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CHAPTER 1

Arbitrage Theory

1. Stochastic Integration

It is one of the fascinating aspects in the history of sciences that deep discoveries
developed in a “I’art pour art” spirit often find unintentionally important and far-
reaching applications. This happened to general stochastic integration theory being
developed in the second half of the twentieth century in,. e.g, France, Soviet Union
and USA, and being applied since the eighties in all its depth in mathematical
finance. Therefore a proper understanding of mathematical finance needs all the
main concepts of stochastic integration theory for a proper working with models.

Often being asked by students if this knowledge is necessary to work in financial
industry I can provide two answers: first: of course not, since models in industry
can be understood from a far more concrete point of view. This is the answer by
business schools. However, second, if one wants to develop models, fully understand
the pitfalls of modeling, then of course the proper knowledge all possible models is
fundamental and stochastic integration is the key to this knowledge. Motivation is
coming in later sections, therefore I go right away towards the first theorem: the
Bichteler-Dellacherie Theorem telling that the set of good integrators for stochastic
integrals coincides with the set of semi-martingales.

We consider here a time horizon T = 1 and a filtered probability space (Q, F,P)
satisfying the usual conditions in order to guarantee that martingales, sub-martingales
and super-martingales always have cadlag (right continuous with left limits) ver-
sions (Doob’s regularity theorem). In Finance it is usually not restrictive to assume
the stochastic processes modeling asset prices have cadlag trajectories, since if we
deviate from continuous processes with think of jumps not being announced from
the left.

Basic definitions and properties are usually taken from Philip Protter’s excel-
lent book on stochastic integration [11], or from Olav Kallenberg’s incredibly useful
book on general probability theory [9]. We assume here acquaintance with mar-
tingale regularization and Doob’s optional sampling theorem and the predictable
o-algebra. We also use deliberately notions like S* for the process of the running
supremum supg<; Ss.

DEFINITION 1.1. A property is said to hold locally for an adapted stochastic
process with cadlag trajectories (St>te[o,1] if the process 8™ = (St/\‘l'>t€[0,1} fulfills
this property and if the sequence of [0,1] U {oo}-valued stopping times 1, satisfies
P(1, = 00) = 1 as n — co. Notice that this is equivalent to the standard definition
of locality on [0, 00[ by extending all processes beyond 1 in a constant way.

DEFINITION 1.2. A semi-martingale S is an adapted process with cadlag trajec-
tories such that there exists an adapted local martingale M with cadlag trajectories
and an adapted process of finite total variation A representing S as sum S = M+ A.

DEFINITION 1.3. We call

H=> Hlp, 71,
=0
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with n € N, stopping times 0 = 19 <71 < - <7, < Typp1 = 1 and H? that is

Re-valued, and F,,_,-measurable, a simple predictable process. We write H € bE.

REMARK 1.4. In the realm of mathematical finance we shall often speak of
(simple) predictable strategies instead of processes underlining that H corresponds
to trading strategies.

We write ¥ € b€y if in addition the 7; (but not the H;) are deterministic.
Furthermore we consider b€ equipped with the topology of uniform convergence
induced by the norm

IH| . = Hosgligl |H||

for H € b€. On the space of simple predictable processes we define a linear operator
Ts, called stochastic integral with respect to a cadlag, adapted process S, by
n
IS(H) = (H b S)l = Zhl(sﬂ - STi—l)
i=1
mapping to the space of random variables L°(P) equipped with the topology of
convergence in probability.

DEFINITION 1.5. We call an adapted process (Si),(o,1) with cadlag trajectories
a good integrator if the map Ig : b€ — L°(P) is continuous.

REMARK 1.6. If one interprets the stochastic integral Zg(H) as cumulative
gains and losses process in a trading context, then good integrators are those mod-
els, where the outcome of a trading strategy is robust for small uniform changes of
the portfolio strategy. This is an extremely reasonable requirement for models of
asset prices. Hence it is of interest to understand which processes are good integra-
tors. Notice that it might be reasonable to consider already here discounted values
of price processes S to make prices at different times comparable.

REMARK 1.7. Notice that a local good integrator is a good integrator.

In the sequel we characterize the set of good integrators. For a long time this
characterization was technically quite involved, however, recently more elemen-
tary proofs have been obtained from re-inspecting classical proofs and replacing
Dunford-Pettis type arguments by more elementary Komlos type arguments (see
the works of Mathias Beiglbock, Walter Schachermayer, Pietro Siorpaes, Bezirgen
Veliev, et al). We follow these elementary approaches in these lecture notes very
closely in spirit and proofs, in particular the preprint [3].

First we show that bounded, adapted, cadlag processes S, which are good
integrators, have bounded mean variation.

Let S = (S¢)y<;<; be an adapted process such that S; € L'(P) for all ¢ € [0, 1].
Given a random partition 7 = {0 = 79 < 7y < ... < 7, = 1} of [0, 1], the mean
variation of S along 7 is defined as

V(S, 1) = ]E[ 3 [ESns, — SnlFn]
The mean variation MV(.S) is the supremum over all partitions 7w of MV (S, 7),

T; ET

ie.
MV(S) :=supMV (S, 7).

Mean variation can be interpreted as the cumulative sum of absolute values of
conditional expectations of returns. It is quite intuitive that adapted stochastic
processes with cadlag trajectories have bounded mean variation if the “hidden”
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drift is not overwhelmingly big. The drift “hidden” in a return is a colloquial
notion for the conditional expectation of the return.

The mean variation along 7 is an increasing function of 7, i.e. we have MV (S, m) <
MV (S,7’) whenever 7’ refines m. Let S be bounded with cadlag trajectories:
having a sequence of refining partitions (7"), -, such that the mesh tends to
zero in probability, then the limit along this sequence tends to M V(S) due to
limt\s E(St - Ss|-7:s] =0.

LEMMA 1.8. Let S be a bounded, adapted with cadlag trajectories and assume
that S is a good integrator, then for every e > 0 there is a stopping time o taking
values in [0,1] U {oo} such that P(p = c0) > 1 — € and such that S has bounded
mean variation (we say that locally S has bounded mean variation).

REMARK 1.9. See [1]: for the proof we need the (easy) L2-version of Komlos’
Lemma: let (gy),~,; be a bounded sequence in L?(PP), then we can find elements
hyp € Cy := conv(gn, gni1, - - .) which converge almost surely and in L?(P) to some
element h. For the proof of Komlos’ Lemma we take

A =sup inf 2
sup inf llgll”,

then there are elements h,, € conv(gn, gn1,. . .) such that ||h,||> < A+1 Fixe >0,

then there is n large enough such that for all k,m > n the inequality ||k + hm||* >
4(A — €) holds true, since the sup is along an non-decreasing sequence!. By the
parallelogram-identity we then obtain

1 1
ke = P |* = 20| + 20l | = [l + | < 4(A + ) —AA e =det —,

which yields the assertion of L?(PP) convergence by completeness. By passing to a
subsequence the almost sure convergence follows, too.

In an analog manner an L! version for uniformly integrable sequences ( fr)p>1
can be proven by truncation from the L? statement and an appropriate diagonaliza-
tion argument: indeed let g;* == (fnlys,|<i});<;<,, D€ the truncated sequence, then
we know that there are forward looking convex combinations in conv(g™, Gitits )
converging in L?(P) and almost surely to a limit A™, for every m > 1. In other
words we can choose weights which work for the first m truncated sequences simul-
taneously. Uniform integrability then yields that the diagonal sequence of convex
combinations does the job since lim; oo ||(frn 1y, |<i} — fnll uniformly in n.

PRrOOF. We follow closely [3]: the proof is in spirit typical for mathematical
finance (we shall see this later!): whenever a functional depending on the future
path is given, one tries to mimick it by a stochastic integral, i.e. the outcome of a
trading strategy. In this very case this is particularly easy. S is a good integrator,
hence for € > 0 there exists C' > 0 such that for all simple processes H with
|H||oo <1 we have P((HeoS); > C—2||S||s) < € (this is just a translation of what
it means to be continuous from the uniform topology to convergence in probability).

For each n > 1 we can define a simple process H" and a stopping time g,

H" = ZtieDn l(ti,ti+1] sign (E[Sti+1 - Sti|]:tz'D7
on:=inf{t €D, :(H"eS); >C —2|S|oo}

allowing to mimick (in expectation) the bounded variation functional. On the set
{Qn < 00}7
(H"1(0,0,) ®5) = (H" @ 5)7" > C = 2|5l



8 1. ARBITRAGE THEORY

holds true, and therefore P(gp, = o0) > 1 — e. Furthermore S is bounded, so the
jumps of S are bounded by 2||S|| , and whence

C > (H" e S)o"

always holds true. Putting together these insights we arrive at

C > ]E[(Hn d S)gn] = E[ Z ]]'{ti<0'n,} sign (]E[Sti+1 - Sti fti])(StH—l - Stl)} =
ti€Dp

= E{ Z ]]'{ti<gn}|E[(Sti+1 - Sf7)|ftz} ] = MV(SanDn) s
tieDn

which concludes the first estimate.

Next we would like to replace the stopping time g,, by a “sort” of accumulation
point o such that we can conclude the desired statement. For this very purpose we
apply a Komlos-type Lemma to the random variables X,, = 17, —.} € L?(P),n > 1
to obtain for each n convex weigths py, ..., u}, such that

Yo =ppXn+... + Mfy"XNn

converges to some random variable X in L?(P). By passing to a subsequence we
can assume that convergence is almost surely.

From 0 < X <1 and E[X] > 1 — € we deduce that P(X < 2/3) < 3e. Since
P(lim,, Y, > 2/3) > 1 — 3¢, by Egoroft’s theorem we deduce that there exists a set
A with P(A) > 1 — 3e such that Y;, > 1/2 on the set A, for all n greater or equal
than some ng € N, which we can assume to be equal to 1.

We now define the desired stopping time g by

o =infp>yinf{t : phpg o (6) + ...+ ph " Lo oy, (1) < 1/2} .

Then clearly A C {9 = oo} and we arrive at P(9 = 00) > 1 — 3e. The stopping time
o apparently has the desired properties, since

(1.1)

Ny,
E[ Z ]l{ti<g}’E[Sti+1 - St,i |J:t1] ] < QE[ Z Z /‘l’z]]‘{ti<9k}|E[Sti+1 - Stz‘ftl]

t;€Dy ti€Dpk=n

-

The left hand side differs from MV (S¢, D,,) at most by 2||S||, whereas the right
hand side is bounded by

N,

2) R (MV(Se,Dy) +2[S]|.0) < C +4S],
k=n
which yields MV (S¢,D,,) < C + ||S|| ., i.e. bounded mean variation of S. O

The next step towards a characterization of good integrators is to understand
that processes with bounded mean variation are nothing else than differences of
non-negative super-martingales. This assertion is also called Rao’s theorem:

PROPOSITION 1.10. Let S be an adapted, L'-process with cadlag trajectories
and bounded mean variation, then S is the difference of two adapted, cadlag super-
martingales.

ProOF. This is a classical proof which can also be found in [3]: in the proof
we directly construct the two super-martingales on the dyadic grid D = U,>1D,
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with D, = {5 |0 < j < 2"} by

YE=E[ Y ES, - S lF]E)

tieDn7tiZS

Z;L = E[ Z E[St1 - Sti+1 |‘Ft1]7|‘FS:|
t;€Dy ti>s
for s € D,,, n > 1. Apparently the discrete processes Y™ and Z™ are non-negative
super-martingales, Y'—Z" = S} —E[S;|F;] if s € D,, and due to Jensen’s inequality

+1
}/Sn < st

for s € D, n > 1. Addionally we have the bound E[Y" + Z] < MV (S), which
yields L' convergence by monotone convergence. Therefore we can define limit
processes

Y, := lim Y + E[S]|FJ]
n—oo
Zg = le Z} + E[ST | Fs)

and hence Yy, — Z;, = S, for s € D. By Doob’s regularity theorem we can extend
the super-martingales to [0, 1] as cadlag processes. Since the trajectories of S are
cadlag, too, the decomposition holds for all times. O

So far we have shown that locally a good integrator is locally a difference of two
non-negative super-martingales. Finally we have to show that a super-martingale
can be written as a difference of a local martingale and a predictable process of
finite total variation. This statement, whose proof is again elementary, is called the
Doob-Meyer decomposition theorem.

DEFINITION 1.11. An adapted process S with cadlag trajectories is called of
class (D) if the set { S, | T stopping time } is uniformly integrable.

THEOREM 1.12. Let S be a super-martingale of class (D), then there is a mar-
tingale M and a predictable process A, both with cadlag trajectories such that

S=M+A
holds true. The decomposition is unique.

REMARK 1.13. If (St)te[O,l] is only a super-martingale without belonging to
class (D), then it is still locally of class (D) and therefore locally the Doob-Meyer
decomposition holds, which yields a global decomposition of S into a local martin-
gale M and a predictable process A. Indeed considering the stopping time 7;,, when
|S] is greater than n for the first time, n > 1, then for any other stopping time o
we have |SIn| < n 4+ |Siar, | which is integrable by optional sampling, whence ST»
is of class (D) and P(T" = o0) — 1 as n — oo.

PRrROOF. We follow closely [1], where again the proof relies in a discrete insight
combined with a Komlos type limiting procedure (see also [11]): the discretely
sampled process (S;),cp, for n > 1 has a Doob-Meyer decomposition, namely the
processes A™ and M"™ with A =0,

Ati+1 - Ati = E[Sti+1 - Sti ‘Fti]

fort, € D, and M]* = S;— A}, fort € D,,, n > 1. The increments of the martingale
M™ are the conditional drift corrected increments of S.

We now try to prove uniform integrability of the sequence (AY),,~; in order to
apply the Komlos argument for convergence: By subtracting F [Sl|]-';] from S;, for
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t € [0,1] we can assume that S; > 0 and S; = 0. For the discrete martingales we
have — by optional sampling — that

Sy :A:—L _E(A;LLFT]

since M{* = —AY} for n > 1, and any stopping time 7 with respect to the sampled
filtration. We define for ¢ > 0 and n > 1 a stopping time

Tn(c) = inf {(j = 1)/2" : A} j9n < —c} A 1.

From A:—ln(c) > —c we obtain S;, () > —E[A}|F;, ()] — ¢. Thus,

—/ A7 dP = —/ E[A}|F,. (o] dP < cP[ry(c) < 1]+/ S, (o) dP.
{—A>c} {mn(c)<1} {mn(c)<1}

Since {7,,(c) < 1} C {7.(5) < 1}, we have again
/ (sﬁ(%))dpz/ (—A7 + A2 () dP
Tn(5)<1} {m(5)<1}

> / (=AY + A7 (o)) dP > EIP’[Tn(c) <1].
{rn(c)<1} 2 2

Combining the above two inequalities we obtain

(12) —/ A?dIPS 2/ STn(g)d]P)-i-/ Srn(c) dP.
{—AP>c} {m(§)<1} {mn(c)<1}

On the other hand
Blra(c) < 1] = P[—A} > o] < —E[A}]/c = E[M]/c = E[So]/c,

hence, as ¢ — oo, P[r,(c) < 1] goes to 0, uniformly in n. As the process S is
of class (D), (1.2) implies that (A}),>1 is uniformly integrable and hence also
(M7")n>1 = (51 = Al )n>1.

We can extend M™ to a cadlag martingale on [0, 1] by setting M}* := E[M7*|F].
By Komlos’ Lemma there exist M; € L' (P) and for each n convex weights AL, ..., A}
such that the discrete martingales

(1.3) M= AM" 4 AR MY

converge at the end point t = 1, i.e. M? — M; in L'(P). By Jensen’s inequality
M} — M, .= E[M;|F;] for all t € [0,1]. For each n > 1 we extend A™ to [0, 1] by
(1'4) A" = ZtieDn Azb]l(tiyti+1]

(1.5) and set A" 1= N'A" + .. 4+ Ay AN

where we use the same weights as in (1.3). Then the cadlag process A := S — M
satisfies for every t € D

Q[;L = (St — M?) — (St — Mt) = At in Ll(]P))

Passing to a subsequence we obtain that convergence holds true almost surely.
Consequently, A is almost surely increasing on D and, by right continuity, also on
[0, 1].

The processes A™ and A" are left-continuous and adapted, hence predictable.
To obtain that A is predictable, we show that for almost every w and every ¢ € [0, 1]

(1.6) limsup,,_, o, A7 (w) = Ay(w).
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Let fn, f :]0,1] — R are increasing functions such that f is right continuous and
lim,, o0 fu(t) = f(t) for t € D, then

limsup f,,(t) < f(t)for all t € [0, 1] and
n—roo

lim f,(t) = f(t) if f is continuous at t.

n—oo

Consequently, (1.6) can only be violated at discontinuity points of A. As A is
cadlag, every path of A can have only finitely many jumps larger than 1/k for k € N.
It follows that the points of discontinuity of A can be exhausted by a countable
sequence of stopping times, and therefore it is sufficient to prove limsup,,_, . A" =
A, for every stopping time 7.
By the previous inequalities lim sup,, ., 27 < A, and as A7 < A — A; in L}(P)
we deduce from Fatou’s Lemma that
lim inf]E[Aﬂ < lim supE[Qlﬂ < E[lim sup QVTL] < IE[AT] .

n—00 n—00 n—00

Therefore it suffices to prove lim,,_, . E[A”] = E[A,]. For n > 1 set
op i =inf{t €D, :t>7}.
Then A} = A} and o, | 7. Using that S is of class D, we obtain
E[A7] = E[A7, | = E[S,,,] — E[Mp] - E[S,] — E[Mp] = E[4,],
which ends the proof. O

THEOREM 1.14. Let S be a good integrator, then S is the sum of a local mar-
tingale and a process of finite total variation A.

PrROOF. We follow [3]: the process S can written, as any adapted, cadlag
process, as the sum of a locally bounded process and an adapted cadlag process of
finite total variation, namely

St - (St - Jt) +Jt

with J; := 37, (Ss—5s-)1s,—5,_|>1- Hence we can assume with loss of generality
that S is locally bounded. Since S is a locally bounded good integrator, S has
locally bounded mean variation and is therefore locally the difference of two super-
martingales. By the Doob-Meyer decomposition, any supermartingale is locally the
sum of a local martingale and a process of finite total variation. O

For later purposes we also prove the following easy consequence from Doob’s
optional sampling theorem for super-martingales

THEOREM 1.15. Let S be a non-negative super-martingale and 7 = inf{0 <t <
1| Si— NSy =0} (first hitting time of 0), then S vanishes on the stochastic interval
[1,1].

PRrOOF. It is sufficient to show the result when S is of class (D), the rest follows
by localization. Consider the stopping times 7, := inf{0 < ¢ < 1| S; <1/n}, then
7 < 7 and 7, 7. In particular we have that 7, = 7 for all n > 0 if and
only if X, = 0. Hence the stochastic integral along the simple strategy 1y, , has
expectation

EIS, — 8] <0

due to optional sampling. By dominated convergence we obtain E[AS;1;g __g3] <
0. This means that upwards jumps at 7 cannot happen, so either one jumps to 0
at 7— from above or we have a point of continuity there. Hence S, = 0. Since
E[S; — S:14,<;] <0, we obtain that S; = 0 on the stochastic interval [r, 1]. O
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After having established that good integrators are indeed semi-martingales we
have to understand the other direction, i.e. whether all semi-martingales are good
integrators, which is based on an interesting inequality valid for super-martingales
in the L'-case or on Ito’s fundamental insight in the local L2-case, respectively:

THEOREM 1.16. Every semi-martingale is a good integrator.

PROOF. Since sums of good integrators are good integrators and locally good
integrators are good integrators it is sufficient to provide arguments for finite vari-
ation processes and for martingales. Since a martingale is not necessarily locally
square integrable (jumps!) we have to provide a proof for martingales, which is the
tricky bit.

e Any process of finite variation A is a good integrator, since for every
simple (not even predictable) process it holds that

1 1
| / H.dA,| < ||H].. / dlA],

almost surely.
e By Ito’s fundamental insight square integrable martingales S are good
integrators, since

E[(H ¢ 8)°] < |H|| E[S?

holds true for simple, bounded and predictable processes H € b€.

e By the following elementary inequality due to Burkholder we can conclude
that martingales are good integrators: for every martingale S and every
simple, bounded and predictable process H it holds that

cP(|(H o ) > c) < 18| H]| . [[S1]ly

for all ¢ > 0. For an easy proof of this inequality see [4]. Since the
inequality has some importance for our treatment, we shall give it here
too. Notice that we are just dealing with elementary integrals, so all
use of stochastic integration is in fact easily justified: let S be a non-
negative martingale first and H bounded predictable with [[H|_ < 1,
then Z := S A ¢ is a supermartingale and we have

CP(|(H o )|} > ¢) < cB(IS]; > ¢) + cP(|(H o 2)]; > c).

Since Z is a supermartingale we have obtain by Doob-Meyer Z = M — A
and (H e Z) < (H e M) + A, which is a submartingale. Hence we can
conclude by Doob’s maximal inequalities for p = 2 in case of the second
term and p = 1 (weak version) in case of the first term that

cP(|(H o S)|] > ¢) < cE[S1] + %E[(H o M)? + AZ].

Ito’s insight allows to estimate the variance of the stochastic integral at
time 1 by E[M}]. Both quantities M and A of the Doob-Meyer decom-
position may however be estimated through E[A3] < E[M?] < 2¢E[Z),
since Z is non-negative (so A < M holds true) and Z < ¢. For an easy
proof see [4, Lemma 3.6]. This leads to an upper bound

cP(|(H o S)|] > ¢) <9E[S].

Writing a martingale as difference of two non-negative martingales leads
to the desired result. Apparently the result translates directly to the fact
that S is a good integrator.
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e Any pre-local good integrator is a good integrator, hence all semimartin-
gales are good integrators since sums of good integrators are good inte-
grators. A process S is said to satisfy a property pre-locally if there is an
increasing sequence of stopping times 7,, taking values in [0, 1]U{oco} such
that P(7, = o00) — 1 as n — oo and

ST i= Sl o<, <ty T Sr—Lig>ry

satisfies the property for all n > 0. This provides another proof for inte-
grability of martingales since every local martingale is pre-locally square
integrable by stopping when the process leaves a bound.

O

Having established by minimal requirements the class of good integrators it is
our goal to extend for a given semi-martingale S the class of integrands H. There
is a first direct step, which extends the set of integrands towards caglad processes
(left continuous with right limits existing), which is just the closure of bounded,
simple predictable processes with respect to the metric “uniform convergence along
paths in probability” on cadlag or caglad processes given, e.g., by

d(Sl,SQ) = E“(Sl — SQ)‘?{ A\ 1] .

THEOREM 1.17. For every semi-martingale S the map Ig defined on b€ ex-
tends to a continuous map Jg from the space L of caglad processes to D of cadlag
processes. Notice that the spaces I and D are complete with respect to the metric

d.

PROOF. See the next result, which is proved for an even stronger topology on
the image space. (|

The Emery topology on the set of semimartingales S is defined by the metric

dg(S1,82) = sup E[|(K o (51— S2))|; A1].
Kebé, | K| <1
We can by means of the Bichteler-Dellacherie theorem easily prove the following
important theorem, which goes back to Michel Emery, see [7] (notice that Michel
Emery defines the metric by a supremum over all bounded predictable processes,
we cannot do that at the moment since this integral is not defined yet).

THEOREM 1.18. The set of semi-martingales S is a topological vector space and
complete with respect to the Emery topology.

PRrOOF. Obviously dg defines a metric and a Cauchy sequence (Sy),,~, in dg is
a Cauchy sequence in d, so there is a cadlag process S which is the pathwise uniform
limit of the semi-martingales S,,. We have to show that S is a semi-martingale.
We show that by proving that Ig is continuous on b€ with respect to the uniform
topology, which is equivalent to the fact that the set {(KeS);| K € b&, || K| <1}
is bounded in probability. Fix 1 > € > 0, then for ¢ > 0

(1.7) P(KeS) >c)<P(KeS—5,)1>c)+P((KeS,) >c)
(1.8) < M +P((KeS,)1 >c).

Now we choose n large enough to make the first term smaller than £. Since S, is a
semi-martingale Ig, is continuous, hence the set {(KS,); | K € b&, || K|, < 1}is
bounded in probability, which in turn means that we can choose c large enough such
that the second term is smaller than €. Hence both terms are small and therefore
S is a good integrator. O
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THEOREM 1.19. For every semi-martingale S the map Ig defined on b€ ex-
tends to a continuous map Jg from the space L of caglad processes to S of semi-
martingales.

ProOF. It is sufficient to show the result for martingales S, since the rest
follows by localization and the respective theorem for finite variation processes.
Let S be a martingale. Take a sequence H,, which converges pathwise uniformly
in probability to 0, i.e. P(|H,|] > b) = 0 as n — oco. Fix furthermore K € b€
with [| K|, < 1. We can decompose H,, = H, + H,  where H, := H,1{ g, *>p for
some b > 0. This decomposition is of course done in b€. Observe that H, H/! =0
for all n > 1. Now we can estimate through

{|{(KH,, o S)I; = ¢} C{[Hy|; 2 b} U{|(KH] ¢ S)|; > c}

the probabilities directly
cP(|(KHy o S)]} > ¢) < cP(|Haly =) + 18| KHy|| [[S1]];

where we notice that ||H,/|| . < band P(|H,|" > b) — 0 as n — co. This, however,
yields that

s B[|(KH, o $)[; A1) < B(H[" > 0) + B 1S +c
Kebe, |K| <1 c
for each ¢ > 0. For every chosen b > 0 and ¢ > 0 we see that as n tends to co the
right hand side converges to 82(|S||; + ¢ which is small for appropriate choices
of the constants b, c. Consequently Cauchy sequences in L. are mapped to Cauchy
sequences in the Emery topology, which — due to completeness — converge to a

semi-martingale. O

At this point we can formulate the single most important notion of semi-
martingale theory: optional quadratic variation.

DEFINITION 1.20. Let S be a semi-martingale, then the semi-martingale
[S,8] =82 —2(S_eS)

is called optional quadratic variation. [S,S] is a non-negative increasing process.
For properties see [12] and [11].

