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Part 1

Discrete (time) Models



1. Topic of mathematical Finance

Mathematical Finance is dealing with the analysis of price structures in financial
markets. On the one hand one tries to understand the mechanism of trading, on
the other hand one tries to understand the stochastic behaviour of price evolutions
and the relations between different traded quantities.

At the beginning we shall mainly focus on the second issue, hence we shall
formulate models for price evolutions and conditions on them to be reasonable
models from the point of view of economics. Even though we concentrate on discrete
models first, the theory is challenging from the point of view of mathematics and
also from the point of view of modeling. Discrete Models are stochastic processes
modeled on discrete probability spaces, which seems to be a rough approximation,
but all the main structural questions already appear in this setting and one can learn
a lot about financial mathematics in this setting. The main issue which appears
in passing to more general models on infinite probability spaces in continuous time
is the appearance of a scale of different topologies and the breakdown of classical
Riemann-Stieltjes integration theory.

We can cristallize several questions, which shall be answered in the sequel:

• Which models are economically reasonable?
• How to price contracts with payoffs at future time point N today?
• How to deal with risks, which appear due to selling of such contracts?

2. Basic Contracts and No-Arbitrage Relations

In this section we denote the asset price (and also the asset itself) by (S̃t)t∈I
on some interval I. We assume a risk-free bank account

Bt = exp(rt)

on I, which means continuous compounding. In the sequel of this lecture course
three types of contracts will play a major role, for which we shall derive two basic
relations. These relations will be derived by simple trading arguments.

2.1. Forward contracts. A forward contract is the right and the obligation

to buy one unit of the stock (S̃t)t≥0 at time T > 0 for an amount K, which is fixed
at t ≥ 0. We have the linear payoff-scenario

(S̃T −K).

We denote the price of a forward contract of this type by Ft. We shall calculate
the strike price K such that the contract can be entered today at t = 0 with zero
premium F0 = 0 and obtain

K = exp(r(T − t))S̃t.

If somebody entered the contract with F0 = 0 and K > exp(r(T − t))S̃t, we would

buy one unit of stock for S̃t, which we have to borrow from the bank. Therefore at

T we have debts S̃t exp(r(T − t)), but receive K in exchange for the stock. Hence

a net gain of K − exp(r(T − t))S̃t.
If we wrote a forward contract with K < exp(r(T − t))S̃t with some other

person, then we sell a unit of stock at t and receive S̃t, which is put on the bank

account. At T we receive a unit of stock in exchange for K < exp(r(T − t))S̃t.
We clear the short amount of stocks and have a net gain of exp(r(T − t))S̃t −K.
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Therefore the price of a forward with strike price K and maturity T is given at t
through

Ft = S̃t − exp(−r(T − t))K.

2.2. European Call contracts (European Call Option). A European call
is the right but not the obligation to buy one unit of stock at maturity T > 0 for
an amount K, which is fixed at t. We have the (non-linear) payoff-scenario

(S̃T −K)+

at time t = T . The calculation of European call prices Ct in different models is one
major task of this lecture course.

2.3. European Put contracts (European Put Option). A European put
is the right but not the obligation to sell one unit of stock at time T > 0 for an
amount K, which is fixed at t = 0. We have the (non-linear) payoff-scenario

(S̃T −K)−

at time t = T . We denote the put price by Pt. We obtain the put-call parity by
observing that

Ct − Pt = S̃t −K exp(−r(T − t))
has to be the price of the forward contract with strike price K.

3. No Arbitrage Theory for discrete models

This is the main section for no arbitrage theory, all the mathematical notions
can be found in Part 3.

A discrete model for a financial market is an adapted (d + 1) -dimensional

stochastic process S with S̃n := (S̃0
n, . . . , S̃

d
n) for n = 0, . . . , N on a finite probability

space (Ω,F , P ) with filtration F0 ⊂ · · · ⊂ FN with FN = F . We shall always

assume that all σ-algebras contain all P -nullsets. The price process (S̃0
n)n=0,...,N is

assumed to be strictly positive and called the riskless asset (even if it is stochastic)

and we define S̃0
0 = 1. We think of a bank account, where one can freely move

money. The coefficients βn := 1

S̃0
n

for n = 0, . . . , N are called discount factors. The

assets S1, . . . Sd are called risky assets.
A trading strategy is a predictable stochastic process φ with φn = (φ0

n, . . . , φ
d
n)

for n = 0, . . . , N . We think of a portfolio formed by an amount of φ0
n in the bank

account and φin units of risky assets, at time n. The value or wealth at time n of
such a portfolio is

Ṽn(φ) = φnS̃n :=

d∑
i=0

φinS̃
i
n

for n = 0, . . . , N . The discounted value process is given through

Vn(φ) = βn(φnS̃n) = φnSn

for n = 0, . . . , N , where Sn = βnS̃n denotes the discounted price process.
A trading strategy φ is called self-financing if

φnS̃n = φn+1S̃n

for n = 0, . . . , N − 1. We interpret this condition that the portfolio rebalancing at
time n is done without bringing in or consuming any wealth.
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This condition is obviously equivalent to

φn+1(S̃n+1 − S̃n) = φn+1S̃n+1 − φnS̃n
and therefore

Ṽn+1(φ)− Ṽn(φ) = φn+1(S̃n+1 − S̃n)

for n = 0, . . . , N − 1, which means that the changes of the value process are due to
changes in the stock prices.

3.1. Proposition. Let S = (S0, . . . , Sd) be a discrete model of a financial
market and φ a trading strategy, then the following assertions are equivalent:

(1) The strategy φ is self-financing.
(2) For n = 1, . . . , N we have

Ṽn(φ) = Ṽ0(φ) + (φ · S̃)n.

(3) For n = 1, . . . , N we have

Vn(φ) = V0(φ) + (φ · S)n.

Proof. The equivalence of 1. and 2. results from the previous remark. The
equivalence of 1. and 3. results from the fact that φ is self-financing if and only if

φnSn = φn+1Sn

for n = 1, . . . , N , which leads to

φn+1(Sn+1 − Sn) = φn+1S̃n+1 − φnSn
and therefore the result as in 2. Notice that therefore

Vn(φ) = V0(φ) +

n∑
j=1

d∑
i=1

φij(S
i
j+1 − Sij).

The 0-th component does not enter in the calculation since S0
j+1 = 1 and therefore

the increments vanishes. �

A self-financing trading strategy φ can also be given through the initial value
V0(φ) and (φ1, . . . , φd), which is proved in the following proposition:

3.2. Proposition. For any predictable process (φ1, . . . , φd) and for any value
V0 there exists a unique predictable process φ0 such that (φ0, . . . , φd) is a self-

financing trading strategy with V0(φ) = V0 such that Ṽn(φ) = Ṽ0 + (φ · S̃)n for
n = 0, . . . , N .

Proof. If we have a self-financing trading strategy the formula

Vn(φ) = φ0
n + φ1

nS
1
n + · · ·+ φdnS

d
n

= V0 + (φ · S)n

holds, wherefrom we can calculate φ0. The process φ0 is predictable since

φ0
n = V0 + (φ · S)n−1 − φ1

nS̃
1
n−1 − · · · − φdnSdn−1.

�

A trading strategy φ is called admissible if there is C ≥ 0 such that Vn(φ) ≥ −C
for n = 0, . . . , N .
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3.3. Definition. Let S = (S0, . . . , Sd) be a discrete model for a financial mar-
ket, then the model is called arbitrage-free if for any trading strategy φ the assertion

V0(φ) = 0 and VN (φ) ≥ 0, then VN (φ) = 0

holds true. We call a trading strategy φ an arbitrage opportunity (arbitrage strat-
egy) if V0(φ) = 0 and VN (φ) 	 0.

3.4. Definition. A contingent claim (derivative) is an element X̃ of L2(Ω,F , P ).

We denote by X the discounted price at time N , i.e. X̃ = 1

S̃0
N

X̃. We call the sub-

space of K ⊂ L2(Ω,F , P )

K := {VN (φ)| φ self-financing trading strategy, V0(φ) = 0}
= {(φ · S)N | φ predictable}

the space of (discounted) contingent claims attainable at price 0 (see Proposition
3.2). We call the convex cone

C = {Y ∈ L2(Ω,F , P )| there is X ∈ K such that X ≥ Y } = K − L2
≥0(Ω,F , P )

the cone of claims super-replicable at price 0 or the outcomes with zero investment
and consumption. A contingent claim X is called replicable at price x and at time
N if there is a self-financing trading strategy φ such that

X = x+ (φ · S)N ∈ x+K.

A contingent claim X is called super-replicable at price x and at time N if there
is a self-financing trading strategy φ such that

X ≤ x+ (φ · S)N ∈ x+K,

in other words if X ∈ C.

3.5. Remark. The set K is a subspace of L2(Ω,F , P ) and the positive cone
L2
≥0(Ω,F , P ) is polyhedral, therefore by C is closed by Proposition 4.11.

We see immediately that a discrete model for a financial market is arbitrage-free
if

K ∩ L2
≥0(Ω,F , P ) = {0},

which is equivalent to

C ∩ L2
≥0(Ω,F , P ) = {0}.

Given a discrete model for a financial market, then we call a measure Q equivalent
to P an equivalent martingale measure with respect to the numeraire S0 if the
discounted price process Si are Q-martingales for i = 0, . . . , N . We denote the set

of equivalent martingale measures with respect to the numeraire S0 byMe(S̃, S̃0).

If the numeraire satisfies S̃0 = 1 we shall write Me(S). We denote the absolutely

continuous martingale measures with respect to the numeraire S̃0 by Ma(S̃, S̃0).

If the numeraire satisfies S̃0 = 1 we shall write Ma(S).

3.6. Theorem. Let S̃ be a discrete model for a financial market, then the
following two assertions are equivalent:

(1) The model is arbitrage-free.
(2) The set of equivalent martingale measures is non-empty, Me(S) 6= ∅.
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Proof. We shall do the proof in two steps. First we assume that there is an
equivalent martingale measure Q ∼ P with respect to the numeraire S0. We want
to show that there is no arbitrage opportunity. Let φ be a self-financing trading
strategy and assume that

V0(φ) = 0, VN (φ) ≥ 0

then the discounted value process of the portfolio

Vn(φ) = (φ · S)n

is a martingale with respect to Q by Theorem 5.6,1 and therefore

EQ(VN (φ)) = 0.

Hence we obtain by equivalence VN (φ) = 0 since VN (φ) ≥ 0, so there is no arbitrage
opportunity.

Next we assume that the market is arbitrage-free. Then

K ∩ L2
≥0(Ω,F , P ) = {0}

and therefore we find a linear functional l that separates K and the compact, convex
set

{Y ∈ L2
≥0(Ω,F , P )| E[Y ] = 1},

i.e. l(X) = 0 for all X ∈ K and l(Y ) > 0 for all Y ∈ L2
≥0(Ω,F , P ) with∑

ω∈Ω Y (ω) = 1. We define

Q(ω) =
l(1A)

l(1Ω)

for atoms A ∈ A(F) and obtain an equivalent probability measure Q ∼ P , since
l(1A) > 0 for atoms with P (A) > 0. We have in particular from separation

EQ((φ · S)N ) = 0

for any predictable processes φ. Therefore S is a Q-martingale by Theorem 5.1,
2. �

Now we can formulate a basic pricing theory for contingent claims.

3.7. Definition. A pricing rule for contingent claims X̃ ∈ L2(Ω,F , P ) at time
N is a map

X̃ 7→ π̃(X̃)

where π̃(X̃) = (π̃n(X̃))n=0,...,N is an adapted stochastic process, which determines

the price of the claim at time N at time n ≤ N . In particular π̃N (X̃) = X̃ for

any X̃ ∈ L2(Ω,F , P ). A pricing rule is arbitrage-free if for any finite set of claims

X̃1, . . . , X̃k the discrete time model of a financial market

(S̃0, S̃1, . . . , S̃d, π̃(X̃1), . . . , π̃(X̃k))

is arbitrage-free. The corresponding discounted prices are denoted without tildes.

Next we introduce arbitrage free pricing rules for payoffs payable at time N ,
and how to calculate them:
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3.8. Lemma (arbitrage-free prices). Let π(X̃) be an arbitrage-free pricing rule

for each contingent claim X̃X, then the discrete model (S0, . . . , Sd) is arbitrage-free
and there is Q ∈Me(S) such that

π̃n(X̃) = EQ(
S̃0
n

S̃0
N

X̃|Fn).

If the discrete time model S is arbitrage-free, then

π̃n(X̃) = EQ(
S̃0
n

S̃0
N

X̃|Fn)

is an arbitrage-free pricing rule for any contingent claims X̃ ∈ L2(Ω,F , P ). Hence
the only arbitrage-free prices are conditional expectation of the discounted claims
with respect to Q. In discounted terms pricing rules look like

πn(X) = EQ(X|Fn)

for n = 0, . . . , N and one equivalent martingale measure.

Proof. If the market (S0, S1, . . . , Sd, π(X)) is arbitrage-free, we know that
there exists an equivalent martingale measure Q such that the discounted prices
are Q-martingales. Hence in particular

π̃n(X̃)

S̃0
n

is a Q-martingale, so

E(
π̃N (X̃)

S̃0
N

|Fn) = E(
X̃

S̃0
N

|Fn) =
π̃n(X̃)

S̃0
n

,

which yields the desired relation.
Given an arbitrage-free discrete model S and define the pricing rules by the

above relation for one equivalent martingale measure Q ∈ Me(S), then the whole
market is arbitrage-free by the existence of at least one equivalent martingale mea-
sure, namely Q. �

3.9. Remark. Taking not an equivalent but only an absolutely continuous
martingale measure Q ∈ Ma(S) means that there is at least one event A with
P (A) > 0 such that Q(A) = 0. Hence the claim 1A with P (A) > 0 would have
price 0, which immediately leads to arbitrage by entering this contract. Therefore
only equivalent martingale measures are possible for pricing.

3.10. Remark. The set of equivalent martingale measures is a subset of the
set of absolutely continuous martingale measures Ma(S) ⊂ Me(S). Given Qa ∈
Ma(S) and Qe ∈ Me(S), then necessarily Qt := tQe + (1 − t)Qa ∈ Me(S) for
t ∈]0, 1]. Therefore Qa = limt→1Qt, whence equivalent martingale measures are
dense in absolutely continuous ones.

The set of equivalent martingale measuresMe(S) is convex and the setMa(S)

is compact and convex. Therefore the analysis of the extreme points of Ma(S̃) is
of particular importance.
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3.11. Remark. Given an arbitrage-free financial market such thatMe(S) con-
tains more than one measure. Then an equivalent martingale measure Q ∈Me(S)
can never be an extreme point of Ma(S). Assume that there were an extreme
point Q ∈ Me(S) of Ma(S) and take Q0 6= Q with Q0 ∈ Me(S). Then we
know that the segment tQ + (1 − t)Q0 ∈ Me(S). For t near 1 we also have
equivalent martingale measures. We also know that C is finitely generated by
〈h1, . . . , hM ,−h1, . . . ,−hM ,−e1, . . . ,−ek〉con, where h1, . . . , hM is a basis of K and
e1, . . . , ek generates the non-negative cone L2

≥0(Ω,F , P ). An equivalent martingale

measure Qt is defined via the relation EQt(C) ≤ 0. The Qt are equivalent martin-
gale measures since EQt(hi) = 0 and EQt(ei) < 0. So we can continue a little bit in
t-direction beyond 1 and obtain again equivalent martingale measures, too. Hence
Q cannot be an extreme point, since it is a middle point of two equivalent martin-
gale measures. Therefore an extreme point is necessarily absolutely continuous and
not equivalent to P .

