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Introduction

Example 1: randomized neural networks

By George Cybenko, Kurt Hornik et al. shallow neural networks

{
∑
i

αiϕ(〈βi , .〉+ γi ) | αi ∈ Rn, βi ∈ Rd , γi ∈ R
}

are dense in C ([0, 1]d ;Rn). Finding parameters αi , βi , γi is a non-linear
regression task, i.e. a generically non-convex optimization problem.

By Ali Rahimi, Benjamin Recht et al. it makes sense to consider βi , γi
randomly chosen according to certain distributions (together with the
number of nodes) to return to a possibly convex optimization problem
(depending on the loss function). This can then be related to kernel
methods by considering the randomly chosen basis functions as
approximations of a kernel eigensystem (compare to work of Nicholas
Nelsen, Andrew Stuart). Neural tangent kernels take up this point of view
and dynamize it again, see Arthur Jacot et al..

Approximation bounds and algorithmic feasibility often avoid the curse of
dimension here and are an active area of research. 2 / 41



Introduction

Example 2: signature methods

By Terry Lyons et al. linear functionals on signature of a (continuous)
finite variation or rough path u form a point separating algebra of path
space functionals on paths starting at 0. The zeroth component of the
path is chosen time t here:

{
∑

k≥0,i1,...,ik∈{0,...,d}

αi1···ik

∫
0≤t1≤...tk≤t

dui1(t1) · · · duik (tk) |αi1,...,ik ∈ R
}

Input space: space of finite variation path (extended by time), a rough
path space of paths starting at 0.

Output space: for simplicity R.
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Introduction

Example 2: signature methods

By Ilya Chevyrev, Harald Oberhauser et al. one can associate a
kernelization of signature methods considering signature basis elements as
an eigensystem of a kernel.

By Christa Cuchiero, Lukas Gonon et al. a randomized version of signature
is given on path space (starting at 0) by

{
∑
j

αjX
j
t (u) | where dXt =

d∑
i=0

ϕ(AiXt + bi )du
i (t),X0 6= 0

}
with Ai , bi appropriately chosen random matrices according to certain
distributions, and ϕ is an activation functions.

In contrast to the finite dimensional theory we have the following features:
signature basis are generically unbounded on path spaces, signature itself
does not depend on parameters over which one optimzes, i.e. it is solely a
regression basis, whereas randomized signature is actually not signature
and also unbounded.
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Introduction

Applications in Finance

approximation of path space functionals, or more generally,
predictable strategies by neural networks on relevant factors or
signature basis on path space.

Examples: deep hedging, deep portfolio optimization, deep drift
estimation, signature based pricing and hedging, sig-SDEs, reservoir
computing for learning dyncamics, stochastic optimization, stochastic
games beyond Markovian paradigms, etc.

some of these applications are quite successful, but still lack a full
theoretical foundation why the non-convex optimization problem can
be solved so efficiently or why existing approximation results are
generically sufficient.
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Introduction

Goal of the talk

develop a unified framework for approximations by signatures, neural
networks, or combinations of it on finite or infinite dimensional
spaces, on compact state spaces or beyond. This is important since in
applications varieties of those input spaces appear.

approximations beyond uniform or Lp norms should be included. This
is important since regularizing procedures often lead to finer
topologies.

Randomization procedures should be applicable since this is an
important ingredient in many algorithms, in particular kernelizations
should be possible.

We shall work with compact spaces, weighted spaces, weak-∗-topologized
spaces as input spaces. Output spaces will be just Banach spaces.
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Introduction

Kernelizations

Let E be a topological space and H a separable Hilbert space. We are
interested in maps ϕ : E → H such that x 7→ 〈l , ϕ(x)〉, for l ∈ E ′ lies
dense in an appropriate function space F .

Then one can define a positive definite kernel k(x , y) : 〈ϕ(x), ϕ(y)〉 for
x , y ∈ E and obtains that its reproducing kernel Hilbert space

Hk = closure of 〈kx := k(x , .) for x ∈ E 〉

with respect to the scalar product 〈kx , ky 〉k := k(x , y) for x , y ∈ E , is
densely embedded into F if and only if E is densely embedded into F
(universality). Approximation of elements of F can be understood from
the topology of Hk (representer theorems).
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Introduction

Gaussian processes

We can also consider a Gaussian process on E with covariance function k
by looking at x 7→

∑
i 〈ei , ϕ(x)〉Xi , where (Xi ) is an i.i.d. sequence of

standard normal random variables. The reproducing kernel Hilbert space
Hk appears then as space of means x 7→ m(x) which appear through
equivalent measure changes. Approximation of elements of F can be seen
from a Bayesian perspective.

