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We shall always assume the following conditions on vector fields
X :RM x RN 5 RN:

1. X are measurable.

2. There is a constant C such that
[[X(y,x1) — X(y,x)|| < Cl||x1 — x2]| for all x1,x € RN and
ally e RM,

3. The function ||X(y, x)|| is bounded by a constant polynomial
in |ly|| for all x € RV,
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Main E&U theorem

Let T > 0 and given a probability space (2, F, P) together with a
d-dimensional Brownian motion (W;)o<¢<7. Let A, Ay, ..., Ag be
vector fields satisfying the above conditions and assume that there
are a continuous, adapted RM-valued process (Z;)>o with
sup || Z¢|]p < o0

te[0,T]
for all p > 2 and a continuous adapted RV-valued process (at)e>0
with

sup |[laellg < o0
te[0,T]

for some g > 2, then the stochastic differential equation

t d ot .
X, = at—l—/ A(ZS,Xs)ds+Z/ Ai(Zs, Xs)dW
0 —1 /0



has a unique continuous adapted solution (X;)o<¢<T with

sup || Xellqg < o0.
tel0,T]

Furthermore the solution can be constructed as L9-limit of the
iteration scheme

t d t .
th+1 = o+ /0 A(Zs, XI)ds + Z,/o Ai(Zs, XJ)dW,
i=1
ti = Ot

for0<t<T.
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This fundamental result leads to the following observations: given
a probability space (£, F, P) together with a d-dimensional
Brownian motion (W;)o<¢<7 in its natural filtration, we can ask
whether the solution of the stochastic differential equation

d
dX; = V(X )dt + > Vi(X)dW,
i=1
Xy =x

for x € RV lies in DY?(; RN). Here we work with the isonormal
Gaussian process W : L2([0, T],RY) — L3(Q)

d T ]
W(h):iz;/o hi(s)dW..



We assume the following conditions on the vector fields
vV, Vi, ..., Vy: RN — RN:

1. The vector fields are smooth.
2. All derivatives of order higher than 1 are bounded.

These conditions are usually referred to as C°°-boundedness
conditions.



Let V, V4,..., Vy: RN — RN be vector fields satisfying
C>-boundedness conditions, then Xy € D> := N,>1 k>1D*P for
0 <t < T. The first Malliavin derivative satisfies the following
stochastic differential equation

t d et )
DEXX = Vil(XX)+ / dV(XX)Df X ds+y / dVi(XX)DkXXdW]
r i=1 r

for0<r<t<T.
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For the proof we apply two observations. Given
u € DY2(Q; RV) ® H predictable, then for t > r

t t
D,/ usds—/ D, usds
0 r

by Riemannian approximations and closedness of the operator,
since D,us = 0 almost surely if r > s.

Given predictable u = (uy, ..., ug) € DM?(Q;RV) @ H, then for
t>r

t d ]
D,k/0 Zu;(s)dWs’:/ ZDku, YdW! + u(r),
i=1

again by Riemannian sums and closedness of the Malliavin
derivative operator.
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Going to the Picard approximation scheme we can apply these
results to obtain a sequence X' € L>~9 with X" € DI for p > 2
by induction and the chain rule for n > 0.

The derivatives converge to the solution of a stochastic differential
equation, so we conclude by closedness. The solution of this
stochastic differential equation exist due to the previous E&U
theorem. For higher derivatives we proceed by induction.
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Semi-martingale notations

We are working with Ito diffusions, i.e. continuous adapted
processes X; of the form

xt:xo+/ ds—l—Z/ ui(s)dWi,

where we assume all processes in question to be predictable and
satisfy some square integrability assumptions. Notice that this
decomposition into a finite variation process and a martingale is
unique. For two Ito processes X and Y the quadratic variation
process ((X, Y),)o<t<T is a continuous, adapted process given by

d

v, = [ (> X () (5) ).

i=1



The Stratonovich integral (in the one-dimensional case) is then
defined by

t t
1
/ XsodYs = / XedYs + - (X, Y),.
0 0 2
We can therefore write by Ito’s formula for Ito diffusions

dF(Xe) = (df)(Xe)dXe + 1 (dF)(X)(dXe)(0X0)
= (df)(Xy) o dX:.