3.12. Theorem. Let S be a discrete model for a financial market and assume

Me(S) 6= ∅ and Ma(S̃) = 〈Q1, . . . , Qm〉 Then for any X ∈ L2(Ω,F , P ) the follow-
ing assertions are equivalent:

(1) X ∈ K (X ∈ C).
(2) For all Q ∈ Me(S) we have EQ(X) = 0 (for all Q ∈ Me(S) we have

EQ(X) ≤ 0).
(3) For all Q ∈ Ma(S) we have EQ(X) = 0 (for all Q ∈ Ma(S) we have

EQ(X) ≤ 0).
(4) For all i = 1, . . . ,m we have EQi(X) = 0 (for all i = 1, . . . ,m we have

EQi(X) ≤ 0).

Proof. We shall calculate the polar cone of the cone C,

C0 = {Z ∈ L2(Ω,F , P ) such that EP (ZX) ≤ 0}

by definition. For Q ∈ Ma(S) we calculate the random Nikodym-derivative dQ
dP

and see that

EP (
dQ

dP
X) = EQ(X) = EQ((φ · S)N + Y )

for Y ≤ 0, hence – due to the fact that Q is a martingale measure (so the expectation
of the stochastic integral vanishes) – we obtain

EP (
dQ

dP
X) = EQ(Y ) ≤ 0.

Consequently λdQdP ∈ C
0 for λ ≥ 0 and Q ∈ Ma(S). Given now Z ∈ C0, then by

the definition of the polar cone we obtain

EP (ZX) ≤ 0

for all X ∈ C. Since −L2 ⊂ C we obtain Z ≥ 0. Assume Z 6= 0, so

EP (
Z

EP (Z)
(φ · S)N ) ≤ 0

for all self-financing trading strategies φ. Replacing φ by −φ we arrive at

EP (
Z

EP (Z)
(φ · S)N ) = 0,
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which means that Z
EP (Z) ∈ M

a(S) by Doob’s theorem. Hence the polar cone of C

is exactly given by the cone generated by dQ
dP for Q ∈ Ma(S) and therefore all the

assertion hold by the bipolar theorem.

C0 =

〈
dQ1

dP
, . . . ,

dQm
dP

〉
cone

,

C00 = C = {X ∈ L2(Ω,F , P ) such that EQi(X) ≤ 0 for i = 1, . . . ,m}.

K0 =

〈
dQ1

dP
, . . . ,

dQm
dP

〉
vector

,

K00 = K = {X ∈ L2(Ω,F , P ) such that EQi(X) = 0 for i = 1, . . . ,m}.
�

The last step of the general theory is the distinction between complete and
incomplete markets and a renewed description of pricing procedures in the light of
optional decomposition.

3.13. Definition. Let S be a discrete model for a financial market and as-
sume Me(S) 6= ∅. The financial market is called complete if Me(S) = {Q},
i.e. the equivalent martingale measure is unique. The financial market is called
incomplete if Me(S) contains more than one element. In this case Ma(S) =
〈Q1, . . . , Qm〉convex for linearly independent measures Qi, i = 1, . . . ,m and m ≥ 2.

3.14. Theorem (complete markets). Let S be discrete model of a financial
market with Me(S) 6= ∅. Then the following assertions are equivalent:

(1) S is complete financial market.
(2) For every claim X there is a self-financing trading strategy φ such that

the claim is replicated, i.e.

VN (φ) = X

holds for at least one self-financing portfolio.
(3) For every claim X there is a predictable process φ and a unique number x

such that the discounted claim can be replicated, i.e.

X̃ = x+ (φ · S).

(4) There is a unique pricing rule for every claim X.

Proof. We can collect all conclusions from the previous results. 2. and 3. are
clearly the same by discounting.

1.⇒2.: If S is complete, then there is a unique equivalent martingale measure
Q such that the discounted stock prices are Q-martingales. Take a claim X, then
we know by Lemma 3.8 that

πn(X) = EQ(X|Fn)

is the only arbitrage-free pricing rule for X at time n, since there is only one
martingale measure Q. Take now x = π0(X) = EQ(X), then EQ(X − x) = 0 and
hence by Theorem 4 X − x ∈ K, which is the second statement. 2. is equivalent to
3.: Any self-financing portfolio is of the form

x+ (φ · S)N ,

and vice versa.
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2.⇒4.: Given a claim X. If we are given a portfolio φ, which replicates the
claim X, then we know that for any pricing rule we have

πn(X) = Vn(φ)

for n = 0, . . . , N . Therefore the pricing rule is uniquely given by the values of the
portfolio.

4.⇒1.: If we have a unique pricing rule π(X) for any claim X, then we know
by Lemma 3.8 that we have an equivalent martingale measure, and it has to be
unique, since two different martingale measures would lead to two different pricing
rules for at least one claim. �

3.15. Example. The Cox-Ross-Rubinstein model is a complete financial mar-
ket model: The CRR-model is defined by the following relations

S̃0
n = (1 + r)n

for n = 0, . . . , N and r ≥ 0 is the numeraire process.

S̃n+1 :=

{
S̃n(1 + a)

S̃n(1 + b)

for −1 < a < b and n = 0, . . . , N . We can write the probability space as {1 +a, 1 +
b}N and think of 1 +a as ”down movement” and 1 + b as up-movement. Every path

is then a sequence of ups and downs. The σ-algebras Fn are given by σ(S̃0, . . . , S̃n),
which means that atoms of Fn are of the type

{(x1, . . . , xn, yn+1, . . . , yN ) for all yn+1, . . . , yN ∈ {1 + a, 1 + b}}

with x1, . . . , xn ∈ {1+a, 1+ b} fixed. Hence the atoms form a subtree, which starts
after the moves x1, . . . , xn.

The returns (Ti)i=1,...,N are well-defined by

Ti :=
S̃i

S̃i−1

for i = 1, . . . , N . This process is adapted and each Ti can take two values

Ti =

{
1 + a
1 + b

with some specified probabilities depending on i = 1, . . . , N . We also note the
following formula

S̃n

m∏
i=n+1

Ti = S̃m

for m ≥ n. Hence it is sufficient for the definition of the probability on (Ω,F , P )
to know the distribution of (T1, . . . , TN ), i.e.

P (T1 = x1, . . . , TN = xN )

has to be known for each xi ∈ {1 + a, 1 + b}.

3.16. Proposition. Let −1 < a < b and r ≥ 0, then the CRR-model is
arbitrage-free if and only if r ∈]a, b[. If this condition is satisfied, then martingale
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measure Q for the discounted price process ( S̃n
(1+r)n )n=0,...,N is unique and char-

acterized by the fact that (Ti)i=1,...,N are independent and identically distributed
and

Ti =

{
1 + a with probability 1− q

1 + b with probability q

for q = r−a
b−a .

Proof. The proof is done in several steps: First we assume that there is an

equivalent martingale measure Q for the discounted price process ( S̃n
(1+r)n )n=0,...,N .

Then we can prove immediately that for i = 0, . . . , N − 1

EQ(Ti+1|Fi) = 1 + r

simply by

EQ(
S̃i+1

(1 + r)i+1
|Fi) =

S̃i
(1 + r)i

EQ(
S̃i+1

S̃i
|Fi) = 1 + r.

Taking this property we see by evaluation at i = 0 that

EQ(T1) = 1 + r

= Q(T1 = 1 + a)(1 + a) +Q(T1 = 1 + b)(1 + b),

r = Q(T1 = 1 + a)a+Q(T1 = 1 + b)b,

since Q(T1 = 1 + a) + Q(T1 = 1 + b) = 1 and both are positive quantities. Hence
r ∈]a, b[.

On the other hand the only solution of

(1− q)(1 + a) + q(1 + b) = 1 + r

is given through q = r−a
b−a . Therefore under the martingale measure Q the condition

on conditional expectations of the returns Ti reads as

EQ(1{Ti+1=1+a}|Fi) = 1− q,
EQ(1{Ti+1=1+b}|Fi) = q

and consequently the random variables are independent and identically distributed
as described above under Q. Take the case of two returns, then

Q(T1 = 1 + a, T2 = 1 + a) = EQ(1{T2=1+a}1{T1=1+a})

= EQ(EQ(1{T2=1+a}|F1)1{T1=1+a}) = (1− q)EQ(1{T1=1+a})

= (1− q)2.

Therefore the equivalent martingale measure is unique and given as above.
To prove existence of Q we show that the returns satisfy

EQ(Ti+1|Fi) = 1 + r

for i = 0, . . . , N − 1 if we choose Q as above. If the returns are independent, then

EQ(Ti+1|Fi) = EQ(Ti)

which equals 1 + r in the described choice of the measure. �
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3.17. Example. We can calculate the limit of a CRR-model. Therefore we
assume

ln 1 + a = − σ√
N

ln 1 + b =
σ√
N
,

which yields i.i.d random variables

Ti =

{
1 + a with probability 1− q

1 + b with probability q

with q = b
b−a =

exp( σ√
N

)−1

exp( σ√
N

)−exp(− σ√
N

) denotes the building factor of the martingale

measure. The stock price in the martingale measure is given by

S̃n = S̃0

n∏
i=1

Ti

= S̃0 exp(

n∑
i=1

lnTi).

The random variables lnTi take values − σ√
N
, σ√

N
with probabilities q and 1− q, so

EQ(lnTi) =
σ√
N
− σ√

N

2 exp( σ√
N

)− 2

exp( σ√
N

)− exp(− σ√
N

)

=
σ√
N

2− exp( σ√
N

)− exp(− σ√
N

)

exp( σ√
N

)− exp(− σ√
N

)

EQ(ln(Ti)
2) =

σ2

N
.

Therefore the sums
∑n
i=1 lnTi satisfy the requirements of the central limit theorem,

namely
N∑
i=1

lnTi =
1√
N

N∑
i=1

√
N lnTi → N(−σ

2

2
, σ2)

in law for N →∞, since EQ(N lnTi)→ −σ
2

2 as N →∞ and
√
N lnTi take values

−σ, σ.
Consequently for every bounded, measurable function ψ on R≥0 we obtain

EQ(ψ(

n∑
i=1

lnTi))→
1√
2π

∫ ∞
−∞

ψ(−σ
2

2
+ σx)e−

x2

2 dx.

3.18. Example. We can write down in a concrete example the relevant quan-

tities. Take S̃0 = 1, a = − 1
2 and b = 1, r = 0. In this case we want to calculate the

attainable claims K. We do this by calculating all stochastic integrals: We calculate
first the increments and write them as vectors in R4,

(S̃1 − S̃0) =


1
1
− 1

2
− 1

2

 , (S̃2 − S̃1) =


2
−1
1
2
− 1

4

 .
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Predictable processes are given by φ1 and φ2,

φ1 =


4a
4a
4a
4a

 , φ1 =


4b
4b
4c
4c


for real numbers a, b, c. Therefore

K = {


4a+ 8b
4a− 4b
−2a+ 2c
−2a− c

 for a, b, c ∈ R}.

This in turn is a 3-dimensional subspace which can be expressed by one equation
namely

x1 + 2x2 + 2x3 + 4x4 = 0,

where we can directly read of the equivalent martingale measure Q

Q =


1
9
2
9
2
9
4
9


which demonstrates the assertions.

To understand the situation for incomplete markets we have to work with the
notion of cones and duality relations as described in Theorem 4.

3.19. Theorem (incomplete markets). Let S be discrete model of a financial
market with Me(S) 6= ∅. Then the following assertions are equivalent:

(1) S is incomplete financial market.
(2) There is at least one claim X, which cannot be replicated.

For every claim X there is a self-financing trading strategy φ such that the
claim can be super-replicated at a minimal initial wealth, i.e. the super-replication
problem

η(X) := inf{V0(x) | VN (φ) ≥ X and V (φ) self-financing }
has a finite solution and in fact eta(x) is attained at a portfolio V (φ), which is
called a super-replication portfolio.

In particular we have that the no arbitrage prices at time 0 form an non-empty,
open interval ]π↓(X), π↑(X)[ if π↓(X) < π↑(X) with

π↓(X) = inf{EQ(X) for Q ∈Me(S)},
π↑(X) = sup{EQ(X) for Q ∈Me(S)}.

The case π(X)↓ = π(X)↑ (there is only one no-arbitrage price for the claim X)
occurs if and only if X is attainable. In both cases the super-replication coincides
with the upper bound of the interval, i.e. η(X) = π↑(X).

Proof. We assume that the market is arbitrage-free. By the theorem on
complete markets the market is incomplete if and only if there is one claim which
cannot be replicated, which shows the first equivalence.
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Let us consider the super-replication problem now: We directly construct one
solution first. For each claim X we can find a number x such that

EQ(X − x) ≤ 0

for all Q ∈Ma(S), so by the (bipolar) Theorem 4

X = x+ (φ · S)− Y ≤ x+ (φ · S)N ,

where Y is some non-negative random variable. There is a minimal number satis-
fying all first inequalities, which is

sup
Q∈Ma(S)

EQ(X) .

If η(X) < supQ∈Ma(S)EQ(X), then there is a self-financing portfolio V (φ) dom-

inating X at N , i.e. VN (φ) ≥ X. However, VN (φ) = V0(φ) + (φ · S)N , hence
EQ(X) ≤ V0(φ) for all absolutely continuous martingale measures Q ∈Ma(S) and
therefore a contradiction.

Taking both assertions together we obtain η(X) = supQ∈Ma(S)EQ(X).
For the additional assertions we have to work a bit harder. First we show that

under the assumption of replication

X = x+ (φ · S)N

there is only one pricing rule. Whence it follows immediately that

πn(X) = x+ (φ · S)n

for all absolutely continuous martingale measures Q ∈ Me(S), n = 0, . . . , N , by
Doob’s theorem. Hence for attainable claims there is only one pricing rule x+ (φ ·
S). On the other hand: if there is only one pricing rule, then the claim must be
attainable by Theorem 4.

Assume that π↓(X) < π↑(X) and that there is an arbitrage-free pricing rule
π(X) with π(X)0 ≥ π↑(X). In particular the claim is not attainable. Then there
is an equivalent martingale measure Q ∈Me(S) such that π(X)0 = EQ(X), hence
π(X)0 = π↑(X). Therefore EQ(X − π0(X)) ≤ 0 and so there is a predictable
strategy φ such that (φ · S)N ≥ X − π0(X), where equality does not hold. Hence
we have constructed an arbitrage in the market extended by the pricing rule π(X).
For the lower bound we argue similarly and for any number between the lower and
upper bound we can actually find an equivalent measure realizing it by convexity.

If now the pricing interval degenerates, i.e.

{x} = {EQ(X) for Q ∈Me(S)},

then we know that EQ(X − x) = 0 for all Q ∈ Ma(S) and therefore there is a
predictable strategy φ such that

X − x = (φ · S)N ,

whence the claim is attainable by Theorem 4. �
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3.20. Example (incomplete market). We give ourselves a stochastic process
representing a risky asset with 2 periods,

S0 =


1
1
1
1
1

 , S1 =


3
3
3
1
3
1
3

 , S2 =


9
4
1
1
1
9


and interest rate r = 0. This leads to the increments

S1 − S0 =


2
2
2
− 2

3
− 2

3

 , S2 − S1 =


6
1
−2
2
3
− 2

9


and therefore

K = {


2a+ 6b
2a+ b
2a− 2b
− 2

3a+ 2
3c

− 2
3a−

2
9c

 for a, b, c ∈ R}.

