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Abstract. Regularity of infinite dimensional Lie groups was defined by Hideki Omori et al. and
John Milnor. Up to now the only known sufficient conditions for regularity are analytic in nature and
they are included in the definition of strong ILB-Lie groups, since there are no existence theorems
for ordinary differential equations on non-normable locally convex spaces. We prove that regularity
can be characterized by the existence of a family of so called Lipschitz-metrics in all interesting cases
of infinite dimensional Lie groups. On Lipschitz-metrizable groups all product integrals converge to
the solutions of the respective equations if some weak conditions satisfied by all known Lie groups
are given. Lipschitz-metrizable groups provide a framework to solve differential equations on infinite
dimensional Lie groups. Furthermore Lipschitz-metrics are the non-commutative generalization of
the concept of seminorms on a Fréchet-space viewed as abelian Lie group.

1. Introduction

Convenient Lie groups as defined in [KM97] provide a useful basis for infinite-dimensional geometry,
but there is still a lack of methods how to handle analytic questions. Convenient Lie groups are
smooth manifolds modeled on convenient vector spaces with smooth group structures. The excellent
approach of [KYMO81] and [Omo97] to infinite dimensional Lie groups includes all necessary analytic
a-priori-properties in the definition to solve some differential equations on the Lie groups, however,
the topological and metric space properties of the object itself are not considered directly. We try
to define a category of Lie groups, where the existence of so called product integrals (see [KYMO81]
and [Omo97]) is equivalent to some conditions on the given Lipschitz-metrics. This category shall
contain all strong ILB-Lie groups (several subgroups of diffeomorphism groups on compact finite
dimensional manifolds, see [Omo97] for example, the strong ILH-Lie group of invertible Fourier-
Integral-Operators, see [ARS86]).

In the introduction we shall explain the convenient setting, the framework of a general analytic
Lie theory (see [KM97] for all details). In the second section we introduce Lipschitz-metrics, state
their fundamental properties and show, that they exist on all known Fréchet-Lie-groups (which are
up to now strong ILB-groups). In the third section the conditions equivalent to the existence of a
smooth exponential map or a smooth right evolution operator are developed. In the fourth section
some generalizations of the method are discussed.

Convenient vector spaces are Mackey-complete locally convex vector spaces. They appear as those
locally convex spaces where weakly smooth curves are the smooth curves (see [KM97], chapter 1). The
final topology with respect to the smooth curves is called the smooth topology or c∞-topology.
Remark that the smooth topology does not commute with product, i.e. the smooth topology on the
product is finer than the product of the smooth topologies.

Smooth maps on c∞-open sets are those which map smooth curves to smooth curves. The impor-
tant detection principle in the setting of convenient vector spaces is the following:

c : R→ U is smooth if and only if ∀f ∈ C∞(U,R) : f ◦ c is smooth

f : U → F is smooth if and only if ∀c ∈ C∞(R, U) : f ◦ c is smooth

Multilinear mappings on convenient vector spaces are smooth if and only if they are bounded, i.e.
bounded sets are mapped to bounded sets. A convenient algebra is assumed to have bounded algebra
structures and in this context to be unital and associative. We denote by L(E) the main example of a
convenient algebra, the bounded linear endomorphisms of a convenient vector space E with bounded
sets those, which are bounded on bounded subsets of E. We have the following initial topology on
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spaces of smooth mappings:

C∞(U,F ) c∗→ C∞(R, F ) for all c ∈ C∞(R, U)

where C∞(R, F ) carries the topology of uniform convergence in all derivatives on compact subsets
of the real numbers. The exponential law holds, i.e.

i : C∞(U,C∞(V,G)) ∼= C∞(U × V,G)

for U, V c∞-open and G a convenient vector space. Detailed information on convenient calculus can
be found in [KM97] and [FK88]. We shall need the following existence lemma on smooth curves (see
[KM97], 12.2):

Lemma 1.1 (special curve lemma). Let E be a convenient vector space and {cn}n≥1 a sequence in
E converging fast to 0, then there is a smooth curve c : R→ E with

c(
1
n

) = cn

for n ∈ N+.

All manifolds and Lie groups treated in the article will be convenient manifolds and Lie groups,
i.e. they are modeled on convenient vector spaces and supposed to be smoothly regular with
respect to the smooth topology on the manifold (in general one supposes smoothly Hausdorff, i.e.
the smooth functions on the manifold separate points). One can develop this infinite dimensional
setting surprisingly far (see [KM97] for details).

The last concept of the basics of convenient calculus on Lie groups is the right logarithmic de-
rivative: µ denotes the smooth product on the Lie group, g the Lie algebra. Let f : M → G be
a smooth map, where M is a convenient manifold. We define the right logarithmic derivative
δrf : TM → g by the formula

δrf(ξx) := Tf(x)(µ
f(x))−1(Txf(ξx))

for x ∈ M and ξx ∈ TxM . By definition we see that δrf ∈ Ω1(M, g) is a g-valued 1-form on M . A
Lie group G is called regular if there is a smooth (evolution) map Evolr : C∞(R, g) → C∞(R, G),
such that Evolr(X)(0) = e and δr(Evolr(X))(t) = X(t) for all t ∈ R, furthermore Evolr(δrc) = c
(see [KM97], [Mil83], [Omo97]). The right evolution with respect to a constant curve is a smooth
one-parameter subgroup. If in any direction there exists a smooth one-parameter subgroup, then we
can define the classical exponential map exp. Let G be a simply connected Lie group and H a
regular Lie group with f : g→ h a bounded Lie algebra homomorphism, then there is a smooth Lie
group homomorphism φ with φ′ = f (see [KM97], Theorem 40.3).

The concept of regularity means that one can solve all non-autonomous Cauchy problems on the
Lie group G, more precisely - given X ∈ C∞(R, g) - there is a smooth curve c : R→ G with c(0) = e

and c′(t) = Teµ
c(t)(X(t)) for t ∈ R. Such non-autonomous problems can sometimes be solved by so

called product integrals (see for example [Omo97]).
Given a convenient manifold N (see [KM97] for details) smooth regularity asserts that the

smooth topology on N is initial with respect to the smooth functions in C∞(N,R), which is not
always the case, since there need not be enough globally defined smooth functions. Smooth regularity
is indeed a reasonable assumption for smooth manifolds, since otherwise it is impossible to make the
rarely possible conclusions from local to global in infinite dimensions. If N is smoothly regular,
then each germ at a point has a global representative (see [KM97], 27.21). We shall assume that all
convenient manifolds in this article are smoothly regular, not only smoothly Hausdorff (see [KM97],
27.4)

Remark 1.2. Instead of convenient Lie groups one could work for our purposes with so called smooth
spaces, i.e. groups with a distinguished set of curves into and a distinguished set of maps from the
group to the real numbers, such that the detection principle is valid. Smooth mappings between such
spaces map smooth curves to smooth curves. Smooth groups have smooth multiplication and inversion.
Convenient Lie groups are smooth groups if they are smoothly regular (see [KM97] and [FK88] for
details on smooth spaces and [Tei01] for details on smooth groups).

Lemma 1.3. Given a convenient smoothly regular manifold N . Let {cn}n≥0 ⊂ C∞(M,N) be a
sequence of smooth mappings from a finite dimensional compact manifold M to N , such that for all
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m ∈M the sequence {cn(m)}n≥0 lies in a sequentially compact set with respect to the topology c∞N .
Let furthermore c∗n : C∞(N,R)→ C∞(M,R) be a Mackey-Cauchy sequence:

Then for any m ∈M there is a chart (u, U) around c(m) such that almost all cn lie locally around
m (at some fixed open neighborhood V of m) in U and all derivatives of u ◦ cn converge Mackey
uniformly on V to the derivatives of u ◦ c.

Proof. For any point m there exists at least one adherence point of {cn(m)}n≥0. By assumption
c∗n : C∞(N,R) → C∞(M,R) is Mackey-Cauchy convergent to some bounded linear map A. The
adherence point has to be unique since smooth functions are continuous with respect to c∞N and
they separate points by definition of a smooth manifold, we denote the unique adherence point by
c(m). Consequently there is a mapping c : M → N which is the pointwise limit of {cn}n≥0. The
limit of {f ◦cn}n≥0 is a smooth functions and by continuity equal to f ◦c for all f ∈ C∞(N,R), so c is
smooth by the detection principle. We need a non-negative bump function f with respect to a chart
(u, U) around c(m) taking the value 1 at a small neighborhood of c(m). By uniform convergence of
f ◦ cn to f ◦ c on a small closed neighborhood V of m we see that on V almost all cn lie in U . By
multiplication of f ◦u−1 with any linear functional l on the model space we get global functions on N
representing locally around c(m) each linear functional. Consequently we obtain that all derivatives
of u ◦ cn converge at the point m Mackey to the respective derivative of u ◦ c by l ◦ u ◦ cn → l ◦ u ◦ c
Mackey in all derivatives and a quality independent of l.

In the sequel of the article we shall need the following approximation theorem for product integrals.
They exist if their approximations lie uniformly on compact sets in bounded sets:

Definition 1.4 (Product integral). Let A be a convenient algebra. Given a smooth curve X: R→ A
and a smooth mapping h : R2 → A with h(s, 0) = e and ∂

∂th(s, 0) = X(s), we define the following
finite products of smooth curves

pn(a, t, h) :=
n−1∏
i=0

h(a+
(n− i)(t− a)

n
,
t− a
n

)

for a, t ∈ R. If pn converges in all derivatives to a smooth curve c : R → A, then c is called the
product integral of X or h and we write c(a, t) =

∏t
a exp(X(s)ds) or c(a, t) =:

∏t
a h(s, ds). The case

h(s, t) = c(t) with pn(0, t, h) = c( tn)n is referred to as simple product integral.

Theorem 1.5 (Approximation theorem). Let A be convenient algebra. Given a smooth curve X :
R

2 → A and a smooth mapping h : R3 → A with h(u, r, 0) = e and ∂
∂th(u, r, 0) = Xu(r). Suppose that

for every fixed s0 ∈ R, there is t0 > s0 such that pn(u, s, t, h) is bounded in A on compact (u, s, t)-sets
and for all n ≥ 1. Then the product integral

∏t
s h(u, r, dr) exists and the convergence is Mackey in

all derivatives on compact (u, s, t)-sets. Furthermore the product integral is the right evolution of Xu,
i.e.

∂

∂t

t∏
s

h(u, r, dr) = Xu(t)
t∏
s

h(u, r, dr)

s∏
s

h(u, r, dr) = e

Remark 1.6. The hypothesis on the product integrals will be referred to as boundedness condition.
For the proof see [Tei99a] and [Tei99b].

2. Lipschitz-metrizable Lie groups

The definition of product integrals on convenient Lie groups G is done in the same way as on
convenient algebras:

Definition 2.1. Let G be a convenient Lie group with c∞G a topological group. Given a smooth
mapping h : R2 → G with h(s, 0) = e, then we define the following finite products of smooth curves

pn(s, t, h) :=
n−1∏
i=0

h(s+
(n− i)(t− s)

n
,
t− s
n

)
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for s, t ∈ R. If pn converges in the smooth topology of G uniformly on compact sets to a continuous
curve c : R → G, then c is called the product integral of h and we write c(s, t) =:

∏t
s h(u, du). If

h(s, t) = c(t), then the product integral pn(0, t, h) = c( tn)n is called simple product integral.

Remark 2.2. Here we need the assumption that c∞G is a topological group, since we want to apply
the notions of uniform convergence and completeness with respect to the uniform structure on c∞G.

The left regular representation ρ of a convenient Lie group G

ρ : G→ L(C∞(G,R))

g 7→ (f 7→ f(g.))

in the bounded operators on C∞(G,R) is initial (see [KM97]) and smooth. We shall apply this
”linearization” in the following way several times in the article.

Lemma 2.3. Let G be a convenient Lie group, such that c∞G is a topological group and G is
smoothly regular, then each product pn(s, t, h) and the limit - if it exists -

∏t
s h(u, du) is smooth.

The propagation condition
∏r
t h(u, du)

∏t
s h(u, du) =

∏r
s h(u, du) is satisfied for all r, s, t.

Proof. By the left regular representation ρ on G we get that the product integral

lim
n→∞

pn(s, t, ρ ◦ h)

exists in C∞(R2, L(C∞(G,R))), since that image of a sequentially compact set under a smooth
mapping is bounded in the convenient algebra L(C∞(G,R)). The set formed by pn(s, t, h) and∏t
s h(u, du) on compact (s, t)-sets is sequentially compact due to uniform convergence, so we can apply

Theorem 1.5 to obtain Mackey-convergence. Consequently we are given the hypotheses of Lemma
1.4 (N = G, M is a compact manifold with boundary in R2 and we can evaluate ρ(pn(s, t, h)) · f
at e), which allows the conclusion of smoothness of c. The propagation condition follows from the
definition of the product integral and the continuity of multiplication.

Lemma 2.4. Let G be a smoothly regular Lie group, such that c∞G is a topological group. Given
a smooth mapping h : R2 → G with h(s, 0) = e, such that the product integral converges to c(s, t),
then the fundamental theorem of product integration or non-commutative integration asserts that
δrt c(s, t) = ∂

∂th(s, 0) and the convergence is uniform in all derivatives in the sense of Lemma 1.4.

Proof. By the previous lemma it suffices to apply Lemma 1.4. to get the result. Remark that
δrt |t=spn(s, t, h) = X(s).

The main observation of the following two sections is based on a proof of the famous Kakutani-
Theorem (which was simultaneously and independently proved by Garett Birkhoff) on the existence
of a right (or left) invariant metric on a topological group with countable basis of the neighborhood
filter of the identity (for this proof see [MZ57]):

Theorem 2.5 (Kakutani’s theorem). Let G be a topological group with a countable basis of the neigh-
borhood filter of the identity, then there is a left (or right) invariant metric on G generating the
topology.

Proof. Given a sequence of open neighborhoods of the identity {Qn}n∈N, then by continuity of the
multiplication we find a sequence of symmetric open neighborhoods {Un}n∈N with

U2
n+1 ⊂ Un ∩Qn for n ∈ N

We define by induction on 1 ≤ k ≤ 2n and n ≥ 0

V 1
2n

= Un

V 2k
2n+1

= V k
2n

V 2k+1

2n+1
= V 1

2n+1
V k

2n

We obtain the property V 1
2n
V m

2n
⊂ Vm+1

2n
for m < 2n. For m = 2k this is a consequence of the above

properties. For m = 2k + 1 the left hand side becomes

V 1
2n
V m

2n
= V 1

2n
V 1

2n
V k

2n−1
⊂ V 1

2n−1
V k

2n−1
= V k+1

2n−1
= Vm+1

2n



REGULARITY OF INFINITE-DIMENSIONAL LIE GROUPS BY METRIC SPACE METHODS 5

by induction on n and m. So we obtain Vr ⊂ Vr′ for r < r′ ≤ 1. We choose in our case a monotonic
decreasing basis of open sets of the neighborhood filter denoted by {Qn}n∈N. We redo the presented
construction and obtain a family Vr for all dyadic rationals 0 < r ≤ 1.

f(x, y) :=
{

0 if y ∈ VrV −1
r x for all r

sup{r | y /∈ VrV −1
r x}

By definition f is right invariant, since f(xa, ya) = f(x, y) for all a ∈ G. VrV
−1
r is symmetric,

hence f is symmetric f(x, y) = f(y, x). V 1
2n

is symmetric, so V 1
2n
V −1

1
2n
⊂ V 2

1
2n

= V 1
2n−1

⊂ Qn−1, but

∩n≥1Qn−1 = {e}, since we deal with a basis of neighborhoods, so f(x, y) = 0 if and only if x = y.

d(x, y) := sup
u∈G
|f(x, u)− f(y, u)|

d(x, y) = d(y, x), d(x, y) ≥ f(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y. Right invariance is clear,
too, and the triangle inequality follows from

d(x, z) ≤ sup |f(x, u)− f(y, u) + f(y, u)− f(z, u)| ≤
≤ d(x, y) + d(y, z)

Finally we have to show that the metric reproduces the topology of the topological group. It is
sufficient to show this at e by right invariance. We denote the open d-balls of radius 1

2n by B 1
2n

.
First we observe that V 1

2n+1
⊂ B 1

2n
for n ≥ 1, which is done by a subtle case for case calculation:

Given y ∈ V 1
2n+1

, then f(y, e) < 1
2n .

1. u ∈ V 1
2n

, so f(y, u) ≤ 1
2n , so d(y, e) < 1

2n .

2. We can find a find a number 1 ≤ k < 2n+2 with u−1 /∈ V s
2n+2

V −1
s

2n+2
for 1 ≤ s ≤ k and u−1 ∈

V s
2n+2

V −1
s

2n+2
for k < s < 2n+2. So yu−1 ∈ V s+1

2n+2
V −1

s+1

2n+2

for k < s < 2n+2 and yu−1 /∈ V s−1

2n+2
V −1

s−1

2n+2

for 2 ≤ s ≤ k, hence k−1
2n+2 ≤ f(y, u) ≤ k+1

2n+2 and d(y, e) < 1
2n , since k

2n+2 ≤ f(e, u) ≤ k+1
2n+2 .

If x ∈ B 1
2n+1

, then f(e, x) < 1
2n+1 , finally x ∈ V 2

1
2n+1

⊂ V 1
2n
⊂ Qn, so we obtain Un+1 ⊂ B 1

2n
⊂ Qn−1

for n ≥ 1, which proves the desired assertion.

Definition 2.6 (Lipschitz-metrizable groups). Let G be a convenient Lie group, such that c∞G is a
topological group. G is called Lipschitz-metrizable if there is a family of right invariant halfmetrics
{dα}α∈Ω on G with the following properties:

1. For all sequences {xn}n∈N:

∀α ∈ Ω : dα(xk, xl)→ 0 ⇐⇒ {xn}n∈N is converging in G

2. For all smooth mappings c : R2 → G with c(s, 0) = e, there is on each compact (s, t)-set a
constant Mα such that

dα(c(s, t), e) < Mαt

Remark 2.7. In contrary to good manners (see [KM97] for the useful applications of this habit, e.g.
51.19) we omit the dependencies of the constants Mα. However, we declare that Mα is independent
of t, s on a fixed compact set and always independent of m,n. The notion ”Lipschitz-metric” stems
from the fact that t 7→ d(c(t), e) is a Lip0-curve for c smooth with c(0) = e.

From the proof of Theorem 2.1. we observe that - given a Banach Lie group G - we can find by the
CBH-formula (see [BCR81] for functional analytic details) a basis of the neighborhoods of identity
of balls fitting in the above machinery such that we can construct a metric satisfying the Lipschitz
property explained in the next definition.

Lemma 2.8. Let G be a Banach-Lie-Group, then there is a metric d on G satisfying properties 2.6.1
and 2.6.2, so G is Lipschitz-metrizable.

Proof. On Banach-Lie algebras we can choose a norm ||.|| satisfying ||[X,Y ]|| ≤ ||X|| · ||Y ||. The
Campbell-Baker-Hausdorff Formula converges on a ball of radius 1

4 and we have ||X∗Y || ≤ 1−
√

1− 4r
for ||X||, ||Y || ≤ r and r ≤ 1

4 (see [BCR81] for functional analytic details). We define a sequence
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{sn}n≥1 with s1 = 1
4 and sn+1 = 2sn−s2n

4 , where the formula stems from solving sn = 1−
√

1− 4sn+1.
We obtain by induction the following estimate

1
2n+1

≥ sn >
1

2n+3
+

1
22n+2

since for n = 1 the inequality is valid and if it is valid for n ≥ 1 then

sn+1 =
2sn − s2

n

4
>

1
2n+4

+
1

22n+3
− 1

22n+4
=

1
2n+4

+
1

22n+4

which proves the assertion. Choosing Un = exp(B(0, sn)) in the chart given by the exponential map
for n large enough, then we can use the Un directly in the proof of the Kakutani theorem to obtain
a metric d with the property

Un+1 ⊂ {x|d(x, e) <
1
2n
} ⊂ Un−1

for n large enough, since U2
n ⊂ Un−1 and U−1

n = Un. Given a curve c : R2 → G with
c(s, 0) = e, then we can find for a given compact s-set a number M > 0 such that for t in [0, 1]

exp−1(c(t, s)) ∈ tMB(0, 1)

by Taylor’s formula. Consequently

d(c(t, s), e) <
1
2n

if sn+2 ≤ tM < sn+1, so d(c(t,s),e)
t < M

2nsn+2
for small t. However, sn+22n > 2n

2n+5 + 2n

22n+6 >
1
25 . Hence

for small t
d(c(t, s), e)

t
< 32M

and the supremum property is satisfied.

Lemma 2.9. Let G be a smoothly connected (pathwise connected by smooth curves), complete (with
respect to the right uniform structure), regular Fréchet-Lie-Group G, such that

Evolr : C∞([0, 1], g) ∩ C([0, 1], g)→ C([0, 1], G)

is continuous with respect to the C0-topology on the spaces. Furthermore we assume that there is a
norm on g, then G is Lipschitz-metrizable.

Proof. We construct the halfmetrics directly: Given two points g, h ∈ G we can join them by a
Lip1-curve c on [0, 1] with c(0) = g, c(1) = h and δrc(t) 6= 0 for t ∈ [0, 1], which will be denoted by
c : g → h.

dk(g, h) := inf
c:g→h

∫ 1

0
pk(δrc(t))dt

for an increasing family of norms pk defining the topology on g:
The Lipschitz-property is clear by definition. The triangle inequality follows from joining two

Lip1-curves.
Remark that for any Lip1-map φ : [0, 1] → [0, 1] with φ(0) = 0 and φ(1) = 1 we have δr(c ◦ φ) =

((δrc) ◦φ)φ′, so reparametrization does not change the integral. Consequently we can always assume
that if we have a curve c : g → h, then there is a Lip1-function φ : [0, 1] → [0, 1] with φ(0) = 0 and
φ(1) = 1 such that∫ 1

0
pk(δrc(t))dt =

∫ 1

0
pk(δrc(φ(t)))φ′(t)dt =

=
∫ 1

0
pk(δr(c ◦ φ)(t))dt = sup

0≤t≤1
pk(δr(c ◦ φ)(t))

φ is constructed by solving the differential equation

pk(δrc(φ(t)))φ′(t) =
∫ 1

0
pk(δrc(t))dt
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with boundary values φ(0) = 0 and φ(1) = 1. The solution is given by

F (φ(t)) =
∫ φ(t)

0
pk(δrc(t))dt = t

∫ 1

0
pk(δrc(t))dt

where F ′(s) = pk(δrc(t)) 6= 0, so there is a Lip1-solution. Given a sequence {gm}m∈N with gn
n→∞→ e

in G, then we can choose a chart (u, U) around e with u(e) = 0 and straight lines in the chart to join
the gm with e:

dk(e, gn) ≤
∫ 1

0
pk(δr(u−1(.u(gn))(t))dt

This yields the desired properties since u(gm) converges Mackey to 0 in the model space, so we can
look at the problem on a unit ball in a Banach space EB, where smooth maps are locally Lipschitz,
consequently ∫ 1

0
pk(δr(u−1(.u(gn))(t))dt ≤ CpB(u(gn)) n→∞→ 0

Given a sequence {gn}n∈N with dk(gn, gm) → 0 for m,n → ∞ and U an open neighborhood of
identity in G, then (Evolr)−1(C([0, 1], U)) is open in C([0, 1], g), saying C([0, 1], (pk)<ε) lies inside
for a fixed k ≥ 0. By assumption we can find curves cn→m := c : e → gmg

−1
n with pk(δrcn→m(t)) <

ε for n,m large enough applying the above method of uniformizing the velocity. Consequently
Evolr(δrcn→m(t)) = cn→m(t) lies in U for t ∈ [0, 1], so gmg

−1
n ∈ U for m,n large enough, which

means that it is a Cauchy sequence in G. By completeness we conclude.

Corollary 2.10. All strong ILB-Lie groups are Lipschitz-metrizable, so all known Fréchet-Lie gro-
ups are Lipschitz-metrizable (see [KM97], p. 411).

Proof. On ILB-groups the evolution map factors as continuous map

Evolr : C∞([0, 1], g) ∩ C([0, 1], g)→ C([0, 1], G)

with respect to the C0-topologies on the respective spaces, where from we conclude the result, since
there are continuous norms on the associated Fréchet space to an ILB-chain. This factorization can
be seen as follows, we refer to [Omo97]: Given a strong ILB-group, then even more general types
of product integrals as provided converge without applying the notion of Lipschitz-metrizability,
we only need the smoothness of the exponential map on the underlying Fréchet-Lie group. Given
Xn ∈ C([0, 1], g) converging uniformly to X, then we can associate C1-hairs hn(s, t) = exp(sXn(t))
with hn → h in the topology on C1-hairs by smoothness of the exponential map. Consequently the
associated product integrals converge uniformly reproducing Evolr(Xn), which converges uniformly
on [0, 1] to Evolr(X) (see [Omo97], Theorem 5.3).

Remark 2.11. The above result justifies a posterio the setting of strong ILB-groups, since we have
to restrict to a class of Fréchet spaces, where continuous norms exist.

Remark 2.12. Assuming that the Fréchet space is given by an inverse limit of Hilbert spaces, so the
construction of Lipschitz-metrics as in the proof of Lemma 2.9 is equally a definition of a variational
problem. Under the condition that ad(X) has a bounded adjoint with respect to the scalar product
under consideration, the geodesic equation associated to the variational problem is given through

ut = −ad(u)Tu

where u denotes the right logarithmic derivative of the geodesic (see [KM97], section 46.4). Only in
the case, where u ∈ ker(ad(u)T) for u ∈ g smooth one-parameter subgroups are geodesics. In view
of interesting non-linear partial differential equations (for example the Korteweg-De Vrieß-equation)
it is worth studying this situation in concrete cases. The question arises if such naturally appear-
ing differential equations can be solved on the given Lie groups by internal methods, for example
by Lipschitz-metrics. If this were the case, some interesting geometro-analytic progress in partial
differential equations would be possible. To set the program it is first necessary to find some nat-
ural approximation procedure for variational problem, then to apply the Lipschitz-methods to prove
approximation.
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The next proposition states that it is impossible to choose only one right invariant metric with
Lipschitz-property reproducing the topology on a regular Fréchet-Lie-Group beyond Banach spaces.
In the regular, abelian and simply connected case this means, that it is impossible to choose an
invariant metric with Lipschitz-property on Fréchet spaces. Consequently we provide the non-abelian
analogue to the assertion, that a Fréchet space with one norm generating the topology is a Banach
space. Hence Lipschitz-metrics are the right concept replacing seminorms on convenient Lie groups
in the non-commutative world.

Proposition 2.13. Let G be a Fréchet-Lie-Group with (smooth) exponential map and suppose that
there is a right invariant metric d on G reproducing the topology in the sense of Definition 2.6 and

d(c(s, t), e) < Mt

for any smooth mapping c : R2 → G with c(s, 0) = e on compact (s, t)-sets. If for any sequence
{Xn}n∈N with exp(tXn) → e uniformly on compact intervals, the sequence {Xn}n∈N converges to 0
in the Lie algebra g, then G is a Banach-Lie-group.

Proof. We define a seminorm p on the Lie algebra g of G . The function t 7→ d(exp(tX), e) is
sublinear by right invariance, consequently the limit limt↓0

d(exp(tX),e)
t exists and equals the supremum

supt>0
d(exp(tX),e)

t .

p(X) := lim
t↓0

d(exp(tX), e)
t

for X ∈ g . p is positively homogeneous and p(0) = 0. Given a smooth curve c : R→ G with c(0) = e
and c′(0) = X, then

|d(exp(tX), e)
t

− d(c(t) exp(−tX), e)
t

| ≤ d(c(t), e)
t

≤ d(exp(tX), e)
t

+
d(c(t) exp(−tX), e)

t

so the limit of the middle term exists since the limits of the other terms exist and are equal. The
limit of a smooth curve d passing at 0 through e with d′(0) = 0 is calculated at the beginning of
the proof of Theorem 3.1. as 0. Consequently p(X) = limt↓0

d(c(t),e)
t . So the triangle inequality is

satisfied since
d(exp(tX) exp(tY )), e)

t
≤ d(exp(tX), e)

t
+
d(exp(tY ), e)

t

Given a sequence {Xn}n∈N with Xn → X in g. Convergence on the Fréchet space means Mackey
convergence, so there is a compact set B ⊂ g with X −Xn ∈ µnB with µn ↓ 0.

p(X −Xn) ≤ sup
0<t≤1

d(exp(t(Xn −X)), e)
t

≤

sup
Y ∈B

sup
0<t≤1

d(exp(tµnY ), e)
t

≤ µn sup
Y ∈B

sup
0<t≤1

d(exp(tµnY ), e)
tµn

≤ µnM

since the last supremum is finite, so p(X − Xn) → 0 for n → ∞ , p is a continuous seminorm.
Finiteness of the supremum is proved via the following consideration:

M(Y ) := sup
0<t≤1

d(exp(tY ), e)
t

Assume that there is a fast converging sequence Yn → Y in the compact set B such that M(Yn) ≥ n.
Consequently there is a smooth curve d : R→ g with d( 1

n) = Yn. We define c(s, t) := exp(td(s)), but
then

sup
s∈[0,1]

sup
0<t≤1

d(c(s, t))
t

=∞

a contradiction. Given a sequence {Xn}n∈N such that p(Xn −X)→ 0, then d(exp(t(Xn −X)), e) ≤
tp(Xn − X) by sublinearity. Consequently exp(t(X − Xn)) → e uniformly on compact intervals in
time for n→∞. This, however, means that X −Xn → 0 in g by assumption.
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Lemma 2.14. Let G be a convenient Lipschitz-metrizable Lie group, such that convergence on the
model space E means Mackey-convergence (i.e. c∞E = E). If there is furthermore a (smooth)
exponential map and for any sequence {Xn}n∈N with exp(tXn) → e uniformly on compact intervals
the sequence {Xn}n∈N converges to 0 in the Lie algebra g, then the functions

pα(X) = lim
t↓0

dα(exp(tX), e)
t

are continuous seminorms on g generating the topology.

Proof. The proof is built in the same way as the previous one. Only indices have to be carried with
along the lines.

The last result provides an the already applied idea how the families of seminorms and right
invariant metrics are related: This relation could be read in the other direction explaining that via
integrating one obtains right invariant Lipschitz-metrics on G.

3. Approximation theorems

The following two proposition explain the interest in Lipschitz-metrizable Lie groups.

Theorem 3.1. Let G be a Lipschitz-metrizable convenient Lie group, c∞G is a topological group. If
there is a smooth exponential mapping, then for all smooth mappings c : R2 → G with c(s, 0) = e
the following estimates are valid for the given halfmetrics dα, α ∈ Ω: On each compact (s1, s2, t)-sets
there exists Mα such that

dα(c(s1,
s2

m
)mc(s1,

t

n
)nc(s1, t)−1c(s1,

s2

m
)−m, e) ≤Mαt

2

for m,n ∈ N.

Proof. First we show a simple consequence of property 2.6.1. Let c : Rn+1 → G with c(s, 0) = e
and ∂

∂t |t=0c(s, t) = 0 for s ∈ Rn be a smooth mapping, then we can choose a chart (U, u) around e

with u(U) absolutely convex and u(e) = 0. On a small ball B around 0 in Rn+1 u ◦ c is well-defined
with first derivative zero. Consequently u ◦ c(s,

√
t) makes sense as Lip0-curve for positive t and s

in a small ball around zero in Rn+1, so 1
t (u ◦ c)(s,

√
t) is in a compact set for t > 0 and s in a small

ball around zero in Rn+1. By some reparametrizations we can assume that the compact set, where
1
tu ◦ c(s,

√
t) lies, is a subset of u(U). Let B ⊂ E be a compact subset in u(U), then the following

supremum is finite:

sup
0<t≤1

(sup
x∈B

dα(u−1(tx), e)
t

) <∞

for all α ∈ Ω, since the function

Mα(x) := sup
0<t≤1

dα(u−1(tx))
t

for x ∈ u(U) is bounded on compact subsets of u(U). If Mα were unbounded on a compact subset B
of u(U), then there would exist a sequence {xn}n∈N+

in B, converging fast to x ∈ B, with Mα(xn) ≥ n
for n ∈ N+. By the special curve lemma there is a curve d : R→ F with d( 1

n) = xn, so c(s, t) := td(s)
is a smooth mapping with c(s, 0) = 0 with values in u(U), which gives a contradiction by looking at
u−1 ◦ c.

Reconsidering the original problem we obtain

sup
0<t≤1

dα(c(s,
√
t), e)

t
< Mα

on a small set around zero in s. This can easily be extended to all compact sets by a translation.
We obtain finally

sup
0<t≤1

dα(c(s, t), e)
t2

< Mα(#)

on compact s-sets.
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Now we apply the existence of a smooth exponential mapping. Let T (X) denote a semigroup with
generator X. A smooth mapping c : R2 → G with c(s, 0) = e and ∂

∂t |t=0c(s, t) = Xs for s ∈ R is
given, too. We proceed indirectly to obtain the assertion: Let n ∈ N be given, then

dα(c(s,
t

m
)
m

T−t(Xs), e)

≤
m−1∑
i=0

dα(T ti
m

(Xs)c(s,
t

m
)
m−i

T−t(Xs), T t(i+1)
m

(Xs)c(s,
t

m
)
m−i−1

T−t(Xs))

=
m−1∑
i=0

dα(T ti
m

(Xs), T t(i+1)
m

(Xs)c(s,
t

m
)
−1

)

=
m−1∑
i=0

dα(T ti
m

(Xs)c(s,
t

m
)T− ti

m
(Xs), T t

m
(Xs))

due to right invariance. Our uniformity result leads to the desired assertion by investigating the
smooth mapping

d(s, t) := Ts2(Xs1)c(s1,
t

m
)T− t

m
(Xs1)T−s2(Xs1)

by estimate #. Consequently we arrive at

dα(c(s,
t

m
)
m

T−t(Xs), e) ≤
m−1∑
i=0

Mα
t2

m2
= Mα

t2

m

m→∞→ 0

where t can vary in a compact interval around zero preserving. This estimate yields that

c(s1,
s2

m
)mc(s1,

t

n
)nc(s1, t)−1c(s1,

s2

m
)−m

=c(s1,
s2

m
)mT−s2(Xs1)Ts2(Xs1)c(s1,

t

n
)nc(s1, t)−1T−s2(Xs1)Ts2(Xs1)c(s1,

s2

m
)−m

satisfies the desired estimate by applying d(abc, e) ≤ d(abc, bc) + d(bc, c) + d(c, e) = d(a, e) + d(b, e) +
d(c, e) due to right invariance.

Theorem 3.2 (Approximation Theorem). Let G be a Lipschitz-metrizable regular Lie group, such
that c∞G is a topological group. Furthermore for all smooth mappings c : R2 → G with c(s, 0) = e
the following estimates are valid for the given halfmetrics dα, α ∈ Ω: On each compact (s1, s2, t)-sets
there exists Mα such that

dα(c(s1,
s2

m
)mc(s1,

t

n
)nc(s1, t)−1c(s1,

s2

m
)−m, e) ≤Mαt

2

for m,n ∈ N. Given a smooth curve c : R→ G with c(0) = e, the limit

lim
n→∞

c(
t

n
)
n

= Tt

exists uniformly on compact intervals of R and gives a smooth group T . The convergence is uniform
in all derivatives in the sense of Lemma 1.4.
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Proof. Given a smooth curve c : R2 → G with c(s, 0) = e, we try to investigate the above simple
product integrals:

dα(c(s,
t

nm
)
nm

, c(s,
t

n
)
n

)

≤
n−1∑
i=0

dα(c(s,
t

n
)
i

c(s,
t

nm
)
(n−i)m

, c(s,
t

n
)
i+1

c(s,
t

nm
)
(n−i−1)m

)

≤
n−1∑
i=0

dα(c(s,
t

n
)
i

c(s,
t

nm
)
m

c(s,
t

n
)
−1

c(s,
t

n
)
−i
, e)

≤
n−1∑
i=0

dα(c(s,
t

n
)
i

c(s,
t

nm
)
m

c(s,
t

n
)
−i
, c(s,

t

n
)
−1

)

≤ n t
2

n2
Mα → 0 for n→∞

which is possible by a look at the curve

d(s, t) = c(s1,
s2

i
)
i
c(s1,

t

nm
)
m

c(s1, t)−1c(s1,
s2

i
)−i

and the application of the given estimates. Consequently we obtain a Cauchy-property uniform in
s for the above sequences of curves, which leads to the desired limit. The limit limn→∞ c(s, tn)n =:
Tt(Xs) is continuous in s, t. By looking at the left regular representation in L(C∞(G,R)) we see
that the limit has to be smooth and a group in t, because sequentially compact sets are mapped
to bounded ones and the smooth functions detect smoothness: ρ ◦ c gives a curve in L(C∞(G,R))
satisfying the boundedness condition, so we expect a smooth limit group T (s, t) by Theorem 1.5.
Since we have convergence of c(s, tn)n this limit has to be a posterio equal to ρ(limn→∞ c(s, tn)n).
By initiality of ρ we obtain the smoothness of limn→∞ c(s, tn)n as mapping to G. The limit exists
uniformly in all derivatives, which means in particular that the generator of T is c′(0) by the Lemma
1.4. since we can evaluate at e to obtain (f ◦ c)(s, tn)n → f(limn→∞ c(s, tn)n) in all derivatives with
respect to s and t.

Remark 3.3. We have proved that the existence of an exponential map can be characterized on ”all”
Lie groups in the framework of Lipschitz-metrizability. In the abelian case the situation is simpler,
we can reformulate the proposition and define in a simpler way the Lipschitz-metrics.

Corollary 3.4. Let G be an abelian Lie group, such that c∞G is a topological group, then G is regular
if and only if G is Lipschitz-metrizable. In particular (due to regularity or Lipschitz-metrizability)
for all c : R2 → G with c(s, 0) = e the following estimates are valid: On each compact (s, t)-set there
is a constant Mα such that

dα(c(s,
t

n
)nc(s, t)−1, e) ≤Mαt

2

for all n ≥ 1.

Proof. The additional comment is a corollary of the theorem. Let G be a Lipschitz-metrizable abelian
Lie group, then we have to show the stated estimate: Given c : R2 → G with c(s, 0) = e we can write
by commutation and right invariance

dα(c(s,
t

n
)nc(s, t)−1, e) ≤

n∑
i=1

dα(c(s,
t

n
)c(s,

it

n
)c(s,

(i− 1)t
n

)−1, e) ≤

≤
n∑
i=1

Mα
t2

n2
= Mα

t2

n

for n ≥ 1. This estimate is obtained via

dα(c(s, ut)c(s, vt), c(s, (u+ v)t)) ≤Mαt
2

Let G be a regular abelian Lie group. Then G is locally isomorphic to its Lie algebra by [MT98],
consequently the topology on G is given by the bornological topology on g. We denote by Ω the set
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of bounded seminorms on g.

dk(g, h) := inf
c∈C∞([0,1],G)
c(0)=g, c(1)=h

∫ 1

0
p(δrc(t))dt

is a well-defined right invariant halfmetric on G for p ∈ Ω. Right-invariance is clear by definition,
symmetry, too. Taking two curves c, d ∈ C∞([0, 1], G) with c(0) = g, c(1) = d(0) = h and d(1) = l,
then b := cµh−1d defines a smooth curve with b(0) = g and b(1) = l, furthermore δrb(t) = δrc(t) +
δrd(t) on [0, 1] due to commutativity (the adjoint map is trivial). The Lipschitz-property is clear by
the following argument: Let c : R2 → G be smooth mapping with c(0, s) = e for s ∈ R, then

dk(c(u, s), e) ≤
∫ 1

0
pk(δrc(u., s)(t))dt = u

∫ 1

0
pk([δrc](ut, s)])dt

and consequently the supremum exists uniformly for s in a compact interval. The rest follows by
regularity from the lemma. It remains to prove the topological property, but this is clear due to
the possibility to choose an exponential chart (see [MT98]). So we constructed the essentials for
Lipschitz-metrizability.

Theorem 3.5. Let G be a Lipschitz-metrizable convenient Lie group with c∞G a topological group,
h : R2 → G a smooth mapping with h(s, 0) = e and ∂

∂t |t=0h(s, t) = X(s) and c with c(0) = e a smooth
curve with δrc = X, then the product integral

∏t
0 h(s, ds) exists and equals c(t). If G is regular, then

the following estimates are valid for the Lipschitz-metrics dα:

dα(pi(s3, t, c)(s1)pn(s2, t+ s2, c)(s1)c(s1, s2, t)−1pi(s3, t, c)(s1)−1, e) ≤Mαt
2

for all i, n ∈ N+ on compact (s1,s2, s3, t)-sets given the smooth mapping d : R3 → G with c(s1, s2, 0) =
e.

Proof. First we prove the convergence result to establish the estimate. Given a smooth mapping
h : R3 → G with h(s1, s2, 0) = e, then we look at the product integral

pn(s2, t, h)(s1) =
n−1∏
i=0

h(s1, s2 +
(n− i)(t− s2)

n
,
t− s2

n
)

at s2 = 0. Let c : R2 → G be a curve with c(s1, 0) = e and δrcs1(s2) = ∂
∂th(s1, s2, 0).

dα(
n−1∏
i=0

h(s1,
(n− i)t

n
,
t

n
), c(s1,t)) ≤

≤
n−1∑
i=0

dα(
i∏

j=1

c(s1,
(n− j + 1)t

n
)c(s1,

(n− j)t
n

)−1
n−1∏
j=i

h(s1,
(n− j)t

n
,
t

n
)c(s1, t)−1,

i+1∏
j=1

c(s1,
(n− j + 1)t

n
)c(s1,

(n− j)t
n

)−1
n−1∏
j=i+1

h(s1,
(n− j)t

n
,
t

n
)c(s1, t)−1) ≤

≤
n−1∑
i=0

dα(c(s1,t)c(s1,
(n− i)t

n
)−1h(s1,

(n− i)t
n

,
t

n
)c(s1,

(n− i− 1)t
n

)c(s1,
(n− i)t

n
)−1,

c(s1,t)c(s1,
(n− i)t

n
)−1) ≤

≤ n t
2

n2
Mα

for n ∈ N on compact s1-sets. The last step of the proof is done by the same arguments as in the
proof of Theorem 3.1.

Theorem 3.6. Let G be a Lipschitz-metrizable convenient Lie group with c∞G a topological group.
For all smooth mappings c : R3 → G with c(s1, s2, 0) = e the following estimate is valid

dα(pi(s3, t, c)(s1)pn(s2, t+ s2, c)(s1)c(s1, s2, t)−1pi(s3, t, c)(s1)−1, e) ≤Mαt
2

for all n ∈ N on compact (s1,s2, s3, t)-sets. Then all product integrals exist, furthermore the right
evolution operator given through these product integrals is smooth, so G is regular.
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Proof. We shall apply the following abbreviation

pi(
n− i
n

t, t, c)(s1) = pn,i(t, c)(s1) =
i∏

j=0

c(s1,
(n− j)t

n
,
t

n
)

We can proceed directly to obtain the result by our methods. Given a smooth mapping c : R3 → G
with c(s1, s2, 0) = e, we shall look at the product integral

pn,i(t, c)(s1) =
i∏

j=0

c(s1,
(n− j)t

n
,
t

n
)

at s2 = 0. The notion allows to shorten the product: 0 ≤ i ≤ n− 1, pn,n−1 = pn.

dα(pnm(t, c)(s1), pn(t, c)(s1)) ≤

≤
n−1∑
i=0

dα

pn,i(t, c)(s1)
nm−1∏
j=mi

c(s1,
(nm− j)t

nm
,
t

nm
)pn(t, c)(s1)−1,

pn,i+1(t, c)(s1)
nm−1∏

j=m(i+1)

c(s1,
(nm− j)t

nm
,
t

nm
)pn(t, c)(s1)−1

 ≤
≤

n∑
i=0

dα

pn,i(t, c)(s1)
m(i+1)−1∏
j=mi

c(s1,
(nm− j)t

nm
,
t

nm
), pn,i+1(t, c)(s1)

 =

=
n−1∑
i=0

dα

pn,i(t, c)(s1)
m(i+1)−1∏
j=mi

c(s1,
(nm− j)t

nm
,
t

nm
)c(s1,

(n− i− 1)t
n

,
t

n
)−1,

pn,i(t, c)(s1)) =

=
n−1∑
i=0

dα

pn,i(t, c)(s1)
m−1∏
j=0

c(s1,
(n− i− 1)t

n
+

(m− j)t
nm

,
t

nm
)

c(s1,
(n− i− 1)t

n
,
t

n
)−1pn,i(t, c)(s1)−1, e

)
≤

≤
n−1∑
i=0

Mα
t2

n2

for n ∈ N and compact (s1, t)-intervals due to the given estimate. Furthermore by Theorem 1.5 and
Lemma 1.4 we obtain the smoothness of these solution families.

Corollary 3.7. Let G be a Lipschitz-metrizable convenient Lie group with c∞G a topological group,
then the following assertions are equivalent:

1. A smooth exponential map exp : g→ G exists (a smooth right evolution map exists)
2. All simple product integrals converge in C∞(R2, G) (all product integrals converge in
C∞(R3, G) in the sense of Lemma 1.4).

Corollary 3.8. Let G be a regular, smoothly connected Lipschitz-metrizable Lie group, then the
closure of the normal subgroup generated by the image of the exponential map is the whole group G.

Proof. Regularity implies the existence of product integrals
∏a

0 exp(X(s)ds), which reach any point
in the smoothly connected Lie group, consequently the closure of the normal subgroup generated by
the image of the exponential map is the whole group.

4. Product integration via Linearization

Theorem 4.1. Let G be a smoothly regular Lie group. If for each smooth mapping c : R3 → G with
c(r1, r2, 0) = e the approximations pn(s2, t, c)(r1) lie in a sequentially c∞-compact set on compact
(r1, s2, t)-sets, then G is regular.
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Theorem 4.2. Let G be a smoothly regular Lie group. If for each smooth mapping c : R2 → G with
c(r1, 0) = e the approximations c(r1,

t
n)n lie in a sequentially c∞-compact set on compact (r1, t)-sets,

then G admits a smooth exponential map.

Proof. The proofs for the theorems are identical: A sequentially c∞-compact set is mapped by ρ
to a sequentially c∞-compact set, which is bounded in any compatible locally convex topology.
Consequently we obtain the existence of the image product integral, but this image product integral
stems pointwisely from G via ρ, because there are adherence points in the sequentially c∞-compact
set, which have to be the unique limit points of the respective sequences. ρ is initial, so the limit curve
has to be smooth and the uniform convergence in all derivatives in L(C∞(G,R)) implies uniform
convergence in all derivatives in the sense of Lemma 1.4. of the products to the product integral.

Proposition 4.3. Let G be a smoothly regular Lipschitz-metrizable Lie group: Furthermore for all
sets K ⊂ G lying in a given fixed neighborhood of identity, such that dα(K, e) ≤ Nα for all α ∈ Ω if
and only if K is relatively sequentially compact in the topology of G.Then G is regular, i.e. a smooth
right evolution exists.

Proof. Given a smooth mapping c : R3 → G with c(s1, s2, 0) = e, then the products pn can be
estimated in the following way:

dα(pn(s2, t)(s1), e) ≤
n−1∑
j=0

dα(c(s1,
(n− j)t

n
,
t

n
), e) ≤ n t

n
Mα

on compact (s1, s2, t)-sets. Consequently the approximations lie in a compact set for t and s small
enough. If all approximations of product integrals lie in a sequentially compact set for compact
parameter sets, we can apply the regularity theorem of 1.5 to conclude regularity as in the previous
proof.

Remark 4.4. This property can be viewed as a non-linear version of Arzela-Ascoli’s theorem.

Conjecture 4.5. Let G be a strong ILB-group, such that the associated Fréchet space is Montel. G
is seen to be Lipschitz-metrizable and regular by the above considerations. It is reasonable to expect
that for all sets K ⊂ G lying in a small neighborhood of identity U

dn(K, e) ≤ Nn for all n if and only if K is relatively compact in the topology of G

This would provide a simple procedure to solve non-autonomuous differential equations of the type
δrc(t) = X(t) for t ∈ R on the Lie group by ”intrinsic methods”.
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