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Abstract. We apply methods from Malliavin calculus to prove an infinite di-

mensional version of Hörmander’s theorem for stochastic evolution equations in
the spirit of daPrato-Zabczyk. This result is used to show that HJM-equations

from Interest Rate Theory, which satisfy the Hörmander condition, have the

conceptually undesirable feature, that any selection of yields admits a den-
sity as multi-dimensional random variable. Mathematics Subject Classification
(2000): 60H07, 60H10, 60H30.

1. Introduction

Given a separable Hilbert space H and the generator A of a strongly continu-

ous group (sic!). We aim to prove a Hörmander theorem for stochastic evolution

equations of the daPrato-Zabczyk type (see [4] for all details)

drt = (Art + α(rt))dt+
d∑

i=1

σi(rt)dBi
t,(E0)

r0 ∈ H,

under the assumption, that iterative Lie brackets of the Stratonovich drift and

the volatility vector fields span the Hilbert space. We therefore apply methods

from Malliavin calculus, which have already been used to solve similar questions in

filtering theory (see for instance [8]) or in stochastic differential geometry (see for

instance [1] and [2]).

A particular example, which received some attention recently (see for instance

[3] and [6]) is the Heath-Jarrow-Morton equation of interest rate theory (in the

sequel abbreviated by HJM),

drt = (
d

dx
rt + αHJM (rt))dt+

d∑
i=1

σi(rt)dBt,
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where H is a Hilbert space of real-valued functions on the real line. The HJM drift

term is given by

αHJM (r)(x) :=
d∑

i=1

σi(r)(x)
∫ x

0

σi(r)(y)dy

for x ≥ 0 and r ∈ H. In order to apply Theorem 1 to the HJM-equation we

introduce the relevant setting in Section 3.

The HJM-equation describes the time-evoultion of forward rates (which contain

the full information of a considered bond market) in the martingale measure. It is of

particular importance in applications to identify relevant, economically reasonable

factors in this evolution. More precisely: how to find a Markov process with values

in some finite dimensional state space (the space of economically reasonable factors),

such that the whole evolution becomes a deterministic function of this Markov

process? Conditions in order to guarantee this behaviour have been described in [3]

and [6]. Economically reasonable factors are the forward rate itself at some time to

maturity x ≥ 0, or averages drawn from it, so-called Yields. If the time-evolution

of interest rates cannot be described by finitely many stochastic factors, we can

imagine the following generic behaviour, which we formulate in a criterion.

Criterion 1. We denote by (rt(x))t≥0 a forward rate evolution in the Musiela

parametrization, i.e. a mild solution of the HJM equation. For x > 0 the associated

Yield is denoted by

Yt(x) :=
1
x

∫ x

0

rt(y)dy,

we define Yt(0) = Rt = rt(0), the short rate process. The evolution is called generic

if for each selection of times to maturity 0 ≤ x1 < · · · < xn, the Rn-valued process

(Yt(x1), . . . , Yt(xn)) admits a density with respect to the Lebesgue measure.

Remark 1. In financial mathematics generic evolutions do not seem reasonable,

since – loosely speaking – the support of the random variable rt for some t > 0

becomes too big in the Hilbert space of forward rate curves. In other words, any

”shape” of forward rate curves, which we assume from the beginning to model the

market phenomena, is destroyed with positive probability. Hence the very restrictive

phenomenon of finite dimensional realizations for the HJM-equation also appears

as the only structure where ”shape” is not destroyed immediately. Hence generic

evolutions behave essentially different from affine, finite dimensional realizations,
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where we can always find tenors x1 < · · · < xn, such that the Yield process does

not admit a density.

By [6], the existence of finite dimensional realizations is – among technical as-

sumptions – equivalent to the fact that the stochastic evolution admits locally

invariant submanifolds (with boundary). This is equivalent to the fact that a cer-

tain Lie algebra of vector fields DLA is evaluated to a finite dimensional subspace

of the Hilbert space H at ”some” points r ∈ H, more precisely there is a natural

number M ≥ 1, such that

dimR DLA(r) ≤M <∞

in a dom(A∞)-neighborhood.

In Section 2 we prove the Hörmander-type result for evolution equations where

the drift contains a group generator. We then show in Section 3 that for generic

volatility structures at a point r0 ∈ H, the HJM-equation leads to a generic evolu-

tion for the initial value r0.

