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Abstract. A Hille-Yosida Theorem is proved on convenient vector spaces, a
class, which contains all sequentially complete locally convex spaces. The ap-
proach is governed by convenient analysis and the credo that many reasonable
question concerning strongly continuous semigroups can be proved on the sub-

space of smooth vectors. Examples from literature are reconsidered by these
simpler methods and some applications to the theory of infinite dimensional
heat equations are given.

1. Introduction

Semigroups of linear operators on locally convex spaces provide the successful
setting for the analysis of initial value problems. On Banach spaces a subtle theory
for strongly continuous semigroups, namely Hille-Yosida-Theory had been devel-
oped (see for example [EN00]). In this article on the one hand generalizations of
this theory on locally convex vector spaces are considered. Furthermore we want to
point out the credo that several problems occuring in semigroup theory can anal-
ysed more effectively on locally convex spaces as on Banach spaces. One example
is provided in the last section.

On sequentially complete vector spaces it is sufficient for the analysis of strongly
continuous locally equicontinuous semigroups of continuous operators to analyze
smooth semigroups of continuous linear operators. Enlarging the class of spaces
where one treats semigroups has the advantage to be able to restrict the class of
semigroups.

Convenient analysis was invented to get a concise formulation for the question
of infinite dimensional differential geometry as diffeomorphism groups or subgroups
of them. A general lemma is presented, when it is possible to pass from strongly
continuous semigroups on convenient locally convex spaces to smooth semigroups.
As approximation procedure a classical product integral procedure is proposed,
since for this type of approximation a very general convergence theorem can be
proved without assuming the existence of the smooth semigroup. Furthermore
the quality of the convergence is very good. This theorem was originally proved
to obtain some results in infinite dimensional differential geometry, where Banach
space theory is not sufficient.

In the third section convenient Hille-Yosida-Theory is presented following the
footsteps of [Ouc73]. However we prove that his procedure leads to better con-
vergence results as he originally obtained (even without the assumption of local
equicontinuity). We prove a theorem on asymptotic resolvents and a reproduction
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formula. In the fourth section we provide several concrete examples and investigate
the connections between Abstract Cauchy Problems and smooth semigroups.

The fifth section finally is devoted to examples and some application to infinite
dimensional heat equations demonstrating that this smooth perspective is very
useful. We conclude by several statements on the treatment of strongly continuous
semigroups on locally convex spaces in the last twenty five years to demonstrate,
that most of the results can be obtained by the smooth theory in an easier way.

2. Convenient Calculus

Convenient analysis provides the broades field for analysis on locally convex
spaces (see [KM97]). The concept of a smooth curve into a locally convex space is
obvious. The class of locally convex spaces where weakly smooth curves are exactly
smooth curves is given by convenient vector spaces. A locally convex space is called
convenient if it is Mackey-complete. We call a sequence {xn}n∈N Mackey-converging
to x with quality {µn}n∈N, where the µn are non-negative real numbers converging
to 0, if there is a bounded set B such that xn − x ∈ µnB. Analogously we call
a sequence {xn}n∈N a Mackey-Cauchy-sequence if there is a sequence {tnm}n,m∈N
with tnm positive real numbers and tnm → 0 for n,m → ∞, such that xn −
xm ∈ tnmB , where B is bounded. If every Mackey-Cauchy-sequence converges
in E we speak of a Mackey-complete vector space. On a Mackey-complete vector
space there is in general no natural locally convex topology reproducing only this
concept of convergence (see [KM97], ch.1), but there is a finest topology in the
set of locally convex topologies compatible with the system of bounded sets, called
the bornological topology Eborn. When we talk of a closed set in a convenient
vector space, we mean that the set is closed with respect to the topology of Eborn.
Given a bounded, absolutely convex set B ⊂ E we can look at the localization
EB := span(B) with the Minkowsky norm pB as norm (see [Jar81], ch.6). Remark
that convenient vector spaces are exactly those locally convex spaces, which are
locally complete, i.e. for every closed, bounded and absolutely convex set B the
normed space EB is a Banach space. Mackey-completeness is consequently an
apparently weak concept of completeness (see [KM97], ch.1). On convenient vector
spaces E a uniform boundedness principle of the following form is valid: A set
of linear bounded maps from E to the real numbers is uniformly bounded, i.e.
bounded on bounded sets if and only if it is pointwise bounded (see [KM97], ch.1).

The final topology with respect to all smooth curves is called the c∞-topology.
If E is a convenient vector space, c∞E need not be a topological vector space,
since addition might be discontinuous, however, up to Fréchet spaces E = c∞E.
A mapping f : U → F , where U is c∞-open and F is a convenient vector space is
called smooth if smooth curves are mapped to smooth curves, which is even on R2

not obvious. The differential of a smooth mapping is simply given by derivatives
along affine lines.

We assume the main results of convenient calculus as provided in [KM97] and
apply them to semigroups of linear operators on convenient vector spaces.

Definition 2.1. Let E be a convenient locally convex vector space, T a semigroup
of continuous linear operators. T is called C0-semigroup if the trajectories t 7→ Ttx
are bounded on compacts and if limt↓0 Ttx = x for x ∈ E.

The theory of C0-semigroups on convenient vector spaces can be developed analo-
gously to the theory of smooth semigroups, if enough smooth vectors exist. Remark
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that this is the case if the space is sequentially complete by integration of bounded,
right-continuous curves. Anyway we do not need local equicontinuity (see [Ouc73])!

Proposition 2.2. Let E be a convenient locally convex vector space, T a C0-
semigroup of continuous linear operators on E, such that the ”smooth vectors”
S(φ, t)x =

∫ t
0
φ(s)Tsxds exist for t ≥ 0 and φ ∈ C∞c (R>0), then the linear subspace

E∞ := {x ∈ E | t 7→ Ttx is smooth }

of smooth vectors is dense in E. Let a denote the infinitesimal generator of T . The
initial locally convex topology (a|E∞)n : E∞ → E for n ∈ N is convenient and the
restriction T |E∞ is a smooth semigroup with infinitesimal generator a|E∞ .

