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Model-independent framework

@ Model-independent framework:

X: path-space, S: canonical process on X

V: set of claims ¢ available for buy-and-hold trading

M: martingale measures consistent w/ the market price of ¥’s
®: a given derivative, robust pricing: supgc v Eq [®]
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Model-independent framework

@ Model-independent framework:

X: path-space, S: canonical process on X

V: set of claims ¢ available for buy-and-hold trading

M: martingale measures consistent w/ the market price of ¢’s
®: a given derivative, robust pricing: supgc v Eq [®]

@ A central problem in model-independent finance is to prove:

® can be hedged pathwise }

sup Eq[®] = mf{c eR: starting with initial capital ¢

QeM

Beiglbdck, H.-Labordere, Penkner ‘13; Galichon, H.-Labordere, Touzi ‘14;
Acciaio, Beiglbdck, Penkner, Schachermayer ‘13; Bouchard, Nutz ‘13; Dolinsky,
Soner ‘14a,'14b; Beiglbdck, Cox, Huesmann ‘14; Biagini, Bouchard, Kardaras,
Nutz ‘14; Beiglbdck, Nutz, Touzi ‘15; Guo, Tan, Touzi ‘15; Hou, Obtoj ‘15;
Beiglbdck, Cox, Huesmann, Perkowski, Prémel ‘15, Beiglbéck, Nutz, Touzi '15,...
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Model-independent framework

@ Model-independent framework:

X: path-space, S: canonical process on X

V: set of claims ¢ available for buy-and-hold trading

M: martingale measures consistent w/ the market price of ¢’s
®: a given derivative, robust pricing: supgc v Eq [®]

@ A central problem in model-independent finance is to prove:

® can be hedged pathwise }

sup Eq[®] = mf{c eR: starting with initial capital ¢

QeM

@ Note: M clearly depends on the underlying filtration, as does
the set of available trading strategies.

@ Question: What can be said about the relation between the
super-hedging price and the choice of filtration? In particular,
when passing from F to G 2 F?
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Insider information

@ Uninformed agent F € G Informed agent
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Insider information

@ Uninformed agent F € G Informed agent

@ How do things change?

spEg[®] — inf{c cR - ® can be semi-s.-hedged }
QeM

starting with initial capital ¢
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Insider information

@ Uninformed agent IF € G Informed agent

@ How do things change?

spEg[®] — inf{c cR - ® can be semi-s.-hedged }
QeM

starting with initial capital ¢

@ Informed agent has more trading strategies
@ Informed agent has less pricing measures: M(G) € M(F), so

sup Eq[®] < sup Eq[®]
Qe M(G) QeM(F)
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Insider information

@ Uninformed agent IF € G Informed agent

@ How do things change?

® can be semi-s.-hedged }

32}8(]% [#1 = mf{ceR : starting with initial capital ¢

@ Informed agent has more trading strategies
@ Informed agent has less pricing measures: M(G) € M(F), so

sup Eq[®] < sup Eq[®]
Qe M(G) Qe M(F)

@ Question: Which measures in M(F) are still relevant for
pricing for the informed agent?
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@ (Q,F, F): Filtered measurable space with F = (%7)o<t<T
right-continuous.

< Later we will consider other filtrations.

@ S = (St)o<t<1: cadlag F-adapted discounted price process of
an asset available for dynamic trading. We assume Sy = 0.
(Everything works the same for multiple assets.)

@ A risk-free asset with price = 1 available for dynamic trading.

o V ={yn,...,¥n} aset of FT-measurable payoffs available for
buy-and-hold trading. Today’s price of y; is zero for each i.
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Martingale measures

Calibrated martingale measures:

S is an F-martingale, Eq[S2] < oo,
M(F)z{oeso; gale, Ea[Sy] }

Eq[v | Fo] =0, Eq[y?] < coforally e W
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Martingale measures

Calibrated martingale measures:

S is an F-martingale, Eq[S2] < oo,
M(F)Z{QGP: al57] }

Eql[¥ | Fo] = 0, Eq[y?] < oo for all y € W
@ We want to study M(F) w.r.to F
o M(F) is “huge”

— Can we reduce to the study of a special subset?
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Martingale measures

Calibrated martingale measures:

S is an F-martingale, Eq[S2] < oo,
M(F)Z{QGP: al57] }

Eq[v | Fo] =0, Eq[y?] < coforally e W
@ We want to study M(F) w.r.to F
@ M(F) is “huge”

— Can we reduce to the study of a special subset?