Conceptually a generic evolution is not desirable in interest rate theory, since we

expect to exhaust all information by a finite number of Yields. Hence the result

Theorem 2 can be interpreted as an additional argument for finite dimensional

realizations. Notice also that this result is invariant under the important equivalent

changes of measure: if we obtain a generic evolution with respect to one fixed

measure, then also with respect to all equivalent measures.

2. Malliavin Calculus in Hilbert Spaces

In order to set up the methodological background we refer on the one hand to

the finite dimensional literature in Malliavin Calculus such as [11]. On the other

hand we refer to [6] for the analytical framework, in particular for questions of

differentiability of functions on infinite dimensional spaces and for the notion of

derivatives of vector fields V : U ⊂ G→ G, when G is some Fréchet space.

We shall mainly work on Hilbert spaces: then the derivative DV : U → L(H) is

a linear operator to the Banach space of bounded linear operators, where we can

speak about usual properties as differentiability, boundedness, etc.
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We consider evolution equations of the type

drt = (Art + α(rt))dt+
d∑

i=1

σi(rt)dBi
t,(E0)

r0 ∈ H,

where A : dom(A) ⊂ H → H is the generator of a strongly continuous group (Tt)t≥0

on a separable Hilbert space H. We apply furthermore the following notations,

dom(Ak) := {h ∈ H| h ∈ dom(Ak−1) and Ak−1h ∈ dom(A)},

||h||2dom(Ak) :=
k∑

i=0

||Aih||2,

dom(A∞) = ∩k≥0 dom(Ak).

The maps α, σ1, . . . , σd : H → dom(A∞) are smooth vector fields with the

property that α, σ1, . . . , σd : dom(Ak) → dom(Ak) are C∞-bounded. As usual (see

for instance [11]) a vector field V is called C∞-bounded if each higher derivative

DlV : dom(Ak) → Ll(dom(Ak)) is a bounded function for l ≥ 1. In this case V

grows at most linearly on dom(Ak).

Notice that due to the regularity assumptions we can interpret the equation

(E0) also on the Hilbert space dom(Ak), with the same regularity conditions on

C∞-boundedness,

drt = (Art + α(rt))dt+
d∑

i=1

σi(rt)dBi
t,(Ek)

r0 ∈ dom(Ak).

A global, mild, continuous solution, of equation (Ek) with initial value r0 ∈ dom(Ak)

is an adaped stochastic process with continuous paths (rt)t≥0 such that

rt = Ttr0 +
∫ t

0

Tt−sα(rs)ds+
d∑

i=1

∫ t

0

Tt−sσi(rs)dBi
s

for t ≥ 0, where T is the group generated by A. Clearly every strong, continuous

solution is a mild, continuous solution by variation of constants (see [4]). We shall

often use the vector field µ, referred to as Stratonovich drift,

µ(r) := Ar + α(r)− 1
2

d∑
i=1

Dσi(r) · σi(r)

for r ∈ dom(A). Notice that the Stratonovich drift is only well-defined on a dense

subspace dom(Ak+1) of dom(Ak) for k ≥ 0, if we want µ to take values in dom(Ak).
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Furthermore µ is not even continuous. We nevertheless have the following regulartiy

result:

Proposition 1. Given equation (Ek), for every r0 ∈ dom(Ak) there is a unique,

global mild solution with continuous paths denoted by (rt)t≥0. The natural injections

dom(Ak) → dom(Ak+1) leave solutions invariant, i.e. a solution of equation (Ek)

with initial value in dom(Ak+1) is a also a solution of the equation with index

k+1. More precisely a mild solution with initial value in dom(Ak+1) is also a mild

solution of the equation with index k + 1, and hence a strong solution of equation

(Ek).

A mild solution of equation Ek with initial value r0 ∈ dom(Ak+1) is a strong

solution of equation Ek, hence the solution process is a semi-martingale and the

Stratonovich decomposition makes sense,

drt = µ(rt)dt+
d∑

i=1

σi(rt) ◦ dBi
t.

If we assume that r0 ∈ dom(A∞), then we can construct a solution process

(rt)t≥0 with continuous trajectories in dom(A∞), since the Picard-Lindelöf approx-

imation procedure converges in every Hilbert space dom(Ak), and the topology of

dom(A∞) is the projective limit of the ones on dom(Ak).

For equations of the above type the following regularity assertions hold true for

the first variation process.