In both viewpoints it is of interest to consider spaces F of maps on E
which are unbounded, since signature itself is.
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Stone-Weiertrass theorems

Bernstein polynomials

A simple and beautiful application of the law of large numbers (LLN) is
Sergey Bernstein’s proof of Weierstrass approximation theorem:

A Bernstein polynomial of type (n, k) is defined by

Bn,k(x) =

(
n

k

)
xk(1− x)n−k (k = 0, 1, . . . , n) . (1)

Then every continuous function f on [0, 1] can be uniformly approximated
by the following polynomial

B f
n (x) =

n∑
k=0

f

(
k

n

)
Bn,k(x) ,

where a quantitative estimate is given below.
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Stone-Weiertrass theorems

Bernstein polynomials

Let (Xn) be a sequence of independent, identically distributed Bernoulli
random variables with success parameter x ∈ [0, 1], then by LLN

X1 + . . .+ Xn

n
→ x

almost surely. We furthermore have

P
[
X1 + . . .+ Xn = k

]
= Bn,k(x) .

Denote by Sn the sum X1 + . . .+ Xn.
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Stone-Weiertrass theorems

Bernstein polynomials

Whence

|B f
n (x)− f (x)| =

∣∣∣∣E[f (Sn
n

)
− f (x)

]∣∣∣∣ ≤ E
[ ∣∣∣∣f (Sn

n

)
− f (x)

∣∣∣∣ ]
≤ 2 sup

u
|f (u)| P

[ ∣∣∣∣Snn − x

∣∣∣∣ > δ
]

+ sup
|u−v |≤δ

|f (u)− f (v)| P
[ ∣∣∣∣Snn − x

∣∣∣∣ ≤ δ] .
Since f is uniformly continuous we can bound the second term on the
right hand side by ε for small enough δ. Due to Chebychev’s inequality the
first term is bounded by

2 sup
u
|f (u)|x(1− x)

nδ2
≤ 1

2nδ2
sup
u
|f (u)| ≤ ε ,

for n large enough. Therefore

‖B f
n − f ‖∞ −→ 0 for n→∞.
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Stone-Weiertrass theorems

C k version of Bernstein approximation

A bit less know is that B f
n also converges in C k to f if f ∈ C k([0, 1]): we

actually have to understand for this purpose, e.g., the case k = 1 that

f ′(x) = lim
n→∞

E
[
f ′
(Sn
n

)]
= lim

n→∞
E
[
f
(Sn
n

)B ′n,Sn(x)

Bn,Sn(x)

]
uniformly on [0, 1], which is a sort of integration by parts for
f ∈ C 1([0, 1]). The higher dimensional cases are analogous.

This can be seen as a discrete analogue of the famous formula
E [f (k)(X )] = E [f (X )Hk(X )] for standard Gaussian random variables.
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Stone-Weiertrass theorems

Weierstrass approximation theorem

This proves in particular the following theorem:

The polynomials are dense in C ([0, 1]) = C ([0, 1],R) (Weierstrass
approximation theorem).

A substantial generalization of this result tells that on compact topological
Hausdorff spaces K every point separating subalgebra of the algebra of
continuous functions C (K ) := C (K ;R) is actually dense, too
(Stone-Weierstrass approximation theorem). Point separating just means
that for every two points x 6= y there is a function f ∈ A such that
f (x) 6= f (y).

There is an order theoretic version of this theorem and Bernstein’s proof
also paves the path towards a probabilistic version of this theorem.
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Stone-Weiertrass theorems

Proof of the Stone Weierstrass approximation theorem

Let K be a compact topological Hausdorff space and let A ⊂ C (K ) be a
point separating subalgebra ((sub-)algebras here always contain the 1).
Let f ∈ C (K ) and ε > 0 be fixed. Then we can proceed as follows:

With g ∈ A, we have that |g | ∈ A. Indeed g(K ) ⊂ [a, b] for some
a, b, and take a polynomial p which approximates x 7→ |x | on [a, b] up
to accuracy ε. Then ‖|g | − p(g)‖∞ ≤ ε, however p(g) ∈ A.

With g , h ∈ A we have that max(g , h) = |g+h|
2 + |g−h|

2 ∈ A.

