(A) → X an operator such that there are
constants ω0 > 0 and M ≥ 1 with [ω0,∞[⊂ ρ(A) and

||( 1
λ−A

)n|| ≤ M

(λ− ω0)n

for λ > ω0. Then A is the generator of a C0-semigroup T on X and

s- lim
n→∞

(id−A t

n
)−n = Tt

uniformly on compact intervals in R≥0.

Proof. We shall work in the Fréchet space F = D(A∞). There the resolvent R(λ,A) can be
restricted to a well defined smooth mapping for λ > ω0 satisfying the following estimate

(R(λ,A)|F )n = O(
1

(λ− ω0)n
)

The curve c(t) := 1
tR(1

t , A) is smooth and the boundedness condition is satisfied for 1
t > ω0. Conse-

quently there is a smooth semigroup T with

lim
n→∞

c(
t

n
)n = Tt

Mackey on compact intervals in R≥0. By uniformity we can extend to the Banach space, where we
obtain strong convergence.

6.6. Example. In [Wen85a], [Wen85b] perturbation and approximation theorems are consid-
ered in the spirit of strongly continuous theory. In the convenient setting they are simple corollaries
of the given theorems.

By the same methods one can prove another type of approximation theorem like Trotter-Kato (see
[EN99] for a discussion in the Banach space case) asserting that a sequence of smooth semigroups
bounded on a compact interval containing zero, where the infinitesimal generators form a Mackey-
Cauchy sequence, converges in C∞(R≥0, A) to a semigroup with infinitesimal generator the limit of
the sequence of infinitesimal generators. This theorem has some interesting applications:

6.7. Proposition (Convergence theorem). Let A be a convenient algebra, {Tn}n∈N a se-
quence of smooth semigroups with infinitesimal generators {an}n∈N. If {an}n∈N is a Mackey-Cauchy
sequence and {Tn(t)|0 ≤ t ≤ s} is bounded in A (which is equivalent to boundedness in C∞(R≥0, A)),
then there is a semigroup T with infinitesimal generator a := limn→∞ an and

lim
n→∞

Tn = T
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in C∞(R≥0, A).

Proof. We show that {Tn}n∈N is a Mackey-Cauchy sequence in C∞(R≥0, A). To do this we show
that all derivatives converge uniformly on compact subsets of R≥0 in A. Let I ⊂ R>0 be compact,
then we obtain

T (k)
n (t)− T (k)

m (t) =aknTn(t)− akmTm(t) = (akn − akm)Tn(t) +

+ akm(Tn(t)− Tm(t)) ∈ (akn − akm)B + tC(an − am)D

for k, n,m ∈ N, t ∈ I, where B,C,D denote appropriately chosen absolutely convex, closed
bounded sets, depending on k, t, but not on m,n. By the Mackey-Cauchy-property we obtain that

akn − akm =
k∑
i=0

ai−1
n (an − am)ak−im ∈ tnmD′

for a bounded, absolutely convex and closed subset of A and the given double sequence {tnm}n,m∈N
measuring the Mackey-convergence of {an}n∈N. Putting all together we obtain the desired result: The
given sequence of smooth semigroups is a Mackey-Cauchy sequence, consequently there is a smooth
curve in the convenient space C∞(R≥0, A) being the limit. A fortiori this is a smooth semigroup by
boundedness of the multiplication.

6.8. Example (infinite dimensional heat equations). (see [ADEM97] for a discussion) In
the theory of infinite dimensional heat equations some recent advances have been made by a Trotter-
Kato-type formula:
Let A be a unital convenient algebra, {Tn}n∈N be a commuting sequence of smooth semigroups with
infinitesimal generators {an}n∈N, such that Sn(t) =

∏n
i=0 Ti(t) for t ∈ R+ satisfies the boundedness-

hypotheses of the convergence theorem proposition 6.7. and bn =
∑n

i=0 ai for n ∈ N is a Mackey-
Cauchy sequence, then the infinite product

∞∏
i=0

Ti := lim
n→∞

Sn

of the sequence of semigroups exists in C∞(R≥0, A) and is a smooth semigroup with infinitesimal
generator

∑∞
i=0 ai.

This simple corollary can be applied to the following situation: Let T be a smooth bounded group
with infinitesimal generator a in a complex unital convenient algebra A, this means that we can
find a closed absolutely convex bounded subset B of the convenient algebra A, so that Tt ∈ B
for all t ∈ R. By means of the Laplace transform one checks easily that the asymptotic resolvent
family is a resolvent family and C \ iR is in the resolvent set. So we have a holomorphic mapping
R(±a) : C \ iR → A given by the resolvents of ±a. By a version of the Hille-Yosida-Theorem
theorem 5.4. on convenient algebras we have the following estimates for the powers of R(±a):
(<λ)nRn(±a, λ) ∈ B for λ ∈ C \ iR and n ∈ N, where B is the given bounded, absolutely convex and
closed subset of A. Now we look at a sector Σα := {λ ∈ C|λ = reβ with r > 0, −α < β < α} in the
complex numbers for 0 < α < π. Take λ ∈ Σπ, then there exist r > 0 and −π

2 < β < π
2 such that

λ = r2e2β , consequently

(λ− a2) = (reβ − a)(reβ + a) .

By this formula we obtain that R(a2) : Σπ → A is holomorphic, in fact - by applying the square root
on the given sector - R(a2, λ) = R(a,

√
λ)R(−a,

√
λ). In classical theory of C0-semigroups there is a

beautiful formula calculating this new semigroup from the given one:

S(λ) =
1√
4πλ

∫
R

e−
s2

λ T (s)ds

for λ ∈ Σπ
2
\ {0}. The proof is remarkably simple: Take l ∈ A′ a bounded linear functional to

investigate analyticity, then

d

dλ
l ◦ S(λ)T (t) =

d

dλ
(

1√
4πλ

∫
R

e−
s2

λ l ◦ T (t− s)ds) = l ◦ (a2T (t))
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by the symmetry of the integral and the integral representation of the one-dimensional Gaussian
semigroup for λ ∈ Σπ

2
\ {0}. So the integral defines a holomorphic semigroup on the given sector

with generator a2.
The above observations can be applied in the following theorem, which generalizes an already

known theorem about infinite products of a commuting family of C0-semigroups.
Let E be a complex Fréchet space. Let {Tn}n∈N be a commuting sequence of bounded smooth groups,
so that

∞∏
i=0

Ti =: T

exists in C∞(R, L(E)) and is a smooth group with generator
∑∞

i=0 ai, where the sum converges
absolutely in L(E) (so the order of the product can be chosen arbitrarily). Denote by Sn the
associated bounded holomorphic semigroup generated by a2

n. If there is a bounded, closed and
absolutely convex subset, where all the finite products

∏n
i=0 Si for n ∈ N lie, then the infinite

product
∞∏
i=0

Si =: S

exists in C∞(R≥0, L(E)) and the infinitesimal generator is
∑∞

i=0 a
2
i .

The only thing to prove is the (absolute) convergence of the series sn :=
∑n

i=0 a
2
i . Let p be a

continuous seminorm on E, then

p((sn − sn+k)(x)) ≤
n+k∑
i=n+1

p(a2
i (x)) ≤

n+k∑
i=n+1

q(ai(x))
n,k→∞→ 0

where q denotes a continuous seminorm on E. The existence of q follows from the fact, that {ai}i∈N
is bounded in L(E), consequently equicontinuous, because E is barrelled, so for every continuous
seminorm p there is a continuous seminorm q, so that p(ai(x)) ≤ q(x) for x ∈ E. So we obtain
that the above series converges pointwisely absolutely. By the uniform boundedness principle the
convergence is uniform to the bounded limit in L(E). The above corollary can be stated in more
general contexts, namely on convenient vector spaces with barrelled bornological topology, which is
not necessary for the application:

Let X be a complex Banach space, {Tn}n∈N a commuting family of bounded C0-groups on X
with infinitesimal generators {An}n∈N. The linear space

F :=
⋂
n∈N

⋂
k∈N

D(Akn)

is on the one hand dense in X by an abstract version of the Mittag-Leffler-Theorem (see [Est84] and
[ADEM97]), on the other hand a Fréchet space with obvious seminorms pn,k(x) :=

∑k
i=0 ‖Ainx‖.

On this Fréchet space all the groups Tn are smooth and bounded. We associate the semigroups Sn
to Tn with generator A2

n and obtain bounded C0-semigroups on X and smooth bounded semigroups
on F, respectively. If we assume that the series

∑∞
i=0Ai converges absolutely on F, then the infinite

product
∞∏
i=0

Ti =: T

exists in C∞(R, L(F)) and is a bounded smooth group, because

pn,k(Ti(t)(x)) ≤ pn,k(x)

and p(Ti(t)(x)) ≤ p(x) for all x ∈ F (they commute!). Consequently T can be extended to X by
denseness and the given estimates as a bounded C0-group with infinitesimal generator the closure of∑∞

i=0Ai on X, because F is a core of the infinitesimal generator. By the above corollary we obtain
that

∞∏
i=0

Si = S
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exists in C∞(R≥0, L(F)), because

p(Si(t)(x)) = lim
n→∞

p((id− t

n
A2
i )
−n) =

= lim
n→∞

p((id−
√
t√
n
Ai)−n(id+

√
t√
n
Ai)−n(x)) ≤ p(x)

for t ≥ 0 and x ∈ X by Hille-Yosida, where from the other necessary estimates for the boundedness
of the finite products in L(F) follow. This semigroup can be extended to a C0-semigroup on X
with infinitesimal generator the closure of

∑∞
i=0A

2
i on X by the same argument. In some cases this

semigroup is referred to as infinite dimensional Gaussian semigroup , taking translation-groups in
different directions on appropriate spaces as groups Tn.

In the sequel two approaches in literature are reviewed and reproved by the simpler convenient
setting.

1. A smooth semigroup T in a convenient algebra A is called exponentially bounded if

Tt = O(exp(ωt))

on R≥0 for a given ω > 0. Exponentially bounded smooth semigroups can be easily treated by
the following methods. First the classical resolvent exists for λ > ω, consequently we obtain
an asymptotic resolvent with S = 0. The exponential formula is therefore valid

lim(e− ta

n
)−n = Tt

in all derivatives on compact subsets of R≥0. This problem was treated by several authors
with similar approaches motivated by differing interests:

In [Jef86], [Jef87] weakly integrable semigroups of continuous linear operators are dealt
with, which is a very weak concept of one-parameter semigroups. Nevertheless as far as
generators are concerned we can apply the given ideas. A semigroup of linear continuous
operators S : R≥0 → L(E), where E denotes a locally convex space is called weakly integrable
if there is a S′-invariant subspace point separating subspace F of the continuous dual E′ with
the property that for a given ω > 0 the functions t 7−→ exp(−λt)〈S(t)x, ξ〉 are integrable for
λ > ω, x ∈ E, ξ ∈ F on R≥0 such that the operators R(λ) : E → E with

〈R(λ)x, ξ〉 =
∫ ∞

0
exp(−λt)〈S(t)x, ξ〉dt

exist. Applying our method one should look at σ(E,F ), the mapping S : R≥0 → L(Eσ(E,F ))
is a semigroup of linear continuous operators because of invariance. We assume Eσ(E,F ) to
be convenient, but we do not need to assume the existence of the above resolvents. Passing
to the C0-subspace we have to assume that the smooth vectors exist in the given locally
convex topology. Remark that this subspace is closed with respect to Mackey-sequences, so
convenient. Consequently we can pass to the subspace of smooth vectors by proposition 3.3
and apply the result.

In [Hug77] semigroups of unbounded operators on Banach spaces are investigated. They
can by definition be reduced to strongly continuous semigroups on a Fréchet space. The author
assumes exponential boundedness in his article, consequently the above theory applies.

2. Let S be a smooth semigroup in a convenient algebra with generator a. We denote by D the
test functions on R, by D′(A) the A-valued distributions. The equation

(
d

dt
− a)(f) = g

has a fundamental solution, namely

S̃r(φ) =
∫ +∞

−∞
Ssφ(r + s)ds
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for φ ∈ D , where S is extended by 0 to R. Calculating yields

(
d

dt
− a)(S̃r)(φ) = −

∫ +∞

−∞
Ssφ

′(r + s)ds−
∫ +∞

−∞
aSsφ(r + s)ds =

= −
∫ +∞

0

d

ds
(Ssφ(r + s))ds =

= φ(r)e = δr ⊗ e(φ)

which is the property of fundamental solutions. Remark that S̃0 has a property of a distribution
semigroup. For compactly supported A-valued distributions g we get therefore a continuous
inverse of the operator d

dt − a by

(
d

dt
− a)(Rg) = g

R(
d

dt
− a)(f) = f

for f, g compactly supported A-valued distributions. Here we define

Rg(φ) = (S ∗ g)(φ)

where τr denotes the translation by r. Given a continuous inverse of the operator ( ddt − a) on
compactly supported A-valued distributions into all A-valued distributions yields a smooth
semigroup on A if some additional topological properties are satisfied.

By Fourier-Laplace transform we can look at the problem in a different way, which allows to
apply our results from above. Additionally we need a convenient version of the Palais-Wiener
theorem, which is worked out in the sequentially complete case in [Kom68].



CHAPTER 3

Product Integrals on infinite dimensional groups

Münchhausens Posthorn war schöner als die fabriksmäßige Stimmkonserve, der Siebenmeilen-
stiefel schöner als ein Kraftwagen, Laurins Reich schöner als ein Eisenbahntunnel, die Zauberwurzel
schöner als ein Bildtelegramm, vom Herz seiner Mutter zu essen und die Vogelstimmen zu verstehen,
schöner als eine tierpsychologische Studie über die Ausdrucksbewegungen der Vogelstimme. Man hat
Wirklichkeit gewonnen und Traum verloren.

(Robert Musil, Der Mann ohne Eigenschaften)

Regular Lie Groups as defined by A. Kriegl, P. W. Michor, J. Milnor (see [KM97] and [Mil83])
admit a smooth exponential mapping by definition, but one does not know anything about product
integrals of the given smooth one-parameter subgroups in the sense of Hideki Omori. In this chap-
ter it is first shown that on a general class of topological groups containing diffeomorphism groups
on compact manifolds many interesting Trotter-type-approximations do exist, if a natural condition
on the existence of complex-valued functions on G is satisfied. Then conditions for regularity are
investigated and treated by metric space methods: The main conclusion depends on the fact that
sequentially compact sets are mapped to bounded ones under smooth representations. The sequen-
tial compactness of the approximation sequence for a product integral is shown by the method of
Lipschitz-metrics, i.e. right invariant metrics being the non-abelian analogue of seminorms on a
locally convex space. We observed that on all known Lie groups a well-behaved family of Lipschitz
metrics exists, such that regularity follows.

The first section summarizes parts of chapter 8 of [KM97] and provides some first insight in
the world of inifinite dimensional differential geometry by two new results on the adjoint maps on
diffeomorphism groups proved additionally. In the second section the notion of tempered Lie groups
is introduced: We assume the existence of an algebra of continuous complex valued function on the
topological group G to be able to handle the question of approximations of one-parameter subgroups
on the Lie group with classical functional analysis.

In the third section this Ansatz is reduced to the assumption of the existence of a family of so
called Lipschitz-metrics which detect the sequential topology and are proved to allow many statements
in the direction of regularity. As a main result we obtain the equivalence of regularity and the
existence of Lipschitz-metrics under some slight additional assumption. There we crucially need the
approximation theorem of chapter 2, since this provides the via regia to prove smoothness of a limit
curve.

1. Convenient Lie groups

In the sequel the basics of calculus on Lie groups modeled on convenient vector spaces are
reviewed. Manifolds on convenient vector spaces are a common concept (see chapter 1.4). New
phenomena occur as one starts to define tangent spaces. As far as Lie groups on convenient vector
spaces are concerned the first main problem is however, that one cannot solve even simple differential
equations on the Lie group. This leads to the notion of regularity, which is in a certain sense not
comprehensible, because there are hardly applicable conditions for regularity. The most important
class of regular Fréchet-Lie groups was given by Hideki Omori et al. (see [Omo97]) with the concept
of strong ILB-groups , nevertheless this concept is rather complicated to use.

1.1. Definition. A Lie group G is a smooth manifold modeled on c∞-open subsets of a con-
venient vector space with smooth multiplication µ : G × G → G, where µ(x, y) = xy, and smooth
inversion ν : G → G, where ν(x) = x−1, for x, y ∈ G. We shall denote by µx : G → G and
µy : G → G the smooth left and right translation by an element of G, i.e. µx(y) = µy(x) = µ(x, y)
for x, y ∈ G.

51
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Remark that Lie groups are not topological groups in general, because the identity c∞(E×E)→
c∞E × c∞E need not be a homeomorphism. If the Lie group G is a topological group, which we
shall assume generically in the thesis, then the underlying topological space is regular (since any
Hausdorff topological group is regular), but not necessarily smoothly regular (see appendix 1) and
we can assume, that a chosen chart (u, U) has the property that inverse images of closed bounded sets
in the convenient vector space are closed in the group, not only relatively closed in U ⊂ G. We shall
need this property to be able to lift functions from the convenient vector space to the group. The
classical basics of Lie theory can be carried over to this general setting without any problems: Via
left or right translation one can trivialize the kinematic tangent bundle TG = G×g, where g denotes
the tangent space at the identity e . On smooth manifolds modeled on a convenient vector space it is
a problem to define Lie derivatives along a given vector field X ∈ C∞(G← TG), because in general
no local flow does exist. In the case of left invariant vector fields (X ∈ C∞(G ← TG) is called left
invariant if TµxX = X ◦ µx or equivalently µ∗xX = X for x ∈ G ) there need not exist a local flow,
too, but there is an auxiliary construction which allows to define the Lie derivative (see section 1.3):
Via a smooth curve c passing through e and reproducing a given left invariant vector field X at the
identity, we can build a function φ(t, x) = c(t)x with (t, x) 7→ (t, xc(t)) a diffeomorphism and the
necessary properties. Given any vector field Y we define

LXY =
d

dt
|t=0φ

∗
tY = [X,Y ]

producing the Lie bracket alternatively, which will be important for invariance considerations.
g becomes a Lie algebra, isomorphic to the Lie algebra of left invariant vectorfields and antiiso-

morphic to the Lie algebra of right invariant vectorfields on G (X ∈ C∞(G ← TG) is called right
invariant if µx∗X = X for x ∈ G ). We denote the (anti-) isomorphism by L (respectively R). We
have the following formulas for x ∈ G:

L(X)x =
d

dt
|t=0 xc(t) and R(X)x =

d

dt
|t=0 c(t)x

for X ∈ g and a curve c : R → G with c(0) = e and c′(0) = X. If φ : G → H is a smooth group
homomorphism, then φ′ := Teφ : g→ h is a smooth Lie algebra homomorphism.

Now we can formulate the main problem in this setting: Does a Lie group admit a smooth
exponential mapping ? An exponential mapping is a map exp : g → G, so that FlL(X)(t, x) =
x exp(tX) is the global flow to the left invariant vectorfield L(X). An exponential mapping is
unique if it exists, remark that the global flow to R(X) is given through FlR(X)(t, x) = exp(tX)x.
Furthermore we obtain for a smooth group homomorphism φ of groups, which admit an exponential
mapping, the formula exp(φ′(X)) = φ(exp(X)) for X ∈ g .

1.2. Definition. Let G be a Lie group with Lie algebra g. The conjugation by an element x ∈ G
defined through conjx(y) = xyx−1 for y ∈ G is a smooth group automorphism, a so called inner
automorphism . Adx := conjx

′ defines a smooth representation Ad : G → GL(g) , which is easily
seen by cartesian closedness. The adjoint representation Ad of the group maps into the subspace of
smooth Lie algebra automorphisms. The derivative of Ad (even in the sense of smooth groups) is
ad : g→ L(g) . The adjoint representation ad of the Lie algebra maps in the subspace of derivations
of the Lie algebra g.

The last concept of the basics of convenient calculus on Lie groups is the right logarithmic
derivative : Let f : M → G be a smooth map, where M is a smooth manifold. We define the right
logarithmic derivative δrf : TM → g by the formula

δrf(ξx) := Tf(x)(µ
f(x)−1

)(Txf(ξx))

for x ∈ M and ξx ∈ TxM . By definition we see that δrf ∈ Ω1(M, g) is a g-valued 1-form on M . A
Lie group G is called regular if there is a smooth (evolution) map Evolr : C∞(R, g) → C∞(R, G),
such that Evolr(X)(0) = e and δr(Evolr(X))(t) = X(t) for all t ∈ R, furthermore Evolr(δrc) = c
(see [KM97], [Mil83], [Omo97] for comparison). Let G be a simply connected Lie group and H a
regular Lie group with f : g→ h a bounded Lie algebra homomorphism, then there is a smooth Lie
group homomorphism φ with φ′ = f (see [KM97], chapter 8, , theorem 40.3).

This means that one can solve all non-autonomous Cauchy problems on the Lie group G, more
precisely - given X ∈ C∞(R, g), there is a smooth curve c : R → G with c(0) = e and c′(t) =
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Teµ
c(t)(X(t)) for t ∈ R. Such non-autonomous problems can sometimes be solved by so called

product integrals, which leads to one of the first definitions of regularity (requiring the existence of
product integrals). In the following theorem we collect some results (see [KM97]):

1.3. Theorem. Let G be a Lie group, M a smooth manifold and f, g : M → G smooth mappings,
then we obtain:

1. For X ∈ g and y ∈ G: L(X)y = R(Ady(X))y
2. ad(X)(Y ) = [X,Y ] for X,Y ∈ g
3. δr(fg)(x) = δrf(x) +Adf(x)(δrg(x)) for x ∈M
4. If G is a regular Lie group, then Evolr is unique.

The concept of strong ILB-groups (see [Omo97]) allows to prove the existence of a right evolution
map, however the costs are high, as is already clear by definition:

1.4. Definition (strong ILB-group). An ILB-chain is a sequence of Banach spaces {Ek}k≥d
for d a natural number, such that Ek+1 is continuously injected in Ek for k ≥ d and the images of
the respective injections are dense. The projective limit of this system is a Fréchet space, denoted by
E. A strong ILB-group is a group G modelled on an ILB-chain {Ek}k≥d if and only if

1. There is an open neighborhood U of 0 in Ed and a bijection ζ of U ∩ E onto a subset Ũ of G
containing e such that ζ(0) = e.

2. There is an open neighborhood V of 0 in Ed such that ζ(V ∩E)2 ⊂ ζ(U ∩E) and ζ(V ∩E)−1 ⊂
ζ(V ∩ E).

3. For u, v ∈ V ∩E we define η(u, v) := ζ−1(ζ(u)ζ(v)), then for any k ≥ d η extends to a unique
continuous map, again denoted by η:V ∩ Ek × V ∩ Ek → U ∩ Ek.

4. For any v ∈ V ∩ Ek the map ηv := η(., v) : V ∩ Ek → U ∩ Ek is a smooth map.
5. θ(w, u, v) := (dηv)(u)(w) extends for any k ≥ d and any l ≥ 0 to a C l-mapping of Ek+l × V ∩
Ek+l × V ∩ Ek → Ek.