By means of quadratic variation we can introduce the Banach space in the
theory of semi-martingales:

H' = {M € Mo | E[|M]}] < 00} .

REMARK 1.21. Notice that every H!-martingale is uniformly integrable and
that every local martingale is in fact locally H': it is sufficient to see this for
martingales, but there localization by crossing a finite limit is enough since the last
jump is integrable.

On the H! we have the single most important inequality of stochastic integra-
tion theory: Davis inequality.

THEOREM 1.22. There are constants 0 < ¢ < C such that for every local
martingale M with My =0

B[/ MY < E[|MJ}] < CE[VIM, T3]

PROOF. For the full proof, in particular of the elementary deterministic in-
equalities, see [2]. It is sufficient to proof the inequality for discrete time mar-
tingales, since the result follows from a standard limiting procedure. For discrete
martingales we can consider deterministic inequalities of the type

Vi xly <3lz[y — (hex)y
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and
2y <6/, aly +2(hea)y

for a “predictable” strategy

.
hl' = ! 5
[z, 2]; + (|7)
for i = 1,...,n. Here we consider sequences 0 = xg, x1,..., 2N, wherefrom Davis
inequality follows immediately. O

The next extension towards bounded predictable processes is more delicate
and cannot be achieved by simple continuous extensions. We do need an additional
convergence property with respect to some weaker notion of convergence, which
will be given by dominated convergence. In the literature there are several ways
to approach this problem: the first one is to pass via L2-integration theory (Ito’s
insight) applying the fact that every semi-martingale can be written as a sum of
a locally square integrable martingale and a finite variation process, which needs
from time to time elements of the general theory (Doob-Meyer decomposition, fun-
damental theorem of local martingales). The second way is to work directly with
L'-integration theory which essentially needs the Davis inequality (see, e.g., the ex-
cellent introduction to (vector-valued) stochastic integration [12]). The third one is
to apply a continuity result for the Emery topology on the set of semi-martingales.
We shall follow a somehow modified third approach here. We believe that this way
provides us with a quick and direct way towards stochastic integration:

For this purpose we need the following important Lemma, which L°°-version is
due to Kostas Kardaras in [10]:

LEMMA 1.23. Let S™ be a sequence of martingales such that |[AS?| < |AY,|, for
alln > 1 and all stopping times T, for some martingale Y, and let E[[S™, S"]A1] —
0 as n — oo, then S™ — 0 in the Emery topology.

PRrROOF. Consider an arbitrary sequence K™ € b€ of simple, predictable pro-
cesses bounded by 1. We show first that E[|(K™ e S™)1| A 1] — 0. We first observe
that also

E[[(K"eS™),(K"eS5™)]; Al] =0,
since K™ is uniformly bounded by 1. We use M™ := (K™ o S™) as abbreviation
and select a subsequence ny such that P(|M,,| > 27%) < 27% for all k > 1, then
A=3", [M"™, M"] is almost surely finite by Borel-Cantelli and we can consider
the stopping time

Tm i=1nf{t| Ay >mor |y >m} AL,
which apparently leads to
[MPE, M) < Ay + (AME ) <m+ (AY;,)? <m+ (m+ Y, )

for each ny,, which leads — after taking square-roots — to E[|[MZ*|] = 0 for k — oo
by Davis inequality. Since P(7,, = c0) — 1 as m — oo we do also have that
(K™ eS™) — 0 in probability. However this already yields the result, since we have
proved that every sequence ((K™ eS™)), ., has a subsequence which converges.
Applying this result twice, we see that (K" eS™) — 0 in probability for all bounded
by 1 simple predictable strategies, which characterizes convergence in the Emery
topology. O

COROLLARY 1.24. Let S be a martingale and H" — 0 a sequence of simple,
predictable bounded by 1 strategies, then S™ = (H™e.S) converges to 0 in the Emery
topology.
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PROOF. Apparently the conditions on jumps and martingality are satisfied. It
remains to show that E[[S™, "] A 1] — 0, which is true since [$", 5] = ((H")? o
[S,S]) — 0 almost surely by the existence of [S,S] and the fact that it is pathwise
of finite variation. But from almost sure convergence we conclude convergence in
probability. O

These considerations lead us to the main extension result, compare [4]:

THEOREM 1.25. Let S be a martingale, then there is a unique continuous linear
map (.e.S) from bounded, predictable processes with respect to the uniform topology
to semi-martingales S in the Emery topology extending Jg such that dominated
convergence holds true, i.e. if H, — H,, — 0 pointwise, as n,m — oo for a sequence
of simple, predictable strategies with | Hy||, < 1, forn > 1, then ((H,—Hp,)eS) —
0 in the Emery topology as n,m — oo.

PROOF. This can be seen by the following proof: for every subsequence m,, > n
we have that ((H, — H,,, )®S) — 0 in the Emery topology, hence (H,, — H,,®S) — 0
as m, m — oo.

The extension of Jg is defined by considering almost surely converging se-
quences H,, — H in bf being uniformly bounded, which yield — by the previ-
ous dominated convergence result — Cauchy sequences ((H,, ® S)), -, in the Emery
topology. This, however, means that the limits are semi-martingales, uniquely de-
fined and linearly depending on H. Finally the resulting map is continuous. O

THEOREM 1.26. Let S be a H' martingale and H be a bounded, predictable
strategy, then (H o S) € H!.

PROOF. See, e.g., [12]. Since every bounded, predictable strategies can be
approximated by H, € b€ with |H,| < |[H||,, (consider for instance that b€ is

dense in the space of all predictable processes with ||H|| = E[4/ fol H2d[S, S)s] < o

with respect to the norm). Since

[(H,eS),(H,eS) = /0 HZ2d[S, S,

we can conclude from Davis inequality that

E(|(Hy — Hm 0 S)[1] < EC[\//O (Hzp — H)*d[S, S]],

which yields that ((H, e S)),,, is a Cauchy sequence and hence converging to a
H!'-martingale. O

This result immediately generalizes to semi-martingales: let S be a semi-
martingale, then there is a unique continuous linear map (.  S) from bounded,
predictable processes with respect to the uniform norm to semi-martingales S in
the Emery topology extending Jg such that dominated convergence holds true: if
H, — 0 pointwise for |H,| < 1, for n > 1, then (H, e S) — 0 in the Emery
topology.

It is sufficient to see the statement for local martingales: we have to show that
bounded convergence holds for local martingales. Let H™ be a sequence of simple,
predictable bounded by 1 strategies converging almost surely to 0 and let 7, be
a localizing sequence for S, then (K"H™ e S™) — 0 as n — oo in probability
for all simple, predictable and bounded by 1 sequences K™. This means that
(K™"H™ ¢ S) — 0 in probability, which in turn yields the statement.

Finally this leads us to the following structure: let S be a semi-martingale, then
H — (H eS) is a continuous map, where we consider pathwise uniform convergence
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in probability on the set of bounded predictable strategies and the Emery topology
on the set of semi-martingales. We can re-define the defining metric for the Emery
topology by taking the supremum over all bounded predictable strategies. By
the previous continuous extension result both metrics coincide, since every value
(K @ 5) can be approximated by values (K, ® S) where K, is bounded, simple and
predictable.

Additionally we have the property that L;ﬁed(Q x [0,1]) xS = S, (H,S) —
(H o S) is continuous by definition of the Emery topology.

It is our final goal, after having achieved a characterization of good integrators
and a stochastic integral for bounded predictable strategies to create the somehow
largest set of integrands for a given semi-martingale.

DEFINITION 1.27. Let H be a predictable process: consider Hy, := H1gm|<n},
form > 1. If (H, e S) is a Cauchy sequence in the Emery topology, then we
call H integrable with respect to S, in signs H € L(S) and we write (H o S) =
lim, oo (Hy ®S).

REMARK 1.28. By the very definition of the Emery topology the following
lemma is clear: let (H,, eS) — 0 in the Emery topology and |K,| < |H,|, for n > 0,
then also (K, ®S) — 0. Notice that we use here that the supremum goes over all
predictable strategies, so changing signs works.

THEOREM 1.29. Let S be a semi-martingale. Then H € L(S) if and only if H
is predictable and for all sequences (Kn)nzo of bounded, predictable processes with
|Ky| < H and K, — 0 pointwise, it holds that (K, ¢ S) — 0.

PrOOF. Let H € L(S) be fixed, then we know that H,, := H1|p|<p, forn > 1
leads to a converging sequence (H,, ¢ S) — (H e S) in the Emery topology. Take a
sequence (K3,), -, of bounded, predictable processes with |K,| < H and K, — 0
pointwise, then we can find a subsequence which converges in the Emery topology.

Consider a partition of unity

1= Z Tn—1<1H <0} -

n>1

For a given sequence my > k, k > 1 the cut-off sums

Ry = Z Hl{nflg\HKn} —0
k<n<my
as k — oo. Furthermore by Cauchy property of ((H,, ® S)), =, we obtain (RjeS) —
0 with respect to the Emery topology. Hence B

(D Enlgoagim<ny o S) =0
k<n<my,
as k — oo, which translates to (K”I{HHHSH} o S) = (Kn (] (I{HH”STL} ° S)) — 0.
Since (1{a|<ny ®5)) — S in the Emery topology we arrive at the result by joint
continuity of the stochastic integral.

Vice versa: assume that we have H predictable satisfying the above properties
and take the previous partition of unity. Then (R e.S) — 0 in the Emery topology
as k — oo for any sequence my > k, for £ > 1. This, however, means that
((Hy ®89)),, forms a Cauchy sequence. d

Vector-valued stochastic integration needs some care since we do not have the
usual additivity (3 ¢° @ SY) = > (¢° @ S?) in general. A careful, clear and quick
introduction is given in [12]: with our constructions all necessary requirements like
existence of optional quadratic variation processes and the Davis inequality are at
hand to access the paper directly.
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2. No Arbitrage Theory for discrete models

The purpose of this section is to illustrate the structure of the general theory by
means of discrete models. A discrete model (for a financial market) is an adapted
(d + 1) -dimensional stochastic process S with S := (S°,...,5%) on a finite prob-
ability space (2, F,P) with filtration satisfying the usual conditions. We assume
furthermore that trajectories jump at stopping times 0 = 79 < 73 < ... < 7, <
Tnt1 = T and are constant on the stochastic intervals |7, 7;11].

ASSUMPTION 2.1. The process SP > 0 almost surely for every t € [0,T]. We
shall refer to this asset as risk-less asset, which means here default-free.

A trading strategy or portfolio strategy is a predictable stochastic process ¢ with
b = (¢9,...,9%) for t € [0,T]. We think of a portfolio formed by an amount of
#? in the numeraire and ¢ units of risky assets, at time ¢. The value or wealth at
time n of such a portfolio is

d
Vi(g) = ¢St = > _ 1S}

i=0
for ¢t € [0, 7.
The discounted value process is given through
~ S ~
Ti(6) = 25t = 0.5,
t

for ¢ € [0,1], where Sy = % denotes the discounted price process.
t
A trading strategy ¢ is called self-financing if

Vi(9) = Vo(@) + (¢ 0 5):
for t € [0,T]. We interpret this condition that the readjustment of the portfolio at

time ¢ to new prices S,, is done without bringing in or consuming any wealth in
discounted terms.

PROPOSITION 2.2. Let S = (S°,...,8%) be a discrete model of a financial
market and ¢ a trading strategy, then the following assertions are equivalent:

(1) The strategy ¢ is self-financing.
(2) The strategy (¢, ..., ¢%) € L(S) and

d
80 =Vo(@) + (¢ 0 S)s- — D> 1S
i=1

PROOF. The proof is immediate from the definition. Notice that ¢° is pre-
dictable, therefore we can leave away the last jump and obtain the last formula. [

DEFINITION 2.3. Let S = (S°,...,S%) be a discrete model for a financial mar-
ket, then the model is called arbitrage-free if for any trading strategy ¢ the assertion

Vo(¢) =0 and Vr(¢) > 0, then Vp(¢) =0
holds true. We call a trading strategy ¢ an arbitrage opportunity (arbitrage strat-
egy) if Vo(¢) =0 and Vr(¢) 2 0.
DEFINITION 2.4. A contingent claim (derivative) is an element of L*(Q, F, P).
We denote by X the discounted price at time T, i.e. X = éX. We call the

subspace of KK C L*(Q, F, P)
K:= {%((b)l ¢ self-financing trading strategy, %((b) =0}
= {(p 0 S)r| ¢ predictable}
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the space of contingent claims replicable at price 0. We call the convex cone
C={Y € L*(Q,F, P)| there is X € K such that X > Y} = K — L%,(, F, P)

the cone of claims super-replicable at price 0 or the outcomes with zero investment
and consumption. A contingent claim X is called replicable at price x and at time
T if there is a self-financing trading strategy ¢ such that

X=z+(peS)rez+Kk.

A contingent claim X is called super-replicable at price x and at time T if there is
a self-financing trading strategy ¢ such that

)~(§x+(¢O§)T6m+l€,
in other words zf)? eC.

REMARK 2.5. The set K is a subspace of L?(Q, F, P) and the positive cone
LQEO(Q, F, P) is polyhedral, therefore by C' is closed.

We see immediately that a discrete model for a financial market is arbitrage-free

if

KN L3, (9, F, P)={0},
which is equivalent to

CNLiy(Q,F,P)={0}.
Given a discrete model for a financial market, then we call a measure @) equivalent
to P an equivalent martingale measure with respect to the numeraire SO if the
discounted price process S’ are Q-martingales for i = 1,...,d. We denote the set
of equivalent martingale measures with respect to the numeraire S° by M¢(S). We
denote the absolutely continuous martingale measures with respect to the numeraire

59 by M(8S).
THEOREM 2.6 (Fundamental theorem of asset pricing). Let S be a discrete
model for a financial market, then the following two assertions are equivalent:
(1) The model is arbitrage-free.
(2) The set of equivalent martingale measures is non-empty, ME¢(S) # 0.

PRrROOF. We shall do the proof in two steps. First we assume that there is an
equivalent martingale measure Q ~ P for S. We want to show that there is no
arbitrage opportunity. Let ¢ be a self-financing trading strategy and assume that

VO(¢) = 07 VT(¢) > Ov
then the discounted value process of the portfolio
V(@) = (¢ 5)
is a martingale with respect to @ and therefore
Eq(Vr(¢)) =0.

Hence we obtain by equivalence Vr(¢) = 0 almost surely with respect to P, since
Vr(¢) > 0 Q-almost surely, so there is indeed no arbitrage opportunity.
Next we assume that the market is arbitrage-free. Then

KN L3o(Q, F, P) = {0}

and therefore we find a linear functional [ that separates K and the compact, convex
set

{Y € LQZO(Qv]:’ P)l EP(Y) = 1}:
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ie. [(X)=0forall X € Kand [(Y) >0 forall Y € L2,(Q, F, P) with Ep(Y) = 1.
We define B

o) = I(1a)

for measurable sets A € F with 14 # 0, and obtain an equivalent probability
measure ) ~ P, since [(14) > 0 for sets with P(A) > 0. We have in particular
from separation

Eq((¢-S)r) =0
for any predictable processes ¢. Therefore Sisa @-martingale by Doob’s optional
sampling theorem. [l

Now we can formulate a basic pricing theory for contingent claims.

DEFINITION 2.7. A pricing rule for a contingent claim X € L?(Q2, F, P) at time
T is an adapted, cadlag stochastic process m(X) = (m(X)¢)iejo,1) » which determines
the price of the claim at time t at time t € [0,T)], i.e. 7(X)r = X. A pricing rule
is arbitrage-free if the discrete time model of a financial market

(8%, 8%,..., 8 m(X))
is arbitrage-free. We also have the multi-variate analogue.

LEMMA 2.8 (arbitrage-free prices). Let m be an arbitrage-free pricing rule for
a set of contingent claims X, then the discrete model (S°,...,S%) is arbitrage-free
and there is Q € M°(S) such that

S(]
(X)) = EQ(S—BXW),
T

for all X € X. If the discrete time model S is arbitrage-free, then
SO
m(X)e = EQ(S%X\]'})
T
is an arbitrage-free pricing rule for all contingent claims X € L*(Q, F, P). Hence
the only arbitrage-free prices are conditional expectation of the discounted claims

with respect to @ and pricing rules are always linear.

PROOF. If the market (S°,S,...,S% 7(X)) is arbitrage-free, we know that
there exists an equivalent martingale measure ) such that the discounted prices
are (Q-martingales. Hence in particular

m(X):
Sp
is a @-martingale, so
m(X)r X 7(X)¢
E = F(— =

which yields the desired equation.

Given an arbitrage-free discrete model S and define the pricing rules by the
above relation for one equivalent martingale measure Q € M¢(S), then the whole
market is arbitrage-free by the existence of at least one equivalent martingale mea-
sure, namely Q. O

REMARK 2.9. Taking not an equivalent but an absolutely continuous martin-
gale measure Q € M%(S) means that there is at least one measurable set A such
that Q(A) = 0 and P(A) > 0. Hence the claim 14 with P(A) > 0 would have price
0, which immediately leads to arbitrage by entering this contract X = 1,4. There-
fore only equivalent martingale measures are possible for arbitrage-free pricing.
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The set of equivalent martingale measures M¢(S S) is convex and the set M(S )
is compact and convex.

THEOREM 2.10. Let S be a discrete model for a financial market and assume
ME(S) # 0. Then for all X € L*(Q, F, P) the following assertions are equivalent:
(1) XeK (XeC). _ B
(2) For all Q € M*(S) we have Eg(X) = 0 (for all Q € M*®(S) we have
Eq(X)<0).
(8) For all Q € M“(g’) we have Eg(X) = 0 (for all Q € M“(g) we have
EQ(X) < 0).
PRrROOF. We shall calculate the polar cone of the cone C,
={Z € L*(Q,F, P) such that Ep(ZX) < 0}

by definition. For Q € M%(S) we calculate the Radon-Nikodym-derivative Z—g and
see that
dQ

7pX) = Eo(X) = Eq((¢peS)r+Y)

for Y < 0, hence — due to the fact that @ is a martingale measure (so the expectation
of the stochastic integral vanishes) — we obtain

dq
dP
Consequently dg € C%. Given now Z € C?, then by the same reasoning we obtain
Ep(ZX) <0
for all X € C. Since the model is arbitrage-free, Z > 0, assume Z # 0, so
Z
S
Fo @ <
for all self-financing trading strategies ¢. Replacing ¢ by —¢ we arrive at
VA ~
S)r)=0

which means that (Z € M(S).

This means that the polar cone of C' is exactly given by non-negative multiples
of dQ for Q € M2(S ) hence all the assertion hold by the bipolar theorem. O

Ep(—=

Ep(52X) = Eg(Y) <0.

Ep(

Ep(

REMARK 2.11. Notice that the fundamental theorem of asset pricing can be
viewed as the calculation of the polar cone of C.

The last step of the general theory is the distinction between complete and
incomplete markets and a renewed description of pricing procedures.

DEFINITION 2.12. Let S be a discrete model for a financial market and as-
sume M®(S) # 0. The financial market is called complete if M(S) = {Q},
i.e. the equivalent martingale measure is unique. The financial market is called
incomplete if M®(S) contains more than one element. In this case M%(S) =
(Q1,- -, Qm) conper for linearly independent measures Q;, i = 1,...,m and m > 2.

THEOREM 2.13 (complete markets). Let S be discrete model of a financial
market with M¢(S) # (0. Then the following assertions are equivalent:

(1) S is complete financial market.
(2) For every claim X there is a self-financing trading strategy ¢ such that
the claim can be replicated, i.e.

Vr(¢) = X.
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(8) For every claim X there is a predictable process ¢ and a unique number
x such that the discounted claim can be replicated, i.e.

~ 1 ~
X=—oX=z+ (051
St
(4) There is a unique pricing rule for every claim X.

PROOF. We can collect all conclusions from the previous results. 2. and 3. are
clearly the same by discounting.

1.=2.,3.: If S is complete, then there is a unique equivalent martingale measure
@ such that the discounted stock prices are QQ-martingales. Take a claim X, then
we know by Lemma 2.8 that
_ S
=

is the only arbitrage-free price for X at time ¢, since there is only one martingale

(X))t Eq(X|F)

measure (). The final value of the martingale (W(S)g)t Jo<t<T can be decomposed into
m(X ~
( O)T =x+(peS)r
St
: ~(X)r _ _ I C.OL
Since Eq (=g r) = 0 means g x € K by Theorem 2.10. So we have
T T

proved 3. and therefore also 2..

2.=4.: Given a claim X. If we are given a portfolio ¢, which replicates the
claim X, then we know that

(X)) = Vi(9)

for ¢ € [0,T] defines a pricing rule. Therefore the pricing rule is uniquely given by
the values of the portfolio, since the values of the portfolio are unique due to FTAP.

4.=1.: If we have a unique pricing rule 7(X) for any claim X, then we know
by Lemma 2.8 that we have only one equivalent martingale measure. 0

EXAMPLE 2.14. We write here instead of time points 7,, simply n for the sake
of notational simplicity. The Cox-Ross-Rubinstein model is a complete financial
market model: The CRR-model is defined by the following relations

SO = (1+7)"
forn=20,...,N and r > 0 is the bond-process.

g Sp(l+a)
n+l -— Sn(l —|—b)

for —1<a<bandn=0,...,N. We can write the probability space as {1+a,1+
b} and think of 1+ a as ”down movement” and 1+b as up-movement. Every path
is then a sequence of ups and downs. The o-algebras F,, are given by o(So, ..., Sn),
which means that atoms of F,, are of the type

{(z1, s Tn, Yns1s---yn) for all yi1,...,yn € {1 +a,1+0}}

with ©1,...,2, € {14+a,1+4b} fixed. Hence the atoms form a subtree, which starts
after the moves x1,...,x,.
The returns (7;);=1,.. n are well-defined by

.....

Si
T; =
Si—1
for i =1,..., N. This process is adapted and each T; can take two values

_J 1+a
Ti_{ 1+b
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with some specified probabilities depending on i = 1,...,N. We also note the
following formula

1=n+1
for m > n. Hence it is sufficient for the definition of the probability on (2, F, P)
to know the distribution of (T1,...,Tx), i.e.

P(Tl :.Tl,...,TN :.’EN)
has to be known for each z; € {1+ a,1 + b}.

PROPOSITION 2.15. Let —1 < a < b and r > 0, then the CRR-model is

arbitrage-free if and only if v €]a,b[. If this condition is satisfied, then martingale
measure QQ for the discounted price process (uiiﬁ)n)nzowﬂ is unique and char-
acterized by the fact that (T});=1,...n are independent and identically distributed
and
T { 1+ a with probability 1 — q
! 1+ b with probability q

r—a

forq=3=4.

PROOF. First we assume that there is an equivalent martingale measure ) for
the discounted price process ((157*;)")”:07._, ~- Then we can prove immediately that
fori=0,...,N—1

Eo(Tit1|Fi) =147

simply by
Si+1 Si
Bolarnym 7 = oy
Sit1

EQ( S, |-7:1) =14

Taking this property we see by evaluation at ¢ = 0 that
EqTh)=1+r
=Q(M =1+a)(1+a)+Q(Th =1+0b)(1+0),

’]":Q(Tl = 1+Q)Q+Q(TI :1+b)b,
since Q(Th =14 a) + Q(T1 = 1+ b) = 1 and both are positive quantities. Hence
r €la, b[.

On the other hand the only solution of
1-q¢)(1+a)+ql+b) =147

is given through ¢ = ;=%. Therefore under the martingale measure ) the condition
on conditional expectations of the returns T; reads as

EQ(l{Ti+1:1+a}|‘Fi) =1-—gq,

EQ(I{Ti+1:1+b}|‘Fi) =q
and consequently the random variables are independent and identically distributed
as described above under ). Therefore the equivalent martingale measure is unique

and given as above.
To prove existence of () we show that the returns satisfy

EQ(Tia|Fi) =1+r
fori=0,...,N — 1 if we choose @ as above. If the returns are independent, then

EQ(Tin|Fi) = Eo(Th)
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which equals 1 + r in the described choice of the measure, hence the result is
proved. O

EXAMPLE 2.16. We can calculate the limit of a CRR-model. Fix o > 0 the
time-normalized volatility, i.e. the standard deviation of the return of the stock.
Therefore we assume

In(l1+a)=—

=

In(1+0) = Wik

which yields i.i.d random variables

T 1 + a with probability 1 — ¢
¢ 1+ b with probability ¢
) b exp(F)—1 - .
with ¢ = ;2= = YN~ denotes the building factor of the martingale
a eXP(\/ﬁ) exp( \/ﬁ)
measure. The stock price in the martingale measure is given by

i=1

The random variables InT; take values —ﬁ, ﬁ with probabilities ¢ and 1 — ¢, so

p Qexp(ﬁ) -2

o
Eq(InT) = —= - — ~
al ) N NeXP(ﬁ) exp( ﬁ)
_ LQ—eXp ﬁ) —eXp(—ﬁ)
N exp( %) —exp(— )
2 o?
Eo(In(T3)°) = v

Therefore the sums -, InT; satisfy the requirements of the central limit theorem,

namely
N

N
1 o2
InT;, = — \/]VlnTi%N——,UQ
LR Y ERE
in law for N — oo, since Eg(N InT;) — —"72 as N — oo and v/ N InT; take values
—0,0.

Consequently for every bounded, measurable function ¢ on R>o we obtain

n 1 00 0_2 e
EQ(w(ZlnTi)) - E/ 1#(—7 +ox)e” 7 dx.
i=1 —00

3. Basics of models for financial markets

In this section some preparatory work for general no arbitrage theory is done:
goal is to fix notations for models, provide some important counterexamples, show
basic structures in continuous time.