With g , h ∈ A we have that max(g , h) ∈ A.
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Stone-Weiertrass theorems

Proof of the Stone Weierstrass approximation theorem

For every x ∈ K we construct fx ∈ A such that fx ≤ f + ε and
fx(x) = f (x). Indeed we can find (point separation) for every z ∈ K a
function gx ,z ∈ A with gx ,z(x) = f (x) and gx ,z(z) = f (z). Then there
exists an open neighborhood Vz 3 z such that gx ,z |Vz ≤ f |Vz + ε.
Due to compactness there is a finite subcover of (Vz) indexed by
z1, . . . , zn ∈ K . Define now fx = min(gx ,z1 , . . . , gx ,zn) ∈ A.

With an analogue argument we can construct an open cover (Ux)
such that fx ≥ f − ε on Ux 3 x , which has again a finite subcover
indexed by x1, . . . , xm. Define now g = max(fx1 , . . . , fxm) ∈ A, then
f − ε ≤ g ≤ f + ε globally.
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Stone-Weiertrass theorems

Remarks

We could equally take a point separating, linear subspace A such that
with f , g ∈ A also max(f , g) ∈ A (order theoretic version of the Stone
Weierstrass approximation theorem).

A probabilistic version could look as follows: let ν be a measure with
full support on K and let µn,x = gn,xν be a family of probability
measures converging weakly to δx as n→∞, for x ∈ K . Assume that
x 7→ gn,x(y) is continuous for every y in the support of ν. Then the
span of x 7→ gn,x(y) is dense in C (K ).
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Stone-Weiertrass theorems

Vector valued Stone Weierstrass approximation theorem

Let Y be a Banach space. Let B ⊂ C (K ;Y ) be an A-submodule, where A
a point separating subalgebra of C (K ). Assume furthermore that
(g(x))g∈B is a dense family in Y for every x ∈ K . Then B is dense in
C (K ;Y ).

The proof is simple: without restriction we can assume that A = C (K )
and that B is closed. Take f ∈ C (K ;Y ) and choose ε > 0. For every
x ∈ K choose gx ∈ B such that gx(x) = f (x). Then
({y ∈ K | ‖f (y)− gx(y)‖ < ε}) is an open cover of K which has a finite
subcover indexed by x1, . . . , xn ∈ X . Choose a partition of unity

∑
i ψi = 1

for this finite subcover, then g :=
∑

i ψigxi ∈ B is approximating f up to
accuracy ε.
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Stone-Weiertrass theorems

Weighted Spaces

For several applications it is necessary to go beyond compact spaces. We
therefore consider weighted spaces (E , ρ), i.e. topological Hausdorff spaces
with ρ : E → R≥1 such that {ρ ≤ R} is compact for all R, where a similar
analysis as on compact spaces is possible.

We consider the closure Bρ(E ) of bounded continuous functions
Cb(E ;R) = Cb(E ) with respect to the ρ-norm

‖f ‖ρ := sup
x

|f (x)|
ρ(x)

.

In a similar manner we can define Bρ(E ;Y ) for vector valued functions.

20 / 41



Stone-Weiertrass theorems

Stone Weierstrass approximation theorem for weighted
spaces E

Let A a point separating subalgebra of Bρ(E ) such that for a point
separating subspace Ã ⊂ A the function exp(|l |) ∈ Bρ(E ) for l ∈ Ã. Then
A is dense in Bρ(E ).

Assume first that A consists soley of bounded functions, then the
additional condition is automatically satisfied. In this case the proof
follows directly from the compact case: it is sufficient to show that
f ∈ Cb(E ) ⊂ Bρ(E ) can be approximated by elements from A. Choose
R > 0, then we can find g ∈ A, such that g is close to f on {ρ ≤ R} with
distance less than 1 > ε > 0. Assume f has range bounded by M, whence
there is a polynomial p which closely approximates on
[−M − ‖g‖∞ − 1,M + ‖g‖∞ + 1] a function being x 7→ x on
[−M − 1,M + 1] and bounded by M + 1 otherwise. Consequently
p(g) ∈ A is close to f with distance less than ε+ M+1

R , but now globally in
ρ-norm (if R is chosen big enough such that M/R is small).
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Stone-Weiertrass theorems

Stone Weierstrass approximation theorem for weighted
spaces E

Assume now the general case: the additional condition means that by
polynomial approximation sin(l) and cos(l) lie in the closure of A for
l ∈ Ã, whence the subalgebra

{α1 sin(l1) + α2 cos(l2)|αi ∈ R, li ∈ Ã}

of globally bounded functions lies in the closure of A.

