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Ingredients

I FPS (Ω,Ft ,F ,P)

I State price density process

ζt = ζ0e
−

∫ t
0 rsds Et(L)

→ Risk-neutral measure dQ
dP |Ft = Et(L)

I m-dimensional semimartingale Xt
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Definition LG Process (Gabaix 2009)

(ζt ,Xt) forms (m + 1)-dimensional linearity-generating (LG)
process if

Et

[
ζT
ζt

]
= A(T − t) + B(T − t)Xt

Et

[
ζT
ζt

XT

]
= C(T − t) +D(T − t)Xt

for some continuously differentiable functions A, B, C, D.

⇒ Linear T -claims in XT have linear time-t prices in Xt

I E.g. zero-coupon bond price

P(t,T ) = A(T − t) + B(T − t)Xt
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Hidden Non-degeneracy Assumption

Support of Xt∗ / ζt∗Xt∗ / Zt∗ affinely spans Rm for some t∗ ≥ 0
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Characterization Theorem

The following statements are equivalent:

1. (ζt ,Xt) forms an LG process;

2. short rate rt , Q-drift µX ,Qt of Xt are linear, quadratic in Xt ,

rt = −A− BXt

µX ,Qt = C + (rt + D)Xt = C + (D − A)Xt − (BXt)Xt

3. drift of Yt = (ζt , ζtXt) is strictly linear in Yt ,

dYt = KYt dt + dMY
t

In either case,

K =

(
A B
C D

)
,

(
A(τ) B(τ)
C(τ) D(τ)

)
= eKτ
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Sketch of Proof

LG condition holds if and only if either

I The processes

Mt = e−
∫ t

0 rsds(A(T − t) + B(T − t)Xt)

Nt = e−
∫ t

0 rsds(C(T − t) +D(T − t)Xt)

are Q-martingales (→ set drift zero)

I Yt = (ζt , ζtXt) satisfies

Et [YT ] = eK(T−t)Yt
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Remarks

I Part 3 is definition of LG process given in Gabaix (2009)

I Gabaix (2009) refers to (BXt)Xt in

µX ,Qt = C + (rt + D)Xt = C + (D − A)Xt − (BXt)Xt

as “linearity-generating twist of an AR(1) process”
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Discussion

I Existence of LG processes (ζt ,Xt)?

I Carr, Gabaix, Wu (2009) specify Yt ,

dYt = KYt dt + dMY
t ,

and set ζt = Y1t and Xt = Y2..m+1,t/Y1,t

I Problem: Yt is not stationary: Y1t > 0 and E[Y1t ]→ 0

I Xt = Y2..m+1,t/Y1,t is stationary, but . . .

I no functional relation between ζt and Xt (e.g. ζt = Ntζt)

I nontrivial viability conditions for Xt in view of

0 < P(t,T ) = A(T − t) + B(T − t)Xt ≤ 1

I quadratic Q-drift and highly nonlinear P-drift of Xt
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Definition (Filipović, Larsson, Trolle 2014)

An m-dimensional linear-rational (LR) model consists of an
m-dimensional semimartingale Zt with linear drift,

dZt = (b + βZt) dt + dMZ
t ,

and parameters α, φ ∈ R and ψ ∈ Rm such that

ζt = e−αt
(
φ+ ψ>Zt

)
> 0.
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Linear-rational Term Structure

LR model implies linear-rational bond prices

P(t,T ) = Et

[
ζT
ζt

]
= e−α(T−t)φ+ ψ>eβ(T−t)

∫ T−t
0 e−βsb ds + ψ>eβ(T−t)Zt

φ+ ψ>Zt

and short rate

rt = −∂T logP(t,T )|T=t = α− ψ>(b + βZt)

φ+ ψ>Zt
.
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Representation as LG Process

I Define normalized factor

Xt =
Zt

φ+ ψ>Zt

I Simple algebraic fact (if φ 6= 0):

p + q>Zt

φ+ ψ>Zt
=

p

φ
+

(
q − pψ

φ

)>
Xt

⇒ Bond price and short rate become linear in Xt
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Representation Theorem: m-dim LR as (m + 1)-dim LG

An m-dimensional LR model

dZt = (b + βZt) dt + dMZ
t , ζt = e−αt

(
φ+ ψ>Zt

)
can be represented as (m + 1)-dimensional LG process (ζt ,Xt)
through Xt = Zt

φ+ψ>Zt
if and only if b = Cφ.

The respective Yt = (ζt , ζtXt) in Characterization Theorem is

Yt = e−αt(φ+ ψ>Zt ,Zt)

and the matrix K in dYt = KYt dt + dMY
t is given by

A = −α + ψ>C , B = ψ>(−Cψ> + β),

C =
b

φ
, D = −αId− Cψ> + β

(*)
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Representation Corollary 1: m-dim LR as (m + 2)-dim LG

By increasing dimension can always assume b = 0:

Z̄t =

(
Zt

1

)
, b̄ = 0, β̄ =

(
β b
0 0

)
, M Z̄

t =

(
MZ

t

0

)
, ψ̄ =

(
ψ
0

)
is econ equivalent (m + 1)-dim LR model with strictly linear drift

dZ̄t = β̄Z̄t dt + dM Z̄
t , ζt = e−αt

(
φ+ ψ̄>Z̄t

)
Corollary 3.1.

m-dim LR model can always be represented as (m + 2)-dim LG
process through

X̄t =
(Zt , 1)

φ+ ψ>Zt
.

The respective Ȳt = (ζt , ζtX̄t) = e−αt(φ+ ψ>Zt ,Zt , 1) . . .
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Representation Corollary 2

For given parameters A,B,C ,D condition (*) holds if and only if

(
1 −ψ>

)(A B
C D

)
= −α

(
1 −ψ>

)
Corollary 3.2.

The functions A, B, C, D of an (m + 1)-dimensional LG process
can be obtained from an m-dimensional LR model if and only if
the respective matrix K admits a left-eigenvector v> with v1 6= 0.
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Counterexample

For B 6= 0, C = 0, D = A Id there exists no such left-eigenvector.

⇒ not every (m + 1)-dimensional LG process (ζt ,Xt) can be
represented as LR model of dimension m or lower.

Characterization Theorem ⇒ (m + 1)-dim LG process (ζt ,Xt) can
always be represented as (m + 1)-dim LR model

Zt ≡ Yt = (ζt , ζtXt), ζt = Z1,t

Next step: characterize those (m + 1)-dim LG processes that can
be represented as m-dim LR model
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Representation Theorem: (m + 1)-dim LG as m-dim LR

Consider (m + 1)-dim LG process (ζt ,Xt) and let Yt = (ζt , ζtXt).

The following statements are equivalent:

1. (ζt ,Xt) can be represented as m-dim LR model

2. there exist parameters α, φ, ψ such that(
1 −ψ>

)
Yt = φ e−αt

3. there exist nonzero v ∈ Rm+1 and function f (t) such that

v>Yt = f (t) (**)

Note: (**) ⇒ MY
t −MY

0 ⊥ v
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Mean Reversion

Semimartingale St is mean-reverting to mean-reversion level θ
if 1

T−t
∫ T
t Et [Su] du → θ as T →∞ almost surely for all t ≥ 0.
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Representation Theorem: (m + 1)-dim LG as m-dim LR

Consider (m + 1)-dim LG process (ζt ,Xt) and let Yt = (ζt , ζtXt).

The following statements are equivalent:

1. (ζt ,Xt) can be represented as m-dim LR model Zt and Zt is
mean-reverting to level θ ∈ Rm satisfying φ+ ψ>θ > 0;

2. eαtYt is mean-reverting to level θ̃ ∈ Rm+1 satisfying θ̃1 > 0
for some α.

Mean-reversion levels are related by θ̃ = (φ+ ψ>θ, θ).
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Markov Valuation

Hansen and Scheinkman (2009) “Long-term Risk: An Operator
Approach”, Econometrica

I Economy described by Markov state Xt

I State price density forms positive multiplicative functional:

ζT (X)

ζt(X)
=
ζT−t(X ◦ θt)
ζ0(X ◦ θt)

⇒ Pricing semigroup St :

St f (x) = Ex

[
ζt
ζ0
f (Xt)

]
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Multiplicative Decomposition Theorem

Let ϕ(x) be positive eigenfunction of pricing semigroup St with
eigenvalues eρt then ζt admits the multiplicative decomposition

ζt = eρt
1

ϕ(Xt)
M̂t

where M̂t is a positive martingale with M̂0 = 1.

If Xt is recurrent and stationary under A given by dA
dP |Ft = M̂t

then this decomposition is unique.

HS (2009) also provide conditions for existence of positive ef ϕ(x)

State Price Density Decomposition 25/28



LR Models Revisited

An m-dimensional LR model

dZt = (b + βZt) dt + dMZ
t , ζt = e−αt

(
φ+ ψ>Zt

)
satisfies multiplicative decomposition for

ρ = −α, ϕ(x) =
1

φ+ ψ>z
, M̂t = 1

and can be (part of) recurrent and stationary Markov process!
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LR Models Revisited cont’d

I A is long forward measure:

ζtP(t,T )

ζ0P(0,T )
=
φ+ Et [ψ

>ZT ]

φ+ E[ψ>ZT ]
→ 1 as T →∞

Hence deflating by ζt/ζ0 amounts to discounting by gross

return on long-term bond limT→∞
P(t,T )
P(0,T )

It also implies that the long-term bond is growth optimal
under A (Qin, Linetsky 2015)

I Flexible market price of risk specification: free to modify

ζt  ζtM̂t

for some auxiliary density process M̂t
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Conclusion

I LG processes are related to LR models

I {m-dim LR models} ⊂ {(m + 1(2))-dim LG processes}

I {(m + 1)-dim LG processes} ⊂ {(m + 1)-dim LR models}

I (m + 1)-dim LG process ∈ {mean-rev. m-dim LR models} if
and only if mean-reverting after exponential scaling

I HS decomposition theorem favors mean-reverting LR model
specification

LR models = “reasonable” specifications of LG processes
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