Proof. The proof is done by standard semigroup theory:

D(a) := {x ∈ E | lim
t↓0

1
t
(Ttx− x) exists }

ax := lim
t↓0

1
t
(Ttx− x) for x ∈ D(a)

By continuity we obtain aTtx = Ttax for x ∈ D(a), which equals the right derivative
of Tt, too. Up to now we are only talking about right derivatives and we cannot
do better on the whole of E. By the uniform boundedness principle (see [KM97],
Theorem 5.18) the set of linear operators {Ts}0≤s≤t is uniformly bounded for each
t ≥ 0, since the trajectories are bounded.

We shall apply the indefinite Lebesgue integral for right continuous, bounded
curves, which generically takes values in the completion of E.

Another calculation gives

a

∫ t

0

φ(s)Tsxds = −
∫ t

0

φ′(s)Tsxds+ φ(t)Ttx− φ(0)x

for φ smooth with support in R≥0, if the integrals exists in E:

Th − id
h

∫ t

0

φ(s)Tsxds =

=
∫ t

0

φ(s)− φ(s+ h)
h

Ts+hxds+
1
h

(∫ t+h

t

φ(s)Tsxds−
∫ h

0

φ(s)Tsxds

)
for h > 0 and therefore for any continuous seminorm p

p(
∫ t

0

φ(s)− φ(s+ h)
h

Ts+hxds+
∫ t

0

φ′(s)Tsxds)

≤
∫ t

0

|φ(s)− φ(s+ h)
h

+ φ′(s)|p(Ts+hx)ds+
∫ t

0

|φ′(s)|p(Ts+hx− Tsx)ds.

Since Tt is uniformly bounded on compact t-sets, we can conclude by dominated
convergence that the above limit is zero as h→ 0 and that the given formula holds.

Consequently the notion ”smooth vector” is justified as the image under a again
lies in D(a). However these vectors lie dense in E as we can choose a Dirac sequence
right from zero. Furthermore we have the formula∫ t

0

Tsaxds = Ttx− x
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for t ≥ 0 and x ∈ D(a) by the fundamental theorem for right continuous curves.
Hence for x ∈ D(a) the trajectory t 7→ Ttx is continuous.

Therefore E∞ = ∩n≥0D(an): the inclusion ⊂ is clear, then other inclusion ⊃
follows from the consideration, that for x ∈ ∩n≥0D(an) the curve t 7→ Ttx is not only
right continuous, but continuous and the derivative is not only a right derivative,
but a derivative – again by the last formula. By induction we obtain smoothness.

Given a Mackey-converging sequence xn → x such that axn is defined and con-
verges Mackey to y. Since pointwise bounded sets in L(E) are uniformly bounded,
{Ts}0≤s≤t is uniformly bounded by right continuity at 0, consequently∫ t

0

Tsyds = Ttx− x

which yields x ∈ D(a). So D(a) is a convenient locally convex space E(1) with
the operator seminorms. The semigroup T (1) arising from T via restriction to this
space is a strongly continuous semigroups of continuous linear operators and smooth
vectors exist in D(a), too.
E∞ is given as the intersection of all these spaces and equivalently as the domain

of definition of all ak for k ∈ N. The above described topology is a convenient locally
convex topology as it lies in the domain of definition of all ak, k ∈ N. Again by the
smooth vectors we conclude that E∞ is dense.

Remark that this proof can be generalized to strongly continuous group homo-
morphisms of finite dimensional Lie groups to continuous linear operators on locally
convex spaces (see [KM97], compare to 49.4.) assuming the existence of smooth
vectors.

3. Convenient Hille-Yosida-Theory

We are working out convenient Hille-Yosida-Theory on convenient algebra, which
appears to us as most general playground for smooth semigroups. A convenient
algebra is a convenient vector space with smooth associative multiplication. Fur-
thermore we always assume it to be unital. Smooth Semigroups are smooth ho-
momorphisms from R≥0 to a convenient algebra A. In this chapter we develop a
theory of asymptotic resolvents by which one can provide a necessary and sufficient
criterion whether a smooth semigroup exists given the infinitesimal generator. The
technical ideas from this section stem from the excellent work of [Ouc73].

For the purpose of estimates we need some Landau-like terminology in convenient
vector spaces. We shall only apply the symbol O:

Definition 3.1. Let E be a convenient vector space, c : D → E for D ⊂ Rn some
non-empty subset, an arbitrary mapping. Let d : D → R be some non-negative
function, then we say that c has growth d on D if there is a closed absolutely convex
and bounded subset B ⊂ E so that

c(x) ∈ d(x)B for all x ∈ D .

We write c = O(d) on D or c(x) = O(d(x)), applying Landau’s symbol O.

Definition 3.2. Let A be a convenient algebra and T : R≥0 → A a smooth semi-
group homomorphism referred to as smooth semigroup, then

a := lim
h↓0

Th − e
h
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is called the infinitesimal generator of the smooth semigroup T . Given b > 0 the
family {R(λ)}λ>0 with

R(λ) :=
∫ b

0

exp (−λt)Ttdt

is a called a standard asymptotic resolvent family of a.

Approximations can be performed by Trotter formulas, which are proved to be a
type of existence theorem within the theory, since one does not need the existence
of the smooth semigroup to make the Trotter approximation converge (see [Tei99]
and [Teib01] for details and the most general formulation for non-autonomuous
linear differential equations). This theorem has some surprising application to
the fundaments of the theory of infinite dimensional Lie groups (see [Tei99] and
[Teib01]):

Theorem 3.3. Let c : R2 → A a smooth curve into a convenient algebra A with
c(s, 0) = e and for any compact s-interval there is r > 0 such that

{c(s, t
n

)n | 0 ≤ t ≤ r, n ∈ N} is bounded in A,

then the limit limn→∞ c(s, tn )n exists uniformly on compact intervals in R2 in all
derivatives. Furthermore the resulting family Tt(s) is a smooth family of smooth
semigroups with infinitesimal generator ∂

∂tc(s, 0) for s ∈ R.