The set of outcomes with 0 initial investment can be characterized by the two
equations

x1 + 3x3 + 3x4 + 9x5 = 0,

8x2 + 4xl3 + 9x4 + 27x5 = 0.

The set of outcomes with 0 initial investment and some consumption is characterized
by

x1 + 3x3 + 3x4 + 9x5 ≤ 0,

8x2 + 4x3 + 9x4 + 27x5 ≤ 0.

Hence the set of absolutely continuous martingale measures is given by

Ma(S) =Ma(S) = {Qt := t


1
16
0
3
16
3
16
9
16

+ (1− t)


0
8
48
4
48
9
48
27
48

 for t ∈ [0, 1]}.

The set of equivalent martingale measures is given by

Me(S) = {Qt for t ∈]0, 1[}.

In this example we nicely calculate the pricing interval for a European call with
strike price K = 6 and N = 2. This yields the payoff

X =


3
0
0
0
0


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and consequently

π↑(X) =
3

16
,

π↓(X) = 0.

The set of arbitrage-free prices is therefore given by ]0, 3
16 [. The price 3

16 is the
smallest price for super-replication and one can easily calculate the super-replicating
strategy.

Given a financial market (S̃0
n, S̃

1
n, . . . , S̃

d
n)n=0,...,N on a probability space (Ω,F , P )

with filtration (Fn)n=0,...,N . Without restriction we assume d = 1 and S̃0
n = 1 for

n = 0, . . . , N , since
Ma(S1, . . . , Sd) = ∩di=1Ma(Si).

So if we are able to calculate the martingale measures for a one asset model, we
can do it in general easily for an Rd-valued process.

3.21. Example. Take now the defining definition for a martingale (Sn)n=0,...,N ,
namely

EQ(Sn|An−1) = Sn−1(An−1)

for all values Sn−1(An−1). Notice that on atoms An−1 of Fn−1 the random variable
Sn−1 are single-valued. Atoms are just other names for nodes in trees, if one prefers
this language. We define for all atoms of Fn−1 of the conditional probabilities

EQ(1{An}|An−1) = qAn−1(An),

which is 0 if An−1 ∩An = ∅. Then we obtain the equations∑
An∈A(Fn)

qAn−1(An)Sn(An) = Sn−1(An−1),

∑
An∈A(Fn)

qAn−1(An) = 1,

qAn−1(An) ≥ 0,

which can be solved if the model is arbitrage-free. The martingale measures Q are
given through

Q(An) = EQ(1An) = EQ(1An |An−1)Q(An−1) .

In the next step one reduces time by 1 and one does the same sort of calculus for
the atoms of Fn−1. By induction we arrive at n = 0, wherefrom we can restart to
calculate back all the absolutely continuous martingale measures.

Assume now thatMa(S1) = 〈Q1, . . . , Qm〉 for m ≥ 1 (both cases are included,
complete or incomplete), then we want to calculate (super)replicating strategies.
Given a claim X there is one Qi for some i ∈ {1, . . . ,m} such that

π↑(X) = EQi(X),

which is trivial in the complete case and requires some reasoning in the incomplete
one. Then calculate the conditional expectations of X with respect to Qi

Xn := EQi(X|Fn)

for n = 0, . . . , N . The difference Xn −Xn−1 for n = 1, . . . , N is then

Xn −Xn−1 = φn(Sn − Sn−1)



3. NO ARBITRAGE THEORY FOR DISCRETE MODELS 17

for some predictable process φn, which can be easily calculated from this equation
for n = 1, . . . , N .

In the sequel we shall formulate most of the assertions with respect to a basis
in L2(Ω,F , P ). We shall assume (which is in our case not a real restriction), that
F = 2Ω and P (ωi) > 0 for i = 1, . . . , |Ω|. We choose (1{ω})ω∈Ω and identify

L2(Ω,F , P ) with some R|Ω|. Hence we can apply our duality theory for cones.

3.22. Proposition. Let S be a discrete model for a financial market and as-
sume Me(S) 6= ∅. Then there are linearly independent measures Q1, . . . , Qn such
that

Ma(S) = 〈Q1, . . . , Qn〉convex ,
the polar cone C0 equals

C0 =

〈
dQ1

dP
, . . . ,

dQn
dP

〉
cone

.

Furthermore the Qi have at least n− 1 zeros, where n equals the codimension of K.

Proof. The polar cone C0 is polyhedral and therefore generated by finitely
many elements dQ1

dP , . . . ,
dQm
dP . The set of absolutely continuous martingale measures

Ma(S) is given by taking the correct normalization, since C0 ⊂ L2
≥0(Ω,F , P ).

The codimension of K is denoted by n. We choose a maximal set of linearly
independent measures Q1, . . . , Qr ∈ Ma(S) (after reordering). We claim that

r = n and K0 =
〈
dQ1

dP , . . . ,
dQn
dP

〉
vector

. Given Qi for i = 1, . . . , r, the expectation

EQi(X) = EP (dQdPX) = 0 for X ∈ K by assumption, so
〈
dQ1

dP , . . . ,
dQn
dP

〉
vector

⊂ K0.

Given X ∈ K0 such that EQi(X) = 0 for i = 1, . . . , r, we know by maximality
of the set Q1, . . . , Qr, that every extremal point Qi for i = 1, . . . ,m is a linear
combination of Q1, . . . , Qr, hence

EQi(X) = 0 for i = 1, . . . ,m

and therefore X ∈ K, which yields X = 0. In particular n ≤ m.
We want to prove n = m and we proceed by induction with respect to |Ω|.

More precisely, we prove by induction that m = n and that there is a permutation
π ∈ Sn such that for i, j ∈ {1, . . . , n}

dQπ(i)

dP
(ωi) > 0 for j = i,

dQπ(i)

dP
(ωj) = 0 for j 6= i

and

#{i|Qi(ωk) = 0} =

{
n− 1

0

holds.
The result holds for |Ω| = 2. Fix |Ω| > 2 and take K ⊂ L(Ω,F , P ) with

K∩L(Ω,F , P ) = {0}. We know that there arem ≥ n extremal martingale measures.
Without restriction we assume that the first component of one extremal martingale
measure vanishes. The projection

p1 : R|Ω| → R|Ω|−1

(x1, . . . , x|Ω|) 7→ (x2, . . . , x|Ω|)
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is injective on K by assumption. The polar cone of p1(K)−R|Ω|−1
≥0 is generated by

linearly independent extremal measures
dQ′2
dP ′ , . . . ,

dQ′n
dP ′ with the above conditions by

the the induction hypothesis (notice that p1(K)∩R|Ω|−1
≥0 = {0}). The obvious exten-

sions Q2, . . . , Qn via a vanishing first component are extremal martingale measures
for the original problem. There is an extremal measure Q1 with a non-vanishing
first component by no arbitrage. The set dQ1

dP ,
dQ2

dP , . . . ,
dQn
dP is then a basis of K0 by

the first observation. Here we fix a numbering of the extremal martingale measures
of K by Q1, . . . , Qm with m ≥ n.

Given ωk with Q1(ωk) = 0, then we either obtain pk(Qi) for some i = 1, . . . ,m
(except one) as extremal martingale measures for pk(K) or we need some additional
pk(Qj0) for some j0 = n + 1, . . . ,m. The second case only occurs if there are two
i1 6= i2 ∈ {2, . . . , n} such that the k-th component of Qi1 and Qi2 does not van-
ish, hence a contradiction to the assumption. Vice versa doing the construction
with the n − 1 zeros of Q2, . . . , Qn we obtain at least n − 1 zeros for Q1. Con-
sequently Qi, Q2, . . . , Qn satisfy the above properties, therefore Qn+1, . . . , Qm are
convex combinations of Qi, Q2, . . . , Qn. This means – by construction – m = n. �



Part 2

Continuous time models



In this chapter we are going to apply the intuition from discrete models for the
pricing and hedging of contingent claims in continuous time models. We are finally
going to prove the Black-Scholes formula and some hedging formulas.

The driving engine of many well-known continuous time models is Brownian
motion. We shall provide the basic definition of it in dimension 1 and are already
able to work out one basic example of continuous time models.

3.23. Definition. Let (Ω,F , P ) be a probability space and (Ft)t≥0 a filtration
of σ-algebras which satisfies the usual conditions, i.e.

• the σ-algebra Ft contains all P -nullsets.
• right continuity holds, ∩t>sFt = Fs for s ≥ 0.

Brownian motion then is a stochastic process (Bt)t≥0 such that

• Bt is Ft-measurable for t ≥ 0 (the process is adapted to the filtration).
• Bt −Bs is independent of Fs for t ≥ s ≥ 0.
• Bt −Bs is normally distributed N(0, t− s) for t ≥ s ≥ 0.
• B0 = 0.

Furthermore we assume already in the definition that the paths of Brownian
motion are continuous, i.e. for all ω ∈ Ω the curve

t 7→ Bt(ω)

is continuous. The same definition can be done on [0, T ] and yields a Brownian
motion on [0, T ].

We can immediately draw some basic conclusions:

3.24. Lemma. Let (Bt)t≥0 be a Brownian motion on (Ω,F , P ), then

(1) Brownian motion is a martingale, i.e. E(Bt|Fs) = Bs for t ≥ s.
(2) the random variables Bt1 , Bt2 −Bt1 , . . . , Btn −Btn−1

are independent for
0 ≤ t1 ≤ t2 ≤ · · · ≤ tn and n ≥ 1.

Proof. We insert directly into the definition. �

We can now give the basic definition of a financial market with finite time
horizon T > 0, such that second moments exist and interest rates are constant.

3.25. Definition. Let (Ω,FT , P ) be a probability space and (Ft)0≤t≤T a filtra-
tion of σ-algebras which satisfies the usual conditions. A financial market is given

by a bank account process S̃0
t = exp(rt), where r ≥ 0 denotes the interest rate,

and an adapted process (S1
t )0≤t≤T with continuous paths. We assume that S1

t ∈
L2(Ω,FT , P ) and S1

0 > 0 is a constant. A simple portfolio (ψt, φt)0≤t≤T is given
by stochastic processes (ψt, φt)0≤t≤T such that there is 0 = t0 < t1 < t2 < · · · < tn
and Fi, Gi ∈ L∞(Ω,Fti , P ) for i = 0, . . . , n− 1 such that

ψt =

n−1∑
i=0

Gi1]ti,ti+1](t),

φt =

n−1∑
i=0

Fi1]ti,ti+1](t),

where ψ0 = G0 and φ0 = F0 by definition. The value process is given by

Ṽt(ψ, φ) = ψtS̃
0
t + φtS̃

1
t
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for 0 ≤ t ≤ T . The discounted value process is given by

Vt(ψ, φ) = ψt + φtS
1
t ,

with S1
t = exp(−rt)S̃1

t for 0 ≤ t ≤ T . A simple portfolio is called self-financing if
for i = 0, . . . , n− 1 we have

ψti S̃
0
ti + φti S̃

1
ti = ψti+1

S̃0
ti + φti+1

S̃1
ti .

We denote by K the space of all discounted outcomes at initial investment 0.

As in discrete time we can characterize the discounted outcomes by simple
stochastic integrals.

3.26. Lemma. Given a financial market, then for every self-financing portfolio
(ψt, φt)0≤t≤T we obtain

Ṽt(ψ, φ) = V0(ψ, φ) +

n−1∑
i=0

φti(S
1
ti+1∧t − S

1
ti∧t) = V0(ψ, φ) + (φ · S)t,

hence
K = {(φ · S)T for φ a simple, self-financing trading strategy}

We shall assume a complete framework for the sequel.

3.27. Condition. We shall assume that the L2-closure of K can be described
by

K = {X ∈ L2(Ω,FT , P ) such that EQ(X) = 0}
for some equivalent measure Q ∼ P . We call this market complete.

3.28. Lemma. Given a complete financial market, the measure Q is the unique
absolutely continuous martingale measure for the discounted price process (S1

t )0≤t≤T .
Furthermore

K ∩ L2
≥0(Ω,FT , P ) = {0}.

Proof. The proof is very simple. Since 1A(S1
t −S1

s ) ∈ K for A ∈ Fs and t ≥ s,
we have that

EQ(S1
t − S1

s |Fs) = 0

for t ≥ s, which yields the result. For uniqueness we apply the following argu-
ment: Given X ∈ L∞(Ω,FT , P ), then X −EQ(X) ∈ K. Given another, absolutely
continuous martingale measure Q′, we know that

EQ(k
dQ′

dQ
) = 0

for all k ∈ K. There is a sequence kn ∈ K (which can be chosen uniformly bounded),
which converges to X − EQ(X) almost surely by completeness, hence

EQ(kn
dQ′

dQ
)→ EQ((X − EQ(X))

dQ′

dQ
)

as n→∞, hence

EQ((X − EQ(X))
dQ′

dQ
) = 0

for all X ∈ L∞(Ω,FT , P ). Consequently Q′ = Q. For the second assertion we take
Y ∈ K such that Y ∈ L2

≥0(Ω,FT , P ), then

EQ(Y ) = 0,
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hence by equivalence Y = 0. �

3.29. Remark. We see that the set of martingale measures is in fact de-
termined by K in our setting. This is a starting point of a general analysis of
no-arbitrage and no-free-lunch criteria.

We construct now the first main example of a continuous time model, known
as Bachelier model. We assume zero interest rates r = 0 (or equally that the
discounted price process equals SBt ). Let (Bt)0≤t≤T be a Brownian motion on
(Ω,FT , P ) and let S0 > 0 and σ > 0 be constants, then

SBt := S0(1 + σBt)

for 0 ≤ t ≤ T .

3.30. Theorem. For the Bachelier model we have K = {X ∈ L2(Ω,FT , P )
such that EP (X) = 0}, so in particular (SBt )0≤t≤T is a martingale.

Proof. For the proof of this theorem we refer to any text book in stochastic
analysis. The theorem is known as martingale representation theorem. �

Given a derivative Y ∈ L2(Ω,FT , P ), we know from finite dimensional theory
that the only arbitrage-free prices are given through

E(Y |Ft) = π(Y )t

for 0 ≤ t ≤ T . We shall see that in the Bachelier framework this can be easily
calculated, which is the ”main advantage” of continuous time models!

3.31. Theorem. Let S0, σ > 0 be given, then the price of a European call with
strike price K > 0 and maturity T at time t = 0 is given through

C(S0, T,K) = (S0 −K)Φ(
S0 −K
S0σ
√
T

) + S0σ
√
Tφ(

S0 −K
S0σ
√
T

)

with

φ(x) =
1√
2π

exp(−x
2

2
),

Φ(x) =

∫ x

−∞
φ(x)dx.

Proof. The proof is a simple integration with respect to normal distribution.
We calculate

E((ST −K)+) =

∫ ∞
K−S0
S0σ
√
T

(S0(1 + σ
√
Tx)−K)φ(x)dx

= (S0 −K)Φ(
S0 −K
S0σ
√
T

) + S0σ
√
Tφ(

S0 −K
S0σ
√
T

),

which is the result. �

The second important example is the Black-Scholes model. Given µ ≥ 0 and
S0, σ > 0, then

SBSt := S0 exp(µt− σ2

2
t+ σBt)

for 0 ≤ t ≤ T . The process is adapted and has continuous paths. Furthermore it is
a martingale with respect to the following measure.
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3.32. Proposition. Given the Black-Scholes model SBS on [0, T ], the measure
Q on (Ω,FT , P ) by

dQ

dP
= exp(−µ

σ
BT −

µ2

2σ2
T )

is an equivalent martingale measure for SBS.