By the first result we can conclude that A is dense.
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Stone-Weiertrass theorems

Vector valued Stone Weierstrass approximation theorem
for weighted spaces E

Let Y be a Banach space. Let B ⊂ Bρ(E ;Y ) be an A-submodule, where
A a point separating subalgebra of Bρ(E ) of bounded continuous functions
(or under the previous more general condition). Assume furthermore that
(g(x))g∈B is a dense family in Y for every x ∈ E . Then B is dense in
Bρ(E ;Y ).

Again without restriction we can assume that A = Bρ(E ;Y ) and again it
is sufficient to show that f ∈ Cb(E ;Y ) ⊂ Bρ(E ;Y ) can be approximated
by elements from B. Choose R > 0, then we can choose g ∈ B, such that
g is close to f on {ρ ≤ R} with distance less than 1/3 > ε > 0. Assume
without restriction that f has range bounded by 1/3. The function
h = 1 ∧ 1

5/3+‖g‖2 is bounded continuous on E , therefore it lies in A.

hg ∈ B is still close to f with distance less than ε+ 1
R but now globally (if

R is chosen large enough as above).
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Stone-Weiertrass theorems

Remark

We can replace the Banach space Y by any locally convex vector
space and obtain analogue results for the locally convex spaces of
vector valued continuous functions on K or E , respectively.

In the real valued case an order theoretic version is possible, too.
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Stone-Weiertrass theorems

Nachbin type theorems

Leopoldo Nachbin proved versions of the Stone-Weierstrass theorem for
the C k topology, where the point separating subalgebra is subject to an
additional condition, the so called Nachbin condition.

We do neither enter differentiability theory on infinite dimensional spaces
nor the precise details on the Nachbin condition, but just take the
following definition.

Let (E , ρ) be weighted space and A a Banach space and a point separating
subspace of functions A ⊂ Bρ(E ;Rn) such that for all bounded
f1, . . . , fr ∈ A and all C k functions g it holds that g(f1, . . . , fr ) ∈ A.
Furthermore for sequences of C k functions converging in C k , also the
corresponding compositions converge in A (with respect to its Banach
space topology). In such a case we call A a C k algebra. (we could apply
convenient calculus here and consider Lipk spaces instead.

Example: C k(K ;Rm), where K is a ball in Rn.
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Stone-Weiertrass theorems

Nachbin type theorems

Let A be a C k algebra and B ⊂ A a subalgebra such that the set of all
possible g(f1, . . . , fn) for fi ∈ B bounded and g a C k function is dense.
Then B is already dense in A.

The proof is a simple applications of polynomials being C k dense in
C k([0, 1]).

In a similar manner vector valued version can be defined.
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UAT on compact and weighted spaces

Universal approximation theorems (UAT)

Universal approximation theorems aim for easy constructions of
subalgebras or submodules on weighted spaces in order to apply Stone
Weierstrass type approximation theorems.

We shall introduce the notion of activating families and additive families
for this purpose.
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UAT on compact and weighted spaces

Additive point separating families

Let E be a weighted space. A set of bounded continuous functions
L ⊂ Bρ(E ) is called additive point separating family if it is closed under
addition, contains 1, −1 and is point separating.

We remark that this definition also makes sense for vector valued functions.
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UAT on compact and weighted spaces

Activating families

Let Y be a Banach space. A family Φ of continuous functions ϕ : R→ R
is called activating if the space

AΦ :=
{∑

i

αiϕi (βi .+γi )+α0| for α, α0 ∈ Y , βi ∈ N, γ ∈ Z, ϕi ∈ Φ, n ∈ N
}

is dense in C ([a, b];Y ) for any real a < b

Typically Φ is a singleton (’an activation function’). Notice that it is
sufficient that this property holds for Y = R, since then it holds for all
finite dimensional spaces, whence for all finite dimensional subspaces of Y ,
wherefrom the general assertion follows by vector valued Stone-Weierstrass
on [a, b].

We call Φ a C k activating family if the topology in the above statement is
actually C k .
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UAT on compact and weighted spaces

UAT

Let Y be a Banach space, E a weighted space, Φ and activating family of
functions and L an additive family, then

NNΦ =
{∑

i

αiϕi (li ) + α0| for αi ∈ Y , li ∈ L and n ∈ N
}

is dense in Bρ(E ;Y ).
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UAT on compact and weighted spaces

Proof of UAT

For the proof we have to show that the closure B of NNΦ is a Bρ(E )
submodule which satisfies the condition that (g(x))g∈B is dense for every
x ∈ E .