Proposition 3.4. Let A be a convenient algebra, T a smooth semigroup, then the
following formulas are valid:

1. Let a be the infinitesimal generator of T at zero, then d
dtTt = aTt = Tta for

all t ∈ R≥0.
2. The semigroup is uniquely determined by a.
3. For all b ∈ R≥0 the following integral exists in A:

R(λ) =
∫ b

0

exp (−λt)Ttdt for all λ ∈ R

4. For all λ, µ ∈ R, b ∈ R≥0 we obtain:

(λ− a)R(λ) = id− exp(−λb)Tb
R(λ)R(µ) = R(µ)R(λ)

R(λ)a = aR(λ)

5. R : R≥0 → A is real analytic and the set

{λ
n+1

n!
R(n)(λ) | λ > 0 and n ∈ N}

is bounded in A.

Proof. The first assertion follows from boundedness of the multiplication:

Tta = Tt lim
h↓0

Th − id
h

= lim
h↓0

Tt+h − Th
h

=
d

dt
Tt

= lim
h↓0

Th − id
h

Tt = Tta
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Suppose that there is another semigroup associated to a, more precisely, let S, T
be smooth semigroups in A with

a = lim
h↓0

Th − id
h

= lim
h↓0

Sh − id
h

then the curve c(r) = T (t − r)S(r) on [0, t] for t > 0 arbitrary is smooth and
c′(r) = −ac(r) + c(r)a = 0, consequently Tt = c(0) = c(t) = St.

The existence of the integral and the commutation relations are clear, the only
assertion to prove is the asymptotic condition:

(λ− a)R(λ) =
∫ b

0

exp (−λt)(λ− a)Ttdt =

=
∫ b

0

− d

dt
(exp (−λt)Tt)dt = id− exp (−λb)Tb

Differentiation under the integral yields

λn+1

n!
R(n)(λ) = (−1)nλn+1

∫ b

0

exp (−λt) t
n

n!
Ttdt

T = O(1) on any bounded interval in R≥0, so

λn+1

n!
R(n)(λ) = O

(
λn+1

∫ b

0

exp (−λt) t
n

n!
dt

)
= O(1)

for all λ > 0 and n ∈ N. So the estimate and real analyticity are proved, since the
remainder of the Taylor series converges to zero.

Definition 3.5. Let a ∈ A be a given element of the convenient algebra A, a
smooth map R : R>ω → A is called asymptotic resolvent for a ∈ A if

1. aR(λ) = R(λ)a and R(λ)R(µ) = R(µ)R(λ) for λ, µ > ω.
2. (λ− a)R(λ) = e+ S(λ) with S : R>ω → A smooth and there is are constants
b > 0 so that the set

{exp (bλ)
bk

S(k) | λ > ω and k ∈ N}

is bounded in A.

Remark 3.6. Standard asymptotic resolvent family is an asymptotic resolvent.
The estimate of the definition can be generalized to

{exp (bλ)
ck

S(k) | λ > ω and k ∈ N}

bounded in A with c ≥ b > 0. The following theorems stay valid, but the calculations
get more complicated. The case S = 0 is equivalent to the choice b = ∞, which
is not always possible, because there are semigroups with rapid growth and infini-
tesimal generators without classical spectral theory, respectively. For the standard
asymptotic resolvent we obtain S(λ) = − exp (λb)Tb.

The following theorem is the generalization of the Hille-Yosida-Theorem to the
convenient case (see [Ouc73] for the idea of the proof).
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Theorem 3.7. Let A be a convenient algebra and a ∈ A an element, then a is
the infinitesimal generator of a smooth semigroup T in A if and only if there is an
asymptotic resolvent R for a with

{λ
n+1

n!
R(n)(λ) | λ > ω and n ∈ N}

a bounded set in A (Hille-Yosida-condition).

Proof. If a is the infinitesimal generator of a smooth semigroup in A, then there is
by prop. 2.4. an asymptotic resolvent so that the above conditions are satisfied.

Let R be an asymptotic resolvent defined on R>ω satisfying the hypotheses, then
λR(λ) = e + aR(λ) + O(exp(−bλ)) by 2.5.2, consequently limλ→∞ λR(λ) = e is a
Mackey-limit. aλ := −λ+λ2R(λ) = λ(−e+λR(λ)) = λR(λ)a+O(λ exp (−bλ))→ a
as Mackey-limit for λ → ∞. Differentiating the equation (λ − a)R(λ) = e + S(λ)
(k + 1)-times we obtain (λ − a)R(k+1)(λ) + (k + 1)R(k)(λ) = S(k+1)(λ) for k ∈ N.
Multiplication with R(λ) yields

R(k+1)(λ) + (k + 1)R(λ)R(k)(λ) = R(λ)S(k+1)(λ)− S(λ)R(k+1)(λ)

for k ∈ N. Putting together the hypotheses R(λ)S(k+1)(λ) =
= O( exp (−λb)bk+1

λ ) and S(λ)R(k+1)(λ) = O(exp (−λb) (k+1)!
λk+2 ) we arrive at

R(k+1)(λ) + (k + 1)R(λ)R(k)(λ) = O(exp (−λb) (k + 1)! + (bλ)k+1

λk+2
)

for k ∈ N and λ > ω. Now we try to define out of these data a smooth semigroup
T . Let t ∈ [0, b4 ], then

Tt(λ) := exp (−λt)

(
e+

∞∑
k=0

(−1)k

k!
(λ2t)k+1

(k + 1)!
R(k)(λ)

)

for λ > ω. Looking at the growth for λ > ω and t ∈ [0, b4 ] we obtain

Tt(λ) = O(exp (−λt)(1 +
∞∑
k=0

(λt)k+1

(k + 1)!
)) = O(1)

for k ∈ N and λ > ω by the Hille-Yosida-condition, which implies the existence of
Tt(λ) uniformly on compact intervals in λ and t as a Mackey-limit by the Cauchy
condition on the convergence of infinite series. By inserting the Hille-Yosida con-
dition in the termwise derived series we obtain the uniform convergence by the
Cauchy condition on compact intervals in λ and t, which leads to smoothness of
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Tt(λ) in t, even at the boundary points t = 0 and t = b
4 : We obtain

d

dt
Tt(λ) =− λTt(λ) + λ2 exp (−λt)(

∞∑
k=0

(−1)k

k!
(λ2t)k

k!
R(k)(λ))