— For example, if £ is endowed with a topology s.t.
M(F) is compact, then

M(F) = conv(ext M(F)),

where ext M(F) is the set of all extreme points in M(F).
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Extreme points

o Extreme points: Q € M(F) is called an extreme point if

Q=1Q"+(1-2)Q?

i 1: 2:
for@ e M(F), 1e(0,1) = @ =-@=@
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Extreme points

o Extreme points: Q € M(F) is called an extreme point if

Q=1Q"+(1-2)@°

1_ . A2
for@ e M(F), 1e(0,1) = @ =-@=@

@ Consider an F1-measurable payoff ® and endow # with a
topology such that

o M(F)is compact and Q — Eq[®] is continuous.

Then sup Eq[®] = sup Eq[®].
Qe M(F) Q cext M(F)
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Extreme points

o Extreme points: Q € M(F) is called an extreme point if

Q=1Q"+(1-2)@°

1_ . A2
for@ e M(F), 1e(0,1) = @ =-@=@

@ Consider an F1-measurable payoff ® and endow # with a

topology such that
o M(F)is compact and Q — Eq[®] is continuous.
Then sup Eq[®] = sup Eq[®].
Qe M(F) Q cext M(F)

@ Note: The notion of extreme point is purely algebraic,
independent of any topology we may put on the space of
probability measures.
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Example (Discrete time and bounded prices)

> Q = [a,b]”, Sisthe coordinate process,
> each w - yj(w) is continuous,
> FFis generated by S

Then M(F) is weakly compact.
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Example (Discrete time and bounded prices)

> Q = [a,b]”, Sisthe coordinate process,
> each w - yj(w) is continuous,
> FFis generated by S

Then M(F) is weakly compact.

Example (Continuous time and bounded volatility)

> Q= Cy[0, T], Sis the coordinate process,

> w — Yi(w) bounded and continuous, F generated by S

> P = {Q : EQ[X SUPg<y<t I1Su — Sslp] < CpaP (t-s)P?Eq [X]},
foral0<s<t<T,X>09%s-measurable, p > 1.

Then M(F) is weakly compact.

A\
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Example (Jakubowski topology)
> Q = Dy([0, T], [-1, 1]) with Jakubowski’s S-topology,
> S is the coordinate process, ¥, suitable continuity conditions,

> FFis generated by S

Then M(F) is sequentially S-compact. Cf. Jakubowski (1997) and
Guo, Tan, Touzi (2015).
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Semi-static completeness and the
Jacod-Yor theorem
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The classical Jacod-Yor theorem

@ Suppose V = () (no static claims).
@ For Q € M(F), by the classical Jacod-Yor (1977) theorem:

Qeext M(F) & L3F7)={x+(H-S)r: He L%(S)}

classical completeness (in L?)

@ This result can be generalized to the semi-static case.
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Generalization of the Jacod-Yor theorem

For Q € M(F), we say that semi-static completeness holds if
any X € L2(F7) can be represented as

X=x+aws+ ---+awn+ (H-S)r

for some x, ay,...,a, € R and H € L3(S).

Notation:
SSC(F) = {Q € M(F) : semi-static completeness holds}
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Generalization of the Jacod-Yor theorem

For Q € M(F), we say that semi-static completeness holds if
any X € L2(F7) can be represented as

X=x+aws+ ---+awn+ (H-S)r

for some x, ay,...,a, € R and H € L3(S).

Notation:
SSC(F) = {Q € M(F) : semi-static completeness holds}

Theorem (semi-static Jacod-Yor theorem)

The extreme martingale measures are exactly the semi-statically
complete models, i.e.
ext M(IF) = SSC(F).
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Generalization of the Jacod-Yor theorem

About the proof.
@ The proof is very close to the classical case ...
@ ... but uses duality for random variables (L' — L*) instead of
processes (H' — BMO):



Introduction Setup SSC and Jacod-Yor theorem SSC and filtration structure Insider pricing Conclusions
[e]e] 00000 00e00000 00000000 00000 00

Generalization of the Jacod-Yor theorem

About the proof.
@ The proof is very close to the classical case ...
@ ... but uses duality for random variables (L' — L*) instead of
processes (H' — BMO):
1.Fix Q € ext M(F) and show that this set is dense in L' (77)

{X + Z,‘ai'ﬁi + (H S)T © X, a €R, He L2(S)} .
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Generalization of the Jacod-Yor theorem

About the proof.
@ The proof is very close to the classical case ...
@ ... but uses duality for random variables (L' — L*) instead of
processes (H' — BMO):
1.Fix Q € ext M(F) and show that this set is dense in L' (77)
{x+Ziawi+ (H-S)r: x, aeR, He L%(S)}.