Consequently the Stratonovich calculus is of first order, however,
we can only integrate continuous semi-martingales. Given the
solution of our SDE, we can transform since integrands are
semi-martingales to Stratonovich notation and obtain

d
dX; = Vo(X)dt + > Vi(XY) o dW],
i=1

with the Stratonovich drift.



In order to find a good representation of the Malliavin derivative,
we introduce first variations of the solution of the stochastic

differential equation:

dsse(x) = dVo(XX) - Jsose(x)dt+

d
+ D dVi(XY) - Jemse(x) 0 dW],
i=1
Js—)s(X) = idp,

for t > s.



A similar equation is satisfied by the Malliavin derivative itself
(except for the initial value!). The equation for the inverse is of
the same type, namely

d(Jse (X))t = —Joe(x) 7L - dVo(XX)dt—
d
= Jese(x)H - dVI(XY) 0 dW.
i=1



Calculating the semi-martingale decomposition of
(Jo—st(x))"tdo—s¢(x) yields the result, namely

(Jo—st(x)) ™ ose(x) = iy,

hence the statement on invertibility is justified.



Furthermore, we are able to write the Malliavin derivative,

DIXZ = Joose(x)Jo—ss(x) P Vi(XO) 1[0, ()

This is due to the fact that the RV-valued solution process
(Yt)r<t<T Of

t d )
Y: = V(X)) -I—/ dV(XY)Ysds + Z/ dVi(XZ) YsdW,,
r i—1Yr

is given through
Ye = Joot(x)dosr () T V(X))

for r <'t.
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Malliavin Covariance Matrix

We give ourselves a scalar product on RV, then we can calculate
the covariance matrix with respect to a orthonormal basis, i.e.

d e
(V(X)E€) =) /0 (Joose(x) Jomss(x) TVi(XZ), €)° ds.
i=1

Consequently, the covariance matrix can be calculated via the
reduced covariance matrix

d ,
(€66 i= > [ (el VX)) ds.
i=170

’}/(X;() = Joﬁt(X)CtJOHt(X)T.

In order to show invertibility of (X}) it is hence sufficient to show
it for C;, since the first variation process Jy_,+(x) is invertible.



(VA(x), - .. Vig(x), [V, Vl(x) (i, k = 0,...,d),...) =RN

for all x € RN in a uniform way, i.e. there exists a finite number of
vector fields X3, ..., Xy generated by the above procedure through
Lie-bracketing and ¢ > 0 such that

N

inf Xi(x), €)? >
el k=1( k(x),6)" > c

for all x € RN. Here we apply again the Stratonovich drift vector
field, i.e.

d
Vo(x) = V(x) — % S DVi(x) - Vi(x).
=1
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Main Theorem (Malliavin)

Let (Q,F, P, (Ft)t>0) be a filtered probability space and let
(Wt)t>0 be a d-dimensional Brownian motion adapted to the
filtration (which is not necessarily generated by the Brownian
motion). Let V, Vi,..., V4, the diffusion vector fields be
C>-bounded on RN and consider the solution (X})o<;<T of a
stochastic differential equation (in Stratonovich notation). Vg
denotes the Stratonovich corrected drift term,

d
dX; = Vo(XZ)dt + > Vi(XY) o dW,
i=1
Xy = x.



Assume uniform Hormander condition. Then for any p > 1 we find
numbers €g(p) > 0 and an integer K(p) > 1 such that for each
0<s<T

sup P((C°¢, &) <€) <¢P
cesh-1

holds true for 0 < e < sK(P)eo(p). The result holds uniformly in x.

The last statement implies that m € L°°79 and hence due
to the fact that X} € D> for t > 0 the law of X has a density
with respect to the Lebesgue measure, which is Schwarz.
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Take t > 0. We have to form the Malliavin covariance matrix ¢,
which is done by well-known formulas on the first variation. The
covariance matrix can be decomposed into

’Y(Xf) = J0—>t(X) CtJ0—>t(X)T,

where C;, the reduced covariance matrix, is defined via

d ¢ )
(y: Cey) = Z/o {y, Joss(x)7 - V(X)) ds.
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We first show that C; is a positive operator. We denote the kernel
of C; by K; € RN and get a decreasing sequence of closed random
subspaces of RV, V = U;-oK; is a deterministic subspace by the
Blumenthal zero-one law, i.e. there exists a null set N such that V
is deterministic on N¢. We shall do the following calculus on N°€.

We fix y € V, then we consider the stopping time
0 :=inf{s, gs> 0}

with respect to the continuous semi-martingale

d
=3 (¥ domsl) V(X))
p=1

Then 6 > 0 almost surely and gspg = 0 for s > 0.
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Now, a continuous L2-semi-martingale with values in R

d S S
M, — My = dWk d
=3 | estwnawt + [ sy

for s > 0, which vanishes up to the stopping time 6, satisfies — due
to the Doob-Meyer decomposition —

ak(snd)=0

fork=1,...,d, and B(s A 6) =0, for s > 0.



We shall apply this consideration for the continuous
semi-martingales ms := (y, Jo,s(x) ™1 - V,(XZ)) on [0, ] for
p=1,...,d. Therefore we need to calculate the Doob-Meyer
decomposition of (ms)o<s<t.
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dme = = (1. Jo-ss() 2 VO(X2) V(X)) ds—
- fj (3, o)AV Vol(X2)) 0 Wi+
o) 00) Vi)
+ Edj (3, o)AV 06) - Vi(XD)) 0 W]
(o) T IO

d
+ 3y, Joss(x) Vi, VII(XZ)) 0 dWE
i=1

where we denote by d the stochastic differential of m and the first
derivative of V.



From the Doob-Meyer decomposition this leads to

(¥s domss(x) 71+ [V, VI)(X2)) = 0
(¥sdoss ()™ [V, VOI(X2)) = 0

fori=1,....,d, p=1,...,dand 0 < s <4.
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Consequently the above equation leads by iterative application to
<)/a JO—)s(X)_1 ) D(sz)> =0

for s < 6, where D(x) is the set of Lie brackets at x. Evaluation at
s = 0 yields y = 0, since D(x) spans RV, hence C; is invertible.

Therefore we obtain that there is a null set N, such that on N¢ the
matrix C; has an empty kernel. Hence the law is absolutely
continuous with respect to Lebesgue measure, since Jy_¢(x) is
invertible and therefore +; has vanishing kernel.



Consider the random quadratic form

d s )
(GL8) =) / (Jo—u(¥)TTVH(X), &) du.
i=1 70

We define

26 = {Vl,..., Vd}
= {[Vi,V],k=1,....d,V € ¥_1;[Vo, V]+
1 d
+5 D IVAlVi, VIL V € z'n_l}
i=1

for n > 1.



Then we know that there exists jy such that

fei.srl"f’—lz Z <V(X)7§>2 2 c

J=0 vex;

uniformly in x € RM



We define m(j) := 2% for 0 < j < jo and the sets

E; —{Z/ <J0_>u(x V(X)) §> du < €m0},

Vex;
We consider the decomposition
Eo = {(C°¢,&) <e} C(BoNE)U(E1NEF)U -~ U(E,—1NEG)UF,
F=EnN---NEj,.
and proceed with

P(F) < Ce%,

for € < e1. Furthermore 0 < 3 < m(jp), any g > 2, a constant C
depending on g and the norms of the derivatives of the vector

fields Vg, ..., V4. The number € is determined by the following
two (!) equations



