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Introduction

... how it started

Deep Hedging (learn trading strategies): joint project with Hans
Bühler, Lukas Gonon and Ben Wood at JP Morgan (2017).

Deep Calibration (learn model parameters): joint project with Christa
Cuchiero and Wahid Khosrawi-Sardroudi.
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Introduction

Randomness appears prominently in learning

random initialization of network weights.

stochastic gradient descent.

dropouts.

randomization of strategies for stochastic control problems or games.

generic (random) architectures with depth often work surprisingly well.

most radical appearance of randomness: reservoir computing – just
learn the readout!
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Introduction

Goal of this talk is ...

to present a non-standard perspective on approximation techniques in
machine learning.
interpret learning as target reaching.
to connect this non-standard perspective to reservoir computing.
to apply random projections to construct reservoirs and prove
generalization results.
Randomness appears twofold here: it avoids degenerate behavior and
therefore creates expressiveness, or it allows to construct low
dimensional replica of high dimensional expressive structures.

(joint works with Christa Cuchiero, Lukas Gonon, Lyudmila Grigoryeva,
Wahid Khosrawi-Sardroudi, Thomas Krabichler, Martin Larsson, and
Juan-Pablo Ortega)
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Neural networks and controlled ODEs

Controlled ordinary differential equations

It has been very fruitful in mathematical finance, economics, dynamical
systems to consider discrete and continuous time (stochastic) systems
under one roof ...

Consider a controlled ODE (CODE)

dXt = V (Xt , θ(t))dut , Xs = x ∈ E

on some state space E and some set of general controls t 7→ θ(t) ∈ Θ and
some linear controls u.

if ut =
∑

n≥1 1{n≤t}, then the above differential equation becomes a
discrete dynamical system just concatenating (controlled) maps
x 7→ x + V (x , u(n)) up to terminal time.

if ut = t, then we have a standard controlled ordinary differential
equation.
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Neural networks and controlled ODEs

Neural networks

Neural networks are nowadays frequently used to approximate functions
due to ubiquitous universal approximation properties.

Neural networks are just concatenations of shallow neural networks, which
are of the form

V (x , u) =
N∑
l=1

αlϕ(〈µl , x〉+ βl)

for some vectors αj , µj ∈ Rm and numbers βj , which we can consider
controls u, and some activation function ϕ.

→ Neural networks are CODEs with a readout layer, i.e. a linear map W
acting on the solutions of CODE at terminal time. Depths appears as time.
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Neural networks and controlled ODEs

What is supervised learning for CODE?

We have convinced ourselves that CODE of the form

dXt =
∑
i

Vi (Xt)du
i
t , X0 = x ∈ E

can provide an abstract setting for deep feed forward neural networks.

Simplicity is a feature: notice how incredibly easy it is to write
backpropagation in this setting.
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Neural networks and controlled ODEs

What is supervised learning?

It appears as a target problem, i.e. consider a training data set (xl , yl)l∈L,
i.e. a finite subset of a graph of an R-valued continuous function on some
compact set.

Consider the following controlled ODE on EL

dZt =
d∑

i=1

Vi (Zt)du
i (t) ,

where
(Vi ((xl)))l := Vi (xl)

for l ∈ L and i = 1, . . . , d .

We search to minimize, e.g.,∥∥WZT − y
∥∥2
2

=
∑
l

∥∥WX xl
T − yl

∥∥2
2
→ min

over readouts W and controls u.
14 / 66



Neural networks and controlled ODEs

What is supervised learning?

Lift CODE to a transport equation on state space of smooth functions
f ∈ C∞(E ;R)

dft(x) =
∑
i

〈Vi (x),∇ft(x)〉dui (t) ,

then learning appears as∥∥ evalx(fT )− y
∥∥2
2

=→ min

for initial value f0 = 〈W , .〉 again searching for optimal W and optimal
controls u.
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Neural networks and controlled ODEs

Why could randomness possibly matter for learning?

In the view of the above light, learning appears as target problem of
stacked CODE or of a controlled transport equation.

There are, at least in finite dimension, criteria which explain when
targets can always be reached by CODEs: Chow-Rashevsky theory.

random vector fields satisy the assumptions of Chow-Rashevsky
theory and guarantee reachability.