The main ingredients building blocks of model for financial markets are:

o T € (0,00): time horizon,
e ¢t €[0,T): trading dates,
e (0, F,P): probability space,
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o F = (F,)o<i<r: filtration which satisfies the usual conditions (right con-
tinuous and complete) w.r.t. P,

e F;: information up to and including time ¢.

e d+1 assets, where d > 1, composed of an asset S° = B, called numeraire,
used as denomination basis, and d price processes S? = (Si)o<i<r,i =
1,...d. From discrete model considerations we learned that it is reason-
able to express all prices/values with respect to this numeraire. Whence
the assumption: B; = 1. This means that prices S are already expressed
in units of the numeraire.

e We assume that prices processes are adapted and cadlag processes.

ExaMpPLE 3.1 (Black-Scholes model, GBM — geometric Brownian motion).
Bank account has instantaneous interest rate r, so By = ¢ (in undiscounted val-
ues). We also have a stock price for ¢ € [0, 7]

. 1
Sy = Spexp {O’Wt + (u — 202) t}

where W is a Brownian motion. Switching to discounted values we get.
By
S, 1
St =—==35 W, —r——c% |t
t I3 oeXp{U t+<M r 20) }

t

Bt :].

Furthermore, applying Itd’s formula gives us that dS; = S;((u — r)dt + odWy).
EXAMPLE 3.2 (General Itd process model). We have
dsj = S; | bidt +> o dW
j=1

where the processes b and o are R and R%*" dimensional respectively, predictable
and integrable processes.

EXAMPLE 3.3 (Cox-Ross-Rubinstein binomial model). By, = (1+7r)* and kal

are i.i.d. with two possible values 1+ wu, 1+ d with probability p, 1 —p respective;ly
(usually u > r >d > —1).

REMARK 3.4. We can embed discrete into continuous time by making every-
thing piecewise constant.

DEFINITION 3.5. We call a predictable process ¢ = (n,9%,...,9%) with ¥ :=

(WY, ..., 9%) a trading strategy with value process
(3.1) Vip) = (Vi())osi<r
where

d

Vilp) = D 0iS; +me -1 =07 S; +my
i=1
is the time t value of the current portfolio. The cost of the trading strategy is defined
as

t d
Cil) = Vilp) - / S 0LdSh, 0<t<T.
=1

meaning the total cost/expense, on [0,t], from using strategy @. Notice that we need
¥ € L(S) here.
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e [In discrete time, S is piecewise constant, so the integral is a sum, and
being ¥ € L(S) is always satisfied.

e V(p), C(p) and [dS are always R-valued. If ¥, S are R? valued, the
integral is a “vector stochastic integral”. Note that this is ” [ >, 9*dS"”
rather than ”)", [9dS*”. This can cause technical problems if one is not
careful.

DEFINITION 3.6. Strategy ¢ = (n,9) is self-financing if C(p) = Co(p), i.e.
Ci(p) = Co(p) P-a.s. for all t.

LEMMA 3.7. The following hold:

(1) ¢ = (0,n) is self-financing iff V(o) = Vo(p) + [9dS.

(2) There is a bijection between self-financing strategies p = (¥,1n) and pairs
(Vo, V), where Vy € LO(Fy) and ¥ is predictable and S-integrable. Explic-
itly: Vo = Vo(p) and n = Vo + [0dS — 9™ 8S.

(8) If we have p = (¥,n) self-financing, then also n is predictable.

PROOF. The first assertion is immediate from definition of C'(¢). The second
assertion follows from teh first and V() = 9"S + 7. For the third assertion we
consider a cadlag process Y = (Y3)o<i<r, write AY; :=Y;—Y;_ for the jump of Y at
time ¢. From stochastic integration theory, A([9dS); = 9{"AS, = 91'S, — 9IS, _.
So then the second assertion gives n; = Vg + fot udSy — 97 Sy = Vo + [y DudSy —
985, _, where the last three terms are all predictable. O

REMARK 3.8. [ddS = 0+ [9dS = V((0,9)) is by Lemma 3.7, the value of
the self-financing strategy defined by 9 and V; = 0. This also gives cumulative
gains/loses from .

Building up the model as we have, we have some implicit assumptions in our
setup:

e we can trade continuously in time,

e prices for buying and selling shares are given by S: there are no transaction
costs and we have frictionless trading,

e ¥ is R%valued, so ¥ can be positive or negative. 7 is R-valued, so 7; can
be negative. So, short sales and borrowing are allowed; more generally:
no constraints on strategies,

e asset prices S are given a priori and exogenously, and do not react to
trading activities. Our agents are small investors or price takers. Conse-
quence: the “book value” V(y) agrees with the liquidation value.

ExAMPLE 3.9. Allowing too many self-financing strategies may be bad. Let
d=1, S = exp(W; — t/2) be an exponential Brownian motion on [0, co] (with the
understanding that So, = 0), and the time horizon be T' = co. Going short in S,
i.e. choosing a trading strategy with ¢ = —1 yields Vo = —(Soo — Sp) = 1 with
zero initial investment. The problem is that its wealth V' = [9dS is not bounded
from below and so we may experience huge losses before realizing profit. If we had
So — St > —a for some constant, then S; would be bounded from above which is
apparently not the case.

4. Arbitrage and martingale measures

We start with the following basic idea: In reasonable models "money pumps”
should not exist. How can one formalize this? What is the appropriate characteri-
zation?
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We use the standard model as outlined in the previous section, so we have a
probability space (€, F,F, P) over time horizon [0, 7], a bank account B = 1 and
S which is adapted, R%-valued and cadlag.

By Lemma 3.7 we have that any R?valued, predictable, S-integrable ) gives
(for Vo := 0) a self-financing strategy with value/wealth V (9) = [9dS = G(9). We
now call ¢ admissible, 9 € Ogqm, if the process G(1) is uniformly bounded from
below, i.e. if G¢(¥) > —a for all ¢, P-a.s., for some a > 0. In other words, we have
that all debts are bounded. Note that a does not depend on w, but may depend on
9.

DEFINITION 4.1 (Simple strategy). ¥ € b€: 9 = 31" | hil((r,_, 7)), withn € N,
stopping times 0 < 79 < 11 < -+ < 7, < T and h' that is R%-valued, bounded and
Fr,_,-measurable. We write ¥ € b€t if in addition the 7; (but not the h;) are

deterministic.

REMARK 4.2. For ¢ € b€, [9dS is well defined for any R?valued stochastic
process, with G(9) = fOT 0udSy = Y1 hi(Sr, — Sr,_,). In a model with finite
discrete time, b€ equals all bounded, predictible R%-valued 1.

DEFINITION 4.3 (Simple arbitrage opportunity). Let 9 € b€ be admissible, with
Gr(¥) € LY\{0}, i.e. Gp(9) >0 P-a.s. and P|Gr(9) > 0] > 0. Then we call ¥ a
simple arbitrage opportunity.

DEFINITION 4.4 (Arbitrage opportunity). Suppose S is a semimartingale; then
an arbitrage opportunity is a strategy ¥ that is predictable, R%-valued, S-integrable,
admissible and with Gr(9) € LL,\{0}.

DEFINITION 4.5 (Absence of arbitrage conditions). We define the following

conditions:
(NAelem): GT(bg) N L%{) = {0}
(NAglde%) Gr(bEqdm) N L%O = {0}

(NA): Gr(Oaam) N LY, = {0}

LEMMA 4.6. If there exists a probability measure Q ~ P such that S is a
local Q-martingale, then (NA) and (NA%™ ) hold (and by extension also (NAciem)
holds).

The proof of this lemma requires a result known as the Ansel-Stricker lemma,
which we now state.

LEMMA 4.7 (Ansel-Stricker lemma). Suppose S is a semimartingale. If 9 is pre-
dictable and S-integrable, then the stochastic integral [ VdS is well defined and again
a semimartingale. If in addition we require that [ 9dS to be uniformly bounded from
below, [9dS is again a local martingale (and then, since it is bounded from below,
it is a supermartingale by Fatou’s Lemma,).

REMARK 4.8. If S is a local martingale, then (if S has jumps), [¥dS can fail
to be a local martingale.

PROOF OF ANSEL-STRICKER LEMMA. We are following a short proof presented
by de Donno and Pratelli in [5]. We first prove a more general statement: let X be
an adapted, cadlag process and let (M™), -, be a sequence of martingales converging
uniformly pathwise in probability to X together with a localizing sequence of stop-
ping times (n¥), -, (notice here again so called “stationarity”, i.e. Py, = oo] — 1
as k — oo) and integrable random variables (6%),.,. Assume that X, > ¢*

for all k& > 0 and that for all stopping times 7 the (AM*)* < (AX.)" and
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(AM?)” < (AX,;)” holds true, then X is a local martingale. For the proof define
stopping times

Tpi=inf{t >0 | X, >nor M >X;+1or M{*! < X, —1} AT

for n > 0. We can assume, by possibly passing to a subsequence, that > P[r, <
1] < co. We define oy, := infy, > 7, A" and show now that X°™ is a martingale.
The sequence (0, ),,~ is additionally localizing by the previous construction, since
Yol <1y is integrable and hence P[inf,,>,, 7, = 1] = 1 as m — oo.

At o, we can make assertions about the jumps of X by our two further as-
sumptions: let m > 0 be given, then

(AMtTj\am)i < (AXt/\Um)7 <m— o

for n > m by the second assumption. Since M]* > X; — 1 for n > m (notice that
the jumps of M™ are bounded by the jumps of X), we arrive at

My 2 0m—1—(m—0p) =20, —m—1.

This yields by Fatou’s Lemma that X;,.,, is integrable since My,, — Xiaq,, in
probability as n — co. For ¢t = T" we obtain in particular Xy, is integrable, and
hence also AXyny,, by Xino being bounded from below by an integrable random
variable. Again by

M, <m+1+(AMA, )" <m+1+(AXino,)"

for n > m, hence M{}, — Xz, in L'(P) for 0 < ¢ < T yielding that X is a
martingale.

We return now to the proof of the Ansel-Stricker Lemma: we assume by Remark
1.21 that S lies in %' and let ¢ € L(S) be given and define ¢, := 91¢9<n}. Then
by definition of the stochastic integral (1, ¢ S) — (¢  S) in the Emery topology,
in particular (9, e S) € H! for n > 1. All assumptions of the previous statement
are fulfilled due to (¢ @ S) being bounded from below and jumps of approximations
(95,  S) being bounded by jumps of (J e S). O

PROOF OF LEMMA 4.6. S € M;,.(Q) and Q ~ P give us via Bichteler-Dellacherie
that S is a P-semimartingale. We also have that b&,4m, C Ougm- So it is enough

to prove (NA) since this implies (NA%™ ). Now, S € M,,.(Q), take ¥ € ©m,
so ¥ is S-integrable and predictable, so [ 9dS is well defined. Moreover, since 9 is
admissible, [ ¥dS is by Ansel-Stricker again in M,.(Q), hence Q-supermartingale.
So Eq[Gr(9)] < Eq[Go(9)] = 0.

Whence, if Gr(9) > 0 P-a.s., then also (since @ ~ P) Gr(¥) > 0 Q-a.s.; but
Eq[Gr(¥)] <0, so Gr(¥) =0 Q-a.s. and also P-a.s. (since P = Q).

To prove (NA,jem) we use that in discrete time, G(9) = [ 9dS is always a local
martingale if S is a local martingale and ¥ is predictable. O

DEFINITION 4.9 (E(L)MM). An equivalent (local) martingale measure for S is
a probability measure QQ =~ P such that S is a (local) Q-martingale.

With this definition, Lemma 4.6 says that if (ELMM) holds for S, then we have
(NA).

For the case of finite discrete time, S = (Sk)k=0,1,...T, the converse holds, as we
will shall see later. In general however, the converse is not true (for a counterex-
ample in infinite discrete time and in continuous time; see [6, P5.1.7]) Why does
this happen? The key point is that if one can trade infinitely often, one can do
“doubling strategies”.

To exclude such phenomena, we must forbid not only arbitrage opportunities,
but also “limit arbitrage opportunities”. For that, we look first at

Gr(bE) — LZH(P) ={Y = Gr(¥) — b[9 € bE,b € LH(P)},
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the set of all payoffs starting with wealth 0, doing elementary bounded self-financing
trading and discarting a bounded amount b. Intuitively, nothing of that type should
be non-negative (except 0), otherwise we again have a “money pump”.

Recall from functional analysis (see any book on functional analysis):

e for p € [1,00), the dual space (LP)* of L? is L with %—l—% = 1. This does
not hold for p = co.

e the pairing between LP and LY, for p € [1,00] is given by (Y, Z) := E[Y Z]
forY € LP, Z € LA.

e on L? for p € [1,00] we denote by o(LP, L) the coarsest topology on LP
which makes linear functionals Y — (Y, Z) continuous for all Z € L9.
Hence Y, — Y in o(L?, L9) iff E[Y, Z] — E[Y Z], VZ € L.

e vice versa the dual space of LP with the o(LP, L?)-topology is L.

e for p € [1,00[ the o(LP, L?) coincides with the so-called weak topology,
since L? is the dual space (with respect to the norm topology) of LP.

e on dual spaces one often speaks of the weak-x-topology, i.e. view LP as the
dual of L9, then the weak-*-topology is the coarsest topology on LP which
makes all linear functionals Y +— (Y] Z) continuous for all Z € L?. Hence,
for 1 < p < oo, weak and weak-*-topology are the same. For p = 1, we
only have the weak topology o(L!', L>) (since L is not a dual space), and
Y, =Y ino(L', L>®) iff E[Y,,Z] — E[Y Z] for all Z € L*. For p = oo, we
only have the weak-*-topology o (L, L) (since L' is not the norm-dual
of L®); Z, — Z in o(L®, L) iff E[Y Z,] — E[Y Z]VY € LL.

e we shall not use two many words but simply write o(L?, L?)-topologies.

e The Hahn-Banach theorem for o(LP, L?)-topologies reads as follows: let
C C L? be a o(LP, LY9)-closed, convex cone and xz ¢ C, then there is a
I € L7 such that I(xz) > 0 > I(C).

e Another important fact: for p € [1,00) a convex subset of L? is weakly
closed (i.e. closed in o(LP, L?)) if and only if it is (strongly) closed in LP,
i.e. with respect to the norm topology. Hence the case of o(L>, L') is of
particular interest.

We can quite easily prove the following theorem on the existence of equivalent
separating measures.

THEOREM 4.10 (Kreps/Yan). Fiz p € [1,00] and set q conjugate to p. Suppose
C C L is a convex cone with C 2 —L~%, and C'N Lgo = {0}. If C is closed in

o(LP, LY), then there exists Q ~ P with %Q) € LY(P) and Eq[Y] <0 forallY € C.

SKETCH OF PROOF. Any z € L2 \{0} is disjoint from C, so we can by the
Hahn-Banach-theorem strictly separate = from C by some z, € L?. Then the cone
property gives us E[z,Y] < 0,VY € C and C' O —L%, gives z, > 0. The strict
separation implies z, # 0, so that we can normalise to E[z,] = 1.

We next form the family of sets {T'y := {z, > 0}|x € LY \{0}}. Then one

can find a countable subfamily (I'y,);eny with P[U;I';,] = 1. For suitably chosen
weights v; > 0, i € N, one gets that z := Y ;2 724, is 2 > 0 P-as., z € L? and
E[zY] < 0,VY € C. Normalise to get E[z] = 1 and then dQ := zdP does the

job. O

THEOREM 4.11 (Stricker). Fiz p € [1,00], ¢ conjugate to p and suppose S is
an adapted, cadlag process and that Sy € LP(P) for all t € [0,T]. Denote by —~
the closure in LP for 1 < p < oo, or the weak-x-closure, i.e. the closure in the
a(L>=, LY)-topology for p = co. Then are equivalent:

(1) Gr(b€ger) — L (P) N LY (P) = {0}
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(2) The propery (EMM) holds for S, i.e. there exists Q ~ P for S with density
aQ q
ap € LU(P)

PROOF OF STRICKER'S THEOREM. As for direction “2) = 1)”: Sis a Q-martingale
and o € bEer is bounded, so Go(¥) = i h*(St;ne — St 1 ne) IS again a Q-
martingale. This gives us that Eq[Gr(9)] = 0 and Eg[Gr(¥) —b] < 0if b > 0

and bounded. But then, since Z—% € Li(P), we also get Eg[Y] < 0 for all
Y € Gr(b&aet) — LS(P). So if also Y € LE(P), we get Y = 0 almost surely.
For “1) = 2)” we have the following consideratin: the set G (b€4.¢) is a convex

cone in LP(P), so

C = Gr(b€aet) — LZH(P)
is again a convex cone, C' contains —L%  (P) and C is closed in o(LP, L?). But
also C N LY (P) = {0}. Then the Kreps-Yan Theorem gives the existence of the
probability measure Q =~ P with Eg[Y] < 0 for all Y € C and hence E[G7(9)] < 0

for all ¥ € bEe;.
We can now take ¥ := 14 I, with s <t, A, € Fs to get

Eq[41a, (S —S5)] <0

for all A, € F,. This gives us Eg[S; — Ss|Fs] = 0, which is the martingale property
of S under Q. Also, S; € L*(Q) by Holder, as S; € LP(P), % € LY(P). O

REMARK 4.12. Looking back at Stricker’s Theorem 4.11 we see that it has the
following pros and cons:

+: works for any adapted, cadlag process S, proof is nice and simple, strate-
gies from bE are reasonably realistic.

—: need integrability for S (S; € LP(P)), strategies in b€ are not admissible
in general. The closure with respect to o(L>, L) is quite weak and
therefore it might be very reasonable to look for alternative hypotheses
on the price process.

EXAMPLE 4.13 (Counterexample in infinite discrete time). We now show that
(NA jem) does not imply (EMM) by giving a counterexample. Start with (Y, )nen
under P that are independent, taking values in +1, with P[Y,, = +1] = $(1 + ax).
Set Sp :=1 and AS,, :=S,, — Sp_1 = 3,Y,. Choose F =F°% =FY.

The only way to get S to be a (Q, F)-martingale is to have Q[Y,, = +1|F,_1] =
%. So all (Y;,) must be under @) independent and symmetric around 0, i.e. iid under
Q with Q[Y,, = +1] = 3. Kakutani’s dichotomy theorem (see Williams) then gives
us that @ =~ P if and only if

Z ai < 0.
n=1

Otherwise, we must have Q L P. So if we take Y a2 = +oo, then (EMM) does
not hold.

What is the role of 3,7 It has not been important so far, we just note that
3180 < oo implies that S is bounded. [Exercise: Show that there exists an
arbitrage opportunity in b€ if and only if 3 arbitrage opportunity with ¢ of the
form ¥ = h1((, ;) for stopping times o < 7 and h bounded F,-measurable (see [6,
L5.1.5])]. We now choose

Bn =3"
so that for each n, we get that Z;‘;n B < Bn. A simple consequence of this is that
for m > n, sign(S,, — Sy,) = sign(Yn4+1)

We now claim that there does not exist an arbitrage opportunity in b€. Take
¥ = hl(, . and consider A, = {0 =n,7 >n} € F,,. Then G (V) = fooo 9,dS, =
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h(S; — Sy) has sign(h(S; — Sy)) = sign(h¥,41) on A,. So if G (¥) > 0 P-a.s., we
have for all n sign(hY;,4+1) > 0.

But this is not possible: A4,, € F,,, his F,-measurable, so hl 4, is F,-measurable;
and Y11 is independent of F,, with values +1. So we can only have

sign(hla, Yni1)Ia, >0
if h14, = 0. This is for all n, so we get that h = 0, ¥ = 0 and as a result G (¥) = 0.

5. No free lunch with vanishing risk (NFLVR)

Suppose S is a semimartingale (with no integration conditions) and recall the
space © .4 of admissible strategies. Condition

(NA): Gr(Oaam) N LY, = {0}

can be easily shown to be equivalent to (Gr(Ogam) — LYy) N LN LY, = {0} or
equivalently B -

(NA): Cn L%O = {0}, with C := (Gr(Ondm) — L%o) N L.
Defined as above, C' consists of bounded payoffs one can be dominated by final
wealth of an admissible, self-financing strategy with 0 investment capital.

Instead of the hypothesis on o(LP, L9)-closedness in the Kreps-Yan-Theorem
we only speak of intuitive norm closures: notice that for 1 < p < oo norm and
o(LP, L7) closures coincide for convex sets, whereas only in the case p = oo a (big)
gap appears.

DEFINITION 5.1. A semimartingale S = (St)o<i<r satisfies (NFLVR) (no free
lunch with vanishing risk) if

=L (P)

C NnLY, = {0},

where =L ®) denotes the norm closure in L>(P).

PROPOSITION 5.2. For semimartingale S are equivalent:

(1) (NFLVR)

(2) Any sequence g, = Gr(V") in Gr(Oudm) with GH(9") =g, — 0 in L™
converges to 0 in L°.

(8) S satisfies (NA) plus one of the following:
(a) (NUBPR) (no unbounded profit with bounded risk) The set

G' = {Gr(9) |V € Ouam is 1-admissible}

is bounded in L.
(b) For every sequence €, \, 0 and every sequence (9™) of strategies with
Geo(9") > —€,, we have Gr(9™) — 0 in LO.

PROOF. See [6]. We show first (NFLVR)<(NA)+(NUBPR): if we have (NA),
then any ¥ € O 44y, with Gr(9) > —c also has G4(9) > —c. O

Making a short overview of notation, we have for C := (G1(Oqqm) — L%o) NL>
and S semimartingale:

(NFLVR): ¢ ' n 1, = {0},
(NA): ¢ NI, = {0},

(NUBPR): The set
gl .= {Gr(9)| ¥ € Oudm is 1-admissible}

is bounded in L°.



32 1. ARBITRAGE THEORY

The formulation of the next result needs the concept of a o-martingale, which
is already familiar to us since it is related to the fact that not every stochastic
integral (¢ @ S) along a local martingale is a local martingale.

DEFINITION 5.3 (o-martingale). An Re-valued process X is a o-martingale
(under P) if X = [dM =1pe M for an R%-valued local martingale (under P) and
an R-valued predictable M -integrable 1 with ¥ > 0.

Clearly, X being a martingale implies it is a local martingale, which implies it
is a o-martingale. The converse does not hold in genera, see Michel Emery’s famous
example: o-martingales come with the generality of stochastic integration — it can
be seen a cumulative effect of re-scaling of infinitesimal increments of martingales.

However, we have the following important remark: suppose X is a o-martingale
and bounded below. Then the Ansel-Stricker theorem gives that X is also a local
martingale (and even supermartingale).

EXAMPLE 5.4. See [6, Example 7.3.4] for further details: consider a probability
space carrying one Bernoulli random variable B and an independent, exponentially
distributed random time T with P[T" > x| = exp(—z). Then we can define a
stochastic process M via

Mt = 1{t2T}B
for ¢ > 0. We equip the probability space with the natural filtration generated by
M. Apparently M is a martingale with respect to its natural filtration, since

(51) E[(Mt - Ms)g((Mu)ugs)} = E[/OOO Bl{s§$<t}g((1{uZx}B)u§S) eXp(fx)dx]

(5.2) = E[B(exp(—s) — exp(—t)] =0
for 0 <s <t
Define now Hy := %, then this deterministic process is M-integrable since the

process
(Hlgm)<ny @ M) = X
in the semimartingale topology, where
X = 1{t2T}§ )
for t > 0. This is true since X is a finite variation process, hence a semimartingale,
and the process (H1y|g|>n) ® M) converges to 0 in the semimartingale topology,
since

B
Ell=]1 0
HT' {Tgl/n}} —

as n — o0o. The process X looks a bit like a martingale having again jumps as
multiples of B, but there are some integrability issues: first we observe that

E[|X] = /0 %exp(fx)dx =00.

This can be easily strengthened since for every stopping time 7 # 0 with respect
to the natural filtration it even holds that E[|X,|] = co. Hence it also cannot be a
local martingale, but X apparently is a o-martingale.

THEOREM 5.5 (Fundamental theorem of asset pricing). For semimartingales
S = (St)o<t<T the following statements are equivalent:
(1) S satisfies (NFLVR),
(2) S admits an equivalent separating measure, i.e. the property (ESM) holds
for S: there exists Q =~ P with Eq[Gr(¥)] <0, for all ¥ € Oudm,
(8) S admits an equivalent o-martingale measure (Eoc MM), i.e. the property
(Eo MM) holds for S: there exists Q = P such that S is a Q-c-martingale.
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REMARK 5.6. This theorem can be viewed as the “converse” of Lemma 4.6:
(NFLVR) implies the existence of an EcMM. Any process S satisfying (EMM)
or (ELMM) satisfies (ESM) as shown by using the Ansel-Stricker theorem. Con-
versely, if S is (locally) bounded, then any equivalent separating measure is an
equivalent (local) martingale measure, as seen in the proof of theorem 4.11. But
if S is unbounded (i.e. has unbounded jumps, so that it can’t be made bounded,
even by localizing), an equivalent separating measure need not be an equivalent o-
martingale measure. However, one can show that the set of equivalent o-martingale
measures is dense in the set of all equivalent separating measures, see [6] for a proof.
We shall see a proof of all this later.

The main mathematical ingredient of Theorem 5.5 is the following important
and surprising fact:

THEOREM 5.7. If the semimartingale S = (S)o<i<r satisfies (NFLVR), then
the set
C = (Gr(Ouam) — L%O) N L>

is weak*-closed in L™, i.e. closed in the o(L>°, L')-topology.

PROOF OF THEOREM 5.7. The proof relies on functional analysis and results
and techniques from stochastic calculus for general (discontinuous) semimartin-
gales. See [6] or [8] for the proof. O

SKETCH. The direction “3) = 1)” is proven in the same way as Theorem 4.11
by means of the Ansel-Stricker Lemma.

The direction “1) = 2)” can be seen as follows: by Theorem 5.7, (NFLVR)
implies that C is closed in o(L®, L'). As C is also a convex subset of L, and
C 2 —L%,40, and C N LY, = {0}, we conclude by Theorem 4.10, that there exists
@ ~ P such that Eg[Y] < 0 for all Y € C, i.e. an equivalent separating measure.
This easily implies Eq[Gr(¢)] <0, for all ¥ € Ogapm, (use: Gr(¥) An € C, n — o).