Proposition 2. The first variation equations with respect to (Ek) for k ≥ 0 are

well-defined on dom(Ak)

dJs→t(r0) · h = (A(Js→t(r0) · h) +Dα(rt) · Js→t(r0) · h)dt+

+
d∑

i=1

Dσi(rt) · (Js→t(r0) · h)dBi
t,

Js→s(r0) · h = h,

for h ∈ dom(Ak), r0 ∈ dom(Ak) and k ≥ 0, t ≥ s. The Stratonovich decomposition

on dom(Ak)

(2.1) dJs→t(r0) · h = Dµ(rt) · (Js→t(r0) · h)dt+
d∑

i=1

Dσi(rt) · (Js→t(r0) · h) ◦ dBi
t,
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is only well-defined for h, r0 ∈ dom(Ak+1), since we need to integrate semi-martingales.

The Itô equation has unique global mild solutions and Js→t(r0) defines a continuous

linear operator on dom(Ak), which is invertible if r0 ∈ dom(Ak+1), k ≥ 0. The

adjoint of the inverse (Js→t(r0)−1)∗ admits the Stratonovich decomposition

(2.2)

d(Js→t(r0)−1)∗·h = −Dµ(rt)∗·((Js→t(r0)−1)∗·h)dt−
d∑

i=1

Dσi(rt)∗·(Js→t(r0)−1)∗·h◦dBi
t

for h, r0 ∈ dom(Ak+1) and k ≥ 0, t ≥ s ≥ 0. We have furthermore

Js→t(r0) = J0→t(r0)J0→s(r0)−1

P-almost surely for t ≥ s ≥ 0.

Remark 2. We define a Hilbert space Hk([0, T ]) of progressively measurable pro-

cesses (rs)0≤s≤T such that

E( sup
s∈[0,T ]

||rs||2dom(Ak)) <∞.

Solutions of equations (Ek) can be viewed as mappings r0 7→ (rt)0≤t≤T . Then

J0→T (r0) ·h is the derivative of this map in the respective locally convex structures.

Remark 3. For the proof of Proposition 2 we need the property that A and −A gen-

erate a semi-group, which is equivalent to the assertion that A generates a strongly

continuous group (see [4] for further references). Under this assumption we can

solve the equations for J0→s(r0) · h in the Hilbert spaces dom(Ak) and obtain in-

vertibility as asserted. If A does not generate a strongly continuous group, the first

variations will not be invertible in general.

Proof. Under our assumptions the regularity assertions are clear, also the calcula-

tion of the first variations (see [4] for all details). The only point left is that we

are allowed to pass to the Stratonovich decomposition, which is correct, since the

assertions of Proposition 1 apply and since we integrate semi-martingales by Itô’s

formula on Hilbert spaces (see [4]). Fix now r0 ∈ dom(Ak+1) and h ∈ dom(Ak+1),

then invertibility follows from the fact that the semi-martingale

(
〈
Js→t(r0) · h1, (Js→t(r0)−1)∗ · h2

〉
dom(Ak)

)t≥s≥0

is constant by the respective Stratonovich decomposition, which leads to〈
Js→t(r0)−1 · Js→t(r0) · h1, h2

〉
dom(Ak)

= 〈h1, h2〉dom(Ak)
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for h1, h2 ∈ dom(Ak+1). From this we obtain left invertibility by continuity.

To prove that the left inverse also is a right inverse we shall apply the fol-

lowing reasoning. Given an ortho-normal basis (gi)i≥1 of dom(Ak) which lies in

dom(Ak+1), we can easily compute the semi-martingale decomposition of

N∑
i=1

〈
Js→t(r0)−1 · h1, gi

〉
dom(Ak)

〈gi, Js→t(r0)∗ · h2〉dom(Ak) =

N∑
i=1

〈
h1, (Js→t(r0)−1)∗ · gi

〉
dom(Ak)

〈Js→t(r0) · gi, h2〉dom(Ak) ,

for h1, h2 ∈ dom(Ak+1) and N ≥ 1. Now we apply the Stratonovich decomposition:

by adjoining we can free the gi’s and pass to the limit, which yields vanishing finite

variation and martingale part. Hence〈
Js→t(r0)Js→t(r0)−1 · h1, h2

〉
dom(Ak)

=

lim
N→∞

N∑
i=1

〈
Js→t(r0)−1 · h1, gi

〉
dom(Ak)

〈gi, Js→t(r0)∗ · h2〉dom(Ak)

= 〈h1, h2〉dom(Ak) ,

which is the equation for the right inverse.