=− λTt(λ) + λ2 exp (−λt)(R(λ) +
∞∑
k=0

(−λ2t)k+1

(k + 1)!(k + 1)!
R(k+1)(λ))

=− λTt(λ) +

+ λ2 exp (−λt)

(
R(λ) +

∞∑
k=0

(−1)k
(λ2t)k+1

(k)!(k + 1)!
R(λ)R(k)(λ)

)

+ λ2 exp (−λt)
∞∑
k=0

(−λ2t)k+1

(k + 1)!(k + 1)!
Sk(λ)

with Sk(λ) = R(k+1)(λ) + (k+ 1)R(λ)R(k)(λ). The last sum on the right hand side
is of order

λ2 exp (−λt)
∞∑
k=0

(λ2t)k+1

(k + 1)!(k + 1)!
exp (−λb) (k + 1)! + (bλ)k+1

λk+2

This term can be estimated by

=λ exp (−λ(t+ b))

( ∞∑
k=0

(
(λ2tb)k+1

(k + 1)!(k + 1)!
+
∞∑
k=0

(λt)k+1

(k + 1)!

)
≤λ
(

exp (−λ(
√
t−
√
b)

2
) + exp (−λb)

)
≤2λ exp (−λ b

4
)

for t ∈ [0, b4 ], since (
√
t−
√
b)

2
attains the minimum b

4 . The middle term equals

λ2 exp (−λt)

(
R(λ) +

∞∑
k=0

(−1)k
(λ2t)k+1

(k)!(k + 1)!
R(λ)R(k)(λ)

)
= R(λ)λ2Tt(λ)

by definition. Consequently we arrive at the equation by aλ = −λ+ λ2R(λ):
d

dt
Tt(λ) = aλTt(λ) +O(λ exp (−λ b

4
))

for t ∈ [0, b4 ] and λ > ω. Finally we can calculate the difference

Tt(λ)− Tt(µ) =
∫ t

0

d

ds
(Ts(λ)Tt−s(µ)) ds

because T0(λ) = e and so by the commutation relations

Tt(λ)− Tt(µ) =
∫ t

0

Ts(λ)Tt−s(µ)(aλ − aµ)ds

+O(λ exp (−λ b
4

)) +O(µ exp (−µ b
4

))

we are lead to uniform Mackey-convergence on [0, b4 ] of Tt(λ) as λ→∞. We denote
the limit by Tt. Due to uniform convergence on [0, b4 ] and the Mackey-property of
the limits we obtain Tt(λ)aλ → Tta, consequently the first derivatives of Tt(λ)
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converge uniformly in t to aTt = Tta, which guarantees Lipschitz-differentiability
of order Lip1 of Tt with derivative aTt. Since multiplication with a is a bounded
operation we see that the first derivative is Lip1, too. Consequently Tt is smooth
on [0, b4 ]. Given t, s ∈ [0, b4 ] with t+ s ∈ [0, b4 ], then

Tt+s − TtTs =
∫ t

0

d

du
(Tt−uTs+u) du =

=
∫ t

0

Tt−uTs+u(a− a)du = 0 .

So T is a smooth semigroup inA with generator a, which is the desired assertion.

The following theorem provides a reproduction formula, given an asymptotic
resolvent, we can calculate the smooth semigroup. The formula is apparently com-
plicated, but all the known reproduction formulas from classical theory follow (see
[Ouc73] for the idea of the proof):

Theorem 3.8. Let a ∈ A be an element, R : R>ω → A an asymptotic resolvent of
a satisfying the Hille-Yosida condition, then

lim
n→∞

(−1)n−1

(n− 1)!
(
n

t
)
n
R(n−1)(

n

t
) = Tt

uniformly on compact intervals in [0, b[ as Mackey-limit, where at t = 0 the term is
given through e.

Proof. First we show that the term can be continued by e at t = 0, therefore we
apply the formula

R(k+1)(λ) + (k + 1)R(λ)R(k)(λ) = O

(
exp (−λb) (k + 1)! + (bλ)k+1

λk+2

)
for k ∈ N and λ > ω from the proof of Theorem. We prove that

lim
λ→∞

(−1)nλn+1

n!
R(n)(λ) = e

is a Mackey-limit. For n = 0 the assertion was proved at the beginning of the
previous demonstration, we assume by induction, that it is valid for some n ≥
0. With the formula of the proof of theorem 2.7. we obtain by applying the
commutation relations

(−1)n+1
λn+2

(n+ 1)!
R(n+1)(λ) =

(−1)nλn+1

n!
R(n)(λ)R(λ)λ+

+O(exp (−λb) (n+ 1)! + (bλ)n+1

(n+ 1)!
)

and we can insert the hypotheses of induction. Letting λ tend to infinity we arrive at
the limit result by induction (we need the case n = 0 and the induction hypothesis),
the Mackey-property is also proved.

Sn(t) :=
(−1)n−1

(n− 1)!
(
n

t
)
n
R(n−1)(

n

t
)

is defined for t ∈ [0, b[ and n > bω. Remark that

Sn(t) = O(1)
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for n > bω and t ∈ [0, b[ by the Hille-Yosida condition. Let 0 < t < b be given, then

d

dt
Sn(t) = −n

t
Sn(t) +

(−1)n

(n− 1)!
(
n

t
)
n
R(n)(

n

t
)
n

t2
=

= −n
t
Sn(t) +

(−1)n−1

(n− 1)!
(
n

t
)
n+2

R(n−1)(
n

t
)R(

n

t
) +

+
1
n!

(
n

t
)
n+2

Gn(t) =

= an
t
Sn(t) +

1
n!

