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Malliavin Calculus: Absolute continuity and regularity

Isonormal Gaussian process

A Gaussian space is a (complete) probability space together with a
Hilbert space of centered real valued Gaussian random variables
defined on it.

We speak about Gaussian spaces by means of a coordinate space.

Let (2, F, P) be a complete probability space, H a Hilbert space,
and W : H — L2[(Q, F, P);R] a linear isometry. Then W is called
isonormal Gaussian process if W(h) is a centered Gaussian random
variable for all h € H.

A Gaussian space is called irreducible if its o-algebra is generated
by the elements of the distinguished Hilbert space. In the sequel
we shall mainly work with irreducible Gaussian spaces equipped
with one isonormal Gaussian process.



We denote the closed operator Malliavin derivative by
D : DY — [?2 ® H and have that

D(FG) = GDF + FDG

for F, G, FG € D2 if the right hand side is square integrable. The
Skorohod integral is denoted by 0 and we have the following rule,
which is the dual version of the previous Leibnitz rule:

d(Fu) = Fo(u) — (u, DF)

for F € D12 and u, Fu € domy »(6) if the right hand side is square
integrable.



Let F be a random variable in D2 and suppose that ﬁz— is
H

Skorohod integrable. Then the law of F has a continuous and
bounded density f with respect to the Lebesgue measure A given

by
DF
f(x)zgll . 5(_)]
=3\ IoFIR,

for real x.



We consider ¢(y) = 1(,4(y) for a < b and ¢(y) := [7_ ¥(x)dx.
Since ¢(F) € D2 we obtain

(D(¢(F)), DF)yy = w(F) || DFI[},

which allows to compute ¥ (F). By integration by parts

DF
E((F) = E (<D(¢(F)) ||DF||H>H> -

DF
= 1)
E(W) <||DF||";,>>

which leads to



P(a< F<b)= E(/F ¢(x)dx6(ﬁ>> —
o z

b DF ))
= Ef1 F>x 0| ——= dx
/a <{ 7 (IIDFIIi

by Fubini's theorem.



It holds that

N 1
I, ey < [Tl
i=1

for f € Cg°(R™) and N > 2.



Let i be a finite measure on RN and assume that there are
constants ¢; for i = 1, ..., N such that

< cillllo

[ ot

for all ¢ € Cg°(R™), then p is absolutely continuous with respect
to the Lebesgue measure.



We show the case for N > 2: we shall show that the density of i

N
belongs to L¥-1 for N > 1. We take a Dirac sequence v, for ¢ > 0
and a sequence of smooth bump functions 0 < ¢y < 1 with

em(x) = 1 for ||x|| <M
MU= 0 for [|x]| > M +1

where we assume that the partial derivatives are bounded
uniformly with respect to M. Then the measures cp (¢e * (1) have
densities py . belonging to C§°(RN).



To apply the Gagliardo-Nirenberg inequality we have to estimate

w = [l (@) = ] ()
+ [ el (e (@)

< [, L itx=pluliay)a
+ [ w0l 5+ ) ()

||0iPm.e|

where v; denotes the signed finite measure on RV induced by
¢ [ Oipu(dx) for ¢ € C§°(RN). This expression is bounded by
a constant independent of M and e by Fubini's theorem.



The unit ball of L% is weakly compact, so we find a weak limit of

em (Ve * p) in LW"T: on the one hand

/ () em(x) (e * ) (dbe) / g(x)pu(c)
RN RN

for g € L°(RN) as M — oo and € — 0 and pu(R") < co. However,
since there exists a weak limit p € L}(R") we obtain

[ gm0 = [ etptds

which is the desired result.



We denote F € ’D,lo"c’ for some p > 1, if there exists a sequence

(Qn, Fn)n>0, where Q,, is a measurable set and F, € DP for n > 0
such that

Q, 1 Q almost surely,
Fnlq, = Flq, almost surely.



Take now a random vector F := (F1, ..., FN), which belongs to
D}o’i componentwise. We associate to F the Malliavin (covariance)
matrix vg, which is a non-negative, symmetric random matrix:

v(F) == ¢ := ((DF', DF!’>H)1S,JSN.

From regular invertibility of this matrix we shall obtain the basic
condition on the existence of a density.