Finally the process (J0→t(r0)J0→s(r0)−1)t≥s satisfies the correct differential equa-

tion and we obtain by uniqueness the desired assertion on the decomposition of the

first variation process Js→t(r0). �

Crucial for the further analysis is the notion of the Lie bracket of two vector fields

V1, V2 : dom(A∞) → dom(A∞) (see [6] for the analytical framework). We need to

leave the category of Hilbert spaces, since the vector field µ is only well-defined on

dom(A∞) as a smooth vector field. We define

[V1, V2](r) := DV1(r) · V2(r)−DV2(r) · V1(r)

for r ∈ dom(A∞).

Fix r0 ∈ dom(A∞). We then define the distribution D(r0) ⊂ H, which is

generated by σ1(r0), . . . , σd(r0) and their iterative Lie brackets with the vector

fields µ, σ1, . . . , σd, evaluated the the point r0. Notice that a priori the direction

µ(r0) does not appear in the definition of D(r0),

D(r0) = 〈σ1(r0), . . . , σd(r0), [σi, σj ](r0), . . . , [µ, σi](r0), . . . 〉
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As in the finite dimensional case, following the original idea of Malliavin [9], the

main theorem is proved by calculation of the (reduced) covariance matrix (see also

[11] for a more recent presentation). We need an additional Lemma on Lie brackets

of the type [µ, σi] for i = 1, . . . , d.

Lemma 1. Given a vector field V : dom(Ak) → dom(A∞), then there is a smooth

extension of the Lie bracket [µ, V ] : dom(Ak+1) → dom(A∞).

Proof. A vector field V : dom(Ak) → dom(A∞) is well-defined and smooth on

dom(A∞) ⊂ dom(Ak). There we define the Lie bracket with µ and obtain a well-

defined vector field [µ, V ] : dom(A∞) → dom(A∞). Take for a moment µ(r) =

Ar + β(r), where β : dom(Ak) → dom(A∞). Then

[µ, V ](r) := AV (r) +Dβ(r) · V (r)−DV (r) ·Ar −DV (r) · β(r).

Since DV (r) : dom(Ak) → dom(A∞), we obtain a smooth extension on dom(Ak+1).

For details and further references on the analysis see [6]. �

Theorem 1. Fix r0 ∈ dom(A∞) and assume that D(r0) is dense in H. Given k

linearly independent functionals ` := (l1, . . . , lk) : H → R, the law of the process

(` ◦ rt)t≥0 admits a density with respect to Lebesgue measure on Rk for t > 0.

Proof. Take t > 0. We have to form the Malliavin covariance matrix γt, which

is done by well-known formulas on the first variation (see [11]). The covariance

matrix can be decomposed into

γt = (` ◦ J0→t(r0))Ct (` ◦ J0→t(r0))
T
,

where the random, symmetric Hilbert-Schmidt-operator Ct, the reduced covariance

operator, is defined via

〈y, Cty〉 =
d∑

p=1

∫ t

0

〈
y, J0→s(r0)−1 · σp(rs)

〉2
ds.

We first show that Ct is a positive operator. We denote the kernel of Ct by Kt ⊂

H and get a decreasing sequence of closed random subspaces of H. V = ∪t>0Kt

is a deterministic subspace by the Blumenthal zero-one law, i.e. there exists a null

set N such that V is deterministic on N c. We shall do the following calculus on

N c.
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We fix y ∈ V , then we consider the stopping time

θ := inf{s, qs > 0}

with respect to the continuous semi-martingale

qs = 〈y, Cty〉 =
d∑

p=1

〈
y, J0→s(r0)−1 · σp(rs)

〉2
,

Then θ > 0 almost surely and qs∧θ = 0 for s ≥ 0.

Now, a continuous L2-semi-martingale with values in R

ss − s0 =
d∑

k=1

∫ s

0

αk(u)dBk
u +

∫ s

0

β(u)du

for s ≥ 0, which vanishes up to the stopping time θ, satisfies – due to the Doob-

Meyer decomposition –

αk(s ∧ θ) = 0

for k = 1, . . . , d.