2.Prove it is dense and closed in L?(77) using Hahn-Banach and
a result by Yor (see also Delbaen/Schachermayer, 1999):

Theorem (Yor (1978))

Let H" € L(S) be such that H" - S is a martingale for each n, and
suppose limp(H" - S)r = X in L' for some r.v. X. Then there is
H e L(S) such that H - S is a martingale with (H- S)1 = X.
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Generalization of the Jacod-Yor theorem
Remarks.

@ Infinitely many y¢’s would allow to treat the case of a fixed (by
the market) marginal law St ~ u

@ But the arguments we use in the above proof break down in
this case — for the moment we are only able to deal with
finitely many ¢;'s
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Generalization of the Jacod-Yor theorem

Can we say more?

@ Already in the classical case (V = (), completeness is a
strong property, but yet we do not have “control” on the
complete models. For instance, completeness holds if
F =S, and S is a strong solution to an SDE of the form

as; = O'(t; Sy:u< t)th, (Wt)t BM, o > 0.
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Generalization of the Jacod-Yor theorem

Can we say more?

@ Already in the classical case (V = (), completeness is a
strong property, but yet we do not have “control” on the
complete models. For instance, completeness holds if
F =S, and S is a strong solution to an SDE of the form

as; = O'(t; Sy:u< t)th, (Wt)t BM, o > 0.

@ Should we expect some additional structure in the semi-static
case? — We shall see an interesting consequence of SSC
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Generalization of the Jacod-Yor theorem

Can we say more?

@ Already in the classical case (V = (), completeness is a
strong property, but yet we do not have “control” on the
complete models. For instance, completeness holds if
F =S, and S is a strong solution to an SDE of the form

as; = 0'(t; Sy:u< t)th, (Wt)t BM, o > 0.

@ Should we expect some additional structure in the semi-static
case? — We shall see an interesting consequence of SSC

Notation: For any martingale N, denote
S(N) ={H-N: He LA(N)}.

This is a closed subspace of H? (stable subspace generated by N).
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A curious consequence of semi-static completeness

@ For simplicity let W = {y}, and fix @ € SSC(F)

@ Let K - S be the orthogonal projection of Eq[y | 7] onto S(S),

and define
M; = Eqly | 1] — (K - S):

Note: M7 is the part of ¢ which is not replicable by trading on S
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A curious consequence of semi-static completeness

@ For simplicity let W = {y}, and fix @ € SSC(F)

@ Let K - S be the orthogonal projection of Eq[y | 7] onto S(S),

and define
M; = Eqly | 1] — (K - S):

Note: M7 is the part of ¢ which is not replicable by trading on S

@ Then H-M L S(S) forany H € L?(M)
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A curious consequence of semi-static completeness

@ For simplicity let W = {y}, and fix @ € SSC(F)

@ Let K - S be the orthogonal projection of Eq[y | 7] onto S(S),

and define
M; = Eqly | F1] — (K - S):

Note: M7 is the part of ¢ which is not replicable by trading on S
@ Then H-M L S(S) for any H € L2(M)
@ By semi-static completeness,

H? = span{1} @ span{M} & S(S)
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A curious consequence of semi-static completeness

@ For simplicity let W = {y}, and fix @ € SSC(F)

@ Let K - S be the orthogonal projection of Eq[y | 7] onto S(S),

and define
M; = Eqly | 7] — (K - S):

Note: M7 is the part of ¢ which is not replicable by trading on S
@ Then H-M L S(S) for any H € L2(M)
@ By semi-static completeness,
H? = span{1} @ span{M} & S(S)

@ Consequently,
S(M) = span{M},

which is one-dimensional!
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A curious consequence of semi-static completeness

We will use the following result on :

Let N be a square-integrable martingale null at zero. The following
are equivalent:

(i) S(N) = span{N}
(i) N = Nr1gy[ 1) for some t* € (0, T] and some atom B of F




Introduction Setup SSC and Jacod-Yor theorem SSC and filtration structure Insider pricing Conclusions
[ee} 00000 000000@0 00000000 00000 oo

