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ETH Zürich
kowalski@math.ethz.ch,jteichma@math.ethz.ch



Contents

Preamble 1

Introduction 2
Notation 4

Chapter 1. Measure theory 7
1.1. Algebras, σ-algebras, etc 8
1.2. Measure on a σ-algebra 14
1.3. The Lebesgue measure 20
1.4. Borel measures and regularity properties 22

Chapter 2. Integration with respect to a measure 24
2.1. Integrating step functions 24
2.2. Integration of non-negative functions 26
2.3. Integrable functions 33
2.4. Integrating with respect to the Lebesgue measure 41

Chapter 3. First applications of the integral 46
3.1. Functions defined by an integral 46
3.2. An example: the Fourier transform 49
3.3. Lp-spaces 52
3.4. Probabilistic examples: the Borel-Cantelli lemma and the law of large

numbers 65

Chapter 4. Measure and integration on product spaces 75
4.1. Product measures 75
4.2. Application to random variables 82
4.3. The Fubini–Tonelli theorems 86
4.4. The Lebesgue integral on Rd 90

Chapter 5. Integration and continuous functions 98
5.1. Introduction 98
5.2. The Riesz representation theorem 100
5.3. Proof of the Riesz representation theorem 103
5.4. Approximation theorems 113
5.5. Simple applications 116
5.6. Application of uniqueness properties of Borel measures 119
5.7. Probabilistic applications of Riesz’s Theorem 125

Chapter 6. The convolution product 132
6.1. Definition 132
6.2. Existence of the convolution product 133
6.3. Regularization properties of the convolution operation 137

ii



6.4. Approximation by convolution 140

Chapter 7. Questions for the oral examination 146

Bibliography 148

iii





Preamble

This course is an English translation and adaptation with minor changes of the French
lecture notes I had written for a course of integration, Fourier analysis and probability
in Bordeaux, which I taught in 2001/02 and the following two years.

The only difference worth mentioning between these notes and other similar treat-
ments of integration theory is the incorporation “within the flow” of notions of probability
theory (instead of having a specific chapter on probability). These probabilistic asides –
usually identified with a grey bar on the left margin – can be disregarded by readers who
are interested only in measure theory and integration for classical analysis. The index
will (when actually present) highlight those sections in a specific way so that they are
easy to read independently.

Acknowledgements. Thanks to the students who pointed out typos and inacurra-
cies in the text as I was preparing it, in particular S. Tornier.
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Introduction

The integral of a function was defined first for fairly regular functions defined on
a closed interval; its two fundamental properties are that the operation of indefinite
integration (with variable end point) is the operation inverse of differentiation, while the
definite integral over a fixed interval has a geometric interpretation in terms of area (if
the function is non-negative, it is the area under the graph of the function and above the
axis of the variable of integration).

However, the integral, as it is first learnt, and as it was defined until the early 20th
century (the Riemann integral), has a number of flaws which become quite obvious and
problematic when it comes to dealing with situations beyond those of a continuous func-
tion f : [a, b]→ C defined on a closed interval in R.

To describe this, we recall briefly the essence of the definition. It is based on ap-
proaching the desired integral ∫ b

a

f(t)dt

with Riemann sums of the type

S(f) =
N∑
i=1

(yi − yi−1) sup
yi−16x6yi

f(x)

where we have a subdivision

(0.1) a = y0 < y1 < · · · < yN = b

of [a, b]. Indeed, if f is Riemann-integrable, such sums will converge to the integral when
a sequence of subdivisions where the steps max |yi − yi−1| converge to 0.

Here are some of the difficulties that arise in working with this integral.

• Compatibility with other limiting processes: let (fn) be a sequence of (continu-
ous) functions on [a, b] “converging” to a function f , in some sense. It is not
always true that

(0.2) lim
n→+∞

∫ b

a

fn(t)dt =

∫ b

a

f(t)dt,

and in fact, with Riemann’s definition, f may fail to be integrable. The problem,
as often in analysis, is to justify a certain exchange of two limits, and this turns
out to be quite difficult.

The only case where the formula can be shown to hold very easily is when
fn → f uniformly on [a, b]: then f is continuous, and (0.2) holds. However, it
is often very hard to check uniform convergence, and it often fails to hold. This
becomes even more of a problem when working with integrals over unbounded
sets like ]−∞,+∞[, which are themselves limits of integrals over ]a, b[ as a→ −∞
and b+∞: in effect, we then have three limiting processes to juggle.
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The following simple example illustrates that one will always need some care:
let [a, b] = [0, 1] and

(0.3) fn(x) =


2n2x if 0 6 x 6 1

2n

2n− 2n2x if 1
2n
6 x 6 1

n

0 if 1
n
6 x 6 1

so that fn(x) → 0 for all x ∈ [0, 1] (since fn(0) = 0 and the sequence becomes
constant for all n > x−1 if x ∈]0, 1]), while∫ 1

0

fn(x)dx = 1/2

for all n.
• Multiple integrals: just like that integral∫ b

a

f(t)dt

has a geometric interpretation when f(t) > 0 on [a, b] as the area of the plane
domain situated between the x-axis and the graph of f , one is tempted to write
down integrals with more than one variable to compute the volume of a solid in
R3, or the surface area bounded by such a solid (e.g., the surface of a sphere).
Riemann’s definition encounters very serious difficulties here because the lack of
a natural ordering of the plane makes it difficult to find suitable analogues of
the subdivisions used for one-variable integration. And even if some definition
is found, the justification of the expected formula of exchange of the variables of
integration

(0.4)

∫ b

a

∫ d

c

f(x, y)dxdy =

∫ d

c

∫ b

a

f(x, y)dydx

is usually very difficult.
• Probability: suppose one wants to give a precise mathematical sense to such

intuitive statements as “a number taken at random between 0 and 1 has proba-
bility 1/2 of being > 1/2”; it quickly seems natural to say that the probability
that x ∈ [0, 1] satisfy a certain property P is

(b− a) =

∫ b

a

dx

if the set I(P) of those x ∈ [0, 1] where P holds is equal to the interval [a, b]. Very
quickly, however, one is led to construct properties which are quite natural, yet
I(P) is not an interval, or even a finite disjoint union of intervals! For example,
let P be the property: “there is no 1 in the digital expansion x = 0, d1d2 · · · of
x in basis 3, di ∈ {0, 1, 2}.” What is the probability of this? This is related to
the sixth Hilbert problem from 1900.
• Infinite integrals: as already mentioned, in Riemann’s method, an integral like∫ +∞

a

f(t)dt

is defined a posteriori as limit of integrals from a to b, with b→ +∞. This implies
that all desired properties of these integrals be checked separately – and involves
therefore an additional limiting process. This becomes even more problematic
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when one tries to define and study functions defined by such integrals, like the
Fourier transform of a function f : R→ C by the formula

f̂(t) =

∫ +infty

−∞
f(x)e−ixtdx

for t ∈ R.

Henri Lebesgue, who introduced the new integration that we will study in this course
as the beginning of the 20th century used to present the fundamental idea of his method
as follows. Suppose you wish to compute the sum S (seen as a discrete analogue of the
integral) of finitely many real numbers, say

a1, a2, . . . , an

(which might be, as in the nice illustration that Lebesgue used, the successive coins found
in your pocket, as you try to ascertain your wealth). The “Riemann” way is to take each
coin in turn and add their values one by one:

S = a1 + · · ·+ an.

However, there is a different way to do this, which in fact is almost obvious (in the
example of counting money): one can take all the coins, sort them into stacks correspond-
ing to the possible values they represent, and compute the sum by adding the different
values multiplied by the number of each of the coins that occur: if b1, . . . , bm are the
different values among the ai’s, let

Nj = number of i 6 n with ai = bj,

denote the corresponding multiplicity, and then we have

S = b1 ×N1 + · · ·+ bm ×Nm.

One essential difference is that in the second procedure, the order in which the coins
appear is irrelevant; this is what will allow the definition of integration with respect to
a measure to be uniformly valid and suitable for integrating over almost arbitrary sets,
and in particular over any space Rn with n > 1.

To implement the idea behind Lebesgue’s story, the first step, however, is to be able to
give a meaning to the analogue of the multiplicities Nj when dealing with functions taking
possibly infinitely many values, and defined on continuous sets. The intuitive meaning
is that it should be a measure of the size of the set of those x where a function f(x)
takes values equal, or close, to some fixed value. Such a set, for an arbitrary function,
may be quite complicated, and the construction requires a certain amount of work and
formalism. But there are rich rewards that come with this effort.

Notation

Measure theory will require (as a convenient way to avoid many technical compli-
cations where otherwise a subdivision in cases would be needed) the definition of some
arithmetic operations in the set

[0,+∞] = [0,+∞[∪{+∞}
where the extra element is a symbol subject to the following rules:

(1) Adding and multiplying elements 6= +∞ is done as usual;
(2) We have x+∞ =∞+ x =∞ for all x > 0;
(3) We have x · ∞ =∞ · x =∞ if x > 0;
(4) We have 0 · ∞ =∞ · 0 = 0.
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Note, in particular, this last rule, which is somewhat surprising: it will be justified
quite quickly.

It is immediately checked that these two operations on [0,+∞] are commutative,
associative, with multiplication distributive with respect to addition.

The set [0,+∞] is also ordered in the obvious way that is suggested by the intuition:
we have a 6 +∞ for all a ∈ [0,+∞] and a < +∞ if and only if a ∈ [0,+∞[⊂ R. Note
that

a 6 b, c 6 d imply a+ c 6 b+ d and ac 6 bd

if a, b, c and d ∈ [0,+∞]. Note also, however, that, a+ b = a+ c or ab = ac do not imply
b = c now (think of a = +∞).

Remark. Warning: using the subtraction and division operations is not permitted
when working with elements which may be = +∞.

For readers already familiar with topology, we note that there is an obvious topology
on [0,+∞] extending the one on non-negative numbers, for which a sequence (an) of real
numbers converges to +∞ if and only an → +∞ in the usual sense. This topology is
such that the open neighborhoods of +∞ are exactly the sets which are complements of
bounded subsets of R.

We also recall the following fact: given an ∈ [0,+∞], the series
∑
an is always

convergent in [0,+∞]; its sum is real (i.e., not = +∞) if and only if all terms are real
and the partial sums form a bounded sequence: for some M < +∞, we have

N∑
n=1

an 6M

for all N .
We also recall the definition of the limsup and liminf of a sequence (an) of real numbers,

namely
lim sup

n
an = lim

k→+∞
sup
n>k

an, lim inf
n

an = lim
k→+∞

inf
n>k

an ;

each of these limits exist in [−∞,+∞] as limits of monotonic sequences (non-increasing
for limsup and non-decreasing for the liminf). The sequence (an) converges if and only if
lim supn an = lim infn an, and the limit is this common value.

Note also that if an 6 bn, we get

(0.5) lim sup
n

an 6 lim sup
n

bn and lim inf
n

an 6 lim inf
n

bn.

We finally recall some notation concerning equivalence relations and quotient sets
(this will be needed to defined Lp spaces). For any set X, an equivalence relation ∼ on
X is a relation between elements of X, denoted x ∼ y, such that

x ∼ x, x ∼ y if and only if y ∼ x, x ∼ y and y ∼ z imply x ∼ z

note that equality x = y satisfies these facts. For instance, given a set Y and a map
f : X → Y , we can define an equivalence relation by defining x ∼f y if and only if
f(x) = f(y).

Given an equivalence relation ∼ and x ∈ X, the equivalence class π(x) of x is the set

π(x) = {y ∈ X | y ∼ x} ⊂ X.

The set of all equivalence classes, denoted X/ ∼, is called the quotient space of X
modulo ∼; we then obtain a map π : X → X/ ∼, which is such that π(x) = π(y) if
and only if x ∼ y. In other words, using π it is possible to transform the test for the
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relation ∼ into a test for equality. Moreover, note that – by construction – this map π is
surjective.

To construct a map f : Y → X/ ∼, where Y is an arbitrary set, it is enough to
construct a map f1 : Y → X and define f = π ◦ f1. Constructing a map from X/ ∼,
g : X/ ∼→ Y , on the other hand, is completely equivalent with constructing a map
g1 : X → Y such that x ∼ y implies g1(x) = g1(y). Indeed, if that is the case, we
see that the value g1(x) depends only on the equivalence class π(x), and one may define
unambiguously g(π(x)) = g(x) for any π(x) ∈ X/ ∼. The map g is said to be induced by
g1.

As a special case, if V is a vector space, and if W ⊂ V is a vector subspace, one
denotes by V/W the quotient set of V modulo the relation defined so that x ∼ y if and
only if x− y ∈ W . Then, the maps induced by

+ : (x, y) 7→ x+ y et · : (λ, x) 7→ λx

are well-defined (using the fact that W is itself a vector space); they define on the quotient
V/W a vector-space structure, and it is easy to check that the map π : V → V/W is
then a surjective linear map.

Some constructions and paradoxical-looking facts in measure theory and integration
theory depend on the Axiom of Choice. Here is its formulation:

Axiom. Let X be an arbitrary set, and let (Xi)i∈I be an arbitrary family of non-empty
subsets of X, with arbitrary index set I. Then there exists a (non-unique, in general)
map

f : I → X

with the property that f(i) ∈ Xi for all i.

In other words, the map f “chooses” one element out of each of the sets Xi. This
seems quite an obvious fact, but we will see some strange-looking consequences...

We will use the following notation:

(1) For a set X, |X| ∈ [0,+∞] denotes its cardinal, with |X| = ∞ if X is infinite.
There is no distinction between the various infinite cardinals.

(2) If E and F are vector-spaces (over R or C), we denote L(E,F ) the vector space
of linear maps from E to F , and write L(E) instead of L(E,E).
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CHAPTER 1

Measure theory

The first step in measure theory is somewhat unintuitive. The issue is the following:
in following on the idea described at the end of the introduction, it would seem natural
to try to define a “measure of size” λ(X) > 0 of subsets X ⊂ R from which integration
can be built. This would generalize the natural size b− a of an interval [a, b], and in this
respect the following assumptions seem perfectly natural:

• For any interval [a, b], we have λ([a, b]) = b− a, and λ(∅) = 0; moreover λ(X) 6
λ(Y ) if X ⊂ Y ;
• For any subset X ⊂ R and t ∈ R, we have

λ(Xt) = λ(X), where Xt = t+X = {x ∈ R | x− t ∈ X}

(invariance by translation).
• For any sequence (Xn)n>1 of subsets of R, such that Xn ∩Xm = ∅ if n 6= m, we

have

(1.1) λ
(⋃
n>1

Xn

)
=
∑
n>1

λ(Xn),

where the sum on the right-hand side makes sense in [0,+∞].

However, it is a fact that because of the Axiom of Choice, these conditions are not
compatible, and there is no map λ defined on all subsets of R with these properties.

Proof. Here is one of the well-known constructions that shows this (due to the
italian mathematician Giuseppe Vitali). We consider the quotient set X = R/Q (i.e.,
the quotient modulo the equivalence relation given by x ∼ y if x− y ∈ Q); by the Axiom
of Choice, there exists a map

f : X → R

which associates a single element in it to each equivalence class; by shifing using integers,
we can in fact assume that f(X) ⊂ [0, 1] (replace f(x) by its fractional part if needed).
Denote then N = f(X) ⊂ R. Considering λ(N) we will see that this can not exist!
Indeed, note that, by definition of equivalence relations, we have

R =
⋃
t∈Q

(t+N),

over the countable set Q. Invariance under translation implies that λ(t+N) = λ(N) for
all N , and hence we see that if λ(N) were equal to 0, it would follow by the countable
additivity that λ(R) = 0, which is absurd. But if we assume that λ(N) = λ(t+N) = c > 0
for all t ∈ Q, we obtain another contradiction by considering the (still disjoint) union

M =
⋃

t∈[0,1]∩Q

(t+N),
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because M ⊂ [0, 2] (recall N ⊂ [0, 1]), and thus

2 = λ([0, 2]) > λ(M) =
∑

t∈[0,1]∩Q

λ(t+N) =
∑

t∈[0,1]∩Q

c = +∞!

�

Since abandoning the requirement (1.1) turns out to be too drastic to permit a good
theory (it breaks down any limiting argument), the way around this difficulty has been
to restrict the sets for which one tries to define such quantities as the measure λ(X).
By considering only suitable “well-behaved sets”, it turns out that one can avoid the
problem above. However, it was found that there is no unique notion of “well-behaved
sets” suitable for all sets on which we might want to integrate functions,1 and therefore
one proceeds by describing axiomatically the common properties that characterize the
collection of well-behaved sets.

1.1. Algebras, σ-algebras, etc

Here is the first formal definition of a collection of “well-behaved sets”, together with
the description of those maps which are adapted to this type of structures.

Definition 1.1.1. Let X be any set.
(1) A σ-algebra on X is a family M of subsets of X such that the following conditions

hold:
(i) We have ∅ ∈M, X ∈M.
(ii) If Y ∈M, then the complement set X − Y = {x ∈ X | x /∈ Y } is also in M.
(iii) If (Yn) is any countable family of subsets Yn ∈M, then

(1.2)
⋃
n>1

Yn ∈M and
⋂
n>1

Yn ∈M.