Direction “2) = 3)” follows by the previous remark. O

6. No arbitrage in finite discrete time

For the case of finite discrete time, results are easier. Let us denote in this
section in a discrete way: S = (Sk)k=o0,1,..., 7 be an R-valued process adapted to F =
(Fx)k=01,...,r and recall that F-predictable processes are simply ¥ = (Ux)k=1,...1
(or set ¥g := 0) with ¥ Fr_1-measurable for all k. Then Gy (9) = 2521 95 (S; —

Sj—1) = 2521 9AS;, k=0,1,...,T. Here:
© = {all predictable R%-valued ¥},
Oudm = {¥ € B|G4(¥) > —a for some a > 0}.

With the above notation, the classical no arbitrage (NA) condition then be-
comes

(NA): Gr(Ouam) N L%o = {0}
LEMMA 6.1. In finite discrete time: (NA) < Gr(©)N L%O = {0}.

PROOF. The direction “<” is clear, since Gp(©) 2 Gr(O44m). For “=" we
need to show that any arbitrage from a general ¥ € © can also be realized by an
admissible ¥ € Ou4m. So we suppose that ¥ € © with Gr(9) N LL,\{0} is not
empty. Assume that G (9) # 0, since otherwise we can take ¥ = .

Let ng := max{k € {0,1,..., T} P[Gr(9) < 0] > 0} be the “last time when ¥
violates 0-admissibility”. Then 0 < ng < T and A := {G,,(¢¥) < 0} € F,, has
P[A] > 0. Take ¥ := Islpo41,.. 1390, i.e. on A, after ng, we trade with ). This
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gives us that Gi (') = Tal(ksng} Sogengs1 V5 AS) = Taliisng} (Gr(0) — Gy (9)) >

0 by definition of ng, A; so ¥ is 0-admissible.
Moreover, Gp(¢) = La(Gr(9) — Gpy (9)) is in LOZO like G (¥) and greater than
0 on A with P[A] > 0, so Gr (') € L2,\{0}. O

The key mathematical result in this section is

THEOREM 6.2. In finite discrete time, if S satisfies (NA), the set C' := Gr(©)—
L%o is closed in LY.

In finite discrete time, this translates to the Dalang-Morton-Willinger theorem

THEOREM 6.3 (Dalang/Morton/Willinger). For an R%-valued adapted process
S = (Sk)k=0,...,7 in finite discrete time, are equivalent:
(1) S satisfies (NA), i.e. Gp(Ogam) N LY. = {0},
(2) There exists and equivalent measure Q = P such that S is a Q-martingale,
i.e. (EMM) holds for S.

PRrROOF. For the direction “2) = 1)” see Lemma 4.6. As for direction “1) =
2)”: (NA) is invariant under a change to an equivalent probability measure, so
change to R ~ P, such that Sy € L'(R) for all k. We then drop the R notation
and work without loss of generality under the assumption that S is P-integrable.
By Lemma 6.1, (NA) is equivalent to G7(©) N L%, = {0}.

Setting C' := Gr(0©) — LY,, (NA) is equivalent to C' N LY, = {0}. Set
C := C’'Nn L' This set is convex, C L', D =L, and C N Ly, = {0}. By (NA)
and Theorem 6.2, C' is closed in L' (notice that C’ is closed in LY, which is an even
weaker topology), hence also in o(L!, L>) since it is convex. So the Kreps-Yan
theorem gives @ ~ P such that E[Y] <0, for all Y € C. Choose ¥ := £14, x (k,...1}
with Ay € Fi, and k < to get Gr(¢¥) = £14,(S; — Sk). As in proof of Theorem
4.11, this shows that S is a Q-martingale. O

REMARK 6.4. In the proof, we could choose for instance

T
dR = const - exp{— Z |Sk|}dP .
k=0
Then R ~ P, Eg[|Sk|] < oo, for all k and 4& € L>. Then the Kreps-Yan theorem
gives and equivalent martingale measure @) for S with % € L, and so we even
have even have an equivalent martingale measure with % € L™.

In finite discrete time, we have:

(1) The space Gr(©) = {Zszl 0% AS;| 9 predictable R%-valued} of all final
values of stochastic integrals with respect to S is always closed in L°.
(2) If S satisfies (NA), then Gr(0) — LY, is also closed in L° (see Theorem
6.2). -
Proofs are not difficult, but are notationally involved; use induction over time
and dimension of S (when doing induction over dimension, we want to exclude 0
integrals for non-0 strategies).

7. No arbitrage in It6 process model

We start with a general probability space (2, F,F, P) with R”-valued Brownian
motion W. Consider the undiscounted model with bank account B and d stocks
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S = (85i)i=1,...a, given by
dBt = Bt’l"tdt, By=1

n
S} = Sipydt + 57 o dW!, Sj=s;>0
j=1
We assume 1, p1, o all predictable and suitably integrable processes. Pass to dis-
counted prices B := % =1and S:= %. These then satisfy

dS; = Sj(bidt +> o’ dW}), i = s > 0, with b} = pf —r,
j=1
Compactly we write dSy = Sy(bdt + oy dW,) with b, € R?, oy € R™ G, € R or
Sy = diag(S;).
Assume d < n (so we have more sources of uncertainty than risky assets

available for trading) and rank(o;) = d P-a.s. for all t. Introduce now \; :=
o (0v0i") " 1b, € R™ to get

dgt = gtgt(xt dt + th) .

We call A the multi-dimensional instantaneous market price of risk.
What is the structure of martingale measures? We start with some probability
measure Q = P. The density process is defined as Z9 = (Z2)o<i<r with Z° =

% ‘ 7,» choosing a cadlag version. Introduce the stochastic logarithm

1
L9 ::/Z—QdZQ € Mo ,ioc(P)

to get Z9 = ZSQS(LQ), dz8 = ZtQ_ dL? (which could be discontinuous since we did
not assume F generated by a Brownian motion).

REMARK 7.1. Notice that Z? is a strictly positive martingale by equivalence
of P =~ (), hence 79 >0 by the Absorption Theorem 1.15. Therefore the stochastic
integral is well-defined along the caglad process Z_ and leads to a local martingale
by local boundedness of the integrand.

S is a continuous semimartingale with canonical decomposition S = S+
M + A with M = [, S;0,dW and A = [; SsoiAsds. This gives us (M, M) =
_____ qas (M, M) = [; S;o,0t S, ds and so we see that A < (M, M) in
the sense that dA; = d(M, M);\; with \; € R%:

dAt = Stbt dt = Statagrgtg;l(atazr)flbt dt = d<M, M>)\t
with 3
At = St_l(O'tO'Er)ilbt .
The process
K= / (M, MY = / b (oot) bt

is often called the mean-variance tradeoff process. We also have that K = [ NNdt =
I A¢)?dt.

S defined as above is called an Ité process model with coefficients b (or p and
r), o.

: Continuous model: S = Sy + M + A is a continuous semimartingale with its
canonical decomposition into a continuous local martingale M and a predictable
process A. We say S satisfies the stucture condition (SC’) if A < (M) in the sense
that dA = d(M)) for some predictable A. We say that S satisfies (SC) if it (SC”)
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is true and if X is in L} (M). The last condition means that [ A"d(M, M)\ is
finite-valued (i.e. K is finite valued).

REMARK 7.2. Suppose S is a continuous semimartingale. Then S satisfies the
structure condition (SC) if and only if S satisfies (NUPBR).

Suppose we have a continuous model and that (SC) holds. If Q =~ P is an
equivalent local martingale measure for S, what can be said about L??
Since M € ngloc(P) (after all a continuous local martingale), we can use

the Kunita-Watanabe decomposition to write L = [4%dM + N9 with N9 €
Mo 10c(P) and N9 L M (so again, because M is continuous, (N9, M) = 0).

LEMMA 7.3. @ = P is an equivalent local martingale measure for S iff 49 =
—\. In the It6 process case we have v2 = —S~(oot™)~1b.

PRrROOF. By Bayes’ rule, we have that Q ~ P an equivalent martingale measure
for S iff Z9S is in My,.(P). Using Ito’s formula, we compute
d(Z98) = 29dS + 8dZ° + d(Z°, S)
= Z9%M + Sdz% + Z9dA + Z°d(L?, )
The first two terms of the right hand side are local martingales, so for Z9S to be
a martingale in Mj,.(P), A+ (L9, M) must be in M,.(P). Since A and (e) are

predictable and of finite variation, this is equivalent to saying A + (L9, M) =0, or
0= [d(M,M)X+ [d(M,M)y? = [d(M,M)(X+~9). 0

COROLLARY 7.4. Equivalent local martingale measures Q for S are parametrized

via
Q
20 e (- franr o 9)
Zy

with N9 € Mioe,0(P), N@ 1 M under P as long as the right hand side is a strictly
positive martingale.

More precisely, if @ is an equivalent local martingale measure, then Z% has
the above form with some such N¢. We also have the converse, so if N? is as
above, then the corresponding Z% := Z(?E(—f)\dM + N@) gives an equivalent
local martingale measure, if Z¢ > 0 and if we also have that Z€ is a true P-
martingale on [0, 1.

REMARK 7.5. The simplest choice of N€ is N¢ = 0. The corresponding process
is then (taking Z§ := 1) Z := &(— [AdM) = exp{— [ AdM — 1K}. If this is a
true P-martingale, then the corresponding equivalent local martingale measure P
is called the minimal martingale measure.

REMARK 7.6. Since N@ L M, Yor’s formula gives g—g =E&(— [AMM + N@) =
0
ZE(N®).
What can we say if S is in addition also an It6 process model?

LEMMA 7.7. Suppose S is an Ité process model with b,o. Suppose F = FW
and N € Mo oc(P). Then N L M under P iff N = [~dW with v predictable,
R™-valued and oy = 0.

PROOF. N = [~vdW by It0’s representation theorem. N L M under P if and
only if (N, M) =0, i.e. if and only if 0 = ([ vdW, [ SodW) = [ So~vdt. O
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COROLLARY 7.8. Suppose S is an Ité process model with b, o. IfF =FY, then
equivalent local martingale measures QQ are parametrized via processes 7y from the

kernel of o by
Z90=¢ (— /(Uotr)_lbadW + /’ydW)

with oy = 0 as long as the right hand side is a strictly positive martingale.

Note: If d = n, then there is at most one equivalent local martingale measure
for S, since oy = 0 implies v = 0, since ¢ is now invertible.

A special case of the above is the Black-Scholes model: d =n =1, py,r,0 >0
are all constants, so we have a unique candidate for the density process of the
equivalent local martingale measure: Z = &(— [ E2dW) = E(-ELW). Since
all coefficients are constant, Z is a true P-martingale, so P is an equivalent local
martingale measure, and dS; = S,0dW, is even a true P—martingale; so P is even
an equivalent martingale measure.

8. No arbitrage in (exponential) Lévy models

A Lévy process L is a stochastically continuous R?-valued with stationary,
independent increments. Following [11] we can choose a cadlag version of a Lévy
process. Additionally we know that the logarithm of the characteristic function of
L is of Lévy-Khintchine form.

We analyze how a Lévy process L looks like with respect to an equivalent
o-martingale measure:

THEOREM 8.1. Let L be a one dimensional Lévy process and assume that S =
exp(L) is a o-martingale, then S is already a martingale

PrOOF. By the Ansel-Stricker Lemma a bounded from below o-martingale is
in fact a local martingale, and hence a super-martingale. We therefore have that

Elexp(Li)] <1,

for ¢ > 0, by the super-martingale property. Since L is a Lévy process we know
that the Lévy exponent k is at least well defined on the strip in C of complex
numbers u with real part 0 < Re(u) < 1 and has Lévy-Khintchine form there. We
are interested in showing that x(u) — 0 as u ' 1, which then yields the martingale
property. Due to x’s Lévy-Khintchine form there are numbers b € R, ¢ > 0 and a
Radon measure v on R\ {0} such that

2 lel<1

for 0 < u < 1. The first, second and fourth summand are continuous in u as v /1
by continuity of polynomials and dominated convergence. The third summand can
be split in two parts (on the positive and negative real line, respectively), where we
can conclude by dominated convergence on the negative real line and by monontone
convergence on the positive real line by the fact that x(u) < 0 as u € [0,1] by
convexity of the moment generating function. O

() = bu+ S + /“ ()~ 1rldg) + / (exp(ug) — 1 — u€)(de)

A slightly more complicated situation is given when we look at Lévy processes
themselves. We can conclude the same result, however, we cannot use the Ansel-
Stricker Lemma.

THEOREM 8.2. Let L be a Lévy process. Assume that L is a o-martingale, then
it is a martingale.
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PROOF. A o-martingale L is a semi-martingale such that there is an increasing
sequence of predictable sets D,, /' Q x [0,1] with (1p, e L) is a local martingale
(take the definition of o-martingales as limit of stochastic integrals of the form
(H1{m|<n} ® M) for some predictable strategy H € L(M)). For every n we can
hence choose a localizing sequence of stopping times 7, such that (1p e L™m)
actually are martingales. The compensator (i.e. the predictable process A uniquely
associated by the Doob-Meyer decomposition to an increasing, locally integrable
finite variation process A making the difference A — A a local martingale) A=tvof
A=, 1qaL,>1} is always well-defined and deterministic due to independent
increments and linear in time due to stationarity of increments. We do additionally
have that

/ 1p,(s)ds Lyje|>1yv
0

is the compensator of >, 1 (A(1p, eL7am),||>1}- 1f we integrate now s +— A(1p, e
L) with respect to this counting measure of the jumps we obtain

Y Hi@ap, etz A(D, ¢ L),

s<t

which in turn is integrable by martingality. Hence we obtain that f” ¢l>1 Ev(d§) is
finite, which proves the martingale property of L.

9. Pricing and hedging by replication

Assume that we have a standard model of a financial market (2, F,F, P) over
[0,T] with B=1 and S a R%-valued semimartingale.

The basic question is: given H € L°(Fr), viewed as a random payoff of a
contract at time T', what is its value at ¢t < T7

We are first going to explain the basic ideas, ignoring all of the (important!)
technical details.

DEFINITION 9.1 (Replicating strategy). A replicating strategy for H is a self-
financing ¢ with Vp(p) = H P-a.s.; we then call H replicable or obtainable by

®.
THEOREM 9.2 (Valuation of attainable payoffs 1). If H € L°(Fr) is replicable
by @, then its value at any time t < T is Vi(p), if there is no arbitrage.

PROOF. Take ¢ = (9,n) and fix t. Consider on [t,T] self-financing strategy
with initial capital V;(¢) and ¥; see Lemma 3.7. Then we have on (¢,T") zero cash-
flows (by self-financing) and in T exactly Vr(¢) = H P-a.s.. This is exactly the
same as one has when simply holding the payoff on (¢,7T]. So values at time ¢ must
coincide, too. Otherwise we would have arbitrage. O

REMARK 9.3. How can we compute V;(p) more easily? Note: H is attainable <
3 self financing ¢ with Vr(p) = H P-a.s. & H = Vo—i-fOT 9,dS, P-a.s.,ie. Hisup
to Vy representable as a stochastic integral of S. Moreover, ¢ self-financing implies
by Lemma 3.7 that V;(p) = V0—|—f0t 9,dS,, so if Q is an EcMM for S, then [ 9dS is
(for sufficiently integrable ¥) a @Q-martingale, and so V;(¢) = Eg[H|F;], 0 <t < T.

THEOREM 9.4 (Valuation of attainable payoffs IT). If H € L°(Fr) is attainable
by "reasonable” strategy ¢, the value of H at any timet < T, if there is no arbitrage,
is given by Vi(¢) = V;H := E[H|F;] for any Eo MM Q for S.

EXAMPLE 9.5. Model:

e Bank account Bt =e
e Stock Sy = sgexp{oW; + (u— 50%)t), 0 <t < T

rt
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The discounted stock price S = % satisfies the SDE: dS; = Si((u — r)dt + odWy).
A European call option with maturity 7" and strike K has undiscounted payoff
H = (Sp— K)*. The discounted payoff is then H = EI;T = (57— Ke_TT)+. What
is its value at t < T'?
Suppose F = FW is generated by Brownian motion (augmented as usual). From
Corollary 7.8, there is only one candidate for the density process of an ELMM,

namely
2
Zt_5<NTW> —exp{HTth('uT) t}, 750
o T o 2 o
is a true P-martingale on [0, T7]; so dP := Z7dP gives P ~ P on Fr. By Girsanov,
W, = W, — £=2¢, 0 < t < T, is then a P-Brownian motion, and dS; = S;odW,

[oa

shows that S; = s¢& (UW) = Spexp {O‘Wt - %agt} is a true P—martingale. In
t

other words, P is an EMM for S. Also, P is the unique equivalent martingale
measure.

We suspect that the model is arbitrage free and complete; so guess that H is
”attainable” and we also guess its discounted value at time ¢ is

0, = BlH|F] = B

(st exp {U(WT ) — %UQ(T _ t)} _ Ke_’T)+ ‘J—}]

S, is F;-measurable and Wy — W, is independent of F; and ~ N(0,T —t). Set
S ~ N(0,1) under P so that we get

V= [(aet 7= )] = o(e.5)

with a = Sy, b= 0v/T —t, ¢ = 36*(T — t) and d = Ke " Here the function %
can be computed explicitly.

The natural guess for the undiscounted value is then V, = V, B, = u(t, St)
Doing the computations gives

v(t,8y) = 5, ®(dy) — Ke " T ®(dy), with
L2 oVT —t

with ® being the standard normal cumulative distribution function

1,2
e 2% dx

1 z
B(z) = —— /
(2) = 7= -
The above solution is known as the Black-Scholes formula; the derivation was
awarded the Nobel prize in economics in 1997.

To justify V; as a reasonable value for the option at time ¢, we still need to check
whether H is attainable (in a good sense). One way exploits It6’s Representation
theorem, as follows.

Since F = FW = F" | we have that any H € L'(Fr, P) has a unique represen-
tation

T T
H =Rk[H] +/ Y dW, = E[H] +/ 9, dS,,
0 0

where fde = [0dS is a P-martingale; this uses dS; = S, = S;odW, via 9, =

Pu_
oSy’

Moreover, if H > 0 (as for the call option), then [JdS > —E[H] shows that
@=(E[H],9) is 0-admissible. So: every H € L} (Fr,P) can be written as final
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value of some self-financing admissible strategy ¢ such that V() = ]I:I[H |+ [0dS
is a P—martingale. So this justifies calling such H attainable, and so we might say
that (S,F = F") is complete.
An alternative argument shows that the call option H is ”attainable”; it even
works without specifying F (of course, we must take F D F* to have S adapted).
We start with the function v(¢, ) from the Black-Scholes formula and check by
computation that

0 0 1 0?
87: + m"afz + 5023:28—;2} —rv=0, v(T,x) = (z — K)*.
Now S, = S, B, = e"tS, satisfies dS; = §(rdt+Jth), so applying It6’s formula
gives:
dV, = dv(t, ;) = (...)dt + (...)dW,.
Working out the calculations and using that vy + v.ra + %’UMEO'Q.’EQ = rv from the
PDE in the drift term, we get
v v

- L P A B
d‘/t = T‘/)gdt + a(t St)O'Stth = a(t, St)dSt + (‘/;g — a

Because dBt = rBtdt we can rearrange the second term and get that @t = g—z(t, 5}),
M = B%(v(t,gt) — 15‘5',5) to get dV, = 9,dS; + ﬁdBt and also V, = v(t,S‘ —t) =
9.5, + f)tBt. This means that ¢ = (75,77) is a strategy with undiscounted value

(t, St)gt)rdt

process V(@) = V = v(e,S,), and which is self-financing due to above.

Moreover, Vp(¢) = v(T,Sy) = (Sp — K)* = H shows that ¢ replicates H.
Finally,  is even admissible since v > 0. So in that sense we see again that H is
attainable and so its value at ¢ is v(t, S;).

10. Superreplication and optional decomposition

The basic question we ask ourselves in this section is: How to hedge a non-
attainable payoff in an incomplete market?

We use the standard model of (Q, F,F, P) and S on [0,T]. Denote by P the set
of all equivalent o martingale measures for S and assume P # (J; by the fundamental
theorem of asset pricing, this guarantees (NFLVR).

Fix a payoff H € L% (Fr). Everything would work for H > —const. as well.
We assume H is not attainable, so there is no self-financing strategy ¢ with Vr(e) =
H P-a.s. How do we hedge such an H? Idea: look at strategies that produce at
least H and try to find the cheapest one.

DEFINITION 10.1 (Superreplication price). The super-replication price of H €
Lozo(]:T) 18

T
I, (H) =inf{Vo e R|3Y € Opam : Vo +/ $,dS, > H P-a.5.}
0

= inf{Vy € R|H — Vy € Gr(Ogam) — Lo}

The intuition behind this definition is that we can sell H for II,(H) without
risk, because (II4(H),?) is a self-financing admissible strategy which produces at
least H by time 7. We have to be careful, however, since II4(H) is an infimum;
we do not know if it is attained. So we do not know if there exists a ¥ € O,q4,, for

Vo :=1I5(H).
LEMMA 10.2. Assume that P # 0. Then for any payoff H € L%O(]:T)
II,(H) > sup Eg[H].
QeP
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PRrOOF. Without loss of generality suppose that
T
B:=<Vy eR|3IY € Ouum : Vb—i—/ 9,dS, > H P-a.s. y # 0,
0

else II;(H) = co. Solet Vy € B and take some ¥ € © 44y, such that Vo—i—foT 9,dS, >
H P-as. Let Q € P, then S € M,(Q) is a o-martingale under @ and G(9) = [ 9dS
is bounded below; The Ansel-Stricker Lemma gives us that G(9) € M;..(Q) is a
local martingale under () and in particular a super-martingale. So we get

EQ[H] < Vo +Eq[Gr(d)] < Vo
Hence, taking the supremum over @, infimum over V, we get

sup Eq[H] < inf B=1I,(H).
QEeP

O

Our goal now is to prove the equality in Lemma 10.2 and also that the infimum
for TI;(H) is attained. We fix H € L%O(]-'T) and define the adapted process

Uy :=esssupEg[H|F], 0<t<T
QeP
which is the smallest random variable that dominates the set of random variables

for any t € [0,T], i.e. the measurable version of the “supremum”. If Fy is trivial,
then Uy = supgep Eq[H].

PROPOSITION 10.3. Assume P # () and H € LL(Fr). If supgep Eq[H] < o0
then U is a Q-supermartingale for every @ € P, which allows for a cadlag version.

PROOF. We argue that U has the supermartingale property: let s < ¢, we
want to show that Eq[U;|Fs] < Uy for any @ € P. We fix Q € P and introduce for
te[0,T)

¢t : ={Z| Z is the density process w.r.t @ of some R € P, and Z; = 1 for s <t}
= {Z| Z is the density process w.r.t Q of some R € P, with R = Q on F;}

Taking R = @ shows that 1 € (, so it is not empty; and (; C (s for 0 < s <t < T.
R

Z
Moreover we claim (; = {Zt\l/; | Z® is density process w.r.t. Q of some R € ]P’}
t
?C”: Take Z € (; with corresponding R € P. Then Z; = 1 and so:
Zt\/o

Ze = ety + Zelozy = —
t

?27”: Take R € P with @ density process Zf. Let Z, = Z£,/ZF. Then

Z>0,7Zs,=1for s <tand Z is like Z a Q-martingale. Moreover, both

S and SZ® are both local Q-martingales (the first one since Q € P, the
second by the Bayes rule because R € P). So

S,z
S.Z. = SOI{OSt} + ZR I{o>t}
t

is also a local Q-martingale. So dR’ := Z7dQ gives R’ € P with Q density
Z.
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Now we use Bayes rule again to write
HZE
Zft

Uy = esssupEg [H|F;] = esssupEg [ ‘ft:| =
ReP ReP

= esssup Eq[H Zr|F].
ZECH Nmmm———
=T'«(Z)
We claim that the family {I',(Z)|Z € ¢} is an upwards directed set: if Z and
Z' are in (; and A € Fy, then apparently ZI4 + Z'Ic is again in (;. So with
A= {Ft(Z) Z Ft(Z/)} € ]:tu we get
maX{Ft(Z), Ft(Z/)} = Ft(Z)IA + Ft(Z/)IAC = ]EQ[H(ZtIA + Z;IAC)‘.FH = Ft(7)

with Z := ZI4 + Z'Tsc € (. This is useful because the essential supremum of
an upward directed family of random variables can be obtained as a monotone
increasing limit of a sequence in that family.

So for each t € [0,7T] there is an increasing sequence (Z("))neN C (¢ with

U = lim EolHZ™M |7,
hence we obtain
Eq[U|F.] = limEq [Eq[H Z{" | F]|F,| < ess supEq[H Zr|F.] = U,
Z€eCs

where the inequality follows from Z(™ € ¢, C (,. By a similar argument we obtain
that t — Eg[U;] is cadlag, hence there is a cadlag version of U by martingale
regularisation. O

So we have that U = (Uy)o<i<r is a Q-supermartingale for any @) € P. One
concrete example of such a process is as follows: take z € R, ¥ an R%valued,
predictable, S-integrable process and C' an increasing cadlag, adapted process with
Co = 0. Define

Vel =g 4 /ﬁdS -C
and interpret this as the value process of a generalised strategy (x,d,C); x is the

initial value, ¥ describes the trading and C} is the amount spent for consumption
on [0,t]. Note that C' > 0 and

V’”’ﬁ’c—&—C’:x—k/ﬁdS,

so if V*7:C is bounded below, then ¥ € ©44m.

Whenever ¢ € G4, [UdS is by Ansel-Stricker a Q-supermartingale for all
Q € P. The same is then true for V*>%C if this process is uniformly (in t,w)
bounded below; note that

OSC’Sconst—i-/ﬁdS

shows that C is Q-integrable. Hence each V»%¢ with V*%¢ > const. is a Q-
supermartingale, for all € P. This is the only such example.