We shall apply this consideration for the continuous semi-martingales ms :=〈
y, J0→s(r0)−1 · σp(rs)

〉
on [0, t] for p = 1, . . . , d. Therefore we need to calculate

the Doob-Meyer decomposition of (ms)0≤s≤t. This can be done simply by applying

equation (2.2) for the adjoint of J0→s(r0)−1,

dms =
〈
d(J0→s(r0)−1)∗ · y, V (rs)

〉
= −

〈
Dµ(rs)∗ · (J0→s(r0)−1)∗ · y, V (rs)

〉
ds−

−
d∑

i=1

〈
Dσi(rs)∗ · (J0→s(r0)−1)∗ · y, V (rs)

〉
◦ dBi

s+

+
〈
(J0→s(r0)−1)∗ · y,DV (rs) · µ(rs)

〉
ds+

+
d∑

i=1

〈
(J0→s(r0)−1)∗ · y,DV (rs) · σi(rs)

〉
◦ dBi

s

=
〈
(J0→s(r0)−1)∗ · y, [V, µ](rs)

〉
ds+

d∑
i=1

〈
(J0→s(r0)−1)∗ · y, [V, σi](rs)

〉
◦ dBi

s.

For the Doob-Meyer decomposition this leads to

〈
y, J0→s(r0)−1 · [σp, σi](rs)

〉
= 0〈

y, J0→s(r0)−1 · [σp, µ](rs)
〉

= 0
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for i = 1, . . . , d, p = 1, . . . , d and 0 ≤ s ≤ θ. Notice that all the appearing Lie

brackets have a smooth extension to some dom(Ak) for k ≥ 0 due to Lemma 1,

where we can repeat the argument recursively.

Consequently the above equation leads by iterative application to〈
y, J0→s(r0)−1 · D(rs)

〉
= 0

for s ≤ θ. Evaluation at s = 0 yields y = 0, since D(r0) is dense in H. Hence Ct is a

positive definite operator. Therefore we obtain that there is a null set N , such that

on N c the matrix Ct has an empty kernel. Hence the law is absolutely continuous

with respect to Lebesgue measure, since J0→t(r0) is invertible and therefore γt has

empty kernel (Theorem 2.1.2 in [11], p.86). �

Example 1. For instance, if we consider the equation

drt = Artdt+
d∑

i=1

hidB
i
t

where h1, . . . , hd ∈ dom(A∞), then it is easily seen that D(r0) is dense in H as soon

as the linear span of the orbit (Anhi)n≥0,1≤i≤d is dense in H, for all r0 ∈ dom(A∞).

As an example, we can consider H = L2(R, λ), where λ denotes the Lebesgue

measure on R, d = 1, A = d
dx and h1 = e−

x2
2 . This result is well-known and can

be obtained by simpler methods.

Example 2. For non-Gaussian random variables the assertion of Theorem 1 is

already non-trivial. Let σ(r) = φ(r)h be a smooth vector field, φ : H → R a C∞-

bounded function, fix r0 ∈ dom(A∞) such that φ(r0) 6= 0. Then we can calculate

conditions such that the Lie algebra at r0 is dense in H.

µ(r) = Ar − 1
2
(φ(r)Dφ(r) · h)h

= Ar + ψ(r)h

Dµ(r) · g = Ag + (Dψ(r) · g)h

[µ, σ](r) = φ(r)Ah+ φ(r)(Dψ(r) · h)h− (Dφ(r) ·Ar)h− ψ(r)(Dφ(r) · h)h

= φ(r)Ah+ ψ2(r)h,

hence the span of Anh lies in D(r0) (division by φ around r0 is performed). Con-

sequently a necessary condition for D(r0) to be dense in H is that the linear span

of the orbit (Anh)n≥0 is dense in H.
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3. Applications to Interest Rate Theory

We shall describe a framework for the HJM-equation, where Theorem 1 applies.

This framework is narrower than the setting given in [5], but it enables us to

conclude without worries the desired result.

• H is a separable Hilbert space of continuous functions on the whole real

line containing the constant functions (constant term structures). The point

evaluations are continuous with respect to the topology of the Hilbert space.

Furthermore we assume that the long rate is well-defined and a continuous

linear functional l∞(r) := r(∞) for r ∈ H.

• The shift semigroup (Ttr)(x) = r(t+ x) is a strongly continuous group on

H with generator d
dx .

• The map h 7→ S(h) with S(h)(x) := h(x)
∫ x

0
h(y)φ(y)dy for x ≥ 0 (if x < 0

this relation need not hold true) satisfies

||S(h)|| ≤ K||h||2

for all h ∈ H with S(h) ∈ H for some real constant K. There is a closed

subspace H0 ⊂ H such that S(h) ∈ H if and only if h ∈ H0.

