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CODE

We consider differential equations of the form

dYe =Y _ Vi(Yo)du, Yo=y € E
i

to construction evolutions in state space E (could be a manifold of finite
or infinite dimension) depending on local characteristics, initial value
y € E and the control u.

If the map y — Y7 is considered CODEs are an exciting model for
feedforward neural networks, residual networks, etc (see joint work with
Christa Cuchiero and Martin Larsson).
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CODEs: control as input

For this talk we fix y € E and consider

u+— W Evols(y)

and train the readout and/or the vector fields.

Does this also correspond to classes of networks? Yes: these are
continuous time versions of rNNs, LSTMs, etc.

It can be used for time series, predictions, etc.
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Reservoir Computing (RC)

... We aim to learn an input-output map on a high- or infinite dimensional
input state space. Consider the input as well as the output dynamic, e.g. a
time series. An example: learn a given evolution on state space E:

Paradigm of Reservoir computing (Herbert Jager, Lyudmila,
Grigoryeva, Wolfgang Maas, Juan-Pablo Ortega, et al.)

Split the input-output map into a generic part of generalized rNN-type
(the reservoir), which is not trained and a readout part, which is trained.

Often the readout is chosen linear and the reservoir has random features.
The reservoir is usually a numerically very tractable dynamical system.
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Applications of RC

@ Often reservoirs can be realized physically, whence ultrafast
evaluations are possible. Only the readout map W has to be trained.
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Applications of RC

@ Often reservoirs can be realized physically, whence ultrafast
evaluations are possible. Only the readout map W has to be trained.

@ One can learn dynamic phenomena without knowing the specific
characteristics.

@ It works unreasonably well with generalization tasks.

6/30



An instance of RC are CODEs/RDEs/SDEs

Consider a controlled differential equation

d
dYe =Y Vi(Yo)dul, Yo=y € E
i=1

for some smooth vector fields V; : E - TE, i=1,...,d and d
independent (Stratonovich) Brownian motions ', or finite variation
continuous controls, or a rough path, or a semi-martingale. This describes
a controlled dynamics on E.

We want to learn the dynamics, i.e. the map

Obviously a complicated, non-linear map, ...

7/30



Transport operators

We introduce some notation for this purpose:

Definition

Let V : E — E be a smooth vector field, and let f : E — R be a smooth
function, then we call

Vf(x) = df(x) e V(x)

the transport operator associated to V/, which maps smooth functions to
smooth functions and determines V uniquely.
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Taylor expansion
Theorem
Let Evol be a smooth evolution operator on a convenient manifold E

which satisfies (again the time derivative is taken with respect to the
forward variable t) a controlled ordinary differential equation

d

d Evols ¢(x) = Y _ Vi(Evols +(x))du(t)
i=1

then for any smooth function f : E — R, and every x € E

d
- Z Vig -+ \/ka(X) / duil(tl)'”duik(tk)""
P s<t <<ty <t
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Taylor expansion

with remainder term

RM(57 t7 f) -
d I -
- Z / Vig -+ Vi f (Evols ¢ (x)) du®(to) - - - du'’* (tm)
iy =1 7/ SSt S Stmpr <t

holds true for all times s < t and every natural number M > 0.

A lot of work has been done to understand the analysis, algebra and
geometry of this expansion (Kua-Tsai Chen, Gerard Ben-Arous, Terry

Lyons). It is a starting point of rough path analysis (Terry Lyons, Peter
Friz, etc).
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Hopf algebraic interpretation

Definition
Consider the free algebra Ay of formal series generated by d
non-commutative indeterminates ey, ..., ey (actually a Hopf Algebra). A

typical element a € Ay is written as

00 d
a= g g Qi ...y €0y " iy s

k=0 i,...,ik=1

sums and products are defined in the natural way. We consider the
complete locally convex topology making all projections a — aj, ;,
continuous on Ay, hence a convenient vector space.
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Vector fields in Ay

Definition
We define on Ay smooth vector fields

ar—> ae;

fori=1,...,d.
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Signature

Theorem

Let u be a smooth control, then the controlled differential equation

d

dSigs,t(a) = Z Sigs,t(a)eidui(t)v Sigs,s(a) =4 (1)

i=1

has a unique smooth evolution operator, called signature of u and denoted
by Sig, given by

Si )=a / du(t1) - du™(te) e -+ €, . (2
gst Z Z ISP (1) (k) 1 K ( )

k=0 i1,...,ux=1

Actually Sig(e) takes values in a Lie group G and any element of G can be
reached up to arbitrary order of accuracy by such evolutions starting at e.
Additionally the restriction of linear maps on G is an algebra.
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Signature as abstract reservoir
Theorem (Signature is a reservoir)

Let Evol be a smooth evolution operator on a convenient vector space E
which satisfies (again the time derivative is taken with respect to the
forward variable t) a controlled ordinary differential equation

d EVO|5 t Z V(EVOIS t ( )

Then for any smooth (test) function f : E — R and for every M > 0 there
is a time-homogenous linear W = W(VA, ..., Vy4,f, M, x) from Ag/’ to the
real numbers R such that

f (Evols¢(x)) = W (mm(Sigs(1))) + O((t — s)M*1)

fors < t.
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Signature as reservoir

@ This explains that any solution can be represented — up to a linear
readout — by a universal reservoir, namely signature. Similar
constructions can be done in regularity structures, too (branched
rough paths, etc).
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Signature as reservoir

@ This explains that any solution can be represented — up to a linear
readout — by a universal reservoir, namely signature. Similar
constructions can be done in regularity structures, too (branched
rough paths, etc).

