Constrained Optimal Transport

Marcel Nutz Columbia University

(with Mathias Beiglböck, Florian Stebegg and Nizar Touzi)

September 2015

Outline

Classical Optimal Transport

Martingale Optimal Transport

Supermartingale Optimal Transport

Monge Optimal Transport

Given:

- Probabilities μ, ν on \mathbb{R} .
- Reward (cost) function $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$.

Objective:

• Find a map $T:\mathbb{R}\to\mathbb{R}$ satisfying $\nu=\mu\circ T^{-1}$ such as to maximize the total reward,

$$\max_{T} \int f(x, T(x)) \, \mu(dx).$$

Monge-Kantorovich Optimal Transport

Relaxation:

• Find a probability P on $\mathbb{R} \times \mathbb{R}$ with marginals μ, ν such as to maximize the reward:

$$\max_{P\in\Pi(\mu,\nu)} E^P[f(X,Y)], \quad \text{where} \quad \Pi(\mu,\nu) := \{P: P_1=\mu, \ P_2=\nu\}$$
 and $(X,Y) = \operatorname{Id}_{\mathbb{R}\times\mathbb{R}}.$

• $P \in \Pi(\mu, \nu)$ is a Monge transport if of the form $P = \mu \otimes \delta_{T(x)}$.

Example: Hoeffding-Frechet Coupling

Theorem: Let f satisfy the Spence–Mirrlees condition $f_{xy} > 0$. Then the optimal P is unique and given by the Hoeffding–Frechet Coupling:

- P is the law of $((F_{\mu})^{-1}, (F_{\nu})^{-1})$ under the uniform measure on [0,1].
- If μ is diffuse, P is of Monge type with $T = (F_{\nu})^{-1} \circ F_{\mu}$.
- *P* is characterized by monotonicity:

if
$$(x, y), (x', y') \in \text{supp}(P)$$
 and if $x < x'$, then $y \le y'$.

Kantorovich Duality

• Buy $\varphi(X)$ at price $\mu(\varphi) := E^{\mu}[\varphi]$ and $\psi(Y)$ at $\nu(\psi)$ to superhedge,

$$f(X, Y) \leq \varphi(X) + \psi(Y).$$

• Then for all $P \in \Pi(\mu, \nu)$,

$$E^{P}[f(X,Y)] \leq E^{P}[\varphi(X) + \psi(Y)] = \mu(\varphi) + \nu(\psi).$$

• Theorem (Kantorovich, Kellerer): For any measurable $f \ge 0$,

$$\sup_{P \in \Pi(\mu,\nu)} E^P[f(X,Y)] = \inf_{\varphi,\psi} \mu(\varphi) + \nu(\psi)$$

and dual optimizers $\hat{\varphi}$, $\hat{\psi}$ exist

Kantorovich Duality

• Buy $\varphi(X)$ at price $\mu(\varphi) := E^{\mu}[\varphi]$ and $\psi(Y)$ at $\nu(\psi)$ to superhedge,

$$f(X, Y) \le \varphi(X) + \psi(Y).$$

• Then for all $P \in \Pi(\mu, \nu)$,

$$E^{P}[f(X,Y)] \leq E^{P}[\varphi(X) + \psi(Y)] = \mu(\varphi) + \nu(\psi).$$

• Theorem (Kantorovich, Kellerer): For any measurable $f \ge 0$,

$$\sup_{P \in \Pi(\mu,\nu)} E^P[f(X,Y)] = \inf_{\varphi,\psi} \mu(\varphi) + \nu(\psi)$$

and dual optimizers $\hat{\varphi}$, $\hat{\psi}$ exist.

