Flexible complete Models with
stochastic volatility

generalizing Hobson-Rogers

F. Hubalek, J. Teichmann, R. Tompkins

November 26, 2004



1 Hobson-Rogers Model

Hobson and Rogers proposed several complete stochas-
tic volatility model. Fix a time horizon T > 0. Given
a price process (P;)o<¢<7, Which is a positive, square
integrable Ito process on a stochastic basis (2, Fr, P)
with one-dimensional Brownian motion (Bit)o<i<T,
we introduce Z; := In(e”"P;), where r > 0 de-
notes the interest rate. Then we assume for a positive
parameter A > 0 the 2-dimensional Markov process

(Zt, St)

dZy = /,L(St)dt + O'(St)dBt
dS; = dZy — ANSydt = (,u(St) — )\St)dt + O'(St)dBt,
Zo = 2,50 = s,
for volatility and drift vector fields u, o0 which satisfy
the usual Lipschitz assumptions and o(s) > 0 for s €

R. The process (St)o<¢<T is the first offset function
of (Zt)o<t<T With parameter A > 0.



Defining
p(s)
a(s)’

where we assume additionally that the measure Q¢ on

0(s) = %a(s) -+

Ft given through

dQ¢

T — oo~ [ 0(sw)aBu — [ 0(Su)du)

is well-defined for 0 < t < T and that QQ := Q7 is
a probability measure equivalent to P on Fp. Then
the process By := By + [¢0(Su)du is a Q-Brownian
motion and the stochastic differential equation reads
as follows with respect to (E)OStST

1 _
dZ; = —Ea(St)2dt + o(S)dBy,

1 __
dS; = —(Ea(st)2 + ASp)dt + o(St)dB,
Zo=2,5 =s
for0 <t <T.



The discounted price process (e " P;)g<i<T is a Q-
martingale and we can apply the classical_ng—arbitrage
pricing arguments. In particular the market is com-
plete since this is the only martingale measure equiv-
alent to P. Under Q the price process satisfies

dP; = r Pidt + O’(St)Ptdé/t

Therefore the price of a European claim, which is
given by a measurable function with at most linear
growth ¢ : R — IR , is defined by

V(P St, T —t) = e" T~V E(q(Pr)| F2)

for 0 < t < T via the Markov property. If the Lie
algebra spanned by the two vector fields

o(s)
(z,8) — ( o(s) )
. —10(8)2 — l(7(5),(7(3) >
S G A v

or equivalently

a(s) 0
(z,8) — ( o(s) > and (z,s) — ( \e )



spans the tangent space R? pointwise on Rso X R
(which is the case for non-vanishing o and A # 0),
then by Hormander’s " Sum of the Squares” we know
that f is a smooth function on Ry x Rx]0, 7| and
satisfies the boundary condition f(p,s,0) = q(p) for
all (p, 8) c R>0 X RR.



One particular choice for o is a smooth vector field
o : R — R such that

o(s)? := n°(1 + es?)

on some ball with large radius R > 0 and constant
outside for fixed ¢ > 0. Here n is referred to as
minimal level of implied volatility and € > 0 denotes
a parameter calibrating the influence of the first off-
set process (St);>0 on the stochastic evolution of the
price process. Furthermore the option price depends
smootly on the parameters 1,e¢ and A on the respec-
tive intervals of definition. By standard methods we
can find a version of the solution (Zt, St)o<i<T Of
the stochastic differential equation, which depends in
a smooth way on the initial values and the parameters.



In order to fit a model — with a finite number of param-
eters — to market data, one needs to solve an inverse
problem:

e solve the associated PDE often and look which
outcomes fit the data best.

e choose a best choice and verify.

Such procedures are expensive and (sometimes) insta-
ble. The value of tractable formulas gets particularly
visible.



In mathematical flnance we model price behaviours
by semi-martingales (S )t>0, which often depend on
additional parameters, here denoted by ¢ > 0. We
propose a method, which aIIows to calculate deriva-
tives of the function € — E(qb(S )) efficiently. To be
more precise, we are able to prove that — under some
technical assumptions — there exist random variables
7(") such that

5 B(9(5)) = B(o(s)x"),

This approach provides
e explicit algorithms how to calculate the weights,

even if the functions in question are not real an-
alytic.

e probabilistic approaches for approximations of model
prices (Monte Carlo evaluations).

e the method works well in the hypo-elliptic con-
text.