6. i(u) := ζ−1(ζ(u)−1) for u ∈ V ∩ E, then i extends to a continuous mapping of V ∩ Ek into
itself.

7. For every g ∈ G there is a neighborhood W of 0 in Ed such that g−1ζ(W ∩ E)g ⊂ ζ(U ∩ E).

All known Fréchet-Lie-groups are strong ILB-groups, so all finite dimensional ones, all Banach-
Lie-groups, all diffeomorphism groups. A strong ILB-group is a regular Fréchet-Lie-group, some
restricted sort of implicit function theorem is valid in this category (see [Omo97]). We have the
following conclusions from the definition:

1.5. Theorem. Let G be a strong ILB-group modelled on an ILB-chain {Ek}k≥d, then there
is a sequence of topological groups {Gk}k≥d such that:

1. G is a Fréchet-Lie-group.
2. Gk is a Banach-manifold modelled on Ek.
3. Gk+1 is a dense subgroup of Gk and the inclusion is smooth.
4. G is the projective limit of {Gk}k≥d.
5. The multiplication on G extends to a C l-mapping from Gk+l ×Gk to Gk for k ≥ d and l ≥ 0.
6. The inverse extends to an C l-mapping from Gk+l to Gk for k ≥ d and l ≥ 0.
7. For any g ∈ Gk the right translation is a smooth mapping from Gk to Gk.
8. The tangent map of the right translation is a C l-mapping from TGk+l ×Gk to TGk.

1.6. Remark. Let M be a compact smooth manifold, then the diffeomorphism group and many
of its subgroups (symplectomorphisms if M is symplectic, volume-preserving-diffeomorphisms if M
is orientable,...) are strong ILB-groups and regular, which can easily be seen directly by solving
non-autonomous equations on the compact manifold and applying cartesian closedness. Anyway the
machinery seems to be too complex and too analytic for the solution of the problem of regularity
from my point of view (see [Omo97] for details in ILB-questions and [KM97]).

1.7. Remark. On strong ILB-groups all product integrals converge, so all ILB-groups are
regular. Indeed the convergence behaves very well:

A smooth group or Frölicher-Lie-Group is a group G with the structure of a smooth space, such
that the multiplication and the inversion are smooth. All smoothly regular Lie Groups are smooth
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groups in a canonical way. The group GL(E) of invertible linear bounded maps on a convenient
vector space E is a standard example, and not a Lie group in general, with the following smooth
structure:

CGL(E) := {c : R→ GL(E)|c : R→ L(E) and inv ◦ c : R→ L(E) are smooth }
FGL(E) := {f : GL(E)→ R|f ◦ c ∈ C∞(R,R) for all c ∈ CGL(E)}

Remark that the restrictions of all linear functionals on L(E) lie in FGL(E), furthermore the restriction
of the composition of a linear functional with the inversion lies in FGL(E), so GL(E) becomes a smooth
space. Multiplication and inversion are smooth. A smooth map f : G → H between Frölicher-Lie-
Groups is called initial if for any curve c : R→ G with f ◦ c smooth smoothness of c is implied. The
following example might explain the interest in smooth groups:

1.8. Example. The∞-Torus
∏
k∈N S

1 is a smooth group with smooth curves the componentwise
smooth ones. The ∞-Torus is a product in the category of locally compact topological groups and
a product in the category of smooth groups. Furthermore the ∞-Torus can never be made to a
manifold, because it should be infinite dimensional and locally compact.

Applying the notion of a smooth group we can formulate the following observations:

1.9. Remark. Let G be a convenient smootly regular Lie group and denote by Ad : G→ GL(g)
the adjoint representation. If Ad is initial, then the inner automorphisms Inn(g) := Ad(G) consti-
tute a Frölicher-Lie-Group diffeomorphic to G in the category of Frölicher-Lie groups. (proof: the
Frölicher-Lie structure is induced by the general linear group GL(g) and well-defined, the diffeomor-
phism is given by Ad)

1.10. Proposition. Let M denote a finite-dimensional manifold and Diff(M) the Fréchet-Lie
group of diffeomorphisms of M , then Ad : Diff(M) → GL(X(M)) is an initial map, so Diff(M) is
canonically isomorphic to the Frölicher-Lie-Group of inner automorphisms and consequently linear.

Proof. The proof is done in several steps: First we prove that a curve c in G with Ad◦c smooth
has to be continuous in the following sense: For any t0 ∈ R, x0 ∈ M and any open neighborhood V
of c−1(t0, x0) there is δ > 0 and an open neighborhood U of x0 with c−1(t, x) ∈ V for |t − t0| < δ
and x ∈ U . Otherwise there would exist t0 ∈ R, x0 ∈ M , an open neighborhood V of c−1(t0, x0)
and sequences tn → t0 and xn → x0 with c−1(tn, xn) /∈ V . Now take a vectorfield X on M having
support in V with X(c−1(t0, x0)) 6= 0. The formula for the action of Ad on vectorfields is

Adct(X)(x) = Tc−1(t,x)ct(X(c−1(t, x))

Consequently Adctn (X)(xn) = 0 for all n, but Adct0 (X)(x0) 6= 0. However, Adct(X) is smooth, so
a smooth curve of smooth sections in the tangent bundle, a contradiction. Second it is sufficient to
prove the following fact: Let c be a curve passing at t = 0 through e with Ad ◦c smooth, then there
is a neighborhood of 0, where the curve is smooth. From this we conclude easily the general case by
looking at the smoothness of the composition and the curve c−1

t0
c around t0. Third we apply the first

observation to prove the assertion of the second step: Let c be a curve passing at t = 0 through e
with Ad ◦c smooth, then there is a chart domain V ⊂M , open around x0 = c−1(0, x0) mapped to a
ball in Rn, furthermore δ > 0 and an open neighborhood U ⊂ V of x0 with c−1(t, x) ∈ V for |t| < δ
and x ∈ U . Smoothness of Ad ◦c reads locally as follows

(Txc−1
t )−1(

∂

∂xi
) is smooth for i = 1, ..., n

This means by smoothness of the inversion of matrices that (∂(c−1
t )j)
∂xi

(x)) is smooth locally around
x0 and 0. Consequently by compactness of the manifold we conclude that there is a small interval
around zero where c−1

t is a smooth curve of diffeomorphisms, so ct is smooth.

1.11. Remark. By the same methods we can prove that the adjoint representation ad : X(M)→
Der(X(M)) is initial for a compact manifold M (proof: take a bump vector field to show that a given
curce X with ad ◦ X smooth is continuous and then work in a chart domain to conclude by local
observations on the components of the curve X.)

1.12. Definition. Let G be a convenient Lie group and g its Lie algebra. We call G Lie-regular
if Ad : G→ GL(g) is initial.
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This concept of regularity should remind the semisimple situation in the finite-dimensional case,
however it is closely associated to regularity of convenient Lie groups.

1.13. Proposition. Let G be a smoothly regular and regular Lie group with trivial centre and
ad : g→ L(g) initial, then G is Lie-regular.

Proof. First we prove the assertion for a curve c passing at 0 through e. Ad ◦ c smooth means
that we can take at least the first derivative, ( ddtAd ◦ c)(Ad ◦ c)

−1 is a smooth curve of derivations of
g, so there is some smooth curve X in the Lie algebra g such that ( ddtAd ◦ c)(Ad ◦ c)

−1 = ad ◦X. X
can be integrated by right evolution to a curve c′ with c′(0) = e and δrc′ = X, consequently Ad ◦ c′
is smooth and satisfies the differential equation d

dtAd ◦ c
′ = ad ◦X(Ad ◦ c′), but this equation has a

unique solution, namely Ad ◦ c, so Ad ◦ c′ = Ad ◦ c and c = c′ by injectivity. Then, however, c is
smooth. The rest is done by translation.

1.14. Proposition. Let G be Lie-regular and ad(X) is a generator of a smooth group of inner
automorphisms for X ∈ g depending smoothly on X, then a smooth exponential map exists.

Proof. Ad : G→ GL(g) is initial and therefore we can pull down the the existing smooth one-
parameter groups to the group G as smooth one-parameter subgroups. So there is an exponential
map, which is smooth by smooth dependence on X.

1.15. Remark. The generator property can be characterized by the Hille-Yosida-Theorem, such
that Lie algebras, where all ad(X) are generators are necessarily the Lie algebras of regular Lie groups.

2. Tempered Lie groups

Up to Banach spaces there is a powerful theory to solve (nonlinear) differential equations due to
the inverse function theorem. Already on Fréchet spaces one has to investigate the circumstances
much more carefully to obtain results on solvability of differential equations [LS93]. Nevertheless
Fréchet spaces appear naturally by modelling C∞-diffeomorphism groups [KM97]. There are two
possible ways how to approach the problem: Either one tries to translate the given initial value
problem into the Banach space setting, which normally leads to a loss of differentiability properties,
or one tries to find some rudiments of theory on convenient spaces, so differentiability is preserved,
but there is a lack of powerful theorems. Tempered groups are defined by the perspective of the
first method. We shall prove that on tempered groups smooth one parameter subgroups can be
well approximated by simple product integrals. This is by the way the origin of the notion of
temperedness, because the growth of the multiplication can be controlled. More precisely, under the
adjoint representation Ad : G → L(g) on a regular Lie group simple product integrals exists if and
only if they are polynomially bounded in the sense of section 2.6. Banach Lie groups and ILB-Lie
groups are tempered, if the model spaces admit C2

b -bump functions (see appendix 1). Besides the
approximation property temperedness seems to be an interesting concept from the point of view of
representation theory.

To prove the approximation theorem we apply the beautiful and remarkable theorem of Paul
Chernoff on the approximation of C0-contraction semigroups on a Banach space X (see chapter 2.1).

We shall work in the Banach space BC(G) of continuous complex valued bounded functions on
G normed by the supremum norm. Given X ∈ g one obtains by evolution a smooth one-parameter
subgroup exp(tX) of G, if G is regular. We shall investigate the group T of linear operators on
BC(G) given through

Tt(f)(x) := f(exp(tX)x) = (f ◦ µexp(tX))(x) for all x ∈ G, f ∈ BC(G)

for t ∈ R. For a given smooth curve c : R → G with c(0) = e and c′(0) = X we can proceed in
the same manner, so we obtain a curve C of isometries on BC(G). To be able to apply Chernoff’s
theorem , we need an appropriate domain D in BC(G), such that D detects the topology of G in a
certain sense and satisfies certain properties concerning translations, this leads us to the concept of
temperedness.

2.1. Definition (tempered groups). A topological group G is said to be tempered if it is a
smooth space (multiplication is not necessarily smooth!) and if a unital subalgebra D ⊂ BC(G) is
given, such that the following conditions are satisfied.
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1. D is invariant under left translations, that means f ◦ µa ∈ D for all f ∈ D and a ∈ G.
2. D detects the converging sequences on G:

∀ {xn}n∈N, x ∈ G : sup
y∈G
|f(xny)− f(xy)| → 0 for all f ∈ D ⇒

xn converges to x in G

3. For every smooth curve c : R → G with c(0) = e the curve C : R → L(BC(G)) of left
translations by c(t) for t ∈ R is differentiable at f ∈ D for t = 0 in the supremum-norm
topology of BC(G).

2.2. Remark. To stay as general as possible we do not assume that G is a smooth groups and
that the smooth topology and the topology on G coincide.

2.3. Lemma. Let G be a tempered group, where the smooth structure is a smooth group structure,
c : R → G a smooth curve, then c is continuous and C : R → L(BC(G)) is differentiable at f ∈ D
for all t ∈ R.

Proof. Let c : R → G be a smooth curve, then b(t) := c(t)c(0)−1 for t ∈ R is a smooth curve
with b(0) = e, so B : R → L(BC(G)) is differentiable at f ∈ D for t = 0. So for any f ∈ D there
exists g ∈ BC(G), such that

sup
x∈G
|f(c(t)c(0)−1x)− f(x)

t
− g(x)| t→0→ 0 ,

consequently by left translation we obtain

sup
y∈G
|f(c(t)y)− f(c(0)y)

t
− g(c(0)y)| t→0→ 0 ,

which is the desired assertion. The rest follows by property 2.

2.4. Lemma. Let G be a topological group, U ⊂ G an open neighborhood of e. Then there is a
neighborhood V ⊂ G of e, such that for any continuous curve c : R → G with c(0) = e one can find
a small open interval J around zero with ∪t∈J c(t)−1V ⊂ U .

Proof. The mapping G×G→ G, (g, h)→ g−1h is continuous, so the coclusion follows immen-
diately.

The following proposition asserts that on tempered topological groups smooth one parameter
groups can be well approximated:

2.5. Proposition. Let G be a tempered topological group. Let c : R→ G be a smooth curve with
c(0) = e touching a smooth one-parameter group S at t = 0, more precisely

∀ f ∈ D, x ∈ G : (f ◦ µx(c))′(0) = (f ◦ µx(S))′(0)

Then we obtain

lim
n→∞

c(
t

n
)
n

= St

uniformly on compact subsets of R, i.e. c( tn)nS−t converges to e as n → ∞ uniformly on compact
subsets of R. If G is a smoothly regular tempered Lie group with c∞G the topology of G, then the
convergence of c( tn)n to St is uniform in all derivatives in the sense of lemma 3.2. of chapter 1.

Proof. The first part of the proof is a simple application of the core theorem, which asserts
that the closure of the restriction of an infinitesimal generator of a strongly continuous semigroup to
an invariant and dense subspace is the infinitesimal generator (see [Kan95], theorem 1.7). We shall
denote the closure of the subspace D ⊂ BC(G) by X. T and C denote the curves of contractions
on BC(G) given by left translation with c(t) and S(t), respectively. By property 1. D is invariant
under the action of C(t) and T (t) for t ∈ R, by 2.2.iii. the first derivatives of C and T at t = 0
exist pointwisely for f ∈ D and they coincide. So T |X defines a C0-group on X, C|X is a curve of
contractions on X. D is a dense, T |X -invariant subspace of the domain of the infinitesimal generator
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of T , consequently the closure of the restriction of the infinitesimal generator to D is the infinitesimal
generator. The application of Chernoff’s theorem 1.10 in chapter 2 leads to

lim
n→∞

(C|X(
t

n
))
n

(f) = (T |X)t(f)

for all f ∈ X uniformly on compact subsets of R. In fact we have to apply the theorem two times to
obtain the assertion for the whole real line. By property 2. we are lead to the existence of the limit in
the group G uniformly on compact subsets of R. Uniformity is due to our specified detection of the
topology of G. Suppose that the sequence does not converge uniformly on a given compact interval
K to the limit e, so there is an open neighborhood U of e and sequences {nk}k∈N, a monotone,
diverging sequence of natural numbers, and {tk}k∈N in K, so that c( tknk )nkS−tk /∈ U for k ∈ N, but

sup
x∈G
|f(c(

tk
nk

)
nk
x)− f(Stkx)| k→∞→ 0

by the convergence theorem. Consequently

sup
y∈G
|f(c(

tk
nk

)
nk
S−tky)− f(y)| k→∞→ 0

which leads by 2. to a contradiction. So the limit exists uniformly on compact subsets of R.
Let G be a additionally topological Lie group, where the adjoint representation Ad maps sequen-

tially smoothly compact sets to bounded ones. As in the sequel the assertion on uniform convergence
in all derivatives will reappear (see section 3) we give another perspective to solve the problem:

We denote by Y ∈ g the generator of St = exp(Y t). As established above we know that
limn→∞ cn(t) = exp(Y t) uniformly on compact subsets of R. The rest of the proof is devoted to
the uniform convergence on compact intervals of δrcn(t) to Y as n → ∞. In fact it is an easy
consequence of calculations with right logarithmic derivatives: For smooth curves c, d : R → G we
have

δr(cd)(t) = δrc(t) +Adc(t)δ
rd(t)

for t ∈ R. Consequently we obtain

δrcn(t) =
1
n

(
n−1∑
i=0

Adi
c( t
n

)

)
δrc(

t

n
)

for all t ∈ R. The adjoint action of G maps sequentially compact to bounded sets in L(g), so
there is a bounded absolutely convex subset B ⊂ L(g) so that Adc( t

n
)
n
S−t
∈ B for t in a closed

zero neighborhood. By the general approximation theorem 4.2 on convenient algebras we obtain the
following Mackey-limit:

lim
n→∞

Adn
c( t
n

)
= AdSt

uniformly on compact subsets of R. The sequence measuring Mackey-convergence is given by
{ t2n }n∈N+

on the interval [0, t]. To conclude we look at the above sum as an approximation of the

integral 1
t

∫ t
0 AdSsds for t 6= 0 in the convenient algebra L(g). In fact we can choose n0 big enough,

so that for n ≥ n0 the approximation of the limit AdSt by Adcn(t) is good enough. By uniformity of
the respective limits, we obtain that

t

n
(
n−1∑
i=0

Adi
c( t
n

)
) =

t

n
(
n0∑
i=0

Adi
c( t
n

)
+

n−1∑
i=n0

(Adi
c( ti
in

)
−AdS ti

n

) +
n−1∑
i=n0

AdS ti
n

converges Mackey to the integral uniformly on compact subsets. Consequently

lim
n→∞

δrcn(t) =
1
t

∫ t

0
AdSsds Y = Y

uniformly on compact subsets of R. So the assertions are proved. By the way we obtain naturally
c′(0) = Y . To prove the whole assertion we refer to section 4, where a general method in the same
spirit is presented.



58 3. PRODUCT INTEGRALS ON INFINITE DIMENSIONAL GROUPS

2.6. Lemma. There is a general simple concept how to detect differentiability on Banach spaces,
which is in fact valid for much more general situations (see [FK88] for details):
Let E be a Banach space, S ⊂ E′ a norming subspace of the dual space, i.e. ‖x‖ = sup{|l(x)| | l ∈
S and ‖l‖ ≤ 1}. Let I ⊂ R be an open bounded interval, then a curve c : I → E is Lipn for a given
n ∈ N if there are curves ci : I → E for 1 ≤ i ≤ n+1 with (l◦c)(i) = l◦ci for l ∈ S and 1 ≤ i ≤ n+1
and cn+1 is bounded on I. In this case c(i) = ci for 0 ≤ i ≤ n.

Proof. For n = 0 the set { c(t)−c(s)t−s | t 6= s ∈ I} has bounded image under each l ∈ S, because
one can apply the mean value theorem. A bound is given through the modulus of the image under
l ∈ S of the closed , absolutely convex hull of {c1(t)|t ∈ I}, which is bounded, so we obtain the
Lipschitz property. Consequently cn is Lip0. We assume by induction that for 0 < j ≤ n the curves
ci are Lipn−i with (ci)(k) = ci+k for j ≤ i ≤ n and 0 ≤ k ≤ n− i. The element cj−1(t)−cj−1(s)

t−s − cj(s)
is bounded under l ∈ S through (t − s)‖l‖M by Taylor’s formula, where M is a bound for the
set { c

j(t)−cj(s)
t−s | t 6= s ∈ I} in E for t 6= s ∈ I. So cj−1 is differentiable with first derivative cj .

Consequently we obtain the result by induction.

2.7. Lemma. Let E be a Banach space, which admits C2
b -bump functions , then any Lie group

modeled on E is tempered.

Proof. We denote by B(0, r) for r > 0 the open ball around zero in E. The linear space of
C2
b -functions with values in C and support in B(0, r) having bounded first and second derivative is

denoted by C2
b (r)(E). If the Banach space admits C2

b -bump functions, C2
b (r)(E) is not empty and

detects the converging sequences:

xn
n→∞→ x ⇐⇒ φ(xn)− φ(x) n→∞→ 0 for all φ ∈ C2

b (r)(E)

for all sequences {xn}n∈N and x ∈ B(0, r). Now we take two charts (u1, U1), (u2, U2) around e of the
Banach-Lie group, so that the C∞-function µ := u2 ◦µ ◦ (id×u1

−1) : U3×B(0, 1))→ B(0, 1), where
U3 ⊂ G is an open chart domain of E, has the property that µ̌ : B(0, 1) → C∞(U3, E) is globally
Lipschitz and consequently bounded. This is possible by applying the well known theorem that Lip0-
functions on a Banach space with values in a convenient vector space are locally Lipschitz around
any point in the domain of definition (see section 1 of chapter 1), so we have to shrink the chart
domain a little bit. Let φ ∈ C2

b (1)(E) be a bump function and c : R → E with c(0) = 0 a smooth
curve, then C : I ⊂ R → BC(B(0, 1)), given through Ct(f)(x) = f(µ(c(t), x)) for x ∈ B(0, 1), t ∈ I
and f ∈ BC(B(0, 1)), where I is a sufficiently small open interval around zero (so that c(t) ∈ U3 for
t ∈ I), is differentiable at φ on I. This will be detected by point evaluations evx for x ∈ BC(0, 1),
which span a norming subspace for the supremum norm on BC(B(0, 1)):

d

dt
evx(Ct(φ)) =dφ(µ(c(t), x))(d1µ(c(t),x)(c

′(t)))

d2

dt2
evx(Ct(φ)) =d2φ(µ(c(t), x))(d1µ(c(t),x)(c

′(t)), d1µ(c(t),x)(c
′(t))) +

+dφ(µ(c(t), x))(d2
1µ(c(t),x)(c

′(t), c′(t))) +

+dφ(µ(c(t), x))(d1µ(c(t),x)(c
′′(t)))

for t ∈ I and x ∈ B(0, 1). The right hand side of the respective derivative is the evaluation of a
curve to BC(B(0, 1)), because (due to the (global) Lipschitz properties of the derivative and the
boundedness of I) the linear parts are bounded in E. Consequently evφ ◦ C : I → BC(B(0, 1)) is
Lip1 on I for all φ ∈ C2

b (1)(E). Now we lift C2
b (r) to the group G with the chart map u2 given around

e, where 0 < r < 1 is chosen sufficiently small: We chose 0 < r1 < 1 so that u2
−1(B(0, r1)) ⊂ U1.

Applying the topological lemma leads to 0 < r < r1, so that for every continuous curve c : R → G
with c(0) = e there is a small interval J around zero with ∪t∈J c(t)−1[u2

−1(B(0, r))] ⊂ u2
−1(B(0, r1)).

To prove differentiability we take φ ∈ C2
b (r)(E), the lifting ψ = φ ◦ u2 ∈ BC(G) has support in

u2
−1(B(0, r)). Let c : R → G be smooth with c(0) = e, then there is J , open around zero with the



2. TEMPERED LIE GROUPS 59

above property, let g denote the lifting of the first derivative along the curve c of φ at t = 0, then

sup
x∈G
|ψ(c(t)x)− ψ(x)

t
− g(x)| ≤ sup

x∈U1

|ψ(c(t)x)− ψ(x)
t

− g(x)|

≤ sup
x∈B(0,1)

|φ(µ̌(c(t), x))− φ(x)
t

− dφ(µ(e, x))(d1µ̌(e,x)(c
′(0)))|

for t ∈ J . So we obtain differentiability of evψ ◦ C : R → BC(G) at t = 0 for ψ = φ ◦ u2 with
φ ∈ C2

b (r). We obtain that for every smooth curve the associated left translations are everywhere
differentiable at the lifted functions. C2

b (r) is an algebra, by lifting, moving the elements via left
translation and associating the unit we can generate a unital subalgebra of BC(G), which will be
denoted by D. We have to prove the assertions of definition 2.1: 1. is clear by definition. 2. is clear
by the structure of C2

b (r) as the translated functions detect every converging sequence. 3. is clear
up to the following consideration. Let c : R→ BC(G) be a smooth curve with c(0) = e, y ∈ G. Let
φ be in the lifting of C2

b (r) to the group, then there is g ∈ BC(G), such that

sup
x∈G
|φ(yc(t)x)− φ(yx)

t
− g(x)| t→0→ 0 .

Consequently the curve C is differentiable on the left translation by y of φ on G, because it is
differentiable along the curve yc(.) as remarked before. So all the properties are proved and the
Banach-Lie group is tempered.

The following theorem demonstrates the interest in the concept of a tempered topological group
due to the range of the class and several inheritance properties:

2.8. Theorem. Let G be topological group with smoothly regular smooth group structure, where
smooth curves are continuous, G = proj limα∈ΩGα, where the Gα are topological groups, the limit is
given in the category of topological groups.

If Gα is a Banach manifold modeled on a Banach space Eα, which admits C2
b -bump functions for

α ∈ Ω, and if the canonically given multiplication µα : G×Gα → Gα is smooth, then G is a tempered
group.
If furthermore the C∞-vectorfields on Gα X

α
x := d

dt |t=0µα(c(t), x) for x ∈ Gα are globally integrable
for every smooth curve c : R → G with c(0) = e and α ∈ Ω, then for every smooth curve c : R → G
with c(0) = e there is a continuous group T and

lim
n→∞

c(
t

n
)
n

= Tt

uniformly on compact intervals in R.

Proof. We proceed by the same method as in the preceding examples, but we have to look
carefully at the multiplication µα for a given α ∈ Ω. There are charts u1, u2 for the group Gα around
e and a open chart domain U3 ⊂ G around e, so that µα = u2 ◦ µα ◦ (id × u1

−1) : U3 × Bα(0, 1) →
Bα(0, 1). By shrinking the chart (u1, U1) we may assume that ǔα : Bα(0, 1) → C∞(U3, Eα) is
globally Lipschitz. Now we can apply the same method as before: We take the algebra C2

b (r)(Eα),
where 0 < r < 1 is chosen sufficiently small due to the above consideration. We calculate the
derivatives under evaluations and prove differentiability in BC(Bα(0, 1)) of curves of left translations
by a smooth curve at functions from C2

b (1)(Eα). We lift the algebra C2
b (r) on the group Gα and - via

the canonically given smooth projections - from Gα to G. Finally we arrive at the differentiability
properties. Redoing the program for all α ∈ Ω, moving around the functions concentrated at the
identity and using the properties of the projections and the limit leads to a subalgebra D ⊂ BC(G),
which proves temperedness of G.

Assume now that the described C∞-vectorfields are globally integrable on Gα. Redoing the
first part of the proof we can find a unital subalgebra Dα ⊂ BC(Gα), which satisfies 1. and 2. of
definition 2.1, the third property is satisfied only for smooth curves c : R→ G with c(0) = e, which are
projected to Gα (The resulting curve is denoted by cα). It is worth mentioning that we are not given
the structure of a tempered topological group, because the multiplication on Gα is not smooth. We
denote the global flow associated to Xα by Tα. By inserting in functions of Dα we have the problem
that the Tα are not translations, but we can argue directly as d

dtT
α
t (x) = d

ds |s=0µα(c(s), Tαt ). The
exact formulation of the above construction leads to curves C : R → BC(Gα) which are two times
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differentiable under the evaluations evx for x ∈ Gα on a small interval around zero on functions
φ ∈ Dα, where the derivatives lie in BC(Gα), the second one is bounded on the interval. Given
φ ∈ Dα and x ∈ Gα we obtain

d

dt
φ(Tαt (x)) = (C ′(0)φ)(Tαt (x))

d2

dt2
φ(Tαt (x)) = (C ′(0)2

φ)(Tαt (x))

for t in the interval. The right hand sides are bounded on the interval, so we conclude that the given
curve is differentiable in BC(Gα). We shall look at the closure of Dα in BC(Gα), an algebra of
differentiable functions concentrated at a small neighborhood, so we are able to detect convergence
in a small neighborhood of the identity. By a slight generalization of Chernoff’s theorem (we leave
away the condition A|D = A, but obtain only convergence on the closure of D) we arrive at uniform
convergence on compact subsets of a small neighborhood of the identity of the following limit:

lim
n→∞

cα(
t

n
)
n

= Tαt (e)

This means that the limit exists uniformly on compact subsets of R due to continuity of the mul-
tiplication. We proved therefore that the right hand side of the limit is a continuous group in Gα.
The above procedure can be done for any α ∈ Ω, consequently we have proved the assertion by the
properties of the limit, more precisely: There exists a continuous group Tα on Gα with the property
limn→∞ cα( tn)n = Tαt , satisfying the limit conditions. So we can lift it to G and there we obtain the
desired equation.

2.9. Corollary. All ILB-Lie groups, where the respective Banach spaces in the chain admit
C2
b -bump functions, are tempered.

Proof. An ILB-Lie group G is a Fréchet-Lie group and a topological group, where the structures
are compatible. Furthermore proj limn≥dGn = G, the Gn are Banach manifolds and topological
groups with smooth multiplication G×Gn → Gn for n ≥ d. So we obtain temperedness by Theorem
2.7.

2.10. Proposition. Let G be a topological group with a smooth structure. G = proj limα∈ΩGα,
where the Gα are tempered topological groups. The limit is given in the category of topological groups.
If the canonical projections α : G→ Gα is smooth, then G is a tempered topological group.

Proof. The proof is simply given by pulling back the algebras Dα to G and verifying the
properties of definition 2.1.

2.11. Remark. Due to the theorems the range of the class of tempered topological groups
is rather large. All strong ILB-groups , modeled on Banach spaces with good differentiability
properties, are tempered Lie groups. The concept even works for topological groups with smooth
structure, but without smooth group structure.

An interesting consequence of temperedness of a topological group is, that it is easy to characterize
the existence of an exponential mapping.

2.12. Theorem. Let G be a tempered topological Lie group. Let D ⊂ BC(G) be the given unital
subalgebra. Let G satisfy the following completeness condition: If {xn}n∈N is a sequence with f ◦µxn
a Cauchy sequence in BC(G) for f ∈ D, then there is x ∈ G with xn → x as n→∞.
The topological Lie group admits a continuous group in each direction if and only if for all smooth
curves c : R → G with c(0) = e the mapping id − C ′(0) : D → X has dense image in the closure of
D, denoted by X, where C : R→ L(BC(G)) denotes the curve of left translations by c(t).

Proof. We have to apply several results of classical theory of C0-semigroups. Suppose first
that G admits an exponential mapping, then the respective generators of the C0-groups on G, given
through C ′(0) for c : R→ G, obey the condition R\{0} ⊂ ρ(C ′(0)), consequently id−C ′(0) : D → X
is closable and the closure is invertible on X, so the image of D is dense.

Suppose the density condition is satisfied, then we can apply 1.10. By approximation we obtain
that the following limit exists uniformly on compact intervals of R: limn→∞C( tn)n = Tt. By the
completeness assumption we obtain the existence of a continuous group S in G with limn→∞ c( tn)n =
St uniformly on compact subsets of R.
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Tempered Fréchet-Lie groups do not seem to cover the class of regular Fréchet-Lie groups. Never-
theless the concept of temperedness can be applied in all known examples of Fréchet-Lie groups, it is
more general than the strong ILB-property and it provides us with an representation of a Fréchet-Lie
group as linear group of algebra isomorphisms on a commutative C∗-algebra: Let G be a tempered
Fréchet-Lie group and X the closure of D, then π : G → L(X) with π(x)f = f ◦ µx for x ∈ G
is a monomorphism, continuous under point evaluations. Furthermore this representation detects
the topology on G and it is continuous with respect to the strong topology on G. One obtains an
interesting representation of the Lie algebra of G in the densely defined derivations on X. Some
elements of the universal enveloping algebra of g have an easy interpretation on X.

3. Lipschitz-metrizable smooth groups

Convenient Lie groups as defined in [KM97] provide a useful basis for infinite-dimensional ge-
ometry, but there is still a lack of methods how to handle analytic questions. The excellent approach
of [Omo97] to infinite dimensional Lie groups includes many analytic a priori properties in the def-
inition, however the analytic properties of the object itself are not considered. We try to define a
category of smooth groups, where the existence of product integrals (see [Omo97] for some ideas)
is equivalent to the existence of Lipschitz-metrics. This category contains all ILB-Lie groups (sub-
groups of diffeomorphism groups on compact finite dimensional manifolds, the Lie group of Fourier-
Integral-Operators), so all known Lie groups are provided with interesting metrics guaranteeing the
solvability of non-autonomous right or left invariant differential equations.

The definition of product integrals on Lie groups is done in the same way as in algebras, however,
we are always looking for evolutions in both time directions. The left regular representation of G

ρ : G→ L(C∞(G,R))

g 7→ (f 7→ f(g.))

in the bounded operators on C∞(G,R) is initial by the smooth Hausdorff-property of G.
The starting observations of the following two sections are originally based on a proof of the

famous Kakutani-Theorem, which was simultaneously and independently proved by Garett Birkhoff,
too, on the existence of a left (or right) invariant metric on a topological group with countable basis
of the neighborhood filter of the identity:

3.1. Theorem (Kakutani’s theorem). Let G be a topological group with a countable basis of
the neighborhood filter of the identity, then there is a left (or right) invariant metric on G.

Proof. Given a sequence of open neighborhoods of the identity {Qn}n∈N, then by continuity of
the multiplication we find a sequence of symmetric open neighborhoods {Un}n∈N with

U2
n+1 ⊂ Un ∩Qn for n ∈ N

We define by induction on 1 ≤ k ≤ 2n and n ≥ 0

V 1
2n

= Un

V 2k
2n+1

= V k
2n

V 2k+1

2n+1
= V 1

2n+1
V k

2n

We obtain the property V 1
2n
V m

2n
⊂ Vm+1

2n
for m < 2n. For m = 2k this is a consequence of the above

properties. For m = 2k + 1 the left hand side becomes

V 1
2n
V m

2n
= V 1

2n
V 1

2n
V k

2n−1
⊂ V 1

2n−1
V k

2n−1
= V k+1

2n−1
= Vm+1

2n

by induction on n and m. So we obtain Vr ⊂ Vr′ for r < r′ ≤ 1. We choose in our case a monotonic
decreasing basis of open sets of the neighborhood filter denoted by {Qn}n∈N. We redo the presented
construction and obtain a family Vr for all dyadic rationals 0 < r ≤ 1.

f(x, y) :=
{

0 if y ∈ VrV −1
r x for all r

sup{r | y /∈ VrV −1
r x}
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By definition f is right invariant, since f(xa, ya) = f(x, y) for all a ∈ G. VrV
−1
r is symmetric,

hence f is symmetric f(x, y) = f(y, x). V 1
2n

is symmetric, so V 1
2n
V −1

1
2n
⊂ V 2

1
2n

= V 1
2n−1

⊂ Qn−1, but

∩n≥1Qn−1 = {e}, since we deal with a basis of neighborhoods, so f(x, y) = 0 if and only if x = y.

d(x, y) := sup
u∈G
|f(x, u)− f(y, u)|

d(x, y) = d(y, x), d(x, y) ≥ f(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y. Right invariance is clear,
too, and the triangle inequality follows from

d(x, z) ≤ sup |f(x, u)− f(y, u) + f(y, u)− f(z, u)| ≤
≤ d(x, y) + d(y, z)

Finally we have to show that the metric reproduces the topology of the topological group. It is
sufficient to show this at e by right invariance. We denote the open d-balls of radius 1

2n by B 1
2n

.
First we observe that V 1

2n+1
⊂ B 1

2n
for n ≥ 1, which is done by a subtle case for case calculation:

Given y ∈ V 1
2n+1

, then f(y, e) < 1
2n .

1. u ∈ V 1
2n

, so f(y, u) ≤ 1
2n , so d(y, e) < 1

2n .

2. We can find a find a number 1 ≤ k < 2n+2 with u−1 /∈ V s
2n+2

V −1
s

2n+2
for 1 ≤ s ≤ k and u−1 ∈

V s
2n+2

V −1
s

2n+2
for k < s < 2n+2. So yu−1 ∈ V s+1

2n+2
V −1

s+1

2n+2

for k < s < 2n+2 and yu−1 /∈ V s−1

2n+2
V −1

s−1

2n+2

for 2 ≤ s ≤ k, hence k−1
2n+2 ≤ f(y, u) ≤ k+1

2n+2 and d(y, e) < 1
2n , since k

2n+2 ≤ f(e, u) ≤ k+1
2n+2 .

If x ∈ B 1
2n+1

, then f(e, x) < 1
2n+1 , finally x ∈ V 2

1
2n+1

⊂ V 1
2n
⊂ Qn, so we obtain Un+1 ⊂ B 1

2n
⊂

Qn−1 for n ≥ 1, which proves the desired assertion.

From this proof we observe that - given a Banach Lie group G - we can find by the CBH-formula
a basis of the neighborhoods of identity of balls fitting in the above machinery such that we can
construct a metric satisfying the Lipschitz property explained in the next definition.

3.2. Definition (Lipschitz-metrizable groups). Let G be a smooth group such that c∞G is
a topological group. G is called Lipschitz-metrizable if there is a family of right invariant semimetrics
{dα}α∈Ω on G with the following properties:

1. For all sequences {xn}n∈N:

∀α ∈ Ω : dα(xk, xl)→ 0 ⇐⇒ {xn}n∈N is converging in G

2. For all smooth mappings c : R2 → G with c(s, 0) = e and on a compact (s, t)-set there is Mα

such that

dα(c(s, t), e) < Mαt

Such a metric will be referred to as Lipschitz-metric .
3. For all smooth mappings c : R2 → G with c(s, 0) = e the following estimates are valid: On

compact (s1, s2, t)-sets there exists Mα such that

dα(c(s1,
s2

m
)mc(s1,

t

n
)nc(s1, t)−1c(s1,

s2

m
)−m, e) ≤Mαt

2 for m,n ∈ N

3.3. Remark. In contrary to good manners (see [KM97] for the useful applications of this habit,
see 51.19) we omit the dependences of the constant. However, we declare that Mα is independent
of t, s on a fixed compact set and always independent of m,n. The notion stems from the fact that
t 7→ d(c(t), e) is a Lip0-curve for c smooth with c(0) = e.

3.4. Conjecture. Regular Frèchet-Lie groups are complete as metric spaces or with respect to
the left or right uniform topology. What we know is that beyond locally compact groups Banach-
Lie groups are complete by the Champbell-Baker-Hausdorff formula and more generally strong ILB
groups G are complete by G = lim−→Gk topologically, where the Gk are Banach Lie groups and the
projections are injective smooth mappings to a dense subspace.

Property 3 is a consequence of the existence of a smooth exponential mapping. Therefore we
define for convenience a category G of smooth groups satisfying 1. and 2., but not necessarily 3.,
with smooth homomorphisms as morphisms. The following lemmas explain how big this category is:
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3.5. Lemma. Let G be a Banach-Lie-Group, then there is a metric d on G satisfying properties
1. and 2.

Proof. On Banach-Lie algebras we can choose a norm ||.|| satisfying ||[X,Y ]|| ≤ ||X||·||Y ||. The
Campbell-Baker-Hausdorff Formula converges on a ball of radius 1

4 and we have ||X∗Y || ≤ 1−
√

1− 4r
for ||X||, ||Y || ≤ r and r ≤ 1

4 (see section ”Local Lie groups and the CBH-formula” for the estimate).

We define a sequence {sn}n≥1 with s1 = 1
4 and sn+1 = 2sn−s2n

4 , where the formula stems from solving
sn = 1−

√
1− 4sn+1. We obtain by induction the following estimate

1
2n+1

≥ sn >
1

2n+3
+

1
22n+2

since for n = 1 the inequality is valid and if it is valid for n ≥ 1 then

sn+1 =
2sn − s2

n

4
>

1
2n+4

+
1

22n+3
− 1

22n+4
=

1
2n+4

+
1

22n+4

which proves the assertion. Choosing Un = exp(B(0, sn)) in the chart given by the exponential map
for n large enough, then we can use the Un directly in the proof of the Kakutani theorem to obtain
a metric d with the property

Un+1 ⊂ {x|d(x, e) <
1
2n
} ⊂ Un−1

for n large enough, since U2
n ⊂ Un−1 and U−1

n = Un. Given a curve c : R2 → G with
c(s, 0) = e, then we can find for a given compact s-set a number M > 0 such that for t in [0, 1]

exp−1(c(t, s)) ∈ tMB(0, 1)

by Taylor’s formula. Consequently

d(c(t, s), e) <
1
2n

if sn+2 ≤ tM < sn+1, so d(c(t,s),e)
t < M

2nsn+2
for small t. However, sn+22n > 2n

2n+5 + 2n

22n+6 >
1
25 . Hence

for small t
d(c(t, s), e)

t
< 32M

and the supremum property is satisfied.

3.6. Lemma. Let G be a smoothly connected regular and complete Fréchet-Lie-Group such that

Evolr : C∞([0, 1], g) ∩ C([0, 1], g)→ C([0, 1], G)

is continuous with respect to the C0-topology on the spaces and there is a continuous norm on g, then
G ∈ G .

Proof. We construct the semimetrics directly: Given two points g, h ∈ G we can join them by
a Lip1-curve c on [0, 1] with c(0) = g, c(1) = h and δrc(t) 6= 0 for t ∈ [0, 1], which will be denoted by
c : g → h.

dk(g, h) := inf
c:g→h

∫ 1

0
pk(δrc(t))dt

for an increasing family of norms pk defining the topology on g. The Lipschitz-property is clear by
definition. Remark that for any Lip1-map φ : [0, 1] → [0, 1] with φ(0) = 0 and φ(1) = 1 we have
δr(c ◦ φ) = ((δrc) ◦ φ)φ′, so reparametrization does not change the integral. Consequently we can
always assume that if we have a curve c : g → h, then there is φ : [0, 1] → [0, 1] with φ(0) = 0 and
φ(1) = 1 such that∫ 1

0
pk(δrc(t))dt =

∫ 1

0
pk(δrc(φ(t)))φ′(t)dt =

=
∫ 1

0
pk(δr(c ◦ φ)(t))dt = sup

0≤t≤1
pk(δr(c ◦ φ)(t))
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φ is constructed by solving the differential equation

pk(δrc(φ(t)))φ′(t) =
∫ 1

0
pk(δrc(t))dt

with boundary values φ(0) = 0 and φ(1) = 1. The solution is given by

F (φ(t)) =
∫ φ(t)

0
pk(δrc(t))dt = t

∫ 1

0
pk(δrc(t))dt

where F ′(s) = pk(δrc(t)) 6= 0, so there is a Lip1-solution. Furthermore the triangle inequality follows
from joining two Lip1-curves. Given a sequence {gm}m∈N with gn → e in G, then we can choose a
chart (u, U) around e with u(e) = 0 and straight lines in the chart to join the gm with e. Calculating
the suprema yields the desired property since u(gm) converges Mackey to 0, so we can look at the
problem on a unit ball in a Banach space EB, where smooth maps are locally Lipschitz.

Given a sequence {gn}n∈N with dk(gn, gm) → 0 for m,n → ∞ and U an open neighborhood of
identity in G, then (Evolr)−1(C([0, 1], U)) is open in C([0, 1], g), saying C([0, 1], (pk)<ε) lies inside.
By assumption we can find curves cn→m := c : e → gmg

−1
n with pk(δrcn→m(t)) < ε for n,m large

enough. Consequently Evolr(δrcn→m(t)) = cn→m(t) lies in U for t ∈ [0, 1], so gmg−1
n ∈ U for m,n

large enough, which means that it is a Cauchy sequence in G.

3.7. Corollary. All strong ILB-Lie groups are (regularly, see next section) Lipschitz-metrizable,
so all known Fréchet-Lie groups are regularly Lipschitz-metrizable.

Proof. On ILB-groups the evolution map factors as continuous
Evolr : C∞([0, 1], g) ∩ C([0, 1], g) → C([0, 1], G) with respect to the C0-topologies on the respective
spaces, where from we conclude the result, since there are norms on the associated Fréchet space
to an ILB-chain. This factorization can be seen as follows, we refer to [Omo97]: Given a strong
ILB-group, then even more general types of product integrals as provided converge without applying
the notion of Lipschitz-metrizability, we only need the smoothness of the exponential map on the
underlying Fréchet-Lie group. Given Xn ∈ C([0, 1], g) converging uniformly to X, then we can
associate C1-hairs hn(s, t) = exp(sXn(t)) with hn → h in the topology on C1-hairs by smoothness of
the exponential map. Consequently the associated product integrals converge uniformly reproducing
Evolr(Xn), which converges uniformly on [0, 1] to Evolr(X) (see [Omo97], theorem 5.3).

3.8. Remark. The above result justifies a posterio the narrow setting of strong ILB-groups,
since we have to restrict to a class of Fréchet spaces, where the continuous norms exist, which allows
to build an asssociated chain, but possibly without dense injections.

3.9. Remark. Assuming that the Fréchet space is given by an inverse limit of Hilbert spaces, so
the definition of metrics is equally a definition of a variational problem, which is easily solved under
some condition on the Lie bracket, namely that ad has a continuous transpose with respect to some
scalar product. Then the geodesic equation associated to the variational problem is given through

ut = −ad(u)Tu

where u denotes the right logarithmic derivative of the geodesic (see [KM97], section 46.4). Only
in the case, where u ∈ ker(ad(u)T) for u ∈ g the smooth one-parameter subgroups are the geodesics.
With respect to interesting non-linear partial differential equations (for example the Korteweg-De
Vrieß-equation) it is worth studying this situation in concrete cases. The question arises if such
naturally appearing differential equations can be solved on the given Lie groups by internal methods,
for example by Lipschitz-metrics. If this were the case, some interesting geometro-analytic progress
in partial differential equations would be possible. To set the program it is first necessary to find
some natural approximation procedure for geodesic problems, then to apply the Lipschitz-methods
to prove approximation.

The next proposition states that it is impossible to choose only one right invariant metric with
Lipschitz-property reproducing the topology on a regular Fréchet-Lie-Group beyond Banach spaces.
In the regular abelian simply connected case this means that it is impossible to choose an invariant
metric with Lipschitz-property on Fréchet spaces. This is exactly the non-abelian (curved) analogue
to the assertion, that a Fréchet space with one norm genrating the topology is a Banach space. Hence
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Lipschitz-metrics are the right concept replacing seminorms on convenient Lie groups. Remark that
we are only interested in the sequential topology on our spaces.

3.10. Proposition. Let G be a Fréchet-Lie-Group with (smooth) exponential map and suppose
that there is a right invariant metric d on G reproducing the topology in the sense of definition 2.2
and

d(c(s, t), e) < Mt

for any smooth mapping c : R2 → G with c(s, 0) = e on compact (s, t)-sets. If for any sequence
{Xn}n∈N with exp(tXn) → e uniformly on compact intervals the sequence {Xn}n∈N converges to 0
in the Lie algebra g, then G is a Banach-Lie-group.

Proof. We define a seminorm p on the Lie algebra g of G . The function t 7→ d(exp(tX), e) is
sublinear by right invariance, consequently the limit limt↓0

d(exp(tX),e)
t exists and equals the infimum

inft>0
d(exp(tX),e)

t .

p(X) := lim
t↓0

d(exp(tX), e)
t

for X ∈ g . p is positively homogeneous and p(0) = 0. Given a smooth curve c : R→ G with c(0) = e
and c′(0) = X, then

|d(exp(tX), e)
t

− d(c(t) exp(−tX), e)
t

| ≤ d(c(t), e)
t

≤ d(exp(tX), e)
t

+
d(c(t) exp(−tX), e)

t

so the limit of the middle term exists since the limits of the other terms exist and are equal. The
limit of a smooth curve d passing at 0 through e with d′(0) = 0 is calculated at the beginning of the
proof of theorem 3.1. as 0. Consequently p(X) = p(X) := limt↓0

d(c(t),e)
t . So the triangle inequality

is satisfied since
d(exp(tX) exp(tY )), e)

t
≤ d(exp(tX), e)

t
+
d(exp(tY ), e)

t

Given a sequence {Xn}n∈N with Xn → X in g. Convergence on the Fréchet space means Mackey
convergence, so there is a compact set B ⊂ g with X −Xn ∈ µnB with µn ↓ 0.

p(X −Xn) ≤ sup
0<t≤1

d(exp(t(Xn −X)), e)
t

≤

sup
Y ∈B

sup
0<t≤1

d(exp(tµnY ), e)
t

≤ µn sup
Y ∈B

sup
0<t≤1

d(exp(tµnY ), e)
tµn

≤ µnM

since the last supremum is finite, so p(X − Xn) → 0 for n → ∞ , p is a continuous seminorm.
Finiteness is proved via the following consideration:

M(Y ) := sup
0<t≤1

d(exp(tY ), e)
t

Assume that there is a fast converging sequence Yn → Y in the compact set B such that M(Yn) ≥ n.
Consequently there is a smooth curve d : R→ g with d( 1

n) = Yn. We define c(s, t) := exp(td(s)), but
then

sup
s∈[0,1]

sup
0<t≤1

d(c(s, t))
t

=∞

a contradiction. Given a sequence {Xn}n∈N such that p(Xn − X) → 0, then for every ε > 0
and N ∈ N there is tn > 0 such that d(exp(t(Xn − X)), e) ≤ tε for t ≤ tn for n ≥ N , but since
t 7→ d(exp(t(Xn−X)), e) is sublinear this relation holds everywhere, consequently exp(t(X−Xn))→ e
uniformly on compact intervals in time for n→∞. This, however, means that X−Xn → 0 in g.

3.11. Lemma. Let G be a Lie group such that convergence on the model space E means Mackey-
convergence (i.e. c∞E = E) and there is a family of right invariant halfmetrics {dα}α∈Ω on G with
the following properties:
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1. For all sequences {xn}n∈N:

∀α ∈ Ω : dα(xk, xl)→ 0 ⇐⇒ {xn}n∈N is a converging sequence

2. For all smooth mappings c : R2 → G with c(s, 0) = e the mappings dα(c(., .), e) : R2 → R

satisfy

dα(c(s, t), e) < Mαt

on compact (s, t)-sets.
If there is furhtermore an exponential map and for any sequence {Xn}n∈N with exp(tXn) → e

uniformly on compact intervals the sequence {Xn}n∈N converges to 0 in the Lie algebra g, then the
functions

pα(X) = lim
t↓0

dα(exp(tX), e)
t

are continuous seminorms on g generating the topology.

Proof. The proof is built in the same way as the previous one. Only indices have to be carried
with along the lines.

The last result provides an the already applied idea how the families of seminorms and right
invariant metrics are related: This relation could be read in the other direction explaining that via
integrating one obtains right invariant Lipschitz-metrics on G.

4. Product integration via Metrization

The notion of product integrals and simple product integrals is necessary to follow the way from
the category G to regularity or the existence of a smooth expoential mapping:

4.1. Definition. Let G be a smooth group with c∞G a topological group. Given a smooth map-
ping h : R2 → G with h(s, 0) = e, then we define the following finite products of smooth curves

pn(s, t, h) :=
n−1∏
i=0

h(s+
(n− i)(t− s)

n
,
t− s
n

)

for s, t ∈ R. If pn converges in the smooth topology of G uniformly on compact sets to a continuous
curve c : R → G, then c is called the product integral of h and we write c(s, t) =:

∏t
s h(s, ds). If

h(s, t) = c(t), then the product integral pn(0, t, h) = c( tn)n is called simple product integral.

4.2. Remark. Here we need the assumption that c∞G is a topological group, since we want to
talk about uniform convergence of curves in the uniform space c∞G.

4.3. Lemma. Let G be a smooth group such that c∞G is a topological group and G is smoothly
Hausdorff (i.e. the smooth functions separate points), then each product integral pn(s, t, h) is smooth
and the propagation condition c(t, r)c(s, t) = c(s, r) is satisfied for all r, s, t.

Proof. By the left regular representation ρ on G we get that the product integral

lim
n→∞

pn(s, t, ρ ◦ h)

exists in C∞(R2, L(C∞(G,R))), since that image of a sequentially compact set under a smooth
mapping is bounded in the convenient algebra L(C∞(G,R)). The set formed by pn(s, t, h) and c(s, t)
on compact (s, t)-sets is sequentially compact due to uniform convergence. Evaluating at e and
applying cartesian closedness leads to the hypotheses of lemma 1.3.2., which allows the conclusion of
smoothness of c. The propagation condition follows from the definition of the product integral and
the continuity of multiplication.

4.4. Lemma. Let G be a smoothly regular Lie group. Given a smooth mapping h : R2 → G with
h(s, 0) = e, such that the product integral converges to c(s, t), then the fundamental theorem of product
integration or non-commutative integration asserts that δrt c(s, t) = ∂

∂th(s, 0) and the convergence is
uniform in all derivatives in the sense of lemma 1.3.2..

Proof. By the previous lemma it suffices to apply lemma 1.3.2. to get the result. Remark that
δrt |t=spn(s, t, h) = X(s).
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The following two proposition explains one interest in Lipschitz-metrizable smooth groups. It is
in fact a property guaranteeing the existence of simple product integrals, by which we mean iterations
of the type c( tn)n for a smooth curve passing at 0 through e.

4.5. Theorem. Let G be a Lie group, c∞G is a topological group and there is a family of right
invariant halfmetrics {dα}α∈Ω on G with the following properties:

1. For all sequences {xn}n∈N:

∀α ∈ Ω : dα(xk, xl)→ 0 ⇐⇒ {xn}n∈N is a converging sequence

2. For all smooth mappings c : R2 → G with c(s, 0) = e the mappings dα(c(., .), e) : R2 → R

satisfy

dα(c(s, t), e) < Mαt

on compact (s, t)-sets.
If there is a smooth exponential mapping, then G is a Lipschitz-metrizable group.

Proof. First we show a simple consequence of property 1. Let c : Rn+1 → G with c(s, 0) = e
and ∂

∂t |t=0c(s, t) = 0 for s ∈ Rn be a smooth mapping, then we can choose a chart (U, u) around e

with u(U) absolutely convex and u(e) = 0. On a small ball B around 0 in Rn+1 u ◦ c is well-defined
with first derivative zero. Consequently u ◦ c(s,

√
t) makes sense as Lip0-curve for positive t and s in

a small ball around zero, so 1
t (u ◦ c)(s,

√
t) is in a compact set for t > 0 on a small ball around zero

in Rn+1. By some reparametrizations we can assume that the compact set, where 1
tu ◦ c(s,

√
t) lies,

is a subset of u(U). Let B ⊂ E be a compact subset in u(U). Then the following supremum is finite:

sup
0<t≤1

(sup
x∈B

dα(u−1(tx), e)
t

) <∞

for all α ∈ Ω, since the function

Mα(x) := sup
0<t≤1

dα(u−1(tx))
t

for x ∈ u(U) is bounded on compact subsets of u(U). If Mα were unbounded on a compact subset B
of u(U), then there would exist a sequence {xn}n∈N+

in B, converging fast to x ∈ B, with Mα(xn) ≥ n
for n ∈ N+. By the special curve lemma there is a curve d : R→ F with d( 1

n) = xn, so c(s, t) := td(s)
is a smooth mapping with c(s, 0) = 0 with values in u(U), which gives a contradiction by looking at
u−1 ◦ c. Consequently

sup
0<t≤1

dα(c(s,
√
t), e)

t
< Mα

on a small interval around zero in s. This can easily be extended to all compact sets by a translation.
We obtain finally

sup
0<t≤1

dα(c(s, t), e)
t2

< Mα(#)

on compact s-sets. Now we apply the existence of a smooth exponential mapping. Let T (X) denote
a semigroup with generator X. A smooth mapping c : R2 → G with c(s, 0) = e and ∂

∂t |t=0c(s, t) = Xs

for s ∈ R is given, too. We proceed indirectly to obtain the assertion: Let n ∈ N be given, then

dα(c(s,
t

m
)
m

T−t(Xs), e)

≤
m−1∑
i=0

dα(T ti
m

(Xs)c(s,
t

m
)
m−i

T−t(Xs), T t(i+1)
m

(Xs)c(s,
t

m
)
m−i−1

T−t(Xs))

=
m−1∑
i=0

dα(T ti
m

(Xs), T t(i+1)
m

(Xs)c(s,
t

m
)
−1

)

=
m−1∑
i=0

dα(T ti
m

(Xs)c(s,
t

m
)T− ti

m
(Xs), T t

m
(Xs))
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due to right invariance. Our uniformity result leads to the desired assertion by investigating the
smooth mapping

d(s, t) := Ts2(Xs1)c(s1,
t

m
)T−s2(Xs1)T− t

m
(Xs2)

by estimate #. Consequently we arrive at

dα(c(s,
t

m
)
m

T−t(Xs), e) ≤
m−1∑
i=0

Mα
t2

m2
= Mα

t2

m

m→∞→ 0

where t can vary in a compact interval around zero preserving uniformity. Consequently

dα(c(s,
t

m
)
m

, Tt(Xs)) ≤Mα
t2

m

for α ∈ Ω uniformly in t. By this first observation we can conclude the desired assertion of Lipschitz-
metrizability in the following way: The above estimate yields that the respective limit

c(s1,
s2

m
)mc(s1,

t

n
)nc(s, t)−1c(s1,

s2

m
)−m

for n,m → ∞ exists on compact (s1, s2)-sets and equals Ts2(s1)Tt(s1)c(s1, t)−1T−s2(s1). Inserting
this curve in the estimate # we can conclude the result, since all appearing terms contain t2.

4.6. Theorem (Approximation Theorem). Let G be a Lipschitz-metrizable smooth group.
Given a smooth curve c : R→ G with c(0) = e, then the limit

lim
n→∞

c(
t

n
)
n

= Tt

exists uniformly on compact intervals of R and gives a smooth group T . If G is a smoothly regular Lie
group, then the exponential mapping given through these approximations is smooth and convergence
is uniform in all derivatives in the sense of lemma 1.3.2.

Proof. Given a smooth curve c : R2 → G with c(s, 0) = e, then we try to investigate the above
simple product integrals:

dα(c(s,
t

nm
)
nm

, c(s,
t

n
)
n

)

≤
n−1∑
i=0

dα(c(s,
t

n
)
i

c(s,
t

nm
)
(n−i)m

, c(s,
t

n
)
i+1

c(s,
t

nm
)
(n−i−1)m

)

≤
n−1∑
i=0

dα(c(s,
t

n
)
i

c(s,
t

nm
)
m

c(s,
t

n
)
−1

c(s,
t

n
)
−i
, e)

≤
n−1∑
i=0

dα(c(s,
t

n
)
i

c(s,
t

nm
)
m

c(s,
t

n
)
−i
, c(s,

t

n
)
−1

)

≤ n t
2

n2
Mα → 0 for n→∞

which is possible due to Lipschitz-metrizability, a look at the curve

d(s, t) = c(s1,
s2

i
)
i
c(s1,

t

nm
)
m

c(s1, t)−1c(s1,
s2

i
)−i

and application of the given estimates. Consequently we obtain a Cauchy-property uniform in s for
the above sequences of curves, which leads to the desired limit. The limit limn→∞ c(s, tn)n =: Tt(s) is
continuous and by standard arguments a group in t. By looking at the left regular representation in
L(C∞(G,R)) we see that the limit has to be smooth, because sequentially compact sets are mapped
to bounded ones and the smooth functions detect smoothness: ρ ◦ c gives a curve in L(C∞(G,R))
satisfying the boundedness condition, so we expect a smooth limit group T (s, t) by the approxi-
mation theorem 4.2. Since we have convergence of c(s, tn)n this limit has to be a posterio equal
to ρ(limn→∞ c(s, tn)n). By initiality of ρ we obtain the smoothness of limn→∞ c(s, tn)n as mapping
to G. The limit exists uniformly in all derivatives, which means in particular that the generator
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of T is c′(0) by the lemma 1.3.2. at the end of section 1.3 since we can evaluate at e to obtain
(f ◦ c)(s, tn)n → f(limn→∞ c(s, tn)n) in all derivatives with respect to s and t.

4.7. Remark. We have proved that the existence of an exponential map can be characterized
on ”all” Lie groups by Lipschitz-metrizability.

In the abelian case the situation is simpler, we can reformulate the proposition and define in a
simpler way the Lipschitz-metrics:

4.8. Corollary. Let G be an abelian Lie group, such that c∞G is a topological group, then G is
regular if and only if G is Lipschitz-metrizable.

Proof. One direction is a corollary of the theorem. Let G be a regular abelian Lie group. Then
G is locally isomorphic to its Lie algebra by [MT98], consequently the topology on G is given by
the bornological topology on g. We denote by Ω the set of bounded seminorms on g.

dk(g, h) := inf
c∈C∞([0,1],G)
c(0)=g, c(1)=h

∫ 1

0
p(δrc(t))dt

is a well-defined right invariant halfmetric on G for p ∈ Ω. Right-invariance is clear by definition,
symmetry, too. Taking two curves c, d ∈ C∞([0, 1], G) with c(0) = g, c(1) = d(0) = h and d(1) = l,
then b := cµh−1d defines a smooth curve with b(0) = g and b(1) = l, furthermore δrb(t) = δrc(t) +
δrd(t) on [0, 1] due to commutativity (the adjoint map is trivial). The Lipschitz-property is clear by
the following argument: Let c : R2 → G be smooth mapping with c(0, s) = e for s ∈ R, then

dk(c(u, s), e) ≤
∫ 1

0
pk(δrc(u., s)(t))dt = u

∫ 1

0
pk([δrc](ut, s)])dt

and consequently the supremum exists uniformly for s in a compact interval. The rest follows by
regularity from the lemma. It remains to prove the topological property, but this is clear due to
the possibility to choose an exponential chart (see [MT98]). So we constructed the essentials for
Lipschitz-metrizability.

The next theorem is devoted to the analysis of regularity in the case of Lipschitz-metrizable
groups. We shall obtain that a slight sharpening of the axioms of Lipschitz-metrizability allows to
characterize regularity of a Lie group carrying the structure of a topological group.

4.9. Theorem. Let G ∈ G be a Lie group with c∞G a topological group, h : R2 → G a smooth
mapping with h(s, 0) = e and ∂

∂t |t=0h(s, t) = X(s) and c with c(0) = e the smooth curve with δrc = X,
then the product integral

∏t
0 h(s, ds) exists and equals c(t). If G is regular, then the following estimates

are valid for the Lipschitz-metrics dα:

dα(pi(s3, t, c)(s1)pn(s2, t+ s2, c)(s1)c(s1, s2, t)−1pi(s3, t, c)(s1)−1, e) ≤Mαt
2

for all i, n ∈ N on compact (s1,s2, s3, t)-sets given the smooth mapping d : R3 → G with c(s1, s2, 0) =
e.

Proof. First we prove the convergence result to establish the estimate. Given a smooth mapping
h : R3 → G with h(s1, s2, 0) = e, then we look at the product integral

pn(s2, t, h)(s1) =
n−1∏
i=0

h(s1, s2 +
(n− i)(t− s2)

n
,
t− s2

n
)
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at s2 = 0. Let c : R2 → G be a curve with c(s1, 0) = e and δrcs1(s2) = ∂
∂th(s1, s2, 0).

dα(
n−1∏
i=0

h(s1,
(n− i)t

n
,
t

n
), c(s1,t)) ≤

≤
n−1∑
i=0

dα(
i∏

j=1

c(s1,
(n− j + 1)t

n
)c(s1,

(n− j)t
n

)−1
n−1∏
j=i

h(s1,
(n− j)t

n
,
t

n
)c(s1, t)−1,

i+1∏
j=1

c(s1,
(n− j + 1)t

n
)c(s1,

(n− j)t
n

)−1
n−1∏
j=i+1

h(s1,
(n− j)t

n
,
t

n
)c(s1, t)−1) ≤

≤
n−1∑
i=0

dα(c(s1,t)c(s1,
(n− i)t

n
)−1h(s1,

(n− i)t
n

,
t

n
)c(s1,

(n− i− 1)t
n

)c(s1,
(n− i)t

n
)−1,

c(s1,t)c(s1,
(n− i)t

n
)−1) ≤

≤ n t
2

n2
Mα

for n ∈ N on compact s1-sets. The last step of the proof is done by the same arguments as above.
First we show that convergence is uniform in all derivatives due to smooth regularity as in lemma
4.4., then we look at the smooth curve

c(s1,t)c(s1,s3)−1h(s1, s3,
t

n
)c(s1,s3)c(s1,s3 +

t

n
)−1c(s1,s3)c(s1,t)−1

and insert it in estimate # in 4.5. The desired estimate follows since we have t2in all appearing
estimates as a result of the above calculation.

4.10. Definition. A Lipschitz-metrizable group is called regularly Lipschitz-metrizable if for all
smooth mappings c : R3 → G with c(s1, s2, 0) = e the following estimate is valid

dα(pi(s3, t, c)(s1)pn(s2, t+ s2, c)(s1)c(s1, s2, t)−1pi(s3, t, c)(s1)−1) ≤Mαt
2

for all n ∈ N on compact (s1,s2, s3, t)-sets. We use the following abbreviation

pi(
n− i
n

t, t, c)(s1) = pn,i(t, c)(s1) =
i∏

j=0

c(s1,
(n− j)t

n
,
t

n
)

Remark that property 3 of the definition of Lipschitz-metrizable smooth groups is contained
in the above property, c( tn)n is a simple product integral. All regular Lie groups G with c∞G a
topological group are regularly Lipschitz-metrizable, the following theorem explains the converse:

4.11. Theorem. Let G be a regularly Lipschitz-metrizable smooth group, then all product inte-
grals exist. If G is furhtermore a smoothly regular Lie group, then the right evolution operator given
through these product integrals is smooth, so G is regular.

Proof. We can proceed directly to obtain the result by our methods. Given a smooth mapping
c : R3 → G with c(s1, s2, 0) = e, we shall look at the product integral

pn,i(t, c)(s1) =
i∏

j=0

c(s1,
(n− j)t

n
,
t

n
)
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at s2 = 0. The notion allows to shorten the product: 0 ≤ i ≤ n− 1, pn,n−1 = pn.

dα(pnm(t, c)(s1), pn(t, c)(s1)) ≤

≤
n−1∑
i=0

dα

pn,i(t, c)(s1)
nm−1∏
j=mi

c(s1,
(nm− j)t

nm
,
t

nm
)pn(t, c)(s1)−1,

pn,i+1(t, c)(s1)
nm−1∏

j=m(i+1)

c(s1,
(nm− j)t

nm
,
t

nm
)pn(t, c)(s1)−1

 ≤
≤

n∑
i=0

dα

pn,i(t, c)(s1)
m(i+1)−1∏
j=mi

c(s1,
(nm− j)t

nm
,
t

nm
), pn,i+1(t, c)(s1)

 =

=
n−1∑
i=0

dα

pn,i(t, c)(s1)
m(i+1)−1∏
j=mi

c(s1,
(nm− j)t

nm
,
t

nm
)c(s1,

(n− i− 1)t
n

,
t

n
)−1,

pn,i(t, c)(s1)) =

=
n−1∑
i=0

dα

pn,i(t, c)(s1)
m−1∏
j=0

c(s1,
(n− i− 1)t

n
+

(m− j)t
nm

,
t

nm
)

c(s1,
(n− i− 1)t

n
,
t

n
)−1pn,i(t, c)(s1)−1, e

)
≤

≤
n−1∑
i=0

Mα
t2

n2

for n ∈ N and compact (s1, s2, s3, t)-intervals. Therefore we can apply estimate # to the above
problem to obtain the assertion. Furthermore by the approximation theorem 4.2 we obtain the
smoothness of these solution families, which yields smoothness of the right evolution map as in
lemma 4.4.

4.12. Corollary. Let G be a Lie group in the category G, then the following assertions are
equivalent:

1. A smooth exponential map exp : g→ G exists (a smooth right evolution map exists)
2. All simple product integrals converge in C∞(R2, G) (all product integrals converge in
C∞(R3, G) in the sense of lemma 1.3.2)

3. G is (regularly) Lipschitz-metrizable

4.13. Corollary. Let G be a regular smoothly connected Lie group in the category G, then the
closure of the normal subgroup generated by the image of the exponential map is the whole group G.

Proof. Regularity implies the existence of product integrals
∫ a

0 exp(X(s)ds), which reach any
point in the connected Lie group, consequently the closure of the normal subgroup generated by the
image of the exponential map is the whole group.

5. Product integration via Linearization

5.1. Theorem. Let G be a smoothly regular Lie group. If for each smooth mapping c : R3 → G
with c(r1, r2, 0) = e the approximations pn(s2, t, c)(r1) lie in a sequentially c∞-compact set on compact
(r1, s2, t)-sets, then G is regular.

5.2. Theorem. Let G be a smoothly regular Lie group. If for each smooth mapping c : R2 → G
with c(r1, 0) = e the approximations c(r1,

t
n)n lie in a sequentially c∞-compact set on compact (r1, t)-

sets, then G admits a smooth exponential map.

Proof. The proofs for the theorems are identical: A sequentially c∞-compact set is mapped by
ρ to a sequentially c∞-compact set, which is bounded in any compatible locally convex topology.
Consequently we obtain the existence of the image product integral, but this image product integral
stems pointwisely from G via ρ, because there are adherence points in the sequentially c∞-compact



72 3. PRODUCT INTEGRALS ON INFINITE DIMENSIONAL GROUPS

set, which have to be the unique limit points of the respective sequences. ρ is initial, so the limit curve
has to be smooth and the uniform convergence in all derivatives in L(C∞(G,R)) implies uniform
convergence in all derivatives in the sense of lemma 1.3.2. of the products to the product integral as
in lemma 4.4.

5.3. Proposition. Let G be a smoothly regular Lie group in the category G, such that there
exists a family {dα}α∈Ω of right-invariant equivalent metrics satisfying 1. and 2. of the definition of
Lipschitz-metrizable groups with the following property:

Let K ⊂ G be set, such that dα(K, e) ≤Mα for α ∈ Ω, then K is relatively sequentially compact
in the topology of G.

Then G is regularly Lipschitz-metrizable.

Proof. Given a smooth mapping c : R3 → G with c(s1, s2, 0) = e, then the products pn can be
estimated in the following way:

dα(pn(s2, t)(s1), e) ≤
n−1∑
j=0

dα(c(s1,
(n− j)t

n
,
t

n
), e) ≤ n t

n
Mα

on compact (s1, s2, t)-sets. Consequently the approximations lie in a compact set. If all approxi-
mations of product integrals lie in a sequentially compact set for compact parameter sets, we can
apply the regularity theorem of 4.2 to conclude regularity and regular Lipschitz-metrizability as in
the previous proof.

5.4. Remark. This property can be viewed as a non-linear version of Arzela-Ascoli’s theorem.

5.5. Conjecture. Let G be a strong ILB-group, such that the associated Fréchet space is Montel.
G is seen to be Lipschitz-metrizable and regular by the above considerations. It is reasonable to expect
that for all sets K ⊂ G lying in a small neighborhood of identity U

dn(K, e) ≤Mn for all n if and only if K is relatively compact in the topology of G

This would provide a simple procedure to solve non-autonomuous differential equations of the type
δrc(t) = X(t) for t ∈ R on the Lie group by ”intrinsic methods”.



CHAPTER 4

The inverse of S. Lie’s third theorem

Nach glaubwürdiger Überlieferung hat das im sechzehnten Jahrhundert, einem Zeitalter stärkster
seelischer Bewegtheit, damit begonnen, daß man nicht länger, wie es bis dahin zwei Jahrhunderte
religiöser und philosophischer Spekulation geschehen war, in die Geheimnisse der Natur einzudringen
versuchte, sondern sich in einer Weise, die nicht anders als oberflächlich genannt werden kann, mit
der Erforschung ihrer Oberfäche begnügte. [...] Galilei war ja nicht nur der Entdecker des Fallgesetzes
und der Erdbewegung, sondern auch ein Erfinder, für den sich, wie man heute sagen würde, das
Großkapital interessierte, und außerdem war er nicht der einzige, der damals von dem neuen Geist
ergriffen wurde; im Gegenteil, die historischen Berichte zeigen, daß sich die Nüchternheit, von der
er beseelt war, weit und ungestüm wie eine Ansteckung ausbreitete, und so anstößig das heute klingt,
jemand von Nüchternheit beseelt zu nennen, wo wir davon schon zu viel zu haben glauben, damals
muß das Erwachen aus der Metaphysik zur harten Betrachtung der Dinge nach allerhand Zeugnissen
geradezu ein Rausch und Feuer gewesen sein!

(Robert Musil, Der Mann ohne Eigenschaften)

In this last chapter we are concerned with the inverse of the third fundamental theorem of S.
Lie asserting that to any Lie group there can be associated a unique Lie algebra. The fact that
complicated non-linear problems can be translated to linear ones is the crucial observation of the
theory of symmetries. After some reflections on linear and global questions on regularity it seems
necessary to treat the infinite dimensional feature that there are Lie algebras without associated
Lie group in more detail, since even though regular Lie algebras behave in some respects as finite
dimensional ones (bounded Lie algebra homomorphisms can be integrated) there are fundamental
difficulties in passing from the linear Lie algebra to a possibly existing Lie group.

First we investigate the Campbell-Baker-Hausdorff-Formula on locally convex Lie algebras and
provide a class of non-normable Lie algebras, where the series converges. The local group build
this way is the playground of the following cohomological analysis, where we try to find necessary
and sufficient conditions for enlargibility, i.e. the situation, when a local group embeds in a group.
The results are formulated for Fréchet-Lie-Groups. The goal of this section is to demonstrate that
enlargibility is no analytic question, but an algebraic one decided by cohomological methods.

1. Local Lie groups and the CBH-Formula

The question, if to a given Lie algebra L there can be associated a Lie group G, so that L(G) =
L valid, gives deep insight in the difficulties of the theory of infinite dimensional Lie groups or of
infinite dimensional differential geometry (see [KM97]).

1.1. Definition. A (convenient) manifold G is called a local Lie group if there is an open subset
U ⊂ G×G and a smooth mapping µ : U → G with the following properties:
1. There is a unit element e such that (e, x) and (x, e) are in U and ex = xe = x for all x ∈ G.
2. For all x ∈ G there is a unique x−1such that xx−1 = x−1x = e.
3. For all x, y, z ∈ G with (x, y) ∈ U and (y, z) ∈ U we obtain: (xy, z) ∈ U if and only if (x, yz) ∈ U .
In this case we have the law of associativity:(xy)z = x(yz).
4. For all x, y ∈ G with (x, y) ∈ U we arrive at (y−1, x−1) ∈ U .

A local Lie group naturally possesses a Lie Algebra g. A local Lie group is called regular if there
is an evolution map, i.e. curves in a given c∞-neighborhood of 0 in g are mapped to G, such that
we obtain an inverse to the right (or left) logarithmic derivative. The question if there exists a local
Lie group with given Lie algebra g and locally diffeomorphic exponential map leads to the analysis
of the Campbell-Baker-Hausdorff-Formula, which we are going to treat in general in the sequel (see
[BCR81], ch. 3 for details).
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1.2. Definition. Let A be a locally convex algebra, p, q seminorms on A. q is called an asymp-
totic estimate for p, if there is m ∈ N, such that for n ≥ m and u1, ..., un ∈ A

p(”u1 · ... · un”) ≤ q(u1) · ... · q(un),

where the quotation marks denote that any choice of parentheses is allowed at the left side.

This can be expressed by the means of the following set multiplication, too: q is an asymptotic
estimate for p if and only if there is m ∈ N such that for n ≥ m

”(q<1)n” ⊂ p<1,

where the subscribed seminorms denote the open unit balls.

1.3. Definition. A locally convex algebra A is called AE-Algebra if there is a distinguished
seminorm p0 on A, such that for any seminorm p on A there is an downwards directed family {qi}i∈I
of asymptotic estimates for p (an AE-System) with the property that for any u ∈ A

inf{qi(u)|i ∈ I} = p0(u).

Naturally there is an equivalent definition by the means of set multiplications: There is an
absolutely convex neighborhood U0, such that for any absolutely convex neighborhood U , there is an
upwards directed covering {Vi}i∈I by absolutely convex neighborhoods such that

∀i ∈ I ∃m ∈ N ∀n ≥ m : ”(V n
i )” ⊂ U

By this equivalent definition we see immediately that subalgebras and quotients of AE-Algebras
are AE-Algebras and that any AE-Algebra is m-convex. The proof of the last assertion is done in the
following way: Let U be an absolutely convex neighborhood, V n ⊂ U for n ∈ N with V an sufficiently
small absolutely convex neighborhood. So W := ∪n∈NV n ⊂ U with W 2 ⊂ W ⊂ U . By this fact we
can suppose that the distinguished seminorm on A is multiplicative. Furthermore it is sufficient to
provide AE-Systems for a defining system of seminorms on A. So we can choose a defining system
of multiplicative seminorms p on A and associate the AE-Systems . For any of these seminorms we
can choose an AE-System with the property: p ≤ Ciqi with Ci ≥ 1 by enlarging the AE-System via
{sup{qi, σp}|i ∈ I, σ > 0}.

An important example of AE-Algebras is given through LE-Algebras. A locally convex algebra
is called LE-Algebra if there is an distinguished seminorm p0 on A and a system of seminorms
{pγn}n∈N,γ∈Γ with

: 1. p0 = pγ0 for all γ ∈ Γ
: 2. pγn ≤ pγn+1 for all γ ∈ Γ
: 3. pγn(uv) ≤

∑n
i=0 p

γ
i (u)pn−iγ(v)

for all n ∈ Nand u, v ∈ A. LE abbreviates Leibnitz estimate .

1.4. Lemma. Any LE-Algebra is an AE-Algebra.

Proof. We define the following AE-System for pγn:

(pγn)σ,τ := {sup{σpγn, τp0}|0 < σ < 1, 1 < τ}

From (pγn)σ,τ (u) ≤ 1 we conclude pγn(u) ≤ 1
σ and p0 ≤ 1

τ . Take u1, ..., um ∈ A,m ≥ n then

pγn(u1 · ... · um) ≤
∑

i1+...+in=m

pγi1(u1) · ... · pγin(um)

can be estimated via

pγn(u1 · ... · um) ≤ σ−nτn−mmn

which tends to zero as m tends to infinity. Consequently the given system is an AE-System. The
infimum-property is satisfied trivially.

1.5. Example. Any normed algebra is a LE-Algebra (pγn := p).

1.6. Example. The smooth functions on Rn having compact support in a fixed closed subset
with ordinary Fréchet-topology form an LE-Algebra.



1. LOCAL LIE GROUPS AND THE CBH-FORMULA 75

1.7. Example. The free non-commutative algebra with two generators X,Y forms an LE-
Algebra. We denote this algebra by C[X,Y ]. A system of seminorms on this algebra is given
via a supremum norm levelled by degrees, more precisely, one can write u ∈ C[X,Y ]

u =
∑
u

auMu(X,Y ),

where Mu(X,Y ) = Xu1Y u2Xu3 · ... and u = (u1, u2, ....) is a sequence of natural numbers with only
finitely many, but always the first one different from zero. The seminorm associated to degree m is
given through

pm(u) = max{|au| |
∞∑
i=1

ui ≤ m}.

With these seminorms Leibnitz estimates are clearly possible. In fact one can replace C by any m-
convex algebra A and we obtain via a refined norming that A[X,Y ] is a LE-algebra. The completion
of this algebra is an AE-Algebra, too, and the same analysis can be performed. It is called the
algebra of formal power series with coefficients in A over two free variables and denoted by A[[X,Y ]].

The reason why we analyse AE-Algebras is that we want to make converge several power series
in order to prove convergence of the Campbell-Baker-Hausdorff-Series finally.

1.8. Definition. An element u ∈ C[[X,Y ]] written by monomials of length (or degree) l(Mk) in
the following form

u =
∞∑
k=0

akMk(X,Y )

is called a converging power series if
1. a∗m :=

∑
l(Mk)=m |ak| <∞

2. lim supm→∞(a∗m)
1
m <∞.

The inverse of the last number is called the radius of convergence of the power series. Given a
power series with a certain radius of convergence, we can associate a smooth mapping on an AE-
Algebra. Naturally we have to restrict ourselves to the case of a∗0 = 0 if the algebra has no unit,
which is assumed if necessary.

1.9. Theorem. Let A be a complete AE-Algebra, u ∈ K[[X,Y ]] a power series with radius of
convergence 0 < R ≤ ∞. Then an insertion map is defined for all u, v ∈ A with p0(u) < R and
p0(v) < R by the absolutely converging series. Furthermore for any two points (u, v) ∈ ((p0)<R)2

there is an open neighborhood U , where the above series converges absolutely and uniformly.

Proof. ([BCR81], prop. 3.2.1.2.) Let p denote a multiplicative seminorm and q an asymptotic
estimate for p with p ≤ Cq and C ≥ 1. If r > 0 is given and m = m(p, q), then

p(”u1 · ... · un”) ≤ rnCm

for ui ∈ A, q(ui) < r and n ∈ N by direct calculation. For the proof of convergence we fix
u, v ∈ A with p0(u) < R and p0(v) < R. Let p denote an arbitrary multiplicative seminorm on
A. So there exists 0 < r < R, which is independent of p, and an asymptotic estimate q for p with
p0(u) < r < R, q(u) < r, p0(v) < r < R, q(v) < R. Furthermore we may assume that p ≤ Cq with
C ≥ 1. Now we can do what is done since more than hundred years.

p(
∞∑
k=0

akMk(u, v)) ≤
∞∑
k=0

|ak|Cmrl(Mk) ≤ Cm
∞∑
n=0

a∗nr
n

for all u, v ∈ A with q(u) < r and q(v) < r. With the above remarks we conclude absolute and local
uniform convergence of the power series of the given domain.

1. Through the theorem a kind of local functional calculus in two variables is given: We can
associate to a power series f(X,Y ) with radius of convergence R > 0 a smooth map fA :
((p0)<R)2 → A. Smoothness is proved by the smoothness of the monomials and uniform
convergence of the respective derivatives.
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2. f, g, h ∈ C[[X,Y ]] with positive radii of convergence. The coefficients are denoted by a, b, c,
respectively. Let R > 0 denote the radius of f . If A has a unit we assume additionally that
max{b∗0, c∗0} < R. Then the formal power series f(g(X,Y ), h(X,Y )) has a positive radius of
convergence and is equal to the respective composition of mappings on open subsets of A2.

3. One variable functional calculus is provided by the above theorem, too. Compact conver-
gence on a disk of radius R > 0 translates to pointwise convergence on the disk in p0 in A.
Furthermore the following formulas are valid:

d

dt
fA(c(t)) = (f ′)A(ċ(t))

fA(gA(u)) = (f ◦ g)A(u)

for a smooth curve c in the domain of definition and u ∈ A in the respective domain of
definition.

4. On a complete AE-Algebra the exponential map and its inverse are defined:

exp(log(1 + u)) = 1 + u for p0(u) < 1

log(exp(u)) = u for p0(u) < log 2

5. Let A be a complete commutative, associative, locally convex and metrizable algebra, such that
the geometric series converges on a zero neighborhood, then A is an AE-Algebra ([Czi83]).

For the proof of this statement we need several partial results, which are of interest on
their own, too. We denote by W0 the absolutely convex, open zero-neighborhood, such that
the geometric series converges on W0. First we observe that the geometric series converges
absolutely with respect to every seminorm p on A: Take x ∈ W0, then there is t > 1 with
tx ∈W0, consequently p(xn) ≤ t−n for sufficiently large n. Uniformity of convergence is more
subtle: Let q denote a seminorm with p(x, y) ≤ q(x)q(y), which is possible due to continuity.

Wm := {x ∈W0|q(xn) ≤ m for all n}
for m ≥ 1. The sets Wm are closed and ∪m≥1Wm = W0. Therefore exists Wm with non-void
interior and by Wm ⊂ m ·W1 we conclude that the interior of W1 is not empty. Consequently
we obtain for x ∈ 1

2W1 − 1
2W1 that p(xn) ≤ 1 for all n. But this set contains a neighborhood

of zero W and it is easy to see that geometric series converges absolutely and uniformly on
tW for 0 < t < 1.

As a conclusion we get m-convexity of the given algebra, because of the following facts:
The polarization formula

x1 · ... · xn =
1
n!
·
∫
T
...

∫
T

(t1x1 + ...+ tnxn)n

t1...tn
dµ(t1)...dµ(tn)

with T the respective unit sphere in K and µ the associated measure is valid. Let V denote
an arbitrary absolutely convex neighborhood of zero, then there is an absolutely convex zero-
neighborhood W with xn ∈ V for x ∈W and n ∈ N. Let p denote the Minkowski norm of V ,
then

p(x1...xn) ≤ nn

n!
< en

for all n ∈ N. Consequently Wn ⊂ enV or (e−1W )n ⊂ V , which implies directly that the
algebra is m-convex. Let p denote an arbitrary seminorm on A, then the convergence of the
geometric series is absolute and locally uniform with respect to p: We can without restriction
assume that p is submultiplicative by the preceding remarks: Take x0 ∈ W0 fixed, then there
are real numbers C ≥ 1 and t > 1 with p(xn0 ) ≤ Ct−n for all n. Choose ε > 0 with t−1 + ε < 1,
then for p(y) < ε we obtain

p((x0 + y)n) ≤
n∑
k=0

(
n

k

)
p(xk0)p(yn−k) ≤ C · (t−1 + ε)n,

which implies the statement. We see that only submultiplicativity of the seminorm and con-
vergence of the geometric series are applied. Consequently on compact subsets of W0 the
geometric series converges absolutely and uniformly with respect to any seminorm. Taking an
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absolutely convex compact subset eM ⊂ W0, given an arbitrary neighborhood of zero V , we
can find a number m, such that for n ≥ m we have Mn ⊂ V . Without restriction it is sufficient
to look at the case of an absolutely convex neighborhood with V 2 ⊂ V , there is a number m
with xn ∈ V if x ∈ eM and n ≥ m. By polarization and Stirling we obtain (eM)n ⊂ enV and
consequently Mn ⊂ V for n = m. The final step for the construction of an AE-System for
a given submultiplicative seminorm can be performed now: Given V an absolutely convex
neighborhood of zero with V 2 ⊂ V and M ⊂ U0 := (2e)−1W0 an absolutely convex compact
subset, then we define

VM := (M +
1
2
V ) ∩ U0.

The family {VM} is directed upwards and a covering of U0. Furthermore we find C ≥ 1 and
t > 2 due to compactness and the definition such that

Mn ⊂ Ct−nV
for all n. This enables the following estimate

(VM )n ⊂ (M +
1
2
V )n ⊂

n∑
k=0

(
n

k

)
Mk 1

2n−k
V ⊂ C(t−1 +

1
2

)nV ,

where the coefficient tends to zero as n tends to infinity. Consequently the desired AE-System
is found.

6. Let A be an associative complete AE-Algebra, then the canonically associated Lie-Algebra AL
is an AE-Algebra, too. We have to replace p0 by 2p0. Furthermore the following formulas are
valid:

fA(adu)(v) :=
∞∑
k=0

ak(adu)k(v)

fA(adu)(gA(adu)(v)) = (f · g)(adu)(v)

for u, v ∈ A with p0(u) < R. f, g are holomorphic on a disk of radius R.
7. By induction we arrive at the following well known formulas:

(adu)k(v) =
k∑
i=0

(−1)i
(
k

i

)
uk−ivui

d

dt
(uk) =

k−1∑
i=0

(−1)i
(

k

i+ 1

)
uk−i(adu)i(u̇)

for an arbitrary smooth curve u in A and k ∈ N. Summing up the equations we obtain

exp(ad(u)) = exp(u) · v · exp(−u)

d

dt
exp(u(t)) = exp(u(t)) · f(ad(u(t))(u̇(t))

with f(z) = 1−exp(−z)
z .

These formulas will be used to prove the following theorem on the CBH-Formula, more detailed
comments can be found in ([BCR81], ch. 3). The three mathematicians proved the formula inde-
pendently, but only Felix Hausdorff managed to prove it in full generality in 1906: Let A denote an
associative complete AE-Algebra with unit. The power series

CBH(u, v) := log(exp(u) · exp(v))

converges for u, v ∈ A with p0(u) < log 2
2 , p0(v) = log 2

2 by the above remarks. As it is a power series
we can write for |t| ≤ 1

CBH(tu, tv) =
∞∑
k=0

tk CBHk(u, v)

with homogeneous polynomials CBHk(u, v) of degree k ∈ N.
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1.10. Theorem. Let A be an associative complete AE-Algebra with unit, then CBHk(u, v) ∈
L(u, v) for k ≥ 0, where L(u, v) is algebraically generated by u, v in AL.

Proof. (see [BCR81], ch. 3) Fixing u, v ∈ A in the domain of definition we look at the smooth
curve w(t) = CBH(tu, tv) for |t| ≤ 1. exp(w(t)) = exp(tu) exp(tv) and by differentiation

exp(w) · f(adw)(ẇ) = u · exp(w) + exp(w) · v

with f(z) = 1−exp(−z)
z . Multiplying with exp(−w) on the right side we obtain

f(adw)(ẇ) = exp(− adw)(u) + v

Inverting f yields a formula for ẇ, g(z) := f(z)−1.

ẇ = g(adw) ◦ exp(− adw)(u) + g(adw)(v)

Applying again the provided rules we arrive at

ẇ = g(− adw)(u) + g(adw)(v)

Taylor expansion of g gives the desired formula for the first derivative

ẇ =
∞∑
k=0

Bk
k!

(adw)k(u+ (−1)kv)

w(0) = 0, ẇ(0) = u+ v, ...By successive differentiation we obtain the classical result

CBH1(u, v) = u+ v

CBHk =
m−1∑
k=1

∑
m1+...+mk=m−1

1
m

Bk
k!

[CBHm1 , [..., [CBHmk , u+ (−1)kv]...]]

as recursion formula for m ≥ 1. Another possibility to prove the formula is to insert the convergent
power series for w, the recursion drops out immediately by comparison of coefficients.

Now we can put everything together to prove that on a complete AE-Lie-Algebra the Campbell-
Baker-Hausdorff-Series converges and defines a local Lie group on a neighborhood of zero: Conver-
gence is a question of finding good estimates for the above recursion (see [BCR81], section 3.4.1).
These estimates are provided by

h(z) = 1−
√

1− 4z =
∑
k≥0

ckz
k for |z| ≤ 1

4

From the functional equation h(z) = 2
∑

k≥0 h(z)k we obtain by differentiation the recursion formula

c0 = 0

c1 = 2

cm =
m−1∑
k=1

∑
m1+...mk=m−1

2
m
cm1 · ... · cmk for m ≥ 2

Remark that Bk ≤ k!. Consequently for u, v ∈ A with p0(u) ≤ 1
4 and p0(v) ≤ 1

4 the CBH -series

u ∗ v := CBH(u, v) =
∑
k≥0

CBHk(u, v)

is converging. It is an easy calculation to prove the properties of a local Lie group for (p0)< 1
4

with the
multiplication ∗. The exponential map of this local Lie group is the identity in this special chart. For
the proof of the required properties we have to look carefully at the definition. U is given through
the inverse image of (p0)< 1

4
under the continuous multiplication .∗. : (p0)< 1

4
× (p0)< 1

4
→ A.

The identity e is clearly given through 0, inversion of an element x is performed via the operation
−. As far the associative law is concerned we have to calculate: We assume that u, v, w lie inside the
open p0-ball of radius 1

4 . The functions

φ(t) = (tu ∗ tv) ∗ tw and ψ(t) = tu ∗ (tv ∗ tw)
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are defined on some small neighborhood of zero in R. They are real analytic and coincide consequently
if the derivatives at zero coincides. The derivatives at zero coincide in the free Lie algebra with three
generators because this Lie algebra can be embedded in the free algebra with free generators and the
equation

expA(u ∗ v) = expA(u) · expA(v)

is valid, which implies associativity. Consequently they coincide in every Lie algebra. Two real
analytic curves with the same derivatives at zero have the same radius of convergence, so ψ and φ
are defined on an open neighborhood of [−1, 1] if one of them is defined there and they coincide. So
all the requirements of definition 1.1 are satisfied and we are given a local Lie group with Lie algebra
A.

1.11. Definition. Let A be an AE-Lie algebra and V ⊂ A subset with V = −V, 0 ∈ V . If the
CBH-series converges on V × V and the series for the product of three elements converges on V 3,
then V is called canonical local group .

Let C denote the centre of A, then V + C is a canonical local group, too. There is ρ > 0, such
that (p0)<ρ is a canonical local group. Open local subgroups of (p0)<ρ+C are referred to as analytic
local groups as we know about absolute and uniform convergence of the CBH-series.

2. Local Lie groups without the CBH-Formula

The Campbell-Baker-Hausdorff-Formula is the way to analyze the problem of regular local Lie
groups with locally diffeomorphic exponential map. Generically this property is not satisfied and
the given examples are the most interesting ones in infinite-dimensional geometry (diffeomorphism
groups). There are two questions to be posed completely different in nature.

1. Are there convenient Lie algebras, which are not the Lie-Algebra of any specified type of
convenient local Lie group?

2. If a convenient Lie algebra is the Lie algebra of a local Lie group, under which conditions is
this local group enlargible?

The second question can theoretically be answered by cohomological methods, the first question
seems to be a functional analytic one and is treated by methods on Lie algebras (see [Omo81],
[Omo97] for algebraic details).

3. Cohomological conditions for enlargibility

Local groups are abstractly defined as in Definition 1.1 without smoothness properties ([vE62],
p. 392).

3.1. Definition (Homomorphism of local groups). A map φ : L → L′ is called a ho-
momorphism if φ(x)φ(y) is defined if and only if xy is defined. The homomorphism property
φ(x)φ(y) = φ(xy) is required. A map φ is called a weak homomorphism if φ(x)φ(y) is defined
whenever xy is defined and φ(xy) = φ(x)φ(y). A local subgroup of a local group is the monomorphic
image of a local group.

3.2. Remark. The kernel of a homomorphism of local groups is a group. A subset H of a
local group L is a local subgroup if the restriction of the multiplication to H gives the structure
of a local group. Any group is a local group. Given a local group L, a neighborhood basis B of
the identity is defined to be a collection of local subgroups such that (i.) for V1, V2 ∈ B there is
V3 ∈ B with V3 ⊂ V1 ∩ V2, (ii.) for a ∈ L and V ∈ B there is W ∈ B such that aW,Wa−1 are
defined and aWa−1 ⊂ V and (iii.) for V ∈ B there is W ∈ B with W 2 ⊂ V . There is a unique
topology associated to a neighborhood basis at the identity and a topological local group has such
a neighborhood basis. Suppose that L is a local subgroup of a group G with G = L∞, then any
topology on L uniquely extends to G.

The abstract problem is the following: Let G be a group, V ⊂ G a local subgroup and φ : U → V
a homomorphism of local groups. Under which conditions can U be enlarged to a group H and
φ to a homomorphism ψ : H → G. Without restricting the problem we can assume that φ is an
epimorphism, V∞ = G, then ψ is automatically an epimorphism. We shall always assume that
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U∞ = H. Furthermore we can assume that φ−1(v) = ψ−1(v) for v ∈ V . So in particular the kernels
are the same .

We look the following commutative diagram of (weak) homomorphisms with exact rows:

1 −−−→ N −−−→ H
ψ−−−→ G −−−→ 1∥∥∥ x x

1 −−−→ N −−−→ U
φ−−−→ V −−−→ 1

For any h ∈ H i(h) denotes the associated inner automorphism of H, iN (h) denotes the same action
restricted to N . Consequently iN : H → A(N) is a homomorphism to the group of automorphisms
of N . The inner automorphisms of N are a normal subgroup of I(N) C A(N), their inverse image
under iN contains N , so θ : G → A(N)/I(N) is a well-defined homomorphism. If we are given the
homomorphism φ : U → V of local groups, then the mapping iN ◦ φ−1 : V → A(N)/I(N) is well-
defined and a weak homomorphism. θ is obviously the unique extension of this weak homomorphism
to G. The existence of θ is necessary for the solvability of the problem of enlarging the exact sequence
in the above sense, θ exists trivially in the case that N is central in U . In the further discussion we
assume consequently the existence of θ.

3.3. Definition (V -local cohomology). Let V be a non-void subset of a group G and C an
abelian group, on which G operates, n ∈ N. A V -local n-tuple (x1, ..., xn) ∈ V n satisfies xp+1 · ... ·xq ∈
V for any 0 ≤ p ≤ q ≤ n. A C-valued function defined on the set of V -local n-tuples will be called
an n-cochain. The codifferential δ is given through the following formula on a n-cochain f

δf(x1, ..., xn+1) = x1f(x2, ..., xn+1) +
n∑
i=1

(−1)if(x1, ..., xixi+1, ..., xn+1) +

+ (−1)n+1f(x1, ...xn)

for a V -local n-tuple (x1, ..., xn+1).

Naturally δ ◦δ = 0 on the cochain complex, the derived cohomology will be denoted by H∗(V,C),
if V = G we obtain the ordinary group cohomology. In ”homogeneous notation” we can apply a
simplex terminology: A V -simplex of dimension n is a (n + 1)-tuple of elements of G, such that
x−1
i xj ∈ V for 0 ≤ i < j ≤ n. Given a V -simplex, then

y1 = x−1
0 x1, ..., yi = x−1

i−1xi, ..., yn = x−1
n−1xn

is a V -local n-tuple and a given a V -local n-tuple y1, ..., yn, then

(x0, x0y1, ...x0y1...yp, ...x0y1...yn)

is a V -simplex for any x0 ∈ G. The collection of V -simplices constitutes a set ΓV on which G operates
freely on the left via

x(y0, ..., yn) = (xy0, ..., xyn)

for a V -simplex (y0, ..., yn) and x ∈ G. Remark that this set is a simplicial G-set if V contains e with
the following structure mappings:

∂i(x0, ..., xn) = (x0, ..., x̂i, ..., xn) for 0 ≤ i ≤ n
δi(y0, ..., yn−1) = (y0, ..., yi−1, yi, yi, ..., yn−1) for 0 ≤ i ≤ n− 1

The equivariant cochains on ΓV are in one-to-one correspondence with the V -local cochains by the
following formula: ´

f(y1, ..., yn) = F (e, y1, ..., y1 · ... · yn)

F (x0, ..., xn) = x0f(x−1
0 x1, ..., x

−1
n−1xn)

due to one-to-one correspondence of the set of orbits ΓV /G to the set of V -local n-tuples. Conse-
quently Hn(V,C) ∼= Hn

eq(ΓV , C) for n ∈ N, the ordinary cohomology will be denoted by Hn(ΓV , C).
By En(ΓV , C) we denote the abelian group of equivariant cochains, by Fn(ΓV , C) the ordinary
cochain group. These notions were introduced in [vE62], but there are some mistakes in defining
the differentials.
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3.4. Definition. A group N together with a homomorphism θ : G → A(N)/I(N) is called a

G-kernel. We shall denote the extension of local groups 1 → N → U
φ→ V → 1, where φ is a

homomorphism of local groups, by L, the possibly existing extension of groups 1→ N → H
ψ→ G → 1

is denoted by Σ. The vertical arrows shall normally be represented by inclusion signs. L is called
enlargible from the local subgroup W ⊂ V if there is a commutative diagram

1 −−−→ N −−−→ H
ψ−−−→ G −−−→ 1∥∥∥ x x

1 −−−→ N −−−→ Ũ
φ−−−→ W −−−→ 1

with Ũ = φ−1(W ).

Given a G-kernel (N, θ) and let ε : G → A(N) be a map covering θ : G → A(N)/I(N), then it
follows ε(x)ε(y)ε(xy)−1 ∈ I(N) or ε(x)ε(y) = i(n(x, y))ε(xy) with n : G × G → N well-defined, the
choice of n however is up to elements in the center of N . From associativity we obtain

i(n(x, y)n(xy, z)) = i(ε(x)n(y, z) · n(x, yz))

which can be reformulated via

n(x, y)n(xy, z) = f3(x, y, z) · ε(x)n(y, z) · n(x, yz)(A)

where f3 is a cocycle on G with values in the centre C(N) of N . This condition will be referred to as
associativity condition. f3 is determined by (N, θ) up to a coboundary due to the choices which have
been made and so there is a uniquely determined cohomology class [f3] ∈ H3(G,C(N)). Furthermore

[f3] = 0 if and only if there is an extension 1→ N → H
ψ→ G → 1 with θ = iNψ

−1 (see [EM47]).

3.5. Proposition. Let (N, θ) be a G-kernel, then there is a uniquely associated 3-cohomology
class [(N, θ)] := [f3] ∈ H3(G,C(N)) and [f3] = 0 if and only if there is an extension 1→ N → H →
G → 1. Furthermore given two extension Σ1 and Σ2 with the same G-kernel (N, θ), then there is a
uniquely associated 2-cohomology class [f2] = d(Σ1,Σ2) ∈ H2(G,C(N)) and [f2] = 0 if and only if
the two extensions are equivalent, i.e.

1 −−−→ N −−−→ H1
ψ−−−→ G −−−→ 1∥∥∥ xi ∥∥∥

1 −−−→ N −−−→ H2
φ−−−→ G −−−→ 1

with a group isomorphism i.

Proof. (see [EM47], lemma 7.2.) By the above construction f3 is well-defined as cochain after
having chosen n. Another choice of n differs by a function f(x, y) = n(x, y)ñ(x, y)−1 for x, y ∈ G,
which takes values in the centre N(C). We can easily calculate by inserting

f3(x, y)f̃3(x, y)−1 = f(x, y)f(xy, z)f(x, yz)−1[ε(x)f(y, z)]−1 = (δ(f)(x, y, z))−1

which is a coboundary in multiplicative form. Consequently it is sufficient to show that for a certain
choice of n we obtain a cocycle f3: We calculate with the following expression J :

J(x, y, z, t) = ε(x)[ε(y)n(z, t) · n(y, zt)]n(x, yzt)

= ε(x)[f3(y, z, t)−1n(y, z) · n(yz, t)]n(x, yzt)

= ε(x)[f3(y, z, t)−1n(y, z)]f3(x, yz, t)n(x, yz)n(xyz, t)

= f3(x, y, z)−1f3(x, yz, t)−1[ε(x)f3(y, z, t)−1]n(x, y)n(x, yz)n(xyz, t)

On the other hand we can first apply the defining relation for n

J(x, y, z, t) = n(x, y) · ε(xy)n(z, t) · n(x, y)−1[ε(x)n(y, zt)]n(x, yzt)

= n(x, y) · ε(xy)n(z, t) · f3(x, y, zt)−1n(xy, zt)

= f3(xy, z, t)−1 · f3(x, y, zt)−1n(x, y)n(x, yz)n(xyz, t)
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which leads to the desired relation δf3 = 0. Remark that by changing n in the above fashion
all the members of the class [f3] are produced. It is not clear wether [f3] depends on the choice
of ε. Another choice α of a covering of θ leads to the following calculations: α(x) = i(k(x))ε(x)
for x ∈ G with k(x) ∈ N . Consequently α(x)α(y) = i(k(x)[α(x)k(y)]n(x, y))ε(xy). We define
n′(x, y) := k(x)[α(x)k(y)]n(x, y)k(xy)−1, so that we obtain

n′(x, y)k(xy) = k(x)[α(x)k(y)]n(x, y)

= [α′(x)k(y)]k(x)n(x, y)

then

α(x)n′(x, y) · n′(x, yz)k(xyz) = α′(x)[n′(x, y)k(yz)]k(x)n(x, yz)

= α′(x)[n′(x, y)k(yz)]k(x)n(x, yz)

= α′(x)[α′(y)k(z) · k(y)]k(x)[ε(x)n(y, z)]n(x, yz)

= f3(x, y, z)−1[α′(x)α′(y)k(z)]n′(x, y)k(xy)n(xy, z)

= f3(x, y, z)−1n′(x, y)[α′(xy)k(z)]k(xy)n(xy, z)

= f3(x, y, z)−1n′(x, y)n′(xy, z)k(xyz)

which leads to the desired formula

n′(x, y)n′(xy, z) = f3(x, y, z) · α(x)n′(y, z) · n′(x, yz)

Consequently the change of the covering map does not affect the associated 3-cohomology class.
Remark that we can choose f3 normalized by selecting appropriately, more precisely ε(e) = e and

n(e, y) = n(x, e) = e. Given an extension Σ : 1 → N → H
ψ→ G → 1, we can associate a G-

kernel in the above manner. We choose ε(x) = iNη(x), where η : G → H is a cross section to
ψ, i.e. ψ ◦ η(x) = x. This is clearly a covering of θ. We want to calculate f3 in this setting,
η(x)η(y) = f2(x, y)η(xy). Consequently we can choose n(x, y) = f2(x, y).

[ε(x)n(y, z)]n(x, yz) = η(x)f2(y, z)η(x)−1f2(x, yz)

= η(x)η(y)η(z)η(yz)−1η(x)−1η(x)η(yz)η(xyz)−1

= η(x)η(y)η(z)η(xyz)−1

= η(x)η(y)η(xy)−1η(xy)η(z)η(xyz)−1

= n(x, y)n(xy, z)

Consequently f3 = e and therefore [f3] = 0. Conversely assume that the G-kernel (N, θ) has a van-
ishing 3-cohomology class associated, then selecting ε with ε(e) = e a covering of θ and a normalized
n such that f3 = e. We look at the set N ×G and try to define a group structure, which we denote
by (N ×G)ε,n on it:

(k, x)(l, y) := (k · ε(x)l · n(x, y), xy)

The multiplication is well-defined, associative by f3 = e, the identity is (e, e) and the inverse of an
element (k, x) is given through (ε(x)−1[n(x, x−1)k]−1, x−1). ψ(k, x) := x is a homomorphism to G and
the kernel can be identified withN . We have to show that the associatedG-kernel is (N, θ). We choose
the cross-section η(x) = (e, x). We obtain η(x)k = (e, x)(k, e) = (ε(x)k, x) = [ε(x)k]η(x), where from
we conclude that iN ◦η covers θ. In the last step we show the second assertion: Given two extensions
1 → N → Hi

ψi→ G → 1 for i = 1, 2 with G-kernel (N, θ), then we can look for cross-sections ηi,
associate ni as above and form the difference f2(x, y) := n1(x, y)n2(x, y)−1. This is a 2-cocycle, which
is easily seen by looking at the two associativity conditions (A) and ”subtracting” them. Choosing
different cross-sections leads to a cohomologeous cocycle, the result differs by a coboundary, which
is seen directly. All elements of this class can be reached by this construction. Consequently the two
extensions Σi for i = 1, 2 determine a 2-cohomology class d(Σ1,Σ2) := [f2] ∈ H2(G,C(N)). Going
back the above way we observe that given an extension Σ1 and a 2-cohomology class [f2] we find
another extension Σ2 such that d(Σ1,Σ2) := [f2]. Furthermore d(Σ1,Σ2) = −d(Σ2,Σ1). The last
step is proved by applying the above models: Given an extension Σ and a choice of a cross section
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η with η(e) = e, which determines a normalized n, then the given model and H are isomorphic and
the isomorphism i fits in the commutative diagram:

1 −−−→ N −−−→ H
ψ−−−→ G −−−→ 1∥∥∥ xi ∥∥∥

1 −−−→ N −−−→ (N ×G)ε,n
φ−−−→ G −−−→ 1

The isomorphism is given through

i(k, x) = kη(x)

i−1(h) = (h(η ◦ ψ(h))−1, ψ(h))

for k ∈ N,x ∈ G, h ∈ H. Calculating with models we easily get that the vanishing of the associated
cohomology class translates to the existence of the desired isomorphism. The isomorphism between
two models (N × G)ε,n1 and (N × G)ε,n2 is given through (k, x) 7→ (f(x)k, x), where f denotes a
normalized 1-cochain with n1 = δf · n2.

3.6. Remark. For any 3-cohomology class in H3(G,C) with C an abelian group there is a
G-kernel (N, θ) such that [(N, θ)] is the given class ([EM47], lemma 9.1.).

In our case however the local extension L is one of the data, so given a cross section η : V → U
to the epimorphism φ, then the map ε covering θ may be chosen ε(x) = iN (η(x)) for x ∈ V . There
is a unique ν with such that ψ(x)ψ(y) = ν(x, y)ψ(xy) for x, y, xy ∈ V , ν is defined on the domain of
definition of the product on V . Taking ν = n in the above construction we obtain f3(x, y, z) = e for
x, y, z, xy, yz, xyz ∈ V . If we are able to enlarge ν to a C(N)-valued cocycle on G, then the extension
is enlargible. So we have to find some local-global theorems.

Given W ⊂ V ⊂ G, then any V -local n-tuple is automatically a W -local n-tuple, so we get a
restriction homomorphism ρWV for the cochains and an induced homomorphism ρWV : H(V,C) →
H(W,C), denoted by the same symbol. The same is valid for the restrictions on the complex ΓV to
ΓW in the homogeneous notation. We obtain ρXWρWV = ρXV for X ⊂ W ⊂ V ⊂ G. Let B denote
a system of subset of G, such that for any two subsets V,W ∈ B there is X ∈ B with X ⊂ V ∩W .
Consequently we obtain directed systems, of cochain complexes and cohomology groups, respectively,
in the two different notions. We denote the respective limits by E(ΓB, C), Hn(B, C), Hn(ΓB, C)
and Hn

eq(ΓB, C). Furthermore we obtain homomorphisms ρV : Hn(V,C) → Hn(B, C) and natural
isomorphisms Hn(B, C) = Hn

eq(ΓB, C) = Hn(E(ΓB, C)), because the cohomology functor and the
direct limit functor commute.

3.7. Proposition. Given n ∈ N. Let the complexes ΓB be connected for V ∈ B and assume
that for any V ∈ B there is a W ∈ B, such that ρWVH

i(ΓV , C) = 0 for 1 ≤ i ≤ n − 1. Then
ρBG : H i(G,C)→ H i(B, C) is an isomorphism for 0 ≤ i ≤ n− 1 and a monomorphism for i = n.

Proof. (see [vE62], p. 398) The proof is given by a spectral sequence argument: We look
at equivariant cochains on ΓG × ΓV , denoted by E(ΓG × ΓV , C). The naturally given restriction
homomorphisms are denoted by ρWV and the limit complex by E(ΓG×ΓB, C). The natural inclusion
E(ΓV , C)→ E(ΓG × ΓV , C) induces an isomorphism on cohomology level and since the cohomology
functor commutes with direct limits we obtain Heq(ΓG × ΓB, C) = Heq(ΓB, C), where the first
cohomology is the cohomology of the double complex. We get a double complex by looking at the
degrees in G and V or B, respectively. To obtain the isomorphism property we look at the second
spectral sequence associated to the double complex, we denote it by ′′En(ΓG × ΓV , C). We have

′′Ep,q1 (ΓG × ΓV , C) = Ep(ΓV ,Hq(ΓG, C)),

which will be explained in the sequel, but Hq(ΓG, C) = 0 for q > 0 and H0(ΓG, C) = C. Consequently
the second spectral sequence converges to Heq(ΓV , C). For the direct limit we obtain the same. Now
we investigate the natural inclusion E(ΓG, C) → E(ΓG × ΓV , C). The first spectral sequence shall
be denoted by En(ΓG × ΓV , C) and En(ΓG × ΓB, C), respectively. The most important observation
is the canonical identification

Ep,q1 (ΓG × ΓV , C) = Ep(ΓG,Hq(ΓV , C))
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The canonical isomorphism is given through i([gn]) = (y0, ..., yn) 7→ [ğn(y0, ..., yn)], the group ac-
tion on F (ΓV , C) via x · f(x0, ..., xm) = xf(x−1x0, ..., x

−1xm). The map is well-defined and has an
obvious inverse to the cohomology classes of equivariant cochains, because of the special choice of
the group action. These two isomorphisms stem in fact from the isomorphism Ep,q(ΓG × ΓV , C) =
Ep(ΓG, F q(ΓV , C)), commuting with the second differential. Remark that the restriction homomor-
phisms arise from the given ones on the cohomology H(ΓV , C). Applying the hypotheses we obtain

Ep,01 (ΓG × ΓB, C) = limEp,01 (ΓG × ΓV , C) = limEp(ΓG,H0(ΓV , C)) = Ep(ΓG, C)

by connectedness of ΓV and

Ep,j1 (ΓG × ΓB, C) = limEp,j1 (ΓG × ΓV , C) = limEp(ΓG,Hj(ΓV , C)) = 0

for 1 ≤ j ≤ n − 1. So we obtain the desired result due to convergence of the spectral sequence
and an associated isomorphism. Remark that in general the Hom-functor and direct limits do not
commute, but in our cases we can calculate directly. The above hypotheses on the connecting map
implies Hj(ΓB, C) = 0 for 1 ≤ j ≤ n− 1.

The following theorem is the heart of the theory, the connection between the various cohomologies
in the case of locally contractible connected topological groups is explained and some rather subtle
properties on the direct limit are proved. First we need some definitions (see [vE62], p. 409-414 for
details):

3.8. Definition. Let G be an abstract group and [M,ρ,Λ] a directed system of (G-)modules, the
system is called almost injective if for λ ∈ Λ there is a µ > λ such that ker ρµλ = ker ρνλ for ν > µ.
For almost injective [M,ρ,Λ] of G-modules we obtain

limH0(G,Mλ) = H0(G, limMλ).

Let [H, ρ,Λ] and [K,σ,M ] be directed systems of modules, a pair (f : Λ → Σ, φ(λ) : Hλ → Kf(λ))
is called a representation of [H, ρ,Λ] into [K,σ,M ] if for any λ1 < λ2 there is µ3 > µi = f(λi) for
i = 1, 2 with

Hλ1 −−−→
Φ

Kµ1 −−−→
σ

Kµ3yρ ∥∥∥
Hλ2 −−−→

Φ
Kµ2 −−−→

σ
Kµ3

commutative. A pair of representations (f, φ) and (f ′, φ′) of [H, ρ,Λ] into [K,σ,M ] is called contigu-
ous if there is for any λ ∈ Λ a µ ∈M such that

Hλ1 −−−→
Φ

Kf(λ)yΦ′
yσ

Kf ′(λ) −−−→
σ

Kµ

is commutative. Remark that the representations of directed systems form a category (composition
and identity are defined). Contiguity is an equivalence relation compatible with composition, so we
can pass to equivalence classes of contiguous representations as morphisms of a new category with
the same objects. If two directed systems in this category are isomorphic, we call them equivalent,
that is invertible up to contiguity.

3.9. Lemma. A directed system of modules is almost injective if and only if it is equivalent to
an almost injective directed system of modules.

Proof. (see [vE62], p. 409-414 for details) One direction is trivial, assume now that there is

given an equivalence [H, ρ,Λ]
(f,φ)

�
(g,ψ)

[K,σ,M ] to the almost injective system [K,σ,M ]. Given µ ∈M
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there is µ′ > µ such that for µ′′ > µ′ we have kerσµ′′µ = kerσµ′µ. Let λ′ > λ, then we find µ′′ > µ′such
that

Hλ −−−→
Φ

Kµ −−−→
σ

Kµ′′yρ ∥∥∥
Hλ′ −−−→

Φ
Kµ′ −−−→

σ
Kµ′′

by the representation property. Consequently kerσλ′λ ⊂ ker(σµ′′µφλ) = ker(σµ′µφλ). Since (g, ψ) ◦
(f, φ) is contiguous to the identity representation there is λ1 > λ, g(µ) such that ρλ1λ = ρλ1g(µ)ψµφλ.
Since (g, ψ) is a representation there is λ′ > λ1 such that

Kµ −−−→
ψ

Hg(µ) −−−→
ρ

Hλ′yσ ∥∥∥
Kµ′ −−−→

ψ
Hg(µ′) −−−→

ρ
Hλ′

is commutative. Collecting the relations we obtain

ρλ′λ = ρλ′λ1ρλ1λ = ρλ′λ1ρλ1g(µ)ψµφλ = ρλ′g(µ)ψµφλ = ρλ′g(µ′)ψµ′σµ′µφλ,

consequently kerσλ′λ ⊃ ker(σµ′′µφλ) = ker(σµ′µφλ). So for λ′ > λ1 we arrive at kerσλ′λ = ker(σµ′µφλ)
being constant in λ′. Remark that we only needed half of the equivalence.

3.10. Remark. The limitation procedure maps directed systems to modules and contiguous
representations to the same homomorphism, equivalences are mapped to isomorphisms.

3.11. Theorem. Let G be a locally contractible connected topological group and B the system
of symmetric neighborhoods of the identity, then the singular cohomology groups Hn

top(G,C) and
Hn(ΓB, C) are canonically isomorphic, the directed system Hn(ΓV , C) is almost injective and the
isomorphism respects the G-module structure on the cohomology groups.

Proof. (see [vE62], p. 414-417 for details) The G-module structure on Hn(ΓV , C) is given by
the product of the two representation

π1(g)f(x0, ..., xm) = f(g−1x0, ..., g
−1xm)

and

π2(g)f(x0, ..., xm) = gf(x0, ..., xm)

analogously on Hn(G,C), but the G-action on Hn
top(G,C) derives exclusively from π2, the G-action

on C.
We construct a directed system of G-modules equivalent to [Hn(ΓV , C), ρ,B]. This equivalent

system shall produce the topological cohomology of the group and the representations have to be
equivariant, then we can draw the desired conclusion. A singular q-simplex ∆q σ→ G is called
a singular V -simplex if σ(x)−1σ(y) ∈ V for x, y ∈ ∆q. The collection of all singular V -simplices is
denoted by ΣV . V1 ⊂ V2 induces an inclusion ΣV1 ⊂ ΣV2 . Applying barycentric subdivision we obtain
that this inclusion induces an isomorphism on cohomology level Hn(ΣV1 , C) = Hn(ΣV2 , C), therefore
the system [Hn(ΣV , C), ρ,B] is almost injective with limit Hn(ΣV , C) = Hn(ΣG, C) = Hn

top(G,C)
for n ∈ N. We define an equivalence between [Hn(ΓV , C), ρ,B] and [Hn(ΣV , C), ρ,B].

Let d0, ..., dq be the ordered set of vertices of ∆q and φV (σ) = (σ(d0), ..., σ(dq)) the equi-
variant simplicial map from ΣV to ΓV , the resulting map on cohomology level shall be denoted
by φV , too. Consequently (f = id, φ) is an equivariant representation from [Hn(ΓV , C), ρ,B] to
[Hn(ΣV , C), ρ,B].

We proceed by constructing a representation (g, ψ) in the reverse direction by the method of
acyclic carrier functions fixing n ∈ N. Given V ∈ B we can select a sequence of contractible
neighborhoods of identity such that

V1 ⊂ ... ⊂ Vn+1

Vj−1 ⊂ V 2
j−1 ⊂ Vj for 2 ≤ j ≤ n+ 1

V −1
n+1Vn+1 ⊂ V
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and we choose V0 := g(V ) a symmetric neighborhood of the identity such that V0 ⊂ V1. Given
a j-dimensional V0-simplex (x0, ..., xj) for j ≤ n + 1 we define AV ((x0, ..., xj)) to be the singular
complex of algebraic topology S(x0Vj) associated to x0Vj .

AV ((x1, ..., xj)) = S(x1Vj−1) ⊂ S(x0V0Vj−1) ⊂ S(x0V
2
j−1) ⊂ S(x0Vj)

= AV ((x0, ..., xj))

AV ((x0, ..., x̂k, ..., xj)) = S(x0Vj−1) ⊂ S(x0Vj) = AV ((x0, ..., xj)) for 1 ≤ k ≤ j

So AV is a carrier function. From contractibility we obtain that the carrier function is acyclic and
V −1
j Vj ⊂ V for 1 ≤ j ≤ n + 1 implies that the carrier function is given from the (n + 1)-skeleton

of ΓV0to the (n + 1)-skeleton of ΣV . Finally AV is equivariant, so we obtain a uniquely defined
equivariant homomorphism AV = ψV : Hn(ΣV , C)→ Hn(Γg(V ), C). (g, ψ) is actually an equivariant
representation:

Given a pair V ′ ⊂ V from B, we associate W ∈ B with W ⊂ g(V ′)∩ g(V ) and an acyclic carrier
function B from the (n + 1)-skeleton of ΓW to the (n + 1)-skeleton of ΣV ′ and ΣV respecting the
inclusion ΣV ′ → ΣV . with Bσ ⊂ AV σ and Bσ ⊂ AV ′σ. This shows that the induced homomorphisms
satisfy the following relations

B∗V ′ = ρWg(V ′)A
∗
V ′ = ρWg(V ′)ψV ′

B∗V = ρWg(V )A
∗
V = ρWg(V )ψV

B∗V = B∗V ′ρV ′V

Consequently the defining diagram commutes. In order to define W,B take a sequence of con-
tractible neighborhoods of the identity W1 ⊂ ... ⊂Wn+1 such that

W 2
j−1 ⊂Wj for 1 ≤ j ≤ n+ 1

Wj ⊂ Vj ∩ V ′j
and take W ∈ B with W ⊂ V0 ∩ V ′0 , define for a j-dimensional W -simplex (x0, ..., xj) the carrier
function B((x0, ..., xj)) to be the singular complex associated to x0Wj , which satisfies the desired
assertions.

Now we take a look at contiguity: Let σ be a singular g(V )-simplex of dimension j ≤ n+ 1. So
σ(x) ∈ σ(d0)V0 ⊂ σ(d0)Vj , consequently σ ∈ AV (φg(V )σ), the carrier AV φg(V ) carries the inclusion
map Σg(V ) → ΣV and ρV g(V ) = φg(V )ψV . So (f, φ)(g, ψ) is contiguous to the identity. The carrier
map A carries in particular the identity in dimension 0, the identity in dimension 0 may be extended
to a simplicial map u : Γg(V ) → ΣV carried by A. The composition

Γg(V )
u→ ΣV

φV→ ΓV

coincides with the inclusion, so the map ψV φV = ρg(V )V , which means that (g, ψ)(f, φ) is contiguous
to the identity. So the desired equivalence is proved and the two cohomologies are isomorphic.

The propositions and theorems lead directly to a solution of the abstract problem posed at the
beginning of the chapter knowing something about the cohomologies, this shall be formulated in the
following main theorem providing a sufficient condition for enlargibility:

3.12. Theorem. Let L : 1 → N → U
φ→ V → 1 be a local extension of topological groups over

a symmetric neighborhood V of e in a locally contractible connected topological group G. Suppose
that the weak homomorphism iNφ

−1 : V → A(N)/I(N) is enlargible to a homomorphism θ : G →
A(N)/I(N).

If H i
top(G,C(N)) = 0 for i = 1, 2, then L is enlargible from a symmetric neighborhood W ⊂ V of

e in G in the topological category.

Proof. (see [vE62], theorem 7.1. for details) Take B the collection of symmetric neighborhoods
of e in G. For W ∈ B G = W∞, so ΓW is connected. V ∈ B by definition. [Hn(ΓV , C), ρ,B] is an
almost injective system and H i(ΓB, C) = H i

top(G,C(N)) = 0 for i = 1, 2, so ker ρBV = H i(ΓV , C) for
V ∈ B. By almost injectivity there is W ∈ B such that ker ρWV = H i(ΓV , C). Applying our spectral
proposition we obtain that ρBG : H3(G,C(N))→ H3(B, C(N)) is a monomorphism. The associated
3-cohomology class [f3] has a representant vanishing on V , so ρBG([f3]) = 0 and consequently
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[f3] = 0 in the group cohomology, which means that there is an extension of groups Σ having G-
kernel (N, θ). Furthermore we have ρBG : H2(G,C(N)) → H2(B, C(N)) is an isomorphism. There
is γ ∈ H2(G,C(N)) with ρBGγ = ρBV d(L,Σ), so there is W ∈ B with ρWGγ = ρWV d(L,Σ),
consequently we can find a cocycle f2 ∈ d(L,Σ) being the restriction to W of a cocycle defined over
G. So the local extension is enlargible over W . This algebraic extension is a topological one because
the topology on U defines a unique topology on H such that all desired properties are satisfied.

In the sequel we try to apply the above results in the setting of a locally contractible connected
and simply connected group G and an abelian kernel N . Remark that in this case there is always
an extension to the given G-kernel, because the 3-cohomology class vanishes. We shall construct
the ordinary and equivariant Vietoris cohomology class of L and condense a necessary and sufficient
condition for enlargibility of the given extension. These results will be applied in the third section
to our Lie group problem. Let B denote the family of open local subgroups, we define the relative
complexes of equivariant and ordinary cochains as kernels

E(ΓG mod ΓW , C) := ker(E(ΓG, C)
ρWG→ E(ΓW , C))

F (ΓG mod ΓW , C) := ker(F (ΓG, C)
ρWG→ F (ΓW , C))

of the surjective restrictions for any abelian group C. For the relative complexes we obtain restriction
mappings, too, so we can form the direct limits and the relative cohomologies. Furthermore there are
two long exact cohomology sequences. By η we shall always denote the mapping from equivariant to
ordinary complexes or cohomologies.

3.13. Lemma. Let G be a connected locally contractible topological group and C a G-module,
H i
top(G,C) = 0 for i = 1, ..., n − 1 for a given natural number n ∈ N, then Hn+1

eq (ΓG mod ΓB, C) =
H0(G,Hn

top(G,C)).

Proof. (see [vE62], p. 405-408 for details) The proof is given by a spectral sequence argument
as above. First we observe that there is a long exact cohomology sequence

0→ H0(ΓG mod ΓB, C)→ H0(ΓG, C)→ H0(ΓB, C) δ→
→ H1(ΓG mod ΓB, C)→ H1(ΓG, C)→ ...

arising from the exact sequence of ordinary cochains. We obtain immediately

H0(ΓG mod ΓB, C) = H1(ΓG mod ΓB, C) = 0

H i+1(ΓG mod ΓB, C) = H i(ΓB, C)

H i+1(ΓG mod ΓW , C) = H i(ΓW , C)

for W ∈ B and i ≥ 1. The isomorphisms respect the given G-module-structures. Now we look at
the following double complex

E(ΓG × (ΓG mod ΓW ), C) := ker(E(ΓG × ΓG, C)
ρWG→ E(ΓG × ΓW , C))

of equivariant cochains. The inclusion

E(ΓG mod ΓW , C)→ E(ΓG × (ΓG mod ΓW ), C)

is canonically given and produces an isomorphism on cohomology level by the second spectral se-
quence. The first spectral sequence gives

Ep,q1 (ΓG × (ΓG mod ΓW ), C) = Ep(ΓG,Hq(ΓG mod ΓW , C)),

consequently we arrive at

Ep,01 (ΓG × (ΓG mod ΓW ), C) = Ep,11 (ΓG × (ΓG mod ΓW ), C) = 0

Ep,q1 (ΓG × (ΓG mod ΓW ), C) = Ep(ΓG,Hq−1(ΓW , C))

for q ≥ 2 by the above relations. Putting all together we see that the direct limit of the spectral
sequence converges and that the i-cohomologies of the double complex are reproduced up to n + 1,
so we obtain

Hn+1
eq (ΓG mod ΓB, C) = H0(G,Hn(ΓB, C))

which proves the desired result applying almost injectivity of the direct limit on the left.
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The following main theorem provides a necessary and sufficient condition for a central extension
to be enlargible and the justification of the notion of Vietoris classes : Given a local extension with
kernel N , then a 2-cohomology class is given in H2

eq(ΓV , N) by the local extension. The image in
H2
eq(ΓB, N) under the restriction is called the equivariant Vietoris class of L and designed by γeq(L)

, the image of the equivariant Vietoris class under η in H2(ΓB, C(N)) is called the ordinary Vietoris
class and denoted by γ(L). Passing to the extension L′ lying over W ⊂ V , W ∈ B we obtain
γeq(L) = γeq(L′). In this case the third cohomology class vanishes anyway, so there is an extension
associated to the G-kernel, but does it extend the local extension?

3.14. Theorem. Let G be a connected locally contractible and simply connected topological group
and L a central extension of local groups with kernel N . Then L is enlargible over B if and only if
the ordinary Vietoris class γ(L) vanishes.

Proof. (see [vEK64], p.17) In the proof we are going to apply all the results of this section:
The following commutative diagram has exact rows:

H2
eq(ΓG, N) −−−→ H2

eq(ΓB, N) −−−→
δ

H3
eq(ΓG mod ΓB, N) −−−→ H3

eq(ΓG, N)yη yη yη yη
H2(ΓG, N) −−−→ H2(ΓB, N) −−−→

δ
H3(ΓG mod ΓB, N) −−−→ H3(ΓG, N)

Since the ordinary cohomology H(ΓG, N) vanishes we obtain that

H2(ΓB, N) δ→ H3(ΓG mod ΓB, N)

is an isomorphism, furthermore G is simply connected, so

H3
eq(ΓG mod ΓB, N)

η→ H3(ΓG mod ΓB, N) δ
−1

→ H2(ΓB, N)

is an isomorphism, since the invariants are mapped isomorphically to the G-module
H3
eq(ΓG mod ΓB, N), remark that the group action on N is trivial. L is enlargible over B means

in cohomological terms that γeq(L) ∈ ρBGH
2
eq(ΓG, N) or by exactness δγeq(L) = 0, but with the

preceding remark δ−1ηδγeq(L) = 0. Consequently we arrive by commutativity at ηγeq(L) = 0, which
is the assertion.

The theorem can be generalized to local extensions with kernel N, where the map θ : G→ A(N)
exists and the 3-cohomology class vanishes by assumption. The notion of ordinary and equivariant
Vietoris classes makes sense and is justified by the theorem.

3.15. Theorem. Let G be a connected locally contractible and simply connected topological group
and L a arbitrary extension of local groups with kernel N . If the associated G-kernel (N, θ) exists
and [(N, θ)] = 0, then L is enlargible over B if and only if the ordinary Vietoris class γ(L) vanishes.

We are going to work with this condition to solve our original problem of enlarging the local
group associated to a given Lie algebra. Given two extensions L and L′ a map α : U → U ′ is called
a homomorphism α : L→ L′ if

U −−−→
Φ

Vyα ∥∥∥
U ′ −−−→

Φ′
V

We conclude immediately α(N) ⊂ N ′ and ker(α) ⊂ N . Given a normal subgroup K of N we
obtain a natural homomorphism π : L→ L′(= 1→ N/K → U/K → V → 1). Now given two central
extensions and a homomorphism α : L→ L′ we obtain a homomorphism α∗ : H(ΓB, N)→ H(ΓB, N

′)
and we obtain α∗γ(L) = γ(L′). The cohomology is isomorphic to the singular cohomology with values
in N , so we can evaluate on the singular homology with integer values. The image of the evaluation
of γ(L) is denoted by Per(L) . We can assert αPer(L) = Per(L′) and Per(L) = 0 if and only if
γ(L) = 0 by the universal coefficient theorem for simply connected G.
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3.16. Proposition. Let α : L→ L′ be a homomorphism of central extensions, then L′ is en-
largible from B if and only if Per(L) ⊂ kerα.

Even for generic extensions we can also get a result by this proposition: Let α : L→ L′ be a
homomorphism from a central to an arbitrary extension, then we can factorize α = α1 ◦ α0 over the
factor extension L′′ = 1 → N/ kerα → U/ kerα → V → 1. α1 is injective and α0 is surjective. If L′

is enlargible, then the middle extension L′′, too, consequently Per(L) ⊂ kerα.
In the sequel we analyze the question of central extensions in a more detailed way ([vEK64]).

3.17. Definition. Let 1 → N → U → V → 1 be a central extension of local topological groups,
X a local topological group. X is said to be enlargible if there is a topological group H and X is
embedded in H with X∞ = H. A topological group H is said to be monodrome relative to X if
X∞ = H and every weak homomorphism φ : X → G, G an arbitrary topological group, is the
restriction of a homomorphism from H to G. Let X be a local subgroup of U and φ(X) = Y , then Y

is a local subgroup of V and the restriction X
φ→ Y is a weak homomorphism. A map ψ : Y → X is

said to be a cross-section of φ if φψ = id, ψ(y)ψ(y′) ∈ X if yy′ ∈ Y and ψ(y)−1 = ψ(y)−1, ψ(e) = e.
Finally a local subgroup X ⊂ U is called rectangular if φ(X) = Y is open, there is a cross-section
ψ : Y → X and a local subgroup Z ⊂ N such that X = ψ(Y )Z and N is monodrome relative to Z.

3.18. Remark. Let X be an enlargible local topological group, then we can find a local subgroup
X ′ of X which can be embedded in the universal covering H ′ of X∞ = H. Then H ′ is monodrome
relative to X ′. For enlargibility in general it is sufficient to find an abstract group G and an injective
mapping X → G, since then one can give a topology to the subgroup H of G generated by X such
that the injection is an embedding.

The following proposition guarantees that the periods of the extension satisfy a type of discrete-
ness-property, which will be useful in the setting of Lie-Algebras, where the Champbell-Baker-
Hausdorff-Formula converges:

3.19. Proposition. Let L : 1 → N → U → V → 1 be a central extension of local topological
groups, X a rectangular local subgroup of U . If X is enlargible, then Z ∩ Per(L) = {e}.

Proof. (see [vEK64], p.19) Since φ(X) = Y is open in U and since Per(L) does not change
by cutting down the extension to an open local subgroup of V we may assume that φ(X) = V . We
assume that X lies in a group H monodrome relative X (again by cutting down), consequently the
weak homomorphism φ|X : X → V ⊂ G enlarges to a unique homomorphism φ̃ : H → G. We define
N ′ = ker(φ̃), U ′ = φ̃−1(V ), φ̃|U ′ = φ′. X is a local subgroup of U ′ and φ′|X = φ. Z := X ∩ N is
a local subgroup of N ′ and L′ : 1 → N ′ → U ′ → V → 1 is an extension of local topological groups
being enlargible by construction. We have obtained the following commutative diagram.

L : 1 // N
� � // U // V // 1

Z
� � //

� ?

OO

� _

��

X //
� ?

OO

� _

��

V

L′ : 1 // N ′
� � // U ′ // V ′ // 1

Assume now that there is α : L → L′ extending the inclusion of X, then Per(L) ⊂ ker(α) ⊂ N .
Z = X ∩ N is mapped injectively to U ′, consequently Z ∩ Per(L) = {e}. The construction of
α is done in the following manner: Let ψ : V → X denote the given cross-section, then for all
v1, v2, v1v2 ∈ V we obtain ψ(v1)ψ(v2) = z(v1, v2)ψ(v1v2) with z(v1, v2) ∈ Z since X ∩ N = Z and
X = ψ(V )Z. u ∈ U and u′ ∈ U ′ can be written uniquely in the form u = n(u)ψ(v) with v = φ(u).
We arrive immediately at

n(u1u2) = n(u1)n(u2)z(φ(u1), φ(u2))

Now N is monodrome relative Z, so there is a map α : N → N ′ extending the inclusion of Z. N and
ψ(V ) commute, so α(N) and ψ(V ) do so. We define for u ∈ U the value α(u) = α(n(u))ψ(φ(u)),
which is well-defined and extends the inclusion of X. Furthermore φ′(α(u)) = φ′(α(n(u))ψ(v)) =
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φ(ψ(v)) = φ(u), which means that the diagram in mind is commutative. Another consequence is the
α(u1)α(u2) is defined if and only if u1u2 is defined. The homomorphism property follows now from

α(u1)α(u2) = α(n(u1)ψ(v1))α(n(u2)ψ(v2)) = α(n(u1))ψ(u1)α(n(u2))ψ(u2)

= α(n(u1))α(n(u2))ψ(u1)ψ(u2) = α(n(u1u2))ψ(u1u2) = α(u1u2)

which proves the assertion completely.

4. Enlargibility of Lie Algebras

The third section is dedicated to the analysis of the Lie-theoretic problem ([vEK64]), but not
only the Banach space case is treated. From the first section we know that the Campbell-Baker-
Hausdorff-Series converges on an open neighborhood of zero in a complete AE-Algebra, from the
second section we are provided with tools to investigate enlargibility of local groups. The concept
of CBH-Lie-Algebras is introduced to demonstrate the power of the applied methods, which work
in fact for all regular Lie groups with locally diffeomorphic exponential map, the main example for
CBH-Lie-Algebras are AE-Algebras.

4.1. Definition. Let A be a locally convex Lie-Algebra, A is called a Campbell-Baker-Hausdorff-
Algebra (CBH-Lie-Algebra ) if A is complete and the CBH-series converges to a continuous smooth
map on an open neighborhood of zero. The notion of canonical and analytic local subgroups can be
taken from the first section.

1. Let L be an CBH-Lie-Algebra, V an analytic local subgroup and N a central subalgebra of L,
then V +N is an analytic local subgroup, too

2. Let φ : M → L be a continuous CBH-Lie-Algebra homomorphism, W a canonical local group
in M , then φ(W ) is a canonical local group, but the restriction of φ to W is only a weak
homomorphism to φ(W ) = V . If φ−1(V ) = W , then φ|W : W → V is an epimorphism. We
only have to prove that if φ(x) ∗ φ(y) exists, then x ∗ y is defined in W , which is clearly true
by assumption.

3. If φ : M → L is a continuous monomorphism, then φ|W : W → V is an isomorphism in the
category of abstract local groups.

4. Assuming in addition that L is enlargible, then there is some analytic local group V ′ being a
local subgroup of an abstract group, with the above isomorphism we find a local subgroup of
W lying in an abstract group, so M is enlargible, too.

5. The following situation is crucial for the assertions of the section: Let L : 0 → N → M →
L → 0 be a central extension of CBH-Lie-Algebras, then for a sufficiently small analytical
local group W the image φ(W ) = V is an analytic local group, too. Furthermore replacing
W by U := W + N we obtain that there is an extension of analytic local groups (φ|U is an
epimorphism by 2.!) associated to the extension of Lie algebras.

4.2. Lemma. Let L : 0 → N → M → L → 0 a central extension of CBH-Lie-Algebras and
1→ N → U → V → 1 an associated extension of analytic local groups, then any open local subgroup
W ′ of U contains a rectangular subgroup X with X ∩N open relative N .

Proof. (see [vEK64], p. 22-23) We may suppose that W ′ is an open absolutely convex subset
of U . There is B ⊂ W ′ open and absolutely convex such that B ∗ B ⊂ 1

3W
′. We define Y = φ(B),

which is open since B is open and φ is an open map. For y ∈ Y we choose ψ(y) ∈ B such that
ψ(0) = 0, ψ(−y) = −ψ(y) and φψ(y) = y. The difference z(y1, y2) = ψ(y1) ∗ψ(y2)−ψ(y1 ∗ y2) lies in
the center N and z(y1, y2) ⊂ 2

3W
′ for y1, y2, y1 ∗ y2 ∈ Y (remark that Y is an analytic local group).

Z := 2
3W

′ ∩ N and X := ψ(Y ) + Z, then ψ(y1) ∗ ψ(y2) ∈ X if y1, y2, y1 ∗ y2 ∈ Y . Consequently X
with its canonical local group structure is a rectangular subgroup of W ′, because X ∩N = Z.

Given a central extension L : 0 → N → M → L → 0 of CBH-Lie-Algebras, we can associate a
central local group extension L′ : 1→ N → U → V → 1 of analytic local groups. If L is enlargible we
assume that V is contained in an abstract group G. Without loss of generality we assume V∞ = G
and G to be connected and simply connected. We can associate a period group Per(L′) with this
extension, which does not change by passing to open local subgroups of V . Consequently the period
group is determined by the Lie algebra extension L. We shall denote it by Per(L) in the sequel.
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4.3. Theorem. Let L : 0 → N → M → L → 0 a central extension of CBH-Lie-Algebras.
Suppose that L is enlargible, then M is enlargible if and only if Per(L) is a discrete additive subgroup
of the commutative CBH-Lie Algebra N (this means complete locally convex vector space).

Proof. (see [vEK64], p. 23) Suppose that the period group is discrete in N . We know (see
theorem 3.15) that L′′ : 1 → N/Per(L) → U/Per(L) → V → 1 is enlargible from an open local
subgroup of V . Without any restriction we suppose that L′′ is enlargible from V , consequently
U/Per(L) is contained in a group, but discreteness of the period group means that U/Per(L) contains
an analytic local subgroup of M , which is then automatically enlargible.

Suppose that M is enlargible, then in L′ : 1 → N → U → V → 1 there is an analytic local
subgroup W ⊂ U being enlargible. W contains a rectangular local subgroup X with X ∩ N = Z
open relative N . X is enlargible, so Z ∩ Per(L) = {e}, consequently Per(L) is discrete.

The procedure described above can be generalized to topological groups which admit a left-
invariant metric, by the idea of the proof of the theorem of Kakutani we can prove that all local
Fréchet-Lie-groups are of this type.

4.4. Lemma. Let 1 → N → U → V → 1 be a central extension of topological groups admitting
a left-invariant metric, then any open subgroup W ′ contains a rectangular subgroup X.

Proof. We may suppose that W ′ is an open ball with radius 3δ around e. There is 0 < η < δ
such that the open ball B with radius η around e satisfies d(BB, e) < δ. We define Y = φ(B),
which is open since φ is an open map. ψ is defined directly with the desired properties. z(y1, y2) :=
ψ(y1y2)−1ψ(y1)ψ(y2) lies in the center N and d(z(y1, y2), e) < 2δ for y1, y2, y1 ∗ y2 ∈ Y (remark that
Y is a local group). Z := {x ∈ U | d(x, e) < 2δ} ∩ N and X := ψ(Y )Z, then ψ(y1) ∗ ψ(y2) ∈ X if
y1, y2, y1 ∗ y2 ∈ Y . Consequently X with its local group structure is a rectangular local subgroup of
W ′, because X ∩N = Z.

4.5. Theorem. Let L : 1→ N → U → V → 1 be a central extension of local topological groups
admitting a left-invariant metric. Suppose that V is enlargible, then U is enlargible if and only if
Per(L) is a discrete additive subgroup of the commutative left-invariantly metrizable topological group
N .

Proof. (see [vEK64], p. 23 for the idea of the proof) If U is enlargible we conclude as above
that the additive subgroup of the periods of the extension is discrete. If Per(L) is discrete we can
form the factor extension having vanishing periods which means by theorem 3.15 that U/Per(L)
is enlargible. As above we conclude that there is a local subgroup of U lying isomorphically in
U/Per(L), consequently U is enlargible from an open local subgroup.

The theorems can be applied to the following rather general situations, which are different in
nature, but with analogue background:

1. Let M be an CBH-Lie-Algebra, then we can form a central extension with the total centre N :
0 → N → M → M/N → 0, The adjoint representation Ad : M/N → Gl(M) is injectiveand
and so we obtain that M/N is enlargible. Remark that M/N is a CBH-Lie-Algebra. The
periods are completely determined by M and form an additive subgroup of N , the total
centre. This leads to the following enlargibility criterion:

M is enlargible if and only if Per(L) is discrete in the centre.

2. Let M be a Fréchet-Lie-algebra and the Lie algebra of a local Fréchet-Lie-group U . Let
1→ N → U → V → 1 be the ”integration” of the central extension with the total centre 0→
N →M →M/N → 0, i.e. the local Lie group extension has as derivation the extension of Lie
algebras. The adjoint representation Ad : M/N → Gl(M) is injective, so V is enlargible. Even
though there is no CBH-structure, the same assertion about the periods and the enlargibility
of M holds. Enlargibility is a purely cohomological question.

Famous examples of non-enlargible Lie algebras can be found in [vEK64]. Naturally the problem
is not solved with the above enlargibility criterion, because there is no easy way to calculate the
periods of a Lie algebra in general. Another source of examples is [dlH72], where some linear
non-enlargible Banach-Lie-Algebras are treated.
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4.6. Example. We are going to treat the most famous example provided in [vEK64]. First we
present a general construction how to obtain non-enlargible normed Banach Lie Algebras: Given a
central extension of Banach Lie Algebras

L : 0→ N →M → L→ 0

over enlargible L with non-trivial period group Per(L), then either M is non-enlargible, if and only
if Per(L) is non-discrete or we proceed in the following way: Take the doubled extension

L′ : 0→ N ⊕N →M ⊕M → L⊕ L→ 0

and factor it by N ′ := {(x,
√

2x)|x ∈ N}. We obtain the factorized extension π(L′), where π :
N ⊕N → N ⊕N/N ′ denotes the factor map. Then Per(π(L′)) = π(Per(L) ⊕ Per(L)), which is not
discrete in N ⊕N/N ′by irrationality of

√
2.

We are now concerned with the simplest central extensions of Banach Lie Algebras

L : 0→ R→M
φ→ L→ 0

associated to an extension of local groups 0→ R→ U → V → 0, where L is enlargible, V ⊂ G with
G a simply connected Banach Lie group. The Lie Algebra extension is determined by a bounded 2-
cocycle ν on L given through ν(X,Y ) = [ψ(X), ψ(Y )]−ψ([X,Y ]), where ψ is a continuous linear cross-
section of φ. On Lie group level the equations read as follows: We obtain a real-valued inhomogeneous
local smooth 2-cocycle f(x, y) = ψ(x)ψ(y)ψ(xy)−1 for x, y, xy ∈ V . The associated equivariant
cocycle F (1, x1, x2) = ψ(x1)ψ(x1x

−1
2 )ψ(x2)−1 is smooth and by the Champbell-Baker-Hausdorff-

Formula we arrive at

F (1, x1, x2) =
1
2
ν(x1, x2) + ...

For the construction of some non-trivial period groups we need some differential geometric prepa-
rations: The singular cohomology with real coefficients of a compact finite dimensional manifold is
given by de Rham’s cohomology by de Rham’s theorem. Remark that the ordinary cohomology
H∗(ΓB,R) with respect to the system of open local subgroups of compact connected group G is
the KAS-cohomology. We provide an isomorphisms between the (smooth) Kolmogorow-Alexander-
Spanier-Cohomology and de Rham’s cohomology on a compact finite dimensional manifold: Given a
smooth function F : Mn+1 → R, where M is a compact finite dimensional manifold, we denote by
∂i(X)F : Mn+1 → R the Lie derivative with respect to the i-th variable for 0 ≤ i ≤ n.

τF (X1, ..., Xn) = (
∑

sgn(i1, ..., in)∂1(Xi1)...∂n(Xin)F ) ◦∆

where ∆ denotes the diagonal map. We obtain that τ is a cochain homomorphism from smooth
germs along the diagonal in Mn+1 with codifferential

δF =
n+1∑
i=0

(−1)iFi

to n-forms on M . The mapping Fi is defined by deleting the i-the variable and applying F

Fi(x0, ..., xn+1) = F (x0, ..., x̂i, ..., xn+1)

Given a smooth mapping from a compact finite dimensional manifold to the Banach Lie group
µ : M → G. Given furthermore the 2-cocycle ν on L with values in an abelian group R. If the
2-form ν ◦ δr × δr has some non-vanishing period on M , then the ordinary Vietoris cohomology class
Per(L) 6= {0}.

Since the pull-back µ∗ is a cochain map with respect to the KAS-cohomology and having non-
vanishing period of µ∗F on M means exactly that F has non-vanishing period on G. But on a
compact manifold there is the above established correspondence between KAS-cohomology and de
Rham’s cohomology, so we arrive at the result.

Now we can proceed with the example: Let Q be the group of quaternions of unit length, the
Lie algebra q of Q can be idetified with the purely imaginary quaternions, the commutator is the
bracket. On the C1-loops Ω1(S1, q ) we use the C1-norm to obtain a complete Banach Lie algebra,
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the Lie algebra of the C1-loop group Ω1(S1, Q) topologized with the topology of uniform convergence
up to first degree of differentiation:

ν(λ1, λ2) =
∫ 1

0
(λ′1(t), λ′2(t))dt

where (., .) denotes the canonical scalar product on q is a real-valued bounded 2-cocycle and deter-
mines therefore a central extension

L : 0→ R→M → Ω1(S1, q)→ 0

In order to show that M is not enlargible we construct a smooth map µ : S2 → Ω1(S1, Q) such
that µ∗ν has non-vanishing period. Let S2 be the unit sphere in q, then µ(x)(t) = exp(2πxt) =
cos(2πt) + x sin(2πt), where S1 is parametrized by the interval [0, 1]. Calculating directly yields for
p ∈ S2 and q1, q2 with (p, qi) = 0 (i = 1, 2)

(µ∗ν)p(q1, q2) = π(p, q1, q2)

which has non-vanishing period. Consequently the local smooth equivariant group cocycle F cannot
vanish on the singular homology with integer values.
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APPENDIX A

Smooth bump functions on convenient vector spaces

Bump functions are the main ingredients for passing from local to global experiences in differential
geometry, since they constitute partitions of unity. Bump functions do not always exist in infinite
dimensions, even on Banach spaces. Their existence is encoded in the notion of smooth regularity.
By the smooth Hausdorff property smooth functions separate points, but do in general not generate
the c∞-topology on a convenient locally convex vector space or smooth manifold. It is natural to look
for smooth seminorms off 0 on a given locally convex space for this question. By factorization we
reduce the question to the analysis of smooth norms of 0 on Banach spaces. The initial topology with
respect to smooth functions depends - as the smooth functions themselves - only on the bornology of
the locally convex space, thus we assume the spaces to be bornological. Norms are convex functions,
so we collect the basic properties for convex real valued functions on locally convex spaces. We follow
the lines and results of [KM97], ch. 3.

Lemma. Let f : E → R be a convex function on a convenient vector space, then the following
assertions are equivalent:

1. f is Lip0.
2. f is continuous for c∞-topology.
3. f is bounded on Mackey-converging sequences.

This basic lemma is proved in [FK88]. In the case of convex functions the one-sided directional
derivative exists always and the derivative q′(x) is sublinear and locally bounded (continuous) if q
is locally bounded (continuous). If q′(x)(v) = −q′(x)(v), then it is linear (one says q is Gâteaux-
differentiable). Given a seminorm p 6= 0 on a convenient vector space E and x ∈ E with p(x) = 0,
then for v ∈ E with p(v) 6= 0 we obtain p(x + tv) = |t|p(v), consequently p′(x)(±v) = p(v), so
seminorms can only be differentiable outside their carrier. If a seminorm p is Gâteaux-differentiable
outside its carrier, then p2 is Gâteaux-differentiable everywhere. So we can pass without problems
to the Banach space case to investigate differentiability:

Lemma. Let E be a Banach space, then the following assertions are equivalent:
1. Every continuous convex function is Fréchet-differentiable on a dense subset of E.
2. Every locally Lipschitz function is Fréchet-differentiable at least one point.
3. Every equivalent norm is Fréchet-differentiable at least one point.
4. E has no equivalent rough norm.
5. Every closed separable subspace has a separable dual.

A norm p on a Banach space is called rough , if for every x ∈ E there is ε > 0 such that for
points x1, x2 arbitrary close to x and u ∈ E with ||u|| = 1

|p′(x1)(u)− p′(x2)(u)| ≥ ε

Spaces satisfying one of the above properties are called Asplund spaces , information about the
difficult proof can be found in [KM97].

Example. The 2n-norm on L2n is smooth off 0. The 1-norm on l1(Γ) is Gâteaux-differentiable
at those points where all coordinates are non-zero, it is rough if Γ is uncountable. The supremum
norm on the continuous functions on a compact metric space is rough. If dens(E) < dens(E′), then
there is an equivalent rough norm on E (the density is the infimum of the cardinalities of all dense
subsets).

On Banach spaces the existence of a Cn-norm is equivalent to the property that the unit sphere
is Cn-manifold ([KM97], p.141). Smoothness of a convex function can be characterized by the same

95
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idea on convenient spaces, too, whereas no implicit function theorem is valid. This is one of the very
beautiful and instructive proofs of convenient analysis ([KM97], p.141).

Given a Hausdorff topological space X and a linear subalgebra S of C(X,R) with the following
properties: For all h ∈ C∞(R,R): h∗f ∈ S for f ∈ S . For f ∈ C(X,R) and for an open covering
U and functions fU ∈ S with f |U = fU for U ∈ U we obtain f ∈ S. Such a subalgebra distinguishes
S-functions on X. X is called S-regular if for any x ∈ X and U ∈ U(x) there is f ∈ S with f(x) = 1
and carr(f) ⊂ U . Such an f is called S-bump function. A Hausdorff space is S-regular if and only
if its topology is initial with respect to S ([KM97], p.153).

Lemma. For a class S on a Banach space E the following assertions are equivalent:
1. E is not S-regular .
2. For every f ∈ S, every 0 < r1 < r2 and ε > 0 there exists an x with r1 < ||x|| < r2 and
|f(x)− f(0)| < ε.

3. For every f ∈ S with f(0) = 0 there exists an x with 1 ≤ ||x|| ≤ 2 and |f(x)| ≤ ||x||.

C1-regular Banach spaces do not admit a rough equivalent norm. Analogously to classical notions
we can introduce S-normal and S-paracompact spaces. A S-paracompact space is S-normal and a
S-normal space admits S-partitions of unity to any locally finite open cover. A paracompact and
S-normal space is consequently S-paracompact ([KM97], pp.165-167), for example on metrizable
spaces this is true. Every Hilbert space and c0(Γ) for arbitrary index set are C∞-paracompact
(see[KM97], pp.175). All nuclear Fréchet spaces are C∞-paracompact. We call such spaces smoothly
Hausdorff, smoothly regular,...

In the case of a separable Banach space we can collect the following equivalences (see [KM97],
pp.173):

Theorem. Let E be a separable Banach space, then the following assertions are equivalent:
1. E has a C1-norm.
2. E is C1-regular.
3. E is C1-normal.
4. E is C1-paracompact.
5. E is Asplund, i.e. has no rough norm.
6. E′ is separable.

The non-separable case is in many of these respects an open and difficult to handle problem.
However, it is remarkable that in the above mentioned cases important topological properties are
detected by smooth functions.



APPENDIX B

Homological algebra and spectral sequences

We present homological algebra in the classical way oriented at the applications in the thesis.
We follow the concise and condensed presentation in [Mad88], § 7. A cochain complex is a sequence
of k-modules, where k is a commutative ring with unit, C∗ = {Cn}n≥0 with maps δ

...
δ← Cn

δ← ...
δ← C2 δ← C1 δ← C0 ← 0

such that δ ◦ δ = 0. By abuse of notation we omit the indices of maps usually. An augmented
cochain complex is a cochain complex C∗ and a homomorphism ε : M → C0 with δ ◦ ε = 0. The n-th
cohomology of a cochain complex is the quotient module cycles Zn = ker δ by boundaries Bn = Im δ.
A cochain homomorphism f∗ is a sequence of homomorphisms fn : Cn → Dn such that δ ◦ fn−1 =
fn ◦ δ. Cochain complexes constitute an abelian category without surprises about the structures.
A cochain homomorphism induces a homomorphism H∗(f∗) of cohomology modules by lifting. A
homomorphism of augmented cochains is a clear concept, too. A homotopy equivalence between two
cochain homomorphisms f∗, g∗ : C∗ → D∗ is a sequence of homomorphisms s : Cn → Dn−1 for n ≥ 1
with δ ◦ s − s ◦ δ = f − g : Cn → Dn. Two homotopic cochain homomorphisms induce the same
homomorphism on cohomology. A short exact sequence of cochain complexes induces a long exact
sequence of cohomology modules by the snake lemma

0→ C∗ → D∗ → E∗ → 0

...Hn−1(E∗)→ Hn(C∗)→ Hn(D∗)→ Hn(E∗)→ Hn+1(C∗)...

A free cochain complex consists of free modules. The problem of calculating the cohomologies of a
given cochain complex can be fixed by several methods, one the concept of spectral sequences . A
filtration of a cochain complex C∗ is a family of sub cochain complexes FpC∗

Fp−1C
∗ ⊂ FpC∗ ⊂ Fp+1C

∗ ⊂ ... ⊂ C∗

for p ∈ Z with union C∗. There is an associated bigraded module Ep,q∞ C∗ := FpC
p+q/Fp−1C

p+q

and a filtration on cohomology FpH
∗(C∗) := Im(H∗(FpC∗) → H∗(C∗)). In fact spectral sequences

calculate the bigraded module Ep,q∞ H∗(C∗) for all p, q as a ”limit” , wherefrom the notion stems.
A filtration is called canonically bounded if FpCn = 0 for p ≤ −1 and FpC

n = Cn for p ≥ n.
Introducing cycles and boundaries we can set up the sequence:

Zp,qr := {x ∈ FpCp+q | δx ∈ Fp−rCp+q+1} for r ≥ 0

Bp,q
r := {δx ∈ FpCp+q |x ∈ Zp+r−1,q−r

r−1 } for r ≥ 1

We define Ep,qr := Zp,qr /(Bp,q
r + Zp−1,q+1

r−1 ) = (Zp,qr + Fp−1C
p+q)/(Bp,q

r + Fp−1C
p+q). If x ∈ Zp,qr ,

then δx ∈ Zp−r,q+r+1
r and δZp−1,q+1

r−1 ⊂ Bp−r,q+r+1
r . Hence the cochain map δ induces a map δr :

Ep,qr → Ep−r,q+r+1
r with the property δr ◦ δr = 0 and Ep,qr+1 is the cohomology of r-th element of the

spectral sequence, which is a cochain complex for any pair (p, q).

...→ Ep+r,q−r−1
r → Ep,qr → Ep−r,q+r+1

r → ...

Let [x] ∈ Ep,qr be represented by x ∈ Zp,qr , then δr[x] = 0 implies δx ∈ Fp−r−1C
p+q+1 + Bp−r,q+r+1

r ,
so δx = y1 + b1. There exists x1 ∈ Fp−1C

p+q such that δx1 = b1 by the definition of Bp−r,q+r+1
r and

[x − x1] = [x], since x1 ∈ Zp−1,q+1
r−1 . So we may assume that b1 = 0. However, δx ∈ Fp−r−1C

p+q+1

implies x ∈ Zp,qr+1, so x represents an element of Ep,qr+1. If [z] ∈ Ep+r,q−r−1
r , then δz ∈ Bp,q

r+1, so the
mapping of the cohomology to Ep,qr+1 is well-defined and injective. Furthermore it is onto by definition.
The first element of the spectral sequence is given by

Ep,q1 = Hp+q(FpC∗/Fp−1C
∗)
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For a canonically bounded filtration we obtain that Ep,qr = Ep,q∞ H∗(C∗) for r sufficiently large, so the
sequence ”converges”, since Zp,qr = ker δ ∩ FpCp+q and Bp,q

r = Im δ ∩ FpCp+q for r large enough, so

Ep,qr = (ker δ ∩ FpCp+q)/(Im δ ∩ FpCp+q + ker δ ∩ Fp−1C
p+q)

which is equal to the desired quotient Ep,q∞ H∗(C∗). This is denoted by Ep,qr ⇒ Hp+q(C∗). Given
two filtered cochain complexes and a filtration preserving cochain homomorphism f∗ : C∗ → D∗,
then there are associated homomorphisms Ep,qr (f∗) : Ep,qr (C∗)→ Ep,qr (D∗) of the r-th elements of the
spectral sequence. If both sequences are canonically bounded and for some given r ≥ 1 the associated
homomorphism Ep,qr is an isomorphism for all pairs (p, q), then the cohomologies of C∗ and D∗ are
isomorphic via H∗(f∗), which is an easy application of the 5-lemma.

One beloved application of spectral sequences is the calculation of the cohomology of a double
complex : A double complex is a bigraded module {Xp,q} with homomorphisms δ′ : Xp−1,q → Xp,q

and δ′ : Xp,q−1 → Xp,q such that X∗,q and Xp,∗ are cochain complexes and δ′ ◦ δ′′ + δ′′ ◦ δ′ = 0. The
associated total complex X∗ is defined via Xn := ⊕p+q=nXp,q. There are two canonical filtrations of
the total complex, namely

F ′pX
n := ⊕i≤pXi,n−i (column filtration)

F ′′q X
n := ⊕i≤qXn−i,i (row filtration)

If the double complex is supported only at p, q ≥ 0, then the filtrations are canonically bounded and
the spectral sequences are convergent. The E1-terms and the δ1-differentials can be easily calculated:

′Ep,q1 = Hq(Xp,∗, δ′′) (1. spectral sequence)
′′Ep,q1 = Hp(X∗,q, δ′) (2. spectral sequence)

where the differentials are given by the ”cohomology” homomorphisms associated to δ′ and δ′′,
respectively.
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