THEOREM 10.4 (Optional decomposition, Kramkov). Suppose P # 0. Suppose
U = (Up)o<i<t ts an adapted, cadlag process Uy > 0 with the property that U is a
Q-supermartingale for all Q € P. Suppose Fy is trivial. Then there is some x € R,
¥ € Ouam and an adapted, increasing, cadlag process C with Cy = 0 such that

U:V-"fﬂ»czwr/ﬂds_c

(In fact, x = Uy.)
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REMARK 10.5. If F is non-trivial, we must allow = € L% (Fo).
An immediate consequence of the above theorem is the hedging duality:

THEOREM 10.6. Suppose P # 0 and Fy is trivial. For any H € L% (Fr) we
then have -

II,(H) = inf{Vy € R|H = Vj € G1(Ouqm) — L} = ZE%EQ[H].

Moreover, the infimum is attained as a minimum if supgeq E[H] < 0o.

PROOF. ”?>”: Follows from Lemma 10.2

?<”: s trivial if RHS = +o0. So suppose that supgep E[H] < oo; with
Up := esssupgep EQ[H|Fo], this means by Proposition 10.3 that U is a
Q-supermartingale, VQ € P, so U = Uy + [9dS — C by Theorem 10.4
with ¥ € ©4qm, C A/, null at 0. So Cr > 0 and so H — Uy = Ur — Uy =
fOT 9dS —Cr € Gr(Ouam) — LY, shows (by using the definition of II5(H))
that Vo < Uy = supgep Eq[H]; the argument also shows that the infimum

is attained by Vg = U.
O

REMARK 10.7. Here, C = B is predictable; in general (i.e. discountinuous F),
C' is only optional. As B # C - we add an extra term from (N, N) to it.

Recall the hedging duality:

II,(H) = inf {Vy € R|H = Vy € G1(Oaam) — L%} = Zup E[H]
epP

with the infimum obtained if the right hand side is finite.

REMARK 10.8. e Super-replication as a conceptual approach is natural,
nice, mathematically beautiful; it also comes up as an auxiliary tool in
other problems.

e As an approach to hedging/pricing, it is rather extreme: seller charges
enough to reduce his own risk to 0 (because he achieves Vr(p) > H P-a.s.
with ¢ admissible and self-financing). All the risk in the deal is with the
buyer.

e II (H) is a nice price for the seller, but buyer might be unhappy; e.g. can
have H bounded > 0 with II,(H) = ||H||p~ (if S is driven by a Brownian
motion and H comes from Poisson jumps), or I;((Sr — K)T) = Sy (for
certain stochastic volatility models). So buyers might be hard to find.

e We can similarly define a buyer price II,(H) = —II;(—H), at least if H is
bounded.

e Combining above results shows that reasonable (arbitrage-free) prices/values
for H form an interval between infoep Eq[H] and supgep Eq[H]. More
precisely: if H is traded at any z from the open interval, this gives no
arbitrage in the market extended by (z, H). Trading at any price outside
the closed interval will introduce arbitrage. The behaviour for "boundary
prices” depends on S.

e All of the above is OK for H bounded; unbounded H need technical care.

e Up to suitable choices of sign, the superreplication price gives an example
of a so-called convex risk measure.

e We can use the optional decomposition to characterize attainable payoffs.
We call H € LY (Fr) attainable, if H = Vp(Vy,9) = Vo + Gr(9) P-as.
for some Vj € R, ¢ € O 44y, such that G(9) = fﬁdS is a martingale under
Q* for some EMM @Q* (it is always a Q-supermartingale, for all Q € P).



44 1. ARBITRAGE THEORY

Then, for Fy trivial, one can show that H is attainable (in the above
sense) if and only if supgep EQ[H] < oo and is attained in some Q*.

11. American Options

With a European option, the time of the payoff is fixed (usually 7). With an
American option, the owner/holder can also choose the time of the payoff. How
can we model, value and hedge such a product?

We use the usual model of (Q, F, P), F = (F)o<i<r, B =1and S = (St)o<i<r
an Re-valued semimartingale. We impose absence of arbitrage via P # 0.

An American option is described by its payoff process U = (Up)o<i<r (dis-
counted as usual); U is F-adapted, cadlag, > 0. Then U, is the payoff due at time
7 if the owner decides to exercise the option at 7. The owner/holder chooses 7,
but it must be a stopping time to exclude prophets and clairvoyance, with values
T €[0,77.

Notation: S, r is the set of all stopping times 7 with values in [¢, T'.

Consider the seller /writer of an American option at time ¢ € [0,7]. What can
she do?

e If option has already been exercised: nothing.

e Otherwise: suppose the owner chooses to exercise at 7. Then the seller
faces a payoff (at 7) of U,. To be safe, the seller would like to be able to
super-replicate this, from ¢ on; so he needs esssupgep Eq[U-|F;]. But the
seller does not know 7, so to be safe, he will also need to maximise over
T € 8¢, 7. This prepares him for the worst case.

So, the natural selling price at ¢ is:

Vii= esssup I>nEq[Us|Fi] = esssup Eq[U;|F], 0<t<T.
Q€eP,7€So,r QEP,7€S, 1

PROPOSITION 11.1. Suppose P # 0 and Fq is trivial. If

Vo= sup E[U,] < oo,
QEP,7€S0,
then V is a Q-super-martingale for all Q € P. Moreover, it is the smallest of all
cadlag processes V' > U such that V' is Q-super-martingale, for all Q € P.

PROOF. Similar to Proposition 10.3: fix Q € P and set
¢; := {all density processes Z w.r.t. Q of some R € P, with R =Q on F;}

Then get as in proof of Proposition 10.3 that V;, = esssup Eg[Z,U,|F].
ZECt,TES, T N ——
=T (Z,7)

Moreover, the family {I';(Z,7) | Z € (, 7 € Si.r} is upward directed: For T'w(Z%, 7;),
set A:={Ty(Z',71) >T4(Z2,72)} € Fy, 80 Z : Z s+ Z*1 o is in (; (see Proposi-
tion 10.3) and 7 := 7114 + 2l 4c is in Sp 1, and then max (T4 (21, 71),T1(Z2,72)) =
I'(Z,7).

So for s < t, we get:

Vi= esssup Iy(Z,7)= lim Eq[Z] U, |F],
Z€el, TEST n—00
and so (by using, in the first equality, monotone convergence due to the set being
upward directed)

EQ[Vt\}"S] = lim Eg [EQ[anUTn|ft]|fs] < esssup Eg[Z,U;|Fs] =Vs,
n—00 Z€Ct, TESs, T

which gives us the super-martingale property, and also V > 0 and then Eq Vi <
Vo < 00.
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We now prove the minimality of V: Since t € S;r, we get V > U in the
sense that V; > U; P-a.s., for all t € [0,T]. If V' satisfies this as well and is a
@-super-martingale, for all @ € P, and cadlag, then V; > Eq[V/|F;] > Eq[U-|Fi,
for all @ € P, for all 7 € S; 7, where the first inequality follows from the stopping
theorem and the second one since V/ > U and both are cadlag. So we get that
Vi > esssupgep res, » BQlUr|Ft] = V; P-as., for all t. O

REMARK 11.2. One has to show that V has version which is cadlag. This is
important for the comparison between V' and V. This is also important since we
want V. > U;, for all 7 € Sy 7.

We now look at generalised strategies with consumption, z € R, 9 € Ogygp, C
adapted, increasing cadlag, null at 0, with V*7¢ = ¢ + [9dS — C. We also
introduce for the American option the super-replication price at 0 as:

II,(U) := inf {Vp € R| 39 € Opap, with Vo + G(9) > U} .

Note that we want Vo+ G, (9) > U, a.s. for all stopping times; which is well defined
as G(¥), U are both cadlag.

THEOREM 11.3. Suppose P # O and Fo trivial. If

Vo= sup EglU,] < oo,
QGP,TGSO,T

then it holds that

(1) there exists a generalized strategy with consumption (z,9, C) with V*9:¢ >
U and (z,9,C) is minimal in the sense that for any (z',9',C") with
V””/”ic/ > U, we have yed.C < ya'dCr Moreover, we can take
€Tr = VO = SupQEP,TGSo,T EQ[U.,—]. o

(2) the super-replication price is I3 (U) = Vo = sup{Eq[U,]|Q € P,7 € So,1}.

PRrROOF. By Proposition 11.1, V > U is a Q-supermartingale, for all Q € P. So
existence of (z,¥,C) is immediate from the optional decomposition Theorem 10.4,
and also x = V. The minimality: V' := Ve el g g @-supermartingale for all
Q €P. Soifalso V! > U, then V < V' by Proposition 11.1.

If V290 = o + G(9) > U, then for any Q € P: Eg[U,] < z + Eg[G,(¥)] < =,
for all 7 € So.1, as G(9) is Q-supermartingale. So II4(U) > V. For the ”<” part,
take (x,9,C) from part 1) with z = V¢ to get ¥ € Q44 with 2 +G(9) = V=70 >
V#9.C¢ > 7 by 1), and so II,(U) <z = V. O

Interpretation: The initial capital x = V§ = SUPQep,res, r BQ[Ur| allows
construction of self-financing strategy (x,v) whose value process V(z,¥) = = +
[9dS > V=€ > U always lies above U, so following (z,9) keeps the option
seller safe and allows him to make the payoff U, no matter which 7 is chosen by
the option holder. Depending on the 7, the option seller might make a profit of:
r+ G (9)-U, =V=IC —U 4+ C. > C,.

The same reasoning holds at any time ¢ instead of 0; then starting with V, at
t leads to profit of C; — C; > 0 for 7 € S 7, since C' is decreasing.

If P={Q*} is a singleton (so that, as we know from finite discrete time, we
have a complete market), then

Vi =esssupEq«[U,|F], 0 <t <T.
TES:, T
Finding this is the classical optimal stopping problem. If one has a Markov structure,
this further reduces to the free boundary problem, which is a PDE problem with an
unknown boundary.
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For general P, finding V is usually difficult. A frequent approach, especially
in the Lévy setting is to start with a P-Lévy model for S and then look for a
Q@ € P such that S (or logS) is also @-Lévy. Then we try to work out V;Q =
esssup, g, » EQ[U-|Ft], 0 <t < T.

The next step is to use V? as the price process of U. This is partly all right,
since it gives no arbitrage; usually, however, there is no hedging strategy to guar-
antee that one can stay above U in a self-financing way.

For finite discrete time, the results are more explicit, since we can construct

V by backward recursion. For Q € P, denote by Z©9 = (Z,?)k

process of @ w.r.t. P. Define the process J recursively backward by Jr = Up and
for k=0,1,..., T —1:

the density
T

Ji; = max {Uk, esssup Eg[Jk+1 ]:k]}
QeP

Q
Note: by Bayes’ rule we obtain Eq[Jg41|Fx] = Ep |:Jk+1 szgl |]~'k} and this needs
k

only the one-step transition probabilities of @ between k and k + 1.

_ THEOREM 11.4. Assume P # 0 and final discrete time. Then J =V, so that
V' has a recursive representation.

PrOOF. All the conditional expectations are well defined in [0, 0], and we
get from V' the supermartingale property (for each @) and the minimality as in
proposition 11.1, even without integrability.

»>: By construction, J > U and for each Q € P, J; > Eg[Jx+1|Fi], L€,
J has the Q-supermartingale property for all Q € P. But V is minimal,
soJ>V.

»=": Induction: J; = Ur = Vp, and if Jy41 < Vi1, we get for all Q € P
that Eq[Jg41]Fx] < ]EQ[Vk+1|]-'k] < Vi by Proposition 11.1; so J; =
max {Uk7ess SUPgep EQ[Jk+1|.7-'k]} < max(Ug, Vi) = V.

d

If the market is complete, so we have P = {Q*}, the recursion becomes
Vk = maX{Uk,]EQ* [Vk+1|]:k]} .

Financial interpretation: At time k, the option holder can either exercise the
option (and get Uy) or he can continue to hold the option for at least one time
step. Then the value at time k + 1 will be V1, and viewed as a time k + 1 payoff,
that has a time k value of esssupgep EQ[Viq1|Fi]. As the option holder is free to
choose his decision at k, the value of the contract for him at k is the maximum of

the two possibilities.

REMARK 11.5. In the complete market case P = {Q*}, the optional decompo-
sition of V is given by the Doob-Meyer decomposition of the Q*-supermartingale
V. Indeed, V is a Q*-supermartingale, so by Doob-Meyer V ="Q*-(local) martin-
gale” — ”increasing predictable process”; and since P = {@Q*}, S has the martingale
representation property, so the above @*-martingale is a stochastic integral of S,
which gives us the optional decomposition and even C' predictable.

EXAMPLE 11.6 (American call option). Suppose P = {Q*} and S = %; is a true
Q*-martingale. Consider U, = (S't —K)T,0<t<T. Then: if B is increasing (i.e.
the interest rates are non-negative), then
(57— K)*

Br

L - U
Vi = BiEg- |]-'t = BEg- BT
T

|[Fi
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So: American call option has the same value as a European call option.

PROOF. An important point is that S is a Q*-martingale and z — (x — K)7 is
convex; so we get a submartingale, and it is never optimal to stop a submartingale
early. More precisely:

7 K\T +
[{T:(ST—~> Z(ST—{(>
B, B, B,

and so
U K K K U,
Eg«[==|Fi] > Eq-[(Sr — =)t |F] > (Bo-[Sr — =|FDt = (S + =)" = =.
@[5 2 (8- = 5V 1F) = (BrlS, = ZIRD = (Se+ )7 =
So % is a @*-submartingale, so that Eg- [gT |}"T} > g* for all 7 € Sy, hence
T T

)
gi \.7-}} > esssuprcs, . Eq- [g: |ft}, whence we get

the desired equality. O

Now we replace the call by the put, i.e. (z—K)¥ by (K —2)". Then one might
naively expect (since we again have a convex function) that the same result holds for
the American put as well, but this is not so (the problem is that B being increasing
no longer helps us in the proof). One can even show (e.g. for the binomial tree):
if the interest rate r is positive, then for some K the American put has a strictly
higher value than a European put. However, if we model dividends by negative
rates, we end up with the same phenomenon in the case of the American put.

by conditioning on F;, Eqg-« {






CHAPTER 2
Utility Optimization

1. Utility optimization in discrete models

We consider the complete and incomplete case in a one period model with a
general utility function and some particular examples. This section is preparatory
and should provide a feeling for the type of problem, which we are going to treat.

DEFINITION 1.1. A real valued function u : I — R is called utility function if
I =0, 00[ or I =] — o0, 00[ and u is an increasing, strictly concave C?-function. We
shall denote dom(u) := I and we define u(x) = —oo for x ¢ dom(u). Furthermore
we shall assume that limg o u(z) = —oo if dom(u) =]0, col.

REMARK 1.2. In the sequel we shall impose further conditions on utility func-
tions guaranteeing the existence of optimal solutions. For the presentation of the
problem this is not necessary.

We consider a financial market (S°,...,S59),_0.1 on (2, F, P) with one period
and aim to solve the following optimization problem for a given utility function
u:dom(u) - R and = € dom(u).

1

EP(U( SO
1

V1(¢)) — max,
Vo(¢) = =,

where ¢ is running over all self-financing trading strategies. This leads to the
following one dimensional optimization problem

a— Ep(u(z + a(S) — Sp))),

which can be solved by classical analysis. We see immediately that the existence of
an optimal strategy a(z) for a fixed x € dom(u) leads to

Ep(u/ (2 +@(x)(S1 — S0))(S1 — So)) = 0.

This is in turn means that the vector can be normalized to a probability measure
Q, ie.

% = %u’(x +a(z)(S1 — S)),

which is a martingale measure since Fq (51 — §0) = 0. Therefore the existence of
an optimizer leads to arbitrage-free markets.

Next we consider the general situation in discrete models, i.e. finite 2. Given a
financial market (S9,...,5%),—o. .~ on (2, F, P) and a utility function u, then we
define the wutility optimization problem as determination of U(x) for z € dom(u),
ie.

1
swp Bl gy Va(9) = Ula)
¢ trading strategy N
¢ self financing
Vo(d)==

49
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We say that the utility optimization problem at z € dom(u) is solvable if U(x) is
finitely valued and if we find an optimal self financing trading strategy ¢(z) for
x € dom(u) such that

1 ~

Ua) = Blu( gy Vi (3(0))

Vo(o(x)) = .
We shall introduce three methods for the solution of the utility optimization prob-
lem, where the number of variables involved differ.

We assume that F = 2% and P(w) > 0 for w € Q. We then have three
characteristic dimensions: the dimension of all random variables || (the number
of paths), then the dimension of discounted outcomes at initial wealth 0, denoted
by dim K, and the number of martingale measures m. We have the basic relation

m+ dim K = |Q].

e the pedestrian method is an unconstraint extremal value problem in dim /C
variables.

e the Lagrangian method yields an unconstraint extremal value problem in
|| + m variables.

e the duality method (martingale approach) yields an unconstraint extremal
value problem in m variables. Additionally one has to transform the dual
value function to the original, which is a one dimensional extremal value
problem.

In financial mathematics usually dim /C > m, which means that the duality
method is of particular importance.

1.1. Pedestrian’s method. We can understand utility optimization as unre-
stricted optimization problem. Define S the vector space of all predictable strategies
(¢n)n=o0,...,N, then the utility optimization problem for x € dom(u) is equivalent to
solving the following problem

. S—RU {—oo} B
o { (¢n)n=o,..n = E(u(z + (¢ - S)n))

sup Fy(¢) = U(x)
peS

This is an ordinary extremal value problem for every x € dom(u). Let (@)nzo}w N
be an optimal strategy, then necessarily

grad Fm((¢n)n:0,...,N) =0
and therefore we can in principle calculate the optimal strategy. From this formu-
lation we take one fundamental conclusion.

THEOREM 1.3. Let the utility optimization problem at x € dom(u) be solvable
and let (¢n)n=o0,... N be an optimal strategy, so

sup Fy(¢) = U(z) = Fy(9),
PES

then M°(S) # 0.
PrOOF. We calculate the directional derivative with respect to 14 for A €
A(]:ifl) for i = 17...,]\77
d o~
25 |s=0E(u(z + (¢~ S)n + s14AS:))

=B/ (z + (¢ S)N)14AS;).
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Since (g/b;)n:o,_.’ ~ is an optimizer we necessarily have that the directional deriva-
tives in direction of the elements 1 4AS; vanish. We define

A= E@W (z+(¢-S)n)) >0
since u/(y) > 0 for y € dom(U). Consequently

aQ 1, ~ 5
0% = e+ (3-8
defines a probability measure equivalent to P. Hence we obtain from the gradient
condition that
Eq(1a(Si — 5i-1)) =0

for all A € A(F;—1) and i =1,..., N, which means

E(Si|Fi—1) = Si—1
fori=1,...,N, thereforeQEMe(g). O

Besides baby examples the pedestrian’s method is not really made for the solu-
tion of the utility optimization problem, since equations become very complicated
and the internal structure does not really get clear. Nevertheless the above conclu-
sion is of high importance, since it will be a basic assumption from now on.

CONDITION 1.4. We shall always assume M(S) # 0.

Furthermore we can easily formulate a basis existence and regularity result by
the pedestrian’s method (which allows to make nice general conclusions).
PROPOSITION 1.5. Assume M¢(S) # 0 and limy_, o0 v/ (z) = 0 if dom(u) = R,

then the utility optimization problem for x € dom(u) has a unique solution X (x) €

x + IKC, which is also the unique local mazimum, and T — )?(1:) is C1 on dom(u).
If x ¢ dom(u), then supyeg Fi(¢) = —o0.

PROOF. The functional X + Ep(u(X)) is C?, strictly concave and increasing.
Assume that there are two optimizers X;(x) # Xao(x) € z + K, then

Ep(u(tXy(z) + (1 - )X2(2))) > tEp(u(X:1(2))) + (1 — ) Ep(u(Xa2(x))) = U(x)

for t €]0,1[, which is a contradiction. The argument also yields that two local
maxima have to coincide. Therefore the optimizer is also the unique local maximum.

Since S is a martingale, the space K of outcomes with zero investment has the
property that for X € L?(Q, F, P)

XeK=Eq(X)=0

for all @ € M*(S). Given an equivalent martingale measure Q € M¢(S), then we
prove that for any z € dom(u)

11/1&1’1C Ep(u(z4+Y)) = —o0.
Eq(|Y])—o0

Assume that it were bounded from below by M, so we can find Y,, € K such that
Ep(u(z+Y,)) > M and Eg(]Y|) > n. Since Y,, € K we have

EQ(Yn) =0

and Y, has positive and negative components. Hence

Eq((Ya)+) = 5. E((Ya)-) > 5.
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We can choose the sequence Y,, such that the smallest components form a sequence
decreasing to —oo and the sequence of largest components form a sequence increas-
ing to co. We have

max Y,

for all n > 1. If dom(u) =]0, oo[, the assertion is trivial since —oo is reached after
finitely many steps. If dom(u) = R, then

Ep(u(x4+Y)) < Ep(maxu(Y,)) — Ep(u(Y,)-) < u(an) — byu(en)

- < M; <o
mlnYnl_ !

with a, 1 oo (largest component of Y;,), ¢, J —oo (smallest component of Y,),
by, €le, 1] (probability Q(Y, = minY,) > 0) and < M;. Hence we obtain
the result, since v’ increases in negative direction strictly more than in positive
direction.

Consequently the function Y — Ep(u(z +Y')) has a maximum on K.

If x ¢ dom(u), then for any Y € K, there are negative components and therefore
Ep(u(z+Y)) = —oc0.

For the regularity assertion we take a basis of I denoted by (f;)i=1,....dim k and
calculate the derivative with respect to this basis at the unique existing optimizer
Y(z)=X(z) -z,

an
Cn

Ep(/(z+Y(x))fi) =0
fori=1,...,dim K. Calculating the second derivative we obtain the matrix
(Ep(u”(x +Y)fifj))ij=1.. dimk
which is invertible for any Y € K, since u” is strictly negative. Therefore z > X (2)

is C! on dom(u). O

1.2. Duality methods. Since we have a dual relation between the set of
martingale measures and the set IC of claims attainable at price 0, we can formulate
the optimization problem as constraint problem: for any X € L?(Q, F, P)

XeK<< Eg (X) =0
for Q € M“(g ) and for any probability measure @
Qe MUS) <= Eg(X)=0

for all X € K. Therefore we can formulate the problem as constraint optimization
problem and apply the method of Lagrangian multipliers.
First we define a function H : L?(Q, F, P) — R via

H(X) = Ep(u(X))
for a utility function u. For x € dom(u) we can formulate the constraints

U, == K+z ={X € L*(Q, F, P) such that Eg(X) = z for Q € M%(S5)}.
Consequently the utility optimization problem reads

sup Ep(u(X)) = U(z)
XeU,

for x € dom(u). Hence we can treat the problem by Lagrangian multipliers, i.e. if
X € U, is an optimizer, then

~ " dQ;
(LM) W(R) =S % <0
i=1

Eq,(X)=x
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fori=1,...,m, M“(g) ={(Q1,...,Qm) and some values 7;. This result is obtained
by taking the gradient of the function

X Bp(u(X) =Y m(G5X — )

~

with respect to some basis. We can choose the 7); positive, since u’(X) represents a
positive multiple of an equivalent martingale measure. Notice that by assumption
u'(z) > 0 for all z € dom(u), and u'(X) is finitely valued.

LEMMA 1.6. If ()?, My ---s7m) @8 a solution of the Lagrangian multiplier equa-
tion (LM), then the multipliers 7; > 0 are uniquely determined and Y ., 7; > 0.
Given x € dom(u), the map x + (7;(z))i=1,...m is CL.

.....

PROOF. The coefficients 7; are uniquely determined and the inverse function
theorem together with the previous result yields the C'*'-dependence. O

The Lagrangian L is given through

m

L(X’nlv"'vnm) = EP(U'(X)) - ZTh(EQL(X) _aj)

i=1
for X € L*(Q, F, P) and n; > 0. We introduce y := 0y + -+ + 1y, and p; := % (we

can assume y > 0 since the value for 7; we are looking for has to satisfy y > 0).
Therefore

L(X,y,Q) = Ep(u(X)) — y(Eq(X) — x)
for X € L2(Q, F, P), Q € M%(S) and y > 0. We define
o(X) = ;I;% i L(X,y,Q)
QEM™(S)
for X € L*(Q, F, P) and
Py, Q)= sup  L(X,y,Q)

XeL2(Q,F,P)
for y > 0 and Q € M*(S). We can hope for

sup O(X)=inf inf oY(y,Q)=U(x).
XeL2(Q,F,P) ¥>0 QeMma(S)

by a mini-max consideration.

_ REMARK 1.7. Where does the minimax consideration stem from? Look at X +
L(X,m,...,nm) for fixed n1,...,nm, then we obtain something strictly concave as
sum of two concave functions, where one is strictly concave. Look at (n1,...,7m) —

L(X,m1,...,nm) for fixed X € L?(Q, F, P), then we obtain something affine.

LEMMA 1.8. Let u be a utility function and (S9,SL, ..., S =0~ be a finan-
cial market, which is arbitrage-free, then

sup O(X) =U(x).
X€L2(Q,F,P)

PrROOF. We can easily prove the following facts:
O(X)=-0if Eg(X) >z

for at least one @ € M*(S). Furthermore
O(X)=Ep(u(X))if Eg(X) <=z
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for all Q € M*(S). Consequently

sup  @(X) = sup Ep(u(X)) =U(z)
X€eL?(Q,F,P) XeL?(Q,F,P)
Eq(X)<z for Qe M*(S)

since w is increasing. O
For the proof of the minimax statement we need to calculate 1, which is done

in the next lemma. Therefore we assume the generic conditions for conjugation as
stated in the Appendix.

LEMMA 1.9. Given an arbitrage-free financial market (S°, ..., S?%), the function
Yy, Q)= sup  L(X,y,Q)
XeL?(Q,F,P)

can be expressed by the conjugate function v of u,

¥(y, Q) = Ep(v(y
PROOF. By definition we have

L(X,y,Q) = Ep(u(X)) — y(Eq(X) — z)
dQ
vap

If we fix Q € M“(g) and y > 0, then the calculation of the supremum over all
random variables yields

TN + e

=FEp(u(X)—y—=X)+yx.

dQ

E X

p(u(X) ~ y T2 X)

d
—EBp( s u(X)—yix)
XEL2(Q,F,P) dp
d
= Ep(v(y dP))
by definition of the conjugate function. O

DEFINITION 1.10. Given the above setting we call the optimization problem

o dQ
V(y) := Qefjﬁ@ Ep(v(yﬁ))

the dual problem and V' the dual value function for y > 0.
Next we formulate that the dual optimization problem has a solution.