A set Y ∈M is said to be measurable for M. The pair (X,M) is called a measurable
space.

(2) Let (X,M) and (X ′,M′) be measurable spaces. A map f : X → X ′ is measurable
with respect to M and M′ if, for all Y ∈M′, the inverse image

f−1(Y ) = {x ∈ X | f(x) ∈ Y }

is in M.

Remark 1.1.2. In addition to the above, note already that if Y and Z are measurable
sets, then Y − Z = Y ∩ (X − Z) is also measurable.

The following lemma is essentially obvious but also very important:

Lemma 1.1.3. (1) Let (X,M) be a measurable space. The identify map (X,M) →
(X,M) sending x to itself is measurable.

(2) Any constant map is measurable.

(3) Let X
f−→ X ′ and X ′

g−→ X ′′ be measurable maps. The composite g◦f : X → X ′′

is also measurable.

1 For subsets of R, it is possible to proceed by using the Carathéodory extension theorem which
gives a fairly direct approach.
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Proof. For (1) and (2), there is almost nothing to say; for (3), it is enough to remark
that

(g ◦ f)−1(Y ′′) = f−1(g−1(Y ′′)).

�

Example 1.1.4. (1) For any X, one can take M = Mmin = {X, ∅}; this is the smallest
possible σ-algebra on X.

(2) Similarly, the largest possible σ-algebra on X is the set Mmax of all subsets of
X. Of course, any map (X,Mmax)→ (X ′,M′) is measurable. Although we shall see that
Mmax is not suitable for defining integration when X is a “big” set, it is the most usual
σ-algebra used when X is either finite or countable.

(3) Let M′ be a σ-algebra on a set X ′, and let f : X → X ′ be any map; then
defining

M = f−1(M′) = {f−1(Y ) | Y ∈M′}
we obtain a σ-algebra on X, called the inverse image of M′. Indeed, the formulas

f−1(∅) = ∅, f−1(X ′ − Y ′) = X − f−1(Y ′),

f−1
(⋃
i∈I

Yi

)
=
⋃
i

f−1(Yi), f−1
(⋂
i∈I

Yi

)
=
⋂
i

f−1(Yi)(1.3)

(valid for any index set I) show that M is a σ-algebra. (On the other hand, the direct
image f(M) is not a σ-algebra in general, since f(X) might not be all of X ′, and this
would prevent X ′ to lie in f(M)). This inverse image is the smallest σ-algebra such that

f : (X, f−1(M))→ (X ′,M′)

becomes measurable.
The following special case is often used without explicit mentioning: let (X,M) be a

measurable space and let X ′ ⊂ X be any fixed subset of X (not necessarily in M). Then
we can define a σ-algebra on X ′ by putting

M′ = {Y ∩X ′ | Y ∈M} ;

it is simply the inverse image σ-algebra i−1(M) associated with the inclusion map i :
X ′ ↪→ X. Note that if X ′ ∈M, the following simpler description

M′ = {Y ∈M | Y ⊂ X ′},
holds, but it is not valid if X ′ /∈M.

(4) Let (Mi)i∈I be σ-algebras on a fixed set X, with I an arbitrary index set. Then
the intersection ⋂

i

Mi = {Y ⊂ X | Y ∈Mi for all i ∈ I}

is still a σ-algebra on X. (Not so, in general, the union, as one can easily verify).
(5) Let (X,M) be a measurable space, and Y ⊂ X an arbitrary subset of X. Then

Y ∈M if and only if the characteristic function

χY : (X,M)→ ({0, 1},Mmax)

defined by

χY (x) =

{
1 if x ∈ Y
0 otherwise

is measurable. This is clear, since χ−1
Y ({0}) = X − Y and χ−1

Y ({1}) = Y .

9



Remark 1.1.5. In probabilistic language, it is customary to denote a measurable
space by (Ω,Σ); an element ω ∈ Ω is called an “sample event” and A ⊂ Σ is called an
“event”.

The intersection of two events corresponds to the logical “and”, and the union to
“or”. Thus, for instance, if (An) is a countable family of events (or properties), one can
say that the event “all the An hold” is still an event, since the intersection of the An is
measurable. Similarly, the event “at least one of the An holds” is measurable (it is the
union of the An).

It is difficult to describe completely explicitly the more interesting σ-algebras which
are involved in integration theory. However, an indirect construction, which is often
sufficiently handy, is given by the following construction:

Definition 1.1.6. (1) Let X be a set and A a family of subsets of X. The σ-algebra
generated by A, denoted σ(A), is the smallest σ-algebra containing A, i.e., it is given by

σ(A) = {Y ⊂ X | Y ∈M for any σ-algebra M with A ⊂M}
(in other words, it is the intersection of all σ-algebras containing A). This σ-algebra is
called σ-algebra generated by A.

(2) Let (X,T) be a topological space. The Borel σ-algebra on X, denoted BX , is the
σ-algebra generated by the collection T of open sets in X.

(3) Let (X,M) and (X ′,M′) be measurable spaces; the product σ-algebra on X ×X ′
is the σ-algebra denoted M ⊗M′ which is generated by all the sets of the type Y × Y ′
where Y ∈M and Y ′ ∈M′.

Remark 1.1.7. (1) If (X,T) is a topological space, we can immediately check that
B is generated either by the closed sets or the open sets (since the closed sets are the
complements of the open ones, and conversely). If X = R with its usual topology (which
is the most important case), the Borel σ-algebra contains all intervals, whether closed,
open, half-closed, half-infinite, etc. For instance:

(1.4) [a, b] = R− (]−∞, a[∪]b,+∞[), and ]a, b] = [a, b]∩]a,+∞[.

Moreover, the Borel σ-algebra on R is in fact generated by the much smaller collection
of closed intervals [a, b], or by the intervals ]−∞, a] where a ∈ R. Indeed, using arguments
as above, the σ-algbera M generated by those intervals contains all open intervals, and
then one can use the following

Lemma 1.1.8. Any open set U in R is a disjoint union of a family, either finite or
countable, of open intervals.

Proof. Indeed, these intervals are simply the connected components of the set U ;
there are at most countably many of them because, between any two of them, it is possible
to put some rational number. �

By convention, when X is a topological space, we consider the Borel σ-algebra on
X when speaking of measurability issues, unless otherwise specified. This applies in
particular to functions (X,M) → R: to say that such a function is measurable means
with respect to the Borel σ-algebra.

(2) If (X,M) and (X ′,M′) are measurable spaces, one may check also that the
product σ-algebra M⊗M′ defined above is the smallest σ-algebra on X ×X ′ such that
the projection maps

p1 : X ×X ′ → X and p2 : X ×X ′ → X ′

10



are both measurable.
Indeed, for a given σ-algebra N on X×X ′, the projections are measurable if and only

if p−1
2 (Y ′) = X × Y ′ ∈ N and p−1

1 (Y ) = Y ×X ′ ∈ N for any Y ∈M, Y ′ ∈M′. Since

Y × Y ′ = (Y ×X ′) ∩ (X × Y ′),
we see that these two types of sets generate the product σ-algebra, which is in turn
generated by all Y × Y ′.

(3) The Borel σ-algebra on C = R2 is the same as the product σ-algebra B ⊗ B,
where B denotes the Borel σ-algebra on R; this is due to the fact that any open set
in C is a countable union of sets of the type I1 × I2 where Ii ⊂ R is an open interval.
Moreover, one can check that the restriction to the real line R of the Borel σ-algebra on
C is simply the Borel σ-algebra on R (because the inclusion map R ↪→ C is continuous;
see Corollary 1.1.10 below).

(4) If we state that (X,M)→ C is a measurable function with no further indication,
it is implied that the target C is given with the Borel σ-algebra. Similarly for target space
R.

In probability theory, a measurable map Ω→ C is called a random variable.2

(5) In the next chapters, we will consider functions f : X → [0,+∞]. Measurability
is then always considered with respect to the σ-algebra on [0,+∞] generated by B[0,+∞[

and the singleton {+∞}. In other words, f is measurable if and only if

f−1(U), f−1(+∞) = {x | f(x) = +∞}
are in M, where U runs over all open sets of [0,+∞[.

The following lemma is important to ensure that σ-algebras indirectly defined as
generated by a collection of sets are accessible.

Lemma 1.1.9. (1) Let (X,M) and (X ′,M′) be measurable spaces such that M′ = σ(A′)
is generated by a collection of subsets A′. A map f : X → X ′ is measurable if and only
if f−1(A′) ⊂M.

(2) In particular, for any measurable space (X,M), a function f : X → R is mea-
surable if and only if

f−1(]−∞, a]) = {x ∈ X | f(x) 6 a}
is measurable for all a ∈ R, and a function f : X → [0,+∞] is measurable if and only if

f−1(]−∞, a]) = {x ∈ X | f(x) 6 a}
is measurable for all a ∈ [0,+∞[.

(3) Let (X,M), (X ′,M′) and (X ′′,M′′) be measurable spaces. A map f : X ′′ → X×X ′
is measurable for the product σ-algebra on X ×X ′ if and only if p1 ◦ f : X ′′ → X and
p2 ◦ f : X ′′ → X ′ are measurable.

Proof. Part (2) is a special case of (1), if one takes further into account (in the case
of functions taking values in [0,+∞]) that

f−1(+∞) =
⋂
n>1

{x ∈ X | f(x) > n} =
⋂
n>1

(X − f−1(]−∞, n])).

This first point follows from the formula

(1.5) f−1(σ(A′)) = σ(f−1(A′)),

2. Quite often, in the literature, random variables are assumed to be real-valued.
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since we deduce then that, using the assumption f−1(A′) ⊂M, that

f−1(M′) = f−1(σ(A′)) = σ(f−1(A′)) ⊂ σ(M) = M,

which is exactly what it means for f to be measurable.
The left-hand side of (1.5) is an inverse image σ-algebra that contains f−1(A′), and

therefore it contains the σ-algebra generated by this family of sets, which is the right-hand
side.

Conversely, notice that

M′′ = {Y | f−1(Y ) ∈ σ(f−1(A′))}

is a σ-algebra onX ′ (see (1.3)), which contains A′, and therefore also σ(A′). Consequently,
we get

f−1(σ(A′)) ⊂ f−1(M′′) ⊂ σ(f−1(A′)),

as desired.
As for (3), the composite maps p1 ◦ f and p2 ◦ f are of course measurable if f is (see

Remark 1.1.7, (2)). Conversely, to check that f is measurable, it suffices by (1) to check
that f−1(Y × Y ′) ∈M′′ for any Y ∈M, Y ′ ∈M′. But since f(x) = (p1 ◦ f(x), p2 ◦ f(x)),
we get

f−1(Y × Y ′) = (p1 ◦ f)−1(Y ) ∩ (p2 ◦ f)−1(Y ′),

which gives the result. �

Corollary 1.1.10. (1) Let f : X → X ′ be a continuous map between topological
spaces. Then f is measurable with respect to the Borel σ-algebras on X and X ′.

(2) Let (X,M) be a measurable space, and let f , g : X → C be measurable maps.
Then f ± g and fg are measurable, and if g(x) 6= 0 for x ∈ X, the inverse 1/g is
measurable. In particular, the set of complex-valued measurable functions on X is a vector
space with operations given by addition of functions and multiplication by constants.

(3) A function f : X → C is measurable for the Borel σ-algebra on C if and only if
Re(f) are Im(f) are measurable as functions X → R.

Proof. Part (1) is immediate from Lemma 1.1.9, (1), since continuity means that
f−1(U) is open for any open set in X ′. To prove (2), we write, for instance,

f + g = p ◦ (f × g),

where

p : C×C→ C

is the addition map, and f × g : x 7→ (f(x), g(x)). According to Lemma 1.1.9, (3), this
last map f × g is measurable, and according to (1), the map p is measurable (because
it is continuous). By composition, f + g is also measurable. Similar arguments apply to
f − g, fg and 1/g.

Finally, (3) is a special case of (2) according to Remark 1.1.7, (3). �

Example 1.1.11. In probabilistic language, if X : Ω → C is a random variable,
an event of the type X−1(Y ) is denoted simply {X ∈ Y }. For instance, one commonly
writes

{X > a} = {ω | X(ω) > a}
for a ∈ R. Moreover, if f : C→ C is a measurable function, it will often be convenient
to denote by f(X) the composite random variable Y = f ◦X.

12



It may have been noticed that, up to now, Axiom (iii) in the definition of a σ-algebra
has not been used in any essential way. It is however indispensible as soon as sequences
of functions – which are so important in analysis – come into play. For instance, the
following crucial lemma would not otherwise be accessible:

Lemma 1.1.12. Let (X,M) be a measurable space.
(1) Let (fn), n > 1, be a sequence of measurable real-valued functions, such that

fn(x) → f(x) for any x ∈ X, i.e., such that (fn) converges pointwise to a limiting
function f . Then this function f is measurable.

(2) More generally, the functions defined by

(lim sup fn)(x) = lim sup fn(x), lim inf fn, (sup fn)(x) = sup
n
fn(x), inf fn

are measurable.

Note that, even if the fn are continuous (when this makes sense), there is no reason
that the pointwise limit f is continuous.

Proof. Because the limit f(x) of fn(x) is also equal to its limsup, it is enough to
prove the second part. Moreover, we have

lim sup fn(x) = lim
k

sup
n>k

fn(x) = inf
k

sup
n>k

fn(x),

(since it is a monotonic limit of a non-increasing sequence), and hence it is enough to
prove the result for inf fn and sup fn (for arbitrary sequences of functions); replacing fn
with −fn, it is even enough to consider the case of sup fn.

Thus, let g(x) = supn>1 fn(x), and assume this takes real values (i.e., the sequences
(fn(x)) are all bounded, for x ∈ X). By Lemma 1.1.9, (1) and Remark 1.1.7, (1), it
suffices to prove that for any a ∈ R, we have

Ea = {x | g(x) 6 a} ∈M.

But g(x) = sup fn(x) 6 a if and only if fn(x) 6 a for all n, and hence we can write

Ea =
⋂
n

{x | fn(x) 6 a},

which is a countable union of measurable sets (because each fn is measurable); by (1.2),
we get Ea ∈M as desired.

Otherwise, if g takes the value ∞, notice that

{g =∞} = {x ∈ X | sup fn(x) =∞} = ∩M>1 ∪N ∩n>N{x | fn(x) >M}.
�

Remark 1.1.13. (1) Let f and g be measurables functions on (X,M); it follows from
this lemma, in particular, that sup(f, g) and inf(f, g) are also measurable.

It follows therefore that if f is real-valued, the absolute value

(1.6) |f | = sup(f,−f)

is measurable, and that the so-called positive and negative parts of f , defined by

(1.7) f+ = sup(f, 0), and f− = − inf(f, 0)

are also measurable. Note that f+ > 0, f− > 0 and

(1.8) f = f+ − f− while |f | = f+ + f−

13



These are often very convenient representations of f (resp. |f |) as difference (resp.
sum) of two non-negative measurable functions.

(2) Let (fn) be a sequence of complex-valued measurable functions on X. Then the
set

Y = {x ∈ X | fn(x) converges to some limit }
is a measurable set in X. Indeed, by translating the Cauchy criterion in terms of set
operations, one can write

(1.9) Y =
⋂
k>1

⋃
N>1

⋂
n,m>N

{x | |fn(x)− fm(x)| < 1/k}

and the result follows because |fn − fm| is measurable.

1.2. Measure on a σ-algebra

We have now defined (through axiomatic properties) what are well-behaved collections
of sets that one may wish to “measure”. Because of the generality, this measure (which
may not be definable at all!) does not have an intrinsic, unique, meaning, and we also
use abstract axiomatic properties to define a measure.

Definition 1.2.1. (1) Let (X,M) be a measurable space. A measure µ on (X,M) is
a map

µ : M→ [0,+∞]

such that µ(∅) = 0 and

(1.10) µ
(⋃

n

Yn

)
=
∑
n

µ(Yn)

for any countable family of pairwise disjoints measurable sets Yn ∈ M. The triple
(X,M, µ) is called a measured space.

(2) A measure µ is said to be finite if µ(X) < +∞, and is said to be σ-finite if one
can write X as a countable union of subsets with finite measure: there exist Xn ∈ M

such that
X =

⋃
n>1

Xn, and µ(Xn) < +∞ for all n.

(3) A probability measure is a measure µ such that µ(X) = 1.

Remark 1.2.2. For any finite measure µ, if µ(X) > 0, we can define µ′(Y ) =
µ(Y )/µ(X) for Y ∈M and obtain a probability measure. So the theory of finite measures
is almost equivalent with that of probability measures.

The most commonly used measures are σ-finite; this is important, for instance, in the
theory of multiple integrals, as we will see.

In probabilistic language, one uses a probability measure on (Ω,Σ), commonly denoted
P , and P (E) ∈ [0, 1], for E ∈ Σ, is the probability of an event E. The triple (Ω,Σ, P ) is
called a probability space.

