Constrained Optimal Transport

Marcel Nutz

Columbia University

(with Mathias Beiglbock, Florian Stebegg and Nizar Touzi)

September 2015

Marcel Nutz (Columbia) Constrained Optimal Transport



Outline
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Monge Optimal Transport

Given:
@ Probabilities 11, v on R.
@ Reward (cost) function f : R x R — R.

Y Sy

@ Find a map T : R — R satisfying v = 10 T~ such as to maximize
the total reward,

Objective:
m_’a_\x/ f(x, T(x)) p(dx).
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Monge—Kantorovich Optimal Transport

Relaxation:

@ Find a probability P on R x R with marginals yu, v such as to
maximize the reward:

max EP[f(X,Y)], where N(u,v):={P: Pr=p, Pr=v}
PeN(u,v)

and ()(7 Y) = Id]Rx]R-

o P € MN(u,v)isa Monge transport if of the form P = ;1 ® d7(,.
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Example: Hoeffding—Frechet Coupling

Theorem: Let f satisfy the Spence-Mirrlees condition £, > 0. Then the
optimal P is unique and given by the Hoeffding—Frechet Coupling:

o P is the law of ((F,)~%,(F,)~1) under the uniform measure on [0, 1].
o If pu is diffuse, P is of Monge type with T = (F,) 1o F,.
@ P is characterized by monotonicity:

if (x,y),(x',y") € supp(P) and if x < x/, then y < y/.
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Kantorovich Duality

e Buy ¢(X) at price u(p) := E*[p] and ¥(Y) at v(1)) to superhedge,
FIX,Y) < (X)) +4(Y).
@ Then for all P € M(u,v),

EPIF(X, V)] < EP[o(X) + o (V)] = () + v(¥).
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Kantorovich Duality

e Buy ¢(X) at price u(p) := E*[p] and ¥(Y) at v(1)) to superhedge,
FIX,Y) < (X)) +4(Y).
@ Then for all P € M(u,v),

EPIF(X, V)] < EP[o(X) + o (V)] = () + v(¥).

e Theorem (Kantorovich, Kellerer): For any measurable f > 0,

swp EPIF(X, V)] = inf () + 1(®)
PeN(p,v) P

and dual optimizers @, 1 exist.

Marcel Nutz (Columbia) Constrained Optimal Transport 5/ 24



Application: Fundamental Theorem of Optimal Transport

Let T = {(x,y) : #(x)+d(y) = f(x,y)} and P € N(u, ). TFAE:
(1) P is optimal.

(2) P(I) =1.

(3) supp(P) is f-cyclically monotone P-a.s.; i.e.,

Z f(xi,yi) > Z f(xi, ¥o(i)) ¥ (xi,yi) € supp(P), o € Perm(n).
i—1 i—1
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Application: Fundamental Theorem of Optimal Transport

Let T = {(x,y) : #(x)+d(y) = f(x,y)} and P € N(u, ). TFAE:
(1) P is optimal.

(2) P(I) =1.

(3) supp(P) is f-cyclically monotone P-a.s.; i.e.,

> flxinyi) > Zf XisYa(i)) ¥ (xi,yi) € supp(P), o € Perm(n).

(1)(2) If P(T) <1, then P charges {(x,y) : $(x) +{(y) > f(x,y)} and
thus u(@) + v(v) > EP[f(X,Y)].
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Application: Fundamental Theorem of Optimal Transport
Let T = {(x,y) : ¢(x) +¥(y) = f(x.y)} and P € N, v). TFAE:

(1) P is optimal.

(2) P(N) =1.

(3) supp(P) is f-cyclically monotone P-a.s.; i.e.,

> flxinyi) > Zf XisYa(i)) ¥ (xi,yi) € supp(P), o € Perm(n).

(1)(2) If P(T) <1, then P charges {(x,y) : $(x) +{(y) > f(x,y)} and
thus u(@) + v(v) > EP[f(X,Y)].

(2)(1) If P(T) =1, then u(@) + v(¥) = EP[F(X, Y)], hence P, , 1) are
optimal.
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Application: Fundamental Theorem of Optimal Transport

Let T = {(x,y) : #(x)+d(y) = f(x,y)} and P € N(u, ). TFAE:
(1) P is optimal.

(2) P(I') =1.

(3) supp(P) is f-cyclically monotone P-a.s.; i.e.,

> flxinyi) > Zf Xi, Yo(i) ¥ (% yi) € supp(P), o € Perm(n).

(1)(2) If P(T) <1, then P charges {(x,y) : $(x) +{(y) > f(x,y)} and
thus u(@) + v(v) > EP[f(X,Y)].