(
n

t
)
n+2

Gn(t)

by the above formula with Gn(t) := O(exp (−nt b)(
t
nb
n + ( tn )n+1

n!)):

1
n!

(
n

t
)
n+2

exp (−n
t
b)
(
t

n
bn + (

t

n
)
n+1

n!
)

=

= exp (−n
t
b)(

1
n!

(
n

t
)
n+1

bn +
n

t
) ≤

≤ K1 exp (−n
t
b)(

1
n!

(
nb

t
)
n+1

+
n

t
)

with a constant K1 ≥ 1. Now we apply Stirling’ s formula

n! ∼ nn exp (−n)
√

2πn

(see [Kno51], ch. 14, for remarkable details), consequently

≤K2 exp (−n
t
b)(exp (n)

√
n(
b

t
)
n+1

+
n

t
) =

=K2

(
exp (n(1− b

t
))
√
n(
b

t
)
n+1

+ exp (−n
t
b)
n

t

)
The function f(x) = xm exp (−nx) is decreasing on the interval [mn ,∞[. Given

0 < t0 < b, t ∈ [0, t0], n ∈ N with β := b
t0
≥ 1 + 1

n , then

exp (−nb
t
)(
b

t
)
n+1

≤ βn+1 exp (−nβ)

exp (−nb
t
)(
b

t
) ≤ β exp (−nβ)

Inserted in our formula we arrive at

≤ K3(
√
nβn+1 exp (n(1− β)) + nβ exp (−nβ))

However, β exp (1− β) < 1 for β > 1, so the term in question tends to zero as
n→∞ uniformly in t on compact intervals in [0, b[. The following formula prepares
the result:

Sn(t)− Tt =
∫ t

0

d

ds
(Sn(s)Tt−s) ds =

=
∫ t

0

Sn(s)Tt−s(ans − a)ds+
∫ t

0

1
n!

(
n

t
)
n+2

Gn(s)ds

for n > bω. Given t ∈ [0, t0] we obtain by boundedness of Sn and the above
convergence of the perturbation 1

n! (
n
t )n+2

Gn(s) the result and the Mackey-property.
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4. Abstract Cauchy Problems

Semigroups will be denoted by S, T, ..., their infinitesimal generators by a, b. We
use the conventions of semigroup theory: Tt = T (t). The interest in semigroup
theory stems from properties of the solutions of Abstract Cauchy Problems on
convenient vector spaces. Let E be a convenient vector space, a ∈ L(E) a bounded
operator, then, given x ∈ E, a solution of ACP (a) is a curve x : R+ → E satisfying

x ∈ Lip1(R≥0, E) and x(0) = x

d

dt
x(t) = ax(t) for all t ∈ R≥0

If ACP (a) has a unique solution for every x ∈ E, one can form a semigroup T
of linear mappings on E, we call such an Abstract Cauchy Problem well-posed. Up
to webbed Baire locally convex spaces the concepts of well-posed ACP (a) and the
concept of smooth semigroups are equivalent:

Proposition 4.1. Let E be a webbed locally convex vector space, such that Eborn
is Baire, a ∈ L(E) a bounded, linear operator, then the following assertions are
equivalent:

1. For any x ∈ E the Abstract Cauchy Problem ACP (a) has a unique solution
with initial value x.

2. The mapping T : R≥0 → L(E) , t 7→ (x 7→ x(t)), where x(t) denotes the value
of the unique solution of ACP (a) with initial value x at time t, is well-defined,
smooth and

d

dt
Tt = aTt

for t ∈ R≥0.

Proof. The step from the second to the first assertion is valid in general for any
locally convex space E. The other direction is a little bit more complicated:

We denote by T.x the unique solution with initial value x ∈ E. Remark that
by definition this solution is smooth, so T.x ∈ C∞([0,∞[, E). Furthermore by
uniqueness the family {Tt}t≥0 is a semigroup of linear operators on E. We define
η : Eborn → C∞([0,∞[, Eborn) by η(x) = T.x, which is a linear mapping. We show
that it has closed graph. Let {xi}i∈I be a converging net with limit x ∈ Eborn and
η(xi)→ y with y ∈ C∞([0,∞[, Eborn), then

η(xi)(s) = xi +
∫ s

0

aη(xi)(t)dt

for s ≥ 0. Passing to the limit we obtain

y(s) = x+
∫ s

0

ay(t)dt

for s ≥ 0. So y is a solution of ACP (a) with initial value x, consequently y = η(x)
and η has a closed graph. If E is webbed, Eborn is webbed and Baire by assumption,
consequently η continuous. evt ◦ η = Tt is continuous on Eborn, so T is a smooth
semigroup of bounded linear operators.



12 JOSEF TEICHMANN

Proposition 3.1 justifies the introduction of the notion of a smooth semigroup.
A smooth semigroup of bounded linear operators on E is a smooth semigroup in
L(E).

Next we present Holmgren’s principle in the convenient setting (see [LS93] for
details). The pairing will be denoted by 〈., .〉:

Proposition 4.2. Let E be a convenient vector space, a ∈ L(E) a linear operator:

1. If ACP (a) is uniquely solvable for every initial value on E and
ACP (a′) is uniquely solvable for every initial value on E′ then the solutions
determine a smooth semigroups of bounded operators on E and E′, respec-
tively. They are dual to each other.

2. Let x : R≥0 → E be a (nontrivial) solution of ACP (a) with initial value
x(0) = 0, then for every solution y : R+ → E′ of ACP (a′) we have:

∀s, t ∈ R≥0 , n ∈ N : 〈x(n)(s), y(t)〉 = 0

3. Let y : R≥0 → E′ be a (nontrivial) solution of ACP (a′) with initial value
y(0) = 0, then for every solution x : R≥0 → E of ACP (a) we have:

∀s, t ∈ R≥0 , n ∈ N : 〈x(s), y(n)(t)〉 = 0

In other words the non-uniqueness of the ACP associated to a or a′, respec-
tively, determines forbidden zones for the dual problem, that means subspaces
where solutions of the dual problems cannot pass by.

Proof. The first assertion follows from the observation that the semigroups of (pos-
sibly unbounded) operators T on E and S on E′ are dual to each other, consequently
bounded. For the proof we look at the following curve. Let t > 0, x ∈ E, y ∈ E′
be fixed, then

c(s) := 〈Tt−sx, Ssy〉 for s ∈ [0, t]

is a smooth curve with derivative zero, because of the boundedness of the pairing,
so c(0) = 〈Ttx, y〉 = c(t) = 〈x, Sty〉. A mapping is bounded if the composition
with all bounded functionals is bounded, consequently the given semigroups are
semigroups of bounded linear maps.

For the last two assertions we have to examine a classical object, the shift semi-
group on C∞(R≥0,R) given by

(Ssf)(t) = f(t+ s) for all t, s ≥ 0 .

This is a smooth semigroup for the convenient topology on C∞(R≥0,R) associated
to ∂

∂t , so the solutions of the associated abstract Cauchy problem are unique. Taking
the data from point ii. we can define f(t, s) := 〈x(s), y(t)〉:

∂

∂s
f(t, s) = 〈ax(s), y(t)〉 = 〈x(s), a′y(t)〉 =

∂

∂t
f(t, s)

for s, t ≥ 0. Using cartesian closedness we obtain that fs := f(s, .) for s ≥ 0 is a
solution of the abstract Cauchy problem given above. This means that

f(t, s) = (Ssf0)(t) = f0(t+ s) = 0

because x(0) = 0. Derivations in s-direction give the desired assertion. Taking the
data of 3. we can proceed in the same manner by interchanging the roles.
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Corollary 4.3. Let E be a convenient vector space, a ∈ L(E) a linear operator. If
ACP (a) is solvable for every initial value on E and ACP (a′) is solvable for every
initial value on E′, then the solutions determine a smooth semigroups of bounded
operators on E and E′, respectively.

Proof. By Proposition 3.2.2 and 3.2.3 we obtain that the solutions have to be
unique, because they exist for all initial values. Therefore we can apply Prop.
3.2.1.

Example 4.4 (rapid growth). Let E be the space of entire functions on the com-
plex plane H(C) and define a to be the multiplication operator by the function id,
then the (ACP )(a)

∂

∂t
f(t, z) = zf(t, z)

is solvable. Nevertheless the solution exp(zt)f(z) grows faster in t than any expo-
nential in the natural topology of uniform convergence on compact sets on H(C) for
any non-zero initial value. So only asymptotic resolevnts exist!

Nevertheless there are vector spaces, where all Abstract Cauchy Problems are
solvable, but not uniquely. The following theorem treats some infinite products
of real or complex lines, which have this property, even more. Let a ∈ L(E)
be some bounded linear operator, f ∈ C∞(R≥0, E) some function, then a Lip1-
curve x : R≥0 → E is the solution of the inhomogeneous Abstract Cauchy Problem
ACP (a, f) with initial value x if x(0) = x and d

dtx(t) = ax(t) + f(t). Remark that
such a solution has to be smooth.

Proposition 4.5. Let B be a non-empty set, a ∈ L(KB) a bounded linear operator,
f ∈ C∞(R≥0,K

B), then there is a solution of ACP (a, f) for any initial value x ∈
K
B.

Proof. See [Shk92] for the idea of the proof, but without matrix formulation. For
the matrix formulation see [Tei99].

This is one extreme case of solvability on a special type of locally convex spaces.
Remark that this restricts solvability on the dual space, because the solutions maybe
non-unique. Another extreme case is given by so called LN -spaces (see [LS93],
p.148-155 for the proof in the case X = R): This indicates a class of nuclear Fréchet
spaces E, where for all a ∈ L(E) the exponential exp(at) exists for all times t, which
is a surprising fact. Even more surprising is the fact that even nonlinear equations
can be solved uniquely on these spaces. Remark that many classical problems of
analysis can be formulated in this context, for example the development of the heat
equation in negative time direction.

5. Infinite products of semigroups

We are going to prove a simple approximation theorem:

Proposition 5.1. Let A be a convenient algebra, {Tn}n∈N a sequence of smooth
semigroups with infinitesimal generators {an}n∈N. If {an}n∈N is a Mackey-Cauchy
sequence and {Tn(t)|0 ≤ t ≤ s} is bounded in A (which is equivalent to boundedness
in C∞(R≥0, A)), then there is a semigroup T with infinitesimal generator a :=
limn→∞ an and

lim
n→∞

Tn = T
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in C∞(R≥0, A).

Proof. We show that {Tn}n∈N is a Mackey-Cauchy sequence in
C∞(R≥0, A). To do this we show that all derivatives converge uniformly on compact
subsets of R≥0 in A (see [KM97], ch.1). Let I ⊂ R≥0 be compact, then we obtain

T (k)
n (t)− T (k)

m (t) =aknTn(t)− akmTm(t) = (akn − akm)Tn(t) +

+ akm(Tn(t)− Tm(t)) = (akn − akm)B + tC(an − am)D

for k, n,m ∈ N, t ∈ I, where B,C,D denote appropriately chosen absolutely convex,
closed bounded sets, depending on k, t, but not on m,n. By the Mackey-Cauchy-
property we obtain that

akn − akm =
k∑
i=0

ai−1
n (an − am)ak−im ∈ tnmD′

for a bounded, absolutely convex and closed subset of A and the given double
sequence {tnm}n,m∈N measuring the convergence of {an}n∈N. So it is a Mackey-
Cauchy sequence, too, for k ∈ N.

The given sequence of smooth semigroups is consequently a Mackey-Cauchy
sequence, so there is a smooth curve in the convenient space
C∞(R≥0, A) being the limit. A fortiori this is a smooth semigroup by boundedness
of the multiplication.