Let
$$\Gamma = \{(x,y) : \hat{\varphi}(x) + \hat{\psi}(y) = f(x,y)\}$$
 and $P \in \Pi(\mu,\nu)$. TFAE:

- (1) P is optimal.
- (2) $P(\Gamma) = 1$.
- (3) supp(P) is f-cyclically monotone P-a.s.; i.e.,

$$\sum_{i=1}^{n} f(x_i, y_i) \ge \sum_{i=1}^{n} f(x_i, y_{\sigma(i)}) \quad \forall (x_i, y_i) \in \text{supp}(P), \quad \sigma \in \text{Perm}(n).$$

- 1)(2) If $P(\Gamma) < 1$, then P charges $\{(x,y) : \hat{\varphi}(x) + \hat{\psi}(y) > f(x,y)\}$ and thus $\mu(\hat{\varphi}) + \nu(\hat{\psi}) > E^P[f(X,Y)]$.
- 2)(1) If $P(\Gamma)=1$, then $\mu(\hat{\varphi})+\nu(\hat{\psi})=E^P[f(X,Y)]$, hence $P,\hat{\varphi},\hat{\psi}$ are optimal.
- 2)(3) This argument even shows: if $\tilde{P}(\Gamma) = 1$, then \tilde{P} is an optimal transport between its own marginals. Apply this with discrete $\tilde{P} \Rightarrow \Gamma$ is cyclically monotone.

Let
$$\Gamma = \{(x,y) : \hat{\varphi}(x) + \hat{\psi}(y) = f(x,y)\}$$
 and $P \in \Pi(\mu,\nu)$. TFAE:

- (1) P is optimal.
- (2) $P(\Gamma) = 1$.
- (3) supp(P) is f-cyclically monotone P-a.s.; i.e.,

$$\sum_{i=1}^n f(x_i, y_i) \ge \sum_{i=1}^n f(x_i, y_{\sigma(i)}) \quad \forall (x_i, y_i) \in \text{supp}(P), \quad \sigma \in \text{Perm}(n).$$

- (1)(2) If $P(\Gamma) < 1$, then P charges $\{(x,y) : \hat{\varphi}(x) + \hat{\psi}(y) > f(x,y)\}$ and thus $\mu(\hat{\varphi}) + \nu(\hat{\psi}) > E^P[f(X,Y)]$.
- 2)(1) If $P(\Gamma) = 1$, then $\mu(\hat{\varphi}) + \nu(\hat{\psi}) = E^P[f(X, Y)]$, hence $P, \hat{\varphi}, \hat{\psi}$ are optimal.
- 2)(3) This argument even shows: if $\tilde{P}(\Gamma) = 1$, then \tilde{P} is an optimal transport between its own marginals. Apply this with discrete $\tilde{P} \Rightarrow \Gamma$ is cyclically monotone.

Let
$$\Gamma = \{(x,y) : \hat{\varphi}(x) + \hat{\psi}(y) = f(x,y)\}$$
 and $P \in \Pi(\mu,\nu)$. TFAE:

- (1) P is optimal.
- (2) $P(\Gamma) = 1$.
- (3) supp(P) is f-cyclically monotone P-a.s.; i.e.,

$$\sum_{i=1}^{n} f(x_i, y_i) \ge \sum_{i=1}^{n} f(x_i, y_{\sigma(i)}) \quad \forall (x_i, y_i) \in \text{supp}(P), \quad \sigma \in \text{Perm}(n).$$

- (1)(2) If $P(\Gamma) < 1$, then P charges $\{(x,y) : \hat{\varphi}(x) + \hat{\psi}(y) > f(x,y)\}$ and thus $\mu(\hat{\varphi}) + \nu(\hat{\psi}) > E^P[f(X,Y)]$.
- (2)(1) If $P(\Gamma) = 1$, then $\mu(\hat{\varphi}) + \nu(\hat{\psi}) = E^P[f(X, Y)]$, hence $P, \hat{\varphi}, \hat{\psi}$ are optimal.
 - 2)(3) This argument even shows: if $\tilde{P}(\Gamma) = 1$, then \tilde{P} is an optimal transport between its own marginals. Apply this with discrete $\tilde{P} \Rightarrow \Gamma$ is cyclically monotone.

Let
$$\Gamma = \{(x, y) : \hat{\varphi}(x) + \hat{\psi}(y) = f(x, y)\}$$
 and $P \in \Pi(\mu, \nu)$. TFAE:

- (1) P is optimal.
- (2) $P(\Gamma) = 1$.
- (3) supp(P) is f-cyclically monotone P-a.s.; i.e.,

$$\sum_{i=1}^{n} f(x_i, y_i) \ge \sum_{i=1}^{n} f(x_i, y_{\sigma(i)}) \quad \forall (x_i, y_i) \in \text{supp}(P), \quad \sigma \in \text{Perm}(n).$$

- (1)(2) If $P(\Gamma) < 1$, then P charges $\{(x,y) : \hat{\varphi}(x) + \hat{\psi}(y) > f(x,y)\}$ and thus $\mu(\hat{\varphi}) + \nu(\hat{\psi}) > E^P[f(X,Y)]$.
- (2)(1) If $P(\Gamma)=1$, then $\mu(\hat{\varphi})+\nu(\hat{\psi})=E^P[f(X,Y)]$, hence $P,\hat{\varphi},\hat{\psi}$ are optimal.
- (2)(3) This argument even shows: if $\tilde{P}(\Gamma) = 1$, then \tilde{P} is an optimal transport between its own marginals. Apply this with discrete $\tilde{P} \Rightarrow \Gamma$ is cyclically monotone.

Outline

Classical Optimal Transport

2 Martingale Optimal Transport

3 Supermartingale Optimal Transport

Dynamic Hedging

- Dynamically tradable underlying $S = (S_0, S_1, S_2)$.
- Semi-static superhedge:

$$f((S_t)_t) \leq \varphi(S_1) + \psi(S_2) + H_0(S_1 - S_0) + H_1(S_2 - S_1).$$

• With $S_0=0$, $S_1=X\sim\mu$, $S_2=Y\sim\nu$ and normalization $H_0=0$:

$$f(X, Y) \le \varphi(X) + \psi(Y) + h(X)(Y - X).$$

• Formally, duality with $P \in \Pi(\mu, \nu)$ satisfying the constraint that

$$E^{P}[h(X)(Y - X)] = 0 \quad \forall h; \text{ i.e. } E^{P}[Y|X] = X.$$

Dynamic Hedging

- Dynamically tradable underlying $S = (S_0, S_1, S_2)$.
- Semi-static superhedge:

$$f((S_t)_t) \leq \varphi(S_1) + \psi(S_2) + H_0(S_1 - S_0) + H_1(S_2 - S_1).$$

• With $S_0=0$, $S_1=X\sim\mu$, $S_2=Y\sim\nu$ and normalization $H_0=0$:

$$f(X, Y) \le \varphi(X) + \psi(Y) + h(X)(Y - X).$$

• Formally, duality with $P \in \Pi(\mu, \nu)$ satisfying the constraint that

$$E^{P}[h(X)(Y - X)] = 0 \quad \forall h; \text{ i.e. } E^{P}[Y|X] = X.$$

Martingale Transport

Set of martingale transports:

$$\mathcal{M}(\mu, \nu) = \{ P \in \Pi(\mu, \nu) : E^{P}[Y|X] = X \}.$$

• Theorem (Strassen): $\mathcal{M}(\mu, \nu)$ is nonempty iff $\mu \leq_c \nu$; i.e.,

$$\mu(\phi) \le \nu(\phi) \quad \forall \phi \text{ convex.}$$

• Martingale Optimal Transport problem: Given $\mu \leq_c \nu$,

$$\sup_{P\in\mathcal{M}(\mu,\nu)}E^P[f(X,Y)].$$

 Beiglböck, Henry-Labordère, Penkner; Galichon, Henry-Labordère, Touzi; Hobson; Beiglböck, Juillet; Acciaio, Bouchard, Brown, Campi, Cheridito, Cox, Davis, Dolinsky, Fahim, Ghoussoub, Huang, Källblad, Kim, Kupper, Lassalle, Lim, Martini, Neuberger, Obłój, Rogers, Schachermayer, Soner, Stebegg, Tan, Tangpi, Zaev, ...

Martingale Transport

• Set of martingale transports:

$$\mathcal{M}(\mu, \nu) = \{ P \in \Pi(\mu, \nu) : E^P[Y|X] = X \}.$$

• Theorem (Strassen): $\mathcal{M}(\mu, \nu)$ is nonempty iff $\mu \leq_c \nu$; i.e.,

$$\mu(\phi) \le \nu(\phi) \quad \forall \phi \text{ convex.}$$

• Martingale Optimal Transport problem: Given $\mu \leq_c \nu$,

$$\sup_{P\in\mathcal{M}(\mu,\nu)}E^P[f(X,Y)].$$

 Beiglböck, Henry-Labordère, Penkner; Galichon, Henry-Labordère, Touzi; Hobson; Beiglböck, Juillet; Acciaio, Bouchard, Brown, Campi, Cheridito, Cox, Davis, Dolinsky, Fahim, Ghoussoub, Huang, Källblad, Kim, Kupper, Lassalle, Lim, Martini, Neuberger, Obłój, Rogers, Schachermayer, Soner, Stebegg, Tan, Tangpi, Zaev, ...

Example: Left-Curtain Coupling

 Theorem (Beiglböck, Juillet): Let f satisfy the martingale Spence–Mirrlees condition f_{xyy} > 0. Then the optimal P is given by the Left-Curtain Coupling:

Duality for Martingale Optimal Transport

In analogy to Monge-Kantorovich duality we want:

(1) No duality gap:

$$\sup_{P\in\mathcal{M}(\mu,\nu)} E^P[f(X,Y)] = \inf_{\varphi,\psi,h} \mu(\varphi) + \nu(\psi).$$

(2) Dual existence: $\hat{\varphi}$, $\hat{\psi}$, \hat{h} .

Theorem (Beiglböck, Henry-Labordère, Penkner):

- For upper semicontinuous $f \leq 0$, there is no duality gap.
- Dual existence fails in general, even if f is bounded, continuous and μ, ν are compactly supported.

Duality for Martingale Optimal Transport

In analogy to Monge-Kantorovich duality we want:

(1) No duality gap:

$$\sup_{P\in\mathcal{M}(\mu,\nu)}E^P[f(X,Y)]=\inf_{\varphi,\psi,h}\mu(\varphi)+\nu(\psi).$$

(2) Dual existence: $\hat{\varphi}$, $\hat{\psi}$, \hat{h} .

Theorem (Beiglböck, Henry-Labordère, Penkner):

- For upper semicontinuous $f \leq 0$, there is no duality gap.
- Dual existence fails in general, even if f is bounded, continuous and μ, ν are compactly supported.

An Example with Duality Gap

• Let f be the bounded, lower semicontinuous function

$$f(x,y) = \mathbf{1}_{x \neq y} = \begin{cases} 0 & \text{on the diagonal,} \\ 1 & \text{off the diagonal.} \end{cases}$$

- Let $\mu = \nu =$ Lebesgue measure on [0,1].
- There exists a unique martingale transport P, concentrated on the diagonal (T(x) = x).
- Primal value: $\sup_{P \in \mathcal{M}(\mu,\nu)} E^P[f(X,Y)] = 0$.
- ullet Dual optimizers exist, $\hat{arphi}=1$, $\hat{\psi}=0$, $\hat{h}=0$ but
- there is a duality gap: dual value = 1 > 0.

An Example with Duality Gap

• Let f be the bounded, lower semicontinuous function

$$f(x,y) = \mathbf{1}_{x \neq y} = \begin{cases} 0 & \text{on the diagonal,} \\ 1 & \text{off the diagonal.} \end{cases}$$

- Let $\mu = \nu =$ Lebesgue measure on [0, 1].
- There exists a unique martingale transport P, concentrated on the diagonal (T(x) = x).
- Primal value: $\sup_{P \in \mathcal{M}(\mu, \nu)} E^P[f(X, Y)] = 0$.
- Dual optimizers exist, $\hat{\varphi}=1$, $\hat{\psi}=0$, $\hat{h}=0$ but
- there is a duality gap: dual value = 1 > 0.

Ordinary and Martingale OT: What is the Difference?

- In ordinary OT, all roads $x \to y$ can be used.
- \bullet E.g., in the discrete case, $\mu \times \nu$ already has full support.

• Theorem (Kellerer): $A \subseteq \mathbb{R} \times \mathbb{R}$ is $\Pi(\mu, \nu)$ -polar if and only if

$$A \subseteq (N_1 \times \mathbb{R}) \cup (\mathbb{R} \times N_2), \text{ where } \mu(N_1) = \nu(N_2) = 0.$$

Ordinary and Martingale OT: What is the Difference?

- In ordinary OT, all roads $x \to y$ can be used.
- E.g., in the discrete case, $\mu \times \nu$ already has full support.

• Theorem (Kellerer): $A \subseteq \mathbb{R} \times \mathbb{R}$ is $\Pi(\mu, \nu)$ -polar if and only if

 $A \subseteq (N_1 \times \mathbb{R}) \cup (\mathbb{R} \times N_2)$, where $\mu(N_1) = \nu(N_2) = 0$.

Obstructions for Martingale Transport

• In martingale OT, some roads $x \rightarrow y$ can be blocked.

Potential Functions

Potential
$$u_{\mu}(x) := \int |t-x| \, \mu(dt) = E[|X-x|]$$
 under any $P \in \mathcal{M}(\mu, \nu)$.

- $\mu \leq_{\mathsf{c}} \nu \iff \mathsf{u}_{\mu} \leq \mathsf{u}_{\nu}$.
- If

$$u_{\mu}(x) = u_{\nu}(x);$$
 i.e. $E[|X - x|] = E[|Y - x|]$ (*),

then x is a barrier for any martingale transport:

- 1. Jensen: $|X x| = |E[Y|X] x| = |E[Y x|X]| \le E[|Y x||X]$
- 2. Under (*), it follows that |X x| = E[|Y x| |X] a.s. Hence,

$$E[|Y-x|\mathbf{1}_{X\geq x}] = E[|X-x|\mathbf{1}_{X\geq x}] = E[(X-x)\mathbf{1}_{X\geq x}] = E[(Y-x)\mathbf{1}_{X\geq x}]$$

so that $Y \ge x$ a.s. on $\{X \ge x\}$.

 \rightarrow Partition \mathbb{R} into intervals $\{u_u < u_v\}$.

Potential Functions

Potential
$$u_{\mu}(x) := \int |t - x| \, \mu(dt) = E[|X - x|]$$
 under any $P \in \mathcal{M}(\mu, \nu)$.

- $\mu \leq_{\mathsf{c}} \nu \iff \mathsf{u}_{\mu} \leq \mathsf{u}_{\nu}$.
- If

$$u_{\mu}(x) = u_{\nu}(x);$$
 i.e. $E[|X - x|] = E[|Y - x|]$ (*),

then x is a barrier for any martingale transport:

- 1. Jensen: $|X x| = |E[Y|X] x| = |E[Y x|X]| \le E[|Y x||X]$
- 2. Under (*), it follows that |X x| = E[|Y x| |X] a.s. Hence,

$$E[|Y-x|\mathbf{1}_{X\geq x}] = E[|X-x|\mathbf{1}_{X\geq x}] = E[(X-x)\mathbf{1}_{X\geq x}] = E[(Y-x)\mathbf{1}_{X\geq x}]$$

so that $Y \ge x$ a.s. on $\{X \ge x\}$.

 \rightarrow Partition $\mathbb R$ into intervals $\{u_{\mu} < u_{\nu}\}$.

Structure of $\mathcal{M}(\mu, \nu)$ -polar Sets

Theorem: "These are precisely the $\mathcal{M}(\mu, \nu)$ -polar sets."

Duality Result

Theorem

Let $f \ge 0$ be measurable and consider the quasi-sure relaxation of the dual problem:

$$f(X, Y) \le \varphi(X) + \psi(Y) + h(X)(Y - X)$$
 $\mathcal{M}(\mu, \nu)$ -q.s.

Then,

- (1) there is no duality gap,
- (2) dual optimizers $\hat{\varphi}$, $\hat{\psi}$, \hat{h} exist.

- The superhedge is pointwise on each component (e.g., $\mu = \delta_{x_0}$).
- Dual existence in the pointwise formulation typically fails as soon as there is more than one component.
- Application as in the FTOT.

Outline

Classical Optimal Transport

Martingale Optimal Transport

3 Supermartingale Optimal Transport

Supermartingale Optimal Transport

• Set of supermartingale transports:

$$S(\mu, \nu) = \{ P \in \Pi(\mu, \nu) : E^{P}[Y|X] \le X \}.$$

• $S(\mu, \nu)$ is nonempty iff $\mu \leq_{cd} \nu$; i.e.,

$$\mu(\phi) \le \nu(\phi) \quad \forall \phi \text{ convex decreasing.}$$

ullet Coincides with MOT if μ, ν have same mean, and with OT if supports are ordered.

Structure of $\mathcal{S}(\mu, \nu)$ -polar Sets

Theorem: There exist a maximal barrier x^* such that:

- martingale transport on $(-\infty, x^*]$,
- single component of strict supermartingale transport on $[x^*, \infty)$.

Duality for Supermartingale Transport

- Duality results similar to martingale case,
- with additional constraint $h \ge 0$ (long-only hedging).
- Duality leads to a version of the Fundamental Theorem with an additional condition of complementary slackness:

$$E^{P}[h(X)(Y-X)]=0.$$

Decomposition of Optimal Supermartingale Couplings

Let $P \in \mathcal{S}(\mu, \nu)$ be optimal. Then $J_0 := \{h = 0\}$ and $J_1 := \{h > 0\}$ yield a (non-unique) decomposition:

- $\mathbb{R} = J_0 \cup J_1$, $\mu = \mu_0 + \mu_1 := \mu|_{J_0} + \mu|_{J_1}$,
- $P|_{J_0 \times \mathbb{R}}$ is an optimal Monge–Kantorovich transport from μ_0 to $P(\mu_0)$,
- $P|_{J_1 \times \mathbb{R}}$ is an optimal martingale transport from μ_1 and $P(\mu_1)$.

First Canonical Coupling

Theorem: Let *f* satisfy

1)
$$f_{xy} > 0$$
 and $f_{xyy} < 0$ e.g., $f(x, y) = -\exp(x - y)$;

Then the optimal P is exists, is unique and independent of f.

- Obtained by sending each bit of mass to the minimal destination relative to the convex-decreasing order.
- Here we work from right to left.

Second Canonical Coupling

Theorem: Let *f* satisfy

2) $f_{xy} < 0$ and $f_{xyy} > 0$ e.g., $f(x, y) = \exp(x - y)$;

Then the optimal P is exists, is unique and independent of f.

- Here we work from left to right.
- (No) symmetry?

Conclusion

- Interesting new couplings arise from problems in mathematical finance.
- Duality in a quasi-sure sense is useful for their analysis.
- We expect other constraints to be tractable as well: ongoing work with Florian Stebegg.

Thank you.

Conclusion

- Interesting new couplings arise from problems in mathematical finance.
- Duality in a quasi-sure sense is useful for their analysis.
- We expect other constraints to be tractable as well: ongoing work with Florian Stebegg.

Thank you.