LEMMA 1.11. Let u be a utility function under the above assumptions and
assume M(S) # 0, then there is a unique optimizer Q(y) such that

. dQ dQ(y)

= f F .

V(y) er\fdla(s) P(u(y dP)) P(u(y dP )
Furthermore
: : dQ
inf(V(y) +ay) =  inf ] (Ep(v(y75)) +2y)-
QEM(S)
PROOF. Since v is strictly convex, C? on ]0,00[ and v'(0) = —oo we obtain

by compactness the existence of an optimizer Q(y) and by v'(0) = —oo that the
optimizer is an equivalent martingale measure (since one can decrease the value of
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v(y%) by moving away from the boundary). By strict convexity the optimizer is

~

also unique. The gradient condition for Q(y) reads as follows

S 4R dQ
/ _— =
Ep(v (@) (2 - S£) =0
for all Q € /\/la(g) The function V shares the same qualitative properties as v
and therefore we can define the concave conjugate. Fix z € dom(u) and take the

optimizer § = y(x) > 0, then

~ ~ . d
inf (V(y)+2y) =V(@®) +2g < inf _ Ep(v(yg)) +xy
y>0 QeMa(S) dP
dQ
< -
< Bp(uly0)) + 2y

for all Q € M*(S) and y > 0, so

. : dQ
< —_— .
WbVl +ay) < b (Ep(olygp)) +oy)
QEM™(S)
Take y; > 0 and @ € Me(g) for some € > 0 such that
mf(V(y) +ay) +2¢ 2 V() +ay1 +e
d
> Bp(vln T2)) + o
. dQ
> —_— .
= b (Br(lygp)) + o)
QEM™(S)
Since this holds for every € > 0 we can conclude. O
THEOREM 1.12. Let (S°,...,S59) be an arbitrage-free market and u a utility
function with the above properties, then
. dQ
Ule) = Inf (Ep(vlygp)) +oy)
QeEM(S)

and the mini-max assertion holds.

PROOF. Fix z € dom(u) and take an optimizer X, then there are Lagrangian
multipliers 771, ... ,7, > 0 such that §:= >_""  7; > 0 and

L(X, 1, 7m) = Ulw),

and the constraints are satisfied so Eg, ()A( ) =« and X is an optimizer. We define

a measure @ via

. _dQ
/ _
u'(X) = V5

Since
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and therefore Q € M*(S) (its Radon-Nikodym derivative is strictly positive). Fur-
thermore

~ ~ . _.dQ ~
E — = f (FE —
p(0(I=5)) + 2y Qeﬁa@( P((y=5)) + ),
since v/(y) = —(u/)"(y) and Q. € M*(S) is a minimum if and only if

dQ. . ,dQ. dQ
dpP ) dpP dP))

for all Q € ./\/la(g) This is satisfied by § and Q. By definition of v we obtain
_dQ A
=) tzy=_ sup L(X,5,Q)
Yap XeL2(Q,F,P)
= L(X.5.Q),

=g v(y) = u((w) " (y) — y(u) " (y), so v(FgP) = u(X) - FIX.
However L(X,7,Q) = U(z) by assumption on optimality of X. Therefore

Ep(v'(y 0

Ep(v(y

since v/ (X)

_dQ
Ep(v(5 o)) +27 = U(a)
and ¢ is the minimizer since
_dQ . dQ
Ep(v'(y dP)dP) -

by assumption. Calculating with the formulas for v yields

f (Ep(o(y52) + ) = inf (Bp(o(y52)) + 1)
QEM™(S)
= U(a)
= Br(u(X))
by definition. O

This Theorem enables us to formulate the following duality relation. Given a
utility optimization problem for z € dom(u)

sup Ep(u(z+Y)) =U(x),
Yek

then we can associate a dual problem, namely

inf EP(U( dQ

V=V
S ErlygE) = V)

for y > 0. The main assertion of the minimax considerations is that
inf (V(y) +ay) = U(),
y>0

so the concave conjugate of V is U and since V shares the same regularity as U,
also U is the convex conjugate of V. First we solve the dual problem (which is

much easier) and obtain y — @(y) For given x € dom(u) we can calculate y(x)
and obtain

V(y(x)) + 2y(z) = Ulx)

u’()A((:v)) = ﬂ(m)T
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2. Some ideas from optimal stochastic control

Recall the basic problem: maximise E[u(Vr(z,9))] over all 9 € 07, . Here,
we have that ©%, = {predictable S-integrable R%-valued ¢ with [9JdS > —x}.
With no loss of generality we can also impose that (u(Vy(x,9)))~ € L(P).

We now fix ¢ € [0,7], ¥ € ©%,  and define

adm
O(t,9) i= {1 € OZ, 10 = 9 on [0,1]}

The key idea now is to look at all the conditional problems to maximize E[u(Vr(z,))|Ft]
over all ¢ € O(t,9) (for every ¥ € ©%, ). So we define the maximal conditional
expected utility, given the initial wealth and an initial strategy 9, i.e.

Ji(0) := esssup Elu(Vr(z,¢))|F].

YeBO(t,9)
=T (v)
If Fp is trivial, then for all ¥ € ©%, = we have

Jo(¥) = Jo = LSup Efu(Vr(z,¥))] = U(z),
adm
where this U corresponds to the one from the previous chapter.
REMARK 2.1. One should be careful with the conditions on u and 9 to ensure
in the sequel that there are no integrability problems, e.g. © > 0 or w bounded
above might be useful assumptions. We do not take care of the exact details here.

The main result is then the following version of the martingale optimality prin-
ciple from stochastic calculus (dynamic programming principle):
THEOREM 2.2 (Martingale Optimality Principle (MOP) - with suitable inte-
grability). The following hold:
(1) For every ¥ € ©F, . the process

adm’
(Ji(9))o<t<T

s a P-supermartingale.
(2) A strategy 9* € ©F,  is optimal, i.e.

adm
Elu(Vr(z,97))] = ,Sup Elu(Vr(z,9))]
adm
if and only if (J(9%))o<i<r is a P-martingale.

PrROOF. First we check that {I'y(¢)[¢ € ©(t,¥)} is upward directed: for ¢ €
[0,T], A € F;, v 4? € O(t,9), we have ¢ 14 + ¢?I4c € O(t,9) so with A :=
{Ty(ph) > Ty (¥?)} € Fy, we get max{Ty (1), Ty(v?)} = T (Y a + 2 Lac).

So there exists an sequence (Y™) ey in O(t, ¥) with J¢(9) =7 — limy, 00 T (™)
and so monotone convergence holds:

=Is(y") and " €O(,9)CO(s,9)
E[J:(9)|Fs] = Tim E[Ly(¢")|Fs] = lim - Efu(Vp(z, ¢"))|F]

< esssup [y(¢) = J4(9).
PeB(s,9)

Integrability of J() goes analogously; one needs control on Jy, e.g. U > 0 or
Jo = U(z) < oo work.

Now we take ¥* € ©F, - then J(9*) is a P-supermartingale by 1). So J(¥*)
is a P-martingale if and only if it has constant expectation; and on [0, T)] this is
equivalent to:

Elu(Vr(z,9%))] = E[Jr(97)] = Jo = o E[u(Vr(z,¥))].

adm

This means that ¢* is optimal. O



58 2. UTILITY OPTIMIZATION

REMARK 2.3. Note that 2) includes the condition ¥* € ©%, . So if we just
exhibit some predictible S-integrable J s.t. J 7(19) is a P-martingale, we can only
conclude optimality of ¥ after we check that ¥ € ©F [This is quite often not

adm*
handled properly in applications.]

Now we want to exploit theorem 2.2 to get more information on ¥*. First, we
can prove that J(¢) has a cadlag version; we use that and decompose uniquely (by
Doob-Meyer) as J(¥) = Jo + M (9) — B(9) with M (V) € Mo 10¢, B(¥) predictable,
increasing, null at ¢ = 0. Can we say even more?

We look at

Ji(9) = esssup E[u(Vr(x,))|Fi] = esssup E
PeO(t,9) PEO(t,9)

T
u(%(az,ﬂ)+/t wudSu)LFt] .

We expect that each of the conditional expectations, and hence also Jy(9) is
an JFp-measurable functional of Vi(z, ). So we also expect that B;() depends on
9, Vi(z,9) in a “nice” way.

From theorem 2.2, B(9) is always increasing for each ¢ and it is constant (null)
for optimal ¢*. In other words, the “drift” b(«})” is always > 0, and = 0 for ¥*. This
can be exploited to obtain (non-linear) PDEs for the solution of the optimization
problem.

The Merton Problem. Setup: We have a bank account B and a stock S
with:

dBt = Bt’f'dt, BO =1
dS; = Sy (udt + odWy), Sy >0

for p,r € R,0 € RT.

For finite time horizon T, we want to maximize the expected utility for final
wealth, E[u(Vr(x,9))] = maxy! We do this by re-parametrizing: « is defined on
(0,00), so V(x,9) must be > 0, so we can describe a strategy not via number of
shares () but by fractions of wealth (7).

Call V(x,9),V(z,9) the discounted and undiscounted wealth in terms of ¥,
\7:9&5:29) = v
is invested in stock; the fraction 1 — 7, is in the bank account.

Call X™ := V(x,9) the undicounted wealth expressed with 7, with = fixed.
The self-financing condition for X™ is then: dV (x,9) = 9dS, so

and define m; := m; is the fraction at time ¢ of total wealth that

= = —T7T—

BS B S

d(X> X d X™ dS
B
and so

=(p—r)dt+odW
=
dsS;

_ X7 - (XF Xr o
dXT =d (Bt _t ) = Btd< L ) + ZLdB; = T XT - + X[ rdt
Bt Bt Bt St

=rX[dt +m X7 (@ —r)dt + odWy).

It is our goal to maximize E[U(X7)] over all allowed m = ()o<i<7 in the sequel.
For this purpose fix t € [0,7], strategy 7 and another strategy ¢ with ¢» = 7 on
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[0,t]. Consider

T
Ty(4) = E[U(XD)|F] = E |U(XT + / aX?)|F,

=E

T
UXr +/ (rXy +¢quqf(M_T))dU+¢uX:fUqu)]:t‘| :
t

Our filtration F is generated by S, B or equivalently by W. Recall that W has the
Markov property, so “the situation is Markovian”: it seems plausible that
e I';(¢) should only depend on the current wealth X7 and
e it is sufficient to consider strategies v which only depend on current
wealth, ¢, = g(t,th), since the optimal strategy has to be of this type.
Notice that this defines a stochastic differential equation for X.
So it is natural to guess that also after optimisation, this persists; we guess
that
Ji(m) = esssup E[U(XY)|F] = k(t, X7)
YeB(t,9)
for some function k(t,z). What do we get then?
Assume k is nice and use Itd’s formula. This gives:

1
dJ(m) = kudt + by X7+ Shey - d(XT)

= =nm2(X"™)202dt
So we get:
th(ﬂ') :kw@,XZr)FtXZrUth
=dM ()
ok Ok ok 102
— + —rox+ —pr(p—r)+ = ——p°z? 2) dt.
(81& ox ox 2 0x2 (t,o=XT,p=m)

=—dB¢(m)=—b(t,m¢, X[ )dt

By the martingale optimality principle, B(w) is always increasing and constant at
optimal 7*; so b(m) (respectively —b(m)) is always > 0 (< 0), and = 0 at optimal
",

Treating p=m; and =X as independent variables leads us to guess that k(¢, x)

should satisfy

1
sup (kt(t, x) + rek, (t, ) + (p — r)pxk,(t, ) + 502p2m2k‘m(t, x)) =0.
p>0

This is the so called Hamilton-Jacobi-Bellman (HJB) equation for our control
problem. It is a nonlinear PDE. Since k(T,X7) = Jr(7) = u(X7F) we impose
E(T,z) = u(zx) for > 0 as our boundary condition.

The idea now is to try and solve the HJB equation to come up with a candidate
for the optimal strategy, 7*.

If we formally maximise over p we get the optimiser p*(t,z) = —
Plugging this in yields the HJB equation in the form:
1(p—7)? (ka(t, ))?
2 02 kga(t, @)
This is a nonlinear second order PDE for k. Conceptually, we should now to the
following:

(1) Find a sufficiently smooth solution k(t, x) to the HIB equation.
(2) Define function p*(t,z) from k as above.

p—r kz(t,x)
02 zkye(t,x)”

0=ke(t,z) +rak,(t,x) —

, k(T,x) =U(x).
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(3) Consider the SDE: dX; = r X, dt+p* (¢, X;) X, ((n — r)dt + odW;) obtained
by using the ”candidate strategy” p*(¢, X;) for 7* (and writing the self-
financing equation), and prove that this has a solution X*.

(4) Define 7} := p*(t, X;) and show that 7* is an allowed strategy. (Then,
by 3), X™ = X*.)

(5) Prove that 7* is optimal, either by direct argument (by comparing it to
all other allowed 7), or by showing that X* = X™ is such that (J(7}) =
k(e,XT') = k(e, X}) is a martingale.

The most difficult step is usually the first one.

EXAMPLE 2.4. For power utility u(z) = %aﬂ with v < 1, v # 0, we can solve

the PDE explicitly. This goes as follows. the wealth dynamics
dXy
X7

=rdt + m((p — r)dt + odWy), XJ ==
give
X[ =€ (rs + /ws((,u —r)ds+ adWS))

t

and so, for ¢ € O(t,7),

XY =Xr€ <rs + /7,/13((# —r)ds + o’dVVs)>

t,T
So,
¥ =T (¢)
k4 X}b = X[ %F L oymyr
Ly(y) = E[U(XT)|]:t] = 1t = —(X{) E[U(5(~ : 'd’)t,T)‘}-t] :
Uz) = Sa” Y

So of course we set

1 _

Ji(m) = —(X77)7 esssup I'y(v)
v »EO(L,Y)

and we guess that k(t,x) = %:ﬂf(t).
Then k; = %x”’f-(t), ky = 277 (1), kuw = (v — 1)27~2f(t) and plugging this
into the HJB equation yields

g

_lx'y ¢ r _E(M_T)L lm’Y:lx’Y or =
0= 2o (0 +ars0 - JUZD T 0) Lo = L), o gy =1,

This ODE for f can be solved explicitly. The explicit candidate for the optimal
i

strategy is then m; = p*(¢t, X}) = f“;rfﬁ = % which prescribes to always
hold a fixed proportion of total wealth (the so called Merton proportion) in the stock
(and the rest in the bank account). One can check that this strategy is allowed and
optimal.

The strategy m* being constant still involves trading, because the corresponding
¥* (optimal number of shares) is not constant. In case of the Merton problem one
could also argue directly that the strategy can neither depend on time nor on
current wealth, hence it has to be constant. Given this fact, it is easy to calculate
the value of 7 directly. The solution of the HJB-equation is just making precise

this type of reasoning.
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3. Utility Optimization for general semi-martingale models

In this section we study the basic problem of an optimal portfolio choice with
preferences given by expected utility. We take the standard model with finite
time T < oo, (Q, F, (Ft)g<i<> P) a filtered probability space satisfying the usual
conditions, B = 1 the bank account and the discounted asset prices S = (St)o<i<T,
where S is an R%valued semimartingale. We impose absence of arbitrage via P # (.

We fix an initial capital x > 0 and consider a self-financing strategy (z,v),
where ¥ is an R%valued predictable S-integrable process. We impose that the
strategy ¥ is —x-admissible so that the wealth process

V(zg,9) =xz+ (Ve 5)>0.

Our goal is to find a —z-admissible strategy ¥, so that this strategy maximizes the
expected utility from terminal wealth over ¥, i.e. maximize E[U(Vp(z,9))], where
U is a utility function on R,.

REMARK 3.1. Note that imposing (z, 1) to be a —z-admissible strategy ties up
with dom(U) = Ry and we could have just imposed that Vp(z,9) > 0. Moreover,
if dom(U) = (—a,00) with 0 < a < oo, then we can just translate by a, but
if dom(U) = R, finding a good class of allowed strategies becomes tricky (see
Biagini/Frattelli, Biagini/Cerny).

3.1. Basics on utility functions. For z > 0 we introduce
v(z) :={V(z,9) =2+ (0 eS) | (z,9) 0-admissible, self-financing strategy }

DEFINITION 3.2. A wutility function is a strictly increasing, strictly concave map
U € CY(Ry;R) satisfying the Inada conditions:

(1) U'(0) := li{(%U'(x) = 400,
(2) U'(c0) := li_>m U'(z) =0.
Suppose U is a utility function and define

u(x) := sup E[U(Vr(z,9))],
Vev(x)

for which we will assume that u(zg) < oo for some zy > 0.

REMARK 3.3. U quantifies the subjective preferences by assigning to a mon-
etary amount z a subjective utility of U(z). The fact that U is increasing means
that more is better and the concavity of U captures the idea of risk aversion or the
effect that an extra dollar means more to a beggar than to a millionaire.

For a given « > 0, u(z) can be interpreted as the maximal expected utility one
can obtain via investment from an initial wealth x and the standing assumption
implies that the optimisation problem is well-posed for at least one x.

Note that U is defined on R4 and Vp > 0, but U(0) € [—00,00) exists (as a
limit  — 0), so that U(Vp(z,9)) is well-defined in [—o00, 00) .

Moreover we set E[U (V)] := —oco if (U(Vr))™ ¢ LY(P), since u(z) > U(x) >
—oo for any x > 0, i.e. we do not lose any information if we exclude such strategies.

If U is unbounded and S allows arbitrage, then u = +o00, so the problem just
makes sense in an arbitrage-free model.

The standing assumption, ie. wu(zg) < oo for some xy > 0, implies that
u(z) < oo for any x > 0.

For y > 0 we introduce the conjugate or Legendre transform of —U(—-) in the
sense of convex analysis,

J(y) == ig}g(U(x) - xy),
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(see Rockafellar Chapter 12) and denote by I := (U’)~! the inverse of the derivative
of U.

LEMMA 3.4 (Conjugacy relation). J € C1(R;R) is strictly decreasing, strictly
convez, J'(0) = —o0, J'(00) =0, J(0) = U(co) and J(oo) = U(0). Moreover for
any x > 0 we have the conjugacy relation

U(z) = inf (J(y) + zy),
y>0
in addition J' = —I and for any y > 0 we have
J(y) = U((y)) — yI(y).

PROOF. (SKETCH). J is clearly decreasing and convex, as it is a supremum
of convex (even affine) functions. To show that J € C'(R,;R) we assume that
U € C*(R4;R). Then I € CY(R;R) and for a fixed y > 0, sup,o(U(x) — zy) is
attained in z = I(y), so that

J(y) =U((y)) - 1(y)y-
This last expression shows that J € C*(Ry;R) and
J)=UTy)I'(y) = T'(y)y —1(y) = —1(y).
=Y

ExAMPLE 3.5. Classical utility functions on R are
U(a) := log(x),
with corresponding conjugate

J(y) = ililg(U(x) —xy) = —log(y) — 1

NP,

=

@

and for v € (—o0,1) \ {0},

with Legendre transform

J(y)=igro>(U(x)—xy) =

r=y7—1

L =7

1
5

Note that for v < 0, U is bounded from above by zero, while for v > 0, U is
unbounded. Moreover, for v — 0 we obtain the first case.

3.2. Abstract formulation and the dual problem. Let U be a utility
function as above and x > 0, the primal problem is
u(z) = sup E[U(Vr)].
Vev(x)
Consider the set of positions that can be superreplicated from initial wealth x > 0,
with —z-admissible self-financing strategies, i.e.

Cz):={feLl(Fr)|IVev(@): f<Vr}=(z+Gr(©,) —LL)NLY,

adm
where
adm = 10 = (t)o<i<t | U € Opam : (V 0.5) > —x}.
Note that v(z)r C C(x) and if f € C(z) then E[U(f)] < u(x), for the latter take
some V € v(z) so that Vp > f; since U is increasing we have U(f) < U(Vr) and
hence E[U(f)] < E[U(Vr)] < u(z).
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So the primal problem can be written as
u(z) = sup E[U(f)].
fec(x)
As we shall see, C(x) is easier to describe than v(x). Note also that if f* € C(x) is
optimal, then there is some ¥* € ©%, = so that

<ot GrY)
and V(x,9*) € v(z) is a solution to the primal problem, because
w(z) =E[U(f7)] <EUVr(z,9%))] < uf).

In order to gain more information about the primal problem we want to introduce
a suitable dual problem using the conjugacy relation of U and J, and exploiting
the absence of arbitrage condition. Take @ € P(# () and denote by Z the density
process of @ with respect to P, then S € M,.(Q) is a local martingale with respect
to Q.

Let V =V (x,9) € v(z), then (Y e.S5) is well-defined and bounded below by —z,
hence by Ansel-Stricker (¢ e .S) € M,.(Q) is a local martingale with respect to @,
S0 it is also a @Q-super-martingale.

Moreover, since Z is a density process of an equivalent probability measure we
have Z > 0 and E[Zy] = 1. So, if Fy is trivial or if we insist on Q = P on Fy, then
Zo =1.

This motivates the following set: for z > 0 we introduce the family of all
(Ft)tejo,r-adapted, positive, RCLL processes Z starting at z such that for any
V e wv(l), ZV is a P-supermartingale, i.e.

Z(z) :={Z | Z > 0 adapted, cadlag : Zy = z, VV € v(1) : ZV P-super-martingale}.
Note that for any = > 0, v(z) = zv(1); so the last condition is equivalent to saying
that for any V € v(x), ZV is a P-super-martingale.

REMARK 3.6. Any Z € Z(z) is itself a super-martingale, to see this take
(z,9) = (1,0), then V(1,0) = 1 € v(1) so that ZV = Z is a super-martingale.
Moreover, Z(z) contains all density processes @) € P with @ = P on Fy. Finally,
Z(z) =2Z2(1).

This set allows us to derive the dual problem in the following way: let =, z > 0,
V ewv(z) and Z € Z(z), then ZV is a P-super-martingale starting at ZyVp = zz,
SO
E[ZTVT] S zZX.

Recall the Legendre transform of U, i.e. for any y > 0,
J(y) = su;())(U(x) —xy) > U(z) — zy,
x>
to obtain, using the super-martingale property that

Taking the supremum over V' € v(z) and the infimum over Z € Z(z) yields the
following expression
< inf E[J(Z .
u@) < if BJ(Zr)] + 22

So, for z > 0 it is a natural dual problem to look for

i) = it ELI(Zr)]

REMARK 3.7. The primal problem maximizes a concave functional, while the
dual problem minimizes a convex functional.
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In analogy to C(x), we introduce the set
D(z):={he L} |3Z€ Z(z):h< Zr}
to get the abstract equivalent version of the dual problem

i(z) = inf E[J(h)],
i(2) =, lnf ELT(h)]
this follows from the following two observations: Z(z), C D(z) and if h € D(z),
then E[J(h)] > j(2).
Moreover, note that if we fix z > 0 we obtain that

j(z) > sup(u(z) — x2),
x>0

and if we fix x > 0 we get

u(z) < inf (j(2) + 2x).
z>0
This is very reminiscent of the conjugacy relation between U and J. We will see
that we actually get equalities above, plus solvability of the primal as well as the
dual problem at the expense of one extra assumption on U.

3.3. Solving the (abstract) dual problem. The main goal of this section
will be to show that if j(z) < oo, then there is a unique optimizer h% € D(z) of the
abstract dual problem, i.e.

E[J(r7)] = j(2),
in other words, the mapping h — E[J(h)] on D(z) attains its infimum in h¥.

This would be immediate if we could show that for some topology D(z) were
compact and h — E[J(h)] continuous. This does not work, however, we can show
that D(z) is closed and convex in L° and the function is convex and lower semicon-
tinuous with respect to the topology of convergence in probability.

One of the key properties of compactness is that for a given sequence we can
extract a convergent subsequence. In problems with convexity, one often works
with convex combinations. For any sequence (a,)nen in some real vector space,
e.g. LY, denote by

conv ((ak)k>n)

:{Z/\kakazn:)\k >0, A\ # 0 for finitely many k > n, Z)\k = 1}

k=n k=n

the convex hull spanned by the subsequence (ag)r>n-

LEMMA 3.8 (Komlds). Let (Xn)nen be a sequence of positive random variables
in some probability space, X,, > 0 for anyn € N. Then there is a sequence (X, )nen,
such that for any n € N, X,, € conv((X)k>n), and a random variable X taking

values in [0, 00] such that

Xn P-a.s. be
n—roo
converges P-a.s.
PROOF. See, e.g., [6]. d

PROPOSITION 3.9 (Topological properties of D(z)). For any z > 0, D(z) C LY
s a closed and convex subset.
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PrOOF. Note that D(z) is convex, since Z(z) is convex. We just need to argue
that D(z) is closed with respect to the topology of convergence in probability. Let
(hn)nen C D(z) such that

0
hy —— h

n—oo
for some h € LY. First we notice that h > 0, since h,, > 0 for any n € N; so that
we just need to prove that there is some Z € Z(z) such that h < Zp.

Proving the existence of Z uses the above Komlds-type result: for any n € N
choose some Z™ € Z(z) such that h, < Z}. By Lemma 3.8 we can construct
out of these sequences new sequences (fy, )nen and ((Z?)neN)re@m[o,T], where h,, €
conv((hg)rsn) and Z7 € conv((Z?)>y) for any n € N and r € QN [0, T], such that
the convergence to the respective limit random variables

ﬁn Pi) heo and

n— oo

vTeQm[o,T];Z:%Zgo

holds simultaneously, this can be done using a diagonal argument.
Claim. hs = h P-a.s.

