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Introduction

e Background: electricity forwards
e Study ambit fields as Volterra processes in Hilbert space

e Consider representations of ambit fields

o Series representations as LSS processes
e Solutions of SPDEs in Hilbert space
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Background: electricity forwards



Background: electricity forwards Hilbert-valued ambit fields

Examples LSS representation SPDE
9000000000 00000

000000 0000 00000000

Power forwards: stylized facts of smoothed curves

e Example of power forward prices on NordPool
e Smoothed by fourth order polynomial spline

e |Imposed seasonal structure by industry spot prognosis
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e Analysis of base load quarter/month/week contracts

Pricain Euro per MWh
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constructed from NordPool forward data

e Daily forward curves 2001-2007
e The "quarterly forward curve” 1 January, 2006

e Andresen, Koekebakker and Westgaard (2010), B., Saltyte

Benth and Koekebakker (2008)

LSS representation
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e Correlation structure of quarterly contracts in NordPool
e Correlation as a function of distance between start-of-delivery

Obserwved and modeled correlation
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e High degree of "idiosyncratic” risk
e Quarterly contracts: 6 noise sources explain 96%, 7 explain
98%
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o Observed Samuelson effect on (log-)returns
e Volatility of forwards decrease with time to maturity

e Plot of Nordpool quarterly contracts, empirical volatility

Observed and modeled volatility
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e Probability density of returns is non-Gaussian
e Example: weekly and monthly contracts
e Fitted normal and NIG

e "True" and logarithmic frequency axis
e NIG=normal inverse Gaussian distribution

a3, Vo lpmm . Nkl s

SPDE
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Forward modelling by ambit processes

Extension of the HJM approach
Random field model for the smooth forward curve

e by direct modelling rather than as the solution of some
dynamic equation

Simple arithmetic model could be (in the risk-neutral setting)

F(t,x) = /t /000 g(t —s,x,y)o(s,y)L(dy, ds)

e x is "time-to-maturity”



Background: electricity forwards Hilbert-valued ambit fields Examples LSS representation SPDE
000000800 00000 000000 0000 00000000

Definition of "classical’ ambit fields

X(t,x) = / /Ag(t —s,x,y)o(s,y) L(ds, dy)

L is a Lévy basis

e g non-negative deterministic function, g(u, x,y) = 0 for
u<0.

Stochastic volatility process o independent of L, stationary
A a Borel subset of RY: "ambit” set
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e Lisa Lévy basis on RY if
1. the law of L(A) is infinitely divisible for all bounded sets A
2. if AN B =1, then L(A) and L(B) are independent
3. if Ay, Ap, ... are disjoint bounded sets, then

(U=, A) iL
i=1

o We restrict to zero-mean, and square integrable Lévy bases L

e Use Walsh's definition of the stochastic integral
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e Our model: classical ambit field with d =1 and A = [0, c0)
e Example I: exponential damping function

g(u,x,y) = exp (—a(u+x +y))

e Example II: the Musiela SPDE specification
e [ = W, Brownian motion

dF(t,x) = 8/—'{(;(,x) dt + g(x)o(t) dW/(t)

e Solution of the SPDE

F(t,x) = Fo(x+t) + /Otg(x + (t —s))o(s) dW(s)
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Hilbert-valued ambit fields

—Volterra processes in Hilbert space—
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Recall definition of "classical” ambit fields

X(t,x) = / /Ag(t —s,x,y)o(s,y) L(ds, dy)

e [ is a Lévy basis, g non-negative deterministic function,
g(u,x,y) =0 for u < 0, stochastic volatility process o

independent of L being stationary, A a Borel subset of RY:

"ambit” set

e QOur goals:

e Lift the ambit fields to processes in Hilbert space
e ..and to analyse representations of such!

SPDE
00000000

e Application of ambit fields: turbulence, tumor growth, energy

finance, fixed-income markets
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Define H-valued process t — X(t)

X0 - | T(t.5)(0(s)) dL(s)

U,V ,H three separable Hilbert spaces
s — L(s) V-valued Lévy process

e Square integrable with mean zero (L is V-martingale)
e Covariance operator Q (symmetric, positive definite, trace
class)

s — o(s) predictable process with values in U

e Stochastic volatility or intermittency
(t,s) —I(t,s), s <t, L(U,L(V,H))-valued measurable
mapping

e Non-random kernel function
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e Integrability condition for I' and o

[/ IT(t,5)(0(s)) Q2|3 ds| < oo

e We call X a Hambit field

o A sufficient integrability condition:

| Ire )8 (o)) os < o
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Characteristic functional

Proposition: Suppose that o is independent of L. For h € H it
holds

B lerpli(h X(0))] = & [oxp ([ Wu((T(e:5)(o(61)R)) o]
where W, is the characteristic exponent of L(1).