Proof. We prove first that for a ∈ R the stochastic process on [0, T ]

(exp(−aBt −
a2

2
t))0≤t≤T

is a martingale with respect to the filtration (Ft)0≤t≤T . Therefore we show for
t ≥ s

E(exp(−aBt −
a2

2
t)|Fs) = E(exp(−a(Bt −Bs)−

a2

2
(t− s)) exp(−aBs −

a2

2
s)|Fs)

= exp(−aBs −
a2

2
s)E(exp(−a(Bt −Bs)−

a2

2
(t− s)|Fs)

= exp(−aBs −
a2

2
s) exp(

a2(t− s)
2

) exp(−a
2

2
(t− s))

= exp(−aBs −
a2

2
s),

since Bt − Bs is independent of Fs and is normally distributed N(0, 1). Next we
prove that the process

B̃t = Bt + at

is Brownian motion with respect to the measure QT given by

dQT
dP

= exp(−aBT −
a2

2
T )

on [0, T ]. This means that we have to check all properties for the process (B̃t)0≤t≤T .

Continuity of paths is clear, also adaptedness, furthermore B̃0 = 0, consequently
we have to check independence and the Gaussian property. Therefore we show

EQT (exp(v(B̃t − B̃s))|Fs) = exp(
ν2(t− s)

2
)

for complex ν. We apply Formula 5.7 and obtain

EQT (exp(v(B̃t − B̃s))|Fs) ==
1

Xs
EP (exp(v(B̃t − B̃s))XT |Fs)

=
1

Xs
EP (exp(v(B̃t − B̃s))E(XT |Ft)|Fs)

=
1

Xs
EP (exp(v(B̃t − B̃s))Xt|Fs)

= exp(aBs +
a2

2
s)E(exp(v(Bt −Bs) + va(t− s)) exp(−aBt −

a2

2
t)|Fs)

= E(exp((v − a)(Bt −Bs) + (va− a2

2
)(t− s))|Fs)

= exp(
(v − a)2

2
(t− s) + (va− a2

2
)(t− s))

= exp(
ν2(t− s)

2
)
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for t ≥ s with the martingale

Xs = exp(−aBs −
a2

2
s) = E(exp(−aBT −

a2

2
T )|Fs)

for T ≥ s ≥ 0. Hence we know for a = µ
σ we can write equivalently

SBSt = S0 exp(σB̃t −
σ2

2
t)

for 0 ≤ t ≤ T and therefore by the previous results, the stochastic process (St)0≤t≤T
is a QT -martingale. �

3.33. Theorem. For the Black-Scholes model we have K = {X ∈ L2(Ω,FT , P )
such that EQT (X) = 0}, so in particular (SBSt )0≤t≤T is a QT -martingale.

Proof. Again we refer to any textbook in stochastic analysis. �

Finally we can prove the Black-Scholes formula, which is pricing with respect
to the unique equivalent martingale measure QT .

3.34. Theorem. Given the Black-Scholes model (SBSt )0≤t≤T , a maturity time
T0 ≤ T and a strike price K ≥ 0, the unique price of the European call (ST0

−K)+

without interest rates is given through

C(S0,K, T0) = S0Φ(
ln S0

K + 1
2σ

2T0

σ
√
T0

)−KΦ(
ln S0

K −
1
2σ

2T0

σ
√
T0

).

The price with interest rates r is given through

C(S0,K, T0, r) = S0Φ(
ln S0

K + ( 1
2σ

2 + r)T0

σ
√
T0

)− e−rT0KΦ(
ln S0

K − ( 1
2σ

2 − r)T0

σ
√
T0

).

Proof. We have to calculate for r = 0 the following integral

EQT ((ST0 −K)+) = EQT ((S0 exp(σB̃T0 −
σ2

2
T0)−K)+)

=

∫ ∞
−∞

(S0 exp(σ
√
T0x−

σ2

2
T0)−K)+φ(x)dx

=

∫ ∞
ln K
S0

+σ
2
2
T0

σ
√
T0

(S0 exp(σ
√
T0x−

σ2

2
T0)−K)φ(x)dx

= S0

∫ ∞
ln K
S0

+σ
2
2
T0

σ
√
T0

exp(σ
√
T0x−

σ2

2
T0)φ(x)dx−K

∫ ∞
ln K
S0

+σ
2
2
T0

σ
√
T0

φ(x)dx

= S0Φ(
ln S0

K + 1
2σ

2T0

σ
√
T0

)−KΦ(
ln S0

K −
1
2σ

2T0

σ
√
T0

).

If interest rates are not 0 we have to calculate EQT (e−rT0(ST0
−K)+) = EQT ((e−rT0ST0

−
e−rT0K)+), where e−rTST is a martingale with respect to QT , hence replacing K
by e−rT0K leads to the Black-Scholes formula. �

We finally address the question of hedging in the Black-Scholes and Bache-
lier model. We go into some detail concerning stochastic analysis and prove Ito’s
formula, which is the main tool to actually calculate hedging portfolios:
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3.35. Theorem. Let t ≥ 0 be a fixed point in time and (Bs)s≥0 a Brownian
motion, then

lim
n→∞

2n−1∑
i=0

(B t(i+1)
2n
−B ti

2n
)2 = t

almost surely.

Proof. We define for n ≥ 1

Sn =

2n−1∑
i=0

(B t(i+1)
2n
−B ti

2n
)2

and can immediately prove by the basic properties of Brownian motion (covariance
and independence) that

E(Sn) = t

E(S2
n) =

2n−1∑
i=0

E((B t(i+1)
2n
−B ti

2n
)4) +

2n−1∑
i,j=0
i6=j

E((B t(i+1)
2n
−B ti

2n
)2(B j(i+1)

2n
−B ji

2n
)2)

= t2(3
2n

22n
+

2n − 1

2n
)

= t2(
2

2n
+ 1)

for n ≥ 1. Therefore we can conclude

E((Sn − t)2) = t2(
2

2n
+ 1− 2 + 1)

=
t2

2n−1

for n ≥ 1. By Chebyshev’s inequality we obtain finally

P ((Sn − t)2 ≥ 1

2
n
2

) ≤ 2
n
2

t2

2n−1
=

1

2
n
2

2t2,

which leads by the Borel-Cantelli Lemma to the assertion that the set of ω with
(Sn− t)2 ≥ 1

2
n
2

for infinitely many n ≥ 1 is of measure 0. Hence on a set of measure

1 we have

lim
n→∞

Sn = t,

which is the desired assertion. �

Now we turn to the construction of the Ito-integral. Given a standard Brow-
nian motion (Bt)t≥0 on Rd. We denote by L2(R≥0 × Ω,Fp, dt ⊗ P ) the set of all
progressively measurable processes, i.e the set of

φ : R≥0 × Ω→ R,

which are measurable with respect to the σ-algebra Fp, i.e. the σ-algebra generated
by B([0, t]) ⊗ Ft for t ≥ 0 and square-integrable thereon. These are all maps such
that the restriction φ1[0,t] lies in L2([0, t]× Ω,B([0, t])⊗Ft, dt⊗ P ) and

E(

∫ ∞
0

φ(s)2) =

∫
Ω

∫ ∞
0

φ(s, ω)2dsP (dω) <∞.



26

The subspace of simple predictable processes, i.e.

u(t) =

n−1∑
i=0

Fi1]ti,ti+1](t)

with Fi a Fti-measurable and E(F 2
i ) < ∞ (hence Fi ∈ L2(Ω,Fti , P ), n ≥ 0 and

0 = t0 ≤ t1 ≤ ... ≤ tn, is denoted by E . On E we define the Ito-integral by

I(u) =

∫ ∞
0

u(t)dBt :=

n−1∑
i=0

Fi(Bti+1
−Bti)

3.36. Theorem. The mapping I : E → L2(Ω,F , P ) is a well defined isometry
and E(I(u)) = 0 for all u ∈ E, i.e.

E(I(u)I(v)) = E(

∫ ∞
0

u(t)v(t)dt).

Proof. The proof follows from covariance properties of Brownian motion. For
the first property we simply observe that

E(I(u)) = E(

n−1∑
i=0

Fi(Bti+1
−Bti))

=

n−1∑
i=0

E(FiE((Bti+1
−Bti)|Fti))

= 0

for all u ∈ E . For the second property we observe – due to bilinearity - that it
is sufficient to show E(I(u)2) = E(

∫∞
0
u(t)2dt) for all u ∈ E . Again we observe

directly

E(I(u)2) = E(

n−1∑
i,j=0

FiFj(Bti+1
−Bti)(Btj+1

−Btj ))

= E(

n−1∑
i=0

F 2
i (Bti+1

−Bti)2) + 2E(

n−1∑
i<j=0

FiFj(Bti+1
−Bti)(Btj+1

−Btj ))

=

n−1∑
i=0

E(F 2
i E((Bti+1 −Bti)2|Fti)+

+ 2

n−1∑
i<j=0

E(FiFj(Bti+1
−Bti)E((Btj+1

−Btj )|Ftj ))

=

n−1∑
i=0

E(F 2
i )(ti+1 − ti)

= E(

∫ ∞
0

u(t)2dt)

for u ∈ E . �

3.37. Definition. The closure of E in L2(R≥0 × Ω,Fp, dt ⊗ P ) is denoted by
L2(B). The unique continuous extension I : L2(B)→ L2(Ω) is called the stochastic



27

integral with respect to Brownian motion or the Ito integral, we denote∫ ∞
0

u(t)dBt := I(u).

In particular we have for all u, v ∈ L2(B)

E(

∫ ∞
0

u(t)dBt) = 0

E(

∫ ∞
0

u(t)dBt

∫ ∞
0

v(t)dBt) = E(

∫ ∞
0

u(t)v(t)dt)

The definite integral is defined in the following way∫ t

0

u(s)dBs :=

∫ t

0

u(s)1[0,t](s)dBs

for t ≥ 0, which is well defined since the processes u are progressively measurable.

3.38. Exercise. As an easy exercise one can prove∫ t

0

BsdBs =
1

2
(B2

t − t).

We simply take the limit of

2n−1∑
i=0

B ti
2n

(B t(i+1)
2n
−B ti

2n
) =

1

2

2n−1∑
i=0

(B2
t(i+1)

2n
−B2

ti
2n

)− 1

2

2n−1∑
i=0

(B t(i+1)
2n
−B ti

2n
)2

=
B2
t

2
− 1

2

2n−1∑
i=0

(B t(i+1)
2n
−B ti

2n
)2

applying the result on almost sure convergence of the quadratic variation.
The financial interpretation of this exercise is the following. Consider a dis-

counted price process described in its martingale measure by Xt := Bt, for t ≥ 0.

Consider furthermore an option with payoff
B2

1−1
2 at time T = 1. Then an arbitrage-

free price with respect to the given martingale measure is
B2
t−t
2 and the hedging

strategy equals (Bs)0≤s≤1.

> X <- rnorm(10000,0,1/sqrt(10000))

> Y <- cumsum(X)

> X <- c(X,0)

> Y <- c(0,Y)

> stochint <- cumsum(Y*X)

> Z <- 0.5 * (Y^2 - seq(0,1,length=10001))

> ymin<-min(stochint,Y)

> ymax<-max(stochint,Y)

> par(mfrow=c(2,1))

> plot(Y,type="l",ylim=c(ymin,ymax))

> lines(stochint,type="l",col="red")

> plot(Z,type="l",col="green",ylim=c(ymin,ymax))
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Figure 1. A trajectory of B and
∫
BsdBs

3.39. Definition. Let Bi be independent Brownian motions for i = 1, . . . , d.
Let v, ui ∈ L2(B) be fixed and X0 an F0-measurable random variable. An adapted
stochastic process X is called Ito process if it can be written

Xt = X0 +

∫ t

0

vsds+

d∑
i=1

∫ t

0

uisdB
i
s

for t ≥ 0.

The above definition does not only describe a notation, but also a fundamental
decomposition. Notice that one can considerably weaken the assumptions on u, v.

3.40. Proposition. Let (A1
t )t≥0, (A2

t )t≥0 be continuous, adapted processes
with finite total variation and let (M1

t )t≥0, (M2
t )t≥0be L2-martingales with con-

tinous paths. If A1
0 = A2

0 and then

A1
t +M1

t = A2
t +M2

t

for t ≥ 0, then A1
t = A2

t and M1
t = M2

t for t ≥ 0.
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Proof. The proof relies on the fact, that the quadratic variation of finite total
variation processes vanishes. A := A1 −A2, M := M1 −M2,

Qt(A) = lim
∆→0

n−1∑
j=0

(Atj+1 −Atj )2

n−1∑
j=0

(Atj+1
−Atj )2 ≤ Vt(A) max

0≤j≤n−1
|Atj+1

−Atj | → 0 almost surely,

as ∆ → 0 in probability, since the maximum tends to 0 by continuity. Hence
Qt(A) = 0. On the other hand the quadratic variation of a continuous L2-martingale
M vanishes if and only of M = 0 due to the Burkholder-Davis-Gundy inequality
and Doob’s maximal inequality. Therefore also A1

t = A2
t for t ≥ 0. �

3.41. Theorem. Let f ∈ C2
b (R,R) (bounded with bounded derivatives) be

given. Suppose u, v ∈ L2(R≥0 × Ω,Fp, dt⊗ P ). Let X be an Ito process

Xt := X0 +

∫ t

0

v(s)ds+

∫ t

0

u(s)dBs ,

then

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)u(s)dBs +

∫ t

0

f ′(Xs)v(s)ds+

+
1

2

∫ t

0

f ′′(Xs)u
2(s)ds .

Proof. We assume first that u, v ∈ E and f ∈ C∞b (R,R). Then we choose a
refining sequence of partitions denoted by 0 = tm0 < t1 < ... < tmn and mesh tending
to 0 (but we shall omit the m in the sequel since we calculate with one partition).
The coarsest partition m = 1 is the partition associated to the simple processes
u, v. We apply the conventions ∆it = (ti+1 − ti) and ∆iX = (Xti+1

− Xti) for
0 ≤ i ≤ n− 1. By Taylor’s formula we arrive at

f(Xt) = f(X0) +

n−1∑
i=0

(f(Xti+1
)− f(Xti))

= f(X0) +

n−1∑
i=0

(f ′(Xti)∆iX +
1

2
f ′′(Xti)(∆iX)2)+

+

n−1∑
i=0

1

2

∫ 1

0

f ′′′(Xti + s(Xti+1 −Xti))(1− s)2)(∆iX)3ds

We are treating the summands independently. The first one converges by definition
along the refining sequence of partitions in L2(Ω,F , P ),

n−1∑
i=0

(f ′(Xti)∆iX →
∫ t

0

f ′(Xs)u(s)dBs +

∫ t

0

f ′(Xs)v(s)ds
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by boundedness of f and the definition of the Ito-integral, or the ds-integral respec-
tively as n→∞. The second term can be written as

n−1∑
i=0

1

2
f ′′(Xti)(∆iX)2 =

n−1∑
i=0

1

2
f ′′(Xti)(v

2(ti)(∆it)
2 + u2(ti)(∆iB)2+

+ 2u(ti)v(ti)∆it∆iB).

