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Josef Teichmann (ETH Zürich) Aspects of Signatures April 2021 1 / 25



CODE

We consider differential equations of the form

dYt =
∑
i

Vi (Yt)du
i
t , Y0 = y ∈ E

to construction evolutions in state space E (could be a manifold of finite
or infinite dimension) depending on local characteristics, initial value
y ∈ E and the control u.

If the map y → YT is considered CODEs are an exciting model for
feedforward neural networks, residual networks, etc (see joint work with
Christa Cuchiero and Martin Larsson).
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CODEs: control as input

For this talk we fix y ∈ E and consider

u 7→W Evols,t(y)

and train the readout and/or the vector fields.

Does this also correspond to classes of networks? Yes: these are
continuous time versions of rNNs, LSTMs, etc.

It can be used for time series, predictions, etc.
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Reservoir Computing (RC)

... We aim to learn an input-output map on a high- or infinite dimensional
input state space. Consider the input as well as the output dynamic, e.g. a
time series. An example: learn a given evolution on state space E :

Paradigm of Reservoir computing (Herbert Jäger, Lyudmila,
Grigoryeva, Wolfgang Maas, Juan-Pablo Ortega, et al.)

Split the input-output map into a generic part of generalized rNN-type
(the reservoir), which is not trained and a readout part, which is trained.

Often the readout is chosen linear and the reservoir has random features.
The reservoir is usually a numerically very tractable dynamical system.
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Applications of RC

Often reservoirs can be realized physically, whence ultrafast
evaluations are possible. Only the readout map W has to be trained.

One can learn dynamic phenomena without knowing the specific
characteristics.

It works unreasonably well with generalization tasks.
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An instance of RC are CODEs/RDEs/SDEs

Consider a controlled differential equation

dYt =
d∑

i=1

Vi (Yt)du
i
t , Y0 = y ∈ E

for some smooth vector fields Vi : E → TE , i = 1, . . . , d and d
independent (Stratonovich) Brownian motions ui , or finite variation
continuous controls, or a rough path, or a semi-martingale. This describes
a controlled dynamics on E .

We want to learn the dynamics, i.e. the map

(input control u) 7→ (solution Y ).

Obviously a complicated, non-linear map, ...

7 / 30



Transport operators

We introduce some notation for this purpose:

Definition

Let V : E → E be a smooth vector field, and let f : E → R be a smooth
function, then we call

Vf (x) = df (x) • V (x)

the transport operator associated to V , which maps smooth functions to
smooth functions and determines V uniquely.
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Taylor expansion

Theorem

Let Evol be a smooth evolution operator on a convenient manifold E
which satisfies (again the time derivative is taken with respect to the
forward variable t) a controlled ordinary differential equation

d Evols,t(x) =
d∑

i=1

Vi (Evols,t(x))dui (t)

then for any smooth function f : E → R, and every x ∈ E

f
(

Evols,t(x)
)

=

=
M∑
k=0

d∑
i1,...,uk=1

Vi1 · · ·Vik f (x)

∫
s≤t1≤···≤tk≤t

dui1(t1) · · · duik (tk)+

+ RM(s, t, f )
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Taylor expansion

with remainder term

RM(s, t, f ) =

=
d∑

i0,...,uM=1

∫
s≤t1≤···≤tM+1≤t

Vi0 · · ·Vik f
(

Evols,t0(x)
)
dui0(t0) · · · duik (tM)

holds true for all times s ≤ t and every natural number M ≥ 0.

A lot of work has been done to understand the analysis, algebra and
geometry of this expansion (Kua-Tsai Chen, Gerard Ben-Arous, Terry
Lyons). It is a starting point of rough path analysis (Terry Lyons, Peter
Friz, etc).
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Hopf algebraic interpretation

Definition

Consider the free algebra Ad of formal series generated by d
non-commutative indeterminates e1, . . . , ed (actually a Hopf Algebra). A
typical element a ∈ Ad is written as

a =
∞∑
k=0

d∑
i1,...,ik=1

ai1...ik ei1 · · · eik ,

sums and products are defined in the natural way. We consider the
complete locally convex topology making all projections a 7→ ai1...ik
continuous on Ad , hence a convenient vector space.
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Vector fields in Ad

Definition

We define on Ad smooth vector fields

a 7→ aei

for i = 1, . . . , d .
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Signature

Theorem

Let u be a smooth control, then the controlled differential equation

d Sigs,t(a) =
d∑

i=1

Sigs,t(a)eidu
i (t) , Sigs,s(a) = a (1)

has a unique smooth evolution operator, called signature of u and denoted
by Sig, given by

Sigs,t(a) = a
∞∑
k=0

d∑
i1,...,uk=1

∫
s≤t1≤···≤tk≤t

dui1(t1) · · · duik (tk) ei1 · · · eik . (2)

Actually Sig(e) takes values in a Lie group G and any element of G can be
reached up to arbitrary order of accuracy by such evolutions starting at e.
Additionally the restriction of linear maps on G is an algebra.
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Signature as abstract reservoir

Theorem (Signature is a reservoir)

Let Evol be a smooth evolution operator on a convenient vector space E
which satisfies (again the time derivative is taken with respect to the
forward variable t) a controlled ordinary differential equation

d Evols,t(x) =
d∑

i=1

Vi (Evols,t(x))dui (t) .