(2)(1) If P(T) =1, then u(@) + v(¥) = EP[f(X, Y)], hence P, , 1) are
optimal.

(2)(3) This argument even shows: if P(I') = 1, then P is an optimal
transport between its own marginals. Apply this with discrete P
= [ is cyclically monotone.

Marcel Nutz (Columbia) Constrained Optimal Transport 6 /24



Outline

© Martingale Optimal Transport
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Dynamic Hedging

@ Dynamically tradable underlying S = (So, 51, S2).
@ Semi-static superhedge:

f((St)t) < @0(S1) +9(S2) + Ho(S1 — So) + Hi(S2 — S1).
@ With S =0, S5 = X ~ i, S, = Y ~ v and normalization Hy = 0:

FIX,Y) < o(X) + (V) + h(X)(Y = X).
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Dynamic Hedging

@ Dynamically tradable underlying S = (So, 51, S2).
@ Semi-static superhedge:

f((Se)t) < p(S1) + ¥(S2) + Ho(S1 — So) + Hi(S2 — S1).
@ With S =0, S5 = X ~ i, S, = Y ~ v and normalization Hy = 0:

FIX,Y) < o(X) + (V) + h(X)(Y = X).

e Formally, duality with P € IM(u, v) satisfying the constraint that

EPIh(X)(Y = X)]=0 Vh; ie EF[Y|X]=X.
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Martingale Transport

@ Set of martingale transports:
M(p,v) = {P € N(u,v) : EP[Y|X] = X}.
e Theorem (Strassen): M(u,v) is nonempty iff 1 <. v; i.e.,

1(6) < () V' convex.
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Martingale Transport

@ Set of martingale transports:
M(u,v) = {P € N(,v) - EP[Y|X] = X}.
e Theorem (Strassen): M(u,v) is nonempty iff 11 <. v; i.e.,

1(6) < v(6) V' convex.

e Martingale Optimal Transport problem: Given u <. v,

sup  EF[F(X, Y)].
PeM(u,v)

o Beiglbock, Henry-Labordére, Penkner; Galichon, Henry-Labordeére,
Touzi; Hobson; Beiglbock, Juillet; Acciaio, Bouchard, Brown, Campi,
Cheridito, Cox, Davis, Dolinsky, Fahim, Ghoussoub, Huang, Killblad,
Kim, Kupper, Lassalle, Lim, Martini, Neuberger, Obtéj, Rogers,
Schachermayer, Soner, Stebegg, Tan, Tangpi, Zaeyv, ...
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Example: Left-Curtain Coupling

@ Theorem (Beiglbock, Juillet): Let f satisfy the martingale
Spence-Mirrlees condition fy, > 0. Then the optimal P is given by
the Left-Curtain Coupling:
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Left-Curtain Coupling for Uniform Marginals

[ . .
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Left-Curtain Coupling for Uniform Marginals
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Left-Curtain Coupling for Uniform Marginals
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Left-Curtain Coupling for Uniform Marginals
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Left-Curtain Coupling for Uniform Marginals
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Duality for Martingale Optimal Transport

In analogy to Monge—Kantorovich duality we want:
(1) No duality gap:

sup  EP[F(X, V)] = inf u(p)+v().
PEM(u,v) @st,h

~

(2) Dual existence: ¢, v, h.
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Duality for Martingale Optimal Transport

In analogy to Monge—Kantorovich duality we want:
(1) No duality gap:

sup  EP[F(X, V)] = inf pu(p) +v(v).
PeM(u,v) wb.h

~

(2) Dual existence: @, ¥, h.

Theorem (Beiglbdck, Henry-Labordére, Penkner):

@ For upper semicontinuous f < 0, there is no duality gap.

@ Dual existence fails in general, even if f is bounded, continuous and
[, v are compactly supported.
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An Example with Duality Gap

@ Let f be the bounded, lower semicontinuous function

0 on the diagonal,

f =1,z =
2 i {1 off the diagonal.

o Let 4 = v = Lebesgue measure on [0, 1].
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An Example with Duality Gap

@ Let f be the bounded, lower semicontinuous function

0 on the diagonal,

f — 1x =
(x,¥) 7Y {1 off the diagonal.

o Let 4 = v = Lebesgue measure on [0, 1].

@ There exists a unique martingale transport P, concentrated on the
diagonal (T(x) = x).

o Primal value: suppc () EP[f(X,Y)] =0.