A curious consequence of semi-static completeness

We will use the following result on :

Let N be a square-integrable martingale null at zero. The following
are equivalent:

(i) S(N) = span{N}
(i) N = Nr1gy( 1) for some t* € (0, T] and some atom B of F-—

And the following one on S, when S is continuous:

Let N be a continuous local martingale, and let B be an atom of
Ft-— for some t* € (0, T]. Then Ny = No on B for all t < t*.
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A curious consequence of semi-static completeness

Recall: ¥ = {y}, Q € SSC(F). Now, for S continuous we have
M = M+1 Bx[t*,T] and Si=8yonB fort<t*
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A curious consequence of semi-static completeness

Recall: ¥ = {y}, Q € SSC(F). Now, for S continuous we have
M = Mgy 1 and Si=SyonB fort<t
By semi-static completeness,
15 = Q(B)+aMr + (H-S)r
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A curious consequence of semi-static completeness

Recall: ¥ = {y}, Q € SSC(F). Now, for S continuous we have
M = Mgy 1 and Si=SyonB fort<t
By semi-static completeness,
15 =Eo| Q(B) + aMr + (H- S)r | 71|
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A curious consequence of semi-static completeness

Recall: ¥ = {y}, Q € SSC(F). Now, for S continuous we have
M = Mgy 1 and Si=SyonB fort<t
By semi-static completeness,
15 =Eo| Q(B) + aMr + (H- S)r | 71|
~Q(B) +(H S)
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A curious consequence of semi-static completeness

Recall: ¥ = {y}, Q € SSC(F). Now, for S continuous we have
M = Mgy 1 and Si=SyonB fort<t
By semi-static completeness,
15 =Eo| Q(B) + aMr + (H- S)r | 71|
= Q(B)1g + (H- S)r15
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A curious consequence of semi-static completeness

Recall: ¥ = {y}, Q € SSC(F). Now, for S continuous we have
M = Mgy 1 and Si=SyonB fort<t
By semi-static completeness,
15 =Eo| Q(B) + aMr + (H- S)r | 71|
= Q(B)1g + (H- S)r15
= Q(B)1s
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A curious consequence of semi-static completeness

Recall: ¥ = {y}, Q € SSC(F). Now, for S continuous we have
M = Mgy 1 and Si=SyonB fort<t
By semi-static completeness,
13 = Eo[ Q(B)+aMr+(H-S)r | Tt*—]
= Q(B)1g+ (H- S)r15
= Q(B)1g = Q(B) =1.
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A curious consequence of semi-static completeness

Recall: ¥ = {y}, Q € SSC(F). Now, for S continuous we have
M = Mgy and St=SyponB fort<t
By semi-static completeness,
15 =Eq| Q(B)+aMr + (H- S)r | Fr_]
=Q(B)1g+ (H-S)r18

— Q(B)15 =  QB)=1.
M,
o
0
‘—
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Semi-static completeness and
filtration structure
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Atomic tree
@ Fix Q € M(F)
@ For A € F71, denote by t(A) the first time A becomes
measurable,

t(A) =inf{t e [0, T]: A € F1}.
An atomic tree is a finite collection T of events in ¥t s.t.
(i) every A € T is a non-null atom of Fy(4);
(i) VA,A” e Tst t(A) <t(A’), either ADA’orANA" =0;
(i) YA,A” e Tsuchthat A2 A", Q(A\ A’) > 0;
)

(iv) the leaves form a partition of Q2 (up to nullsets), and A is an
atom of F(a-)— whenever A" is a child of A.

leaf: A € Tst thereisno A’ e Tst. A’ C A; dim T: # leaves
child: A’ isachildof Aif A,A’ € T satisfy A’ C A and there is no
A” e TsuchthatA’ c A” C A
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s
Ad

0 t(A1) t(Az) t(A) T
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Atomic tree
Remarks.

@ o(T) is well-defined. It can be described as  o(T) = F¢(r),
where the stopping time (T) is the “end” of the tree:

(n= > tAna

A€T is a leaf

@ Note that dim T = dim L2(co(T)).
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Atomic tree

Remarks.

@ o(T) is well-defined. It can be described as o (T) = F¢(7),
where the stopping time £(T) is the “end” of the tree:

(r= >, tAna

A€T is a leaf

@ Note that dim T = dim L2(co(T)).