ProOOF. We know that h,, i—0> h and h,, € conv ((h)k>n) for any n € N, so

7 P-as. ;L ;L
hp —=25 h. Hence h,, —— hoo and h,, —— h, 80 hoo = h P-a.s. O
n—oo n—oo n—oo

Claim. h < Z% P-as.

Proor. For any n € N, we know that h, < Zj. So h, <sup Zé“«, hence
k>n
hoo < liminf Z%, and liminf Z7 = Z7° P-a.s. O
n—oo n—oo

It remains to show that there is some Z € Z(z) so that Z° < Zp P-a.s. We
want to construct Z out of Z™. For this we notice that for any n € N, Z™ € Z(z),

since Z(z) is convex; so Z5° = z and if we take rational < s we obtain for any
Vev(l)

E[ Z>V, |F] < IminfE[Z"V,|F,] < liminf Z"V, = Z2V,.
N~—— N~~~ Nn—o0 N~~~ n—o00
lim Z:Vé Fatou ZreZ(z)
n—oo
So, by taking V' = 1, we see that Z>°V is indeed a P-super-martingale on QN[0, 7.
Define Z by setting

Z,:= lim 2%,
roNy t
Qn[o,T]

so that Zr = Z2° and Zy = Z§° = z. Moreover Z is an cadlag P-supermartingale
(see Dellacherie/Meyer Theorem VI.2). We still need to show that for any V' € v(1),
ZV is actually a P-supermartingale, so let V € v(1) and ¢ > s, with s € Q then

E[ ZV, |F)] < LminfE[Z>®V,|F]=ZV,,
—~—— N~ o\
. 00 Fatou
ll\ni Z Ve
which completes the proof. U

PROPOSITION 3.10. The mapping h — E[J(h)] on D(z) is lower semicontinuous
in LY.
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PRrROOF. Let h — F(h) :=E[J(h)] and (h,)nen C D(z) such that h, i—0> h,
n—oo
we need to show that
F(h) <liminf F(hy,).
n—0o0

Decompose J(h) = (J(h))T — (J(h))™ into its positive and negative parts and note
that by Fatou’s lemma we obtain

E[(J()*] < lim inf E[(J (h,)) .

The result follows from the following observation,
Claim. {(J(h))~ | h € D(z)} is P-uniformly integrable.

PRrROOF. Without loss of generality we may assume that J(co) = —oo, else
we have a uniform bound (J(h))~ < —J(c0), since J is decreasing. Define ¢ :=
(=J)"t:R — [0,00), then ¢ > 0, ¢ is increasing and
lim L(x) = lim 7@(—](3/)) = lim —2 = lim b = oo.
T—o0 I y—00 —J(y) y—»00 —J(y) y—»00 —J’(y) ~~

Lemma 6.1

Using that ()~ = max(—=,0) we obtain

e((J(h)7) < (=J(h)) + ¢(0) = h + (0)
for any h € D(z). Hence,

sup Elp((J(R)7)] < sup E[  _h_ ]+¢(0)< sup E[Z7]+p(0) < co.
h€D(z) ~——~—" heD(z) —~ ZEZ(2) —~—
<h+¢(0) <Zr, Z€Z(z) s

By the Theorem of de la Vallée-Poussin we conclude that {(J(h))~ | h € D(z)} is
P-uniformly integrable, whence the claim. O

O

THEOREM 3.11 (Solution of the dual problem). For any z > 0 such that j(z) <
oo there is a unique hi € D(z) satisfying j(z) = E[J(h%)].

PROOF. We assume z > 0 with j(z) < co. To construct a solution we take any
sequence (hy)nen C D(z) such that for any n > 2,

00 > E[J(hn-1)] > E[J(hy)],

and E[J(h,)] < j(z) + + for n > 1. Note that h, > 0, so by Komlos Lemma

we can get a sequence (izn)neN, where h,, € conv((hg)k>n) and Ry N
- n— o0

~ 0
hn —=— h, hence h € D(z), since D(z) is closed in L° according to Lemma
n—oo

3.9. Moreover h has values in [0, 00), since it can be dominated by some Zr with
Z € Z(z).

Moreover, since a) (hp)nen C D(2), b) J is convex and c) (E[J(h,)])nen) is
decreasing, we obtain

N = 0 c) .
J(z) S E[J(hn)] < sup E[J (hy)] = E[J (hn)] N (2).
So,
by def by lower semi-continuity ~
i) < ELI(R)] < lim inf E[J ()] < lim inf E[J (k)] = j(2).
Finally set h := h% to be the optimizer. O

COROLLARY 3.12. The mapping j is decreasing and strictly convex on {j < oo},
and continuous in the interior of {j < co}.



3. UTILITY OPTIMIZATION FOR GENERAL SEMI-MARTINGALE MODELS 67

ProOOF. To show convexity take z,2" € {j < oo} such that z # 2’. We know
that h} # h},. Take somet € (0,1), set w :=tz+(1—1t)2" and h := th; + (1 —t)h},.
Furthermore h € D(w) and therefore

j(w) < E[J(h)] < tj(z) + (1 = 1)i(2"),
J(R)<td(h2)+(1=) I (h2)

which gives us convexity of j and also w € {j < oo}, since the right hand side
above is finite.

Moreover, any convex function is continuous in the interior of the set on which
it is finite (see Rockafellar Theorem 10.1).

To show that j is decreasing, it suffices to observe that D(z) = 2D(1) C D(2')
for z < 2. Since j(z) = inf,ep(,) E[J(h)], that means that for 2’ > 2, we are taking
the infimum over a bigger set, so j(z) is decreasing. O

3.4. From dual to primal problem: idea and motivation. Fix z,z > 0
and let f € C(z) and h € D(z). By definition of J we first obtain

U(f) < J(h) + fh.
Let V € v(z) and Z € Z(z) such that f < Vp and h < Zp, then ZV is a P-
supermartingale and
So,

u(z) < j(z) + 2.
Each side provides a bound on the other side. Let us try to obtain equality every-
where. Note that by Lemma 3.4 we can write

J(y) =U(y)) —yI(y),
so to get equality in the second inequality we need
E[hI(h)] = zz.
Suppose we can achieve this for some h € D(z), then for those h € D(z) we obtain
EU(I(1)] = E[J(MIFE[RI(R)] = E[J(h)]+a2 > j(2)+zz 2 f(j(2)+22) > u(z),
Note that if we take h = h}, then
E[J(h))] + vz = j(2) + 2z,

if we take z, > 0 so that j'(z,) = —=z, i.e. the minimizer of the mapping z
j(z) 4+ zz, then
J(z) 2z = ir;%(j(z) + x2).
z

Finally, if I(h}) € C(x) we get
u(z) = B[U(I(hZ))]
by definition. So,
EUI(R))] = E[J(h)HE[RII(RT)] = E[J(hD)]+22 = j(2)+az > u(z) 2 E[U(R]))],

that is we get equality everywhere, which means that I(h%) must be optimal for
the primal problem.

REMARK 3.13. The primal problem is a resource allocation problem, i.e. how
to optimally choose a portfolio to maximize expected utility with respect to the
physical measure. It turns out that the optimal portfolio X is chosen such that
U’ (X ) is a multiple of a Radon-Nikodym derivative of an equivalent martingale
measure. High positions in the optimal portfolio correspond via U’ to relatively low
values of the Radon-Nikodym derivative, i.e. prices of Arrow-Debreu assets which
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are relative to its probability small. In other words: optimal investments avoid
states, where the Arrow-Debreu prices are high in comparison to the probability of
the state.

We can also interpret the dual problem in a similar way: the dual problem
minimizes h — E[U(I(h)) + zz — hI(h)]. If we interpret I(h) as option payoff at
time T, then minimization of the previous functional translates into minimization
of expected utility of the payoff I(h) for the buyer, where the price of the option
should be equal to . The market acts as “seller” of this option with premium x and
minimal expected utility for the buyer. One can see the option payoff as functional,
which translates levels of marginal utility proportional to Arrow-Debreu prices into
capital according to I = (U’)”". Note that #z — hI(h) should also be seen as
additional utility of the position: if E[zz — hI(h)] < 0, then one can reduce the
position further by increasing z, so necessarily the price of the option will be at
most x. This is a reasonable interpretation since buying an optimal portfolio always
needs a selling counterpart.

By reverse engineering we obtain a recipe for solving the primal problem,

(1) Start with > 0 and define z, > 0 via —5'(z) = z.
(2) Solve the dual problem for z, > 0 to get the dual optimizer h} € D(z)
and define f := I(h%). ‘

(3) Show that E[h} I(h} )] = x2,.

(4) Show that f € C(z).
If we can achieve this, then the computations above show that E[U(fX)] = u(z),
i.e. fX solves the primal utility maximization problem. In addition we also obtain
that

u(x) = in%(j(z) + zz) and j(z) = sup(u(x) — zx),
z> z>0

i.e. the conjugacy relation extends is the original conjugacy relation between U and
J.

3.5. Auxiliary results. We first want to define 2z, > 0 given z > 0 via
_]/(Z) =,
so we need to study j, which in turn is linked to AJ.

LEMMA 3.14. The mapping (0,00) — LY., z — h} is continuous in the interior
of {j < oo}.

PRrROOF. Suppose by contradiction that this is not the case, i.e. there is some
z € ({j < 00})?, a sequence (z,)nen C ({j < 00})® converging to z and an € > 0
such that

limsup P [k} —hi| > €] > e
Using Chebychev’s inequali:; ;Ioe obtain
P {hz > 1] <eEhi] <ez
and analogously for any n € N
P {h; > j < eE[h} ] < ez
So, by shrinking € if necessary, we may assume that

1
limsupPDh’; —hil>e€ hi+h <—|>e
n n €

n— oo



3. UTILITY OPTIMIZATION FOR GENERAL SEMI-MARTINGALE MODELS 69
0
Define the sequence (hy)nen C L3 by
hy, = 1(h* + h)
no 2 Zn z/"
Since J is convex we obtain that

Tha) < (IR, + T (R2).

1

Moreover, since lim sup P {|h; —hi|>e€ hi+h, > } > e and J is strictly con-
n— 00 " " €

vex there is some 1 > 0 so that

N =

lim sup P [J(hn) <

n—oo

(J(h,) + T(h2)) — n] > >0,

For any n € N we get
1 * *
E[J(h,)] <E |:(2(‘](hzn) + J(hY)) - 77)H{J(hn)g;(J(h;n)JrJ(h;))—n}] +

+E {J (hn)11{.1<hn>>%<J<hzn>+J<h;>>—n}]

1
< —(J(h: J(hY)) — .
< 0,4 702) 1)
J(hn)< % J(hz, )+J(hE))

B [J02,) 4 J02)] = 0P |7(h) <

Hence, using the continuity of the map j on {j < oo} due to Corollary 3.12, we
obtain

ul

tim inf ELI(h,)] < 7 (iminf j(z0) +5(z 2))—nlimsup PLI(h,) < SUI) + I(h) -
— j(2) >
<jlz)—n*.

Since (hp)nen C LY we can use Lemma 3.8 to obtain a sequence (ﬁn)neN €
conv((hg)r>n) such that A, LS and b€ LY.
Claim. For any § > 0 we have h € D(z+9).

PROOF. Let § > 0. Since z, —> z, there is some N € N such that for

any n > N, z, < z+ 6. Hence, for anyn>Nwe have h,, € D(z + §) and by
convexity of D(z+ ) we also obtain h,, € D(z+48). So h € D(z+ ), by closedness
of D(z +6). O

So, for any ¢ > 0,

j(z40) \S// E[J(h)] \S’/ liminf E[J(h,)] <  liminfE[J(h,)] < j(z)—n%

n—00 ~—~ n— 00
heD(z49) Prop. 3.10 J is convex

On the other hand, by continuity of j,

) =" 2z +0) 5 d(2),

which is a contradiction, since n > 0. O

As mentioned before, we will need to assume an extra condition on U in order
to ensure solvability of both the primal and dual problem.

DEFINITION 3.15. U has reasonable asymptotic elasticity (RAE) if

. xU' ()
AFE = AFE, o =1 1
(U) +oo(U) msup T 5T <
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REMARK 3.16. The intuition behind this definition is the following, U’(z) can
be interpreted as the marginal increase in utility, since U'(z) =~ U(z + 1) — U(x)
and U(z + 1) — U(z) measures the increase in utility when wealth increases from x
to x + 1. Similarly,

|o+1)
et 1S 0G) - vG - 1) +200)
j=2 e —

o)
measures the average increase of utility when wealth increases successively from 1
to z + 1. Moreover, U is concave, so
U -UG-1)=UG-1)=2U'(2),

so that

U 1

Uz +1) > U'(z).

x

In fact, one can prove that AE(U) < 1. Having equality, i.e. AE(U) = 1, would
mean that for large x, the marginal utility and the average increase of utility are
almost the same, so U would behave asymptotically linear, and this is unreasonable.

ExXAMPLE 3.17. If U(z) = log(x) then

. 2U'(x) v
AE(U) = limsu = limsu L _ —,

so log satisfies (RAE).
If U(x) = 127 with v € (—00,1) \ {0} then

7
U/ y—1
2U'(2) = lim sup xicl 5 =< 1,
y~lz

AE(U) = limsup

so U satisfies (RAE).

Finally, if U(z) = then

_z
log ()’

. xU'(z) . 1,
AEU) = 1lgICILSOL;p U llgsgp (1 - logm) =1,

so this U does not satisfy (RAE). Note also that this U behaves asymptotically
linear.

LEMMA 3.18. If U satisfies (RAE) then there is some yo > 0 and a constant
C > 0 such that
J(y)

—J'(y) < LY
(y) < ”
for any y € (0,y0).

PRrROOF. For any y > 0, we can write by Lemma 3.4

J(y) =U(y)) — yl(y),
where I = (U’)~! = J’. Since U has (RAE) we can find some zp >0 and a 8 < 1
so that
zU'(z) < BU(z),

for any = > xg.

Moreover, since both, I and U’ are decreasing, taking x = I(y) gives y < yg :=
U’ (iC()). SO

I(y)y < BU(I(y)) = BJ(y) + Byl (y)
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So,

for any 0 <y < yo. (|

LEMMA 3.19. IfU has (RAE) then the mapping (0,00) — R, z — E[hZI(hY)]
is continuous in the interior of {j < oco}.

PROOF. By Lemma 3.14 we know that the mapping (0,00) — L%, z — h}
is continuous in the interior of {j < oo}. Hence, z +— hiI(h}) is continuous on
({j < 00})°, since I is continuous. Let z € ({j < 00})° and (2p)nen C ({J < 00})°
such that z, — z. Then,

n—oo
lim E[n7 I(h7 )] = E[RZI(h7)]
n—o00 n "
holds, if we can show that (h} I(h} ))nen is uniformly integrable.

We will argue that (hznl(hzn)l{h;nzyo})nEN and (hznl(hzn)]l{h:n <y0})n€N are
uniformly integrable if yq is suitably chosen.

Claim. (h% I(h% )1{n: >y})nen is uniformly integrable for any yo > 0.

PROOF. Let 2’ > 0 such that |z,| < 2’ for any n € N. Then (h )nen C D(2).
By Lemma 3.4 we obtain for any n € N

ho, (B2, ) gns >y0y = (U(RZ,) = J(hZ ) Uiz, >y < UI(0)) + (J(RZ,))™

As in the proof of Proposition 3.10 we can show that {(J(h))"|h € D(2')} is
uniformly integrable, which gives the result. O

Claim. (h% I(h% )1ins <yo})nen is uniformly integrable for a suitably chosen
1o > 0. ’

PRrOOF. Since U has (RAE) there is yo > 0 and C' > 0 such that

yI(y) = —yJ'(y) < CJ(y)
for any 0 < y < yg. So

R I(hZ ) hns <yoy < ClI(RZ))I-

>0

Moreover, ((J(h% ))”)nen is uniformly integrable, as argued above. Hence it
is enough to show that ((J(h} ))*)nen is uniformly integrable to conclude that
(|J(RZ,))nen and hence also (RZ I(h7 )1{n: <y,})nen are uniformly integrable.

0
To show this note that h} SN h; so that
" n—oo

J0%,) 2 J(07),
and therefore also for the positive parts
((h3,))" —Eo (TR
Moreover, since j is continuous on {j < co}° we obtain
E[J(hz,)] = j(2n) —— j(2) = E[J(R})],

which implies that
E[(J(h2,)) "] —— E[(J (h2))"].

By Scheffé’s theorem we conclude that

(J(hZ )T —— (J(hI))T,
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which implies that ((J(h} ))")nen is uniformly integrable. d

Both claims together with yo > 0 as in the second claim give the desired
result. (]

REMARK 3.20. A slight variation of above arguments also gives
lim E[h7 I(unh?,)] = E[RII(R)]

n— oo

if z,, — 2z in the interior of {z < co} and p,, Moo 1 -
n— oo

The key result of this section is the next theorem, for this recall the standing
assumptions: P # (), U is a utility function satisfying the Inada conditions and
u(zg) < oo for some g > 0.

THEOREM 3.21. For any z > 0 we have

j(2) = sup(u(z) — z2),
>0

in particular there is some zg > 0 such that for any z > zg, j(z) < co. Moreover,
if U has (RAE) then j(z) < oo for all z > 0.
PROOF. The key idea is the following, by definition of J we have
J(y) = sup(U (z) — zy),
>0

so it seem plausible to try to prove that for any h € D(z)
E[J(h)] = sup E[U(f) — fh].
feLs

This would yield

j(2) helgf(z)JE[J (h)] pot fbeli%o E[U(f) — fh].
We want to interchange inf and sup, this requires a minimax theorem. Such results
need compactness for at least one of the sets over which we optimize. We use von
Neumann’s minimax theorem (see Aubin Theorem 2.7.1). Consider L* as the dual
space of L' with the weak*-topology o(L>°,L'). Fix n € N, by the Tychonov-
Alaoglu theorem we know that

B, :={f € LY|f <n} = {f € L¥|f <m}N LS
is weak*-compact. Moreover, D(z) is a convex subset of L!. So the mapping
B, x D(s) — R, (f,h) = E[U(f) — fh],
satisfies following conditions,

B,, is a compact convex subset,
for all h € D(z), f+— E[U(f) — fh] is concave like U

and
{ D(z) is a convex subset,

for all f € B, h+— E[U(f) — fh] is convex, since linear

so von Neumann’s minimax theorem gives

3.1 su inf E|U(f)— fh]= inf sup E[U(f) — fh|.

(3.) swp it E[U(])~ J = inf sup B[U(S) ~ A
We want to let n — oo, so we will first study the right hand side of the equation
and show that it is equal to j(z).

Claim. lim inf sup E[U — fh] = j(2).
Jm infsup BIU(S) - f1] = (2
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PROOF. Define
J"(y) == sup (U(z) —zy).

0<z<n
Note that J* < J and sup E[U(f) — fh] = E[J"(h)], so
.feB7L

inf E[J™(h)] < j5(2).
hGID(z) [ ( )] - ]<Z)
Define

Jul) =, inf ELI ()]

Take a sequence (hy)nen C D(z) such that

n—o0 Nn—o0

and use Lemma 3.8 to get a sequence (hy, )nen C D(z) such that h,, € conv((hx)isn)

and h, =22 h, with h € D(z). Note that for any y > I(n) we have
n— oo

I (y) = J(y),
hence also for any y > I(1)(> I(n)) and for any n € N, y — J"(y) is decreasing.
As in the proof of Proposition 3.10 we obtain that ((J(h,))” )nen is uniformly
integrable and
nl;rxgojn(z) = nth;OE[J (hn)] > liminf E[J"(hy,)] > Elliminf J"(h,)] = E[J(h)] > j(z).

n—00 ~— n—00 -
Jn is convex Fatou

So

lim inf sup E[U — fh] = j(2).
A, dnf ) sup [U(f) = fh] = j(2)

O

Next we want to show that the left hand side of equation (3.1) equals sup,~ o (u(z)—
Claim. lim sup inf E[U(f)— fh] > sup(u(x) — zx).
n—00 fcp heD(z) >0
PRrOOF. Let f € C(x) N B, and x > 0, then we obtain
sup E[fh] < zz,
heD(z)
o

E[U(f)] -2 < inf E[U(f) - fh).

heD(z)
Taking the sup on the left over f € C(z)N B, and the sup over f € B, on the right
we obtain for any n € N
sup E[U(f)] —xzz < sup inf E[U(f)— fh].
fec(z)NB, feB, heD(z)
Now let n — oo to get

lim sup E|U —xz < lim sup inf E[U(f)— fhl].
Jm s BU() a2 < lin sp i B0 - S

— sup E[U(f)] = u(x)
fecC(z)

This holds for any = > 0, hence

sup(u(z) —xz) < sup inf E[U(f) — fh]
z>0 feLs heD(z)



74 2. UTILITY OPTIMIZATION

Claim. lim sup inf E[U(f)— fh] < sup(u(x) — zx).
n—o0 rep, h€D(z) >0

PrOOF. Let n € N and f € B,,. Define
z* :=1inf{z > 0|f € C(x)} (< ).
Without loss of generality we may assume that z* > 0, else f = 0. Let € > 0, then
f € C(x* + ¢€), and by definition of z* we know that f ¢ C(z* — €), hence

sup E[fh] > (z* — €)z,
heD(z)

and f € C(z* +¢€). So

Jdnf EU() = fAl <EWU()] - (" = 92 Sule’ +.0) = (0" = 9z =

u(z® +¢€) — (2% + €)z + 2ez < sup(u(z) — zz) + 2ez.
>0
Now let € \, 0 to get the claim. O

Next we have to argue the existence of some zg > 0 such that j(z) < oo for
any z > zg. For this, we note that u is concave and increasing. By assumption
u(xp) < oo for some zy > 0 and hence for all z > 0. Moreover, j is decreasing and
so j(z) < oo for all z > zp, unless j = oo, so we must argue that this is not the
case.

Claim. j # oo

PROOF. Take a sequence z, — oo and find another sequence (z,,),en such
n— oo

that )
U(mn) — TpZn 2 min{n,j(zn) - E}
Now wu is increasing and concave, so the maximizer % of the map z — u(z) — xz
is decreasing in z, so we can choose the sequence (z,)nen to be bounded. Let
(Zn, )ken be a convergent subsequence, i.e. T,, — Too. By continuity of u we
—

n o0
obtain
. . . ) 1
U(Too) = lim u(wy,) > limsup (@, 2n, + min{ng, j(zn,) — —1}).

k—o0 k—o00 n

Suppose by contradiction that j = oo, then
u(Zoo) > lim sup (xnkznk + nk) = o0,
k—o0

but u(zs) < 00. O

Finally we argue that if U has (RAE) then j(z) < oo for all z > 0. So suppose

that AE(U) < 1, then
J(ny) < Cud(y)
for € (0,1] and for y < yo. Let z9 > 0 so that j(zp) < co. Since j is decreasing

we only need to control j to the left of 2y, so take some z < zp, set u := 2 and

note that phl € D(z). Then, using the above inequality and the fact that J is
decreasing, we obtain

J(phZ,) < Cud (hZ)Lins <yoy +J (190),
so that
J(z) S E[J(uhZ)] < CLE[J(RZ)] +J (1yo) = Cpi(zo) + J(pyo) < oo,
———
=j(z0)

ie. j(z) < 0. O
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LEMMA 3.22 (Smoothness properties of j). IfU has (RAE) then j € C1((0,00)),
j' is increasing and for any z > 0 we have

—2j'(2) = E[hZ1(R)].

PROOF. Suppose we know that j € C'*((0,00)), then for any z > 0 the limit
iy e R —(A2) L (z) —(A2)
2/ (z) = Jim === = i T
exists. Consider first the right derivative
o J(2) —i(Az)
g?"(z) R )1\1\‘1111 )\ _ 1

)

and suppose we can prove that g,(z) exists and
gr(2) = E[RZI(R7)],
then
—2j(2) = E[hZI(R7)],
where j! is the right derivative of j, which always exists, as j is monotonic and
convex. But, z — E[h:I(hY)] is continuous on (0,c0), so j,. is continuous and so
j € CY((0,00)) as it is convex (see Rockafellar Theorem 24.1). Also note that j is
strictly convex on (0, 00), and so j' must be strictly increasing. So we only need to
compute g, (2).
Let p1 > 0, then l%h;:z € D(z) and hence

. 1.,
s3]
and this gives

. i) —j(Az) _ 1 [ (1 ) . }
limsup 22— < Jims E|J(= —J <
imsup == < limsup LS (M) | <

h;z
/ —J'(w)dw

Xhiz
< limsu E [—J/ (1 3 ) 11— 1)} = limsu 1E{ 5 I(lh* )} =E[rI(hY)];
= A\(lp 1 A Az Az A A\(lp)\ Az A Az z 2/l

on the other hand note that ph¥ € D(uz), so
J(pz) <E[J(uh7)]

so similarly as above we obtain

Co e d(2) =) . ] o e .
_r > — > — >
hg\n\l{lf 1 > hg\n\l?f . 1IE)[J(hZ) J(ARL)] > hf\n\j?f]E[ J'(ARL)RL)] >
AR?
—J"(w)dw
h*

z

> 1 . * * — * *
> lim inf E [A2(ARZ)] = E [h21 ()]

where the last equality in both cases is justified by Lemma 3.19 and the subsequent
remark. O

REMARK 3.23. The reverse engineering recipe requires us to find for a given
x > 0 some z, > 0 such that j'(z) = —z. Now j’ is continuous and strictly
monotonic, so if z, exists, it must be unique. To prove existence, we first need to
understand the range of values of j’.



76 2. UTILITY OPTIMIZATION

LEMMA 3.24 (Range of j'). j'(o0) := lim j'(2) =0 and if U has (RAE) then

zZ—00

i’(0) := lim j'(z) = —oo.
3(0) = lim j'(2) = —o0
PRrROOF. We know that j(z) < oo for all 2 > z5. The same argument as
in the proof of Lemma 3.22 yields that j € C'((0,00)), note that this does not
use (RAE). Now, —j is concave and increasing by Corollary 3.12, so j'(00) exists
by monotonicity and —j’(cc) > 0. Moreover, —J is increasing and —J' = I is
decreasing with I(co) = 0, so for any € > 0 there is some C. > 0 so that for all
y >0,
—J(y) =<ey+C.,

So,
y . j(2) . 1 . 1
0<—j(0) = lim ———~ = lim sup E[-J(h)]- < lim sup E[C.+eh]- <
22— 00 z zZ—00 hED(Z) zZ Z— 00 hED(Z) V4
< 1im &4 SEp <
z—00 Z AN

<z

finally let € \, 0 to obtain the first claim.
By Theorem 3.21 we have for all z > 0

j(2) = sup(u(x) — zz),
x>0

and by Corollary 3.12, j is strictly convex on {j < oo}, hence by general duality we
obtain that u € C'((0,00)) (see Rockafellar Theorem V 26.3). We already know
that j € C*({j < 00}°), so v’ and —j’ are inverse to each other.

If we now use that U has (RAE) then {j < c0}° = (0,00) and so we can use
the inverse relation everywhere to get

j/(O) = _’U/(](-)O)'

But, AE(U) < 1 implies that AE(u) < 1 (see Kramkov/Schachermayer) and that
in turn implies u'(00) = 0, so j'(0) = —oo. 0

3.6. Solution of the primal problem. Recall the primal problem: for a
given x > 0, find
u(z) = sup E[U(f)]
fec(a)
under the assumption that P # @) and U is a utility function satisfying the Inada
conditions with (RAE), such that u(xg) < oo for some xy > 0. Recall the recipe
for solving the primal problem,

1. Start with « > 0 and define z, > 0 via —j’(2) = z. The mapping
J' : (0,00) — (0,00) is continuous, strictly decreasing and surjective, so
this is always possible and z, € (0,00) is unique.

2. Solve the dual problem for z, > 0 to get the dual optimizer h} € D(z)
and define f; := I(h} ). We know that for any z > 0, j(2) < oo so we
can find the solution of the dual problem for any z > 0.

3. Show that E[h} I(h] )] = x2,. This is even true for any z > 0 and its
corresponding h%. But for later use in step 4), we even prove more.

LEMMA 3.25. For all z > 0 and for any h € D(z) we have
E[n:I(h7)] = —2j'(2) = E[hI(h2)]
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PROOF. The first equality follows from Lemma 3.22. To show the inequality
let z > 0 and h € D(z). For any § € (0,1) we know that hs := dh+(1—9)h% € D(z)
by convexity of D(z), so that

hZ
0 S EJ)-I0)] = E [ [ tw)du| < B 0 =he)) = BT hs) =)
h¥ is optimal —J'=I s

for the last inequality we used that on {hs < h*} we have I(w) < I(hs) and on
{hs > h%} we have I(w) > I(hs) but hf — hs < 0. Since I is decreasing and
hs > (1 — 6)h: we obtain
E[I(hs)h] < E[I(hs)hZ] <E[I((1 - 6)h7)h7].
Hence by Fatou’s lemma as 6 N\, 0
NPT Tt < lim
E[I(h})h] E[hgn\%lf I(hs)h] < h%n\}élfIE[I(hg)h]

and by monotone convergence

lim B[ (1 = 0)A)h] = ELI(A2)h2).

So
E[I(h7)h] < E[I(h)hZ]

Recall the last step,
4. Show that f} € C(x).
Note that we have for any h € D(z,)

E[fzh] = E[RI(R,)) < ~20f'(20) = 22,
So in particular for any h € D(1) we obtain
E[fih] < z.
Hence, step 4) follows immediately from the following observation,

PROPOSITION 3.26. If Fy is trivial and x > 0, then for any f € LY (Fr):
f €C(x) if and only if E[fh] < x for any h € D(1).

PROOF. Suppose that f € C(z) and let h € D(1). Find some V' € v(z) so that
f < Vr and choose Z € Z(1) such that h < Zp. Then ZV is a P-supermartingale,
S0
E[fh] < E[VZ] < VoZo = 1.

Conversely suppose that E[fh] < x for any h € D(1). Note that if @ € P then
dQ

— € D(1), so th

7p € (1), so that

supEg[f] < sup E[hf] <z
QeP heD(1)

Define the process Y by
Y :=esssupEqg[f|F:], 0<t<T.
QeP
The process Y is a Q-supermartingale for any @ € P, moreover we can choose an

cadlag version of Y. By the optional decomposition theorem there is some 9 € © 44,
and an adapted, increasing, positive process C null at zero such that

Y:Yo-i-/ﬁdS—C,



78 2. UTILITY OPTIMIZATION

where Yy = supgcp Eq[f]. Note that, since Y,C > 0 we get

/ﬂdS:Y—FC—YOZ—Yoz—a:.

x

2 im- Moreover,

So we actually have ¥ € ©

T T
f:YT:Y0+/ ﬁudSu—CT§z+/ 9, dSy,
0 0

and V(z,9) =z + [9dS € v(z), so f € C(x). O
Putting all these pieces together we obtain

THEOREM 3.27 (Solution of the primal problem). Suppose that Fo is trivial
and U has (RAE). Then, for all x > 0, the primal problem of mazimizing expected
utility from final wealth has a unique solution [} € C(x), which is given by

fo =1(,),

where b is the unique solution of the dual problem with z, > 0 defined by —j'(2;) =
z.

ProOF. Uniqueness follows from the strict concavity of U. To show that f is
a solution we note that f € C(z) and

EU(f2)] = EUU(RZ, )] = E[J(hz,) + 0z, I(hZ, )] = j(ze) + E[RZ I(RZ)] =

= J(z) ¥ aze 2 f(j(2) +a2) 2 u(@) = sup EU(f)] 2 E[U(f2)],
# fec(z)
so fr is optimal. d

REMARK 3.28. From Theorem 3.21 we know that for any z > 0,
J(z) = sup(u(z) — zz).
x>0
From the above proof we also know that for any = > 0,
u(@) = BU(f2)] = -+ = if(j(z) + 22) > u(2),

so that for all x > 0
u(z) = inf (j(2) + z2).

So u and j satisfy the same conjugacy as the original U and J. Note that we could
also have deduced this last expression from the properties of u and j via abstract
convex analysis.

The extra condition on U, i.e. the fact that U has (RAE) is optimal in the
following sense:

e If this condition is satisfied then we can solve the primal problem for any
model S (for S at least satisfying the standing assumptions, i.e. P # (),
u(zp) < oo for some zg > 0, etc.).

e If U does not have (RAE) then we can find a model S such that the
primal problem there is not solvable, even though P = P(S) # (0 (see
Kramkouv/Schachermayer).

The above approach is very general and, via the dual problem, also gives a lot of
extra information. But how about a shorter way if we are only interested in the
primal problem? At least under some (minor) extra conditions on U and on P
one can prove directly the existence of a solution to the primal problem, using a
Komlos-type argument to get a candidate for the optimizer.



CHAPTER 3
Appendix

1. Methods from convex analysis

In this chapter basic duality methods from convex analysis are discussed. We
shall also apply the notions of dual normed vector spaces in finite dimensions. Let
V be a real vector space with norm and real dimension dimV < oo, then we can
define the pairing

(L,):VxV =R
(v,1) = l(v)

where V'’ denotes the dual vector space, i.e. the space of continuous linear func-
tionals [ : V' — R. The dual space carries a natural dual norm namely

]| := sup [i(v)].
[lv]|<1

We obtain the following duality relations:

e If for some v € V' it holds that (v,l) =0 for all [ € V’, then v = 0.

e If for some [ € V' it holds that (v,l) =0 for all v € V, then [ = 0.

e There is a natural isomorphism V — V’ and the norms on V and V"

coincide (with respect to the previous definition).
If V' is an euclidean vector space, i.e. there is a scalar product (.,.) : VxV — R,

which is symmetric and positive definite, then we can identify V' with V' and every
linear functional I € V' can be uniquely represented | = (., z) for some z € V.

DEFINITION 1.1. Let V' be a finite dimensional vector space. A subset C C 'V
is called convex if for all vi,vy € C also tvy + (1 —t)vy € C fort € [0,1].

Since the intersection of convex sets is convex, we can define the convex hull of
any subset M C V', which is denoted by (M) We also define the closed convex

hull (M),,,..,, which is the smallest closed, convex subset of V' containing M. If M
is compact the convex hull (M) is already closed and therefore compact.

conv”®

conv

DEFINITION 1.2. Let C be a closed convex set, then x € C is called extreme
point of C if for all y,z € C with x =ty + (1 —t)z and t € [0,1], we have either
t=0 ort=1. This is equivalent to saying that there are no two different points
1 # o such that © = %(xl + x9).

First we treat a separation theorem, which is valid in a fairly general context
and known as Hahn-Banach Theorem.

THEOREM 1.3. Let C' be a closed convex set in an euclidean vector space V.,
which does not contain the origin, i.e. 0 ¢ C. Then there exists a linear functional
&€V’ and a > 0 such that for all x € C we have £(x) > a.

PROOF. Let r be a radius such that the closed ball B(r) intersects C. The
continuous map = — ||z|| achieves a minimum zy # 0 on B(r) N C, which we
denote by zg, since B(r) N C is compact. We certainly have for all x € C the

79
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relation ||z|| > ||zo||. By convexity we obtain that z¢ + t(z — o) € C for ¢ € [0, 1]
and hence

[|zo + t(a — zo)||* = [[xol[*.
This equation can be expanded for ¢ € [0, 1],
[lzol[* + 2t (w0, & — o) + t*[|(z — xo)|[* = [[zol[,
2 (w0, @ — o) + 12]|(z — o) || > 0.
Take now small ¢ and assume (zg,z — xg) < 0 for some x € C, then there appears
a contradiction in the previous inequality, hence we obtain
(X, —20) >0

and consequently (x, o) > ||zo||? for z € C, so we can choose & = (., 7). O

As a corollary we have that each subspace V; C V, which does not intersect
with a convex, compact and non-empty subset K C V can be separated from K,
i.e. there is &€ € V'’ such that £(V;1) = 0 and &(x) > 0 for € K. This is proved by
considering the set

C=K-V:={w—vforveVand we K},

which is convex and closed, since V, K are convex and K is compact, and which
does not contain the origin. By the above theorem we can find a separating linear
functional £ € V’ such that £(w —v) > « for all w € K and v € V, which means in
particular that £(w) > 0 for all w € K. Furthermore we obtain from &(w)—&(v) > «
for all v € V that £(v) = 0 for all v € V' (replace v by Av, which is possible since V'
is a vector space, and lead the assertion to a contradiction in case that £(v) # 0).

THEOREM 1.4. Let C' be a compact convex non-empty set, then C is the convex
hull of all its extreme points.

PrROOF. We have to show that there is an extreme point. We take a point
x € C such that the distance ||z||? is maximal, then z is an extreme point. Assume
that there are two different points x1, x2 such that x = %(xl + x2), then

]

1 1
15 @1+ @)|* < (] + [w2])

IN

1
Ul + 1121%) = [P,

by the parallelogram law &(|ly|[2-+[2112) = (|5 (y-+ )] [2+][4(y—2)[[2 for all y, = € V
and the maximality of ||z||>. This is a contradiction. Therefore we obtain at least
one extreme point.

The set of all extreme points is a compact set, since it lies in C' and is closed.
Take now the convex hull of all extreme points, which is a closed convex subset S of
C and hence compact. If there is z € C'\ S, then we can separate by a hyperplane
[ the point z and S such that I(z) > « > l(y) for y € S. The set {I > a} NC is
compact, convex, nonempty and has therefore an extreme point z, which is also an
extreme point of C. So z € S, which is a contradiction. O

Next we treat basic duality theory in the finite dimensional vector space V'
with euclidean structure. We identify the dual space V' with V by the above
representation.

DEFINITION 1.5. A subset C C V is called convex cone if for all vi,vy € C the
sum vy +vs € C and Mvy € C for A > 0. Given a cone C we define the polar C°

C%:={l € V such that {l,v) <0 for allv € C}.
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The intersection of convex cones is a convex cone and therefore we can speak
of the smallest convex cone containing an arbitrary set M C V', which is denoted
by (M) ,n.- We want to prove the bipolar theorem for convex cones.

THEOREM 1.6 (Bipolar Theorem). Let C C V be a convex cone, then C%° C 'V
is the closure of C.

PROOF. We show both inclusions. Take v € C, then (I,v) < 0 for all [ € C° by
definition of C° and therefore v € C%. If there were v € C% \ C, where C denotes
the closure of C, then for all [ € CY we have that (I,v) < 0 by definition. On the
other hand we can find [ € V such that <l,6> <0 and (l,v) > 0 by the separation
theorem since C is a closed cone. By assumption we have | € C°, however this
yields a contradiction since (I,v) > 0 and v € C%. g

DEFINITION 1.7. A convex cone C is called polyhedral if there is a finite number
of linear functionals ly, ..., 1, such that

C:=ni{v e V|{;v) <0}
In particular a polyhedral cone is closed as intersection of closed sets.

LEMMA 1.8. Given ey, ...,e, € V. For the cone C = (eq,...,e
can be calculated as

={l €V such that (l,e;) <0 foralli=1,...,n}.

PROOF. The convex cone C' = (e1,...,€n) ., IS given by

the polar

>C0n

C = {Zaiei for; >0and i =1,...,n}.
i=1
Given [ € CY, the equation (l,e;) < 0 necessarily holds and we have the inclusion
C. Given [ € V such that (l,e;) <0 for i = 1,...,n, then for a; > 0 the equation
S a;{l,e;) <0 holds and therefore I € CY by the explicit description of C' as
b

> ioq e for o > 0. O

COROLLARY 1.9. Given ey,...,e, € V, the cone C = (e1,...,€n),,, has a
polar which is polyhedral and therefore closed.

ProOOF. The polyhedral cone is given through
C% = {l € Vsuch that (I,e;) <Oforalli=1,...,n}
=N {leV|{le) <0}

d
LEMMA 1.10. Given a finite set of vectors ey, ...,en, € V and the convexr cone

C =(e1,...,€n) oo, then C is closed.
PROOF. Assume that C' = (e1,...,ep),,, for vectors e; € V. If the e; are

linearly independent, then C' is closed by the argument, that any x € C can be
uniquely written as x = Z?Zl a;e;. Suppose next that there is a non-trivial linear
combination Y., B;e; = 0 with 3 € R™ non-zero. We can write z € C' as

x—Zazel:Zaz—&—t ZozeZ
=1

J#i(z)

with
h that |—| = —=
i(z) € {i suc a| | m§>5|5|}

Qi(x)

Bi(a)

t(x) = —
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Then a; > 0 by definition. Consequently we can construct by variation of = a
decomposition

C=U",C;
where C; are cones generated by n — 1 vectors from the set eq,...,e,. By induc-
tion on the number of generators n we can conclude by the statement on linearly

independent generators. i

PRrROPOSITION 1.11. Let C C V be a convex cone generated by eq, ..., e, and
K a subspace, then K — C' is closed convex.

PROOF. First we prove that K — C' is a convex cone. Taking vy,ve € K — C,
then v1 = k1 — ¢; and vy = kg — g, therefore
U1 +02:k1+k27(61+62) ek —-C,
Ay = Ak — Aer € K —C.

In particular 0 € K —C'. The convex cone is generated by a generating set ey, ..., e,

for C' and a basis f1,..., fp for K, which has to be taken with — sign, too. So
K—-C= <_617'"a_enaflv"'afp7_f17"'7_fp>con

and therefore L — C' is closed by Lemma 1.10. O

LEMMA 1.12. Let C be a polyhedral cone, then there are finitely many vectors
€1,...,en €V such that

C={e1,- - 1€n)opp -

PROOF. By assumption C' = N?_ {v € V|(l;,v) < 0} for some vectors [; €
V. We intersect C' with [—1,1]™ and obtain a convex, compact set. This set is
generated by its extreme points. We have to show that there are only finitely many
extreme points. Assume that there are infinitely many extreme points, then there
is also an adherence point x € C. Take a sequence of extreme points (z,,)n>0 such

that =, — = as n — oo with x,, # x. We can write the defining inequalities for
cn[-1,1™ by

(kj,v) < aj
for j =1,...,r and we obtain lim,_, (k;, z,,) = (k;, ). Define
= i i — (kj,x) > 0.
= i, )

Take ng large enough such that | (k;,zn,) — (kj,2)| < §, which is possible due to
convergence. Then we can look at x,, + t(x — x,,) € C for ¢t € [0,1]. We want to
find a continuation of this segment for some 6 > 0 such that z,, + t(z — z,,) € C

for [—4,1]. Therefore we have to check three cases:

o If (kj,xpn,) = (kj,z) = a;, then we can continue for all ¢ < 0 and the
inequality (k;, zn, + t(z — Zn,)) = a; remains valid.

o If (k;j,x) = a; and (k;,z,,) < a;, we can continue for all ¢ < 0 and the
inequality (k;, z,, + t(z — zp,)) < a; remains valid.

o If (kj,x) < aj, then we define § = 1 and obtain that for —1 < ¢ < 1 the
inequality (k;, zn, + t(z — 2n,)) < a; remains valid.

Therefore we can find § and continue the segment for small times. Hence

T, cannot be an extreme point, since it is a nontrivial convex combination of

Zpy — (X —2p,) and z, which is a contradiction. Therefore CN[—1, 1]™ is generated

by finitely many extreme points ey, ..., e,and so

C= <€1,...,€n>con

by dilatation. 0
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2. Optimization Theory

We shall first consider general principles in optimization theory related to anal-
ysis and proceed to special functionals.

DEFINITION 2.1. Let U C R™ be a subset with U C V, where V is open in
R™. Let F : V — R be a C?-function. A point x € U is called local mazimum
(local minimum) of F on U if there is a neighborhood W, of x in V such that for
allye UNW,

F(y) < F(x)
or respectively F(y) > F(z).

LEMMA 2.2. Let U C R™ be a subset with U C V', where V is open in R™

and let F : V — R be a C?-function. Given a local maximum (or local minimum,)

x €U of F onU and a C?*-curve ¢ :] — 1,1[— V such that ¢(0) = z and c(t) € U
fort €] —1,1], the following necessary condition holds true,

im0 (elt)) = {grad F(z),¢(0)) = 0.

PRrOOF. The function ¢t — F'(c(t)) has a local extremum at ¢ = 0 and therefore
the first derivative at ¢ = 0 must vanish. t

We shall now prove a version of the Lagrangian multiplier theorem for affine
subspaces U C R". We take a affine subspace U C R™ and an open neighborhood
V € R™ such that U NV # (), where a C%-function F : V — R is defined.

THEOREM 2.3. Let x be a local mazimum (local minimum) of F on UNV and
assume that there are k := m — dim U wvectors ly,...,lx € R™ and real numbers
ai,...,a; € R such that

U={z eV with (l;,z) =a; fori=1,...,k}.
Then
gradF(x) S <ll, Ceey lk>
or in other words there are real numbers A1, ..., A\ € R such that
grad F(z) = Mly + -+ + \ilg.

PROOF. Take a C?-curve c¢:] — 1, +1[— V, then c takes values in U if and only

if
c(0)eU
and
(li,'(t)) =0

fori=1,...,k and t €] — 1,1[. The proof is simply done by Taylor’s formula. Fix
t €] —1,1[ and take

c(t) = ¢(0) +/(J d (s)ds.

By definition ¢(t) € U if and only if (I;, c(t)) = a;, but

(Lirelt)) = (1, c(0)) + / (1, (s)) ds

:a’i

by assumption for ¢ = 1,...,k. We denote the span of l1,...,l; by T and can
consequently state that a C?-curve ¢ :] — 1, +1[— V takes values in U if and only
if ¢(0) € U and ¢/(t) € T for all t €] — 1,1[. Furthermore we can say that T° is
generated by all derivatives of C%-curves ¢ :] — 1,+1[— V taking values in U at
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time ¢ = 0 (simply take a line with direction a vector in T through some point of
U).
By the previous lemma we know that for all C?-curves ¢ :] — 1, +1[— V with
¢(0) = x the relation
(grad F(z),c'(0)) =0
holds. Therefore grad F(x) € T%. By the bipolar theorem we know that 700 =
T =(ly,...,lx), which proves the result. O

REMARK 2.4. This leads immediately to the receipt of Lagrangian multipliers
as it is well known from basic calculus: a necessary condition for an extremal point
of F: V — R subject to the conditions (l;,z) = a; for i = 1,...,k is to solve the
extended problem with the Lagrangian L

k
L(.Z‘,)\l, ey )\k) = F(.Z‘) — Z/\l(<l“m> — ai).

=1

Taking the gradients leads to the system of equations

k
grad F(z) — Z Xil; =0
i=1

<li7 .’13> = a;
for i =1,...,k, which necessarily has a solution if there is an extremal point at x.

REMARK 2.5. How to calculate a gradient? The gradient of a C!-function
F:V — R on a finite dimensional vector space V is defined through

(grad F(x), w) = %|S:0F(x + sw),

for x € V and w € R" (and a scalar product!). This can be calculated with
respect to any basis and gives a coordinate representation. The derivative of F' is
understood as element of the dual space

dF (z)(w) := %|5:0F(a¢ + sw)

for x € V and w € R™ (even without scalar product!). The derivative can be calcu-
lated with respect to a basis (€;)i=1,...dim v That means that it simply represents
a collection of directional derivatives of a function, i.e.

d
grad,,) F(z) := (%lSZOF(x +5€;))i=1,...dim V

forx e V.

3. Conjugate Functions

Given a concave, increasing function u : R — R U {—o0}, which usual conven-
tions for the calculus with —oo. We denote by dom(u) the set {u > —oo} and
assume that dom(u) is either |0, co[ or R. We shall always assume that u is strictly
concave and C? on dom(u) and that

1;?()1 u(z) = —oo
in the case dom(u) =]0, oo and

in the case dom(u) = R.
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In this and more general cases we can define the conjugate function
v(y) := sup(u(z) — yz)
z€R

for y > 0.
Since the function = — wu(z) — yx is strictly concave for every y > 0, there is
some hope for a maximum. If there is one, let’s say 7, then it satisfies

(3.1) u'(Z) =y.
Since the second derivative exists and is strictly negative, 7 is a local maximum if
the above equation is satisfied. By strict concavity the local maximum is unique
and global, too.

We need basic assumptions for the existence and regularity of the conjugate
function:

(1) If dom(u) =]0, 0o (negative wealth not allowed), then we assume
limu/(z) =
lim 4 (z) = o0,
lim u'(z) =0 (marginal utility tends to 0).
T—r 00
(2) If dom(u) = R (negative wealth allowed), then we assume

hm u'(x) = oo,
x — 00

lim '(z) = 0 (marginal utility tends to 0).
r—00

Under these assumptions we can state the following theorem on existence and
convexity of v.

THEOREM 3.1. Let u : R = RU{—o0} be a concave function satisfying the

above assumptions, then the conjugate function is strictly convexr and C? on dom(v) =
10, 00[. Additionally for dom(u) =]0, co[ we have

"(0) := limv'(y) = —o0,
v'(0) ;fgv(y) 00

lim v'(y) =0

Y—>00
and for dom(u) =R

"(0) := limv'(y) = —oo0,
v'(0) ;fgv(y) 00

. / _
Jim v'(y) = oo

Furthermore the inversion formula
u(z) = inf(v(y) +2y)
holds true.

PrOOF. By formula 3.1 and our assumptions we see that for every y > 0 there
is exactly one Z, since v’ is strictly decreasing and C'. We denote the inverse of
u’ by (u')~!. Therefore v is well-defined and at least O, since the inverse is C*.
Furthermore

v(y) = u((W) () —y- (W) (y)

V() = (W) 7)) ()7 () = () 7Hy) — y((W) ™) ()
—(u) " (y)
L 1

(u')” )():—m>0

v"(y)
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Hence v is C? on ]0, oo and a fortiori, by v” > 0, strictly convex.

We know that u’ is positive and strictly decreasing from oo to 0 by the previous
assumptions, hence the two limiting properties for v, since v'(y) = —(u') " (y).

Replacing v by —v, we can apply the same reasoning for existence of the concave
conjugate of v. Take § > 0 such that inf,o(v(y) + zy) takes the infimum, then
necessarily

() = -2,

hence —(u')~!(y) = —x and therefore j(x) = u'(x). Inserting yields

(' () + 2g(x) = u((W) (W' (@) — ' (@) ()W (@) + 2 (2)
:u($>7

which is the desired relation. O

1. Exam Questions

For the oral exam I shall choose randomly three questions from the following
list, of which you have the right to choose two. The exam is “open book”, i.e. you
can use all the scripts and papers during the exam. You will have about 12 minutes
of time for each question after about 6 minutes of preparation. I expect you to speak
about the question like in a seminar, i.e. explaining the structure of the answer and
important details such that a good mathematician, who does not know precisely
about the topic could in principle follow.

(1) What is a semi-martingale and a good integrator? What does the Bichteler-
Dellacherie theorem tell? What does the Girsanov-Meyer theorem tell?

(2) Describe the ucp topology and the Emery topology.

(3) How does Stricker’s proof of the Bichteler-Dellacherie theorem work?

(4) Tto’s formula and its proof.

(5) The stochastic exponential and its construction.

(6) What do the Burkholder-Davis-Gundy inequalities assert and how does
one proof of them work? How can we use them to construct the stochastic
integral for predictable integrands?

(7) What does (NFLVR) mean? Why is the L case considerably more com-
plicated? Explain in detail (NFLVR) = (NUPBR) + (NA).

(8) Give a guided tour through the proof following [T14].

(9) Explain meaning and proof steps of Kostas Kardaras proof for the exis-
tence of super-martingale deflators, see [K09].

(10) Explain super-replication prices with in the setting of Kostas Kardaras
following [BS98].

(11) Explain the Merton problem as outlined in the lecture notes.

(12) Explain the change of numeraire theorem and its applications.

(13) Explain by the change of numeraire theorem the basic idea of Stochastic
portfolio theory: it may happen to have (NFLVR) with respect to one
numeraire and only (NUPBR) with respect to another one.

(14) Explain and prove Fernholz’ master equation from stochastic portfolio
theory. What is a functionally generated portfolio?
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