The first and the third term in this expression converge to 0 on L2 by boundedness
of f and its derivatives, since

E

(n−1∑
i=0

1

2
f ′′(Xti)v

2(ti)(∆it)
2

)2
 ≤M n−1∑

i,j=0

(∆it)
2(∆jt)

2

E

(n−1∑
i=0

u(ti)v(ti)∆it∆iB

)2
 ≤M n−1∑

i=0

(∆it)
2E((∆iB)2)+

+ 2

n−1∑
i<j

E(u(ti)v(ti)∆it∆iBu(tj)v(tj)∆jt∆jB)

= M

n−1∑
i=0

(∆it)
3.

For the second term we need the following equality

n−1∑
i=0

1

2
f ′′(Xti)u

2(ti)(∆iB)2 =

n−1∑
i=0

1

2
f ′′(Xti)u

2(ti)((∆iB)2 −∆it)+

+

n∑
i=1

1

2
f ′′(Xti)u

2(ti)(∆it).

We show that the first sum converges to 0 in L2 with a(ti) := 1
2f
′′(Xti)u

2(ti)

E([

n−1∑
i=0

a(ti)((∆iB)2 −∆it)]
2) = E(

n−1∑
i=0

a(ti)
2((∆iB)2 −∆it)

2)+

+2E(

n−1∑
i<j

a(ti)a(tj)((∆iB)2 −∆it)((∆jB)2 −∆it)))

≤M
n−1∑
i=0

3(∆it)
2,

which tends to 0 again. The remainder term of the Taylor series tends to 0 by the
same reasons, since terms of the form (∆it)

k1(∆jB)k2 with k1 + k2 = 3 appear,
which are too small.

Take now u, v ∈ L2(R≥0 × Ω,Fp, dt ⊗ P ) general and a sequence um, vm ∈ E
converging almost surely to (us1[0,t](s))s≥0, then we obtain

(f ′(Xm
s )ums 1[0,t](s))s≥0 → (f ′(Xs)us1[0,t](s))s≥0

(f ′(Xm
s )vms 1[0,t](s))s≥0 → (f ′(Xs)vs1[0,t](s))s≥0
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asm→∞ by dominated convergence and continuity of paths in L2(R≥0×Ω,Fp, dt⊗
P ). Furthermore

(f ′
′
(Xm

s )(ums )21[0,t](s))s≥0 → (f ′
′
(Xs)u

2
s1[0,t](s))s≥0

as m → ∞ in L1(R≥0 × Ω,Fp, dt ⊗ P ) by dominated convergence. Therefore all
the limits exists and Ito’s formula holds for the limit. Finally we can approximate
f ∈ C∞b by C2

b -functions. �

3.42. Definition. We formulate the following “infinitesimal” notations for Ito
processes. Given u, v ∈ L2(R≥0 × Ω,Fp, dt⊗ P ), then we write short for

Xt = X0 +

∫ t

0

u(s)dBs +

∫ t

0

v(s)ds

the infinitesimal expression

dXt = u(t)dBt + v(t)dt

with initial value X0. Such processes are called Ito processes.
We introduce the rules dBt · dBt = dt, dt · dBt = dBt · dt = dt · dt = 0 and

obtain the short expression for Ito’s formula

df(Xt) = f ′(Xt)dXt +
1

2
f ′′(Xt)(dXt)

2

with initial value f(X0).

The multi-dimensional version of Ito’s formula reads as follows, and can be
proved in a similar way:

3.43. Theorem. Let f : RN → R be a C2
b -function with all derivatives bounded,

and (Xt)t≥0 be an N -dimensional Ito process, i.e. there are v, u1, . . . , ud ∈ L2(R≥0×
Ω,Fp, λ⊗ P ;RN ), i.e.

dXt = vtdt+

d∑
i=1

ui(t)dB
i
t,

X0 ∈ RN ,

hence

df(Xt) = Df(Xt) · dXt +
1

2
D2f(Xt) · (dXt, dXt),

where we apply the notations dBitdB
j
t = δijdt and all other covariations vanish.

Furthermore the last integral is understood in the previous sense, since we have no
boundedness assertions. Df denotes the tangent map of f .

3.1. Bachelier Hedging. In order to come up with a hedging formula we
need to redefine our model. From now on we call – given a Brownian motion
(Bt)0≤t≤T – the (discounted) price process

St = S0 + σBBt,

dSt = σBdBt
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for 0 ≤ t ≤ T , where we call σB the absolute Bachelier volatility. We can calculate
– by the previous methods – the price of a European Call Option in this model

CB(S0, T ) := E((ST −K)+)

=

∫ ∞
K−S0
σB
√
T

(S0 + σ
√
Tx−K)φ(x)dx

= (S0 −K)Φ(
S0 −K
σB
√
T

) + σB
√
Tφ(

S0 −K
σB
√
T

).

By simple differentiation we check that

∂

∂s
CB(S0, s) =

(σB)2

2

∂2

∂S2
0

CB(S0, s)

for s > 0 and S0 ∈ R. Ito’s Formula for the stochastic process (CB(St, T − t))0≤t≤T
then yields the following result:

CB(ST , 0) = CB(S0, T )−
∫ T

0

∂

∂s
CB(St, T − t)dt+

+

∫ T

0

∂

∂S0
CB(St, T − t)dSt+

+
1

2

∫ T

0

(σB)2

2

∂2

∂S2
0

CB(St, T − t)dt

= CB(S0, T ) +

∫ T

0

∂

∂S0
CB(St, T − t)dSt.

Consequently we can build a self-financing portfolio at initial wealth CB(S0, T ),
which replicates the European Call.

Notice that we can easily calculate the derivative with respect to S0, i.e.

∂

∂S0
CB(S0, T ) = Φ(

S0 −K
σB
√
T

) .

> S0=1

> sigmaB=0.5

> K=1

> DeltaS <- rnorm(10000,0,1/sqrt(10000))

> S <-S0+sigmaB*cumsum(DeltaS)

> DeltaS <- sigmaB*c(DeltaS,0)

> S <- c(S0,S)

> time<-seq(0,1,length=10001)

> hedgingratio<-1*pnorm((S-K)/(sqrt(1.0001-time)*sigmaB),0,1)+

+ (S-K)/(sqrt(1.0001-time)*sigmaB)*dnorm((S-K)/(sqrt(1.0001-time)*sigmaB),0,1)-

+ (S-K)/(sqrt(1.0001-time)*sigmaB)*dnorm((S-K)/(sqrt(1.0001-time)*sigmaB),0,1)

> hedgingportfolio <- cumsum(hedgingratio*DeltaS)+

+ (S0-K)*pnorm((S0-K)/(sqrt(1.0001-0)*sigmaB),0,1)+

+ sqrt(1.0001-0)*sigmaB*dnorm((S0-K)/(sqrt(1.0001-0)*sigmaB),0,1)

> optionprice<-(S-K)*pnorm((S-K)/(sqrt(1.0001-time)*sigmaB),0,1)+

+ sqrt(1.0001-time)*sigmaB*dnorm((S-K)/(sqrt(1.0001-time)*sigmaB),0,1)

> ymin<-min(hedgingportfolio,S)

> ymax<-max(hedgingportfolio,S)
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Figure 2. Hedging of a call option in the Bachelier model

> par(mfrow=c(2,1))

> plot(S,type="l",ylim=c(ymin,ymax))

> lines(optionprice,type="l",col="red")

> plot(hedgingportfolio,type="l",col="green",ylim=c(ymin,ymax))

3.2. Black-Scholes Hedging. We take a Black-Scholes model with volatility
σ > 0, drift µ and today’s price S0,

S̃t = S0 exp(µt− σ2

2
t+ σBt)

for 0 ≤ t ≤ T . Furthermore we assume an interest rate r ≥ 0, we obtain the
discounted price process

St = S0 exp(µt− rt− σ2

2
t+ σBt),

dSt = St(µ− r)dt+ StσdBt .

We calculate – like in the Bachelier model – the price of a European Call Option,
hence

C(S0, T, r) = S0Φ(
ln S0

K + ( 1
2σ

2 + r)T

σ
√
T

)− e−rT0KΦ(
ln S0

K − ( 1
2σ

2 − r)T
σ
√
T

).
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As before we see that

∂

∂s
C(S0, s, r) =

σ2S2
0

2

∂2

∂S2
0

CB(S0, s, r) .

In order to calculate the hedging portfolio, we apply Ito’s Formula to the process
(C(St, T − t))0≤t≤T ,

C(ST , 0, r) = C(S0, T, r)−
∫ T

0

∂

∂T
C(St, T − t, r)dt+

+

∫ T

0

∂

∂S0
C(St, T − t, r)dS̃t+

+
1

2

∫ T

0

σ2S2
t

2

∂2

∂S2
0

C(St, T − t, St)dt

= CB(S0, T ) +

∫ T

0

∂

∂S0
C(St, T − t)dS̃t .

Again the hedging strategy can be easily calculated, i.e.

∂

∂S0
C(S0, T, r) = Φ(

ln S0

K + ( 1
2σ

2 + r)T

σ
√
T

) .

> S0=1

> sigma=0.2

> K=1

> r=0

> time<-seq(0,1,length=10000)

> DeltaB <- rnorm(10000,0,1/sqrt(10000))

> S <- S0*exp(-sigma^2*time+sigma*cumsum(DeltaB))

> S <- c(S0,S)

> time<-seq(0,1.0001,length=10001)

> DeltaB <- c(DeltaB,0)

> hedgingratio<- pnorm((log(S/K)+1/2*sigma^2*(1.0001-time))/(sqrt(1.0001-time)*sigma),0,1)

> hedgingportfolio <- cumsum(hedgingratio*sigma*S*DeltaB)+

+ S0*pnorm((log(S0/K)+1/2*sigma^2*(1.0001-time))/(sqrt(1.0001-0)*sigma),0,1)-

+ K*pnorm((log(S0/K)+1/2*sigma^2*(1.0001-time))/(sqrt(1.0001-0)*sigma),0,1)

> optionprice<-S*pnorm((log(S/K)+1/2*sigma^2*(1.0001-time))/(sqrt(1.0001-time)*sigma),0,1)-

+ K*pnorm((log(S/K)+1/2*sigma^2*(1.0001-time))/(sqrt(1.0001-time)*sigma),0,1)

> ymin<-min(hedgingportfolio,S)

> ymax<-max(hedgingportfolio,S)

> par(mfrow=c(2,1))

> plot(S,type="l",ylim=c(ymin,ymax))

> lines(optionprice,type="l",col="red")

> plot(hedgingportfolio,type="l",col="green",ylim=c(ymin,ymax))

It is interesting to see what happens when we reduce the discretization. In the
sequel we drastically reduce the discretization from orginal N = 10001 to N = 20.
The hedging portfolio is drawn in blue in the second graph.

> S0=10

> sigma=0.5

> K=10

> r=0
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Figure 3. Hedging of a call option in the BS model

> time<-seq(0,1,length=10000)

> DeltaB <- rnorm(10000,0,1/sqrt(10000))

> S <- S0*exp(-sigma^2*time+sigma*cumsum(DeltaB))

> S <- c(S0,S)

> time<-seq(0,1.0001,length=10001)

> DeltaB <- c(DeltaB,0)

> hedgingratiolowdis<-seq(0,length=10001)

> hedgingratio<- pnorm((log(S/K)+1/2*sigma^2*(1.0001-time))/(sqrt(1.0001-time)*sigma),0,1)

> for (i in 1:20){

+ for (j in 1:500){

+ hedgingratiolowdis[j+(i-1)*500]<-

+ pnorm((log(S[1+(i-1)*500]/K)+1/2*sigma^2*(1.0001-time[1+(i-1)*500]))/

+ (sqrt(1.0001-time[1+(i-1)*500])*sigma),0,1)

+ }

+ }

> hedgingratiolowdis[10001]<-hedgingratio[10000]

> hedgingportfolio <- cumsum(hedgingratio*sigma*S*DeltaB)+

+ S0*pnorm((log(S0/K)+1/2*sigma^2*(1.0001-time))/(sqrt(1.0001-0)*sigma),0,1)-

+ K*pnorm((log(S0/K)+1/2*sigma^2*(1.0001-time))/(sqrt(1.0001-0)*sigma),0,1)

> hedgingportfoliolowdis <- cumsum(hedgingratiolowdis*sigma*S*DeltaB)+

+ S0*pnorm((log(S0/K)+1/2*sigma^2*(1.0001-time))/(sqrt(1.0001-0)*sigma),0,1)-
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Figure 4. Hedging of a call option in the BS model with rougher discretization

+ K*pnorm((log(S0/K)+1/2*sigma^2*(1.0001-time))/(sqrt(1.0001-0)*sigma),0,1)

> optionprice<-S*pnorm((log(S/K)+1/2*sigma^2*(1.0001-time))/(sqrt(1.0001-time)*sigma),0,1)-

+ K*pnorm((log(S/K)+1/2*sigma^2*(1.0001-time))/(sqrt(1.0001-time)*sigma),0,1)

> ymin<-min(hedgingportfolio,S)

> ymax<-max(hedgingportfolio,S)

> par(mfrow=c(2,1))

> plot(S,type="l",ylim=c(ymin,ymax))

> lines(optionprice,type="l",col="red")

> plot(hedgingportfolio,type="l",col="green",ylim=c(ymin,ymax))

> lines(hedgingportfoliolowdis,type="l",col="blue",ylim=c(ymin,ymax))



Part 3

Mathematical Preliminaries



4. Methods from convex analysis

In this chapter basic duality methods from convex analysis are discussed. We
shall also apply the notions of dual normed vector spaces in finite dimensions. Let
V be a real vector space with norm and real dimension dimV < ∞, then we can
define the pairing

〈., .〉 : V × V ′ → R
(v, l) 7→ l(v)

where V ′ denotes the dual vector space, i.e. the space of continuous linear func-
tionals l : V → R. The dual space carries a natural dual norm namely

||l|| := sup
||v||≤1

|l(v)|.

We obtain the following duality relations:

• If 〈v, l〉 = 0 for some v ∈ V and all l ∈ V ′, then v = 0.
• If 〈v, l〉 = 0 for some l ∈ V ′ and all v ∈ V , then l = 0.
• There is a natural isomorphism V → V ′′ and the norms on V and V ′′

coincide (with respect to the previous definition).

If V is an euclidean vector space, i.e. there is a scalar product 〈., .〉 : V ×V → R,
which is symmetric and positive definite, then we can identify V ′ with V and every
linear functional l ∈ V ′ can be uniquely represented l = 〈., x〉 for some x ∈ V .

4.1. Definition. Let V be a finite dimensional vector space. A subset C ⊂ V
is called convex if for all v1, v2 ∈ C also tv1 + (1− t)v2 ∈ C for t ∈ [0, 1].

Since the intersection of convex sets is convex, we can define the convex hull of
any subset M ⊂ V , which is denoted by 〈M〉conv. We also define the closed convex

hull 〈M〉conv, which is the smallest closed, convex subset of V containing M . If M
is compact the convex hull 〈M〉conv is already closed and therefore compact.

4.2. Definition. Let C be a closed convex set, then x ∈ C is called extreme
point of C if for all y, z ∈ C with x = ty + (1 − t)z and t ∈ [0, 1], we have either
t = 0 or t = 1. This is equivalent to saying that there are no two different points
x1, x2 such that x = 1

2 (x1 + x2).

