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The basic question . ..

... which is still somewhat open
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The basic question . ..

... which is still somewhat open

@ Setup: (S(0), T)
» Black-Scholes model with positive interest rate
> Vam,g(?, x): fair value of an American option with

payoff function g(x), time to maturity «, stock price x |
> Vey £(U, x): fair value of a European option with Continuation
payoff function f(x), time to maturity J, stock price x - region

"1 Stopping
**1 region
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f(x) in the sense that

> Vam.g = VEu,r IN the continuation region of g and
> g < Vgu s In the stopping region (and hence
everywhere)?

(Or at least for some g? Or even for all g?)

Continuation

region

"1 Stopping
**1 region

4/31



The basic question . ..

... which is still somewhat open

@ Setup:

» Black-Scholes model with positive interest rate
> Vam,g(?, x): fair value of an American option with

payoff function g(x), time to maturity ¥, stock price x

> Vey £(U, x): fair value of a European option with
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f(x) in the sense that

> Vam.g = VEu,r IN the continuation region of g and
> g < Vgu s In the stopping region (and hence
everywhere)?

(Or at least for some g? Or even for all g?)

@ This would imply that the American put allows for a
static European hedge.
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Cheapest dominating European options (CDEQ)

Christensen (Math. Fin. 11)

@ Black-Scholes model, American payoff g(x), T, S(0) given

@ Solve

mfin VEu,f( Ta S(O))

subject to vg, (v, x) > g(x) forallx >0andally < T

CDEO: minimizer f if it exists

semi-infinite linear programming

upper bound for 7 = vam ¢(T, S(0)), but surprisingly close

implications of equality vg, ¢( T, S(0)) = Vamo( T, S(0)) (if true):
» new algorithm for American options

static European hedge for American options

interpretation of early exercise premium as payoff

properties of early exercise curve

solve free boundary problems by extension
alternative supermartingale decomposition

vV V. v v Y
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Computing American option prices by minimization
over sets of martingales

@ Davis & Karatzas (94), Rogers (02), Haugh & Logan (04):

_ _ . E —rt - M
T vanolT.SO) =, i o sup (e7"g(S(r) - M(D) )

“>" follows from the Doob-Meyer decomposition
Vamg(T = 1, S(t))e ™" = 7 + M*(t) — A*(t)
with M*(0) = 0 = A*(0), M* martingale, A* > 0, A* increasing.
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Computing American option prices by minimization
over sets of martingales

@ Davis & Karatzas (94), Rogers (02), Haugh & Logan (04):

_ _ . E —rt - M
T vanolT.SO) =, i o sup (e7"g(S(r) - M(D) )

“>" follows from the Doob-Meyer decomposition
Vam,g(T — L, S(t))e " = x4+ M*(t) — A*(t)
with M*(0) = 0 = A*(0), M* martingale, A* > 0, A* increasing.
@ Christensen (11):
T = Vam,g( T, S(0)) < inf Veu (T, S(0))

Vey,r dominating g
“>" (if true) would rely on decomposition
Vam,g(T — £, S(t))e™" = 7 + M(t) — A(t)

with //(0) = 0 = A(0), M martingale, A > 0,
M Markov-type, i.e. M(t) = m(T — t, S(t)) for some m.
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Embedded American options
Jourdain & Martini (Ann. IHP Anal. nonlin. 01, AAP 02)

@ Black-Scholes model,
given European payoff f(x)
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Embedded American options
Jourdain & Martini (Ann. IHP Anal. nonlin. 01, AAP 02)

@ Black-Scholes model,
given European payoff f(x)

@ embedded American payoff

9(x) = infviey ¢(¥, x) ( = VEu,f(ﬁ(X)ax))
(¥ € [0,00) or ¢ € [0, T])
@ If curve x — v(x) is nice:
> 9 < VEu, s,
> Vam.g = VEu,r IN continuation region of g,
» The embedded early exercise curve
x — 19(x) is the early exercise curve of g.
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Examples

of embedded American payoffs

@ B(t)=1,
S(t) = exp(V2W(t) — t)
@ European payoff
f(x) = 3x1/2 4 x3/2
@ American payoff
g(x) = 4x3* o1y + F(X) 1 oy
@ early exercise curve
9(x) = —log(x)1 (x<1}
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Examples

of embedded American payoffs

@ B(t)=1,
S(t) = exp(V2W(t) — t)
@ European payoff
f(x) = 3x1/2 4 x3/2
@ American payoff
g(x) = 4x3* o1y + F(X) 1 oy
@ early exercise curve
9(x) = —log(x)1(x<1}
@ Note that g is analytic on (0, 1).

15/31



Examples

of embedded American payoffs ct'd

@ B(t)=1,
S(t) = W(t)
@ European payoff
f(x) = (x* = 3)?
@ American payoff
g(x) =2x°(1 = 4x*)1 o1 /6y + F(X)1 (x251 /6
@ early exercise curve
9(X) = (5 — 3x%)121/6)
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Examples

of embedded American payoffs ct'd

American butterfly in the Bachelier model-
@ B(t)=1,
S(t) = W(t)
@ European payoft
f(x) =21 <1y + (1 = X)) Zqcxeny
@ American payoff
9(x) = (1 + x)1_1oxcoy + (1 = X)1j0<x<ty
@ early exercise curve U(x) = ool g

17/31



Examples

of embedded American payoffs ct'd

Jourdain & Martini (01):
@ B(t) = exp(rt),
S(t) = S(0) exp((r — %)t + o W(1))
@ European payoff
f(X) = X1 {x>K}
@ American payoff
g(x) = f(x)®(2\/(r+ %) log %)
@ early exercise curve
9(x) = 10g(x)/(r + 5) 1oy
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Examples

of embedded American payoffs ct'd

European put in the Black-Scholes model:
@ B(t) = exp(rt), +
S(t) = S(0) exp((r — %)t + o W(t))
@ European payoff f(x) = (K — x)*
@ yields an embedded American option,
but only up to some maximal T
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e A new result
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Some bad news first . ..
...the second one making me nervous at some point
@ Strehle (14): no representation for the American put in the
Cox-Ross-Rubinstein model

@ Jourdain & Martini (02): no generating European payoff exists for
American put!?

First, in Section 2 we design a family of European payoffs which verify very

crude necessary conditions for $(x) = (K — x)™ to have any chance to hold. This
1s the main step, it relies on the parameterization of ¢ by a measure h related
to +A@. Then we focus on the Continuation region. Among our family we find
necessary and sufficient conditions which grant that the equation inf;~ v, (7, x) =
vy (7(x), x) defines a curve which displays the same qualitative features as the free
boundary of the American Put (Section 3).

Unfortunately, it is easy to see that for any function among our family @(x) =
(K — K*)(x/K*)"“1(,>k~+ below K™, which is not satisfactory. The third step
1s to prove that the price of the American option with modified payoft (K —
x)"'IL{XEK*} + @(x)1y>k*}, denoted by @), to emphasize the dependence on the
parameter h, and matching (K — x)* both for x > K and for x < K* is still
embedded in v (7, x): v%?(n x) = (K—x)"']l{xig*}—{—v@(r\f?(x), x)1 (x> k). This
1s done 1n Section 4.

Since we show that ¢, cannot be equal to the Put payoff everywhere [indeed
@K *T) > 0], we believe that at this stage there is little to get from further
calculations. The last stage 1s to select among our family the point 2* so that,
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A sufficient criterion

“for the engineer”

@ American payoff: g(x) = o(X)1x<k1,
@ ¢ holomorphic, bounded, positive on (0, K), and ¢(K) =0

Theorem (Christensen, K., Lenga 15)

The CDEO f exists (as a generalized function). If
@ Ve (T +€,Xx) <ooforsomee>0,x <K,
@ limy_,0 Veyr(V, X) > p(x) forany x < K,

@ for any x < K, function v — vg,¢(9, x) has a unique minimum in
some J(x) (the embedded early exercise curve of the CDEOQO 1),
@ for some xy we have
» J(x) =T for x < X,
» J(x) € (0, T) for x € (xo, K),

then the CDEO f represents g.
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Numerical inspection for the American put




Time to maturity t
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Key steps of the proof

@ Key ingedients:
» convex duality in locally convex spaces
» identity of analytic functions
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@ Key ingedients:
» convex duality in locally convex spaces
» identity of analytic functions

@ Primal problem: find CDEO (in space of generalized functions/
distributions/measures in order to warrant existence)

@ Domain of dual problem: measures on [0, T] x R,
(one Lagrange multiplier for each constraint vg (9, x) > g(x))

@ Establish weak duality, existence of primal and dual optimizer,
strong duality, complementary slackness condition

@ Recall: Lagrange multiplier ## 0 only if constraint is binding.
Here: support of dual optimizer C { (v, x) : Vg, #(¥, X) = g(x)}

@ Slackness condition: gBm started on support of dual optimizer
has lognormal law at T.

@ Using assumptions and identity of analytic functions: support of
dual optimizer must be nice connected curve.

@ Consequence: Am. payoff g is represented by its CDEO.
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A bold conjecture

stated informally

@ Necessary:

» g analytic on the set where the optimal exercise time ¢ {0, T}.
» time horizon T “not too large”
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A bold conjecture

stated informally

@ Necessary:

» g analytic on the set where the optimal exercise time ¢ {0, T}.
» time horizon T “not too large”

@ Conjecture: If
» gis analyticon {x € Ry : -2 g, 4(0,x) < 0} and
» the early exercise boundary has derivative ©'(x) ¢ {0, +oc0} up to
time horizon T,

then maybe g is representable up to time horizon T.
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Outline

e Conclusion
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Where are we now?

@ Interesting relation between American and European options
@ Several important implications of equality

@ Verification theorem based on qualitative properties of the CDEO

@ Not yet clear:

» Rigorous proof for the American put?
» How generally does equality hold?
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