Let F be a random vector satisfying

1. Fle Dyt foralli=1,..,N.

2. The matrix g is invertible almost surely.

Then the law of F is absolutely continuous with respect to the
Lebesgue measure.



We shall assume F' € D?* for each i = 1,..., N first. We fix a test
function ¢ € CS°(RN), then by the chain rule ¢(F) € D4,
consequently

2

D(¢(F :Z F)DF’

Z
(D(¢(F)), DF7) , Z

and therefore by invertibility

9 (1) _ S~ (D(o(F)). DFY, (17
a_X,' - - 9 H 7F ) .



In the sequel we have to apply a localization argument: consider
the compact subset K, C GL(N) of matrices o with |o¥| < m and
|det(a)| > L for i,j =1,...,m. We can define 1, € C§°(Mn(R))
with 9, > 0, ¥ml|k,, = 1 and ¥m|er(n)\K,,, = 0, which is easily
possible since K, is an exhaustion of GL(N) by compact sets such
that K, C (Km+1)°. Now we can integrate reasonably the above
equation

(wm(w) (F))—ZE(@bm(vF)(D(cb(F) DFY ), (7¢")



Remark that ¢, (vF)DF/ (v£1)7 € domy 2(6), since

Ym(7E) (v1)7 is a bounded random variable (it equals the
inversion rational function applied to ¢ times a smooth function
with compact support applied to yF, but 7 € D>*) and

E ((¢m(7F)(7E1)”)2 (DF/, DFf>H) < oo.

Consequently we can apply integration by parts to arrive at

N
EWnlr) G2 (F)) = E(F) Y6 (6mle) DF (3)7))

j=1
N

< N1DllsoE | |D 8 (Wm(e) DFY (v4)7)

j=1



Hence we obtain that for any A € B(RV) with zero Lebesgue
measure

[ o =0
F-1(A)

holds true, but as m — oo — via property 2 of the assumptions —
fF*l(A) dP = 0. Therefore F,P < ).

In general — for F € Di)’ﬁ — we calculate for F,, and obtain the
result by the property that F, }(A) — F~1(A).



Let  be a finite measure on RN and A ¢ RN open. Assume that
there are constants ¢, for a multiindex « such that

< calldloo

[ dwiteuta)

for all ¢ € Cg"(RN) with compact support in A, then the
restriction of u to A is absolutely continuous with respect to the
Lebesgue measure and the density is smooth.



Let F be a random vector satisfying

1. FFeD® foralli=1,...,N.

. . . . 1 OO—O
2. The matrix ~vg is invertible almost surely and atr) € L .

Then the law of F is absolutely continuous with respect to
Lebesgue measure and the existing density is smooth.



Let g : Q — RN be a random variable with well-defined covariance
matrix v(g), then we can define for any vector z € RV the
covering vector field Z € L2(Q,F, P) ® H via

(DgJ7 Z)H =27,

Apparently one solution is given by
N .
[ — 1
Z=> Dg'(r(g)'2),
i=1

since for j=1,.... N

N

(Dg’.Z)n = (Dg’,Dg'), (+(g) '2) = 2.
=1
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A more geometric point of view

Hence the previously calculated solutions are in fact lifts of vectors
to covering vector fields on the given Gaussian space. Usually Z
can be chosen to be Skorohod-integrable, whence integration by
parts will work. This leads to the following theorem:

Let F € D*° and m € L°°0 then for any multiindex o € NN
we obtain for all ¢ € CZ°(RN).

E(9a9(F)) = E (6(F)Qa)

by integration by parts for some random variable Q, € D>
(independent of ¢).
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We do the proof by induction: for o = 0 there is nothing to show.
Let us assume now that it holds for || < k and we choose some
of order k. Without restriction we assume that 9, = 0301, whence

E(aﬂal¢(F)): (016(F)Qs)
E((D¢(F), 2)Qs)
E(o(F)(Qsd(Z) — (DQs, 2)))

where Z is a covering vector field for e;. This proves the statement
for 0, and completes the induction.



Choose ¢¢(x) = exp((, x)), then

€1 E(exp((€, F))I < [E(exp((€, F)) Q) < E(|Ql) < o0,

which means that the characteristic function of g tends to zero as
& — oo faster than any polynomial in the Fourier variable &. This
in turn means that there is a smooth density with bounded
derivatives of all orders.

With the same methodology one can show that the density is in
fact Schwarz.



