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1. INTRODUCTION

Back in 1999, Erhard Robert FERNHOLZ introduced
a construction that was both

(i) remarkable, and

(ii) remarkably easy to prove.

He showed that for a certain class of so-called “functionally-
generated” portfolios, it is possible to express the wealth they
generate, discounted by (denominated in terms of) the total
market capitalization, solely in terms of the individual companies’
market weights — and to do so in a pathwise manner, that

does not involve stochastic integration.

N
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This fact can be proved by an application of ITO's rule.
Once the result is known, its proof can be assigned as a
moderate exercise in a Master's level stochastic calculus
course.

The discovery paved the way for finding simple, structural
conditions on /arge equity markets — that involve more than
one stock, and typically thousands — under which it is
possible to outperform the market portfolio (w.p.1).

Put a little differently: conditions under which (strong)
arbitrage relative to the market portfolio is possible.

Bob FERNHOLZ showed also how to implement this
outperformance by simple portfolios — which can be
constructed solely in terms of observable quantities,
without any need to estimate parameters of the
model or to optimize.



Although well-known, celebrated, and quite easy to prove,
FERNHOLZ's construction has been viewed over the past
154 years as somewhat “mysterious”.

In this talk, and in the work on which the talk is based,
we hope to help make the result a bit more celebrated and
perhaps a bit less mysterious, via an interpretation of
portfolio-generating functions as LYAPUNOV functions

for the vector process of relative market weights.

We will try to settle then a question about
functionally-generated portfolios that has been open
for 10 years.
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The aim of this talk is to offer an interpretation of
FERNHOLZ’s Generating Functions as LYAPUNQOV
functions.

Functions G : Al — (0,00), in other words, defined on
(an open neighborhood of) the lateral face of the strictly
positive unit simplex, such that the process

G(u(t)), 0<t< oo

is a supermartingale under an appropriate probability measure
(a very liberal interpretation of the term “Lyapunov function”).

. Here p(t) = (pa(t), -+, un(t))" is the vector of market weights
of the individual companies in the market; that is, the ratios
X,'(t)

i=1,--,n

pilt) = Xe(t) + -+ Xao(t)

of their own capitalizations X;(t), divided by the capitalization
of the entire market.
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We posit that this interpretation, and this interpretation ALONE,
leads to the possibility of arbitrage relative to the market portfolio
under suitable conditions.

Then as a second, and in many ways more decisive, step, the
construction of FERNHOLZ (1999, 2002) identifies a very specific
portfolio — generated by the function G : A"l — (0, 00) itself, or
by a suitable “shift” of this function — which implements the
strong arbitrage on this SAME range of time-horizons.

6
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2. THE SETTING

We place ourselves on a probability space (2, F,P) endowed
with a right-continuous filtration F = {F(t)}o<t<c that
satisfies 7(0) = {0, Q2} mod. P.

. We consider continuous semimartingales (sums of local
martingales and processes of finite variation)

Si(-) = Mi(-) + Bi() » i=1---,n

with S;(0) = 0. These will play the role of asset returns, and their
stochastic exponentials

X,() = X,(O) . 5(5,)(), dX,'(t) = X,'(t) dS,'(t) coi=1,---.,n

will play the role of asset capitalizations.

The real constants X1(0),-- -, X,(0) are strictly positive, so these
capitalizations are strictly positive, continuous semimartingales.
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With these processes thus constructed, we introduce the various
assets’ relative weights

Xi(t) i=1...-.n
X1(t) + -+ Xn(t) ' ’ ’

pi(t) =

just as before. These are positive, continuous semimartingales in
their own right. NO OTHER ASSUMPTION.

. We denote by 7 = #(S) the collection of progressively measu-
rable vector processes m = (71, ,7,)" which are integrable with
respect to the vector semimartingale S = (S1,---, S,)’

. We interpret these processes as investment rules, and denote by
V7(-) their corresponding “value” or "wealth” process, namely

-3

dV7T

Zw, t) dS;( VT(0)=1.

To wit: V7(-) is the stochastic exponential of [ (m(t),dS(t)).



In this scheme of things, m(t) is the proportion of wealth V7(t)
invested at time t in the /th asset; the proportion

mo(t) = 1= mi(t)
i=1

is kept under the mattress ( “invested in a bank account™).

. We call an investment rule 7(-) long-only, if it satisfies
WO(') Z 07 7Tl(‘) Z 07 T 7rn(') Z 0.

The investment rule x(-) = (0,---,0) keeps the entire wealth

under the mattress:

1.

ro() =1, V*()
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. We call an investment rule () portfolio, if it satisfies

n

d omi() = 1.

i=1

We denote the class of portfolios by 3, and by B, , the class of
long-only portfolios.

e The Market Portfolio

u() = () s mal) € B

is an important long-only portfolio. It generates wealth
proportional to the total market capitalization:

X1(t) + -+ Xa(t)
X1(0) + -+ X,n(0)

VE() =
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e It is easy to check that the performance of an arbitrary portfolio
7(-), when measured relative to the performance of the market —
a very natural “discounting” — has the dynamics

Vi) V() — milt)
d<vu(t)> = <W(t)> ; ) dui(t), YV 7() €P.

Please note the formal analogy with the dynamics of the wealth
process from a couple of slides ago:

" 7T,'(t)
= ()

dV7T(t) = V™(t) dXi(t), vV m(-)ed.
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3. NUMERAIRE AND ARBITRAGE

Definition: We shall say that an investment rule 7(-) is Arbitrage
relative to another rule p(-), over a fixed time-horizon [0, T, if

P(V™(T) > V*”(T)) =1, P(V™(T)> V*(T)) > 0.

We call this relative arbitrage strong, if in fact
IP’(V”(T) > V"’(T)) =1. O]
. If we take p(-) = k(-) = (0,---,0) in this definition, we

recover the classical notion of arbitrage (relative to cash).

Definition: We shall say that a given investment rule v(-) € J
has the Numéraire Property, if the ratio

V™(:)/ V¥(-) is a supermartingale, for every () € J. O
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Properties: It can be shown that, if a given investment rule
v(-) € J has the numéraire property, then

(i) it has also the relative-log-optimality and growth-optimality
properties;

(ii) no arbitrage can exist relative to it, over any given
time-horizon; and

(iii) the ratio
V() /vi()
is actually a local martingale, for every w(-) € J.

. Besides, for any two investment rules v1(-), v2(-) with the
numéraire property, we have

VA = V().
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FOR CERTAIN RESULTS WE SHALL NEED THE ASSUMPTION
THAT “NP HOLDS”, i.e.,, THAT THERE EXISTS AN INVEST-
MENT RULE v»(-) € 3 WITH THE NUMERAIRE PROPERTY.

Equivalently, with the property

Bi(-) = 2/0 y(O)d(Mi, M),  i=1,--- .

. This assumption does not proscribe (relative) arbitrages; it can coéxist
very happily with them.

. But it DOES proscribe “Unbounded Increasing Profits”: investment
rules m(-) whose wealth process V™(-) is non-decreasing and satisfies
P(V™(T)>1) >0 forevery T € (0,00).

. An entire theory for Finance can be built around the assumption that
“NP Holds". But this is another story; see the survey/monograph by

K. & KARDARAS (2015).
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4. CONCAVE AND LYAPUNOV FUNCTIONS

We consider a function G : % — (0,00) defined and of class C? in
some neighborhood % C R" of the “lateral face” of the unit simplex;
that is, of the set

A7 = {(Xl,.-- X)) € (0,00)" Zn:x,-_l}.

i=1

THEOREM 1: Suppose that NP holds, and that there exist a
function G as above, and a constant 1 > 0, such the process

n n T
;ZZ/O (—DEG(u(t)))d@;,uﬁ(t)—nT, 0<T <00

i=1 j=1
(1)
is non-decreasing. Then arbitrage is possible with respect to the
market portfolio over any time horizon [0, T| of sufficiently long,
finite duration, namely

G(1(0)

Ui

T > T, =
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Please note that the threshold T, = G(u(0))/n is at its lowest, when
the initial market-weight configuration is at a site “where G attains its
smallest value on A . " These are the most “propitious” sites from
which relative arbitrage can be launched. We'll return to this point.

Proof: Let us consider any time-horizon [0, T| of finite length
T > 0, a real number, over which arbitrage with respect to the
market portfolio is NOT possible.

We invoke now the existence of an investment rule with the NP
property, and use a deep and celebrated result of DELBAEN &
SHACHERMAYER (1994) to show that: There exists on F(T)
an equivalent probability measure Q ~ P, under which the

market weights p1(- A T),---, pn(- A T) are (local) martingales.

16
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e We invoke also the ITO decomposition
G(n()) = +Z [, D600 aui(0) 7.

The assumption of (1) implies, in particular, that the continuous
process

= —ZZ/ ) d{ui, 1) (t)

i=1 j=1

is nondecreasing. Therefore, G(u(- A T)) is a local Q—supermar-
tingale, thus also a true Q—supermartingale, as it is positive.

. In other words, G plays the role of a LyAPUNOV function along
the trajectories of the vector process u(- A T) of market weights
(a very liberal interpretation...).
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On the other hand, for the bounded-from-below process

Gl . ~ [ _
NO() - ;/0 DG (u(2)) (1)

= G(u() = G(u(0)) +T°() = =G (u(0)),
we note that N®(- A T) is then a Q—local martingale, thus
also a Q—supermartingale, under this new equivalent measure.

In particular,
EQ[NC(T)] <0

holds.
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We claim that the event

P s / ) d{jur, 5)(8) < G(u(0))

i=1 j=1
of F(T), has then positive probability: P(A) > 0.
. Indeed, it suffices to argue Q(.A) > 0, as the two probability
measures are equivalent on F(T). Now the set-inclusion
{NS(T) <0} € A = {T°(T) < G(u(0))},

a consequence of the identity from the previous slide

N(T) = G(u(T)) = G(u(0)) +T(T),
suggests that it suffices to show Q(N®(T)<0)>0.
But this follows easily by contradiction: For if we had

Q(N€(T)>0) =1, then E2[N(T)] > 0 would hold,
contradicting our earlier conclusion (end of previous slide)

E?[NC(T)] <0.
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e We are now ready to complete the argument — once again, by
contradiction.

Suppose there existed a real number
G (1(0))
n

as in the statement of the Theorem, such that no arbitrage with
respect to the market portfolio x(-) is possible over [0, T].

T >

From what we have just shown, the event

A = —ZZ/ £)) d{ i, 1) (t) < G(u(0))

i=1 j=1

from the previous slide would have then positive P—probability.
But in conjunction with the condition (1) of the Theorem, this
would imply

nT < G(u(0)),

contradicting our supposition right above.
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DISCUSSION: A MORE RECENT RESULT

Bob FERNHOLZ showed recently (May 2015) that: If, for some
function G : % — (0,00) and real constant > 0 as in Theorem
1 we have, not only the non-decrease of the process

n n T
QZZ/ (‘ Dng(N(f)D d{piy pi)(t) =0T, T €(0,00),;
1=

but also, for some real constant h >0 with G(u(-)) > h, the
additional “homogeneous-support-theorem"-like condition

P (G(,L(.)) visits (h, h+ ¢) during [0, T]) >0, V (T,e) e (0,00)?;

then the arbitrage of Theorem 1 can be realized over ANY
time-horizon [0, T] with T € (0,00).

IDEA: If you can arrive “quickly” with positive probability at some point
in the state space which is “propitious” for relative arbitrage, then you

already have realized short-term relative arbitrage.
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5. FUNCTIONAL GENERATION OF PORTFOLIOS

OK, so we have found conditions under which the market can be
outperformed. BUT HOW?

. BY MEANS OF WHAT INVESTMENT RULE?

. CAN THIS BE DONE BY A PORTFOLIO?

. A LONG-ONLY PORTFOLIO, PERHAPS?

e Here FERNHOLZ's argument comes into full force. Given a
function G : % — (0,00) defined and of class C? as before, he
introduces the portfolio generated by G, namely, for i =1,---  n,

7l (t) == pi(t) | Dilog G (p +1—Z,JJ ) Djlog G (u(t)) |-
(2)
This portfolio is long-only, if G is convave (FERNHOLZ (2002)).

. In order to construct this portfolio on “day” t, we need the mar-
ket weights p;(t), i=1,---,n for that day — and nothing else.



We can solve now the linear SDE with random coéfficients

ANOR NN AANORRSNI0)
d(vu) i} <V()) 2 o M

i=1

for the “discounted” wealth generated by this “Functionally-
Generated” 7¢(-), and obtain the so-called “Master Equation”:

V) (ST
'°g< Vi(T) ) = s (o )
3)

"o T (- D26(u()
P2 ey ),

This is proved by yet another application of ITO's rule... .
Just a little more “determined” this time around.
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Please note the appearance of only a LEBESGUE-STIELTJES
(L-S) integral on the right-hand side of (3).

Stochastic integrals just do not appear; they have been excised.

This is a Pathwise Expression.

IDEA: Now

(i) if the generating function G is bounded away from
both zero and infinity; and

(i) if the L-S integral on the right-hand side, which is
non-decreasing, actually increases all the way to infinity;

. then the right-hand side of the equation (3) on the previous
slide will be strictly positive for all T sufficiently large — and
thus 7€ (-) will be strong arbitrage relative to the market over
all such time-horizons.
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THEOREM 2: Given a concave function G : % — (0, o)
defined and of class C? as before, we impose the non-decrease
assumption of (1) on the process

1 n n T
530 [ (~D36(e)) Alpw)() =0T 0= T <o
i=1 j=1
(4)
for some real n > 0. We consider also the “shifts”
G()=c+G(-) for 0<c<o0.
Then, for each real number T as in Theorem 1, namely with

G(1(0)

n

T > T, =

the long-only portfolio wC(-) € P, generated as in (2) by this
“shifted” function, is STRONG arbitrage relative to the market
on [0, T}, for all ¢ > 0 sufficiently large. O

Please note the “deafening silence” regarding the NP; plays no rdle here.
Also, the fact that the range is exactly the same as before.
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Proof: For ¢ € (0,00), the “shifted” generating function G¢(-) is
bounded away from both zero and infinity: For some real constant
K, we have

0<c<GX)<c+K<oo, vV xe Al

As a result of these bounds and of the assumption (4) from the
previous slide, the process on the right-hand side of the analogue

n.n T (-D2G
£33 / (= D) (“(t)))) s, 1) (1)

of the Master Equation (3), is bounded from below by

26
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c nT nT —®(c)
|Og<c+G(,u(0))>+c+K_ i K

for each given T € (0,00), where

®(c) == (c+K) log (1—1—6(/1(0))> — G(u(0)), as c— oo.

Thus, for every real number T > T, we can select ¢, € (0,00)
large enough so that n T > ®(c) holds for all ¢ > c,.

. Substituting above, this gives the strong arbitrage property
of w¢°(-) relative to the market portfolio, as a consequence of
the P—a.e. comparison

V(T ;7%) nT — &(c)
W > exp <c—|—K> > 1. ]



TO RECAPITULATE: This argument

(a) uses completely elementary methods,

(b) does not need to assume that the NP holds, and
(c) establishes STRONG arbitrage, not just arbitrage.

o | like to call the identity of (3), namely
V(T L (S(T)
'°g< Vi(T) ) = s (o)
o~ [T (= DiG(u(t))
+ZZ/ Wd<ﬂiaﬂj>(t)»

the Master Equation. It generates examples of strong arbitrage relative
to the market portfolio “by the bushel”.

| will present just one of them right below but, as you can sense, there is
in principle no end to what you can come up with using this formula.
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6. AN ENTROPIC GENERATING FUNCTION

Let us consider now the classical GIBBS Entropy function
n
H(x) = Z xjlog (1/xi), x¢€Al.
i=1

This concave function takes values in (0,log n], and decreases
to zero as x tends to one of the unit vectors eq,--- ,¢,.

The corresponding process 'F(-) as in (1) is an important
quantity in Stochastic Portfolio Theory, the cumulative excess
growth of the market portfolio

_ I ) 1§ |
rHe) = 22/ Tl = 2;/0 pi(t) d{log i )(t).

A trace-like quantity; measures the market's cumulative “relative
variation” — stock-by-stock, then “averaged” according to market weight.
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As generating function we shall take the shift of the entropy
H(x) := c+ H(x),

by some real constant ¢ > 0.

Via the recipe of (2), this function generates the Entropy-Weighted
portfolio

a1 (t) = % [CJrIog (Ntf)ﬂ i=1,---,n,

all of whose weights are strictly positive.
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If for some 1 > 0 we have the non-decrease of the process

T i
H(T) -y T = = Z/ “’ 9T, 0<T<oo,

(3)
then Theorems 1, 2 show that strong arbitrage is possible relative
to the market portfolio over any time-horizon [0, T] with

H(u(0)
n '

T >

and that this strong arbitrage is implemented, for each such T,
by the above portfolio 7 (-) for ¢ > 0 sufficiently large.

Here is a plot of the cumulative excess growth T'Y(.) for the
U.S. equities market over most of the twentieth century.
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CUMULATIVE EXCESS GROWTH

RRARR RN RN RN RN N R RN AR RN RN RN R RN R R RN R RN AR R RN RN NN RN R RRRRRRRRRRE
1927 1932 1937 1942 1947 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 2002

YEAR

Figure 1 :  Cumulative Excess Growth H(.) for the U.S., 1926-1999.

Can be estimated in what B. DUPIRE calls “tradable” manner, via (3):
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7. AN INTRIGUING QUESTION

Suppose that the cumulative excess growth satisfies the
non-decrease condition on the process

-
Z/ d<u, -nT, 0<T<x

of (5), for some real constant n > 0.

We just established that (strong) arbitrage exists then with
respect to the market portfolio over sufficiently long time-
horizons [0, T, namely, with

H(p(0
roo7 = M)
n
Does arbitrage exist also over arbitrary time-horizons? O

This question was posed by FERNHOLZ & K. (2005).
It stayed open for 10+ years.
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Needless perhaps to say, this same question can be asked
regarding the non-decrease property of

n n T
%ZZ/O (—DUQ'G(M(t))) d{pi, pi)(t) =T, VO<T<oo

i=1 j=1
for ANY generating function as in Theorems 1 and 2.

. But in the spirit of Mike HARRISON's exhortation, let us
“concentrate on the simplest problem we cannot do”.

In a few cases of considerable independent interest,
the answer to the this question is known and is affirmative.

| will present them briefly below.

e In another very recent development, however, Johannes RUF
constructed a beautiful and very interesting example, which shows
that the answer CANNOT BE AFFIRMATIVE IN GENERAL.
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CASE I: Strictly Non-Degenerate Covariation Structure,
Coupled with Strong Diversity.

Suppose there exists a real € > 0, such that the process

>3 [ a@a@ammye -« [ e ae

i=1 j=1

is non-decreasing for every predictable, locally square-integrable vector
process £(-). Impose also for some ¢ € (0,1) the strong diversity

max pi(t) < 1-94, 0<t< 0.
1<i<n

FERNHOLZ, K. & KARDARAS (2005) show that these two conditions
(i) are compatible with each other;
(i) imply the condition of (5) with n = (d¢)/2, i.e., the non-decrease of

L& T (o) |
2;/0 @ T 0ST <o

(iii) lead to strong arbitrage relative to the market over ANY
horizon [0, T] with T € (0, c0).
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Discussion: Diversity helps identify a portfolio, which takes
negative positions (long in stock i = 1, short in the market)

and underperforms the market portfolio.

. Then we use this portfolio as a “seed”, to create long-only
portfolios that outperform the market — swamping the short
positions in a sea of market portfolio, while retaining the essential
portfolio characteristics that lead to the outperformance.

OSTERRIEDER & RHEINLANDER (2006) have a different, abstract
approach to a similar result: Existence — though not identification — of
arbitrage relative to cash under conditions of diversity. They use an
auxiliary probability (FOLLMER-) measure Q, under which capitalizations
are martingales and which satisfies P < Q, but not the other way round.

. In the same spirit are the results in RUF & RUNGGALDIER (2013),
CHAU & TANKOV (2013).
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CASE II: 1t6 Processes with VS Covariation Structure.
Let us consider now the case (FERNHOLZ & K. (2005),
PickovA (2014))

Bi() = /0 e M) =3 /0 o) AWi(2)

with Wy, -+, W, independent Brownian motions and
Cé; .
oil(t) = —LK_  1<ik<n (6)
pi(t)

of the so-called Volatility-Stabilized type, for some constant C > 0.
In this case the individual stocks' cumulative relative variations are

(log i )(T) = C2/T< -

o \ui(t)

—1>dt, i=1,---.n,

therefore
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[ moatiogu) o = ¢ [ (1 te)ac.

Examples of this type are typically NOT diverse, meaning that this
last integrand gets on occasion to be very close to zero for any
given individual stock i =1,--- n.

However, the SUM of all these quantities, to wit, the market's
cumulative excess growth, not only dominates a straight line with
positive slope: IT IS a straight line with positive slope:

n T 2
T = ;Z/o pi(t) d{log pj )(t) = %(n—l)T =nT
i=1

(whence the appellation “stabilization by volatility”).

e For considerable generalizations of this kind of model, Adrian
BANNER and Daniel FERNHOLZ (2008) show that strong arbitrage
relative to the market is possible over ANY horizon T € (0, c0).

e Also very recent work by Christa CUCHIERO et al. (2015).
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Another intricate construction... . The portfolio that implements this
strong arbitrage, is strictly speaking, NOT Functionally Generated.

It employs, rather, a concatenation of two functionally generated
portfolios: starting with the portfolio 7°(-) generated as in (2) by
the function

G(x1, - ,Xn) = Zf(x,-), with
i=1

oo

f(y) ::/ eYredr, 0<y<1 and f(0):=0
log(1/y)

for an appropriate real constant ¢ > 1, this portfolio switches at an

appropriate stopping time .7 to the market u(-).

. The switch is made in order to “lock in" the outperformance that
creates the strong arbitrage; and the réle of the condition (6) is to
guarantee that the time 7 does occur with certainty before the end

of the horizon, thatis, P(7 < T)=1.
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8. THE RECENT EXAMPLE OF JOHANNES RUF

THEOREM (Johannes RUF, 2015): There exists a
time-homogeneous 110 diffusion pu(-) with values in A",
and LIPSCHITZ—continuous dispersion matrix, such that
the cumulative excess growth process

H L 1 n ' d</14,>(t)
) = g Y [ S
2 i—1 70 /’Ll(t)
is strictly increasing, and its slope uniformly bounded from

below.

But with respect to which arbitrage over time-horizons [0, T]
of sufficiently short duration is NOT possible. Ol

Yet another intricate construction... .
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IDEA OF CONSTRUCTION: Suppose that the probability measure
Q solves the martingale problem for a diffusion with state-space

2
Zf = {(xl,xz)/ € [o, 1]2 : Zx,- < 1} c R?,
i=1

such that (properties of a FOLLMER measure):

e Each component u1(+) and ua(+) is a Q—martingale;
and thus sois p3(-) :=1— () — pa(:).

e The Q—probability of the event " (u1(-), p2(+))’ does NOT
hit the boundary of Af before time T " is strictly positive,
for ANY given real number T > 0.

e There is some real number § > 0 such that, Q—a.s., the process
(11("), p12(-))’ does NOT hit the boundary of A3 before time & .
And

e M(t)—1t, 0<t<oo isnon-decreasing.
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We take now an arbitrary but fixed real number T > 0 and
construct a NEW probability measure P, by conditioning Q
on the event

“(u1(-), p2(+))" does NOT hit the boundary of A} before time T .

The covariance structure is not affected by this conditioning, so
rH(t)—%t, 0<t<oco isnon-decreasing.

continues to hold a.e. under this new measure as well;

and the two measures P and Q agree on F(9).

This then yields the result: NO ARBITRAGE IS POSSIBLE
UNDER THE NEW MEASURE P ON [0, T], FOR 0 < T <.
(because no arbitrage is possible under Q, and P ~ Q on F(T)).

. The construction is inspired by a very interesting paper of Dan

STROOCK (1971), and by results in Dan FErRNHOLZ & K. (2010).
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e It raises yet another OPEN QUESTION:
If, as we have shown, arbitrage is possible in this example over
time-horizons [0, T] with

T >2H(p(0))
but impossible over time-horizons [0, T] with
0<T<o,
then what is the threshold
T. = inf{T €(0,00) : 3 7(-) €T st. P(V(T)> V¥T)) =1
and P(V™(T)>VH(T))>0}7

How about replacing J in this definition by 37 or by B, 7
What if one insists on strong relative arbitrage ?
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THE DISPERSION MATRIX: We start by defining

1 c
V2

c=1

and

R =/ (a— 2+ (e —c)? .
With this notation, we define the entries of the
dispersion-matrix-valued function

B (x1—¢)?
o11(x) =1- r2V (R2(x) A 02)

B (x2 —¢)?
o22(x) =1

2V (R2(x) A 0?)
— (Xl — C)(X2 — C)
r2V (R2(x) A ¢2)

0'172(X) = 0'271(X) =
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X2

Figure 2 : A} as (x1, x2)—plane. The center of the two circles is the
point (c,c¢) = (1 —1/v/2,1 — 1/+/2) and their radii are r and g. On the
“lifesaver” (shaded area), the diffusion (u1(-), u2(+))" only moves
“outwards.”
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DYNAMICS ON THE LIFESAVER: We start from x = (x1,x2)’ on
the lifesaver (shaded area) r < R(x) < p. Then

x1 — ¢)? xr — )2
Ul,l(X) =1- (;2(;)), 0'272(X) =1- (;2(;))
o12(x) = 021(x) = — b _chg; =,

At this point, ITO's formula yields the totally deterministic
dynamics for the radial part of the diffusive motion

dR(u(t)) = dt

on the lifesaver, as well as

1
dari(t) > S dt

. Thus, if started at a location x on the lifesaver, the diffusion
needs time to hit the boundary of Af of at least

§ = 0> —R*(x) > 0. O
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