We obtain furthermore with n(j) = #¥

P(Ej N Efq)
<> P (/0 (Jossu(x)IV(XZ), €)7 du < €m0,

’
Vex:

d S
S | ool Ve VIO, )7
k=170

S 1 d 2
+ /0 <Joﬁu(x)—1 ([vo,V1+52[v,-,[v,-,V11) (X5),s> du

i=1

6m(j—l—l)
> ——FF1,
n(j)
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Since we can find the bounded variation and the quadratic variation

part of the martingale ({Jo—u(x)"2V/(XZ),€))o<u<s in the above

expression, we are able to apply Norris' Lemma. We ol()/_s)erve that
m

8m(j + 1) < m(j), hence we can apply it with g = m(j+1)-




We obtain for p > 2 — still by the Norris’ Lemma — the estimate

emG+1)\ emi+l)
P(EjNEf) < di + drexp | —( )"

n(j) n(j)
for € < €. Furthermore r,v > 0 with 18r + 9v < g — 8, the
numbers di, d> depend on the vector fields Vg, ..., Vy, and on p,

T. The number e, can be chosen like e; = e35%1, where €3 does
not depend on s anymore.



Putting all together we take the minimum of ejand € to obtain
the desired dependence on s by applying the following lemma:

Given a random matrix v € Np>1LP(2) and assume that for p > 1
there is €o(p) such that

sup P((7€,6) <e) <¢?
§€5M_1

for 0 < e < ¢o(p), then L en,s1LP(Q).
det(v) pP=



Let (X{)t>0 denote the solution of our SDE and assume the
uniform Hérmander condition. Fix t > 0 and x € RV, Fix a
direction v € RN, We define a set of Skorohod-integrable processes

d t )
Aty = {a € dom(d) such that ) / Joss(x)TIVi(XY)alds = v}.
i=170
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Let (X{)¢>0 denote the unique solution of our SDE and assume
d=N. Fix t >0 and x € RN. Assume furthermore uniform
ellipticity, i.e., there is ¢ > 0 such that

N

inf Vi(x), 2>
(0 06" >

Then A¢ ., # (0 and there exists a real valued random variable 7
(which depends linearly on v) such that for all bounded random
variables f we obtain

d

Jo| E(FXET) = E(F(X0)7).

e=0
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Here the proof is particularly simple, since we can take a matrix
o(x) := (Vi(x), .., Vn(x)), which is uniformly invertible with
bounded inverse. We define

1 _
as = ?O'(XSX) L Joss(x)v

for 0 < s < t and obtain that a € A ,. Furthermore

d t
T = Z/ aldwi,
=170

since the Skorohod integrable process a is in fact adapted,
continuous and hence lto-integrable.
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Let (X{)t>0 denote the unique solution of our SDE and assume
uniform Hormander condition. Fix t > 0 and x € RV, Fix a
direction v € RN, Then A¢ v # 0 and there exists a real valued
random variable 7 (which depends linearly on v) such that for all
bounded random variables f we obtain

d

| E(FOET) = E(F(X)m).
e=0

We can choose 7 to be the Skorohod integral of any element
ac At,x7v 7é @
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We take f bounded with bounded first derivative, then we obtain

d

S| EOGT) = EGFOG)al) -v),

e=0

If there is a € At x,,, we obtain

E(df(X)Jomse(x) - v)

d ot
= E(FOG) Y [ ot o) VX3l )
=170
d ¢ .
= E(S [ O el o) V(X2 )
=170

d t . .
= E(Z/O Dsf(X{)asds) = E(f(X;)d(a))-
i=1



Here we cannot assert that the strategy is lto-integrable, since it
will anticipative in general. In order to see that A, , # 0 we

construct an element, namely

ag 1= (Jooss () THVI(XE), (CF)Hv),

where C! denotes the reduced covariance matrix.



Indeed

d

> < / t Joﬁs(x)-lv,-(x;)a;ds,s>

i=1
d .t
=7 [ o) VA €) (o) VIO, (€ ) 0
i=170
= (& CH(C) V) = (&)
for all € € RV, since Ct is a symmetric random operator defined via

d ¢
<£7 Ct€> - Z/ <J0_>5(X)_1\/,'(X;()7€>2 ds
i=17/0

for ¢ € RV,
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