Let A be a unital convenient algebra, {Tn}n∈N be a commuting sequence of
smooth semigroups with infinitesimal generators {an}n∈N, such that

Un(t) =
n∏
i=0

Ti(t)

for t ∈ R≥0 satisfies the boundedness-hypotheses of the above convergence theorem
and bn =

∑n
i=0 ai for n ∈ N is a Mackey-Cauchy sequence, then the infinite product∏∞

i=0 Ti := limn→∞ Un of the sequence of semigroups exists in C∞(R≥0, A) and is
a smooth semigroup with infinitesimal generator

∑∞
i=0 ai.

This simple observation can be applied to the following situation: Let T be a
smooth bounded group with infinitesimal generator a in a complex unital convenient
algebra A, this means that we can find a closed absolutely convex bounded subset
B of the convenient algebra A, so that Tt ∈ B for all t ∈ R. In classical theory
of C0-semigroups there is a beautiful formula calculating this new semigroup from
the given one:

S(λ) =
1√
4πλ

∫
R

e−
s2
λ T (s)ds

for λ ∈ Σπ
2
\{0} := {−π < arg λ < π}. The proof is remarkably simple: Take l ∈ A′

a bounded linear functional to investigate analyticity (see [KM97], ch.3), then

d

dλ
l ◦ S(λ)T (t) =

d

dλ
(

1√
4πλ

∫
R

e−
s2
λ l ◦ T (t− s)ds) = l ◦ (a2T (t))

by the symmetry of the integral and the integral representation of the one-dimen-
sional Gaussian semigroup for λ ∈ Σπ

2
\ {0} (see for example [Nag86]). So the

integral defines a holomorphic semigroup on the given sector with generator a2 (see
[Tei99]).
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The above observations can be applied in the following theorem, which general-
izes an already known theorem about infinite products of a commuting family of
C0-semigroups.

Theorem 5.2. Let E be a complex Fréchet space. Let {Tn}n∈N be a commuting
sequence of bounded smooth groups, so that

∞∏
i=0

Ti =: T

exists in C∞(R, L(E)) and is a smooth group with generator
∑∞
i=0 ai, where the sum

converges absolutely in L(E) (so the order of the product can be chosen arbitrarily).
Denote by Sn the associated bounded holomorphic semigroup generated by a2

n. If
there is a bounded, closed and absolutely convex subset, where all the finite products∏n
i=0 Si for n ∈ N lie, then the infinite product

∞∏
i=0

Si =: S

exists in C∞(R≥0, L(E)) and the infinitesimal generator is
∑∞
i=0 a

2
i .

Proof. The only thing to prove is the (absolute) convergence of the series sn :=∑n
i=0 a

2
i . Let p be a continuous seminorm on E, then

p((sn − sn+k)(x)) ≤
n+k∑
i=n+1

p(a2
i (x)) ≤

n+k∑
i=n+1

q(ai(x))
n,k→∞→ 0

where q denotes a continuous seminorm on E. The existence of q follows from the
fact, that {ai}i∈N is bounded in L(E), consequently equicontinuous, because E is
barreled, so for every continuous seminorm p there is a continuous seminorm q,
so that p(ai(x)) ≤ q(x) for x ∈ E. So we obtain that the above series converges
pointwisely absolutely. By the uniform boundedness principle the convergence is
uniform to the bounded limit in L(E) (see for example [Jar81]).

Let X be a complex Banach space, {Tn}n∈N a commuting family of bounded
C0-groups on X with infinitesimal generators {An}n∈N. The norm shall be denoted
by p, remark that bounded strongly continuous groups are contraction groups. The
linear space

F :=
⋂
n∈N

⋂
k∈N

D(Akn)

is on the one hand dense in X by the abstract version of the Mittag-Leffler-Theorem
(see [Est84] and [ADEM98]), on the other hand a Fréchet space with obvious semi-
norms pn,k(x) :=

∑k
i=0 ‖Ainx‖. On this Fréchet space all the groups Tn are smooth

and bounded. We associate the semigroups Sn to Tn with generator A2
n and obtain

bounded C0-semigroups on X and smooth bounded semigroups on F, respectively.
If we assume that the series

∑∞
i=0Ai converges absolutely on F, then the infinite

product
∞∏
i=0

Ti =: T
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exists in C∞(R, L(F) and is a bounded smooth group, because

pn,k(Ti(t)(x)) ≤ pn,k(x)

and p(Ti(t)(x)) ≤ p(x) for all x ∈ F (they commute!). In [ADEM98], lemma 2.6.
the authors assume that

D1 = {x ∈
⋂
n∈N

D(An) |
∞∑
n=0

p(Akx) <∞}

is dense in X and conclude that the infinite product of groups
∏∞
k=0 Tk exists

strongly on X as strongly continuous bounded group. Consequently the sum∑∞
k=0Ak on D1 is the restriction of the infinitesimal generator A of the infinite

product on the core D1. By the abstract version of the Mittag-Leffler-theorem F
∩
⋂
n∈ND(An) is dense in X and there the sum converges absolutely in the Fréchet

space topology to the restriction of A (look at the sequence of generators of bounded
C0-groups A,−A,A0, A1, ...). Hence it is no restriction to assume absolute conver-
gence on F.

Consequently T can be extended to X by density and the given estimates as
a bounded C0-group with infinitesimal generator the closure of

∑∞
i=0Ai on X,

because F is a core of the infinitesimal generator. By the above theorem we obtain
that

∞∏
i=0

Si = S

exists in C∞(R≥0, L(F), because

p(Si(t)(x)) = lim
n→∞

p((id− t

n
A2
i )
−n) =

= lim
n→∞

p((id−
√
t√
n
Ai)−n(id+

√
t√
n
Ai)−n(x)) ≤ p(x)

for t ≥ 0 and x ∈ X by the classical Hille-Yosida-theorem (see [Nag86]), where from
the other necessary estimates for the boundedness of the finite products in L(F)
follow. This semigroup can be extended to a C0-semigroup on X with infinitesimal
generator the closure of

∑∞
i=0A

2
i on X by the same argument. In some cases

this semigroup is referred to as infinite dimensional Gaussian semigroup, taking
translation-groups in different directions on appropriate spaces as groups Tn. This
consideration solves a problem raised by [ADEM98] on page 525, which forces them
to consider some slightly stronger notion of convergence.

6. Remarks to existing literature

A smooth semigroup T in a convenient algebra A is called exponentially bounded
if

Tt = O(exp(ωt))

on R≥0 for a given ω > 0. Exponentially bounded smooth semigroups can be easily
treated by the following methods. First the classical resolvent exists for λ > ω,
consequently we obtain an asymptotic resolvent with S = 0. The exponential
formula is therefore valid

lim(e− ta

n
)−n = Tt
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in all derivatives on compact subsets of R≥0. This problem was treated by several
authors with similar approaches motivated by differing interests. Isao Miyadera
[Miy59] was the first to deal strongly continuous semigroups on Fréchet spaces
assuming exponential boundedness, Sunao Ouchi [Ouc73] generalized the theory to
sequentially complete locally convex spaces. In both cases the convenient setting
applies and yields the results.

In [Jef86], [Jef87] weakly integrable semigroups of continuous linear operators are
dealt with, which is a very weak concept of one-parameter semigroups. Nevertheless
as far as generators are concerned we can apply the given ideas. A semigroup of
linear continuous operators S : R≥0 → L(E), where E denotes a locally convex
space is called weakly integrable if there is a S′-invariant subspace point separating
subspace F of the continuous dual E′ with the property that for a given ω > 0 the
functions t 7−→ exp(−λt)〈S(t)x, ξ〉 are integrable for λ > ω, x ∈ E, ξ ∈ F on R≥0

such that the operators R(λ) : E → E with

〈R(λ)x, ξ〉 =
∫ ∞

0

exp(−λt)〈S(t)x, ξ〉dt

exist. Applying our method one should look at σ(E,F ), the mapping S : R≥0 →
L(Eσ(E,F )) is a semigroup of linear continuous operators because of invariance. We
assume Eσ(E,F ) to be convenient, but we do not need to assume the existence of the
above resolvents. Passing to the C0-subspace we have to assume that the smooth
vectors exist in the given locally convex topology. Remark that this subspace is
closed with respect to Mackey-sequences, so convenient. Consequently we can pass
to the subspace of smooth vectors by proposition 2.2 and apply the result.

In [Hug77] semigroups of unbounded operators on Banach spaces are investi-
gated. They can by definition be reduced to strongly continuous semigroups on a
Fréchet space. The author assumes exponential boundedness in his article, conse-
quently the above theory applies.

In [Kom68] a distributional approach towards the problem is chosen, which could
be reformulated in the convenient setting. Another interesting reference in this
direction is [Dem74]. The conditions on asymptotic resolvents are realized to be
some Palais-Wiener conditions for distributional Laplace transforms to stem from
a smooth semigroup. Anyway the calculations in the smooth setting are simpler
and yield the same or even better results, since convenience is in fact much weaker
than sequential completeness.

References

[ADEM98] Wolfgang Arendt, A. Driouich, and O. El-Mennaoui, On the Infinite Product of C0-

Semigroups, Journal of functional analysis 160 (1998), 524–542.
[Dem74] Benjamin Dembart, On the Theory of Semigroups of operators on locally convex

spaces, Journal of Functional Analysis 16 (1974), 123–160.

[EN00] K. J. Engel and R. Nagel, One-parameter semigroup for linear evolution equations,
Graduate Texts in Mathematics 194, Springer-Verlag Berlin (2000).

[Est84] Jean Esterle, Mittag-Leffler methods in the Theory of Banach algebras and a new
approach to Michael’s problem, Contemporary Mathematics 32 (1984), 107–129.

[Hug77] Rhonda Hughes, Semigroups of unbounded linear operators in Banach space, Trans-

actions of the AMS 230 (1977), 113–145.
[Jar81] Hans Jarchow, Locally convex spaces, Teubner, Stuttgart, 1981.

[Jef86] Brian Jefferies, Weakly integrable Semigroups on locally convex spaces, Journal of
Functional Analysis 66 (1986), 347–367.



18 JOSEF TEICHMANN

[Jef87] Brian Jefferies, The generation of weakly integrable Semigroups, Journal of Functional

Analysis 73 (1987), 195–215.
[KM97] Andreas Kriegl and Peter W. Michor, The convenient setting of Global Analysis,

Mathematical Surveys and Monographs 53, American Mathematical Society, 1997.

[Kno51] Konrad Knopp, Theory and Application of infinite series, Dover Publications, Inc.
1990, 1951.

[Kom68] Takako Komura, Semigroups of operators in locally convex spaces, Journal of Func-
tional Analysis 2 (1968), 258–296.

[LS93] S. G. Lobanov and O. G. Smolyanov, Ordinary differential equations in locally convex
spaces, Russian Mathematical Surveys (1993), 97–175.

[Miy59] Isao Miyadera, semi-groups of operators in Fr’echet space and applications to partial
differential equations, Tohoku Mathematical Journal 11 (1959), 162–183.

[Nag86] R. Nagel(ed.), One-paramater semigroups of positive operators, Springer-Verlag,

Berlin-New York-Tokyo, 1986.

[Ouc73] Sunao Ouchi, Semigroups of operators in locally convex spaces, J. Math. Soc. Japan
25 (1973), no. 2, 265–276.

[Shk92] S. A. Shkarin, Some results on solvability of ordinary differential equations in locally
convex spaces, Math. USSR Sbornik 71 (1992), 29–40.

[Teia01] Josef Teichmann, A convenient approach to Trotter’s formula, Journal of Lie Theory,

to appear (2001).
[Teib01] Josef Teichmann, Regularity of infinite dimensional Lie groups by metric space meth-

ods, Tokyo Journal of Mathematics 24 (2001), to appear.
[Tei99] Josef Teichmann, Infinite dimensional Lie theory from the point of view of functional

analysis, Ph.D. thesis, University of Vienna, 1999, directed by Peter Michor.

Institut für Mathematik, Strudlhofgasse 4, 1090 Wien, Austria

E-mail address: josef.teichmann@fam.tuwien.ac.at