First we treat a separation theorem, which is valid in a fairly general context
and known as Hahn-Banach Theorem.

4.3. Theorem. Let C be a closed convex set in an euclidean vector space V ,
which does not contain the origin, i.e. 0 /∈ C. Then there exists a linear functional
ξ ∈ V ′ and α > 0 such that for all x ∈ C we have ξ(x) ≥ α.

Proof. Let r be a radius such that the closed ball B(r) intersects C. The
continuous map x 7→ ||x|| achieves a minimum x0 6= 0 on B(r) ∩ C, which we
denote by x0, since B(r) ∩ C is compact. We certainly have for all x ∈ C the
relation ||x|| ≥ ||x0||. By convexity we obtain that x0 + t(x− x0) ∈ C for t ∈ [0, 1]
and hence

||x0 + t(x− x0)||2 ≥ ||x0||2.
This equation can be expanded for t ∈ [0, 1],

||x0||2 + 2t 〈x0, x− x0〉+ t2||(x− x0)||2 ≥ ||x0||2,
2t 〈x0, x− x0〉+ t2||(x− x0)||2 ≥ 0.
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Take now small t and assume 〈x0, x− x0〉 < 0 for some x ∈ C, then there appears
a contradiction, hence we obtain

〈x0, x− x0〉 ≥ 0

and consequently 〈x, x0〉 ≥ ||x0||2 for x ∈ C, so we can choose ξ = 〈., x0〉. �

As a corollary we have that each subspace V1 ⊂ V which does not intersect
with a convex, compact non-empty subset K ⊂ V can be separated, i.e. there is
ξ ∈ V ′ such that ξ(V1) = 0 and ξ(x) > 0 for x ∈ K. This is proved by considering
the set

C := K − V := {w − v for v ∈ V and w ∈ K},

which is convex and closed, since V,K are convex and K is compact and does not
contain the origin. By the above theorem we can find a separating linear functional
ξ ∈ V ′ such that ξ(w− v) ≥ α for all w ∈ K and v ∈ V , which means in particular
that ξ(w) > 0 for all w ∈ K. Furthermore we obtain from ξ(w) − ξ(v) ≥ α for all
v ∈ V that ξ(v) = 0 for all v ∈ V (replace v by λv, which is possible since V is a
vector space, and lead the assertion to a contradiction in case that ξ(v) 6= 0).

4.4. Theorem. Let C be a compact convex non-empty set, then C is the convex
hull of all its extreme points.

Proof. We have to show that there is an extreme point. We take a point
x ∈ C such that the distance ||x||2 is maximal, then x is an extreme point. Assume
that there are two different points x1, x2 such that x = 1

2 (x1 + x2), then

||x||2 = ||1
2

(x1 + x2)||2 < 1

2
(||x1||2 + ||x2||2)

≤ 1

2
(||x||2 + ||x||2) = ||x||2,

by the parallelogram law 1
2 (||y||2+||z||2) = || 12 (y+z)||2+|| 12 (y−z)||2 for all y, z ∈ V

and the maximality of ||x||2. This is a contradiction. Therefore we obtain at least
one extreme point. The set of all extreme points is a compact set, since it lies in C
and is closed: indeed, we take a sequence of extreme points (xn)n≥0 with xn → x,
and we assume that x = 1

2 (z1 + z2) with z1 6= z2 ∈ C. Choose xn with maximal
distance to z1, z2 and generate out of those three points a convex set C1, then choose
an element xn having the maximal distance to C1 and generate a convex set C2.
After finitely many steps this procedure stops by dimensional reasons, and Ck ⊂ C
is a convex, compact set containing all xn and x. Hence there are non-trivial convex
combinations for xn by finitely many other elements and hence a contradiction.

Take now the convex hull of all extreme points, which is a closed convex subset
S of C and hence compact. If there is x ∈ C \ S, then we can separate by a
hyperplane l the point x and S such that l(x) ≥ α > l(y) for y ∈ S. The set
{l ≥ α} ∩ C is compact, convex, nonempty and has therefore an extreme point z,
which is also an extreme point of C. So z ∈ S, which is a contradiction. �

Next we treat basic duality theory in the finite dimensional vector space V
with euclidean structure. We identify the dual space V ′ with V by the above
representation.
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4.5. Definition. A subset C ⊂ V is called convex cone if for all v1, v2 ∈ C the
sum v1 + v2 ∈ C and λv1 ∈ C for λ ≥ 0. Given a cone C we define the polar C0

C0 := {l ∈ V such that 〈l, v〉 ≤ 0 for all v ∈ C}.

The intersection of convex cones is a convex cone and therefore we can speak
of the smallest convex cone containing an arbitrary set M ⊂ V , which is denoted
by 〈M〉cone. We want to prove the bipolar theorem for convex cones.

4.6. Theorem (Bipolar Theorem). Let C ⊂ V be a convex cone, then C00 ⊂ V
is the closure of C.

Proof. We show both inclusions. Take v ∈ C, then 〈l, v〉 ≤ 0 for all l ∈ C0 by
definition of C0 and therefore v ∈ C00. If there were v ∈ C00 \C, where C denotes
the closure of C, then for all l ∈ C0 we have that 〈l, v〉 ≤ 0 by definition. On the
other hand we can find l ∈ V such that

〈
l, C
〉
≤ 0 and 〈l, v〉 > 0 by the separation

theorem since C is a closed cone. Take therefore l and α such that
〈
l, C
〉
≤ α and

〈l, v〉 > α. Since 0 ∈ C we get α ≥ 0 and if there were x ∈ C with 〈l, x〉 > 0, then
for all λ ≥ 0 we have 〈l, λx〉 = λ 〈l, x〉 ≤ α, which is a contradiction, so 〈l, x〉 ≤ 0.
By assumption we have l ∈ C0, however this yields a contradiction since 〈l, v〉 > 0
and v ∈ C00. �

4.7. Definition. A convex cone C is called polyhedral if there is a finite num-
ber of linear functionals l1, . . . , lm such that

C := ∩ni=1{v ∈ V | 〈li, v〉 ≤ 0}.

In particular a polyhedral cone is closed as intersection of closed sets.

4.8. Lemma. Given e1, . . . , en ∈ V . For the cone C = 〈e1, . . . , en〉con the
polar can be calculated as

C0 = {l ∈ V such that 〈l, ei〉 ≤ 0 for all i = 1, . . . , n}.

Proof. The convex cone C = 〈e1, . . . , en〉cone is given by

C = {
n∑
i=1

αiei for αi ≥ 0 and i = 1, . . . , n}.

Given l ∈ C0, the equation 〈l, ei〉 ≤ 0 necessarily holds and we have the inclusion
⊂. Given l ∈ V such that 〈l, ei〉 ≤ 0 for i = 1, . . . , n, then for αi ≥ 0 the equation∑n
i=1 αi 〈l, ei〉 ≤ 0 holds and therefore l ∈ C0 by the explicit description of C as∑n
i=1 αiei for αi ≥ 0. �

4.9. Corollary. Given e1, . . . , en ∈ V , the cone C = 〈e1, . . . , en〉con has a polar
which is polyhedral and therefore closed.

Proof. The polyhedral cone is given through

C0 = {l ∈ V such that 〈l, ei〉 ≤ 0 for all i = 1, . . . , n}
= ∩ni=1{l ∈ V | 〈l, ei〉 ≤ 0}.

�

4.10. Lemma. Given a finite set of vectors e1, . . . , en ∈ V and the convex cone
C = 〈e1, . . . , en〉con, then C is closed.
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Proof. Assume that C = 〈e1, . . . , en〉con for vectors ei ∈ V . If the ei are
linearly independent, then C is closed by the argument, that any x ∈ C can be
uniquely written as x =

∑n
i=1 αiei. Suppose next that there is a non-trivial linear

combination
∑n
i=1 βiei = 0 with β ∈ Rn non-zero and some βi < 0. We can write

x ∈ C as

x =

n∑
i=1

αiei =

n∑
i=1

(αi + t(x)βi)ei =
∑
j 6=i(x)

α′iei

with

i(x) ∈ {i such that |αi
βi
| = min

βj 6=0
|αj
βj
|},

t(x) = −
αi(x)

βi(x)

Then α′j ≥ 0 by definition. Consequently we can construct by variation of x a
decomposition

C = ∪n
′

i=1Ci

where Ci are cones generated by n−1 vectors from the set e1, . . . , en. By induction
on the number of generators n we can conclude, since the cone generated by one
element e1 is obviously closed. �

4.11. Proposition. Let C ⊂ V be a convex cone generated by e1, . . . , en and
K a subspace, then K − C is closed convex.

Proof. First we prove that K − C is a convex cone. Taking v1, v2 ∈ K − C,
then v1 = k1 − c1 and v2 = k2 − c2, therefore

v1 + v2 = k1 + k2 − (c1 + c2) ∈ K − C,
λv1 = λk1 − λc1 ∈ K − C.

In particular 0 ∈ K−C. The convex cone is generated by a generating set e1, . . . , en
for C and a basis f1, . . . , fp for K, which has to be taken with − sign, too. So

K − C = 〈−e1, . . . ,−en, f1, . . . , fp,−f1, . . . ,−fp〉con
and therefore K − C is closed by Lemma 4.10. �

4.12. Theorem (Farkas Lemma). Let e1, . . . , en ∈ V be given, then the cone
C = 〈e1, . . . , en〉con = C00. Another formulation is that b ∈ C if and only if
〈b, x〉 ≤ 0 for all x ∈ C0 (which means b ∈ C00).

Proof. The cone C is closed and therefore C = C00 by the bipolar Theorem
4.6. �

4.13. Lemma. Let C be a polyhedral cone, then there are finitely many vectors
e1, . . . , en ∈ V such that

C = 〈e1, . . . , en〉con .

Proof. By assumption C = ∩pi=1{v ∈ V | 〈li, v〉 ≤ 0} for some vectors li ∈
V . We intersect C with [−1, 1]m and obtain a convex, compact set. This set is
generated by its extreme points. We have to show that there are only finitely many
extreme points. Assume that there are infinitely many extreme points, then there
is also an adherence point x ∈ C. Take a sequence of extreme points (xn)n≥0 such
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that xn → x as n → ∞ with xn 6= x. We can write the defining inequalities for
C ∩ [−1, 1]m by

〈kj , v〉 ≤ aj
for j = 1, . . . , r and we obtain limn→∞ 〈kj , xn〉 = 〈kj , x〉. Define

ε := min
〈kj ,x〉<aj

aj − 〈kj , x〉 > 0.

Take n0 large enough such that | 〈kj , xn0〉 − 〈kj , x〉 | ≤ ε
2 , which is possible due to

convergence. Then we can look at xn0
+ t(x− xn0

) ∈ C for t ∈ [0, 1]. We want to
find a continuation of this segment for some δ > 0 such that xn0

+ t(x− xn0
) ∈ C

for [−δ, 1]. Therefore we have to check three cases:

• If 〈kj , xn0
〉 = 〈kj , x〉 = aj , then we can continue for all t ≤ 0 and the

inequality 〈kj , xn0 + t(x− xn0)〉 = aj remains valid.
• If 〈kj , x〉 = aj and 〈kj , xn0〉 < aj , we can continue for all t ≤ 0 and the

inequality 〈kj , xn0
+ t(x− xn0

)〉 ≤ aj remains valid.
• If 〈kj , x〉 < aj , then we define δ = 1 and obtain that for −1 ≤ t ≤ 1 the

inequality 〈kj , xn0
+ t(x− xn0

)〉 ≤ aj remains valid.

Therefore we can find δ and continue the segment for small times. Hence xn
cannot be an extreme point, since it is a nontrivial convex combination of xn0 −
δ(x− xn0

) and x, which is a contradiction. Therefore C ∩ [−1, 1]m is generated by
finitely many extreme points e1, . . . , enand so

C = 〈e1, . . . , en〉con
by dilatation. �

5. Methods from Probability Theory

In this section we shall fix notations and introduce stochastic processes on
finite probability spaces. Even though all spaces which are going to appear are
finite dimensional spaces, we shall introduce different norms or even metrics on
them to focus on the correct functional analytic background. This way one can
easily generalize the results to the continuous time setting.

In the sequel we denote by Ω a finite, non-empty set. A subset F ⊂ 2Ω of the
power set is called a σ-algebra if it is closed under countable unions, closed under
taking complements and contains Ω. A probability measure is a map

P : F → R
such that

• for all mutually disjoint sequences (An)n≥0 ∈ F we have P (∪n≥0An) =∑
n≥0 P (An).

• P (Ω) = 1.

In the case of finite probability spaces a measure is given by its values on the
atoms of the σ-algebra, i.e. the sets A ∈ F such that any subset B ⊂ A with B ∈ F
we have either B = ∅ or B = A. Any set C ∈ F can be decomposed uniquely into
atoms, i.e.

C = ∪A is atom
A⊂C

A.

We denote the set of atoms by A(F). We denote the set of all probability measures
on (Ω,F) by P(Ω) and can characterize these measures as maps from the atoms of
F to the non-negative real numbers such that sum over all atoms equals 1.
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When we speak of a probability space (Ω,F , P ) we shall always assume that F
is complete with respect to P , i.e. for every set B ⊂ Ω, such that B ⊂ A with A ∈ F
and P (A) = 0, we have B ∈ F . We call such sets P -nullsets. The P -completeness
assumption allows to deal with maps, which are defined up to sets of probability 0.

A random variable X : (Ω,F) → R is a measurable map, i.e. the inverse
image of Borel measurable sets is measurable in F . The set of measurable maps is
denoted by L0(Ω,F , P ), a measurable map takes constant values on each atom of
the measurable space and we denote these values by X(A) for A an atom in F .

Given a set M ⊂ 2Ω, there is a smallest σ-algebra containing M denoted by
σ(M). If the set M is given as inverse image of Borel subsets from R via a map
X : Ω → R, then we write for the σ-algebra σ(X). This is the smallest σ-algebra
such that X is measurable X : (Ω, σ(X)) → R. We can also define measurable
maps with values in Rn or R, where one has to distinguish between finitely valued
maps and others in the latter case

Given a probability space (Ω,F , P ) we can define the expectation E(X) of a
random variable via

E(X) :=
∑

A is atom

P (A)X(A)

if X is finitely valued. The p-th moment of X is given by E(|X|p) for p ≥ 1, the
variance var(X) of X is given by E((X−E(X))2) and the covariance of two random
variables X,Y ∈ L0(Ω,F , P ) through cov(X,Y ) = E((X − E(X))(Y − E(Y ))).

We shall at least formally make a difference between the following spaces (with
respect to their topologies). On L0(Ω,F , P ) we consider convergence in probability
which means Xn → X if P (|Xn − X| ≥ ε) → 0 as n → ∞ for each ε > 0. This
means that each sequence converges on atoms pointwisely. On

Lp(Ω,F , P ) = {X ∈ L0 such that E(|X|p) <∞}
we consider Lp-convergence due to Xn → X if E(|Xn − X|p) → 0 as n → ∞ for
each p ≥ 1, which coincides with L0 on finite probability spaces. L2((Ω,F , P )) is
an euclidean vector space with scalar product

〈X,Y 〉 = E(XY )

for X,Y ∈ L2(Ω,F , P ) and L∞(Ω,F , P ) is the set of bounded random variables
with the supremum norm, which is also equal to L0.

