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1. INTRODUCTION

Back in 1999, Erhard Robert Fernholz introduced
a construction that was both
(i) remarkable, and
(ii) remarkably easy to prove.

He showed that for a certain class of so-called “functionally-
generated” portfolios, it is possible to express the wealth they
generate, discounted by (denominated in terms of) the total
market capitalization, solely in terms of the individual companies’
market weights – and to do so in a pathwise manner, that
does not involve stochastic integration.
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This fact can be proved by an application of ITÔ’s rule.
Once the result is known, its proof can be assigned as a
moderate exercise in a Master’s level stochastic calculus
course.

The discovery paved the way for finding simple, structural
conditions on large equity markets – that involve more than
one stock, and typically thousands – under which it is
possible to outperform the market portfolio (w.p.1).

Put a little differently: conditions under which (strong)
arbitrage relative to the market portfolio is possible.

Bob Fernholz showed also how to implement this
outperformance by simple portfolios – which can be
constructed solely in terms of observable quantities,
without any need to estimate parameters of the
model or to optimize.
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Although well-known, celebrated, and quite easy to prove,
Fernholz’s construction has been viewed over the past
15+ years as somewhat “mysterious”.

In this talk, and in the work on which the talk is based,
we hope to help make the result a bit more celebrated and
perhaps a bit less mysterious, via an interpretation of
portfolio-generating functions as Lyapunov functions
for the vector process of relative market weights.

We will try to settle then a question about
functionally-generated portfolios that has been open
for 10 years.
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The aim of this talk is to offer an interpretation of
FERNHOLZ’s Generating Functions as LYAPUNOV
functions.

Functions G : ∆n
+ → (0,∞) , in other words, defined on

(an open neighborhood of) the lateral face of the strictly
positive unit simplex, such that the process

G (µ(t)) , 0 ≤ t <∞

is a supermartingale under an appropriate probability measure
(a very liberal interpretation of the term “Lyapunov function”).

. Here µ(t) = (µ1(t), · · · , µn(t))′ is the vector of market weights
of the individual companies in the market; that is, the ratios

µi (t) =
Xi (t)

X1(t) + · · ·+ Xn(t)
, i = 1 , · · · , n

of their own capitalizations Xi (t) , divided by the capitalization
of the entire market.
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We posit that this interpretation, and this interpretation ALONE,
leads to the possibility of arbitrage relative to the market portfolio
under suitable conditions.

Then as a second, and in many ways more decisive, step, the
construction of Fernholz (1999, 2002) identifies a very specific
portfolio – generated by the function G : ∆n

+ → (0,∞) itself, or
by a suitable “shift” of this function – which implements the
strong arbitrage on this SAME range of time-horizons.
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2. THE SETTING

We place ourselves on a probability space (Ω,F ,P) endowed
with a right-continuous filtration F = {F(t)}0≤t<∞ that
satisfies F(0) = {∅,Ω} mod. P.

. We consider continuous semimartingales (sums of local
martingales and processes of finite variation)

Si (·) = Mi (·) + Bi (·) , i = 1, · · · , n

with Si (0) = 0. These will play the rôle of asset returns, and their
stochastic exponentials

Xi (·) := Xi (0) · E(Si )(·) , dXi (t) = Xi (t)dSi (t) ; i = 1, · · · , n

will play the rôle of asset capitalizations.

The real constants X1(0), · · · ,Xn(0) are strictly positive, so these
capitalizations are strictly positive, continuous semimartingales.
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With these processes thus constructed, we introduce the various
assets’ relative weights

µi (t) =
Xi (t)

X1(t) + · · ·+ Xn(t)
, i = 1 , · · · , n

just as before. These are positive, continuous semimartingales in
their own right. NO OTHER ASSUMPTION.

. We denote by I = P(S) the collection of progressively measu-
rable vector processes π = (π1, · · · , πn)′ which are integrable with
respect to the vector semimartingale S = (S1, · · · ,Sn)′.

. We interpret these processes as investment rules, and denote by
V π(·) their corresponding “value” or “wealth” process, namely

dV π(t)

V π(t)
=

n∑
i=1

πi (t)
dXi (t)

Xi (t)
=

n∑
i=1

πi (t) dSi (t) , V π(0) = 1 .

To wit: V π(·) is the stochastic exponential of
∫ ·
0〈π(t), dS(t)〉.
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In this scheme of things, πi (t) is the proportion of wealth V π(t)
invested at time t in the i th asset; the proportion

π0(t) := 1−
n∑

i=1

πi (t)

is kept under the mattress (“invested in a bank account”).

. We call an investment rule π(·) long-only, if it satisfies

π0(·) ≥ 0 , π1(·) ≥ 0 , · · · , πn(·) ≥ 0 .

The investment rule κ(·) ≡ (0, · · · , 0)′ keeps the entire wealth
under the mattress:

κ0(·) ≡ 1 , V κ(·) ≡ 1 .
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. We call an investment rule π(·) portfolio, if it satisfies

n∑
i=1

πi (·) ≡ 1 .

We denote the class of portfolios by P , and by P+ , the class of
long-only portfolios.

• The Market Portfolio

µ(·) =
(
µ1(·), · · · , µn(·)

)′ ∈ P+

is an important long-only portfolio. It generates wealth
proportional to the total market capitalization:

V µ(·) =
X1(t) + · · ·+ Xn(t)

X1(0) + · · ·+ Xn(0)
.
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• It is easy to check that the performance of an arbitrary portfolio
π(·) , when measured relative to the performance of the market –
a very natural “discounting” – has the dynamics

d

(
V π(t)

V µ(t)

)
=

(
V π(t)

V µ(t)

) n∑
i=1

πi (t)

µi (t)
dµi (t) , ∀ π(·) ∈ P .

Please note the formal analogy with the dynamics of the wealth
process from a couple of slides ago:

dV π(t) = V π(t)
n∑

i=1

πi (t)

Xi (t)
dXi (t) , ∀ π(·) ∈ I .
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3. NUMÉRAIRE AND ARBITRAGE

Definition: We shall say that an investment rule π(·) is Arbitrage
relative to another rule ρ(·) , over a fixed time-horizon [0,T ], if

P
(
V π(T ) ≥ V ρ(T )

)
= 1 , P

(
V π(T ) > V ρ(T )

)
> 0 .

We call this relative arbitrage strong, if in fact
P
(
V π(T ) > V ρ(T )

)
= 1 .

. If we take ρ(·) ≡ κ(·) ≡ (0, · · · , 0)′ in this definition, we
recover the classical notion of arbitrage (relative to cash).

Definition: We shall say that a given investment rule ν(·) ∈ I
has the Numéraire Property, if the ratio

V π(·)
/

V ν(·) is a supermartingale, for every π(·) ∈ I .
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Properties: It can be shown that, if a given investment rule
ν(·) ∈ I has the numéraire property, then

(i) it has also the relative-log-optimality and growth-optimality
properties;

(ii) no arbitrage can exist relative to it, over any given
time-horizon; and

(iii) the ratio
V π(·)

/
V ν(·)

is actually a local martingale, for every π(·) ∈ I .

. Besides, for any two investment rules ν1(·) , ν2(·) with the
numéraire property, we have

V ν1(·) ≡ V ν2(·) .
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FOR CERTAIN RESULTS WE SHALL NEED THE ASSUMPTION
THAT “NP HOLDS”, i.e., THAT THERE EXISTS AN INVEST-
MENT RULE ν(·) ∈ I WITH THE NUMÉRAIRE PROPERTY.

Equivalently, with the property

Bi (·) =
n∑

j=1

∫ ·
0
νj(t)d

〈
Mi ,Mj

〉
(t) , i = 1, · · · , n .

———

. This assumption does not proscribe (relative) arbitrages; it can coëxist
very happily with them.

. But it DOES proscribe “Unbounded Increasing Profits”: investment
rules π(·) whose wealth process V π(·) is non-decreasing and satisfies
P(V π(T ) > 1) > 0 for every T ∈ (0,∞) .

. An entire theory for Finance can be built around the assumption that
“NP Holds”. But this is another story; see the survey/monograph by

K. & Kardaras (2015).
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4. CONCAVE AND LYAPUNOV FUNCTIONS
We consider a function G : U → (0,∞) defined and of class C2 in
some neighborhood U ⊂ Rn of the “lateral face” of the unit simplex;
that is, of the set

∆n
+ :=

{(
x1, · · · , xn

)′ ∈ (0,∞)n :
n∑

i=1

xi = 1

}
.

THEOREM 1: Suppose that NP holds, and that there exist a
function G as above, and a constant η > 0 , such the process

1

2

n∑
i=1

n∑
j=1

∫ T

0

(
− D2

ijG
(
µ(t)

))
d
〈
µi , µj

〉
(t) − ηT , 0 ≤ T <∞

(1)
is non-decreasing. Then arbitrage is possible with respect to the
market portfolio over any time horizon [0,T ] of sufficiently long,
finite duration, namely

T > T∗ :=
G
(
µ(0)

)
η

.
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Please note that the threshold T∗ = G (µ(0))/η is at its lowest, when

the initial market-weight configuration is at a site “where G attains its

smallest value on ∆n
+ . ” These are the most “propitious” sites from

which relative arbitrage can be launched. We’ll return to this point.

—————

Proof: Let us consider any time-horizon [0,T ] of finite length
T > 0 , a real number, over which arbitrage with respect to the
market portfolio is NOT possible.

We invoke now the existence of an investment rule with the NP
property, and use a deep and celebrated result of Delbaen &
Shachermayer (1994) to show that: There exists on F(T )
an equivalent probability measure Q ∼ P, under which the
market weights µ1(· ∧ T ), · · · , µn(· ∧ T ) are (local) martingales.
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• We invoke also the Itô decomposition

G (µ(·)) = G (µ(0)) +
n∑

i=1

∫ ·
0

DiG (µ(t))dµi (t)− ΓG (·) .

The assumption of (1) implies, in particular, that the continuous
process

ΓG (·) := − 1

2

n∑
i=1

n∑
j=1

∫ ·
0

D2
ijG
(
µ(t)

)
d
〈
µi , µj

〉
(t)

is nondecreasing. Therefore, G (µ(· ∧ T )) is a local Q−supermar-
tingale, thus also a true Q−supermartingale, as it is positive.

. In other words, G plays the rôle of a Lyapunov function along
the trajectories of the vector process µ(· ∧ T ) of market weights
(a very liberal interpretation...).
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On the other hand, for the bounded-from-below process

NG (·) :=
n∑

i=1

∫ ·
0

DiG
(
µ(t)

)
dµi (t)

= G (µ(·))− G (µ(0)) + ΓG (·) ≥ −G (µ(0)) ,

we note that NG (· ∧ T ) is then a Q−local martingale, thus
also a Q−supermartingale, under this new equivalent measure.

In particular,
EQ[NG (T )

]
≤ 0

holds.
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We claim that the event

A :=

− 1

2

n∑
i=1

n∑
j=1

∫ T

0
D2
ijG
(
µ(t)

)
d
〈
µi , µj

〉
(t) ≤ G (µ(0))


of F(T ) , has then positive probability: P(A) > 0 .

. Indeed, it suffices to argue Q (A) > 0 , as the two probability
measures are equivalent on F(T ). Now the set-inclusion{

NG (T ) ≤ 0
}
⊆ A =

{
ΓG (T ) ≤ G (µ(0))

}
,

a consequence of the identity from the previous slide

NG (T ) = G (µ(T ))− G (µ(0)) + ΓG (T ) ,

suggests that it suffices to show Q(NG (T ) ≤ 0) > 0 .

But this follows easily by contradiction: For if we had
Q
(
NG (T ) > 0

)
= 1 , then EQ[NG (T )

]
> 0 would hold,

contradicting our earlier conclusion (end of previous slide)

EQ[NG (T )
]
≤ 0 .
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• We are now ready to complete the argument – once again, by
contradiction.

Suppose there existed a real number

T >
G
(
µ(0)

)
η

as in the statement of the Theorem, such that no arbitrage with
respect to the market portfolio µ(·) is possible over [0,T ].

From what we have just shown, the event

A =

− 1

2

n∑
i=1

n∑
j=1

∫ T

0
D2
ijG
(
µ(t)

)
d
〈
µi , µj

〉
(t) ≤ G

(
µ(0)

)
from the previous slide would have then positive P−probability.
But in conjunction with the condition (1) of the Theorem, this
would imply

ηT ≤ G (µ(0)) ,

contradicting our supposition right above.
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DISCUSSION: A MORE RECENT RESULT

Bob Fernholz showed recently (May 2015) that: If, for some
function G : U → (0,∞) and real constant η > 0 as in Theorem
1 we have, not only the non-decrease of the process

1

2

n∑
i=1

n∑
j=1

∫ T

0

(
− D2

ijG
(
µ(t)

))
d
〈
µi , µj

〉
(t) − ηT , T ∈ (0,∞), ;

but also, for some real constant h ≥ 0 with G (µ(·)) ≥ h , the
additional “homogeneous-support-theorem”-like condition

P
(

G
(
µ(·)

)
visits (h, h + ε) during [0,T ]

)
> 0 , ∀ (T , ε) ∈ (0,∞)2 ;

then the arbitrage of Theorem 1 can be realized over ANY
time-horizon [0,T ] with T ∈ (0,∞) .

IDEA: If you can arrive “quickly” with positive probability at some point

in the state space which is “propitious” for relative arbitrage, then you

already have realized short-term relative arbitrage.
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5. FUNCTIONAL GENERATION OF PORTFOLIOS

OK, so we have found conditions under which the market can be
outperformed. BUT HOW?
. BY MEANS OF WHAT INVESTMENT RULE?
. CAN THIS BE DONE BY A PORTFOLIO?
. A LONG-ONLY PORTFOLIO, PERHAPS?

• Here Fernholz’s argument comes into full force. Given a
function G : U → (0,∞) defined and of class C2 as before, he
introduces the portfolio generated by G , namely, for i = 1, · · · , n,

πG
i (t) := µi (t)

[
Di log G

(
µ(t)

)
+ 1−

n∑
j=1

µj(t) Dj log G
(
µ(t)

) ]
.

(2)
This portfolio is long-only, if G is convave (Fernholz (2002)).

. In order to construct this portfolio on “day” t , we need the mar-
ket weights µi (t) , i = 1, · · · , n for that day – and nothing else.
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We can solve now the linear SDE with random coëfficients

d

(
V πG

(t)

V µ(t)

)
=

(
V πG

(t)

V µ(t)

)
n∑

i=1

πG
i (t)

µi (t)
dµi (t)

for the “discounted” wealth generated by this “Functionally-
Generated” πG (·) , and obtain the so-called “Master Equation”:

log

(
V πG

(T )

V µ(T )

)
= log

(
G (µ(T ))

G (µ(0))

)
(3)

+
n∑

i=1

n∑
j=1

∫ T

0

(
− D2

ijG (µ(t))
)

2 G (µ(t))
d
〈
µi , µj

〉
(t) .

This is proved by yet another application of Itô’s rule... .
Just a little more “determined” this time around.
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Please note the appearance of only a Lebesgue-Stieltjes
(L-S) integral on the right-hand side of (3).

Stochastic integrals just do not appear; they have been excised.
This is a Pathwise Expression.

IDEA: Now
(i) if the generating function G is bounded away from
both zero and infinity; and
(ii) if the L-S integral on the right-hand side, which is
non-decreasing, actually increases all the way to infinity;

. then the right-hand side of the equation (3) on the previous
slide will be strictly positive for all T sufficiently large – and
thus πG (·) will be strong arbitrage relative to the market over
all such time-horizons.
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THEOREM 2: Given a concave function G : U → (0,∞)
defined and of class C2 as before, we impose the non-decrease
assumption of (1) on the process

1

2

n∑
i=1

n∑
j=1

∫ T

0

(
− D2

ijG
(
µ(t)

))
d
〈
µi , µj

〉
(t) − ηT , 0 ≤ T <∞

(4)
for some real η > 0 . We consider also the “shifts”

G c(·) := c + G (·) for 0 ≤ c <∞ .

Then, for each real number T as in Theorem 1, namely with

T > T∗ :=
G
(
µ(0)

)
η

,

the long-only portfolio πG c
(·) ∈ P+ generated as in (2) by this

“shifted” function, is STRONG arbitrage relative to the market
on [0,T ], for all c > 0 sufficiently large.

Please note the “deafening silence” regarding the NP; plays no rôle here.

Also, the fact that the range is exactly the same as before.
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Proof: For c ∈ (0,∞) , the “shifted” generating function G c(·) is
bounded away from both zero and infinity: For some real constant
K , we have

0 < c ≤ G c(x) ≤ c + K <∞ , ∀ x ∈∆n
+.

As a result of these bounds and of the assumption (4) from the
previous slide, the process on the right-hand side of the analogue

log

(
V (T ;πG

c
)

V (T ;µ)

)
= log

(
c + G (µ(T ))

c + G (µ(0))

)

+
n∑

i=1

n∑
j=1

∫ T

0

(
− D2

ijG (µ(t))
)

2 (c + G (µ(t)))
d〈µi , µj〉(t)

of the Master Equation (3), is bounded from below by
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log

(
c

c + G (µ(0))

)
+

ηT

c + K
=

ηT − Φ(c)

c + K

for each given T ∈ (0,∞) , where

Φ(c) :=
(
c+K

)
log

(
1+

G
(
µ(0)

)
c

)
−→ G

(
µ(0)

)
, as c →∞ .

Thus, for every real number T > T∗ we can select c∗ ∈ (0,∞)
large enough so that ηT > Φ(c) holds for all c > c∗ .

. Substituting above, this gives the strong arbitrage property
of πG c

(·) relative to the market portfolio, as a consequence of
the P−a.e. comparison

V (T ;πG
c
)

V (T ;µ)
≥ exp

(
ηT − Φ(c)

c + K

)
> 1 .
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TO RECAPITULATE: This argument
(a) uses completely elementary methods,
(b) does not need to assume that the NP holds, and
(c) establishes STRONG arbitrage, not just arbitrage.

• I like to call the identity of (3), namely

log

(
V πG

(T )

V µ(T )

)
= log

(
G (µ(T ))

G (µ(0))

)

+
n∑

i=1

n∑
j=1

∫ T

0

(
− D2

ijG (µ(t))
)

2 G (µ(t))
d
〈
µi , µj

〉
(t) ,

the Master Equation. It generates examples of strong arbitrage relative
to the market portfolio “by the bushel”.

I will present just one of them right below but, as you can sense, there is

in principle no end to what you can come up with using this formula.

28 / 49



6. AN ENTROPIC GENERATING FUNCTION

Let us consider now the classical Gibbs Entropy function

H(x) :=
n∑

i=1

xi log
(
1/xi

)
, x ∈∆n

+ .

This concave function takes values in (0, log n] , and decreases
to zero as x tends to one of the unit vectors e1, · · · , en .

The corresponding process ΓH(·) as in (1) is an important
quantity in Stochastic Portfolio Theory, the cumulative excess
growth of the market portfolio

ΓH(·) ≡ 1

2

n∑
i=1

∫ ·
0

d
〈
µi
〉
(t)

µi (t)
=

1

2

n∑
i=1

∫ ·
0
µi (t) d

〈
logµi

〉
(t) .

A trace-like quantity; measures the market’s cumulative “relative

variation” – stock-by-stock, then “averaged” according to market weight.
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As generating function we shall take the shift of the entropy

Hc(x) := c + H(x) ,

by some real constant c > 0 .

Via the recipe of (2), this function generates the Entropy-Weighted
portfolio

π Hc

i (t) =
µi (t)

c + H(µ(t))

[
c + log

(
1

µi (t)

)]
, i = 1, · · · , n ,

all of whose weights are strictly positive.
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If for some η > 0 we have the non-decrease of the process

ΓH(T )− ηT =
1

2

n∑
i=1

∫ T

0

d
〈
µi
〉
(t)

µi (t)
− ηT , 0 ≤ T <∞ ,

(5)
then Theorems 1, 2 show that strong arbitrage is possible relative
to the market portfolio over any time-horizon [0,T ] with

T >
H(µ(0))

η
,

and that this strong arbitrage is implemented, for each such T ,
by the above portfolio π Hc

(·) for c > 0 sufficiently large.

Here is a plot of the cumulative excess growth ΓH(·) for the
U.S. equities market over most of the twentieth century.
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Figure 1 : Cumulative Excess Growth ΓH(·) for the U.S., 1926 -1999.

Can be estimated in what B. Dupire calls “tradable” manner, via (3):

log

(
V (T ;πHc

)

V (T ;µ)

)
= log

(
c + H(µ(T ))

c + H(µ(0))

)
+

∫ T

0

dΓH(t)

c + H(µ(t))
.
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7. AN INTRIGUING QUESTION

Suppose that the cumulative excess growth satisfies the
non-decrease condition on the process

1

2

n∑
i=1

∫ T

0

d
〈
µi
〉
(t)

µi (t)
− ηT , 0 ≤ T <∞

of (5), for some real constant η > 0 .

We just established that (strong) arbitrage exists then with
respect to the market portfolio over sufficiently long time-
horizons [0,T ], namely, with

T > T∗ :=
H
(
µ(0)

)
η

.

Does arbitrage exist also over arbitrary time-horizons?

This question was posed by Fernholz & K. (2005).
It stayed open for 10+ years.
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Needless perhaps to say, this same question can be asked
regarding the non-decrease property of

1

2

n∑
i=1

n∑
j=1

∫ T

0

(
− D2

ijG
(
µ(t)

))
d
〈
µi , µj

〉
(t) − ηT , ∀ 0 ≤ T <∞

for ANY generating function as in Theorems 1 and 2.

. But in the spirit of Mike Harrison’s exhortation, let us
“concentrate on the simplest problem we cannot do”.

In a few cases of considerable independent interest,
the answer to the this question is known and is affirmative.

I will present them briefly below.

• In another very recent development, however, Johannes RUF
constructed a beautiful and very interesting example, which shows
that the answer CANNOT BE AFFIRMATIVE IN GENERAL.
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CASE I: Strictly Non-Degenerate Covariation Structure,
Coupled with Strong Diversity.

Suppose there exists a real ε > 0 , such that the process

n∑
i=1

n∑
j=1

∫ ·
0

ξi (t) ξj(t)d〈Mi ,Mj〉(t) − ε

∫ ·
0

∥∥ξ(t)
∥∥2 dt

is non-decreasing for every predictable, locally square-integrable vector
process ξ(·) . Impose also for some δ ∈ (0, 1) the strong diversity

max
1≤i≤n

µi (t) ≤ 1− δ , 0 ≤ t <∞ .

Fernholz, K. & Kardaras (2005) show that these two conditions
(i) are compatible with each other;
(ii) imply the condition of (5) with η = (δ ε)/2 , i.e., the non-decrease of

1

2

n∑
i=1

∫ T

0

d
〈
µi

〉
(t)

µi (t)
− ηT , 0 ≤ T <∞ ;

(iii) lead to strong arbitrage relative to the market over ANY

horizon [0,T ] with T ∈ (0,∞).
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Discussion: Diversity helps identify a portfolio, which takes
negative positions (long in stock i = 1, short in the market)
and underperforms the market portfolio.
. Then we use this portfolio as a “seed”, to create long-only
portfolios that outperform the market – swamping the short
positions in a sea of market portfolio, while retaining the essential
portfolio characteristics that lead to the outperformance.

Osterrieder & Rheinländer (2006) have a different, abstract
approach to a similar result: Existence – though not identification – of
arbitrage relative to cash under conditions of diversity. They use an
auxiliary probability (Föllmer-) measure Q , under which capitalizations
are martingales and which satisfies P� Q , but not the other way round.

. In the same spirit are the results in Ruf & Runggaldier (2013),

Chau & Tankov (2013).
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CASE II: Itô Processes with VS Covariation Structure.
Let us consider now the case (Fernholz & K. (2005),
Picková (2014))

Bi (·) =

∫ ·
0
βi (t)dt , Mi (·) =

n∑
k=1

∫ ·
0
σik(t) dWk(t)

with W1, · · · ,Wn independent Brownian motions and

σik(t) =
C δ i ,k√
µi (t)

, 1 ≤ i , k ≤ n (6)

of the so-called Volatility-Stabilized type, for some constant C > 0 .
In this case the individual stocks’ cumulative relative variations are〈

logµi
〉
(T ) = C 2

∫ T

0

( 1

µi (t)
− 1
)
dt , i = 1, · · · , n ,

therefore
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∫ T

0
µi (t) d

〈
logµi

〉
(t) = C 2

∫ T

0

(
1− µi (t

)
dt .

Examples of this type are typically NOT diverse, meaning that this
last integrand gets on occasion to be very close to zero for any
given individual stock i = 1, · · · , n .

However, the SUM of all these quantities, to wit, the market’s
cumulative excess growth, not only dominates a straight line with
positive slope: IT IS a straight line with positive slope:

ΓH(T ) =
1

2

n∑
i=1

∫ T

0
µi (t)d

〈
logµi

〉
(t) =

C 2

2

(
n − 1

)
T ≡ ηT

(whence the appellation “stabilization by volatility”).

• For considerable generalizations of this kind of model, Adrian
Banner and Daniel Fernholz (2008) show that strong arbitrage
relative to the market is possible over ANY horizon T ∈ (0,∞).
• Also very recent work by Christa Cuchiero et al. (2015).
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Another intricate construction... . The portfolio that implements this
strong arbitrage, is strictly speaking, NOT Functionally Generated.

It employs, rather, a concatenation of two functionally generated
portfolios: starting with the portfolio πG

i (·) generated as in (2) by
the function

G (x1, · · · , xn) =
n∑

i=1

f (xi ) , with

f (y) :=

∫ ∞
log(1/y)

e−y r c dr , 0 < y ≤ 1 and f (0) := 0

for an appropriate real constant c > 1 , this portfolio switches at an
appropriate stopping time T to the market µ(·) .

. The switch is made in order to “lock in” the outperformance that
creates the strong arbitrage; and the rôle of the condition (6) is to
guarantee that the time τ does occur with certainty before the end

of the horizon, that is, P(T ≤ T ) = 1 .
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8. THE RECENT EXAMPLE OF JOHANNES RUF

THEOREM (Johannes RUF, 2015): There exists a
time-homogeneous Itô diffusion µ(·) with values in ∆n

+

and Lipschitz–continuous dispersion matrix, such that
the cumulative excess growth process

ΓH(·) :=
1

2

n∑
i=1

∫ ·
0

d
〈
µi
〉
(t)

µi (t)

is strictly increasing, and its slope uniformly bounded from
below.

But with respect to which arbitrage over time-horizons [0,T ]
of sufficiently short duration is NOT possible.

Yet another intricate construction... .
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IDEA OF CONSTRUCTION: Suppose that the probability measure
Q solves the martingale problem for a diffusion with state-space

∆
3
[ :=

{(
x1, x2

)′ ∈ [0, 1]2 :
2∑

i=1

xi ≤ 1

}
⊂ R2,

such that (properties of a Föllmer measure):

• Each component µ1(·) and µ2(·) is a Q−martingale;
and thus so is µ3(·) := 1− µ1(·)− µ2(·) .

• The Q−probability of the event “ (µ1(·), µ2(·))′ does NOT
hit the boundary of ∆3

[ before time T ” is strictly positive,
for ANY given real number T > 0 .

• There is some real number δ > 0 such that, Q−a.s., the process
(µ1(·), µ2(·))′ does NOT hit the boundary of ∆3

[ before time δ .
And

• ΓH(t)− 1
2 t , 0 ≤ t <∞ is non-decreasing.
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We take now an arbitrary but fixed real number T > 0 and
construct a NEW probability measure P, by conditioning Q
on the event
“ (µ1(·), µ2(·))′ does NOT hit the boundary of ∆3

[ before time T ”.

The covariance structure is not affected by this conditioning, so
ΓH(t)− 1

2 t , 0 ≤ t <∞ is non-decreasing.
continues to hold a.e. under this new measure as well;
and the two measures P and Q agree on F(δ).

This then yields the result: NO ARBITRAGE IS POSSIBLE
UNDER THE NEW MEASURE P ON [0,T ], FOR 0 < T ≤ δ.
(because no arbitrage is possible under Q, and P ∼ Q on F(T )).

. The construction is inspired by a very interesting paper of Dan
Stroock (1971), and by results in Dan Fernholz & K. (2010).
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• It raises yet another OPEN QUESTION:
If, as we have shown, arbitrage is possible in this example over
time-horizons [0,T ] with

T > 2 H(µ(0))

but impossible over time-horizons [0,T ] with

0 < T ≤ δ ,

then what is the threshold

T∗ := inf
{

T ∈ (0,∞) : ∃ π(·) ∈ I s.t. P
(
V π(T ) ≥ V µ(T )

)
= 1

and P
(
V π(T ) > V µ(T )

)
> 0

}
?

How about replacing I in this definition by P ? or by P+ ?
What if one insists on strong relative arbitrage ?
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THE DISPERSION MATRIX: We start by defining

c = 1− 1√
2

, r =
c

3
, % = 2 r

and

R(x) :=
√

(x1 − c)2 + (x2 − c)2 .

With this notation, we define the entries of the
dispersion-matrix-valued function

σ1,1(x) = 1− (x1 − c)2

r2 ∨ (R 2(x) ∧ %2)

σ2,2(x) = 1− (x2 − c)2

r2 ∨ (R 2(x) ∧ %2)

σ1,2(x) = σ2,1(x) =
− (x1 − c)(x2 − c)

r2 ∨ (R 2(x) ∧ %2)
.
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x1

x2

0

Figure 2 : ∆3
[ as (x1, x2)−plane. The center of the two circles is the

point (c , c) = (1− 1/
√

2, 1− 1/
√

2) and their radii are r and %. On the
“lifesaver” (shaded area), the diffusion (µ1(·), µ2(·))′ only moves
“outwards.”
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DYNAMICS ON THE LIFESAVER: We start from x = (x1, x2)′ on
the lifesaver (shaded area) r ≤ R(x) ≤ % . Then

σ1,1(x) = 1− (x1 − c)2

R 2(x)
, σ2,2(x) = 1− (x2 − c)2

R 2(x)

σ1,2(x) = σ2,1(x) = − (x1 − c)(x2 − c)

R 2(x)
.

At this point, Itô’s formula yields the totally deterministic
dynamics for the radial part of the diffusive motion

dR(µ(t)) = dt

on the lifesaver, as well as

dΓH(t) ≥ 1

2
dt

. Thus, if started at a location x on the lifesaver, the diffusion
needs time to hit the boundary of ∆3

[ of at least

δ = %2 − R2(x) > 0 .
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Picková, R. (2014) Generalized volatility stabilized processes.
Annals of Finance 10, 101-125.

Ruf, J. (2011) Optimal Trading Strategies under Arbitrage.
Doctoral Dissertation, Columbia University.

Ruf, J. & Runggaldier, W. (2013) A Systematic Approach to
Constructing Market Models With Arbitrage. Available at
http://arxiv.org/pdf/1309.1988.pdf.m

Stroock, D.W. (1971) On the growth of stochastic integrals.
Zeitschrift für Wahrsch. und verwandte Gebiete 18, 340-344.

Xing, H. (2011) Equivalent measure changes for multidimensional
diffusions. Unpublished Manuscript, October 2011.

THANK YOU FOR YOUR ATTENTION

49 / 49