Example 3. The first example and seminal treating of consistency problems in

interest rate theory is outlined in [3]. Here the Hilbert space H is a space of entire

functions, where all the requirements above are fulfilled. In particular the shift group

is generated by a bounded operator d
dx on this Hilbert space.

Example 4. Hilbert spaces of the above type can be constructed by methods similar

to [5], pp.75–81, and can be chosen of the type (for the notations see [5]),

Hw := {h ∈ H1
loc(R)| ||h||2w :=

∫ ∞

−∞
|h′(x)|2w(x)dx+ |h(0)|2 <∞}.

Notice that in contrary to [5] we need the forward rate curves to be defined on the

whole real line. The forward curve on the negative real line has no direct financial

interpretation.

We need a further requirement for the volatility vector fields in order that the

function S is well-defined: we define dom(( d
dx )0) = dom( d

dx ) ∩H0 and similar for

all further powers.

• The vector fields are smooth maps σi : H → dom(( d
dx )∞0 ) for i = 1, . . . , d.
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• The restriction σi : U ∩ dom(( d
dx )k) → dom(( d

dx )k) are C∞-bounded for

i = 1, . . . , d and k ≥ 0.

• The HJM drift term is defined to be
∑d

i=1 S(σi)

l∞

(
d∑

i=1

S(σi)

)
= 0,

where l∞ denotes the linear functional mapping a term structure to its long

rate r(∞). By [7] the long rate of an arbitrage free term structure model

is an increasing process, hence this condition means that we assume it to

be constant.

Under these conditions we can prove the following lemma, which guarantees that

the hypoellipticity result can be applied.

Lemma 2. Let the above conditions be in force. Then the Hilbert space H0 :=

ker l∞ of term structures vanishing at ∞ is an invariant subspace of the HJM

equation, furthermore

l∞(rt) = r∗(∞)

is deterministic for t ≥ 0 for any solution (rt)t≥0 with initial value r∗ of the HJM

equation.

Proof. We take a mild solution of the HJM equation with initial value r∗,

rt = Ttr
∗ +

∫ t

0

Tt−sαHJM (rs)ds+
d∑

i=1

∫ t

0

Tt−sσ
i(rs)dBs

and apply the linear functionals l∞ to this equation. By continuity we obtain

l∞(rt) = l∞(Ttr
∗) +

∫ t

0

l∞(Tt−sαHJM (rs))ds+
d∑

i=1

∫ t

0

l∞(Tt−sσ
i(rs))dBi

s

= l∞(Ttr
∗)

since l∞(Tt−sαHJM (r)) = 0 and l∞(Tt−sσ
i(r)) = 0 for r ∈ U ⊂ H by our assump-

tions. �

With respect to this subspace of codimension 1 we can suppose that the condition

D(r0) is dense in H0

holds true, since the only deterministic direction of the time evolution, namely l∞,

is excluded.



HYPOELLIPTICITY IN INFINITE DIMENSIONS 13

Theorem 2. Take the above conditions and assume that for some r0 ∈ dom
((

d
dx

)∞)
the condition

D(r0) is dense in H0

holds true, then for linearly independent linear functionals l1, . . . , ln : H0 → R the

random variable (l1(rt), . . . , ln(rt)) has a density.

Proof. We have to restrict the reasoning to H0. Take r0 ∈ H and define r∗ =

r0 − r0(∞) ∈ H0 (subtracting the constant term structure at level r0(∞)). With

the new vector fields

σi(r) := σi(r + r0(∞))

for r ∈ H0 and i = 1, . . . , d. The solution of the equation associated to these vector

fields at initial value r∗ is given through (rt − r0(∞))t≥0, where (rt)t≥0 denotes

the solution of the original equation with initial value r0. Since the Lie algebraic

condition does not change under translation, we can conclude by Theorem 1 that

for the given linearly independent l1, . . . , ln, the random variable (l1(rt), . . . , ln(rt))

has a density with respect to Lebesgue measure for t > 0. �

Corollary 1. Assume that

D(r0) is dense in H0,

then the evolution of the term structure of interest rates is generic.

Proof. For x1 < . . . xn the linear functionals Yi(r) :=
∫ xi

0
r(y)dy for i = 1, . . . , n

are linearly independent as linear functionals on the subspace H0. �
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