The definition implies quickly the following useful properties:

Proposition 1.2.3. Let µ be a measure on (X,M).
(1) For Y , Z ∈M, with Y ⊂ Z, we have µ(Y ) 6 µ(Z), and more precisely

µ(Z) = µ(Y ) + µ(Z − Y ).

(2) For Y , Z ∈M, we have

µ(Y ∪ Z) + µ(Y ∩ Z) = µ(Y ) + µ(Z).

14



(3) If Y1 ⊂ · · · ⊂ Yn ⊂ · · · is an increasing3 sequence of measurable sets, then

µ
(⋃

n

Yn

)
= lim

n→+∞
µ(Yn) = sup

n>1
µ(Yn).

(4) If Y1 ⊃ · · · ⊃ Yn ⊃ · · · is a decreasing sequence of measurable sets, and if
furtherfore µ(Y1) < +∞, then we have

µ
(⋂

n

Yn

)
= lim

n→+∞
µ(Yn) = inf

n>1
µ(Yn).

(5) For any countable family (Yn) of measurable sets, we have

µ
(⋃

n

Yn

)
6
∑
n

µ(Yn).

Proof. In each case, a quick drawing or diagram is likely to be more insightful than
the formal proof that we give.

(1): we have a disjoint union

Z = Y ∪ (Z − Y )

and hence µ(Z) = µ(Y ) + µ(Z − Y ) > µ(Y ), since µ takes non-negative values.
(2): similarly, we note the disjoint unions

Y ∪ Z = Y ∪ (Z − Y ) and Z = (Z − Y ) ∪ (Z ∩ Y ),

hence µ(Y ∪ Z) = µ(Y ) + µ(Z − Y ) and µ(Z) = µ(Z − Y ) + µ(Z ∩ Y ). This gives
µ(Y ∪ Z) = µ(Y ) + µ(Z)− µ(Z ∩ Y ), as claimed.

(3): let Z1 = Y1 and Zn = Yn − Yn−1 for n > 2. These are all measurable, and we
have

Y = Y1 ∪ Y2 ∪ · · · = Z1 ∪ Z2 ∪ · · · .
Moreover, the Zi are now disjoint (because the original sequence (Yn) was increasing)

for j > 0 – indeed, note that

Zi+j ∩ Zi ⊂ Zi+j ∩ Yi ⊂ Zi+j ∩ Yi+j−1 = ∅.
Consequently, using (1.10) we get

µ(Y ) =
∑
n

µ(Zn) = lim
k→+∞

∑
16n6k

µ(Zn);

and since the same argument also gives

µ(Yk) =
∑

16n6k

µ(Zn),

we get the result.
(4): this result complements the previous one, but one must be careful that the

additional condition µ(Y1) < +∞ is necessary (a counterexample is obtained by taking
Yn = {k > n} in X = {n > 1} with the counting measure described below; then the
intersection of all Yn is empty, although the measure of each Yn is infinite).

Let Zn = Y1−Yn; the measurable sets Zn form an increasing sequence, and hence, by
the previous result, we have

µ
(⋃

n

Zn

)
= lim

n
µ(Y1 − Yn).

3 For inclusion.
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Now, on the left-hand side, we have⋃
n

Zn = Y1 −
⋂
n

Yn,

and on the right-hand side, we get µ(Y1 − Yn) = µ(Y1)− µ(Yn) (because Yn ⊂ Y1). Since
µ(Y1) is not +∞, we can subtract it from both sides to get the result.

(5): The union Y of the Yn can be seen as the disjoint union of the measurable sets
Zn defined inductively by Z1 = Y1 and

Zn+1 = Yn+1 −
⋃

16i6n

Yi

for n > 1. We have µ(Zn) 6 µ(Yn) by (1), and from (1.10), it follows that

µ(Y ) =
∑
n

µ(Zn) 6
∑
n

µ(Yn).

�

Before giving some first examples of measures, we introduce one notion that is very
important. Let (X,M, µ) be a measured space. The measurable sets of measure 0 play
a particular role in integration theory, because they are “invisible” to the process of
integration.

Definition 1.2.4. Let (X,M, µ) be a measured space. A subset Y ⊂ X is said to be
µ-negligible if there exists Z ∈M such that

Y ⊂ Z, and µ(Z) = 0

(for instance, any set in M of measure 0).
If P(x) is a mathematical property parametrized by x ∈ X, then one says that P is

true µ-almost everywhere if

{x ∈ X | P(x) is not true}
is µ-negligible.

Remark 1.2.5. (1) By the monotonicity formula for countable unions (Proposi-
tion 1.2.3, (5)), we see immediately that any countable union of negligible sets is still
negligible. Also, of course, the intersection of any collection of negligible sets remains so
(as it is contained in any of them).

(2) The definition is more complicated than one might think necessary because al-
though the intuition naturally expects that a subset of a negligible set is negligible, it is
not true that any subset of a measurable set of measure 0 is itself measurable (one can
show, for instance, that this property is not true for the Lebesgue measure defined on
Borel sets of R – see Section 1.3 for the definition).

If all µ-negligible sets are measurable, the measured space is said to be complete (this
has nothing to do with completeness in the sense of Cauchy sequences having a limit).
The following procedure can be used to construct a natural complete “extension” of a
measured space (X,M, µ).

Let M0 denote the collection of µ-negligible sets. Then define

M′ = {Y ⊂ X | Y = Y1 ∪ Y0 with Y0 ∈M0 and Y1 ∈M},
the collection of sets which, intuively, “differ” from a measurable set only by a µ-negligible
set. Define then µ′(Y ) = µ(Y1) if Y = Y0∪Y1 ∈M′ with Y0 negligible and Y1 measurable.
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Proposition 1.2.6. The triple (X,M′, µ′) is a complete mesured space; the σ-algebra
M′ contains M, and µ′ = µ on M.

This proposition is intuively clear, but the verification is somewhat tedious. For
instance, to check that the measure µ′ is well-defined, independently of the choice of Y0

and Y1, assume that Y = Y1∪Y0 = Y ′1∪Y ′0 , with Y0, Y ′0 both negligible. Say that Y ′0 ⊂ Z ′0,
where Z ′0 is measurable of measure 0. Then Y1 ⊂ Y ′1 ∪ Z ′0 ∈M, hence

µ(Y1) 6 µ(Y ′1) + µ(Z ′0) = µ(Y ′1)

and similarly one gets µ(Y ′1) 6 µ(Y1).
It is a good exercise to check all the remaining points needed to prove the proposition.

Here are now the simplest examples of measures. The most interesting example, the
Lebesgue measure, is introduced in Section 1.3, though its rigorous construction will come
only later.

Example 1.2.7. (1) For any set X, Mmax the σ-algebra of all subsets of X. Then we
obtain a measure, called the counting measure, on (X,Mmax) by defining

µ(Y ) = |Y |.
It is obvious that (1.10) holds in that case. Moreover, only ∅ is µ-negligible.

(2) Let again X be an arbitrary set and Mmax the σ-algebra of all subsets of X.
For a fixed x0 ∈ X, the Dirac measure at x0 is defined by

δx0(Y ) =

{
1 if x0 ∈ Y
0 otherwise.

The formula (1.10) is also obvious here: indeed, at most one of a collection of disjoint
sets can contain x0. Here, a set is negligible if and only if it does not contain x0.

(3) For any finite set X, the measure on Mmax defined by

µ(Y ) =
|Y |
|X|

is a probability measure.
This measure is the basic tool in “discrete” probability; since each singleton set {x}

has the same measure

µ({x}) =
1

|X|
,

we see that, relative to this measure, all experiences have equal probability of occuring.

(4) Let X = N, with the σ-algebra Mmax. There is no “uniform” probability
measure defined on X, i.e., there is no measure P on M such that P (N) = 1 and
P (n+A) = P (A) for any A ⊂ N, where n+A = {n+ a | a ∈ A} is the set obtained by
translating A by the amount n.

Indeed, if such a measure P existed, it would follow that P ({n}) = P (n+{0}) = P (0)
for all n, so that, by additivity, we would get

P (A) =
∑
a∈A

P ({a}) = |A|P (0)

for any finite set A. If P (0) 6= 0, it would follow that P (A) > 1 if |A| is large enough,
which is impossible for a probability measure. If, on the other hand, we had P (0) = 0, it
would then follow that P (A) = 0 for all A using countable additivity.
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However, there do exist many probability measures on (N,Mmax). More precisely,
writing each set as the disjoint union, at most countable, of its one-element sets, we
see that it is equivalent to give such a measure P or to give a sequence (pk)k∈N of real
numbers pk ∈ [0, 1] such that ∑

k>0

pk = 1,

the correspondance being given by pk = P ({k}). If some pk are equal to 0, the corre-
sponding one-element sets are P -negligible. Indeed, the P -negligible sets are exactly all
the subsets of {k ∈ N | pk = 0}.

For instance, the Poisson measure with parameter λ > 0 is defined by

P ({k}) = e−λ
λk

k!

for k > 0.

We now describe some important ways to operate on measures, and to construct new
ones from old ones.

Proposition 1.2.8. Let (X,M, µ) be a measured space.
(1) For any finite collection µ1,. . . , µn of measures on (X,M), and any choice of real

numbers αi ∈ [0,+∞[, the measure µ =
∑
αiµi is defined by

µ(Y ) =
∑

16i6n

αiµi(Y )

for Y ∈M; it is a measure on (X,M).
(2) Let f : (X,M)→ (X ′,M′) be a measurable map. Let

f∗(µ)(Y ) = µ(f−1(Y )) for Y ∈M′.

Then f∗(µ) is a measure one X ′, called the image measure of µ under f . It is also
sometimes denoted f(µ).

If we have another measurable map g : (X ′,M′)→ (X ′′,M′′), then we have

(1.11) (g ◦ f)∗(µ) = g∗(f∗(µ)).

(3) For any measurable subset Y ⊂ X, the restriction of µ to the σ-algebra of mea-
surable subsets of Y is a measure on Y for this σ-algebra.

Proof. All these facts are immediate. For the second part, use again (1.3) to
check (1.10). The formula (1.11) is due to the simple fact that

(g ◦ f)−1(Y ′′) = f−1(g−1(Y ′′))

for Y ′′ ⊂ X ′′. �

Remark 1.2.9. In probabilistic language, given a random variable X : Ω → C, the
image measure X(P ) is called the probability law of the variable X. Note that it is a
probability measure because

X(P )(C) = P (X ∈ C) = P (Ω) = 1.

This is a crucial notion, because the underlying space Ω is often left unspecified, and
the data for a given probability problem is some collection of random variables (which,
for instance, are supposed to give a model of some natural phenomenon), together with
some assumptions on their probability laws. These are measures on C, a much more
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concrete set, and the main point is that knowing the law µi of Xi is sufficient to answer
all questions relative to probabilities of values of Xi: indeed, by definition, we have

P (Xi satisfies a property P) = µi({z ∈ C | P(z) is true})
for any property P(z) parametrized by z ∈ C (assuming the set it defines is measurable,
of course).

We now introduce a further definition which is purely probabilistic.

Definition 1.2.10. Let (Ω,Σ, P ) be a probability space, A and B ∈ Σ events.
(1) The conditional probability of A knowing B is the quantity

P (A | B) =
P (A ∩B)

P (B)
,

which is well-defined if P (B) 6= 0.
(2) The events A, B are said to be independent if

P (A ∩B) = P (A)P (B).

(3) Let X1, X2 be complex-valued random variables on Ω. Then X1 and X2 are said
to be independent if the events

{X1 ∈ C} = X−1
1 (C), and {X2 ∈ D} = X−1

2 (D)

are independent for any choice of C, D ∈ BC.
(4) More generally, the events in an arbitrary collection (Ai)i∈I of events are indepen-

dent if, for any finite family Ai(1), . . . , Ai(n), we have

P (Ai(1) ∩ . . . ∩ Ai(n)) = P (Ai(1)) · · ·P (Ai(n)),

and similarly, the random variables (Xi)i∈I in an arbitrary collection are independent if
the events ({Xi ∈ Ci})i are all independant, for arbitrary Borel sets (Ci)i∈I .

Remark 1.2.11. If P (B) = 0, we have P (A ∩B) = 0 by monotony for any A, hence
a negligible set is independent of any other measurable set A.

The following elementary result provides a way to check independence of random
variables in a number of cases.

Proposition 1.2.12. (1) Let (Ω,Σ, P ) be a probability space, and A ⊂ Σ a collection
of subsets such that σ(A) ⊃ Σ. In the definition of independence, it is enough to check
the stated conditions for events chosen in A.

(2) Let (Xn), n 6 N , be independent random variables, and let ϕn : C → C be
measurable maps. Then the random variables Yn = ϕ(Xn) are independent.

Proof. Part (1) is elementary; for instance, for two random variables X and Y ,
consider the set of pairs (C,D) of events such that {X ∈ C} and {Y ∈ D} are indepen-
dent. For a fixed C (resp. a fixed D), one can check that the corresponding D’s form a
σ-algebra containing A, hence containing σ(A) ⊃ Σ. The result follows easily from this,
and the other cases are simply more complicated in terms of notation.

For (2), note that for arbitrary choices of events Cn, we have

(Y1, . . . , YN) ∈ C1 × · · · × CN

if and only if

(X1, . . . , XN) ∈ ϕ−1
1 (C1)× · · · × ϕ−1

N (CN)

hence the assumption that the Xn are independent gives the result for the Yn. �
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Exercise 1.2.13. Generalize the last result to situations like the following:
(1) Let X1, . . . , X4 be independent random variables. Show that

P ((X1, X2) ∈ C and (X3, X4) ∈ D) = P ((X1, X2) ∈ C)P ((X3, X4) ∈ D)

for any C and D is the product σ-algebra Σ⊗Σ. (Hint: use an argument similar to that
of Proposition 1.2.12, (1)).

(2) Let ϕi : C2 → C, i = 1, 2, be measurable maps. Show that ϕ1(X1, X2) and
ϕ2(X3, X4) are independant.

Note that these results are intuitively natural: starting with four “independent” quan-
tities, in the intuitive sense of the word, “having nothing to do with each other”, if we
perform separate operations on the first two and the last two, the results should naturally
themselves be independent...

1.3. The Lebesgue measure

The examples of measures in the previous section are too elementary to justify the
amount of formalism involved. Indeed, the theory of integration with respect to a measure
only makes good sense when brought together with the following fundamental theorem:

Theorem 1.3.1. There exists a unique measure λ on the σ-algebra of Borel subsets
of R with the property that

λ([a, b]) = b− a
for any real numbers a 6 b. This measure is called the Lebesgue measure.

Remark 1.3.2. One can show that the Lebesgue measure, defined on the Borel σ-
algebra, is not complete. The completed measure (see Proposition 1.2.6) is also called
the Lebesgue measure, and the corresponding complete σ-algebra is called the Lebesgue
σ-algebra.

We will prove this theorem only later, since it is quite technical, and we will also refine
the statement. It will be interesting to see how a fully satisfactory theory of integration
for Rn can be built by using this theorem as a “black box”: the details of the construction
are only useful for the study of rather fine properties of functions.

Note that λ is σ-finite, although it is not finite, since

R =
⋃
n>1

[−n, n].

Note also that the Lebesgue measure, restricted to the interval [0, 1] gives an example
of probability measure, which is also fundamental.

Example 1.3.3. (1) We have λ(N) = λ(Q) = 0. Indeed, by definition

λ({x}) = λ([x, x]) = 0 for any x ∈ R,

and hence, by countable additivity, we get

λ(N) =
∑
n∈N

λ({n}) = 0,

the same property holding for Q because Q is also countable. In fact, any countable set
is λ-negligible.

(2) There are many λ-negligible sets besides those that are countable. Here is a
well-known example: the Cantor set C.
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Let X = [0, 1]. For any fixed integer b > 2, and any x ∈ [0, 1], one can expand x in
“base b”: there exists a sequence of “digits” di(x) ∈ {0, . . . , b− 1} such that

x =
+∞∑
i=1

di(x)b−i,

which is also denoted x = 0.d1d2 . . . (the base b being understood from context; the case
b = 10 corresponds to the customary expansion in decimal digits).

This expansion is not entirely unique (for instance, in base 10, we have

0.1 = 0.09999 . . .

as one can check by a geometric series computation). However, the set of those x ∈ X
for which there exist more than one base b expansion is countable, and therefore is λ-
negligible.

The Cantor set C is defined as follows: take b = 3, so the digits are {0, 1, 2}, and let

C = {x ∈ [0, 1] | di(x) ∈ {0, 2} for all i},
the set of those x which have no digit 1 in their base 3 expansion.

We then claim that
λ(C) = 0,

but C is not countable.
The last property is not difficult to check: to each

x = d1d2 . . .

in C (base 3 expansion), we can associate

y = e1e2 . . . , ei =

{
0 if di = 0

1 if di = 2,

seen as a base 2 expansion. Up to countable sets of exceptions, the values of y cover all
[0, 1], and hence C is in bijection with [0, 1], and is not countable.

To check that λ(C) = 0, we observe that

C =
⋂
n

Cn where Cn = {x ∈ [0, 1] | di(x) 6= 1 for all i 6 n}.

Each Cn is a Borel subset of [0, 1] – indeed, we have for instance

C1 = [0, 1/3] ∪ [2/3, 1], C2 = [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1] ;

more generally, Cn is seen to be a disjoint union of 2n intervals of length 3−n. Thus, by
additivity, we have

λ(Cn) = 2n × 3−n = (2/3)n,

and since Cn ⊃ Cn+1 and λ(C1) < +∞, we see by Proposition 1.2.3, (4) that

λ(C) = lim
n→+∞

λ(Cn) = 0.

One can phrase this result in a probabilistic way. Fix again an arbitrary base b > 2.
Seeing (X,B, λ) as a probability space, the maps

Xi

{
[0, 1]→ {0, . . . , b− 1}
x 7→ di(x)

are random variables (they are measurable because the inverse image under Xi of d ∈
{0, . . . , b− 1} is the union of bi−1 intervals of length b−i).

21



A crucial fact is the following:

Lemma 1.3.4. The (Xi) are independent random variables on ([0, 1],B, λ), and the
probability law of each is the same measure on {0, . . . , b − 1}, namely the normalized
counting measure P :

λ(Xi = d) = P (d) =
1

b
, for all digits d.

It is, again, an instructive exercise to check this directly. Note that, knowing this, the
computation of λ(Cn) above can be rewritten as

λ(Cn) = λ(X1 6= 1, . . . , Xn 6= 1) = λ(A1 ∩ · · · ∩ An)

where Ai is the event {Xi 6= 1}. By the definition of independence, this implies that

λ(A1 ∩ · · · ∩ An) =
∏
j

λ(Aj) =
∏
j

P ({0, 2}) = (2/3)n.

The probabilistic phrasing would be: “the probability that a uniformly, randomly
chosen real number x ∈ [0, 1] has no digit 1 in its base 3 expansion is zero”.

1.4. Borel measures and regularity properties

This short section gives a preliminary definition of some properties of measures for
the Borel σ-algebra, which lead to a better intuitive understanding of these measures,
and in particular of the Lebesgue measure.

Definition 1.4.1. (1) Let X be a topological space. A Borel measure on X is a
measure µ for the Borel σ-algebra on X.

(2) A Borel measure µ on a topological space X is said to be regular if, for any Borel
set Y ⊂ X, we have

µ(Y ) = inf{µ(U) | U is an open set containing Y }(1.12)

µ(Y ) = sup{µ(K) | K is a compact subset contained in Y }.(1.13)

This property, when it holds, gives a link between general Borel sets and the more
“regular” open or compact sets.

We will show in particular the following:

Theorem 1.4.2. The Lebesgue measure on BR is regular.

Remark 1.4.3. If we take this result for granted, one may recover a way to define
the Lebesgue measure: first of all, for any open subset U ⊂ R, there exists a unique
decomposition (in connected components)

U =
⋃
i>1

]ai, bi[

in disjoint open intervals, and thus

λ(U) =
∑
i

(bi − ai) ;

furthermore, for any Borel set Y ⊂ R, we can then recover λ(Y ) using (1.12). In other
words, for a Borel set, this gives the expression

λ(Y ) = inf{m > 0 | there exist disjoint intervals ]ai, bi[

with Y ⊂
⋃
i

]ai, bi[ and
∑
i

(bi − ai) = m}.
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This suggests one approach to prove Theorem 1.3.1: define the measure using the
right-hand side of this expression, and check that this defines a measure on the Borel
sets. This, of course, is far from being obvious (in particular because it is not clear at all
how to use the assumption that the measure is restricted to Borel sets).

The following criterion, which we will also prove later, shows that regularity can be
achieved under quite general conditions:

Theorem 1.4.4. Let X be a locally compact topological space, in which any open set
is a countable union of compact subsets. Then any Borel measure µ such that µ(K) <
+∞ for all compact sets K ⊂ X is regular; in particular, any finite measure, including
probability measures, is regular.

It is not difficult to check that the special case of the Lebesgue measure follows from
this general result (if K ⊂ R is compact, it is also bounded, so we have K ⊂ [−M,M ]
for some M ∈ [0,+∞[, and hence λ(K) 6 λ([−M,M ]) = 2M).
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CHAPTER 2

Integration with respect to a measure

We now start the process of constructing the procedure of integration with respect
to a measure, for a fixed measured space (X,M, µ). The idea is to follow the idea of
Lebesgue described in the introduction; the first step is the interpretation of the measure
of a set Y ∈M as the value of the integral of the characteristic function of Y , from which
we can compute the integral of functions taking finitely many values (by linearity). One
then uses a limiting process – which turns out to be quite simple – to define integrals
of non-negative, and then general functions. In the last step, a restriction to integrable
functions is necessary.

In this chapter, any function X → C which is introduced is assumed to be measurable
for the fixed σ-algebra M, sometimes without explicit notice.

2.1. Integrating step functions

Definition 2.1.1 (Step function). A step function s : X → C on a measured space
(X,M, µ) is a measurable function which takes only finitely many values.

In other words, a step function s : X → C is a function that may be expressed as a
finite sum

(2.1) s =
n∑
i=1

αiχYi

where the αi ∈ C are the distinct values taken by s and

Yi = {x ∈ X | s(x) = αi} ∈M

are disjoint subsets of X. This expression is clearly unique, and s > 0 if and only if
αi > 0 for all i.

The set of step functions on X, denoted S(X), is stable under sums and products
(in algebraic terms, it is a C-algebra; the word “algebra” has here a completely different
meaning than in σ-algebra). Indeed, this boils down to the two formulas

(2.2) χY χZ = χY ∩Z and χY + χZ = χY ∩Z + χY ∪Z = 2χY ∩Z + χ(Y ∪Z)−(Y ∩Z).

We now define the integral of a step function, following Lebesgue’s procedure.

Definition 2.1.2 (Integral of a step function). Let (X,M, µ) be a measured space,
s : X → R a step function given by (2.1) such that s is non-negative. For any measurable
set Y ∈M, we define ∫

Y

s(x)dµ(x) =
n∑
i=1

αiµ(Yi ∩ Y ) ∈ [0,+∞],

which is called the integral of s on Y with respect to µ.
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There are a number of different notation for the integral in the literature; for instance,
one may find any of the following:∫

Y

sdµ,

∫
Y

s(x)dµ,

∫
Y

s(x)µ,

∫
Y

s(x)µ(dx), or even

∫
Y

s(x)dx,

when there is no ambiguity concerning the choice of the measure µ (this is the most
common notation when the Lebesgue measure on R is involved).

Note that we can also write (see (2.2))∫
Y

s(x)dµ(x) =

∫
X

s(x)χY (x)dµ(x),

replacing the constraint of restricting the range of integration Y by a multiplication by
its characteristic function.

Remark 2.1.3. Although this is only the first step in the construction, it is interesting
to note that it is already more general than the Riemann integral in the case where
X = [a, b] and µ is the Lebesgue measure: many step functions fail to be Riemann-
integrable. A typical example (which goes back to Dirichlet, who pointed out that it
was an example of a function which was not Riemann-integrable) is the following: take
X = [0, 1] and let f be the characteristic function of Q ∩ [0, 1]. Because any interval (of
non-zero length) in any subdivision of [0, 1] contains both rational numbers and irrational
numbers, one can for all subdivisions construct Riemann sums for f with value 0 and
with value 1. Thus there is no common limit for the Riemann sums.

However, since f is measurable and in fact is a step function for the Borel σ-algebra,
we have by definition ∫

[0,1]

f(x)dµ(x) = µ(Q ∩ [0, 1]) = 0

(by Example 1.3.3, (1)).

Proposition 2.1.4. (1) The map S(X)>0 → [0,+∞]

Λ : s 7→
∫
X

s(x)dµ(x)

satisfies
Λ(αs+ βt) = αΛ(s) + βΛ(t)

for any step functions s, t both non-negative and for α, β > 0. Moreover, we have
Λ(s) > 0 and Λ(s) = 0 if and only if s is zero almost everywhere (with respect to µ).

(2) Assume s > 0. The map

µs : Y 7→
∫
Y

s(x)dµ(x)

is a measure on M, often denoted µs = sdµ. Moreover, for any step functions s, t > 0,
we have

µs+t = µs + µt i.e.

∫
Y

(s+ t)dµ =

∫
Y

sdµ+

∫
Y

tdµ.

In addition, we have µs(Y ) = 0 for any measurable set Y with µ(Y ) = 0, and any
µ-negligible set is µs-negligible.

These facts will be easily checked and are quite simple. We highlight them because
they will reappear later on, in generalized form, after integration is defined for all non-
negative functions.
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Proof. (1) Since S(X) is generated additively from functions χY with Y ∈M, it is
enough to show that∫

X

(αχY + βχZ)dµ = α

∫
X

χY dµ+ β

∫
X

χZdµ,

or in other words, that

(α + β)µ(Y ∩ Z) + αµ(Y − Z) + βµ(Z − Y ) = αµ(Y ) + βµ(Z).

This follows from the additivity of measure, since we have disjoint expressions

Y = (Y ∩ Z) ∪ (Y − Z), and Z = (Y ∩ Z) ∪ (Z − Y ).

It is clear that Λ(s) > 0 if s > 0, and that Λ(s) = 0 if s is zero almost everywhere.
Conversely, assuming Λ(s) = 0, we obtain

0 =
∑
i

αiµ(Yi) > αjµ(Yj)

for any fixed j, and therefore µ(Yj) = 0 for all j such that αj > 0. Consequenly, we
obtain

µ({x | s(x) 6= 0}) =
∑
αj>0

µ(Yj) = 0.

(2) It is clear that the map µs takes non-negative values with µs(∅) = 0. Now let
(Zk), k > 1, be a sequence of pairwise disjoint measurable sets in X, and let Z denote
the union of the Zk. Using the countable additivity of µ, we obtain

µs(Z) =
n∑
i=1

αiµ(Z ∩ Yi) =
n∑
i=1

αi
∑
k>1

µ(Zk ∩ Yi)

=
∑
k>1

n∑
i=1

αiµ(Zk ∩ Yi) =
∑
k>1

µs(Zk) ∈ [0,+∞],

where it is permissible to change the order of summation because the sum over i involves
finitely many terms only.

The formula µs+t(Y ) = µs(Y ) + µt(Y ) is simply the formula Λ(s + t) = Λ(s) + Λ(t)
proved in (1), applied to Y instead of X.

Finally, if µ(Y ) = 0, we have quite simply

µs(Y ) =
∑
i

αiµ(Y ∩ Yi) = 0,

which concludes the proof. �

2.2. Integration of non-negative functions

We now consider a non-negative measurable function f : X → [0,+∞]. We will define
the integral of f with respect to µ by approximation with non-negative step functions.
More precisely, we define:

Definition 2.2.1 (Integral of a non-negative function). Let

f : X → [0,+∞]
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be measurable.1 For any Y ∈M, the integral of f with respect to µ on Y is defined by

(2.3)

∫
Y

fdµ = sup
{∫

Y

sdµ | s is a step function such that s 6 f
}
∈ [0,+∞].

According to this definition, the integral of any measurable non-negative function is
defined, provided the value +∞ be permitted. This is analogous to the fact that series
with non-negative terms converge in [0,+∞].

We now start by establishing the most elementary properties of this definition.

Proposition 2.2.2. We have:
(0) If f > 0 is a step function, the definition above gives the same as the previous

definition for a step function.
(1) We have

∫
fdµ = 0 if and only f(x) = 0 almost everywhere, and

∫
fdµ < +∞

implies that f(x) < +∞ almost everywhere.
(2) If µ(Y ) = 0, then ∫

Y

fdµ = 0 even if f = +∞ on Y.

(3) We have ∫
Y

fdµ =

∫
X

f(x)χY (x)dµ.

(4) If 0 6 f 6 g, then

(2.4)

∫
X

fdµ 6
∫
X

gdµ.

(5) If Y ⊂ Z, then ∫
Y

fdµ 6
∫
Z

fdµ.

(6) If α ∈ [0,+∞[, then ∫
Y

αfdµ = α

∫
Y

fdµ.

Proof. (0): For any step function s 6 f , the difference f − s is a step function, and
is non-negative; we have∫

Y

fdµ =

∫
Y

sdµ+

∫
Y

(f − s)dµ >
∫
Y

sdµ,

and since we can in fact take s = f , we obtain the result.
(1): If f is zero outside of a negligible set Z, then any step function s 6 f is zero

outside Z, and therefore satisfies ∫
Y

s(x)dµ(x) = 0,

which implies that the integral of f is zero.
Conversely, assume f is not zero almost everywhere; we want to show that the integral

of f is > 0. Consider the measurable sets

Yk = {x | f(x) > 1/k}

1 Recall from Lemma 1.1.9 that this is equivalent with f−1(]−∞, a]) being measurable for all real
a.
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where k > 1. Note that Yk ⊂ Yk+1 (this is an increasing sequence), and that⋃
k

Yk = {x ∈ X | f(x) > 0}.

By Proposition 1.2.3), we have

0 < µ({x ∈ X | f(x) > 0}) = lim
k→+∞

µ(Yk),

and therefore there exists some k such that µ(Yk) > 0. Then the function

s =
1

k
χYk

is a step function such that s 6 f , and such that∫
sdµ =

1

k
µ(Yk) > 0,

which implies that the integral of f is > 0.
If f(x) = +∞ for all x ∈ Y , where µ(Y ) > 0, the step functions

sn = nχY

satisfy 0 6 sn 6 f and
∫
sndµ = nµ(Y ) → +∞ hence, if

∫
fdµ < +∞, it must be that

µ({x | f(x) = +∞}) = 0.
Part (2) is clear, remembering that 0 ·+∞ = 0.
For Part (3), notice that, for any step function s 6 f , we have∫

Y

sdµ =

∫
X

sχY dµ,

by definition, and moreover we can see that any step function t 6 fχY is of this form
t = sχY where s 6 f (it suffices to take s = tχY ). Hence the result follows.

For Part (4), we just notice that s 6 f implies s 6 g, and for (5), we just apply (3)
and (4) to the inequality 0 6 fχY 6 fχZ .

Finally, for (6), we observe first that the result holds when α = 0, and for α > 0, we
have

s 6 f if and only if αs 6 αf

which, together with ∫
Y

(αs)dµ = α

∫
Y

sdµ

(Proposition 2.1.4, (1)) leads to the conclusion. �

We now come to the first really important result in the theory of integration: Beppo
Levi’s monotone convergence theorem. This shows that, for non-decreasing sequences of
functions, one can always exchange a limit and an integral.

Theorem 2.2.3 (Monotone convergence). Let (fn), n > 1, be a non-decreasing se-
quence of non-negative measurable functions. Define

f(x) = lim fn(x) = sup
n
fn(x) ∈ [0,+∞]

for x ∈ X. Then f > 0 is measurable and we have∫
X

fdµ = lim
n→+∞

∫
X

fndµ.
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Proof. We have already explained in Lemma 1.1.12 that the limit function f is
measurable.

To prove the formula for the integral, we combine inequalities in both directions. One
is very easy: since

fn 6 fn+1 6 f

by assumption, Part (3) of the previous proposition shows that∫
X

fndµ 6
∫
X

fn+1dµ 6
∫
X

fdµ.

This means that the sequence of integrals (
∫
fndµ) is itself non-decreasing, and that

its limit in [0,+∞] satisfies

(2.5) lim
n→+∞

∫
X

fndµ 6
∫
X

fdµ.

It is of course the converse that is crucial. Consider a step function s 6 f . We must
show that we have ∫

sdµ 6 lim
n→+∞

∫
X

fndµ.

This would be easy if we had s 6 fn for some n, but that is of course not necessarily the
case. However, if we make s a little bit smaller, the increasing convergence fn(x)→ f(x)
implies that something like this is true. More precisely, fix a parameter ε ∈]0, 1] and
consider the sets

Xn = {x ∈ X | fn(x) > (1− ε)s(x)}.
for n > 1. We see that (Xn) is an increasing sequence of measurable sets (increasing
because (fn) is non-decreasing) whose union is equal to X, because fn(x)→ f(x) for all
x (if f(x) = 0, we have x ∈ X1, and otherwise (1− δ)s(x) < s(x) 6 f(x) shows that for
some n, we have fn(x) > (1− δ)s(x)).

Using notation introduced in the previous section and the elementary properties
above, we deduce that∫

X

fndµ >
∫
Xn

fndµ > (1− ε)
∫
Xn

sdµ = (1− ε)µs(Xn)

for all n.
We have seen that µs is a measure; since (Xn) is an increasing sequence, it follows

that

µs(X) = lim
n
µs(Xn)

by Proposition 1.2.3, (3), and hence

(1− ε)µs(X) = (1− ε) lim
n
µs(Xn) 6 lim

n→+∞

∫
X

fndµ.

This holds for all ε, and since the right-hand side is independent of ε, we can let
ε→ 0, and deduce

µs(X) =

∫
X

sdµ 6 lim
n→+∞

∫
X

fndµ.

This holds for all step functions s 6 f , and therefore implies the converse inequality
to (2.5). Thus the monotone convergence theorem is proved. �

Using this important theorem, we can describe a much more flexible way to approxi-
mate the integral of a non-negative function.
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Proposition 2.2.4. Let f : X → [0,+∞] be a non-negative measurable function.
(1) There exists a sequence (sn) of non-negative step functions, such that sn 6 sn+1

for n > 1, and moreover

f(x) = lim
n→+∞

sn(x) = sup
n
sn(x)

for all x ∈ X.
(2) For any such sequence (sn), the integral of f can be recovered by∫

Y

fdµ = lim
n→+∞

∫
Y

sndµ

for any Y ∈M.

Proof. Part (2) is, in fact, merely a direct application of the monotone convergence
theorem.

To prove part (1), we can construct a suitable sequence (sn) explicitly.2 For n > 1,
we define

sn(x) =

{
n if f(x) > n
i−1
2n

if i−1
2n
6 f(x) < i

2n
where 1 6 i 6 n2n.

The construction shows immediately that sn is a non-negative step function, and that
it is measurable (because f is):

f−1([n,+∞[) ∈M and f−1
([i− 1

2n
,
i

2n

[)
∈M.

It is also immediate that sn 6 sn+1 for n > 1. Finally, to prove the convergence, we
first see that if f(x) = +∞, we will have

sn(x) = n→ +∞,
for n > 1, and otherwise, the inequality

0 6 f(x)− sn(x) 6
1

2n

holds for n > f(x), and implies sn(x)→ f(x). �

It might seem better to define the integral using the combination of these two facts.
This is indeed possible, but the difficulty is to prove that the resulting definition is
consistent; in other words, it is not clear at first that the limit in (2) is independent of
the choice of (sn) converging to f . However, now that the agreement of these two possible
approaches is established, the following corollaries, which would be quite tricky to derive
directly from the definition as a supremum over all s 6 g, follow quite simply.

Corollary 2.2.5. (1) Let f and g be non-negative measurable functions on X. We
then have

(2.6)

∫
X

(f + g)dµ =

∫
X

fdµ+

∫
X

gdµ.

(2) Let (fn), n > 1, be a sequence of non-negative measurable functions, and let

g(x) =
∑
n>1

fn(x) ∈ [0,+∞].

2 The simplicity of the construction is remarkable; note how it depends essentially on being able to
use step functions where each level set can be an arbitrary measurable set.
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Then g > 0 is measurable, and we have∫
X

gdµ =
∑
n>1

∫
X

fndµ.

(3) Let f be a non-negative measurable function. Define

µf (Y ) =

∫
Y

fdµ

for Y ∈ M. Then µf is a measure on (X,M), such that any µ-negligible set is µf -
negligible. Moreover, we can write

(2.7)

∫
Y

gdµf =

∫
Y

gfdµ

for any Y ∈M and any measurable g > 0.
(4) Let ϕ : X → X ′ be a measurable map. For any g > 0 measurable on X ′, and any

Y ∈M′, we have the change of variable formula

(2.8)

∫
ϕ−1(Y )

(g ◦ ϕ)dµ =

∫
ϕ−1(Y )

g(ϕ(x))dµ(x) =

∫
Y

gdϕ∗(µ).

Proof. (1): let f and g be as stated. According to the first part of the previous
proposition, we can find increasing sequences (sn) and (tn) of non-negative step functions
on X such that

sn(x)→ f(x), tn(x)→ g(x).

Then, obviously, the increasing sequence un = sn + tn converges pointwise to f + g.
Since sn and tn are step functions (hence also un), we know that∫

X

(sn + tn)dµ =

∫
X

sndµ+

∫
X

tndµ

for n > 1, by Proposition 2.1.4, (2). Applying the monotone convergence theorem three
times by letting n go to infinity, we get∫

X

(f + g)dµ =

∫
X

fdµ+

∫
X

gdµ.

(2): By induction, we can prove∫
X

N∑
n=1

fn(x)dµ(x) =
N∑
n=1

∫
X

fn(x)dµ(x)

for any N > 1 and any family of non-negative measurable functions (fn)n6N .
Now, since the terms in the series are > 0, the sequence of partial sums

gn =
n∑
j=1

fj(x)

is increasing and converges pointwise to g(x). Applying once more the monotone conver-
gence theorem, we obtain ∫

X

g(x)dµ(x) =
∑
n>1

∫
X

fn(x)dµ(x),

as desired.
For part (3), we know already that the map µf takes non-negative values, and that

µf (∅) = 0 (Proposition 1.2.3). There remains to check that µf is countable additive. But
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for any sequence (Yn) of pairwise disjoint measurable sets, with union Y , we can write
the formula

f(x)χY (x) =
∑
n>1

f(x)χYn(x) > 0

for all x ∈ X (note that since the Yn are disjoint, at most one term in the sum is non-zero,
for a given x). Hence the previous formula gives

µf (Y ) =

∫
Y

fdµ =

∫
X

f(x)χY (x)dµ(x) =
∑
n>1

∫
X

f(x)χYndµ(x) =
∑
n>1

µf (Yn),

which confirms that µf is a measure.
We also can see that if µ(Y ) = 0, we have µs(Y ) = 0 for any step function s 6 f , and

hence taking the supremum, we derive µf (Y ) = supµs(Y ) = 0.
The formula (2.7) is valid, by definition, if g is a step function. Then, note that if

(sn) is an increasing sequence of step functions converging pointwise to g, the sequence
given by tn = snfχY is also non-decreasing and converges pointwise to fgχY . Applying
the monotone convergence theorem twice (for integration with respect to µ and to µf ),
we obtain ∫

Y

gdµf = lim
n→+∞

∫
Y

sndµf = lim
n→+∞

∫
Y

snfdµ =

∫
Y

gfdµ.

Finally, we prove (4) by checking it for more and more general functions g. First of
all, for g = χZ , the characteristic function of a set Z ∈M′, we have

g ◦ ϕ = χϕ−1(Z)

(since the left-hand side takes values 0 and 1, and is equal to 1 if and only if ϕ(x) ∈ Z),
and the formula becomes the definition

(ϕ∗(µ))(Y ∩ Z) = µ(ϕ−1(Y ∩ Z)).

Next, observe that if (2.8) holds for two functions, it holds for their sum, by additivity
of the integral on both sides. This means that the formula also holds for all step functions.
And then, finally, if g > 0 is the pointwise non-decreasing limit of a sequence (sn) of step
functions, we have

(sn ◦ ϕ)(x) = sn(ϕ(x)) 6 sn+1(ϕ(x))→ (g ◦ ϕ)(x),

and

(sn ◦ ϕ)(x)χY (x)→ (g ◦ ϕ)(x)χY (x).

Consequently, the monotone convergence theorem shows that∫
Y

sn(ϕ(x))dµ(x)→
∫
Y

g(ϕ(x))dµ(x),

which is what we wanted to show. �

Example 2.2.6. The change of variable formula is sometimes quite useful to replace
the problem of proving results for integrals of complicated functions on a complicated
space X to those of simple functions on a simple space, but with respect to a possibly
complicated measure... For instance, for any measurable g : X → R, denote by ν = g∗(µ)
the image of µ, which is a Borel measure on R. We have by (2.8), applied to |g|, that∫

X

|g(x)|dµ(x) =

∫
R

|x|dν(x).
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2.3. Integrable functions

Finally, we can define what are the functions which are integrable with respect to
a measure. Although there are other approaches, we consider the simplest, which uses
the order structure on the set of real numbers for real-valued functions, and linearity for
complex-valued ones.

For this, we recall the decomposition

f = f+ − f−, f+(x) = max(0, f(x)), f−(x) = max(0,−f(x)),

and we observe that |f | = f+ + f−.

Definition 2.3.1. Let (X,M, µ) be a measured space.
(1) A measurable function f : X → R is said to be integrable on Y with respect to

µ, for Y ∈M, if the non-negative function |f | = f+ + f− satisfies∫
Y

|f |dµ < +∞,

and its integral on Y is defined by∫
Y

fdµ =

∫
Y

f+dµ−
∫
Y

f−dµ ∈ R.

(2) A measurable function f : X → C is said to be integrable on Y ∈ M if |f | =√
Re(f)2 + Im(f)2 > 0 satisfies ∫

Y

|f |dµ < +∞,

and its integral on Y is defined by∫
Y

fdµ =

∫
Y

Re(f)dµ+ i

∫
Y

Im(f)dµ ∈ C,

so that, by definition, we have

(2.9) Re
(∫

Y

fdµ
)

=

∫
Y

Re(f)dµ and Im
(∫

Y

fdµ
)

=

∫
Y

Im(f)dµ.

(3) We denote by L1(X,µ), or sometimes simply L1(µ), the set of all µ-integrable
complex-valued functions defined on X.

The first thing to notice here is that this definition, which is extremely general (with-
out assumption on the structure of X or boundedness of f , etc), has the nature of
“absolutely convergent” integral; this may seem like a restriction, but it is essential for
the resulting process to behave reasonably. In particular, note that if f is µ-integrable on
X, then it follows that f is µ-integrable on Y for any measurable subset Y ⊂ X, because∫

Y

|f |dµ =

∫
X

|f |χY dµ,

and |f |χY 6 |f |. This innocuous property would fail for most definitions of a non-
absolutely convergent integral.

We first observe that, as claimed, these definitions lead to well-defined real (or com-
plex) numbers for the values of the integrals. For instance, since we have inequalities

0 6 f± 6 |f |,
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we can see by monotony (2.4) that∫
X

f±dµ 6
∫
X

|f |dµ < +∞,

if f is µ-integrable. Similarly, if f is complex-valued, we have

|Re(f)| 6 |f |, and | Im(f)| 6 |f |,
which implies that the real and imaginary parts of f are themselves µ-integrable.

One may also remark immediately that

(2.10)

∫
X

f̄dµ =

∫
X

fdµ

if f (equivalently, f̄) is integrable.

Remark 2.3.2. Let (Ω,Σ, P ) be a probability space, and let X be a complex-valued
random variable defined on Ω. The integral of X on Ω is then customarily called the
expectation of X, and is denoted E(X).

Note the following important formula: denoting by µ = X(P ) the measure on C
which is the probability law of X (see Remark 1.2.9), we have (see 2.8)

E(|X|) =

∫
C

|x|fdµ, E(X) =

∫
C

xdµ

As we did in the previous section, we collect immediately a few simple facts before
giving some interesting examples.

Proposition 2.3.3. (1) The set L1(X,µ) is a C-vector space. Moreover, consider
the map L

1(µ)→ [0,+∞[

f 7→ ‖f‖1 =

∫
X

|f |dµ.

This map is a semi-norm on L1(X,µ), i.e., we have

‖af‖1 = |a|‖f‖1

for a ∈ C and f ∈ L1(X,µ), and

‖f + g‖1 6 ‖f‖1 + ‖g‖1,

for f , g ∈ L1(X,µ). Moreover, ‖f‖1 = 0 if and only if f is zero µ-almost everywhere.
(2) The map L

1(µ)→ C

f 7→
∫
X

fdµ

is a linear map, it is non-negative in the sense that f > 0 implies
∫
fdµ > 0, and it

satisfies

(2.11)
∣∣∣∫
X

fdµ
∣∣∣ 6 ∫

X

|f |dµ = ‖f‖1.

(3) For any measurable map ϕ : (X,M)→ (X ′,M′), and any measurable function g
on X ′, we have

(2.12)

∫
ϕ−1(Y )

g(ϕ(x))dµ(x) =

∫
Y

g(y)dϕ∗(µ)(y),
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in the sense that if either of the two integrals written are defined, i.e., the corresponding
function is integrable with respect to the relevant measure, then the other is also integrable,
and their respective integrals are equal.

In concrete terms, note that (2) means that∫
X

(αf + βg)dµ = α

∫
X

fdµ+ β

∫
X

gdµ

for f , g ∈ L1(µ) and α, β ∈ C; the first part ensures that the left-hand side is defined
(i.e., αf + βg is itself integrable).

The interpretation of (3) that we spelled out is very common for identities involving
various integrals, and sometimes we will not explicitly mention the implied statement
that both sides of such a formula are either simultaneously integrable or non-integrable
(they both make sense at the same time), and that they coincide in the first case.

Proof. Notice first that

|αf + βg| 6 |α||f |+ |β||g|
immediately shows (using the additivity and monotony of integrals of non-negative func-
tions) that ∫

X

|αf + βg|dµ 6
∫
X

|α||f |dµ+

∫
X

|β||g|dµ < +∞

for any f , g ∈ L1(µ) and α, β ∈ C. This proves both αf + βg ∈ L1(µ) and the triangle
inequality (take α = β = 1). Moreover, if g = 0, we have an identity |αf | = |α||f |, and
hence also ‖αf‖1 = |α|‖f‖1 by Proposition 2.2.2, (6).

To conclude the proof of (1), we note that those f for which ‖f‖1 = 0 are such that
|f | is almost everywhere zero, by Proposition 2.2.2, (1), which is the same as saying that
f itself is almost everywhere zero.

We now look at (2), and first show that the integral is linear with respect to f . This
requires some care because the operations that send f to its positive and negative parts
f 7→ f± are not linear themselves.

We prove the following separately:∫
αfdµ = α

∫
fdµ,(2.13) ∫

(f + g)dµ =

∫
fdµ+

∫
gdµ(2.14)

where α ∈ C and f , g ∈ L1(µ). Of course, by (1), all these integrals make sense.
For the first identity, we start with α ∈ R and a real-valued function f . If ε ∈ {−1, 1}

is the sign of α (with sign 1 for α = 0), we see that

(αf)+ = (εα)f ε+, and (αf)− = (εα)f ε−,

where the notation on the right-hand sides should have obvious meaning. Then (2.13)
follows in this case: by definition, we get∫

X

αfdµ =

∫
X

(εα)f ε+dµ−
∫
X

(εα)f ε−dµ,

hence, by Proposition 2.2.2, (6) this gives∫
X

αfdµ = εα

∫
X

f ε+dµ− εα
∫
X

f ε−dµ = εα

∫
X

(f ε+ − f ε−)dµ = α

∫
X

fdµ,
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as claimed.
Next (still in the real case) we come to (2.14). Let h = f + g, so that

h = h+ − h− = f+ − f− + g+ − g−,
which means also

h+ + f− + g− = f+ + g+ + h−,

where each side is now a sum of non-negative functions, each with finite integral. By the
additivity which we have proved for this situation (see (2.6)), we get∫

h+dµ+

∫
f−dµ+

∫
g−dµ =

∫
f+dµ+

∫
g+dµ+

∫
h−dµ,

hence, as desired, we get ∫
fdµ+

∫
gdµ =

∫
hdµ.

We leave to the reader to check the case of α ∈ C and f taking complex values; this
involves similar manipulations.

We now come to checking (2.11). This is obvious when f is real-valued because
|f | = f+ +f− in that case. For f taking complex values, we require a small trick to avoid
getting entangled in the square root defining |f |. Let θ ∈ R be a real number such that∫

X

fdµ = eiθ
∣∣∣∫
X

fdµ
∣∣∣ ∈ C.

Using (2.13) and (2.9), we obtain∣∣∣∫
X

fdµ
∣∣∣ =

∫
X

e−iθfdµ = Re
(∫

X

e−iθfdµ
)

=

∫
X

Re(e−iθf)dµ.

Now, since Re(z) 6 |z|, this last integral is bounded easily by∫
X

Re(e−iθf)dµ 6
∫
X

|f |dµ

using the monotony (2.4) (or positivity and |f | − Re(e−iθf) > 0.
As to the change of variable identity (2.12), it generalizes (2.8), and is an immediate

consequence by linearity. �

These detailed checks are of course rather boring, but necessary to ensure that the
integral has the properties we expect. However, having verified that this is the case, it
will very rarely be necessary to use the definition of integrals using either (2.3) or the
decomposition f = f+−f−. The usual linearity property and the monotone convergence
theorem will be used instead.

Example 2.3.4. We start with the simplest examples of measures in Example 1.2.7,
keeping the important case of the Lebesgue measure to a separate section.

(1) Let X be an arbitrary set and µ the counting measure on X. Of course, we expect
that ∫

X

f(x)dµ =
∑
x∈X

f(x),

for a non-negative function f on X, but since there is no assumption on an ordering
of the summation set, or that it be countable, we see that even this simple case offers
something new.

One can then check that a function is integrable with respect to this measure if it is
“absolutely summable”, in the following sense: given a family (f(x))x∈X , it is said to be
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absolutely summable with sum S ∈ C if and only if, for any ε > 0, there exists a finite
subset X0 ⊂ X for which ∣∣∣∑

x∈X1

f(x)− S
∣∣∣ < ε,

for any finite subset X1 with X0 ⊂ X1 ⊂ X.
In particular, if X = N with the counting measure, we are considering series∑

n>1

an,

of complex numbers, and a sequence (an) is integrable if and only if the series converges
absolutely. In particular, an = (−1)n/(n+ 1) does not define an integrable function.

Corollary 2.2.5 then shows that, provided each ai,j is > 0, we can exchange two series:∑
i>1

∑
j>1

ai,j =
∑
j>1

∑
i>1

ai,j.

This is not an obvious fact, and it is quite nice to recover this as part of the general
theory.

(2) Let µ = δx0 be the Dirac measure at x0 ∈ X; then any function f : X → C is
µ-integrable and we have

(2.15)

∫
X

f(x)dδx0(x) = f(x0).

More generally, let x1, . . . , xn ∈ X be finitely many points in X; one can construct
the probability measure

δ =
1

n

∑
16i6n

δxi

such that ∫
X

f(x)dδ(x) =
1

n

∑
16i6n

f(xi),

which is some kind of “sample sum” which is very useful in applications (since any
“integral” which is really numerically computed is in fact a finite sum of a similar type).

Exercise 2.3.5. Let (Ω,Σ, P ) be a probability space. We will show that if X and Y
are independent complex-valued random variables (Definition 1.2.10), we have XY ∈ L1

and

(2.16) E(XY ) = E(X)E(Y ), i.e.

∫
Ω

XY dP =

∫
Ω

XdP ×
∫

Ω

Y dP .

Note that, in general, it is certainly not true that the product of two integrable
function is integrable (and even if that is the case, the integral of the product is certainly
not usually given by the product of the integrals of the factors)! This formula depends
essentially on the assumption of independence of X and Y .

(1) Show that if X and Y are non-negative step functions, the formula (2.16) holds,
using the definition of independent random variables.

(2) Let X and Y be non-negative random variables, and let Sn and Tn be the step
functions constructed in the proof of Proposition 2.2.4 to approximate X and Y . Show
that Sn and Tn are independent for any fixed n > 1. (Warning: we only claim this for a
given n, not the independence of two sequences).
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(3) Deduce from this that (2.16) holds for non-negative random variables, using the
monotone convergence theorem.

(4) Deduce the general case from this.
In a later chapter, we will see that product measures give a much quicker approach

to this important property.

Our next task is to prove the most useful convergence theorem in the theory, Lebesgue’s
dominated convergence theorem. Recall from the introduction, specifically (0.3), that one
can not hope to have∫

X

(
lim

n→+∞
fn(x)

)
dµ(x) = lim

n→+∞

∫
X

fn(x)dµ(x),

whenever fn(x) → f(x) pointwise. Lebesgue’s theorem adds a single, very flexible, con-
dition, that ensures the validity of this conclusion.

Theorem 2.3.6 (Dominated convergence theorem). Let (X,M, µ) be a measured
space, (fn) a sequence of complex-valued µ-integrable functions. Assume that, for all
x ∈ X, we have

fn(x)→ f(x) ∈ C

as n→ +∞, so f is a complex-valued function on X.
Then f is measurable; moreover, if there exists g ∈ L1(µ) such that

(2.17) |fn(x)| 6 g(x) for all n > 1 and all x ∈ X,
then the limit function f is µ-integrable, and it satisfies

(2.18)

∫
X

f(x)dµ(x) = lim
n→+∞

∫
X

fn(x)dµ(x).

In addition, we have in fact

(2.19)

∫
X

|fn − f |dµ→ 0 as n→ +∞,

or in other words, fn converges to f in L1(µ) for the distance given by d(f, g) = ‖f−g‖1.

Remark 2.3.7. The reader will have no difficulty checking that the sequence given
by (0.3) does not satisfy the domination condition (2.17) (where the measure is the
Lebesgue measure).

This additional condition is not necessary to ensure that (2.18) holds (when fn → f
pointwise); however, experience shows that it is highly flexible: it is very often satisfied,
and very often quite easy to check.

The idea of the proof is to first prove (2.19), which is enough because of the general
inequality ∣∣∣∫

X

fn(x)dµ(x)−
∫
X

f(x)dµ(x)
∣∣∣ 6 ∫

X

|fn − f |dµ ;

the immediate advantage is that this reduces to a problem concerning integrals of non-
negative functions. One needs another trick to bring up some monotonic sequence to
which the monotone convergence theorem will be applicable. First we have another
interesting result:

Lemma 2.3.8 (Fatou’s lemma). Let (fn) be a sequence of non-negative measurable
functions fn : X → [0,+∞]. We then have∫

X

(lim inf
n→+∞

fn)dµ 6 lim inf
n→+∞

∫
X

fndµ,
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and in particular, if fn(x)→ f(x) for all x, we have∫
X

f(x)dµ(x) 6 lim inf
n→+∞

∫
X

fn(x)dµ(x).

Proof. By definition, a liminf is a monotone limit:

lim inf
n→+∞

fn = lim
n→+∞

gn,

where

gn(x) = inf
k>n

fk(x),

so that 0 6 gn 6 gn+1. The functions gn are also measurable, and according to the
monotone convergence theorem, we have∫

X

(lim inf
n→+∞

fn)dµ = lim
n→+∞

∫
X

gndµ.

But since, in addition, we have gn 6 fn, it follows that∫
gndµ 6

∫
fndµ

for all n, hence ∫
X

(lim inf
n→+∞

fn)dµ 6
∫
X

fn(x)dµ(x).

Although the right-hand side may not converge, we can pass to the liminf and obtain
the stated inequality. �

Proof of the dominated convergence theorem. The first step is to check
that f is integrable; this would be quite delicate in general, but the domination con-
dition provides this with little difficulty: from

|fn| 6 g

for all n, going to the pointwise limit, we get |f | 6 g, and since g is µ-integrable, the
monotony of integral implies that f is also µ-integrable.

Now we are going to show that

(2.20) lim sup
n→+∞

∫
X

|fn − f |dµ(x) = 0,

which implies (2.19) since the sequences involved are all > 0; as already observed, this
also gives the exchange of limit and integral (2.18).

Fatou’s lemma does not deal with limsups, but we can easily exchange to a liminf by
considering −|fn − f |; however, this is not > 0, so we shift by adding a sufficiently large
function. So let hn = 2g − |fn − f | for n > 1; we have

hn > 0, hn(x)→ 2g(x),

for all x. By Fatou’s Lemma, it follows that

(2.21) 2

∫
X

gdµ =

∫
X

( lim
n→+∞

hn)dµ 6 lim inf
n→+∞

∫
X

hndµ.

By linearity, we compute the right-hand side∫
X

hndµ = 2

∫
X

gdµ−
∫
X

|fn − f |dµ,
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and therefore

lim inf
n→+∞

∫
X

hndµ = 2

∫
X

gdµ− lim sup
n→+∞

∫
X

|fn − f |dµ.

By comparing with (2.21), we get

lim sup
n→+∞

∫
X

|fn − f |dµ 6 0,

which is (2.20). �

Example 2.3.9. Here is a first general example: assume that µ is a finite measure
(for instance, a probability measure). Then the constant functions are in L1(µ), and the
domination condition holds, for instance, for any sequence of functions (fn) which are
uniformly bounded (over n) on X.

Example 2.3.10. Here is another simple example:

Lemma 2.3.11. Let Xn ∈M be an increasing sequence of measurable sets such that

X =
⋃
n>1

Xn,

and let Yn = X −Xn be the sequence of complementary sets.
For any f ∈ L1(µ), we have

lim
n→+∞

∫
Xn

f(x)dµ(x) =

∫
X

f(x)dµ(x),

lim
n→+∞

∫
Yn

f(x)dµ(x) = 0.

Proof. We apply the dominated convergence theorem to the sequence

fn(x) = f(x)χXn(x).

Since Xn ⊂ Xn+1, it follows that, for any fixed x ∈ X, we have fn(x) = f(x) for
all n large enough (but depending on x!). Thus fn(x) → f(x) pointwise. Moreover, the
domination condition is very easy to achieve here: we have

|fn(x)| = |f(x)|χXn(x) 6 |f(x)|
for all x and all n. Since, by assumption, g = |f | is µ-integrable, this gives condi-
tion (2.17). Consequently, we obtain∫

Xn

f(x)dµ(x) =

∫
X

fn(x)dµ(x)→
∫
X

f(x)dx.

For the second statement, we just need to remark that∫
Xn

f(x)dµ(x) +

∫
Yn

f(x)dµ(x) =

∫
X

f(x)dµ(x)

for n > 1. �

For instance, consider f ∈ L1(X,µ), and define

Xn = {x ∈ X | |f(x)| 6 n}
for n > 1. We have Xn ⊂ Xn+1, of course, and⋃

n>1

Xn = X,
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(since f only takes complex values). We therefore conclude that∫
X

f(x)dµ(x) = lim
n→+∞

∫
Xn

f(x)dµ(x) = lim
n→+∞

∫
{|f |6n}

f(x)dµ(x).

This is often quite useful because it shows that one may often prove general proper-
ties of integrals by restricting first to situations where the function that is integrated is
bounded.

2.4. Integrating with respect to the Lebesgue measure

In this section, we consider the special case of the measure space (R,B, λ), where
λ is the Lebesgue measure, or its subsets ([a, b],B, λ). We will see basic examples of λ-
integrable functions (and of functions which are not), and will explain the relation between
this integral and the Riemann integral in the case of sufficiently smooth functions.

Example 2.4.1 (Integrable functions). In order to prove that a given measurable
function f is integrable (with respect to the Lebesgue measure on a subset X ⊂ R, or
for a more general measure space), the most common technique is to find a “simple”
comparison function g which is known to be integrable and for which it is known that

|f(x)| 6 g(x), x ∈ X.
Frequently, one uses more than one comparison function: for instance, one finds

disjoint subsets X1, X2 such that X = X1 ∪ X2, and functions g1, g2 integrable on X1

and X2 respectively, such that

|f(x)| 6

{
g1(x) if x ∈ X1,

g2(x) if x ∈ X2.

With some care, this can be applied with infinitely many subsets. For instance,
consider

X = [1,+∞[, f(x) = x−ν

where ν > 0. Then f is λ-integrable on X if (in fact, only if) ν > 1. Indeed, note that

0 6 f(x) 6 n−ν , x ∈ [n, n+ 1[, n > 1,

and therefore, using the monotone convergence theorem, we get∫
X

x−νdλ(x) 6
∑
n>1

n−ν < +∞

if ν > 1 (the converse is proved in the next example).
Note that the range of integration here, the unbounded interval [0,+∞[, is treated

just like any other; there is no distinction in principle between bounded and unbounded
intervals in Lebesgue’s theory, like there was in Riemann’s integral. However, using
Lemma 2.3.11, we recover the fact that∫

[0,+∞[

f(x)dλ(x) = lim
n→+∞

∫
[0,n]

f(x)dλ(x)

for any λ-integrable function on X.
Similarly, Lebesgue’s integral deals uniformly with unbounded functions (either on

bounded or unbounded intervals). Consider X = [0, 1] and

f(x) =

{
x−ν if x 6= 0,

0 if x = 0,
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for some fixed ν > 0.
We now note that

0 6 f(x) 6
( 1

n+ 1

)−ν
= (n+ 1)ν , x ∈](n+ 1)−1, n−1], n > 1,

and summing over n > 1, keeping in mind the size

1

n
− 1

n+ 1
=

1

n(n+ 1)
6

2

(n+ 1)2

of each interval in the subdivision, we obtain∫
[0,1]

x−νdλ(x) 6 2
∑
n>1

(n+ 1)ν−2

which is finite for ν − 2 < −1, i.e., for ν < 1.
One can also deal easily with functions with singularities located at arbitrary points

of R, without requiring to place them at the extremities of various intervals.
Another very common comparison function, that may be applied to any set with finite

measure, is a constant function: for X = [a, b] for instance, any measurable bounded
function is λ-integrable on X, because the constant function 1 has integral 6 (b− a).

Example 2.4.2 (Non-integrable functions). Except for the requirement of measura-
bility, which is very rarely an issue in practice, the condition of integrability of a function
f on a measurable subset X ⊂ R with respect to λ, is analogue to the condition of
absolute convergence for series ∑

n>1

an, an ∈ C.

As such, corresponding to the existence of series like∑
n>1

(−1)n+1

n

which are convergent but not absolutely so, there are many examples of functions f which
are not-integrable although some specific approximating limits may exist. For instance,
consider

f(x) =

{
sin(x)
x

if x > 0,

1 if x = 0,

defined for x ∈ [0,+∞[. It is well-known that

(2.22) lim
N→+∞

∫
[0,N ]

f(x)dλ(x) =
π

2
,

which means that the integral of f on [0,+∞[ exists in the sense of “improper” Riemann
integrals (see also the next example; f is obviously integrable on each interval [0, N ]
because it is bounded by 1 there). However, f is not in L1(R>0, λ). Indeed, note that

|f(x)| >
√

3

2x
>

√
3

2(n+ 1)π

whenever x ∈ [π
2

+ nπ − π
3
, π

2
+ nπ + π

3
], n > 1, so that∫

[0,+∞[

|f(x)|dλ(x) >

√
3

2π

∑
n>1

1

n+ 1
= +∞,
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which proves the result.
In fact, note that if we restrict f to the set Y which is the union over n > 1 of the

intervals

In = [π
2

+ 2nπ − π
3
, π

2
+ 2nπ + π

3
],

we have

f(x) >

√
3

2x
>

√
3

2(2n+ 1)π

on In (without sign changes), hence also∫
Y

f(x)dλ(x) = +∞,

and this should be valid with whatever definition of integral is used. So if one managed
to change the definition of integral further so that f becomes integrable on [0,+∞[ with
integral π/2, we would have to draw the undesirable conclusion that the restriction of
an integrable function to a subset of its domain of definition may fail to be integrable.
Avoiding this is one of the main reasons for using a definition related to absolute conver-
gence. This is not to say that formulas like (2.22) have no place in analysis: simply, they
have to be studied separately, and should not be thought of as being truly analogous to
a statement of integrability.

Example 2.4.3 (Comparison with the Riemann integral). We have already seen ex-
amples of λ-integrable step-functions which are not Riemann-integrable. However, we
now want to discuss the relation between the two notions in the case of sufficiently reg-
ular functions. For clarity, we denote here∫ b

a

f(x)dx

the Riemann integral, and use ∫
[a,b]

f(x)dλ(x)

for the Lebesgue integral.

1st case: Let I = [a, b] be a compact interval, and let

f : I → R

be a measurable function which is Riemann-integrable, for instance a continuous function.
Then f is λ-integrable, and we have the equality

(2.23)

∫ b

a

f(x)dx =

∫
I

f(x)dλ(x).

This already allows us to compute many Lebesgue integrals by using known Riemann-
integral identities.

The proof of this fact is very simple: for any subdivision

a = y0 < y1 < · · · < yn = b
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of the interval of integration, let

S+(f) =
n−1∑
i=1

(yi − yi−1) sup
yi−16x6yi

f(x),

S−(f) =
n−1∑
i=1

(yi − yi−1) min
yi−16x6yi

f(x)

be the upper and lower Riemann sums for the integral of f . We can immediately see that

S−(f) 6
n−1∑
i=1

∫
[yi−1,yi]

f(x)dλ(x) =

∫
[a,b]

f(x)dλ(x) 6 S+(f),

and hence (2.23) is an immediate consequence of the definition of the Riemann integral.
This applies, in particular, to any function f which is either continuous or piecewise
continuous.

One can also study general Riemann-integrable functions, although this requires a
bit of care with measurability. The following result indicates clearly the restriction that
Riemann’s condition imposes:

Theorem 2.4.4. Let f : [a, b] → C be any function. Then f is Riemann-integrable
if and only if f is bounded, and the set of points where f is not continuous is negligible
with respect to the Lebesgue measure.

(The points concerned are those x where any of the four limits

lim inf
y→x

Re(f(x)), lim sup
y→x

Re(f(x)), lim inf
y→x

Im(f(x)), lim sup
y→x

Im(f(x)),

is not equal to Re(f(x)) or Im(f(x)), respectively). We do not prove this, since this is
not particularly enlightening or useful for the rest of the book.

2nd case: Let I = [a,+∞[ and let f : I → C be such that the Riemann integral∫ +∞

a

f(x)dx

converges absolutely. Then f ∈ L1(I, λ) and∫ +∞

a

f(x)dx =

∫
I

f(x)dλ(x)

(we have already seen in Example 2.4.2 that the restriction to absolutely convergent
integrals is necessary).

Indeed, as we have already remarked in Example 2.4.1, we let

Xn = [a, a+ n[

for n > 1 and fn = fχXn ; as in Lemma 2.3.11, the bounds

|fn| 6 |fn+1| → |f |,

imply that∫
I

|f(x)|dλ(x) = lim
n

∫
I

|fn|dλ(x) = lim
n

∫ a+n

a

|f(x)|dx =

∫ +∞

a

|f(x)|dx < +∞
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where we used the monotone convergence theorem, and the earlier comparison (2.23)
together with the assumption on the Riemann-integrability of f . It follows that f is
Lebesgue-integrable, and from Lemma 2.3.11, we get∫

I

f(x)dλ(x) =

∫ +∞

a

f(x)dx

using the definition of the Riemann integral again.
A similar argument applies to an unbounded function defined on a closed interval

[a, b[ such that the Riemann integral ∫ b

a

f(x)dx

converges absolutely at a and (or) b.