A sequence (Xn)n≥0 is said to converge P -almost surely to X if Xn → X
outside a null set as n→∞. Notice that all these different topologies coincide even
though the metrics or norms are different, since all the spaces are finite dimensional.
In particular we can identify the probability measures on (Ω,F) with some linear
functionals on L∞(Ω,F , P ), namely those positive linear functionals l ∈ (L∞)′ such
that l(1Ω) = 1. The space (L∞)′ can be naturally identified with L1.

Two sets A,B ∈ F are called independent if P (A∩B) = P (A)P (B). For more
than two sets we have the appropriate, generalized notion. Two σ-algebras G1,G2

are called independent if for all Ai ∈ Gi, i = 1, 2 the sets A1 and A2 are independent.
A random variable X is called independent of G if G and σ(X) are independent.

Consider (Ω,F , P ) a probability space, X ∈ L1(Ω,F , P ) and a P -complete σ-
algebra G ⊂ F , which contains all P -nullsets, then we can define the conditional
expectation E(X|G) via the property

• E(X|G) is a G-measurable random variable,
• for all Y ∈ L∞(Ω,G, P ) we have E(XY ) = E(E(X|G)Y ).
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Notice that Lp(Ω,G, P ) is a closed subspace of Lp(Ω,F , P ) for 1 ≤ p ≤ ∞. The
conditional expectation is well defined since E(X.) : L∞(Ω,G, P ) → R is a well-
defined, continuous (absolutely continuous) linear functional and defines therefore
an element of L1(Ω,G, P ) by duality.

We can immediately write down the following Lemma on conditional expecta-
tions:

5.1. Lemma. Let (Ω,F , P ) be a probability space and H ⊂ G ⊂ F be subalge-
bras, then

• for all X ∈ L1(Ω,G, P ) we have E(X|G) = X.
• the conditional expectation E(.|G) is a linear map on Lp(Ω,F , P ) and an

orthogonal projection as map from L2( to L2(Ω,F , P ).
• the conditional expectation is a positive map, i.e. E(X|G) ≥ 0 if X ≥ 0.
• the tower law holds, E(E(X|G)|H) = E(X|H) for all X ∈ L1(Ω,F , P ).
• Jensen’s inequality holds, i.e. for convex φ : R→ R we have φ(E(X|G)) ≤
E(φ(X)|G) for X ∈ L1(Ω,F , P ).

• for all Z ∈ L1((Ω,G, P ) we have

E(ZX|G) = ZE(X|G)

for X ∈ L1(Ω,F , P ).
• If X is independent of G then E(X|G) = E(X).
• Let X,Y ∈ L1(Ω,F , P ) be given and take σ-algebras G1,G2 ⊂ F . Assume
A ∈ G1 ∩ G2 such that X = Y on A and A ∩ G1 = A ∩ G2 (in this
case the σ-algebras G1,G2 are called locally on A equal σ-algebras). Then
E(X|G1) = E(Y |G2) on A.

• We denote the atoms of G by A(G), then we have

E(X|G) =
∑

A∈A(G)
P (A) 6=0

E(1AX)

P (A)
1A.

Consequently the conditional expectation is well-defined up to sets of prob-
ability 0.

Proof. We prove Jensen’s inequality, which follows directly from the fact that

φ(x) = sup
ay+b≤φ(y)
for all y∈R

(ax+ b).

This yields by linearity

φ(E(X|G)) = sup
ay+b≤φ(y)
for all y∈R

E(aX + b)|G) ≤ E(φ(X)|G).

The assertion on independent random variables follows from

E(XY ) = E(X)E(Y ) = E(E(X)Y )

by independence for X ∈ L1(Ω,F , P ), Y ∈ L∞(Ω,G, P ) independent of G.
For the assertion on locally on A equal σ-algebras we take 1AE(X|G1) and

1AE(Y |G2), which are G1∩G2-measurable by locality. Define B := A∩{E(X|G1) ≥
E(X|G2)} ∈ G1 ∩ G2, then

E(E(X|G1)B) = E(XB) = E(Y B) = E(E(X|G2)B),

hence E(X|G1) ≤ E(X|G2) on A. Take the other direction and conclude the result.
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For the last formula we take Y ∈ L0(Ω,G, P ), which is constant on atoms of G,
hence

E(XY ) =
∑

A∈A(G)

E(X1A)Y (A)

= E(
∑

A∈A(G)

E(X1A)

P (A)
Y (A)),

which proves the result. �

5.2. Remark. The interpretation of the conditional expectation is the fol-
lowing. Given the information of a σ-algebra G, i.e. the values of random vari-
ables generating the σ-algebra G, then one can calculate E(X|G) as the best L2-
approximation of X given the random variables generating G.

A filtration on (Ω,F , P ) is a finite sequence of σ-algebras F0 ⊂ F1 ⊂ · · · ⊂
FN ⊂ 2Ω, where F = FN for N ≥ 1. Filtrations represent increasing degrees of
information on probability space. With these preparations we can formulate basic
ideas of the theory of martingales. We shall always assume that F0 (and hence all
contains allFn) contains all P -nullsets.

• A stochastic process on (Ω,F , P ) is a sequence of Rd-valued random vari-
ables (Xn)0≤n≤N .

• A stochastic process (Xn)0≤n≤N is called adapted to a filtration (Fn)0≤n≤N
if Xn is Fn-measurable for 0 ≤ n ≤ N . In this case we shall often speak
of an adapted process if there is no doubt about the filtration.

• A stochastic process (Hn)0≤n≤N is called predictable if H0 is constant
and Hn is Fn−1-measurable for 1 ≤ n ≤ N . A predictable process is
certainly adapted. It appears often that H0 is redundant, however for our
applications there is some use.

• Let (Hn)0≤n≤N , (Xn)0≤n≤N be stochastic processes, then we define the
Riemannian sum for 0 ≤ n ≤ N

(H ·X)n :=

n∑
i=1

Hi(Xi −Xi−1),

where we take the scalar product of vectors in Rd in the sum. We can
write down the basic partial integration relation

(H ·X)n = HNXN −H0X0 − (X∗−1 ·H)n,

where (X∗−1)n := Xn−1 for 1 ≤ n ≤ N and (X∗−1)0 = X0.

5.3. Definition. Let (Ω,F , P ) be a probability space and (Fn)0≤n≤N a filtra-
tion, then a sequence of Rd-valued random variables (Mn)0≤n≤N is called a mar-
tingale if

E(Mn|Fm) = Mm

for 0 ≤ m ≤ n ≤ N . The sequence is called a submartingale ( supermartingale) if
E(Mn|Fm) ≥Mm (E(Mn|Fm) ≤Mm respectively) for 0 ≤ m ≤ n ≤ N .

5.4. Definition. Let (Ω,F , P ) be a probability space and (Fn)0≤n≤N a filtra-
tion, then a random variable τ : Ω→ N≥0 is called a stopping time if

{τ ≤ n} ∈ Fn
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for 0 ≤ n ≤ N . Let M be an adapted process and τ a stopping time with τ ≤ N
almost surely, then we can define

Mτ (ω) := Mτ(ω)(ω)

for ω ∈ Ω. The stopped process Mτ is defined for any stopping time τ

Mτ
n := Mτ∧n

for 0 ≤ n ≤ N . The stopped σ-algebra

Fτ := {A ∈ F such that A ∩ {τ ≤ n} ∈ Fn for 0 ≤ n ≤ N}

contains all informations from the stopping time τ .

Indeed one can easily prove that Fτ is a σ-algebra and that τ is Fτ -measurable,
we can state the following basic Lemma:

5.5. Lemma. Let τ, η, η1, η2, . . . be stopping times, then

•
∑k
i=1 ηk, inf ηi, sup ηi, lim sup ηi, lim inf ηi are stopping times.

• If τ ≤ η bounded by N then Fτ ⊂ Fη and the sets {τ ≤ η} and {η ≤ τ}
lie in Fτ∧η = Fτ ∩ Fη.

• If τ, η bounded by N , then {τ ≤ η} ∩ Fτ ⊂ Fτ∧η.
• If τ bounded by N , then Fτ = Fn on {τ = n}, i.e. {τ = n} ∩ Fτ = {τ =
n} ∩ Fn.

• Let τ be bounded by N . If A ∈ Fτ , then τA = τ1A + N1Ac is a stopping
time.

• Given an adapted sequence of random variables M and τ ,η stopping times
bounded by N , Mτ is Fτ -measurable and E(Mτ |Fη) is Fτ∧η-measurable.

Proof. The proofs follow directly from the definition. We have that τ is a
stopping time if and only if {τ ≤ n} ∈ Fn if and only if {τ = n} ∈ Fn if and only
if {τ > n} ∈ Fn for all 0 ≤ n ≤ N respectively. We have

{inf ηi = n} = {ω, ηi(ω) ≥ n and i0 such that ηi0(ω) = n}
= ∩i{ηi ≥ n} ∩ (∪i{ηi = n}) ∈ Fn.

For the supremum we have

{sup ηi = n} = {ω, ηi(ω) ≤ n and i0 such that ηi0(ω) = n}
= ∩i{ηi ≤ n} ∩ (∪i{ηi = n}) ∈ Fn.

For the limits we can proceed in the same way. By positivity of stopping times we
see that the sum is smaller than n if all entries are, hence the result. For the second
assertion we know that

{τ ≤ η} ∩ {τ ∧ η ≤ n} = ∪ni=0{η ≥ i} ∩ {τ = i} ∈ Fn.

Furthermore for A ∈ Fτ ∩ Fη we see

A ∩ {τ ∧ η ≤ n} = A ∩ {τ ≤ η} ∩ {τ ≤ n} ∪A ∩ {η ≤ τ} ∩ {η ≤ n} ∈ Fn.

Next we prove a locality statement

{τ ≤ η} ∩ Fτ ⊂ Fτ∧η,

which is clear by the assertion that for A ∈ Fτ
A ∩ {τ ≤ η} ∩ {η ≤ n} = (A ∩ {η ≤ n}) ∩ {τ ≤ n} ∩ {τ ∧ n ≤ η ∧ n} ∈ Fn,
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hence A ∩ {τ ≤ η} ∈ Fη, but A ∩ {τ ≤ η} ∈ Fτ anyway. If τ = n, then clearly
Fτ = Fn by definition. If τ is general, then the previous assertion tells {τ ≤
n} ∩Fτ ⊂ Fn, hence {τ = n} ∩Fτ ⊂ Fn. Therefore {τ = n} ∩Fτ ⊂ {τ = n} ∩Fn.
Interchanging the roles of n and τ yields the result, namely {n ≤ τ} ∩Fn ⊂ Fτ , so
{n = τ} ∩ Fn ⊂ Fτ and whence the assertion.

For the next assertion we know that

{τA = n} = A ∩ {τ = n}

for n < N and {τ = N} = Ac ∪ {τ = n} ∈ FN . For the last assertion we conclude
by

{Mτ ∈ A} ∩ {τ ≤ n} = ∪ni=0{Mi ∈ A} ∩ {τ = i} ∈ Fn
by adaptedness. From the last assertions we know that locally on {τ ≤ η} the σ-
algebras Fη and Fτ∧η agree and on {τ ≤ η} the random variablesMτ and E(Mτ |Fη)
agree, hence

E(Mτ |Fτ∧η) = E(Mτ |Fη)

on {τ ≤ η} by Lemma 5.1. On {τ ≥ η}, where locally the σ-algebras Fη and Fτ∧η
agree, the random variables Mτ and Mτ agree and hence

E(Mτ |Fτ∧η) = E(Mτ |Fη)

by Lemma 5.1. Consequently E(Mτ |Fη) is Fτ∧η-measurable. �

5.6. Theorem (Doob’s optional sampling). Let (Ω,F , P ) be a finite probability
space and (Fn)0≤n≤N a filtration. Let (Mn)0≤n≤N be an adapted process.

(1) If M is a martingale, then for every predictable process (Hn)0≤n≤N the
stochastic integral (H ·M) is a martingale. In particular E((H ·M)N ) = 0
and E(Mτ ) = E(M0) for all stopping times τ ≤ N .

(2) If the stochastic integral (H ·M) satisfies

E((H ·M)N ) = 0

for every predictable process H, then M is a martingale.
(3) If for all stopping times τ ≤ N

E(Mτ ) = E(M0)

holds, then M is a martingale.
(4) If M is martingale, then for all stopping times η ≤ τ ≤ N almost surely

we have

E(Mτ |Fη) = Mη.

More generally we have that for any two stopping times τ, η ≤ N

E(Mτ |Fη) = Mτ∧η.

Proof. We prove the four assertions step-by-step:

• Let M be a martingale, then for n ≥ m

E(

n∑
i=1

Hi(Mi −Mi−1)|Fm) = E(

n∑
i=m+1

HiE(Mi −Mi−1|Fi−1)|Fm)+

+ (H ·M)m

= (H ·M)m
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by the martingale property, the predictability of H and Lemma 5.1. Since
(H ·M)0 = 0 we obtain E((H ·M)N ) = 0. We define the predictable (!)
process

Hn := 1{τ>n−1} = 1− 1{τ≤n−1}

for 1 ≤ n ≤ N with H0 = 0 we obtain

(H ·M)N = Mτ −M0.

• We construct several predictable processes H, namely fix 1 ≤ j ≤ N and
A ∈ Fj , then we define

Hn = 0 for n 6= j + 1

Hj+1 = 1A

and the hypothesis leads to E(1A(Mj+1−Mj)) = 0, hence we can conclude
E(Mj+1|Fj) = Mj .

• For the constant stopping time 1 ≤ n ≤ N we know that

τ = 1An+N1Ac

is a stopping time for A ∈ Fn, furthermore E(Mn) = E(M0) But then

E(MN1Ac +Mn1A) = E(M0),

E((MN −Mn)1Ac +Mn) = E(M0),

E((MN −Mn)1Ac) = 0.

Consequently E(MN |Fn) = Mn which yields the martingale property.
• This is the main assertion of Doob’s optional sampling theorem. Assume

that M is a martingale, then we know for n ≤ N that

E(MN |Fτ ) = E(MN |Fn) = Mn = Mτ

on {τ = n} by Lemma 5.5. So E(MN |Fτ ) = Mτ on {τ ≤ N}. If η ≤ τ ≤
N then

E(Mτ |Fη) = E(E(MN |Fτ )|Fη)

= E(MN |Fη) = Mη

by the tower law, which proves the result. Now the general case for two
stopping times η, τ

E(Mτ |Fη) = E(Mτ |Fτ∧η) = Mτ∧η on {η ≤ τ}
since the σ-algebras Fη and Fτ∧η agree on {η ≤ τ}. Furthermore

E(Mτ |Fη) = E(Mτ∧η|Fη) = Mτ∧η on {η ≥ τ}
since the random variables Mτ and Mτ∧η agree on {η ≥ τ}.

�

A particular application for martingales is the following Lemma. Therefore we
need the notion of an equivalent measure Q ∼ P , i.e. a measure such that for all
A ∈ F we have P (A) = 0 if and only if Q(A) = 0. Given any measure Q on Ω

we define the Radon-Nikodym derivative dQ
dP as random variable, such that for all

Z ∈ L0(Ω,F , P ),

EQ(Z) = EP (Z
dQ

dP
).
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Hence we obtain
dQ

dP
(A) =

Q(A)

P (A)

for all atoms A ∈ A(F) with P (A) > 0. A measure Q is called absolutely continuous
with respect to P if for all A ∈ F with P (A) = 0 we have that Q(A) = 0. In the
generic case of P (ωi) > 0 for all i = 1, . . . , |Ω| every measure Q is absolutely
continuous with respect to P.