However, the theory does not really apply, since we need it very
general ...
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Neural networks and controlled ODEs

Chow-Rashevsky revisited

Let E be a convenient space. Consider a controlled ordinary differential
equation (CODE), i.e.

Xt = x +
d∑

i=1

∫ t

s
Vi (Xr )dui (r), (1)

where Vi : E → E are some smooth vector fields on E The control
u : R→ Rd is considered a smooth curve with values in Rd . We shall
specify an open set of controls U such that the above equation has
solutions for all times.
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Neural networks and controlled ODEs

E & U

For our purposes we shall consider a particular class of vector fields where
CODEs admit solutions for all times (compare Filipovic-Teichmann (2003)
and Hamilton (1983)):

Theorem

Let E be a convenient vector space, A1, . . . ,Ad bounded linear generators
of (commuting) smooth groups, W1, . . . ,Wd smooth tempered Banach
vector fields, and u : R→ Rd a smooth control, then

Xt = x +
d∑

i=1

∫ t

s
(AiXr + Wi (Xr ))dui (r) (2)

has a unique solution for all times for any initial value.
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Neural networks and controlled ODEs

Evolutions

Additionally the solution map

(s, t, x) 7→ Evols,t(x)

is a well defined diffeomorphism which satisfies

Evols,t ◦Evolr ,s = Evolr ,t

and Evols,s(x) = x for all r , s, t ∈ R and x ∈ E .
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Neural networks and controlled ODEs

Lie brackets

Let V ,W : E → E be two smooth vector fields, then

[V ,W ] = dV •W − dW • V

is called the Lie bracket.

Definition

Let E be a convenient vector space and let V1, . . . ,Vd be smooth vector
fields, then we denote the subspace of directions obtained by evaluating
arbitrary linear combinations of Lie brackets at x ∈ E by
D(V1, . . . ,Vd)(x).
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Neural networks and controlled ODEs

Chow-Rashevsky revisited

Theorem (Cuchiero, Larsson, Teichmann (2019))

Let π : E → Rm be a finite dimensional projection (i.e. surjective and
linear) and let Evol be a smooth solution of Equation (1). Fix x ∈ E and
s 6= t and assume that D(V1, . . . ,Vd)(x) is dense at x ∈ E (Hörmander
condition), then

u 7→ π ◦ Evols,t(x)

is locally surjective at an open dense set of controls u on [s, t].
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Neural networks and controlled ODEs

Specification of controls

Fix s. We denote by Uω the set of real analytic controls
u ∈ U = C∞(R,Rd). We speak of a random choice of controls u ∈ Uω if
the coefficients of the expansion at basis point s are chosen with respect
to an infinite product of probability densities on Rd .
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Neural networks and controlled ODEs

Random controls classify

Given a fixed family of real numbers ai1...ik indexed by ij = 1, . . . , d ,
j = 1, . . . , k and k ≥ 0. Assume

M∑
k=0

d∑
i1,...,ik=1

ai1...ik

∫
s≤t1≤···≤tk≤r

dui1(t1) · · · duik (tk) = O
(
(r − s)M+1)

for all M ≥ 0 and r → s for a random choice of u ∈ Uω. Then ai1...ik = 0
identically.

26 / 66



Neural networks and controlled ODEs

Chow-Rashevsky revisited

Theorem (Cuchiero, Larsson, Teichmann (2019))

Let π : E → Rm be a finite dimensional projection (i.e. surjective and
linear) and let Evol be a smooth solution operator linear in x ∈ E of
Equation (1) with linear vector fields. Fix s 6= t and a non-zero finite
dimensional subspace L ⊂ E and assume that D(V1, . . . ,Vd)(x) is dense
in E for every 0 6= x ∈ L, then for every control u in a dense subset of
controls the set

(x , v) 7→ π ◦ Evolvs,t(x)− π ◦ Evolus,t(x)

is surjective for v in an open neighborhood of u.
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Neural networks and controlled ODEs

Determine gradients

The first derivative D of the map

u 7→ π ◦ Evolus,t(x)

is surjective at a control u if and only if the quadratic form C (u) defined
through