"Proof”: Condition on o, and use the independent increment property of
L along with the fact

(hT(2,5)(a(s))AL(s))n = ((T(t, 5)(o(s)))"h, AL(s))v
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Example: L = W, V-valued Wiener process
For v e V,

Vw(v) = —5(Qv,v)v

!

2
Characteristic function of X (Bochner ds-integral)
E [exp(i(h, X (t))n)]

— & foxp (=30 [ T oD )6 dshn )|

X is conditional Gaussian
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Example: from Hambit to ambit
e Let A C R" Borel set, I/ a Hilbert space of real-valued

functions on A

e Let (t,s,x,y) — g(t,s,x,y) be a measurable real-valued
function for 0<s<t<T,ye A xe B, BCR?

e Suppose V is a Hilbert space of absolutely continuous
functions on A.

e Define for o € U the linear operator on V

(t,5)(0) = /A g(t.s.y)o(y)

actingon f € V as

F(t,5)(0)f = /A g(t,s,,y)o(s, y)F(dy).
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Let H be a Hilbert space of real-valued functions on B

Let L be a V-valued Lévy process, o U-valued predictable
process

e Suppose integrability conditions on s — ['(t,s)(o(s))
X(t,x) is an ambit field

x(ex) - [ t [ ett.sxnot) Las. o

Example of Hilbert space?
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Realization in Filipovic space

elet =V=H,n=d=1 A=B=Ry
o Let w € C}(R,) be non-decreasing, w(0) =1 and
W_l S Ll(R+)
e Let U := H,, be the space of absolutely continuous functions
on R} where
2 2 10012
=0+ [ wi)IF (P dy < o0
+
e H,, separable Hilbert space.

e Introduced by Filipovic (2001)
e Main application: realization of forward rate HJM models
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Hilbert-valued OU with stochastic volatility

Fix V = H, and let A unbounded operator on H with
Co-semigroup S;.

W H-valued Wiener process with covariance operator Q.

B. Riidiger and Siiss (2015): Let o(t) be a
U = Lys(H)-valued predictable process,

dX(t) = AX(t) dt + o(t) dW/(t)

Mild solution

X(t) = SeX(0) + /Ot St—so(s) dW(s)
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X as Hambit field: define ['(t,s) € L(Lys(H), L(H))

M(t,s):0+— Si_so

A BNS SV model: o(t) = Y/2(t)

d)(t) = CY(t) dt + dL(t)

C € L(Lys(H)), with Co-semigroup S;
L is a Lys(#H)-valued "subordinator”
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e Y(t) symmetric, positive definite, Lys(H)-valued process,

o0

Ello(t)Z] = Y _(o(t)he, o(t)hi)w = Tr(V(t))

n=1

e The trace is continuous, and hence the integrability condition
for X holds

Tr(V(E)) = Tr(Sedo) + Tr( /O s, dsE[L(1)])

e [nfinite-dimensional extension of Barndorff-Nielsen and Stelzer
(2007)
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Hambit fields as Lévy semistationary (LSS) processes
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e Let {un},{vm} and {hx} be ONB in U,V and H resp.
e Recall separability of the Hilbert spaces
e Lp:=(L,vm)y are R-valued Lévy processes

e zero mean, square integrable
e but, not independent nor zero correlated

e Define LSS processes Y, m «(t) by

Yo (£) = /O gk (£:5)0n(S) dLm(s)

SPDE
00000000

&nmk(t,s) = (F(t,s)(un)Vm, hi)n on(s) == (o(s), un)u



LSS representation
[e] le]e}

Proposition: Assume

2
/||rtsy ZE[2 (SN2 ds < o0

then,
Z Ynmk k
n,mk=1

"Proof": Expand all elements along the ONB's in their respective spaces.
The integrability assumption ensures the commutation of an infinite sum
and stochastic integral wrt. L, (A stochastic Fubini theorem).
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e Barndorff-Nielsen et al. (2013): energy spot price modeling
using LSS processes

e Finite factors
e Implied forward prices become scaled finite sums of LSS
processes

e Barndorff-Nielsen et al. (2014): energy forward prices as
ambit fields
e Infinite LSS factor models!
e B. Kriihner (2014): HJM forward price dynamics
representable as countable scaled sums of OU process
e Possibly complex valued OU processes
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e Integrability condition implies the sufficient condition for
existence of Hambit field:

e By Parseval's identity

Ello(s)lz] = ZE[

e Sufficient condition for LSS representation: there exists
an>0st > a,! < oo and

> an [T 5) 2Bl s). 0 ds < o
n=1



Cmodsano e e Cotns aee T Reeoe.
Hambit fields and SPDEs
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e Known connection between an LSS process and the boundary
of a hyperbolic stochastic partial differential equation
(SPDE):

dZ(t,x) = 0xZ(t,x) dt + g(t + x, t)o(t) dL(t)

Zo(t) :== Z(t,0) = /0 g(t,s)o(s)dL(s)

e | R-valued Lévy process, x > 0
e Goal: show similar result for Hambit fields!

e Application: B. Eyjolfsson (2015+) deviced iterative (finite
difference) numerical schemes in the R-valued case using this
relationship



Assume H a Hilbert space of strongly measurable H-valued
functions on R

Suppose S right-shift operator is Cp-semigroup on H

Sef =f(E+-), feH

Generator is J¢ = 0/0¢
Consider hyperbolic SPDE in H

X(t) = 0cX(t)dt +T(t+ -, t)(o(t)) dL(t),X(0) € H

SPDE
0000000
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e Predictable #H-valued unique solution

X(t) = S:X(0) + /0 S o (s + - 5)(0(s)) dL(s)

Proposition: Assume that the evaluation map dy : H — H defined
by 0xf = f(x) € H for every x > 0 and f € H is a continuous
linear operator. If X(0) =0, Then X(t) = do(X(t)).

"Proof’: Argue that

So /Ot F(t+-,5)(o(s)) dL(s) = /Ot r(t,s)(o(s)) dL(s)

e Need a space H with 8, € L(H,H)
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Abstract Filipovic space

o fcLl (Ry,H) is weakly differentiable if there exists

loc

f' e Lt (R4, #H) such that

loc

Ry

o Integrals interpreted in Bochner sense

F(x)!(x) dx = — /R F(x)b(x) dx Vo € CZ(Ry)

SPDE
00080000

e Let w € CY(Ry) be a non-decreasing function with w(0) = 1

and

/ w(x) dx < oo
Ry
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o Define H,, to be the space of f € L} (R, H) for which there
exists f' € L1 (R, ,?H) such that

loc

112 = [FO) + / w()| ' (x) 2, dx < oo.

Ry
e H, is a separable Hilbert space with inner product

(f,8)w = ((0),8(0))x +/ w(x)(f'(x), 8"(x))n dx

Ry



Background: electricity forwards Hilbert-valued ambit fields Examples LSS representation SPDE
000000000 00000 000000 0000 00000@00

e Fundamental theorem of calculus: If f € H,,, then
fre "Ry, H), ']l < c[|f]lw, and

X+t
f(X+t)f(x):/ f'(y) dy

e Shift-operator S¢,& > 0 is uniformly bounded

ISef 115 < 2(1 + )IIFI5,

o Constant equal to ¢ = [ w™'(x) dx
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Lemma: Evaluation map dx : H, — H is a linear bounded
operator with
|0xF 3 < K[| Fl[w

"Proof": FTC, Bochner’s norm inequality and Cauchy-Schwartz
inequality yield

16.FBy = |F(x)B < 2/F(0)B, +2 /

R, R,

e We have an example H="=H,

wl(y) dy / w(y)| ()2, dy

SPDE
00000000
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Classical and abstract Filipovic space

Proposition: For £ € H*, x — Lo d,(g) = L(g(x)) € Hy for
g € Hw. Moreover, if he(y) =1+ [V w™!(z) dz and
ly = L*(hy), then

L(g(x)) = (&, x)w

"Proof”: Follows from linearity of £, FTC and Bochner's norm inequality.
Further, if 6, is the evaluation map on H,,, then &,(v) = (v, h)w,
veH,.
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Wrapping up...

Ambit fields: motivated from power forwards

Hambit fields: general framework for
e non-Gaussianity, stochastic volatility, Samuelson effect
Representation in LSS processes
e Spot price models
Representation as boundary of solution of hyperbolic SPDE
e Finite difference numerical schemes
Outlook:

e Pricing and hedging power forward options (B. Kriihner
(2015)).
e Stochastic integration (B. Siiss (2015))



Thank you for your attention!
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