2 Partial Integration and Taylor ex-

pansion of Prices

Let (2, F, P) be a probability space, which is gener-
ated by a one-dimensional Brownian motion (B¢)g<t<T
for some T' > 0, i.e. F = Fp. For the reader who is
familiar with lto-integration, but does not feel com-
fortable with Malliavin Calculus, we list the follow-
ing simple rules, which allow to follow all calculations

which are done in the article:

1. The Malliavin derivative associates to random vari-
ables (in its domain of definition) X € dom(D) C
L?(€) a not necessarily adapted process

(DsX)o<s<T € L*([0,T] x Q).



The Malliavin derivative is a closed, densely de-
fined, unbounded linear operator and the follow-
ing rules hold,

DS(IQ) =0
T
Da( [ o(s)dBs) = o(s)1pg y(s),
Ds(d(X1,...,Xn)) = En: aiiqﬁ(Xl, ..o, Xn)DsX;
1=1

for X; € dom(D), i = 1,...,n and o a square-
integrable, deterministic function on [0,T]. ¢ is
given as a C'l-function on R”.

. The adjoint of the Malliavin derivative is the Sko-
rohod integral 6, which associates to a not nec-
essarily adapted process (Ys)g<s<T € dom(d) C
L?([0,T] x Q) a random variable §(s — Ys) €
L?(Q). The Skorohod integral is a closed, densely
defined, unbounded linear operator and the fol-
lowing basic partial integration formula holds true

T
E(X6(s = Ys)) = E( /O (DsX)Ysds)



on the respective domains. The most important,
non-trivial assertion on Skorohod integration is
the relation to lto-inegration: namely, for all square-
inegrable, predictable processes (Ys)g< <7 We ob-
tain that (Ys)o<s<7 € dom(4) and -

T
5(8 > Ys) — /O stBs.

. By extension of the derivative operator D on LP-
spaces we obtain domains of definition DP1
LP(€2). By definition of iterated derivatives on the
respective domains we obtain domains of defini-
tion DP"™ C LP(K2), where the Malliavin-derivative
can be applied n times. Smooth random variables
are those, which lie in the domain of each deriva-
tive operator in each LP, i.e.

D> = ﬂPZl ngO DP-™

A fortiori smooth random variables are closed un-
der compoistion with smooth, polynomially bounded
functions and allow Skorohod inegration up to ar-
bitrary orders.



4. For Skorohod integrable process (us)o<s<T and
F € D*° with E(fg F?u2ds) < oo, the process
(Fus)o<s<T is Skorohod-integrable and

T
(s — usF) = Fé(s — us) — /O usDsFds

holds true.

5. The Malliavin covariance matrix is a real-valued

random variable in the one-dimensional case,

(X)) = /O ! (D.x)2ds.

If v(X) is invertible almost surely, then X has a
density with respect to Lebesgue’s measure.



We shall deal with families of random variables ¢ —
Ge such that

e for all ¢ > 0 the random variable and all its derlva—
tives with respect to ¢ are smooth, i.e. 8 ~5Ge €
ﬂp>1ﬂn>oDP’” for k > 0, together with aII Malll—
avin derivatives. The derivatives are taken with
respect to the topology of D°°, which is equiv-
alent to the assertion that the maps € — n(Ge)

are smooth, for all continuous linear functionals
n:D>* — R

We denote this space by C°°(R>q, D). Notice in
particular that this space is a (_smooth) algebra of
random variables, where the Skorohod integral and
the Malliavin derivative are well-defined. In particular
the constant curve ¢ — 1 satisfies the requirements.
Observe the following rules of differentiation:

e Malliavin derivatives and Skorohod integrals com-
mute with derivatives with respect to e.



e all Malliavin derivatives of derivatives with respect
to € are Skorohod integrable.

Definition 2.1 A family (e — F¢) € C*°(R>q, D),
which satisfies additionally that the (Malliavin) covari-
ance matrix y(F¢) is almost surely invertible for e > 0
and at e = 0 (but not necessarily off 0)

v(Fp) € D™ = Np>1 N0 D7,

is called a family with regular density.



We shall provide the following characteristic (and use-
ful!) example for families with regular density: given
a continuous Gaussian process (St);>0 with

dS; = (a(t) — ASy)dt + o(t)dBy

with continuous (deterministic), square integrable func-
tions a,b: Ry — R, we define the family (Fe)>q for

a fixed number T > 0 and show by simple calculations
that (Fe)e>0 € C°(Rx0, D),

Fe:=2z— —/ (1 —I—GSt)zdt—I—n/ (1 + €S7)dBy,
DsFe = n(1 + eS2)—

—2en? /ST(l + €52) S exp(—A(T — t))o(t)dt+

2en / " 8, exp(=A(T — t))o(t)dB,

DsFe|e:0 =1,
0 T T
—F, = —772/ (14 €S2)S2dt + n/ S?dBy,
Oe 0 0
V(Fe)|e=g = n°T.

This example will be applied for the generalized Hobson-
Rogers model (GHR).



A more sophisticated example is given by the following
structure, which resembles a slightly modified version
of the original Hobson-Rogers model (HR):

1 (T ) T
Fe:= 2z — 5/0 o(St) dt—l—/0 o(St)dBg,

1
dS; = (—Ea(St)2 — A\Sy)dt 4+ o(St)dB;

with o(s) = n(1 + 682)1/2 exp(—%) for some large
constant M. Hence o is C°°-bounded and bounded
and we obtain (F¢)e>0 € C°(R>0, D). The rele-
vant derivatives at € = 0 read as follows.

DsFele=0 = 1,

0 T n?S2|—o T 1nS2|—o
—F|_q=— t1e=0Y It / =0 0B,
de €=V 0 2 + 0 2 t
Y(Fe)|e=0 = 7°T,

where (St);>0 at € = 0 is particularly simple, namely
a mean-reverting Gaussian process,

1
dS; = (—;72 — \S;)dt + ndBs.



Theorem 2.1 Given a family (Fe)c>0 € C°°(R>q, D)
with regular density. Then there exist random vari-
ables ™ € D° such that for all ¢ € C5°(R)

O B(0(Fe))lemo = B(6(Fo)n™)

holds true for n > 0.

Definition 2.2 The random variable ™ € D°° is called
nth Malliavin weight for differentiation with respect to
the parameter e.

Remark 2.1 If ™ is a polynomial of integrated Gaus-
sian polynomials, then the expected value E(¢(Fp)n™)
can be calculated in two steps: first an ordinary Gaus-
sian integral applied to a polynomial on some R",
second the inegration of this result with respect to
Lebesgue measure on [0, T]™. Both procedures are
numerically cheap and yield quick and good results
even for complicated stochastic differential equations.



The applications which we have in mind are certainly
solutions of standard stochastic differential equations
of the type

dZ7C =V (e, t, ZD)dt + V(e  t, Z7)dBy,

where the initial value is given by a real vector x €
RN and (Bi);>o denotes a 1-dimensional Brownian
motion. If the vector fields V, V1 are regular enough,
for instance real analytic and C°°-bounded, then we
can take each coordinate of the solution process at a
certain time 17" > 0 — viewed as a family of random

variables with respect to ¢ > 0 — is an element of
C*®(R>q, D).



We take the above example with ¢ = A = 0 and
b=1, Sg =0, and calculate the outcome for the first
and second derivative with respect to e.

2
BE(¢(Fe)) = B(¢(= — 7T +nBr))
2 | —oB(9(F)

2

n 0 n
=F — —T +nB71)d —oF
(&(z > nBr)d( ele_o 6772T))

oe
1 " 2 T o
= (8 = T +nBr)Br(—n’T +n [ BFdB))+

1 772 T 5 T
+B($(z = T +nBr) [ (nB2+2n | BidBy)ds)
nT 2 0 s
1 2 B3 T
= ~B(¢(z = --T +nBr)Br(—nT + = - [ Bdt))+

1 n 2 T2
+B(¢(z = T +nBr)(BT — =),

which has a simple polynomials structure.

For the second derivative we proceed as follows: We
observe that two ingredients for Skorohod integral can



be well-calculated, namely

0
_5(&|€:0F€ 4 T2 9e |e 0Y(Fe)),

and

0 n 0
O(—|e=0F ) —oF
(0€|€—0 6772T (8€|€—0 €

)

n°T
as above. Again we shall obtain a simple polynomial

structure.
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Figure 1: Market Data - Implied Volatilities




Hohson & Rogers Smiles - British Pound
February 11, 2002

& .60%

g.959%

1510
1540
1570

Figure 2: Smiles on microscopic scale
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Figure 3: Smiles on appropriate scale




3 GHR-Model

The generalized Hobson-Rogers model reads in the
martingale measure as follows.

1 __
dZy = —501(5t)2dt + 01(St)d Bt

dSt = p(St)dt + o2(Sy)dB;
Zo=2,5 =Ss

with the following specification,

o1(s) = n(1 + €Bs°)
o2(s) = xn
772
u(s) = — 5~ s

for fixed € > 0. In contrast to the HR-model we are
additionally given two positive parameters x > 1 and
B € [0,%] (even though only the product €S enters
into the formulas).



GHR Smiles - British Pound
February 11, 2002
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Figure 4: Smiles in GHR-model

With our method we obtain the previous data fit quickly...