Assume first that Y = R, then the algebra A generated by L is point
separating and therefore dense. This algebra, however, lies in the closure
of NNΦ. Indeed consider l ∈ L, then sin(l) as well as cos(l) lie in the
closure since we can approximate sin and cos by functions from AΦ

uniformly (notice that l has bounded range). Therefore
sin(k1l1 + · · ·+ knln) and cos(k1l1 + · · ·+ knln) lie in the closure, for li ∈ L
and ki ∈ N (addivity!). By uniform trigonometric approximation we obtain
therefore that all polynomials of elements from L lie in the closure,
whence we can conclude by real valued Stone-Weierstrass.

For the general case it is sufficient to show it for finite dimensional
subspaces of Y , where it clearly holds.
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UAT on compact and weighted spaces

Remark

We could replace [a, b] in the definition of activating families above a
weighted locally convex vector space Z such that exp(|l |) ∈ Bρ(Z ) for
each l ∈ Z ′. Consider now activating families taking values in Z , then
an analogous result holds true.

We can also consider activating families of functions ϕ : Z → Z , αi

should then be linear maps from Z to Y .

Elements of NNΦ are called neural networks with activating family Φ
initialized by L.

The space of real valued neural networks NNΦ is again an additive
family. Whence deeper networks are dense, too.
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UAT on compact and weighted spaces

Activating families

If ϕ : R→ R is a discriminatory function, i.e. a Borel measure µ is
vanishing if and only if∫ b

a
ϕ(βx ± γ)µ(dx) = 0

for all real numbers β, γ ∈ R, then Φ = {ϕ} is an activating family.

If ϕ : R→ R is bounded and non-constant, then it is discriminatory.
The same result holds with respect to C k -topologies (see work of
Kurt Hornik).

If ϕ(x) = max(0, x), then Φ = {ϕ} is an activating family.
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UAT on compact and weighted spaces

UAT for C k algebras

Let A be a C k algebra on a weighted space E , Φ a C k activating family of
functions and L an additive family in A such that g(l1, . . . , lr ) for all
possible C k functions g and l1, . . . , lr ∈ L are dense in A, then

NNΦ =
{∑

i

αiϕi ◦ li | for αi ∈ Rn, li ∈ L and n ∈ N
}

is dense in A, too.

The generalizations towards range Banach spaces Y is actually simple,
also the analogous result for Lipk .
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Signature approximations

Signature on Lip([0, 1];Rd)

Lipschitz curves (starting at 0) are a dual space of a Banach space (see
work of Nigel Kalton and Sten Kaijser) and carry therefore a
weak-∗-topology, which constitutes a weighted space (E , ρ) where we take
ρ(u) = exp(‖u‖2

Lip).

For every Lipschitz curve u starting at 0 we can define signature of the
curve extended by time, whose span provides us with a point separating
subalgebra A of Bρ(E ) satisfying the condition that exp(|l(u)|) ∈ Bρ(E )
for all l ∈ E ′. Whence A is dense in Bρ(E ). (analogous for rough path
spaces and their corresponding weak-∗-topologies (which differs from
rough path norms!).
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Signature approximations

Results of Chevyrev-Oberhauser

Robin Giles’ strict topology is used on Cb(E ), where E is a
topological space. This (locally convex) topology is weaker than the
uniform topology but stronger then convergence on compacts in E . In
particular the dual space is the space of finite Borel measures on E .

The use of Stone-Weierstrass theorems on Cb(E ) demands for tensor
normalization, which in turn interferes with the algebraic properties.

This is the starting point for kernelizations, which are an extremely
useful tool for analyzing and calculating approximations by signature
basis.
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Signature approximations

New results

tensor normalizations are unnecessary when working in Bρ(E ). Still
the dual space is a well understood space of Borel measures (those
integrating ρ) and Stone-Weierstrass works in the particular case of
the algebra generated by signatures.

randomized signature can be considered a path space counterpart of a
randomly initialized shallow networks. This opens the door for random
feature analysis in the sense of Nicholas Nelsen and Andrew Stuart.

this complements the pathwise Johnson-Lindenstrass inspired proof
where randomized signature can be useful.
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