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Malliavin Calculus: Analysis on Gaussian spaces

Isonormal Gaussian process

A Gaussian space is a (complete) probability space together with a
Hilbert space of centered real valued Gaussian random variables
defined on it. If the random variables of the given Hilbert space
generate the underlying o-algebra, we call the Gaussian space
irreducible.

We speak about Gaussian spaces by means of a coordinate space.

Let (Q, F, P) be a complete probability space, H a Hilbert space,
and W : H — L?[(Q, F, P);R] a linear isometry. Then W is called
isonormal Gaussian process if W(h) is a centered Gaussian random
variable for all h € H. In particular (Q2, F, P) together with W(H)
is Gaussian.



Given a d-dimensional Brownian motion (W;)¢>0 on its natural
filtration (F¢)¢>0, then

[ k k
W(h) = h*(s)dW;
>

is an isonormal Gaussian process for h € H := L?(R>q; RY).



In the sequel we shall apply the following classes of functions on R”

G (R") € G°(R") € G°(R"),

which denote the functions with compact support, with bounded
derivatives of all orders and with derivatives of all orders of
polynomial growth.



Let W be an isonormal Gaussian process. We introduce random
variables of the form

F:=f(W(h),..., W(hy))

for hi € H (mind the probabilistic notation, which would be bad
style in analysis). If f belongs to one of the above classes of
functions, the associated random variables are denoted by

SoCSbCSp

and we speak of smooth random variables. The polynomials of
elements W/(h) are denoted by P.



The algebra P is dense in L?(2, Fpy, P), where Fyy denotes the
completed o-algebra generated by the random variables W (h) for
heH.



Notice that it is sufficient to prove that every random variable F,
which is orthogonal to all exp(W(h)) for h € H, vanishes. Choose
now an ONB (e&;)i>1, then the entire function

(A1 s An) > E(Fexp() AiW(er)))
i=1

vanishes, which in turn means that
E(F|a(W(e1),..., W(es))) = 0 by uniqueness of the Fourier
transform, hence F = 0.

Therefore polynomials of Gaussians qualify as smooth test
functions, since they lie in all LP for 1 < p < oo and are dense.
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The representation of a smooth random variable is unique in the
following sense: let

F=f(W(h),...,W(hy))
=g(W(g1),---, W(gm)),

and denote the linear space (h1,...,hp, &1,...,8n) with
orthonormal basis (&)1<j<k and representations

k
hi=> aie
I=1
k
g = Z bj/e/.
1=1

Then the functions f o A and g o B coincide everywhere.



Notice the following natural isomorphisms

L2[(Q, F,P); H = L2(Q,F,P)® H
(wr— F(w)h) — F® h.

If we are additionally given a concrete representation
H = L2[(T, B, u); G], then

LPQx T,FB,P®u);Gl=L*Q,F,P)@H
(w,t) = F(w)h(t)) — F®h.
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The Malliavin Derivative

For F € S, we denote the Malliavin derivative by
DF € L2[(Q, F, P); H] defined via

.0
DF =) a—Xif(W(hl), o, W(hy)) ® h
i=1

for F = f(W(h1),..., W(h,)). The definition does not depend on
the particular representation of the smooth random variable
F = F(W(hy), .., W(h,)).

If we are given a concrete representation H = L?(T, 13, 1), then we
can identify

L2(QLF,P)QH=L*Qx T,F®RB,P® u)

and we obtain a measurable, not necessarily adapted process
(D¢F)teT as Malliavin derivative.



Let F be a smooth random variable and h € H, then

E((DF, hy) = E(FW(h)).



Let F, G be smooth random variables, then for h € H

E(G (DF, h)) + E(F (DG, h)) = E(FG W(h)).



The first equation can be normalized such that ||h|| = 1.
Additionally there are by a variable transformation orthonormal

elements ¢; such that
F=f(W(e),..., W(en))

with f € C°(R") and h = e;. Then

% 2

E(OF 1) = [ G0 enl- 1y
. % 2
'g'/nf(x)xw(;—) LT

= E(F W(e1)) = E(FW(h)).



The second integration by parts formula follows directly from the
Leibnitz rule

D(FG) = FDG + GDF
for F,G € S,,.
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The Malliavin derivative is closable

We have already defined the derivative operator
D:S,c L(Q,F,P)| — L(Q,F,P); H]

for ¢ > 1. This linear operator is closable by integration by parts:
given a sequence of smooth functionals F, — 0 in L9 and
DF, — G in L9(Q2, F, P); H] as n — oo, then
E((G. )y F) = lim E((DFy h) F) =
= nll_>ngo E(—F, (DF,h)) + nll_>nc1>o E(F,FW(h))=0
for F € Sp. Notice that S, C Ng>1L9. So G = 0 and therefore D

is closeable. We denote the closure on each space by D9,
respectively.



Given g > 1, then we denote by

1Flyq == (E(IFI9) + E(IDFI%,))7

the operator norm for any F € S,. By closeability we know that
the closure of this space is a Banach space, denoted by D9 and a
Hilbert space for ¢ = 2. We have the continuous inclusion

DM s L9((. 7, P)

which has as image the maximal domain of definition of D19 in
L9, where we shall write — by slight abuse of notation — again D
for the Malliavin derivative.
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Higher Derivatives

By tensoring the whole procedure we can define Malliavin
derivative for smooth functionals with values in V/, an additionally
given Hilbert space,

S,®V C LP[(Q,F,P)] @ V,

where we take the algebraic tensor products. We define the
Malliavin derivative on this space by D ® id, and proceed as before
showing that the operator is closable.

Consequently we can define higher derivatives via iteration
D*F = DD*"'F

for smooth functionals F € L9[(2, F, P)] ® V. Closing the spaces
we get Malliavin derivatives D¥ for elements of LI[(Q, F, P); V] to
LI[(Q, F, P); V @ H®X] by induction.



We define the norms

K
- 1
1Fllq = (E(FI19) + > E(IDF[}gpes))e
Jj=1

for k > 1 and g > 1. The respective closed spaces D*9(V) are
Banach spaces (Hilbert spaces), the maximal domains of DX in
L9(Q, F, P; V). The Fréchet space Np>1 Nk>1 DXP(V) is denoted
by D>(V).



We see immediately the monotonicity

Fllep < 1IFlljq
for p < g and k < j by norm inequalities of the type
11, < [1F1lq

for 1 < p <gqfor f € Np>1LP[Q, F, P].



Let ¢ € CL(R") be given, such that the partial derivatives are
bounded and fix p > 1. If F € DMP(R"), then ¢(F) € D' and

D(F)) = Y 52 (F)DF

Hence D* is an C*°-algebra.

A similar result holds true of ¢ is only globally Lipschitz, however,
we cannot identify the derivative then anymore.



The proof is done by approximating F’ by smooth variables F/ and
¢ by ¢ 1), where 1. is a Dirac sequence of smooth functions. For
the approximating terms the formula is satisfied, then we obtain

| . .
132 92 (F)DF — D((9+ ) o Filp = 0
i=1 !

as € — 0 and n — 00, so by closedness we obtain the result since
(px1he)o Fl — poF inLPase— 0and n— oco.



Malliavin Calculus: Analysis on Gaussian spaces

Malliavin derivative as directional derivative

Consider the standard example h— 3257 [ h*(s)dWk with
Hilbert space H = L?(R>0; RY). Assume Q = C(Rxo; RY), then
we can define the Cameron-Martin directions

t
h— (t— / hsds),
0

which embeds H <+ C(Rxo; RY). If we consider a smooth random
variable F = f(W;), then

(DF, By = £/(W,) /0 " 1p.q(s)h(s)ds = %lﬁzof(Wt—i—e /O h(s)ds).

so the Malliavin derivative evaluated in direction h appears as
directional derivative in a Cameron-Martin direction, which are the
only directions where directional derivatives make sense for
P-almost surely defined random variables.



Malliavin Calculus: Analysis on Gaussian spaces

Malliavin derivative as directional derivative

Taking the previous consideration seriously we can replace h by a
predictable strategy a such that the stochastic exponential of
ZZZI fot akdWE is a closed martingale, then we obtain

E((DF,a)) = E (:6|€_0F(. + e/o' asds))

_ %\eZOE (F(. n e/o' asds)>

d
B d [e'¢] K K 62 (e%e] 5
= E‘6:OE (F(~)6XP(€;/O agdWy — 2/0 |as|“ds)

d t
= E(F() agdwy)
>

for smooth bounded random variables F.



The adjoint operator § : dom 2(8) C LP(Q) ® H — L?(Q) is a
closed densely defined operator. We concentrate here on the case
p = 2. By definition u € domy 2(0) if and only if F — E({DF, u))
for F € D2 is a bounded linear functional on L2(Q).

If u € domy2(0), we have the following fundamental “integration
by parts formula”

E((DF,u)) = E(Fo(u))

for F € D2, § is called the Skorohod integral or divergence
operator or simply adjoint operator.
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We obtain immediately H C domj 2(4), the deterministic
strategies, with 6(1 ® h) = 6(h) = W(h).
A smooth elementary process is given by

n

u=> Fi&h

Jj=1

with F; € S, and h; € H. We shall denote the set of such
processes by the (algebraic) tensor product S, ® H. By integration
by parts we can conclude that S, ® H C dom;»(d) and

n n

5(u) =" F W(h;) = > (DFj, by

Jj=1 Jj=1



since for all G € S,

((u,DG) ) = ZE(F (hj, DG)
_ZE( ,D(F;G)),,) — E(G (h;, DF}),,)

— 3" E(F W(h)G) — E(G {hy, DF}),.).

j=1



Given an isonormal Gaussian process W and define a sub-o-algebra
Fc C Fu by means of a closed subspace G C H. If F € D12 s
Fc-measurable, then

(h,DF),; =0
P-almost surely, for all h L G.



The almost sure identity holds for smooth random variables

F =f(W(h),..., W(hy)), but every F € D12 can be
approximated by smooth random variables in L? such that also the
derivatives are approximated (closedness!), hence the result follows.



Given a d-dimensional Brownian motion (W;)>o on its natural
filtration (F¢)¢>0, then

d > k k
W(h) == h*(s)dW!
>,

is an isonormal Gaussian process for h € H := L?(R>o; RY). Define
H: C H those functions with support in [0, t] for t > 0 and denote
Ft := FH,. Hence for Fi-measurable F € D2 we obtain that
Ljo,qDF = DF almost surely.



Consequently for a simple, predictable strategy

n
-3 Fon
=1
with hj = l]tj,tj+1]ek, forO=ty <t <- - <the1 and
Fj € L2[(Q, F, P)] for j=1,...,n, and e € R? a canonical basis
vector, that

n n

S(u) =>_FW(h) = > (DFj, hj)y,

Jj=1 J=1

n
=D AW = W),
j=1



Given a predictable strategy u € Lf,red(Q x R>0; RY), then

d > k k
o(u) = u“(s)dW;.
>l



The Skorohod integral is a closed operator, the Ito integral is
continuous on the space of predictable strategies. Both operators
coincide on the dense subspace of simple predictable strategies,
hence — by the fact that § is closed — we obtain that they conincide
on L2,.4(Q x R>q; RY).



Let Fy = F and let F € D12, then

d o0 . .
F=E(F)+ E / E(D.F | Ft)dW;,.
i=170



By martingale representation we know that any G € L? has a
representation

d S . .
G = E(G)+ ;/0 pLdw,
hence
d oo
E(FG) = E(F)E(G)+ E (Z/ DiF qsidt) ,
i=17/0

which yields the result.