5.7. Lemma (change of measure). Let (Ω,F , P ) be a probability space with
filtration (Fn)0≤n≤N and Q be an equivalent probability measure such that

dQ

dP
= X

for some X ∈ L1(Ω,F , P ). Then Q|Fn are equivalent probability measures on
(Ω,Fn, P |Fn) for n = 0, . . . , N and

dQn
dPn

=: Xn

is a P -martingale. Here Pn denotes the restriction of P to Fn. Furthermore we
have the following formulas

EP (X|Fn) = Xn

and

EQ(Y |Fn) =
1

Xn
EP (Y X|Fn)

for all Y ∈ L1(Ω,F , Q). In particular Xn > 0 almost surely with respect to P .

Proof. We know that X is strictly positive and EP (X) = 1. The measures
Qn are certainly equivalent probability measures and we have

EQn(Y ) = EPn(Y Xn)

= EP (Y Xn)

for all Y ∈ L1(Ω,Fn, P ), but also

EQn(Y ) = EQ(Y )

= EP (XY ),

which yields by definition of conditional expectations that EP (X|Fn) = Xn. In
turn Xn is a martingale. Calculating now the conditional expectation with respect
to Q yields to do

EQ(Y Z) = EP (Y ZX)

= EP (EP (Y X|Fn)Z)

= EQ(
1

Xn
EP (Y X|Fn)Z)

for Y ∈ L1(Ω,F , Q) and Z ∈ L1(Ω,Fn, Q), which gives the desired relation. �

As last important statement of martingale theory we prove the optional de-
composition theorem of Kramkov-Schachermayer in contrast to the Doob-Meyer
decomposition. We need some notation, let M be an adapted stochastic process,
then we denote the set of measures Q equivalent to P such that M is a Q-martingale
by Me(M). The set of measures Q absolutely continuous with respect to P such
that M is a Q-martingale is denoted by Ma(M).
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The setMa(M) is always a closed set and it is the convex hull of linearly inde-
pendent measures Q1, . . . , Qm, since it is polygonal as intersection of hyperplanes.
If Ma(M) contains more than one element, the measures Qi are not equivalent to
the measure P if P (ωi) > 0 for i = 1, . . . , |Ω|.

To prove the optional decomposition theorem we need two lemmas on decom-
position of martingale measures.

5.8. Lemma. Let M be a d-dimensional adapted process with Me(M) 6= ∅,
then for any Q ∈Ma(M) and A ∈ Fk, we can define a probability measure QA on
(A,FA) for Q(A) 6= 0 via

QA(B) =
Q(B)

Q(A)

for B ∈ FA = {B ∈ F , B ⊂ A}. The process MA := (Mn|A)n=k,...,N is a QA-
martingale with respect to the filtration (FAk ). Given a martingale measure R on
(Ω,Fk) for Mk := (Mn)n=0,...,k and SA martingale measure for MA for every
A ∈ A(Fk), the probability measure

QR,(SA)(B) =
∑

A∈A(Fk)

R(A)SA(B ∩A)

is a martingale measure for M .

Proof. The proof is a simple application of the definition. Given B ∈ FAl for
l ≥ k,

EQA(MN |A1B) =
1

Q(A)
EQ(MN1B)

=
1

Q(A)
EQ(Ml1B)

=
1

Q(A)
EQ(Ml|A1B)

= EQA(Ml|A1B).

Take l ≥ k and B ∈ Fl, then

EQR,S (MN1B) =
∑

A∈A(Fk)

R(A)ESA(MN |A1B∩A)

=
∑

A∈A(Fk)

R(A)ESA(Ml|A1B∩A)

= EQR,S (Ml1B),
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which is the martingale assertion. Take l < k and B ∈ Fl, then

EQR,S (Mk1B) =
∑

A∈A(Fk)

R(A)ESA(Mk1B∩A)

=
∑

A∈A(Fk)
A⊂B

R(A)Mk(B)

=
∑

A∈A(Fk)
A⊂B

R(A)Mk(B)

= ER(Mk1B) = ER(Ml1B)

=
∑

A∈A(Fk)
A⊂B

R(A)Ml(B) = EQR,S (Ml1B),

which is the desired full assertion. �

5.9. Corollary. Let M be a d-dimensional adapted process with Me(M) 6= ∅,
then for 0 ≤ k ≤ N and A ∈ A(Fk)

Ma(MA) = {QA for Q ∈Ma(M)}
and

Ma(Mk) = {Qk for Q ∈Ma(M)}.

Proof. Let S ∈Ma(MA) be given, then we define a family SB for B ∈ A(Fk)
via

SB = S for B = A

SB = QB for B 6= A.

Then QQk,(SA) is a martingale measure for M , where Q denotes some equivalent
martingale measure for M . We have

(QQk,S)A = S.

Given R ∈Ma(Mk), then the measure QR,(Q
A) is a martingale measure and

(QR,(Q
A))n = R.

�

5.10. Theorem. Let M be a d-dimensional adapted process with Me(M) 6= ∅
and V be a adapted process, then the following assertions are equivalent:

(1) The process V is a supermartingale for each Q ∈Me(M).
(2) The process V is a supermartingale for each Q ∈Ma(M).
(3) The process V may be decomposed into V = V0 + (H ·M) − C, where H

is a predictable process and C is an increasing adapted stochastic process
starting at C0 = 0.

Proof. We assume first that N = 1 and the second assertion, i.e. that V is a
supermartingale for all Q ∈Ma(M). If V is a supermartingale under Q ∈Ma(M),
then

EQ(V1) ≤ V0
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for all Q ∈Ma(M). Hence we can then find H ∈ Rd such that

V0 + (H ·M) ≥ V1

by the following geometric reasoning. From the supermartingale property we know
that EQ(V1 − V0) ≤ 0 for Q ∈Ma(M), define X = V1 − V0. The set of (H ·M)1 is
given as those random variables Y such that

EQ(Y ) = 0

for all Q ∈ Ma(M). The set of (H ·M)1 − C1 for positive random variables C1 is
exactly given as those random variables X with

EQ(X) ≤ 0

for all Q ∈Ma(M), since it is polygonal as difference of a linear subspace and and
the cone of positive random variables.

This argument also works if F0 is not a trivial but arbitrary σ-algebra. In
this case a necessary and sufficient condition for the solvability of (H ·M) ≥ X is
EQ(X|F0) ≤ 0 for all Q ∈ Ma(M), which can be evaluated on the atoms of F0,
where we construct the solution as above. This is due to the above lemmas, in
particular Lemma 5.9. Having solved this equation we define

C1 = V0 + (H ·M)− V1 ≥ 0

and C0 = 0, which yields the desired decomposition.
For the general case we take the (Mn−1,Mn) on (Fn−1,Fn) for n = 1, . . . , N

under the condition that EQ(Vn|F0) ≤ Vn−1, which yields that we can solve by a
Fn−1-measurable random variable Hn the equation

Hn(Mn −Mn−1) ≥ Vn − Vn−1

and define ∆Cn := Hn(Mn−Mn−1)−Vn+Vn−1 ≥ 0. Hence we found a predictable
process (Hn)1≤n≤N such that

Vn = V0 + (H ·M)n − C

with Cn :=
∑n
i=1 ∆Ci.

For the implication from 3. to 1. we have conclude by martingale properties.
For 1. to 2. we simply apply that being a semi-martingale is a closed condition. �

5.11. Theorem (Doob-Meyer decomposition). Let S be a submartingale, then
there is a unique decomposition

Sn = Mn +An,

where A is an increasing, predictable process with A0 = 0 and M is a martingale.

Proof. First we show uniqueness: It is sufficient to prove that Mn = An
for a martingale M and an increasing, predictable process A with A0 = 0 leads to
vanishing terms. This is true since E(Mn) = 0 = E(An), which means that An = 0,
since A is increasing and therefore positive. Since M is a martingale we have that
M = 0. For existence we take the submartingale and define

An :=

n∑
i=1

E(Si − Si−1|Fi−1),
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which is an increasing process by the submartingale property. Furthermore we have

E(Sn −An|Fm) = E

(
n∑
i=1

(Si − Si−1)−
n∑
i=1

E(Si − Si−1Fi−1)

∣∣∣∣∣Fm
)

=

n∑
i=m+1

E(Si − Si−1|Fm)− E(Si − Si−1|Fm)+

+

m∑
i=1

(Si − Si−1)− E(Si − Si−1|Fi−1)

= Sm −Am
for n ≥ m, which is the desired relation. �

5.12. Corollary. Let M be a martingale with M i
n 6= M i

n−1 for n = 1, . . . , N ,
i = 1, . . . , d and H a predictable process, then (H ·M)N = 0 implies that H = 0.

Proof. We can decompose the martingale (H ·M)2,

(H ·M)2
n = Nn +An,

which vanishes completely, hence for 1 ≤ n ≤ N
0 = E((H ·M)2

n − (H ·M)2
n−1|Fn−1)

= E(Hn(Mn −Mn−1)((H ·M)n + (H ·M)n−1)|Fn−1)

= E(Hn(Mn −Mn−1)(H ·M)n|Fn−1)

= E(H2
n(Mn −Mn−1)2|Fn−1)

= H2
nE((Mn −Mn−1)2|Fn−1).

However for a non-zero martingale we have E((Mn−Mn−1)2) > 0, since otherwise
Mn = Mn−1. Hence by taking expectations we obtain

E(H2
n) = 0,

which yields the result. �

6. The central limit theorem

For purposes of comparison of discrete and continuous models, we shall apply
the central limit theorem. Therefore we need the notion of a characteristic function:

6.1. Definition. Let X be a real valued random variable on (Ω,F , P ), then
the characteristic function

φX(u) := E(exp(iuX))

is a well defined function for u ∈ R.

6.2. Theorem. Let X be a real valued random variable on (Ω,F , P ), then for
the characteristic function the following properties hold:

(1) The function φX is continuous and φX(0) = 1.
(2) For all u ∈ R we have that |φX(u)| ≤ 1.
(3) Given a real random variable Y independent of X, then

φX+Y (u) = φX(u)φY (u)

for u ∈ R.
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(4) Given a real valued random variable Y on (Ω,F , P ) such that

φX(u) = φY (u),

for u ∈ R, then the distributions of X and Y are identical.

Proof. The first and second property follow from φX(0) = E(1) = 1 and
|φX(u)| ≤ E(| exp(iuX)|) = E(1) = 1. The third property follows from indepen-
dence since

φX+Y (u) = E(exp(iuX) exp(iuY )) = E(exp(iuX))E(exp(iuY ))

= φX(u)φY (u)

for u ∈ R.
For the forth property we know that the distribution of a random variable X

is given by the distribution function

FX(z) := P (X ≤ z)

for z ∈ R. The distribution function FX can be calculated directly from the char-
acteristic function via

FX(z) =
1

2π

∫ z

−∞

∫ ∞
−∞

exp(−iuv)φX(u)dudv.

Hence if the characteristic functions coincide, the distribution functions coincide.
�

For the proof of a simple version of the central limit theorem we shall apply
Paul Chernoff’s Theorem in an elementary form:

6.3. Theorem. Let c : R≥0 → C be differentiable at 0 with the following
properties:

• c(0) = 1 and c′(0) = k,
• there is b > 0 such that |c(t)m| ≤M for 0 ≤ t ≤ b, m ≥ 1 and some fixed

constant M .

Then the limit

lim
n→∞

c(
t

n
)n = ekt

exist uniformly on compact intervals for t ≥ 0.

6.4. Remark. The following proof is more complicated than the one of the
lecture course, but it also works for in much more general situations. In the lecture
we simply evaluated the inequality following from differentiability

(1 + s(k − ε)k) ≤ c(s) ≤ (1 + s(k + ε))

for |s| < δ.

Proof. Take a complex number q with |q| ≤ 1, then

| exp(n(q − 1))− qn| ≤
√
n|q − 1|
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for n ≥ 0. In fact we can write

| exp(n(q − 1))− qn| = |e−n
∞∑
k=0

nk

k!
(qk − qn)|

≤ e−n
∞∑
k=0

nk

k!
|q|k∧n|1− q|n−k||

≤M |1− q|e−n
∞∑
k=0

nk

k!
|n− k|

≤M |1− q|e−n
∞∑
k=0

√
nk

k!

√
nk

k!
|n− k|

≤M |1− q|e−n
√√√√ ∞∑
k=0

nk

k!

√√√√ ∞∑
k=0

nk

k!
(n− k)2

≤M |1− q|e−ne−n2
√
ne−

n
2 = M

√
n|q − 1|

by the Cauchy-Schwartz inequality for infinite sums and the equality
∞∑
k=0

nk

k!
(n− k)2 = nen,

which follows from direct calculation. We define now qt := c(t)−1
t for t ≥ 0 with

q0 = k, the first derivative at t = 0. Then certainly by continuity

lim
n→∞

e
q t
n
t

= ekt

and

|eq tn − c( t
n

)n| = |en(c( tn )−1) − c( t
n

)n| ≤M
√
n|c( t

n
)− 1|

=
Mt√
n
|
c( tn )− 1

t
n

| → 0

as n → ∞ for 0 ≤ t ≤ b uniformly on compact intervals. Therefore we obtain
convergence everywhere. �

Now we can prove a version of the central limit theorem straight forward:

6.5. Theorem. Let (Xn)n≥1 be a sequence of independent, identically dis-
tributed random variables on (Ω,F , P ) and and assume that E(Xn) = a and
var(Xn) = σ2 > 0, then the sum

Sn =
1√
nσ2

n∑
i=1

(Xn − a)

converges in distribution to N(0, 1). We shall prove that φSn(u)→ e−
u2

2 uniformly
on compact intervals.

Proof. By the properties of independent random variables we can define

φ(u) := E(exp(iu(Xn − a)))

φSn(u) = φ(
u√
nσ2

)n
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for n ≥ 1. φ is twice differentiable with derivative

φ′(u) = iE((X − a) exp(iuX))

φ′′(u) = −E((X − a)2 exp(iuX))

by dominated convergence. We define next for t ≥ 0

c(t) := φ(

√
t√
σ2

)

and obtain that c(0) = 1 and c′(0) = − 1
2 . Consequently by Chernoff’s theorem

c(
t

n
)n → e−

t
2

on compact intervals. Therefore with t = u2 for u ≥ 0

φ(
u√
nσ2

)n → e−
u2

2

for u ≥ 0. For u ≤ 0 we proceed in the same way, which yields the desired result. �

6.6. Corollary. Let (XN
i )i=1,...,N for N ≥ 1 be independent sequences of i.i.d.

random variables, such that XN
i takes values σ√

N
,− σ√

N
and has expectation µN for

each N ≥ 1 and
lim
N→∞

NµN = µ,

then
∑N
i=1X

N
i converges in law to N(µ, σ2).

Proof. Fix N ≥ 1 and take an i.i.d. sequence Xn with the distribution of√
NXN

i , so it takes values σ and −σ. The expectation is given by
√
NµN and the

variance σ2 −NµN , therefore

1√
M

M∑
i=1

(Xn −
√
NµN )→ N(0, σ2)

in law. By uniformity of the convergence with respect to N and M (the rate depends
on derivative near 0 of the function c), we can conclude

N∑
i=1

XN
i → N(µ, σ2).

�


