
ETH Zürich August 13, 2020
Prof. Dr. Josef Teichmann

Exam for the lecture

”
Machine Learning in Finance“

401-3932-19S

Please fill in the following details:

Surname Given name

the first two letters
for each box

Legi-number

last six numbers

Prüfungsnr.

Do not fill this out

Important:

• Fill in the first two letters of your surname, your given name and the last six
numbers of your legi-number

• Put your student card on the table

• The duration of the exam is 90 minutes. Before these 90 minutes start, you are
allowed to read the exam for 10 minutes during which no writing is allowed.
Follow the commands indicating whether you can start reading and start writing.
When you are told to stop writing, put down your pens immediately.

• Begin each exercise on a new sheet of paper, and write your name on each sheet.
There are 4 questions in total.

• Only pen (ink) and paper are allowed. The ink must not be red or green. Do not
use whiteout, instead just cross out the relevant parts.

Please do not fill in the following table

Question Points Control Maximum

#1

#2

#3

#4

Total

Good luck!!! Please turn the page!

Some hints:

1. Recall that we denote with C(X) the set of all continuous functions f : X → R.
If X = {x1, . . . , xn} is some finite set, then we can identify C(X) with Rn.

2. In Question 2-4, you will have to write pseudo code. This means that you are
supposed to describe in a structured way how your algorithm works. It is not
necessary to have precise syntax. Hence, you can also use mathematical notation
if it is clear how it is meant (e.g. subscripts, powers and standard functions like√
· etc). One example would be that if you have a vector α ∈ Rn, you write the

sum of the elements either by (you can use Greek letters etc)

value sum =
∑n

i1
αi

or you could write

value sum = 0
f o r i = 1 , . . . , l en (α) :

value sum = value sum + αi

where these are just examples. Another example of a function you may use is the
function cumsum that computes the cumulative sum of a vector v ∈ Rk, i.e.

cumsum(v) = w ∈ Rk with wi =
∑i

j=1 vj .

You may further use any python (including numpy), Matlab or R syntax, i.e. in
order to define a vector τ = (0, 1, . . . , n), you can e.g. write either of the following
without further commenting,

• τ = l i n s p a c e (0 , n , n+1)
• τ = arange (n+1)
• τ = (0, 1, . . . , n)

Use a % to write comments, e.g. if you explain what a function you use does. You
can structure your code by defining functions, i.e. the following is admissible:

% randomnormal (k) r e tu rn s a random vecto r o f
% length k that i s standard normal d i s t r i b u t e d
v = randomnormal (10)
so lu t i on1 , s o l u t i o n 2 = foo (v)

func t i on foo (x) :
% s i n and cos f o r a vec to r x i s app l i ed
% component wise
re turn (s i n (x) , cos (x))

which generates a standard normal random vector v ∈ R10, and returns two
vectors with components being the sin (stored in solution1) and cos (stored in
solution2) of the corresponding components of the random vector. The goal of
your pseudo code is only to show how your algorithm works, so do not spend time
on thinking about whether this syntax is correct in some programming language.

Question 1. (13 Points)

(a) Give the precise definition of a discriminatory function σ : R → R. Which of
the following graphs of functions and their likely extensions to ±∞ are correct
examples of sigmoidal activation functions as defined in the lecture? Which of
these functions are discriminatory? Justify your answers.

(I)

1

(IV) −1

1

(II)

−1

1

(V) −1

1

(III)

1

(VI)

1

[5 Points]

(b) Let σ : R → R be a sigmoidal activation function. Let f : Rd → R be a shallow
neural network. Compute all partial derivatives of f wrt all parameters of the
neural network and then wrt the input variable x ∈ Rd. You can assume for this
part that σ is smooth.

[4 Points]

(c) Why are shallow neural networks of interest in machine learning: explain the uni-
versal approximation theorem. What are deep neural networks? How can we cal-
culate derivatives of deep neural networks with respect to parameters and inputs:
include the role of the backpropagation algorithm in this context.

[4 Points]

Hint: These answers do not need to be technical. You may assume that neural
networks are mappings from the unit cube to the real numbers (X = [0, 1]d) for
some d ∈ N.

Question 2. (14 Points)

(a) Deep portfolio optimization (without transaction costs): what is a financial market
in discrete time? What is a self-financing trading strategy with initial capital
x? Describe the value function of a portfolio, and describe the expected utility
of a portfolio. Formulate the optimization problem without transaction costs in
generality. How does machine learning help to solve the problem approximately?

[4 Points]

For the rest of this question, you can assume the single stock case, i.e. at each
time, all of the wealth is distributed between a single risky stock S and a risk-free
bank account B, which is assumed to be constant one, B ≡ 1.

(b) What does it mean if the underlying price process happens to be a martingale?
Does it make sense to invest in such a market? Elaborate!

[2 Points]

(c) What does it mean (does not need to be technical) that the underlying price
process S is (discrete-time) Markovian? Under such a Markovian assumption, how
can we simplify our parametrization of the machine learning problem?

[2 Points]

(d) Consider an N step model (Sn) of conditional binomial form, i.e. the parameters
of the model dependent on a fixed two state Markov chain (Xn),

P [Sn+1 = Snu|Sn, Xn] = p(Xn);P [Sn+1 = Snd|Sn, Xn] = 1− p(Xn) ,

where u > 1 > d > 0 and an exponential utility function U(x) = 1− exp(−x).

Write down in pseudocode an algorithm that learns the optimal portfolio with
initial capital x for T = N trading days using M generated trajectories of the
binomial market model. For the training part, use stochastic gradient descent
with step size γ > 0 and make K ∈ N epochs. Gradients are computed with
mini-batches of size one.

[6 Points]

Hint: You may use a function phi(x,θ) that implements a smooth neural network with
input x∈ Rn where you can specify the input dimension n before using the function
and θ∈ RL is a parameter vector corresponding to the weights of the neural network.
You do not need to specify an architecture or say what L is, you can assume phi

is suitable for approximating any continuous function. If you need multiple neural
networks, write them as phii for i ∈ N. In that case, specify each input dimension with
ni, the corresponding weights with θi.

The trajectories are stored in a Matrix S ∈ RM×(N+1).

Finally, you can use derivatives such as gradients at will. E.g. if you have a value
cost, that depends in some way on the values of θ, then grad =∇θ cost computes the
gradient w.r.t. the weights θ and stores the gradient in grad for the current values of θ.
If the values of θ change, you may assume that the value of grad changes automatically
to the gradient evaluated at the new value of θ.

Question 3. (18 Points)

(a) Calibration of model: describe the calibration problem as inverse problem of se-
lecting a model given some data and some pool of models.

[2 Points]

(b) Examplify the ambitious and modest approach in case of the Heston model: para-
metrize the Heston model and describe in detail which maps can be learned and
how you would do it.

[8 Points]

(c) What is a local volatility model and what are they for: explain Dupire’s formula
and its shortcomings.

[2 Points]

(d) Write down pseudocode to learn local volatility for finitely many given prices:
parametrize local volatility by a neural network and solve the pricing equation
by an Euler scheme, then define a loss function and write down the optimization
problem that one needs to solve such that model prices and market prices are
close. Discuss mini-batching in this approach, does it work?

[6 Points]

Question 4. (16 Points)

(a) Formulate an infinte horizon, time-homogenous Markov decision problem (MDP)
with a finite number of states, discounting factor γ and reward function R, in
abstract terms. State (DPP), the HJB equation, and explain value iteration,
policy iteration and Q learning.

[8 Points]

Consider the following real world problem, which is called the pricing of a passport
option: consider one underlying S and a bank account process B = 1 and an investor
who can go long or short by one position in the underlying in a self-financing way: goal
is to optimize the positive part of the outcome

xT = x0 + (π • S)T = x0 +
T−1∑
t=0

πt(St+1 − St)

at maturity time T , with strategy πt ∈ {−1,+1}.

Assume that the price process follows a finite state, discrete time Markov process S
with states y1, . . . , yn and denote by z1, . . . , zñ the set of possible states of x.

(b) Consider {0, . . . , T} × {y1, . . . , yn} × {z1, . . . , zñ} ∪ {∞} as state space, a time-
homogenous Markov process which models the price process S together with time
and x and which ends in ∞ after T steps. Define additionally a reward function
R(T, x, s) = R(T, x) := max(x, 0), R(t, x) = R(∞) = 0 for t < T . How does the
associated MDP correspond to the valuation problem of a passport option?

[4 Points]

(c) Consider a policy iteration algorithm for this problem: how can you represent the
policy? Write down pseudo code to learn the strategy via policy iteration.

[4 Points]