Dual optimizers exist, ¢ = 1, ¢ = 0, h=0 but

there is a duality gap: dual value =1 > 0.
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Ordinary and Martingale OT: What is the Difference?

@ In ordinary OT, all roads x — y can be used.

e E.g., in the discrete case, pu x v already has full support.
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Ordinary and Martingale OT: What is the Difference?

@ In ordinary OT, all roads x — y can be used.

e E.g., in the discrete case, pu x v already has full support.

N

@ Theorem (Kellerer): A C R x R is IN(u, v)-polar if and only if

A C (Nl X R) U (R X N2), where ,u(Nl) = I/(Nz) =0.
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Obstructions for Martingale Transport

@ In martingale OT, some roads x — y can be blocked.
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Potential Functions

Potential u,(x) := [ |t — x| u(dt) = E[|X — x|] under any P € M(p,v).
0 u<cv<=u, < Uy.

o If
up(x) = u(x); ie. E[X—=x[[=E[Y =x]] (%),

then x is a barrier for any martingale transport:
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Potential Functions

Potential u,(x) := [ |t — x| u(dt) = E[|X — x|] under any P € M(p,v).
0 u<cv<=u, < Uy.
o If
uu(x) = w(x); ie E[X—x[[=E[Y —x[]] (%),

then x is a barrier for any martingale transport:

1. Jensen: |X — x| = |E[Y|X] — x| = |E[Y — x|X]| < E[|Y — x| |X]
2. Under (%), it follows that | X — x| = E[|Y — x| |X] a.s. Hence,

E[IY =x|1xzx] = E[[X=x[1xz:] = E[(X=x)1xzx] = E[(Y =x)1x24]

so that Y > x a.s. on {X > x}.

— Partition R into intervals {u, < u,}.
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Structure of My, v)-polar Sets

Theorem: “These are precisely the M(u, v)-polar sets.”
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Duality Result

Theorem
Let f > 0 be measurable and consider the quasi-sure relaxation of
the dual problem:

F(X, ¥) < o(X) +0(Y) + h(X)(Y = X) M, v)-q5
Then,

(1) there is no duality gap,
(2) dual optimizers @, 1), h exist.

@ The superhedge is pointwise on each component (e.g., 1t = dx,).

@ Dual existence in the pointwise formulation typically fails as soon as
there is more than one component.

@ Application as in the FTOT.
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Outline

© Supermartingale Optimal Transport
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Supermartingale Optimal Transport

@ Set of supermartingale transports:
S(u,v) = {P € M) - EP[YIX] < X},
e S(u,v) is nonempty iff p <4 v; ie.,
(@) < v(¢) V¢ convex decreasing.

e Coincides with MOT if u, v have same mean, and with OT if supports
are ordered.
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Structure of S(u, v)-polar Sets

W

Theorem: There exist a maximal barrier x* such that:
e martingale transport on (—oo, x*],

@ single component of strict supermartingale transport on [x*, c0).
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Duality for Supermartingale Transport

@ Duality results similar to martingale case,
e with additional constraint h > 0 (long-only hedging).

@ Duality leads to a version of the Fundamental Theorem with an
additional condition of complementary slackness:

EPIh(X)(Y — X)] = 0.
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Decomposition of Optimal Supermartingale Couplings

Let P € S(p,v) be optimal. Then Jy := {h =0} and J; := {h > 0} yield
a (non-unique) decomposition:

o R=JUh, p=po+ps:=ply+puly
@ P| xR is an optimal Monge—Kantorovich transport from 1 to P(uo),

@ P|y, «r is an optimal martingale transport from p1 and P(u1).
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First Canonical Coupling
Theorem: Let f satisfy

1) fy >0and £, <0 eg, f(x,y)=—exp(x —y);
Then the optimal P is exists, is unique and independent of f.

@ Obtained by sending each bit of mass to the minimal destination
relative to the convex-decreasing order.
@ Here we work from right to left.
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Second Canonical Coupling
Theorem: Let f satisfy
2) fy <0and fy,, >0 eg., f(x,y) =exp(x—y);
Then the optimal P is exists, is unique and independent of f.

@ Here we work from left to right.
@ (No) symmetry?




Conclusion

@ Interesting new couplings arise from problems in mathematical finance.
@ Duality in a quasi-sure sense is useful for their analysis.

@ We expect other constraints to be tractable as well: ongoing work
with Florian Stebegg.
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Conclusion

@ Interesting new couplings arise from problems in mathematical finance.
@ Duality in a quasi-sure sense is useful for their analysis.

@ We expect other constraints to be tractable as well: ongoing work
with Florian Stebegg.

Thank you.
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