λ 7→
d∑

i=1

∫ t

s

〈
λ, π

(
Js,t(x) • Jr ,s(Xr ) • Vi (Xr )

)〉2
dr

is positive definite (notice there that Xs = x). Assume now that C (u) is
positive definite and denote its matrix by C (u), too. Then

d

dr
ai (r) = 〈π

(
Js,t(x) • Jr ,s(Xr ) • Vi (Xr )

)
,C (u)−1v〉

defines a control such that D(a) = v .
28 / 66



Neural networks and controlled ODEs

Fix a control such that C (u) is invertible. Then at least locally in λ the
differential equation

∂

∂λ

d

dr
uλ(r) = 〈π

(
Js,t(x) • Jr ,s(Xr ) • Vi (Xr )

)
,C (uλ)−1v〉

has a solution for u0 = u and r ∈ [s, t] (notice that the Jacobians on the
right hand side depend on uλ, too) and we obtain

d

dλ
π ◦ Evoluλs,t(x) = v

i.e. π ◦ Evoluλs,t(x) moves with constant speed v away from its value at
control u0. In particular this means that one can explicitly construct a
family of controls uλ which reach a target in a star-shaped neighborhood
of π ◦ Evolus,t(x).
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Neural networks and controlled ODEs

An explicit construction for d = 2

We consider an explicit construction of d = 2 vector fields V1,V2 on Rm

such that for a generic choice of distinct points x1, . . . , xL ∈ Rm for any
L ≥ 1 the vector fields

Wi := ⊕L
j=1Vi :

L⊕
j=1

Rm →
L⊕

j=1

Rm

satisfy a Hörmander condition on (x1, . . . , xL) ∈
⊕L

i=1Rm.
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Neural networks and controlled ODEs

An explicit construction for d = 2

Let σ be a polynomial in one variable of degree larger than 1 and consider
two vector fields on Rm

Vi (x) = σ(Aix + bi )

for x ∈ Rm, where the components of the matrices Ai , bi , i = 1, 2 are
independently drawn with respect to a probability density on R. Here σ
denotes the componentwise application of σ on a vector in Rm. Then for
any choice of independently sampled x1, . . . , xL, for any L ≥ 1 with respect
to a possibly different probability density, we obtain that W1,W2 satisfy a
Hörmander condition at (x1, . . . , xL) ∈

⊕L
j=1Rm.
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Neural networks and controlled ODEs

Why does randomness matter?

Consider a controlled ODE

dXt =
d∑

i=1

σ(AiXt + bi )dui (t)

in Rm, or transport lifted on C∞(Rm;R), with ’generic’ Ai and bi ,
e.g. sufficiently random, then Chow-Rashevsky applies.

This does explain why depths, a low amount of controllable
parameters in each layer in combination with an overall randomness
and a fully trainable readout layer can become very expressive.
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rNN, Reservoir computing and CODEs

CODEs: control as input

In our previous view we consider maps

x 7→W Evols,t(x)

trained by controls to reach targets. We could also fix xinE and consider

u 7→W Evols,t(x)

and just train the readout and/or the vector fields.

Does this also correspond to classes of networks? Yes: it generalizes rNNs,
LSTMs, etc.

Used for time series, predictions, etc.
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rNN, Reservoir computing and CODEs

Reservoir Computing (RC)

... We aim to learn an input-output map on a high- or infinite dimensional
input state space. Consider the input as well as the output as dynamic,
e.g. a time series,

Paradigm of Reservoir computing (Herbert Jäger, Lyudmila,
Grigoryeva, Wolfgang Maas, Juan-Pablo Ortega, et al.)

Split the input-output map into a generic part of generalized rNN-type
(the reservoir), which is not trained and a readout part, which is trained.

Often the readout is chosen linear and the reservoir has random features.
The reservoir is usually a numerically very tractable dynamical system.
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rNN, Reservoir computing and CODEs

Applications of RC

Often reservoirs can be realized physically, whence ultrafast
evaluations are possible. Only the readout map W has to be trained.

One can learn dynamic phenomena without knowing the specific
characteristics.