Then for any smooth (test) function f : E → R and for every M ≥ 0 there
is a time-homogenous linear W = W (V1, . . . ,Vd , f ,M, x) from AM

d to the
real numbers R such that

f
(

Evols,t(x)
)

= W
(
πM(Sigs,t(1))

)
+O

(
(t − s)M+1

)
for s ≤ t.
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Signature as reservoir

This explains that any solution can be represented – up to a linear
readout – by a universal reservoir, namely signature. Similar
constructions can be done in regularity structures, too (branched
rough paths, etc).

This is used in many instances of provable machine learning by, e.g.,
groups in Oxford (Harald Oberhauser, Terry Lyons, etc), and also ...

... at JP Morgan, in particular great recent work on ’Nonparametric
pricing and hedging of exotic derivatives’ by Terry Lyons, Sina Nejad
and Imanol Perez Arribas.

in contrast to reservoir computing: signature is high dimensional
(i.e. infinite dimensional) and a precisely defined, non-random object.

Can we approximate signature by a lower dimensional random object
with similar properties?
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Signature for semi-martingales

We shall consider now R≥0 as time interval except otherwise mentioned.
The stochastic basis satisfies usual conditions.

Let us introduce some notation: we denote by S the set of simple
predictable processes, i.e. for ω ∈ Ω, s ∈ T

Hs(ω) = H0(ω)1{0}(s) +
n∑

i=1

Hi (ω)1]Ti (ω),Ti+1(ω)](s)

for an increasing, finite sequence of stopping times
0 = T0 ≤ T1 ≤ . . .Tn+1 <∞ and Hi being FTi

measurable, by L the set
of adapted, caglad processes and by D the set of adapted, cadlag
processes on R≥0.
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These vector spaces are endowed with the metric

d(X ,Y ) :=
∑
n≥0

1

2n
E
[
|(X − Y )|∗n ∧ 1

]
,

which makes L and D complete topological vector spaces. We call this
topology the ucp-topology (“uniform convergence on compacts in
probability”). Notice that predictable strategies as well as integrators are
considered R valued here, which, however, contains the Rn case.
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Good integrators

Definition

An adapted, cadlag process X is called good integrator if the map

JX : S→ D

with

(H • X )t := JX (H)t := H0X0 +
n∑

i=1

Hi (XTi+1∧t − XTi∧t) ,

for H ∈ S, is continuous with respect to the ucp-topologies on the
respective spaces (this can even be weakened).
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Bichteler-Dellacherie Theorem

X is a good integrator if and only if X = M + A, where M is a local
martingale and A is a process of finite total variation, i.e. X is a
semimartingale.
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The Emery topology

The Emery topology on the set of semimartingales SEM is defined by the
metric

dE (S1, S2) :=
∑
n≥0

1

2n
sup

K∈S, ‖K‖∞≤1
E
[
|(K • (S1 − S2))|∗n ∧ 1

]
.

We can by means of the Bichteler-Dellacherie theorem easily prove the
following important theorem.

Theorem

The set of semi-martingales SEM is a topological vector space and
complete with respect to the Emery topology.
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Theorem

For every semi-martingale X the map JX from the space L of càglàd
processes to SEM of semi-martingales is continuous.
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Ito’s formula

We are now already able to formulate and prove Ito’s formula in all
generality:

Theorem

Let X 1, . . . ,X n be good integrators and f : Rn → R a C 2 function, then
for t ≥ 0

f (Xt) =
n∑

i=1

(∂i f (X−) • X i )t +
1

2

n∑
i ,j=1

(∂2ij f (X−) • [X i ,X j ])
t
+

+
∑

0≤s≤t

{
f (Xs)− f (Xs)− −

n∑
i=1

∂i f (Xs)−∆X i
s −

1

2

n∑
i ,j=1

∂2ij f (Xs)−∆X i
s∆X j

s

}
.

(we apply X0− = 0 here.)
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Semimartingale Signature (existence)

Theorem

Let X 1, . . . ,X n be good integrators. Consider a free algebra Ad of power
series generated by (non-commutative) generators e0, ei , eij , eijk , . . ., for
i ≤ j ≤ k ≤ . . . ∈ {1, . . . , d}, then semimartingale signature

sem-Sig = 1 +

∫ .

0
(sem-Sigs ds)e0 +

d∑
i=1

(sem-Sig− •X i )ei+

+
d∑

i≤j=1

(sem-Sig− •[X i ,X j ])eij+∑
i≤j≤k

(
∑
s≤.

sem-Sigs− ∆X i
s∆X j

s ∆X k
s )eijk + . . .

is a well defined Ad valued process.
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Semi-martingale Signature (density)

The set of all 〈`, sem-Sig〉 for ` ∈ (Ad)∗ is an algebra of semimartingales.
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Proof

The first assertion follows by constructing solutions for finite
dimensional (nilpotent of degree M) cut off systems.

By Ito’s formula one sees that every polynomial in time and
X 1, . . . ,X d can be precisely written as a finite linear combination of
components of the semimartingale signature.

By Ito’s formula one can see that products of components of
semimartingale signature can be written as finite linear combinations
of components of semimartingale signature.

Also every integral with integrand f (.,X 1, . . . ,X d) with respect to a
component of semimartingale signature can be written as a finite
linear combination of components of signature.

Therefore the span of the components of semimartingale signature
constitutes an algebra.
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