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Stochastic Finance Economies

Agents. Information. Preferences. Endowments. Assets.



Financial Equilibrium: Discrete Time

I Walras 1874,

I Arrow-Debreu ’54, McKenzie ’59,

I Radner ’72 extends the classical Arrow-Debreu model.

I Hart ’75 gives a non-existence example.

I Duffie-Shafer ’85, ’86 show that an equilibrium exists
for generic endowments

I Cass, Drèze, Geanakoplos, Magill, Mas-Colell,
Polemarchakis, Stieglitz, and others.



Financial Equilibrium: Continuous Time

Complete Markets

I Merton ’73

I Duffie-Zame ’89, Araujo-Monteiro ’89,

I Karatzas-Lakner-Lehoczky-Shreve ’91.

Incomplete Markets

I Basak, Cheridito, Christensen, Choi, Cuoco, He,
Hugonnier, Kupper, Larsen, Munk, Zhao, Žitković.



An Incomplete, Short-Lived-Asset Model



Our Problem

Setup: {Ft}t∈[0,T ] generated by two independent BMs B and W .

Price: dSλt = λt dt+ 1 dBt + 0 dWt.

Agents’ preferences: Ui(X) = −δi logE
[
exp(−X/δi)

]
, X ∈ L0,

endowments: Ei ∈ L∞(FT ), i = 1, . . . , I.

Demand: π̂λ,i := argmaxπ∈Aλ Ui
(∫ T

0 πu dS
λ
u + Ei

)
.

Question: Is there an equilibrium market price of risk λ? That is,

does there exist a process λ such that

the clearing condition
∑I

i=1 π̂
λ,i = 0 holds?

Answer: Yes, when endowments are close to Pareto-optimality.



Risk-aware Parametrisation

Upon defining the risk-(tolerance-)denominated quantities

Gi =
1

δi
Ei, and ρ̂λ,i =

1

δi
π̂λ,i,

the market clearing condition becomes∑
i

αiρ̂λ,i = 0, where αi =
δi∑
j δ

j
.

The risk-denominated certainty equivalent processes are

Y i,λ
t = − logEt

[
exp

(
−
∫ T

t
ρ̂λ,iu dSλu −Gi

)]
, t ∈ [0, T ].



BSDE Characterisation of Equilibrium

Define the aggregator

A[x] =
∑

i α
ixi, for x = (xi)i.

Theorem. A process λ ∈ bmo is an equilibrium if and only if

λ = A[µ],

for some solution (µ,ν,Y ) ∈ bmo×bmo×S∞ of the following
nonlinear (quadratic) and fully-coupled BSDE system: dY i

t = µit dBt + νit dWt + 1
2

(
(νit)

2 −A[µt]
2 + 2A[µt]µ

i
t

)
dt,

Y i
T = Gi, i = 1, . . . , I,

where µ = (µi)i, ν = (νi)i and Y = (Y i)i.



Nonlinear Systems of BSDEs

I [Darling 95], [Blache 05, 06]: Harmonic maps.

I [Tang 03]: Riccati systems,

I [Tevzadze 08]: existence when terminal condition is small.

I [Delarue 02], [Cheridito-Nam 14]: generator f + z g, where
both f and g are Lipschitz.

I [Hu-Tang 14]: diagonally quadratic, small-time existence.

Applications:

I [Bensoussan-Frehse 90], [El Karoui-Hamadène 03]:
stochastic differential games.

I [Frei-dos Reis 11], [Frei 14]: relative performance.
Counterexample: bounded terminal condition, no solution.

I [Cheridito-Horst-Kupper-Pirvu 12]: equilibrium pricing.

I [Kramkov-Pulido 14]: price impact problem.



Existence and Uniqueness “with Cheating”

Theorem 0a. An equilibrium exists and is unique if (Gi)i is an
(unconstrained) Pareto-optimal allocation. Then λ ≡ 0.

Note: (Gi)i is Pareto-optimal if and only if

Gi −Gj ∈ R, for all i, j.

Definition. (Gi)i is pre-Pareto if there exists an equilibrium
λ ∈ bmo such that the allocation

G̃i = Gi +

∫ T

0
ρ̂i,λt dSλt , i = 1, . . . , I, is Pareto optimal.

Obviously . . .

Theorem 0b. An equilibrium exists if (Gi)i is pre-Pareto.

However, . . .



Existence and Uniqueness “with Cheating” II

Proposition. The following statements are equivalent:

1. (Gi)i is pre-Pareto.

2. There exists an equilibrium λ ∈ bmo such that

Q̂λ,i = Q̂λ,j , for all i, j,

where Q̂λ,i, i = 1, . . . , I denote the “dual optimizers”.

3. For λ, ν defined by

exp(−
∑

i α
iGi) ∝ E

(
−
∫ ·
0 λtdBt −

∫ ·
0 νtdWt

)
T
,

there exist (yi)i ∈ RI and (ϕi)i ∈ bmoI such that

Gi −Gj = yi − yj +

∫ T

0
(ϕit − ϕ

j
t )dS

λ
t , for all i, j.

In each of these cases, λ as above is the unique equilibrium.



Certainty Equivalents and BMO

Let G ∈ L∞. Define

XG
t = − logEt[exp(−G)], t ∈ [0, T ],

and note the dynamics

dXG
t = mG

t dBt + nGt dWt +
(mG

t )2 + (nGt )2

2
dt, XG

T = G.

Define also the bmo2-norm:

||(m,n)||
bmo2(P̃) =

∥∥∥∥ess sup
τ

EP̃
τ

[∫ T

τ
(m2

t + n2t )dt

]∥∥∥∥1/2
L∞

.



The General “Smallness” Result

For an allocation (Gi)i, with Gi ∈ L∞ for i = 1, . . . , I, we define
its distance to Pareto optimality H((Gi)i) via

H((Gi)i) := inf
G∈L∞

max
i

∣∣∣∣∣∣ (mGi −mG, nG
i − nG

) ∣∣∣∣∣∣
bmo2(PG)

,

where dPG/dP ∝ exp(−G) for G ∈ L∞.

Theorem. An equilibrium λ ∈ bmo exists and is unique if

H((Gi)i) <
3

2
−
√

2 ≈ 0.0858.

NB: A similar result with “distance-to-Pareto” replaced by “distance-to-

pre-Pareto” holds (mutadis mutandis), with a different proof technique.



Corollaries

Corollary 1. A unique equilibrium exists if

(1/δi)||Ei||L∞ is sufficiently small for each i.

Corollary 2. A unique equilibrium exists if

there are sufficiently many sufficiently homogeneous agents,

i.e., if I ≥ I(||
∑

iE
i||L∞ ,mini δ

i, χE), where the endowment
heterogeneity index χE ∈ [0, 1] is defined via

χE = max
i,j

||Ei − Ej ||L∞

||Ei||L∞ + ||Ej ||L∞
.



Corollaries, Continued

Corollary 3. (Small time existence and uniqueness.)
A unique equilibrium exists if

T < T ∗ =

(
3/2−

√
2
)2

maxi

(
||Db(Gi)||2S∞ + ||Dw(Gi)||2S∞

) ,
provided all Ei have bounded Malliavin derivatives.

Movie

https://www.youtube.com/playlist?list=PLiuAKGDCfJejUPHfq6cEqJzgXSE4l9iZg


Future Work

1. General global existence and uniqueness (?)

2. Sensitivity analysis around Pareto optimality.

3. Long-lived securities.

4. Endowments depending also on prices.



The End

Thanks for your attention!

P.S. Preprint available on the arXiv.