45



CHAPTER 3

First applications of the integral

Having constructed the integral, and proved the most important convergence theo-
rems, we can now develop some of the most important applications of the integration
process. The first one is the well-known use of integration to construct functions – here,
the most important gain compared with Riemann integrals is the much greater flexibility
and generality of the results, which is well illustrated by the special case of the Fourier
transform. The second application depends much more on the use of Lebesgue’s integral:
it is the construction of spaces of functions with good analytic properties, in particular,
completeness. After these two applications, we give some of a probabilistic nature.

3.1. Functions defined by an integral

One of the most common use of integration is an averaging process which can be used
to create functions by integrating over a fixed set a function of two (or more) variables,
one of which is seen as a parameter. This procedure has a regularizing effect – even very
rough functions, after integration, may become quite nice. This provides analysis with
one of its most important technical tools.

Regularity properties of a function typically make sense when they are defined on a
space with a topological structure. For simplicity, we assume that we have such a space
which is a metric space (X, d). For instance, X could be an interval [a, b] or R with the
usual metric d(x, y) = |x− y|. Furthermore, let (Y,M, µ) be a measured space. Given a
function

h : X × Y → C

such that each “slice” restriction

hx : y 7→ h(x, y)

is measurable and µ-integrable, we can form a function f on X by integrating over y, i.e.,
we define

f(x) =

∫
Y

h(x, y)dµ(y), for all x ∈ X.

In order to prove regularity properties of f , it is necessary to strengthen the minimal
assumption of integrability of each hx, in a way similar to the use of the domination
condition in Lebesgue’s dominated convergence theorem. We assume that there exists
g ∈ L1(µ) such that

(3.1) |h(x, y)| 6 g(y)

for all (x, y) ∈ X × Y .
With these conditions, we first establish that if h is continuous with respect to x ∈ X

for all y, then f is also continuous. In fact, we prove a more precise result:

Proposition 3.1.1 (Continuity under the integral sign). Let X, Y , h and f be as
described above, and let x0 ∈ X be given. Assume that for µ-almost all y ∈ Y , the
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function

h(·, y) : x 7→ h(x, y)

defined on the metric space X is continuous at x0. Then f is continuous at x0.
In particular, if these functions are all continuous at all x0 ∈ X for y ∈ Y , then f is

continuous on all of X.

Proof. Since X is a metric space, continuity can be detected using convergent se-
quences, and therefore it is enough to prove that, for any sequence (xn) in X such that

lim
n→+∞

xn = x0,

the sequence (f(xn)) is also convergent, and

lim
n→+∞

f(xn) = f(x0).

But this almost writes itself using the dominated convergence theorem! Indeed, con-
sider the sequence of functions

un :

{
Y → C

y 7→ h(xn, y).

Writing down f(xn) and f(x0) as integrals, our goal is to prove∫
Y

h(xn, y)dµ(y) −→
∫
Y

h(x0, y)dµ(y),

and this is clearly a job for the dominated convergence theorem.
Precisely, the assumption of continuity implies that un(y) = h(xn, y) → h(x0, y) for

almost all y ∈ Y . Let Y0 ⊂ Y be the exceptional set where this is not true, and redefine
un(y) = 0 for y ∈ Y0: then the limit holds for all y ∈ Y with limit

h̃ : y 7→

{
0 if y ∈ Y0,

h(x0, y) otherwise.

Moreover, we have also

|un(y)| 6 g(y)

with g ∈ L1(µ). Hence, the dominated convergence theorme applies to prove

lim
n→+∞

∫
Y

un(y)dµ(y) =

∫
Y

h̃(y)dµ(y) =

∫
Y

h(x0, y)dµ(y),

since h̃(y) = h(x0, y) almost everywhere. �

Remark 3.1.2. Note how we dealt in pitiless detail with the fact that we assumed
continuity at x0 only for almost all y. More generally, we have showed that, in the
dominated convergence theorem, it is not necessary that the sequence converge pointwise
to the limiting function for all points: it is enough that this happen µ-almost everywhere.
We will use this type of easy property from now on without always mentioning it explicitly.

Example 3.1.3. Here is an example where the additional flexibility is useful. Consider
Y = [0, 1] with the Lebesgue measure (denoted simply dy); for f ∈ L1(Y ), let g : [0, 1]→
C be the “primitive” of f , defined by

g(x) =

∫ x

0

f(y)dy =

∫
[0,x]

f(y)dy.
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Then we claim that g is continuous – this independently of any other assumption on
f , which may well be unbounded and everywhere discontinuous on Y (so that bounding
g(x+ h)− g(x) by bounding f is not obvious at all!)

The point is that we can write

g(x) =

∫
Y

h(x, y)dy,

with h(x, y) = f(y)χ[0,x](y), which incorporates the condition on the range of integration
in a two-variables function. This function h satisfies

|h(x, y)| 6 |f(y)| for all x ∈ [0, 1],

and hence, since f ∈ L1([0, 1]), we see that (3.1) is satisfied. Moreover, for any fixed y,
we have

h(x, y) = f(y)χ[0,x](y) =

{
f(y) if 0 6 y 6 x

0 otherwise,

which is a step function, with a single discontinuity at x0 = y. Hence, for any fixed x0,
these functions are almost all continuous at x0, and the proposition above implies the
continuity of g on [0, 1].

Beyond continuity, we can investigate additional regularity properties, like differen-
tiability, when this makes sense. We consider the simplest case where X = I is an open
interval in R. In addition to the earlier assumption (3.1), which is always assumed to
hold, another similar extra assumption is needed.

Proposition 3.1.4 (Differentiability under the integral sign). Let X = I ⊂ R be a
non-empty interval, let Y , h and f be as above. Assume that, for almost all y ∈ Y , the
function

h(·, y) : I → C

is differentiable, and that its derivative satisfies a bound

(3.2)
∣∣∣ d
dx
h(x, y)

∣∣∣ 6 g1(y).

for all (x, y) ∈ X × Y and some integrable function g1 ∈ L1(Y, µ)
Then f is differentiable on I, and we have

f ′(x) =

∫
Y

d

dx
h(x, y)dµ(y).

Proof. Let

f1(x) =

∫
Y

d

dx
h(x, y)dµ(y),

which is well-defined according to our additional assumption (3.2).
Now fix x0 ∈ I, and let us prove that f is differentiable at x0 with f ′(x0) = f1(x0).

By definition, this means proving that

lim
δ→0
δ 6=0

f(x0 + δ)− f(x0)

δ
= f1(x0).

First of all, we observe that since I is open, there exists some α > 0 such that x0+δ ∈ I
if |δ| < α. Now observe that

f(x0 + δ)− f(x0)

δ
=

∫
Y

h(x0 + δ, y)− h(x0, y)

δ
dµ(y),
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so that the problems almost becomes that of applying the previous proposition. Precisely,
define

ψ(δ, y) =


h(x0 + δ, h)− h(x0, y)

δ
if δ 6= 0

d

dx
h(x0, y) if δ = 0,

for |δ| < α and y ∈ Y . The assumption of differentiability on h(x, y) for almost all y
implies that δ 7→ ψ(δ, y) is continuous at 0 for almost all y ∈ Y . We now check that the
assumption (3.1) holds for this new function of δ and y. First, if δ = 0, we have

|ψ(0, y)| 6 g1(y),

by (3.1); for δ 6= 0, we use the mean-value theorem: there exists some η ∈ [0, 1] such that

|ψ(δ, y)| =
∣∣∣h(x0 + δ, y)− h(x0, y)

δ

∣∣∣
=
∣∣∣ d
dx
h(x0 + ηδ, y)

∣∣∣ 6 g1(y).

It follows that (3.2) is valid for ψ instead of h with g1 taking place of g
Hence, the previous proposition of continuity applies, and we deduce that the function

δ 7→
∫
Y

ψ(δ, y)dµ(y)

is (defined and) continuous at 0, which is exactly the desired statement since∫
Y

d

dx
h(x0, y)dµ(y) = f1(x0).

�

3.2. An example: the Fourier transform

The results of the previous section can very often be applied extremely easily. We use
them here to present the definition and the simplest properties of the Fourier transform
of an integrable function defined on R (with respect to the Lebesgue measure). This very
important operation will also be considered in greater detail in later chapters.

First of all, we define a function e : C→ C by

(3.3) e(z) = e2iπz.

This close cousin of the exponential function satisfies

e(x+ y) = e(x)e(y), e(x+ 1) = e(x) and |e(x)| = 1 if x ∈ R

(the reason the factor 2iπ was introduced is to obtain a 1-periodic function). Note also
that

e(x) = 1 if and only if x ∈ Z.

Definition 3.2.1 (Fourier transform of an integrable function). Let f ∈ L1(R) be a
complex-valued function integrable with respect to the Lebesgue measure. The Fourier
transform of f is the function f̂ : R→ C defined by the integral

f̂(t) =

∫
R

f(y)e(−yt)dy

for all t ∈ R.
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Note that this is well-defined precisely because |f(y)e(−yt)| = |f(y)| and f is assumed
to be integrable.

Remark 3.2.2. Many other normalizations of the Fourier transform occur in the
literature, such as∫

R

f(x)eixtdx,

∫
R

f(x)e−ixtdx,
1√
2π

∫
R

f(x)e−ixtdx, etc...

The normalization we have chosen has the advantage of leading to a very simple
Fourier Inversion Formula (as we will see in a later chapter). Of course, all definitions
are related through elementary transformations, for instance the three functions above
are, respectively, equal to

f̂(−t/2π), f̂(t/2π),
1√
2π
f̂(t/2π).

However, one should always check which definition is used before using a formula
found in a book (e.g., a table of Fourier transforms).

Proposition 3.2.3 (Elementary regularity properties). (1) Let f ∈ L1(R). Then f̂
is a bounded continuous function on R such that

(3.4) sup
x∈R
|f̂ | 6 ‖f‖1.

(2) If the function g(x) = xf(x) is also integrable on R with respect to the Lebesgue

measure, then the Fourier transform f̂ of f is of C1 class on R, and its derivative is
given by

f̂ ′(t) = −2iπĝ(t)

for t ∈ R.
(3) If f is of C1 class, and is such that f ′ ∈ L1(R) and moreover

lim
x→±∞

f(x) = 0,

then we have
f̂ ′(t) = 2iπtf̂(t).

Proof. The point is of course that we can express the Fourier transform as a func-
tion defined by integration using the two-variable function h(t, y) = f(y)e(−yt). Since
|h(t, y)| = |f(t)| for all y ∈ R, condition (3.1) holds. Moreover, for any fixed y, the
function t 7→ h(t, y) on R is a constant times an exponential, and is therefore contin-

uous everywhere. Therefore Proposition 3.1.1 shows that f̂ is continuous on R. The
property (3.4) is also immediate since |e(x)| = 1.

For Part (2), we note that h is also (indefinitely) differentiable on R for any fixed y,
in particular differentiable with

d

dt
h(t, y) = −2iπyf(y)e(yt) hence

∣∣∣ d
dt
h(t, y)

∣∣∣ 6 2π|yf(y)| = 2π|g(y)|.

If g ∈ L1(R), we see that we can now apply directly Proposition 3.1.4, and deduce

that f̂ is differentiable and satisfies

f̂ ′(t) =

∫
R

2iπyf(y)e(yt)dy = −2iπĝ(t),

for t ∈ R. Since this derivative is itself the Fourier transform of an integrable function,
it is also continuous on R by the previous result.
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As for (3), assume that f ′ exists and is integrable, and that f → 0 at infinity. Then,

one can integrate by parts in the definition of f̂ ′ and find

f̂ ′(t) =

∫
R

f ′(y)e(−yt)dy = 2iπt

∫
R

f(y)e(−yt)dy

(the boundary terms disappear because of the decay at infinity; since f is here differen-
tiable, hence continuous, we can justify the integration by parts by comparison with a
Riemann integral, but we will give a more general version later on). �

Example 3.2.4. Let f : R → C be a continuous function with compact support
(i.e., such that there exists M > 0 for which f(x) = 0 whenever |x| > M). Then f is
integrable (being bounded and zero outside [−M,M ]), and moreover the functions

(3.5) x 7→ xkf(x)

are integrable for all k > 1 (they have the same compact support). Using proposi-

tion 3.2.3, it follows by induction on k > 1 that f̂ is indefinitely differentiable on R, and
is given by

f̂ (k)(t) = (−2iπ)k
∫
R

ykf(y)e(−yt)dy.

The same argument applies more generally to any f such that all the functions (3.5)
are integrable, even if they are not compactly supported. Examples of these are given by
f(y) = e−|y| or f(y) = e−y

2
.

Remark 3.2.5. In the language of normed vector spaces, the inequality (3.4) means
that the “Fourier transform” map{

L1(R)→ Cb(R)

f 7→ f̂

is continuous, and has norm 6 1, where Cb(R) is the space of bounded continuous
functions on R, which is a normed vector space with the norm

‖f‖∞ = sup
x∈R
|f(x)|.

This continuity means, in particular, that if (fn) is a sequence of integrable functions
converging to f0 in the L1-norm, i.e., such that

‖fn − f0‖1 =

∫
R

|fn(x)− f0(x)|dx −→ 0,

then the Fourier transforms f̂n converge uniformly to f̂0 on R (since this is the meaning
of ‖fn − f0‖∞ → 0).

Remark 3.2.6. Let (Ω,Σ, P ) be a probability space, and let X be a real-valued
random variable on Ω. Probabilists define the characteristic function of X to be the
function ϕ : R→ C defined by

ϕ(t) =

∫
Ω

eitXdP = E(eitX).

Because |eitX | = 1 (since X is real-valued), and since the measure P is a probability
measure, this map ϕ is well-defined. Applying Proposition 3.1.1, we see that it is always
a continuous function.
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Of course, this is a variant of the Fourier transform. Indeed, if we denote by µ = X(P )
the probability measure on R which is the law of X, we have

ϕ(t) =

∫
R

eitydµ(y)

by the change of variable formula (2.12) for image measures. In particular, if the law µ
is of the type

µ = f(x)dx

for some function f on R (where dx is again the Lebesgue measure), we have

ϕ(t) =

∫
R

eityf(y)dy = f̂
(
− t

2π

)
(note that f is necessarily integrable because it must be > 0 and∫

R

fdµ =

∫
Ω

dP = 1

by (2.12)).
In a later chapter, we will study the probabilistic aspects of the characteristic function

and its many fundamental applications.

3.3. Lp-spaces

The second important use of integration theory – in fact, maybe the most important
– is the construction of function spaces with excellent analytic properties, in particular
completeness (i.e., convergence of Cauchy sequences). Indeed, we have the following
property, which we will prove below: given a measure space (X,M, µ), and a sequence
(fn) of integrable functions on X such that, for any ε > 0, we have

‖fn − fm‖1 < ε

for all n, m large enough (a Cauchy sequence), there exists a limit function f , unique
except that it may be changed arbitrarily on any µ-negligible set, such that

lim
n→+∞

‖fn − f‖ = 0

(but f is not usually a pointwise limit of the (fn)).
Before considering this, we need to be involved in a bit of abstract manipulations in

order to have structures which coincide exactly with the expected topological notions. In
particular, note that the norm ‖f‖1, as defined, does not have the property that ‖f‖1 = 0
implies that f = 0. The solution is to consider systematically functions defined “up to a
perturbation defined on a set of measure zero”.

Definition 3.3.1. Let (X,M, µ) be a measured space. The space L1(X,µ) = L1(µ)
is defined to be the quotient vector space

{f : X → C | f is integrable}/N
where
(3.6)

N = {f | f is measurable and f is zero µ-almost everywhere} =
{
f |

∫
X

|f |dµ = 0
}
.

This is a normed vector space for the norm

‖f‖1 =

∫
X

|f |dµ,

52



in particular ‖f‖1 = 0 if and only if f = 0 in L1(X,µ).

From now on, the notation L1(µ) and L1(X,µ) refer exclusively to this
definition

Concretely, although this means that an element of L1(X,µ) can not properly be
thought of as a function defined everywhere on X, the equivalence relation does not
induce much difficulty. One usually works with “actual” functions f , and one remembers
to say that f = g if it is shown that f and g coincide except on a set of measure zero.
Most importantly, in order to define a map

L1(X,µ)
φ−→M,

for any set M , one usually defines a map on actual (integrable) functions, before checking
that the value of φ(f) is the same as that of φ(g) if f − g is zero almost everywhere. This
is, for instance, exactly why the norm is well-defined on L1(µ).

On the other hand, fix a point x0 and consider the map

φ : f 7→ f(x0)

defined on all integrable functions on X. If µ({x0}) = 0, any two functions which differ
only at x0 are equal almost everywhere, and therefore the value of φ(f) is not well-
defined on the equivalence classes which are the elements of L1(X,µ). Hence, under this
condition, one can not speak sensibly of the value of a function in L1(µ) at x0.

