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The basic question . . .
. . . which is still somewhat open

Setup:
I Black-Scholes model with positive interest rate
I vAm,g(ϑ, x): fair value of an American option with

payoff function g(x), time to maturity ϑ, stock price x
I vEu,f (ϑ, x): fair value of a European option with

payoff function f (x), time to maturity ϑ, stock price x

Consider the American put g(x) := (K − x)+.
Question: Is there a representing European payoff
f (x) in the sense that

I vAm,g = vEu,f in the continuation region of g and
I g ≤ vEu,f in the stopping region (and hence

everywhere)?

(Or at least for some g? Or even for all g?)
This would imply that the American put allows for a
static European hedge.
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Cheapest dominating European options (CDEO)
Christensen (Math. Fin. 11)

Black-Scholes model, American payoff g(x), T ,S(0) given
Solve

min
f

vEu,f (T ,S(0))

subject to vEu,f (ϑ, x) ≥ g(x) for all x > 0 and all ϑ ≤ T
CDEO: minimizer f if it exists
semi-infinite linear programming
upper bound for π = vAm,g(T ,S(0)), but surprisingly close
implications of equality vEu,f (T ,S(0)) = vAm,g(T ,S(0)) (if true):

I new algorithm for American options
I static European hedge for American options
I interpretation of early exercise premium as payoff
I properties of early exercise curve
I solve free boundary problems by extension
I alternative supermartingale decomposition
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Computing American option prices by minimization
over sets of martingales

Davis & Karatzas (94), Rogers (02), Haugh & Logan (04):

π = vAm,g(T ,S(0)) = inf
M mart., M(0)=0

EQ

(
sup

t∈[0,T ]

(
e−rtg(S(t))−M(t)

))
“≥” follows from the Doob-Meyer decomposition

vAm,g(T − t ,S(t))e−rt = π + M?(t)− A?(t)

with M?(0) = 0 = A?(0), M? martingale, A? ≥ 0, A? increasing.
Christensen (11):

π = vAm,g(T ,S(0)) ≤ inf
vEu,f dominating g

vEu,f (T ,S(0))

“≥” (if true) would rely on decomposition

vAm,g(T − t ,S(t))e−rt = π + M̃(t)− Ã(t)

with M̃(0) = 0 = Ã(0), M̃ martingale, Ã ≥ 0,
M̃ Markov-type, i.e. M̃(t) = m(T − t ,S(t)) for some m.
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Embedded American options
Jourdain & Martini (Ann. IHP Anal. nonlin. 01, AAP 02)

Black-Scholes model,
given European payoff f (x)

embedded American payoff

g(x) = inf
ϑ

vEu,f (ϑ, x)

(
= vEu,f (ϑ(x), x)

)
(ϑ ∈ [0,∞) or ϑ ∈ [0,T ])
If curve x 7→ ϑ(x) is nice:

I g ≤ vEu,f ,
I vAm,g = vEu,f in continuation region of g,
I The embedded early exercise curve

x 7→ ϑ(x) is the early exercise curve of g.
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Examples
of embedded American payoffs

B(t) = 1,
S(t) = exp(

√
2W (t)− t)

European payoff
f (x) = 3x1/2 + x3/2

American payoff
g(x) = 4x3/41{x<1} + f (x)1{x≥1}

early exercise curve
ϑ(x) = − log(x)1{x<1}

Note that g is analytic on (0,1).
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Examples
of embedded American payoffs ct’d

B(t) = 1,
S(t) = W (t)
European payoff
f (x) = (x2 − 1

2)2

American payoff
g(x) = 2x2(1− 4x2)1{x2<1/6} + f (x)1{x2≥1/6}

early exercise curve
ϑ(x) = (1

2 − 3x2)1{x2<1/6}
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Examples
of embedded American payoffs ct’d

American butterfly in the Bachelier model:
B(t) = 1,
S(t) = W (t)
European payoff
f (x) = 21{x≤−1} + (1− x)1{−1<x<1}

American payoff
g(x) = (1 + x)1{−1<x<0} + (1− x)1{0≤x<1}

early exercise curve ϑ(x) =∞1{x=0}
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Examples
of embedded American payoffs ct’d

Jourdain & Martini (01):
B(t) = exp(rt),
S(t) = S(0) exp((r − σ2

2 )t + σW (t))

European payoff
f (x) = x1{x>K}

American payoff

g(x) = f (x)Φ
(

2
σ

√
(r + σ2

2 ) log x
K

)
early exercise curve
ϑ(x) = log(x)/(r + σ2

2 )1{x>K}
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Examples
of embedded American payoffs ct’d

European put in the Black-Scholes model:
B(t) = exp(rt),
S(t) = S(0) exp((r − σ2

2 )t + σW (t))

European payoff f (x) = (K − x)+

yields an embedded American option,
but only up to some maximal T
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Some bad news first . . .
. . . the second one making me nervous at some point

Strehle (14): no representation for the American put in the
Cox-Ross-Rubinstein model
Jourdain & Martini (02): no generating European payoff exists for
American put!?

22 / 31



A sufficient criterion
“for the engineer”

American payoff: g(x) = ϕ(x)1{x≤K},
ϕ holomorphic, bounded, positive on (0,K ), and ϕ(K ) = 0

Theorem (Christensen, K., Lenga 15)
The CDEO f exists (as a generalized function). If

vEu,f (T + ε, x) <∞ for some ε > 0, x < K ,
limϑ→0 vEu,f (ϑ, x) > ϕ(x) for any x < K ,
for any x ≤ K , function ϑ 7→ vEu,f (ϑ, x) has a unique minimum in
some ϑ(x) (the embedded early exercise curve of the CDEO f ),
for some x0 we have

I ϑ(x) = T for x ≤ x0,
I ϑ(x) ∈ (0,T ) for x ∈ (x0,K ),

then the CDEO f represents g.
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Numerical inspection for the American put
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Key steps of the proof
Key ingedients:

I convex duality in locally convex spaces
I identity of analytic functions

Primal problem: find CDEO (in space of generalized functions/
distributions/measures in order to warrant existence)
Domain of dual problem: measures on [0,T ]× R++

(one Lagrange multiplier for each constraint vEu,f (ϑ, x) ≥ g(x))
Establish weak duality, existence of primal and dual optimizer,
strong duality, complementary slackness condition
Recall: Lagrange multiplier 6= 0 only if constraint is binding.
Here: support of dual optimizer ⊂ {(ϑ, x) : vEu,f (ϑ, x) = g(x)}
Slackness condition: gBm started on support of dual optimizer
has lognormal law at T .
Using assumptions and identity of analytic functions: support of
dual optimizer must be nice connected curve.
Consequence: Am. payoff g is represented by its CDEO.
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A bold conjecture
stated informally

Necessary:
I g analytic on the set where the optimal exercise time /∈ {0,T}.
I time horizon T “not too large”

Conjecture: If
I g is analytic on {x ∈ R+ : ∂

∂ϑvEu,g(0, x) < 0} and
I the early exercise boundary has derivative ϑ′(x) /∈ {0,±∞} up to

time horizon T ,

then maybe g is representable up to time horizon T .
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Where are we now?

Interesting relation between American and European options
Several important implications of equality
Verification theorem based on qualitative properties of the CDEO
Not yet clear:

I Rigorous proof for the American put?
I How generally does equality hold?
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