It works unreasonably well with generalization tasks.
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rNN, Reservoir computing and CODEs

An instance of RC in CODEs

Consider a controlled differential equation

dYt =
d∑

i=1

Vi (Yt)du
i
t , Y0 = y ∈ Rm

for some smooth vector fields Vi : Rm → Rm, i = 1, . . . , d and d
independent (Stratonovich) Brownian motions ui , or finite variation
continuous controls, or a rough path. This describes a controlled dynamics
on Rm.

We want to learn the dynamics, i.e. the map

(input control u) 7→ (solution Y ).

Obviously a complicated, non-linear map, ...
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rNN, Reservoir computing and CODEs

We introduce some notation for this purpose:

Definition

Let V : E → E be a smooth vector field, and let f : E → R be a smooth
function, then we call

Vf (x) = df (x) • V (x)

the transport operator associated to V , which maps smooth functions to
smooth functions and determines V uniquely.
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rNN, Reservoir computing and CODEs

Theorem

Let Evol be a smooth evolution operator on a convenient vector space E
which satisfies (again the time derivative is taken with respect to the
forward variable t) a controlled ordinary differential equation (1)

d Evols,t(x) =
d∑

i=1

Vi (Evols,t(x))dui (t)

then for any smooth function f : E → R

f
(

Evols,t
)

=

=
M∑
k=0

d∑
i1,...,uk=1

Vi1 · · ·Vik f (x)

∫
s≤t1≤···≤tk≤t

dui1(t1) · · · duik (tk)+

+ RM(s, t, f )
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rNN, Reservoir computing and CODEs

with remainder term

RM(s, t, f ) =

=
d∑

i0,...,uM=1

∫
s≤t1≤···≤tM+1≤t

Vi0 · · ·Vik f
(

Evols,t0(x)
)
dui0(t0) · · · duik (tM)

holds true for all times s ≤ t and every natural number M ≥ 0.

A lot of work has been done to understand the analysis, algebra and
geometry of this expansion (Kua-Tsai Chen, Gerard Ben-Arous, Terry
Lyons). It is a starting point of rough path analysis (Terry Lyons, Peter
Friz, etc).
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rNN, Reservoir computing and CODEs

Definition

Consider the free algebra Ad of formal series generated by d
non-commutative indeterminates e1, . . . , ed . A typical element a ∈ Ad is
written as

a =
∞∑
k=0

d∑
i1,...,ik=1

ai1...ik ei1 · · · eik ,

sums and products are defined in the natural way. We consider the
complete locally convex topology making all projections a 7→ ai1...ik
continuous on Ad , hence a convenient vector space.
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rNN, Reservoir computing and CODEs

Definition

We define on Ad smooth vector fields

a 7→ aei

for i = 1, . . . , d .
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rNN, Reservoir computing and CODEs

Theorem

Let u be a smooth control, then the controlled differential equation

d Sigs,t(a) =
d∑

i=1

Sigs,t(a)eidu
i (t) , Sigs,s(a) = a (3)

has a unique smooth evolution operator, called signature of u and denoted
by Sig, given by

Sigs,t(a) = a
∞∑
k=0

d∑
i1,...,uk=1

∫
s≤t1≤···≤tk≤t

dui1(t1) · · · duik (tk) ei1 · · · eik . (4)
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rNN, Reservoir computing and CODEs

Theorem (Signature is a reservoir)

Let Evol be a smooth evolution operator on a convenient vector space E
which satisfies (again the time derivative is taken with respect to the
forward variable t) a controlled ordinary differential equation (1)

d Evols,t(x) =
d∑

i=1

Vi (Evols,t(x))dui (t) .

Then for any smooth (test) function f : E → R and for every M ≥ 0 there
is a time-homogenous linear W = W (V1, . . . ,Vd , f ,M, x) from AM

d to the
real numbers R such that

f
(

Evols,t(x)
)

= W
(
πM(Sigs,t(1))

)
+O

(
(t − s)M+1

)
for s ≤ t.
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rNN, Reservoir computing and CODEs

Signature as reservoir

This explains that any solution can be represented – up to a linear
readout – by universal reservoir, namely signature.

This is used in many instances of provable machine learning by, e.g.,
groups in Oxford (Harald Oberhauser, Terry Lyons, etc), and also ...