Definition
We say that S is complete on A x [t, T] for given t € [0, T] and
A € F¢if any X € L2(F7) can be dynamically replicated there:

X=x+(H-S)r on A

for some x € R and some H € L2(S) with H = 0 on [0, {].
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Semi-static completeness for continuous price processes

Recall: @ € M(F) is fixed.

Let S be continuous. Then Q € SSC(F) IFF 3 an atomic tree T s.t.

1. {Eo[zp,- |o(T)]:i= 1,...,n} has dim T — 1 lin. indep. elements,
2. Siscomplete on A x [t(A), T] for each leaf A € T.

In this case, S is constant on [[0,¢(T)] and

L3(F7) = span{1, ¥} + S(S) = L3(o(T)) & S(S).

Remark: ;= Eq[yi|o(T)] 4+ (H -S)r, i=1,...,n.
N——

orthog. proj.
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Semi-static completeness for continuous price processes

0 t b f3 T

The filtration F under Q € SSC(F). Each set of lines emanating from the
leaves of T corresponds to a dynamically complete stock price model.
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Semi-static completeness for continuous price processes

Example (Semi-statically complete continuous model)

One static claim ¢ = (S, S)7 — K with zero value at t = 0.
@ Pick t* € (0, T), 01,02 > 0 with o4 # 07».
@ Set @ =1Q' + (1 -2)Q@° where
St = oiWi_p 1y under Q'
where W is Brownian motion, and A is determined by calibration:
0 = Eq[y | Fo] = Ad5(T - t*) + (1 = A)o3(T - t*) - K.

@ Define Aj = {07(S, S)r = o?} and set T = {Q, Ay, Az).
@ T is an atomic tree with dim T = 2 and
Eqly | o(T)] = o2(T — t*)1a, + 05(T - 1)1, - K 2 0.

@ By the theorem, Q € SSC(F).
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Semi-static completeness for continuous price processes

0 tr T

The leaves A1, A; correspond to Bachelier models with volatilities
o1 > 0. Thus the “variance swap” = (S)r is priced differently under
the two models, and can be used to hedge against A; or A..
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Semi-static completeness for continuous price processes

Example (Semi-statically complete jump model, but no atomic tree)

° y=I[S.S]r-K

—t t<OAL
CStZ 1—9+f(9)Wt_g t26,9<t*
—t' + 14,01 Wit +1p,00Wep t 217, 17 <6

with 6 ~ Exp(1), W, t*, 01,02 > 0 as above, f(t) : [0, t*) - R,.

Conclusion: When the asset is allowed to jump, we do not have
anymore the tree structure.
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Pricing by informed investors
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@ G = (Gt)o<t<T: right-continuous filtration (of the informed
agent) with
¥t C Gt 0<t<T.

@ Access to the same trading instruments: risk-free asset, S, ¥
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@ G = (Gt)o<t<T: right-continuous filtration (of the informed
agent) with
¥t C Gt 0<t<T.

@ Access to the same trading instruments: risk-free asset, S, ¥

@ Consider a payoff . The robust super-hedging price of the

informed agent:
I g sup Eq[®]
QeM(G)

@ As before, we want to study ext M(G) = SSC(G).
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@ G = (Gt)o<t<T: right-continuous filtration (of the informed
agent) with
¥t C Gt 0<t<T.

@ Access to the same trading instruments: risk-free asset, S, ¥

@ Consider a payoff . The robust super-hedging price of the

informed agent:
I g sup Eq[®]
QeM(G)

@ As before, we want to study ext M(G) = SSC(G).

Question: How are SSC(G) and SSC(F) related?
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Progressive filtration enlargement

Specification of G: Progressive enlargement of F with H

Gi={)FuV H.

u>t
Smallest right-continuous filtration that contains both F and H.

@ H generated by a collection of single-jump processes X1 1y,
where X is a non-negative bounded random variable and 7 is
a random time (that is, [0, T] U {oo}-valued random variable).
(W.l.g., suppose 7 = co on {X = 0}.)

@ Remark: special cases are the classical progressive
enlargement with a random time and initial enlargement with a
random variable.
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Progressive filtration enlargement

Specification of G: Progressive enlargement of F with H

Gi={)FuV H.

u>t
Smallest right-continuous filtration that contains both F and H.

@ H generated by a collection of single-jump processes X1 1y,
where X is a non-negative bounded random variable and 7 is
a random time (that is, [0, T] U {oo}-valued random variable).
(W.l.g., suppose 7 = co on {X = 0}.)

@ Remark: special cases are the classical progressive
enlargement with a random time and initial enlargement with a
random variable.

@ For this kind of filtration enlargement there are clear-cut
results between SSC(G) and SSC(F).
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Progressive filtration enlargement

Let o be the first time S starts to move: o = inf{t € [0, T]: S; # O}.

Let S be continuous and H generated by X1, 1, k = 1,...,p.
Assume 1 > o on {0 < 1k < oo} for all k. Then

SSC(G)={Q e SSC(F) : F=G under Q}
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Progressive filtration enlargement

Let o be the first time S starts to move: o = inf{t € [0, T]: S; # O}.

Let S be continuous and H generated by X1, 1, k = 1,...,p.
Assume 1 > o on {0 < 1k < oo} for all k. Then

SSC(G)={Q e SSC(F) : F=G underQ}

In the proof we use an extension of the classical Jeulin-Yor theorem.

@ Fix Q € SSC(G)
@ Let Z be the Azéma supermartingale: Z; = Q(r >t | %)
@ Let A be is the dual predictable projection of X1, o[

Theorem (Jeulin-Yor (1978))

The following process is a G-martingale w.r.to Q:

AT 1
My = X1ret) - f L dA..
0
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Progressive filtration enlargement

Sketch of the proof of “C” (forp =1, X = 1)
@ Fix Q € SSC(G)

@ Consider the process M; = 1<t — fom Z=dAs (1)
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Progressive filtration enlargement

Sketch of the proof of “C” (forp =1, X = 1)
@ Fix Q € SSC(G)

@ Consider the process M; = 17 — fo

tAT 4

z-dAs (1)
@ By semi-static completeness,
M=My+V+H-S, (2)
for some H € L(S) and martingale V with V1 € L2(o(T))
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Progressive filtration enlargement

Sketch of the proof of “C” (forp =1, X = 1)
@ Fix Q € SSC(G)

@ Consider the process M; = 1(r<f — fom s-dAs (1)
@ By semi-static completeness,
M=My+V+H-S, (2)
for some H € L(S) and martingale V with V1 € L2(o(T))
@ By (1), (2) and continuity of S, by considering the jumps of M:

]
7= mf{te 0.7 : 5-AA + AV, = 1}
t
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Progressive filtration enlargement

Sketch of the proof of “C” (forp =1, X = 1)
@ Fix Q € SSC(G)

@ Consider the process M; = 1<t — fom idAs (1)

By semi-static completeness,
M=My+V+H-S, (2)
for some H € L(S) and martingale V with V1 € L2(o(T))
By (1), (2) and continuity of S, by considering the jumps of M:

]
7= mf{te 0.7 : 5-AA + AV, = 1}
t

By assumption, 7> o =inf{t >0: S # So}

And V is constant on o, oof by our characterization Theorem
Therefore 7= mf{t €[0,T]: AAt = 1} F-stopping time.
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Progressive filtration enlargement
Remarks.

@ From the proof it is clear that the set equivalence still holds
true without any assumption on S when ¥ = (.
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Progressive filtration enlargement
Remarks.

@ From the proof it is clear that the set equivalence still holds
true without any assumption on S when ¥ = 0.

@ We can generalize the theorem for filtration enlargements with
countably many single-jump processes.

Let S be continuous and H generated by Xi1[, 1], k € N. Assume
Tk > 0 on{0 < 1 < oo} for all k, and [{k: T(w) < T}| < o0 YV w.
Then

SSC(G) ={Q e SSC(F) : IF=G under Q}
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Conclusions

@ Motivated by robust super-hedging price computation, we study
extreme calibrated martingale measures

@ We obtain:
e Semi-static version of the Jacod-Yor theorem.

@ Description of semi-statically complete models in terms of
dynamically complete models glued together by means of an
atomic tree.

e Application to robust pricing by informed agents: under
structural assumptions, informed agents price using only those
models that render the additional information uninformative.

@ Lots of things remain to be done and appear to be within reach:

o Infinitely many static claims (— case St ~ u)

e Better understanding of price processes with jumps
e More general filtration enlargements

o ...



Thank you for your attention!
@ Walter: have a great year in Zurich!
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