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Statement of the problem

Consider an (arbitrage-free) implied volatility smile for a given maturity.
There exists an underlying stock price process S that generates it.

We wish to answer the following two questions:

(I) Can S describe a defaultable asset?

(II) Is S a true martingale?

ANSWER:

this can ONLY be detected in

(I) the left wing of the smile (small strikes).

(II) the right wing of the smile (large strikes).
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Joint work with C. Hillairet and S. De Marco
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The mass at zero case: the left wing literature
.
Theorem (Roger Lee, 2004)
..

......

Let S be a non-negative martingale and denote q∗ := sup
{
q ≥ 0 : E(S−q

T ) <∞
}

.

Then the left wing of the implied volatility smile behaves as

lim sup
x↓−∞

I 2(x)T/|x | = ψ(q∗) ∈ [0, 2],

where ψ(z) ≡ 2 − 4
(√

z(z + 1) − z
)

.

Remark: The lim sup can sometimes be turned into a genuine limit (Benaim-Friz).
.
Theorem (Archil Gulisashvili, 2010)
..

......

Let S be a non-negative martingale, then

I (x) =

√
|x |
T
ψ

(
log P(x)

x
− 1

)
+ O(· · · ), as x ↓ −∞.

Note: if P(ST = 0) > 0, then q∗ = 0 and the left slope is equal to its maximal
value 2. Gulisashvili’s proof does not hold in that case.
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Main result
.
Theorem (de Marco, Hillairet, Jacquier, 2014), (Gulisashvili, 2015)
..

......

Let S be a non-negative martingale, and denote p := P(ST = 0) and q := N−1(p).

• If p = 0, then limx↓−∞

(
I (x) −

√
2|x |/T

)
= −∞;

• If p > 0, then, as x ↓ −∞,

I (x) =

√
2|x |
T

+
q

√
T

+
q2

2
√

2T |x |
+
√

2πeq
2/2
∫ x

−∞
[P(ST ≤ S0e

y )−p]dy +O(· · · )

Remarks:

• Phase transition at p = 1/2;

• Gulisashvili’s formula actually holds, but with O(1).

.
Corollary: assume p > 0.
..

......

• if P(ST ≤ S0e
x ) − p = O(|x |−1/2), then I (x) =

√
2|x|
T

+ q√
T

+ O(|x |−1/2);

• if P(ST ≤ S0e
x ) − p = O(eεx ), then I (x) =

√
2|x|
T

+ q√
T

+ q2

2
√

2T |x|
+ Φ(x), with

lim sup
√

2T |x |Φ(x) ≤ 1;
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Comparison with stochastic volatility models
.

......
I (x) =

√
2|x |
T

+
q

√
T

+
q2

2
√

2T |x |
+

√
2πeq

2/2

S0ex

∫ S0e
x

0
[F (y) − F (0)]dy + O(· · · )

• Stein-Stein model: dSt = St |σt |dWt and dσt = κ(θ − σt)dt + ξdW⊥
t ;

I (x ,T ) =

√
γ1|x |
T

+
γ2√
T

+ O(|x |−1/2), as x ↓ −∞,

with γ1 ∈ (0, 2).

• Heston: dσ2
t = κ(θ − σ2

t )dt + ξσtdBt ;

I (x ,T ) =

√
γ1|x |
T

+
γ2√
T

+
γ3 log(|x |)√

|x |
+ O(|x |−1/2), as x ↓ −∞,

with γ1 ∈ (0, 2).

• Uncorrelated Hull-White: dσt = σt(νdt + ξdW⊥
t );

I (x) =

√
2|x |
T

−
log |x | + log log |x |

2Tξ
√
T

+ O(1), as x ↓ −∞.

Antoine Jacquier Martingale information of the implied volatility smile



. . . . . .

Statement of the problem
The mass at zero case

Strict local martingales

Review of the literature
Main results
Financial implications

Example. The CEV model: dSt = σS1+β
t dWt

S is a true (non-negative) martingale if and only if β ≤ 0; When β ∈ [−1/2, 0),

P(ST ∈ ds) = −
s

1/2
0 s−2β−3/2

σ2βT
exp

(
−
s−2β

0 + s−2β

2σ2β2T

)
I−ν

(
s−β

0 s−β

σ2β2T

)
ds,

P(ST = 0) = 1 − Γ

(
−ν,

s−2β
0

2σ2β2T

)
.

As s ↓ 0, one obtains P(ST ∈ ds) ∼ const × s2|β|−1ds, which explodes at the origin
when β ∈ (−1/2, 0), and tends to a constant when β = −1/2.

Figure: s0 = 0.1,T = 6.13, β = −0.4, σ = 0.1, which implies p ≈ 0.00059.
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Example. The SABR model
(Joint work with A. Gulisashvili and B. Horvath).

dSt = YtS
β
t dWt , dYt = νYtdZt , d⟨W ,Z⟩t = ρdt,

with β ∈ (0, 1), ν > 0, ρ ∈ (−1, 1). One can show that

P(St = 0) =

∫ ∞

0
P
(
S̃r = 0

)
P
(∫ t

0
Y 2
s ds ∈ dr

)
dr ,

where S̃ is the unique strong solution to dS̃t = S̃β
t dWt .

Figure: Parameters: (ν, β, ρ, S0,Y0,T ) = (0.3, 0, 0, 0.35, 0.05, 10) for the left plot, and
(ν, β, ρ, S0,Y0,T ) = (0.6, 0.6, 0, 0.08, 0.015, 10) for the right graph. Ob lój’s expansion violates
this upper bound. Large-time mass: 28.3% (left), 3.1% (right).
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Financial implications: smile symmetries

• Absence of symmetry: If p = 0, then the smile cannot be symmetric.

• Variance swap prices are infinite: using

1

2
E (⟨log(S)⟩T ) =

∫ S0

0

P(K)

K2
dK +

∫ ∞

S0

C(K)

K2
dK

and lim
K↓0

P(K)

K
= P(ST = 0).

• Gamma swap prices are not impacted (to that extent) by potential default.
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Joint work with M. Keller-Ressel
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Detecting strict local martingales

Consider a one-dimensional diffusion

dSt = σ(St)dWt , S0 > 0.

.
Proposition (Engelbert et al., Mijatović-Urusov...)
..

......

(i) St > 0 almost surely for all t > 0 if and only if

∫ 1

0

z2dz

σ2(z)
= ∞;

(ii) S is a strict local martingale if and only if

∫ ∞

1

z2dz

σ2(z)
<∞.

Jarrow, Kchia and Protter used (ii) to test whether a given underlying (LinkedIn and
gold) was a true martingale or exhibited a bubble. Their approach was based on
devising a statistical procedure to estimate σ() from time series.

Goal here: develop an alternative test, based on the observed implied volatility smile.
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Strict local martingales, option prices, implied volatility
Consider the strict local martingale (CEV) process dSt = S2

t dWt .

CS (K) := E(ST − K)+ = S0

(
N (κ− δ) −N (−δ) + N (δ) −N (κ + δ)

)
− K

(
N (κ + δ) −N (δ − κ) +

n(κ+ δ) − n(κ− δ)

δ

)
,

PS (K) := E(K − ST )+ = S0K
√
T (ζ+N (ζ+) + n(ζ+) − ζ−N (ζ−) − n(ζ−)) ,

where δ :=
1

S0

√
T
, κ :=

1

K
√
T
, ζ± :=

1
√
T

(
±

1

S0
−

1

K

)
.
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Set-up: (S,Q): market model without arbitrage opportunities (NFLVR). S0 = 1.

Notations: K = ex .

Consequences and remarks:

• Martingale defect: m := 1 − EQ(ST ) > 0.

• Put-Call parity fails, in particular CS (x) − PS (x) = 1 − ex −m

• Bounds for CS : (1 − ex −m)+ ≤ CS (x) ≤ 1 −m.

Link with no-arbitrage theory:

• Consider a Call option valued at (1 − ex −m)+. Choose x ≤ log(1 −m), and
construct the portfolio Long Call, short Stock and m + ex cash.
Payoff: m + (ex − ST )+ > 0.
Resolution of the ‘paradox’: the short position in S implies that the portfolio is
unbounded from below, and hence not admissible in the sense of NFLVR.
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Pricing with collateral

.
Theorem: Cox-Hobson (2005)—simplified
..

......

Let G be a positive convex function satisfying lim sups↑∞ s−1G(s) = α and G(s) ≤
(s − ex )+. The fair price of a European Call option is EQ(ST − ex )+ + αm =: Cα

S (x).

Note: α represents the amount of collateral the option seller needs to post.
Furthermore, limx↑∞ Cα

S (x) = αm and limx↑∞(Pα
S (x) − ex ) = m− 1.

.
Theorem: Madan-Yor (2006)—fully collateralised price α = 1
..

......

For any sequence of stopping times (τn)n≥0,

CMY
S (x) := lim

n↑∞
EQ (ST∧τn − ex )+ = (1 − ex )+ +

1

2
EQ(Lx

T ) = CS (x) + πS
T ,

where (Lx
t )t≥0 denotes the local time of S at level ex , and where the penalty term reads

πS
T = lim

z↑∞
zQ

(
sup

0≤u≤T
Su ≥ z

)
= 1 − EQ(ST ) = m.
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A first duality result

Definition
Q, P: probability measures and T : fixed time horizon.
S: strictly positive local Q-martingale; M: non-negative true P-martingale.
τ := inf{t > 0 : Mt = 0} > 0,P-almost surely.
We say that the pair (S,Q) is in duality to (M,P) if Q ≪FT

P with

dQ
dP

∣∣∣∣
FT

= MT and St =
1

Mt
P-a.s. on {t < τ ∧ T}.

.
Duality result
..

......

Let (M,P) and (S,Q) be market models in duality, then

m = 1 − EQ(ST ) = 1 − EP(11{τ>T}) = P(τ ≤ T ) = P(MT = 0).

Furthermore m > 0 if and only if Q is not equivalent to P on FT .

Example: Let dM = σ(M)dW P, and σ̃(y) ≡ y2σ(1/y). Then dS = σ̃(S)dWQ and∫ 1

0

ydy

σ̃2(y)
=

∫ ∞

1

zdz

σ2(z)
and

∫ ∞

1

ydy

σ̃2(y)
=

∫ 1

0

zdz

σ2(z)
.
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Put-Call Duality

.
Proposition: Call-Put relationships
..

......

Define PM(x) := EP(ex −MT )+ and CM(x) := EP(MT − ex )+. Let (M,P) and (S,Q)
be market models in duality. For any α ∈ [0, 1],

Cα
S (x) = exPM(−x) + (α− 1)m and PS (x) = exCM(−x).
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Implied volatility: existence

IPS : implied volatility corresponding to the Put price on S (under Q).

IαS : implied volatility corresponding to the α-collateralised Call price on S (under Q).

.
Theorem: Existence of implied volatilities
..

......

• IPS is well defined on R.

• I 1
S ≡ IPS .

• For α ∈ [0, 1), there exists x∗α such that IαS is not well defined on (−∞, x∗α).

• Whenever IαS (x) is well defined, IαS (x) < IPS (x).
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Implied volatility: asymptotic behaviour

.
Theorem: Asymptotic behaviour of the smile (not using duality)
..

......

Let S be a strict Q-local martingale with m ∈ (0, 1) and α ∈ (0, 1). As x ↑ ∞,

IαS (x) =

√
2x

T
+

N−1(αm)
√
T

+ o(1), and IPS (x) =

√
2x

T
+

N−1(m)
√
T

+ o(1).

.
Corollary
..

......

• If α = 0, then lim
x↑∞

(
I 0
S (x) −

√
2x

T

)
= −∞;

• if m = 0, for α ∈ [0, 1], lim
x↑∞

(
I pS (x) −

√
2x

T

)
= lim

x↑∞

(
IαS (x) −

√
2x

T

)
= −∞.

Link with Benaim-Friz-Lee: dS = S2dW . p∗ := sup{p ≥ 0 : E(S1+p
T ) <∞} = 3, so

that lim sup I (x)2T/x = ψ(p∗) < 2. Benaim-Friz-Lee does not hold in the strict local
martingale case.
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Duality and implied volatility symmetry
.
Theorem: Smile symmetry
..

......

Let S be a positive strict local Q-martingale in duality with the true P-martingale M
with mass at zero. Then, for all x ∈ R, I pS (x) = I 1

S (x) = IM(−x). Furthermore, for any
α ∈ (0, 1), IαS cannot be symmetric.

.
Theorem: Smile asymptotics refined
..

......

S: positive strict local Q-martingale. G(x) := EQ(ST 11{ST≥ex}) and n := N−1(m).

(i) If G(x) = o(x−1/2) as x tends to ∞, then, with 0 ≤ lim supx↑∞ Ψ(x) ≤ 1

I pS (x) = I 1
S (x) =

√
2x

T
+

n
√
T

+
n2

2
√

2Tx
+

exp( 1
2
n2)

√
2Tx

Ψ(x), as x ↑ ∞.

(ii) If G(x) = O(e−εx ) as x tends to ∞, for some ε > 0, then

I pS (x) = I 1
S (x) =

√
2x

T
+

n
√
T

+
n2

2
√

2Tx
+ Φ(x), as x ↑ ∞,

where lim supx↑∞
√

2Tx |Φ(x)| ≤ 1.
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Numerical example: dS = S1+βdW

Figure: (S0, β, σ,T ) = (1, 2.4, 10%, 1). The horizontal axis represents the log strikes; the left

figures represent the true value of x 7→ I 1
S (x) (solid line) and its approximation (crosses). The

right graph represents the error between the true value and its approximation.
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Numerical and practical considerations

• Q: Given observed data, can we construct a rigorous ‘local martingale test’?

• A: Highly dependent on the number of points used to compute the right slope
(also liquidity issue...).

• Q: Boundary condition for uniqueness of the corresponding Cauchy problem?

• A: in progress..., see also Ekstrom-Tysk.

• In fact, any test aimed at detecting the strict local martingale property has to be
asymptotic; let RT ,x̃ := [0,T ] × (−∞, x̃), then

sup
(t,x)∈RT,x̃

|PS (x)−PSn (x)| = sup
(t,x)∈RT,x̃

|EQ(ex−ST )+−EQ(ex−Sn
T )+| ≤ ex̃Q(τn ≥ T ),

where Sn is the stopped true martingale (along the localising sequence).

• Still...warning tool for extrapolation issues: for local-stochastic volatility models
(Guyon-Henry-Labordère), arbitrage-free regularisation of SABR..
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• Q: Given observed data, can we construct a rigorous ‘local martingale test’?

• A: Highly dependent on the number of points used to compute the right slope
(also liquidity issue...).

• Q: Boundary condition for uniqueness of the corresponding Cauchy problem?

• A: in progress..., see also Ekstrom-Tysk.

• In fact, any test aimed at detecting the strict local martingale property has to be
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