... at JP Morgan, in particular great recent work on ’Nonparametric
pricing and hedging of exotic derivatives’ by Terry Lyons, Sina Nejad
and Imanol Perez Arribas.

in contrast to reservoir computing: signature is high dimensional
(i.e. infinite dimensional) and a precisely defined, non-random object.

Can we approximate signature by a lower dimensional random object
with similar properties?

47 / 66



rNN, Reservoir computing and CODEs

Signature as reservoir

This explains that any solution can be represented – up to a linear
readout – by universal reservoir, namely signature.

This is used in many instances of provable machine learning by, e.g.,
groups in Oxford (Harald Oberhauser, Terry Lyons, etc), and also ...

... at JP Morgan, in particular great recent work on ’Nonparametric
pricing and hedging of exotic derivatives’ by Terry Lyons, Sina Nejad
and Imanol Perez Arribas.

in contrast to reservoir computing: signature is high dimensional
(i.e. infinite dimensional) and a precisely defined, non-random object.

Can we approximate signature by a lower dimensional random object
with similar properties?

48 / 66



rNN, Reservoir computing and CODEs

Signature as reservoir

This explains that any solution can be represented – up to a linear
readout – by universal reservoir, namely signature.

This is used in many instances of provable machine learning by, e.g.,
groups in Oxford (Harald Oberhauser, Terry Lyons, etc), and also ...

... at JP Morgan, in particular great recent work on ’Nonparametric
pricing and hedging of exotic derivatives’ by Terry Lyons, Sina Nejad
and Imanol Perez Arribas.

in contrast to reservoir computing: signature is high dimensional
(i.e. infinite dimensional) and a precisely defined, non-random object.

Can we approximate signature by a lower dimensional random object
with similar properties?

49 / 66



rNN, Reservoir computing and CODEs

Signature as reservoir

This explains that any solution can be represented – up to a linear
readout – by universal reservoir, namely signature.

This is used in many instances of provable machine learning by, e.g.,
groups in Oxford (Harald Oberhauser, Terry Lyons, etc), and also ...

... at JP Morgan, in particular great recent work on ’Nonparametric
pricing and hedging of exotic derivatives’ by Terry Lyons, Sina Nejad
and Imanol Perez Arribas.

in contrast to reservoir computing: signature is high dimensional
(i.e. infinite dimensional) and a precisely defined, non-random object.

Can we approximate signature by a lower dimensional random object
with similar properties?

50 / 66



rNN, Reservoir computing and CODEs

Signature as reservoir

This explains that any solution can be represented – up to a linear
readout – by universal reservoir, namely signature.

This is used in many instances of provable machine learning by, e.g.,
groups in Oxford (Harald Oberhauser, Terry Lyons, etc), and also ...

... at JP Morgan, in particular great recent work on ’Nonparametric
pricing and hedging of exotic derivatives’ by Terry Lyons, Sina Nejad
and Imanol Perez Arribas.

in contrast to reservoir computing: signature is high dimensional
(i.e. infinite dimensional) and a precisely defined, non-random object.

Can we approximate signature by a lower dimensional random object
with similar properties?

51 / 66



rNN, Reservoir computing and CODEs

It is the assertion of the Johnson-Lindenstrauss (JL) Lemma that for every
0 < ε < 1 an N point set Q in some arbitrary (scalar product) space H,
can be embedded into a space Rk , where k = 24 logN

3ε2−2ε3 in an almost

isometric manner, i.e. there is a linear map f : H → Rk such that

(1− ε)‖v1 − v2‖2 ≤ ‖f (v1)− f (v2)‖2 ≤ (1 + ε)‖v1 − v2‖2

for all v1, v2 ∈ Q. It is remarkable that f can be chosen randomly from a
set of linear projection maps and the choice satisfies the desired
requirements with high probability.

The result is due to concentration of measure results in high dimensional
spaces and has been discovered in the eighties, for some details see below.
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rNN, Reservoir computing and CODEs

In order to make this program work, we need a definition:

Definition

Let Q be any (finite or infinite) set of elements of norm one in AM
d . For

v ∈ AM
d we define the function

‖v‖Q := inf
{∑

j

|λj |
∣∣ ∑

j

λjvj = v and vj ∈ Q
}
.