@ This is used in many instances of provable machine learning by, e.g.,
groups in Oxford (Harald Oberhauser, Terry Lyons, etc), and also ...

@ ... at JP Morgan, in particular great recent work on 'Nonparametric
pricing and hedging of exotic derivatives’ by Terry Lyons, Sina Nejad
and Imanol Perez Arribas.

@ in contrast to reservoir computing: signature is high dimensional
(i.e. infinite dimensional) and a precisely defined, non-random object.

o Can we approximate signature by a lower dimensional random object
with similar properties?
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Signature for semi-martingales

We shall consider now R>q as time interval except otherwise mentioned.
The stochastic basis satisfies usual conditions.

Let us introduce some notation: we denote by S the set of simple
predictable processes, i.e. forw € Q,se€ T

Hs(w) = Ho(w)Lio)(s +ZH W) T(w), Tia () (5)

for an increasing, finite sequence of stopping times

0=To< Ty <...Tht1 < oo and H; being Fr, measurable, by Il the set
of adapted, caglad processes and by D the set of adapted, cadlag
processes on Rxg.
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These vector spaces are endowed with the metric

d(X,Y) ;:ZzlEU(X Y)[: A1,

n>0

which makes I and D complete topological vector spaces. We call this
topology the ucp-topology (“uniform convergence on compacts in
probability” ). Notice that predictable strategies as well as integrators are
considered R valued here, which, however, contains the R” case.
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Good integrators

Definition
An adapted, cadlag process X is called good integrator if the map
Jx S—D
with
(HeX)e = Ux(H)e := HoXo + > Hi(XTiint — XTine)
i=1

for H € S, is continuous with respect to the ucp-topologies on the
respective spaces (this can even be weakened).
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Bichteler-Dellacherie Theorem

X is a good integrator if and only if X = M + A, where M is a local

martingale and A is a process of finite total variation, i.e. X is a
semimartingale.
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The Emery topology

The Emery topology on the set of semimartingales SEM is defined by the
metric

1 .
de(S1,S2) =Y =  sup  E[|(Ke(S1—S))sA1].
n>0 2" KeS, ||K| <1

We can by means of the Bichteler-Dellacherie theorem easily prove the
following important theorem.
Theorem

The set of semi-martingales SEM is a topological vector space and
complete with respect to the Emery topology.
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Theorem

For every semi-martingale X the map Jx from the space 1L of caglad
processes to SEM of semi-martingales is continuous.

25/30



Ito’s formula
We are now already able to formulate and prove Ito’s formula in all
generality:

Theorem

Let X1, ..., X" be good integrators and f : R” — R a C? function, then
fort >0

n

F(Xe) = (9 (X o= Z ) e [X7, X))+
i=1 /u 1
+Z{f(X ) — F(X. Zaf AX'—fZa _AXIAXIY,
0<s<t ij=1

(we apply Xo— = 0 here.)
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Semimartingale Signature (existence)

Theorem
Let X1, ..., X" be good integrators. Consider a free algebra A? of power
series generated by (non-commutative) generators eg, €;, €jj, €jjk, - . ., for
i<j<k<...e{l,...,d}, then semimartingale signature
. d .
sem-Sig = 1 + / (sem-Sig, ds)eg + Z(sem—Sigf oX')ei+
0 i=1
d . .
4 Z (sem-Sig_ o[ X", X’])eji+
i<j=1
> O sem-Sig, AXIAXIAXE)eji+ ...
i<j<k s<.

is a well defined A? valued process.

27/30




Semi-martingale Signature (density)

The set of all (£,sem-Sig) for £ € (A)* is an algebra of semimartingales.
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Proof

@ The first assertion follows by constructing solutions for finite
dimensional (nilpotent of degree M) cut off systems.

@ By Ito’s formula one sees that every polynomial in time and
X1, ..., X9 can be precisely written as a finite linear combination of
components of the semimartingale signature.

@ By Ito’s formula one can see that products of components of
semimartingale signature can be written as finite linear combinations
of components of semimartingale signature.

o Also every integral with integrand f(., X?,..., X9) with respect to a
component of semimartingale signature can be written as a finite
linear combination of components of signature.

@ Therefore the span of the components of semimartingale signature
constitutes an algebra.
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