We use the convention inf ∅ = +∞ since the function is only finite on
span(Q). Actually the function ‖.‖Q behaves precisely like a norm on the
span. Additionally ‖v‖Q1

≥ ‖v‖Q2
for Q1 ⊂ Q2 and ‖v‖Q ≥ ‖v‖ for all

sets Q of elements of norm one.
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Proposition

Fix M ≥ 1, ε > 0 and consider the free nilpotent algebra AM
d . Let Q be

any N point set of vectors with norm one, then there is linear map
f : AM

d → Rk (k being the above JL constant with N), such that∣∣〈v1, v2 − (f ∗ ◦ f )(v2)〉
∣∣ ≤ ε ,

for all v1, v2 ∈ Q. In particular∣∣〈v1, v2 − (f ∗ ◦ f )(v2))〉
∣∣ ≤ ε‖v1‖Q‖v2‖Q ,

for v1, v2 ∈ AM
d .
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Theorem (Cuchiero, Gonon, Grigoryeva, Ortega, Teichmann (2019))

Let u be a smooth control and f the previously constructed JL map
associated to a spanning N point set Q of norm one. We denote by r-Sig
the smooth evolution of

dZt =
d∑

i=1

f (f ∗(Zt)ei )du
i (t) , Z0 = f ∗(1)

a controlled differential equation on Rk . Then

〈u,Sigs,t(1)− f ∗(r-Sigs,t(1))〉

≤
(∣∣〈ΓSigs,t(1)

(u), 1− f ∗(f (1))〉
∣∣+

+ Cε
d∑

i=1

∫ t

s
‖ΓSigr,t(1)

(u)‖
Q
‖f ∗(Yr )ei‖Q dr

)
,

with constant C = sups≤r≤t, i

∣∣∣dui (r)dr

∣∣∣, and for each u ∈ Q.
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Corollary

Let u be a smooth control and f the previously constructed JL map
associated to a spanning N point set Q of norm one. Assume additionally
1 = f ∗ (f (1)), then∥∥∥Sigs,t(1)− f ∗(r-Sigs,t(1))

∥∥∥ ≤(
εC

d∑
i=1

∫ t

s
sup
‖u‖=1

‖ΓSigr,t(1)
(u)‖

Q

‖f ∗(Yr )ei‖Q dr
)
.

Hence f ∗(r-Sig) approximates Sig up to order ε and can be used as a proxy
for signature.

56 / 66



rNN, Reservoir computing and CODEs

r-Sig is a random dynamical system

It is fascinating that we can actually calculate approximately the vector
fields which determine the dynamics of r-Sig, i.e.

y 7→ f (f ∗(y)ei )

for each i = 1, . . . , d for y ∈ Rk .

Theorem

For M →∞ the linear vector fields

y 7→ f (f ∗(y)ei )

for i = 1, . . . , d , are built from matrices on Rk with asymptotically
normally distributed, independent entries.
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Randomness matters

Consider

dYt =
d∑

i=1

Vi (Yt)du
i (t) , Y0 ∈ Rm

where we observe one trajectory on [0,T ] and do not know the
characteristics.
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Randomized Signature

A random localized signature

there is a set of hyper-parameters θ ∈ Θ, and a dimension M.
depending on θ choose randomly matrices A1, . . . ,Ad on RM as well
as shifts β1, . . . , βd such that maximal non-integrability holds on a
starting point x ∈ RM .
one can tune the hyper-parameters θ ∈ Θ and dimension M such that

dXt =
d∑

i=1

σ(AiXt + βi )du
i (t) , X0 = x

locally (in time) approximates CODE Y via a linear readout W up to
arbitrary precision.
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What does ML give to MF?

numerical evaluation of almost any thought experiment becomes
feasible: we see ’solutions’ of problems numerically which we have
never seen before.

new concepts of modeling.
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What does MF give to ML?

it is important to mathematize problems to support understanding.

roles of randomness.
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Summary and Outlook

construct universal and randomized reservoirs byond (branched) rough
paths, for instance in the realm of regularity structures.

improve the JL argument and adapt it to algebraic structures.
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