It will be quickly seen that manipulating elements of L1(µ) is quite easy, and it is
frequent to abuse notation by stating that they are “integrable functions on X”. Also,
one often has a function f which is constructed in a way which makes sense almost
everywhere, say outside Z0, and is integrable on X−Z0; then defining f(z) = 0 if z ∈ Z0,
one obtains a well-defined element of L1(µ). The following exercise is a good way to get
some familiarity with this type of reasoning.

Exercise 3.3.2. Let L be the set of all pairs (Y, f) where Y ∈ M is such that
µ(X − Y ) = 0, and f : Y → C is a measurable function such that∫

Y

|f |dµ < +∞.

Let L1 be the quotient set L/ ∼ where the equivalence relation ∼ is given by

(Y, f) ∼ (Y ′, f ′) if f(x) = f ′(x) for all x ∈ Y ∩ Y ′.

(1) Show that this is indeed an equivalence relation.
(2) Show that L1 is a normed vector space with addition and multiplication obtained

from

(Y, f) + (Y ′, f ′) = (Y ∩ Y ′, f + f ′), and λ(Y, f) = (Y, λf),

by passing to the quotient, and for the norm defined by

‖(Y, f)‖ =

∫
Y

|f |dµ.

(3) Show that the map {
L1(µ)→ L1

f 7→ (X, f)
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is a linear isometry of normed vector spaces, with inverse given by

(Y, f) 7→ g such that g(x) =

{
f(x) if x ∈ Y
0 otherwise.

(4) Show that the dominated convergence theorem implies the following result: if
(fn) is a sequence of elements fn ∈ L1 such that fn → f almost everywhere, and if
|fn| 6 g with g ∈ L1, then fn converges to f in L1 and∫

X

fdµ = lim
n→+∞

∫
X

fndµ.

Here is the first main result concerning the space L1, which will lead quickly to its
completeness property.

Proposition 3.3.3. Let (X,M, µ) be a measured space, and let (fn) be a function of
elements fn ∈ L1(µ). Assume that the series

∑
fn is normally convergent in L1(µ), i.e.,

that ∑
n>1

‖fn‖1 < +∞.

Then the series ∑
n>1

fn(x)

converges almost everywhere in X, and if f(x) denotes its limit, well-defined almost
everywhere, we have f ∈ L1(µ) and

(3.7)

∫
X

fdµ =
∑
n>1

∫
X

fndµ.

Moreover the convergence is also valid in the norm ‖·‖1, i.e., we have ‖fn − f‖ → 0
as n→ +∞.

For this proof only, we will be quite precise and careful about distinguishing functions
and equivalence classes modulo those which are zero almost everywhere; the type of
boring formal details involved will not usually be repeated afterwards.

Proof. Define

h(x) =
∑
n>1

|fn(x)| ∈ [0,+∞]

for x ∈ X; if the values of fn are modified on a set Yn of measure zero, then h is changed,
at worse, on the set

Y =
⋃
n>1

Yn

which is still of measure zero. This indicates that h is well-defined almost everywhere,
and it is measurable. It is also non-negative, and hence its integral is well-defined in
[0,+∞]. By Corollary 2.2.5 to the monotone convergence theorem, we have∫

X

hdµ =
∑
n>1

∫
X

|fn|dµ =
∑
n>1

‖fn‖1 < +∞ by assumption,

and from this we derive in particular that h is finite almost everywhere (see Proposi-
tion 2.2.2, (1)).
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For any x such that h(x) <∞, the numeric series
∑
fn(x) converges absolutely, and

hence has a sum f(x) such that |f(x)| 6 h(x). We can extend f to X by defining, for
instance, f(x) = 0 on the negligible set (say, Z) of those x where h(x) = +∞.

In any case, we have |f | 6 h, and therefore the above inequality implies that f ∈
L1(µ). We can now apply the dominated convergence theorem to the sequence of partial
sums

un(x) =
∑

16i6n

fi(x) if x /∈ Z, un(x) = 0 otherwise

which satisfy un(x)→ f(x) for all x and |un(x)| 6 h(x)χZ(x) for all n and x. We conclude
that ∫

X

fdµ = lim
n

∫
X

undµ = lim
n

∑
16i6n

∫
X

fidµ =
∑
n>1

∫
X

fndµ.

�

Proposition 3.3.4 (Completeness of the space L1(X,µ)). (1) Let (X,M, µ) be a
measured space. Then any Cauchy sequence in L1(X,µ) has a limit in L1(X,µ), or in
other words, the normed vector space L1(µ) is complete.1

(2) More precisely, or concretely, we have the following: if (fn) is a Cauchy sequence
in L1(µ), there exists a unique f ∈ L1(µ) such that fn → f in L1(µ), i.e., such that

lim
n→+∞

‖fn − f‖1 = 0.

Moreover, there exists a subsequence (fnk) of (fn) such that

lim
k→+∞

fnk(x) = f(x),

for µ-almost all x.

Remark 3.3.5. Part (2) can not be improved: it may be that the sequence (fn(x))
itself does not converge, for any x (an example is given below in Exercise 3.3.6), or that
it diverges at some points. Thus, it is really an L1-type statement, and it would be rather
inelegant to express it purely in terms of functions.

Proof. We recall the Cauchy condition: for any ε > 0, there exists N(ε) > 1 such
that

(3.8) ‖fn − fm‖1 < ε

for all n > N and m > N .
Contrary to many arguments involving Cauchy sequences, we can not claim that

(fn(x)) is itself a Cauchy sequence for some x ∈ X. But we will first construct the
limit function by appealing to Proposition 3.3.3, proving Part (2) in effect: the Cauchy
condition states that, in L1-norm, all terms of the sequence are very close for n large
enough, and this provides a series of differences which converges normally. Precisely,
consider successively ε = εk = 2−k for k > 1.2 Then, using induction on k, we see that
there exists a strictly increasing sequence (nk) such that

‖fnk+1
− fnk‖1 < 2−k

for k > 1. We claim that (fnk) converges almost everywhere. Indeed, the series∑
k>1

(fnk+1
− fnk)

1 It is therefore what is called a Banach space.
2 Any other sequence of εk’s decreasing to 0 with

∑
εk < +∞ would do as well.
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is a series with terms gk = fnk+1
− fnk ∈ L1(µ) such that∑

k>1

‖gk‖1 6
∑
k>1

2−k < +∞.

By Proposition 3.3.3, this series converges almost everywhere, and in L1(µ), to a
function g ∈ L1(µ). But since the partial sums are given by the telescoping sums

K∑
k=1

gk = (fnK+1
− fnK ) + (fnK − fnK−1

) + · · ·+ (fn2 − fn1) = fnK+1
− fn1 ,

this means that the subsequence (fnk) converges almost everywhere, with limit f = g+fn1 .
Moreover, since the convergence is valid in L1, we have

(3.9) lim
k→+∞

‖f − fnk‖1 = 0,

which means that f is a limit point of the Cauchy sequence (fn). However, it is well-
known that a Cauchy sequence with a limit point, in a metric space, converges necessarily
to this limit point. Here is the argument for completeness: for all n and k, we have

‖f − fn‖1 6 ‖f − fnk‖1 + ‖fnk − fn‖1,

and by (3.8), we know that ‖fn − fnk‖1 < ε if n and nk are both > N(ε). Moreover,
by (3.9), we have ‖f − fnk‖1 < ε for k > K(ε).

Now fix some k > K(ε) such that, in addition, we have nk > N(ε) (this is possible
since nk is strictly increasing). Then, for all n > N(ε), we obtain ‖f − fn‖1 < 2ε, and
this proves the convergence of (fn) towards f in L1(µ). �

Exercise 3.3.6. Consider the function

f : [1,+∞[→ R

defined as follows: given x > 1, let n > 1 be the integer with n 6 x < n + 1, and write
n = 2k + j for some k > 0 and 0 6 j < 2k; then define

f(x) =

{
1 if j2−k 6 x− n < (j + 1)2−k

0 otherwise.

(1) Sketch the graph of f ; what does it look like?
(2) For n > 1, we define fn(x) = f(x + n) for x ∈ X = [0, 1]. Show that fn ∈

L1(X, dλ) and that fn → 0 in L1(X).
(3) For any x ∈ [0, 1], show that the sequence (fn(x)) does not converge.
(4) Find an explicit subsequence (fnk) which converges almost everywhere to 0.

The arguments used above to prove Theorem 3.3.10 can be adapted quite easily to
the Lp-spaces for p > 1, which are defined as follows (there is also an L∞-space, which
has a slightly different definition found below).

Definition 3.3.7 (Lp-spaces, p < +∞). Let (X,M, µ) be a measure space and let
p > 1 be a real number. The Lp(X,µ) = Lp(µ) is defined to be the quotient vector space

{f : X → C | |f |p is integrable}/N
where N is defined as in (3.6). This space is equiped with the norm

‖f‖p =
(∫

X

|f |pdµ
)1/p

.
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The first thing to do is to check that the definition actually makes sense, i.e., that the
set of functions f where |f |p is integrable is a vector space, and then that ‖ · ‖p defines a
norm on Lp(µ), which is not entirely obvious (in contrast with the case p = 1). For this,
we need some inequalities which are also quite useful for other purposes.

We thus start a small digression. First, we recall that a function ϕ : I → [0,+∞[
defined on an interval I is said to be convex if it is such that

(3.10) ϕ(ra+ sb) 6 rϕ(a) + sϕ(b)

for any a, b such that a 6 b, a, b ∈ I and any real numbers r, s > 0 such that r + s = 1.
If ϕ is twice-differentiable with continuous derivatives, it is not difficult to show that ϕ
is convex on an open interval if and only if ϕ′′ > 0.

Proposition 3.3.8 (Jensen, Hölder and Minkowski inequalities). Let (X,M, µ) be a
fixed measure space.

(1) Assume µ is a probability measure. Then, for any function

ϕ : [0,+∞[→ [0,+∞[

which is non-decreasing, continuous and convex, and any measurable function

f : X → [0,+∞[,

we have Jensen’s inequality:

(3.11) ϕ
(∫

X

f(x)dµ(x)
)
6
∫
X

ϕ(f(x))dµ(x),

with the convention ϕ(+∞) = +∞.
(2) Let p > 1 be a real number and let q > 1 be the “dual” real number such that

p−1 + q−1 = 1. Then for any measurable functions

f, g : X → [0,+∞],

we have Hölder’s inequality:

(3.12)

∫
X

fgdµ 6
(∫

X

fpdµ
)1/p(∫

X

gqdµ
)1/q

= ‖f‖p‖g‖q.

(3) Let p > 1 be any real number. Then for any measurable functions

f, g : X → [0,+∞],

we have Minkowski’s inequality:

‖f + g‖p =
(∫

X

(f + g)pdµ
)1/p

6
(∫

X

fpdµ
)1/p

+
(∫

X

gpdµ
)1/p

= ‖f‖p + ‖g‖p.(3.13)

Proof. (1) The basic point is that the defining inequality (3.10) is itself a version
of (3.11) for a step function f such that f(X) = {a, b} and

r = µ{x ∈ X | f(x) = a}, s = µ{x ∈ X | f(x) = b}
(since r + s = 1). It follows easily by induction that (3.11) is true for any step function
s > 0. Next, for an arbitrary f > 0, we select a sequence of step functions (sn) which is
non-decreasing and converges pointwise to f . By the monotone convergence theorem, we
have ∫

sndµ→
∫
fdµ
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and similarly, since ϕ is itself non-decreasing, we have

ϕ(sn(x))→ ϕ(f(x))

and ϕ ◦ sn 6 ϕ ◦ sn+1, so that∫
ϕ(sn(x))dµ→

∫
ϕ(f(x))dµ

by the monotone convergence theorem again.
Finally, the continuity of ϕ and Jensen’s inequality for step functions implies that

ϕ
(∫

X

fdµ
)

= lim
n→+∞

ϕ
(∫

X

sndµ
)
6 lim

n→+∞

∫
X

ϕ(sn(x))dµ =

∫
X

ϕ(f(x))dµ.

(2) We claim that if 1/p+ 1/q = 1, we have Young’s inequality

(3.14) xy 6
xp

q
+
yq

q
, for x > 0, y > 0.

Assuming this (to be checked quickly below), we continue as follows to prove (3.12):
it is enough to consider the cases when |f |p and |g|q are integrable (otherwise, the result
is trivial), and then by replacing f with f/‖f‖p and g with g/‖g‖q, homogeneity shows
that it is enough to prove the inequality when ‖f‖p = ‖g‖q = 1. But in that case, we use
the pointwise Young inequality

f(x)g(x) 6
f(x)p

p
+
g(x)q

q
,

and we integrate to obtain∫
X

f(x)g(x)dµ 6
‖f‖p
p

+
‖f‖q
q

= 1,

To show (3.14), we use the well-known convexity of the exponential function on R:
since 1/p+ 1/q = 1, we have

ea/p+b/q 6
ea

p
+
eb

q
,

for a, b ∈ R. Taking a = p log x, b = p log y, we get exactly the desired statement.
(3) Once more, the inequality is obvious if either ‖f‖p = +∞ or ‖g‖p = +∞. In the

remaining case, we first note that

(f + g)p 6 (2 max(f, g))p 6 2p(fp + gp)

so that we also get ‖f + g‖p < +∞. Now, we consider the auxiliary function

h = (f + g)p−1,

which has the property that (f + g)p = fh + gh, so that by applying Hölder’s inequal-
ity (3.12), we derive∫

X

(f + g)pdµ =

∫
X

fhdµ+

∫
X

ghdµ 6 ‖f‖p‖h‖q + ‖g‖p‖h‖q.

But

‖h‖q =
(∫

X

(f + g)q(p−1)dµ
)1/q

= ‖f + g‖p/qp since q(p− 1) = p.
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Moreover, 1 − 1/q = 1/p, hence (considering separately the case where h vanishes
almost everywhere) the last inequality gives

‖f + g‖p =
(∫

X

(f + g)pdµ
)p(1−1/q)

6 ‖f‖p + ‖g‖p

after dividing by ‖h‖q = ‖f + g‖p/qp ∈]0,+∞[. �

Example 3.3.9. Consider the space (R,B, λ); then the function f defined by

f(x) =
sin(x)

x
if x 6= 0 and f(0) = 1

is in L2(R) (because it decays faster than 1/x2 for |x| > 1 and is bounded for |x| 6 1),
although it is not in L1(R) (as we already observed in the previous chapter). In particular,
note that a function in Lp, p 6= 1, may well have the property that it is not integrable. This
is one of the main ways to go around restriction to absolute convergence in Lebesgue’s
definition: many properties valid in L1 are still valid in Lp, and can be applied to functions
which are not integrable.

The next theorem, often known as the Riesz-Fisher Theorem, generalizes Proposi-
tion 3.3.3.

Theorem 3.3.10 (Completeness of Lp-spaces). Let (X,M, µ) be a fixed measure space.
(1) Let p > 1 be a real number, (fn) a sequence of elements fn ∈ Lp(µ). If∑

n>1

‖fn‖p < +∞,

the series ∑
n>1

fn

converges almost everywhere, and in Lp-norm, to a function g ∈ Lp(µ).
(2) For any p > 1, the space Lp(µ) is a Banach space for the norm ‖·‖p; more precisely,

for any Cauchy sequence (fn) in Lp(µ), there exists f ∈ Lp(µ) such that fn → f in Lp(µ),
and in addition there exists a subsequence (fnk), k > 1, such that

lim
k→+∞

fnk(x) = f(x) for almost all x ∈ X.

(3) In particular, for p = 2, L2(µ) is a Hilbert space with respect to the inner product

〈f, g〉 =

∫
X

f(x)g(x)dµ.

Proof. Assuming (1) is proved, the same argument used to prove Proposition 3.3.4
starting from Proposition 3.3.3 can be copied line by line, replacing every occurence of
‖·‖1 with ‖·‖p, proving (2).

In order to show (1), we also follow the proof of Proposition 3.3.3: we define

h(x) =
∑
|fn(x)| ∈ [0,+∞]

for x ∈ X, and observe that (by continuity of y 7→ yp on [0,+∞]) we also have

h(x)p = lim
N→+∞

(∑
n6N

|fn(x)|
)p
.
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This expresses hp as a non-decreasing limit of non-negative functions, and therefore
by the monotone convergence theorem, and the triangle inequality, we derive(∫

X

h(x)pdµ(x)
)1/p

= lim
N→+∞

(∫
X

(∑
n6N

|fn(x)|
)p
dµ(x)

)1/p

= lim
N→+∞

∥∥∥∑
n6N

|fn|
∥∥∥
p
6
∑
n>1

‖fn‖p < +∞,

by assumption. It follows that hp, and also h, is finite almost everywhere. This implies
(as was the case for p = 1) that the series

f(x) =
∑
n>1

fn(x)

converges absolutely almost everywhere. Since |f(x)| 6 h(x), we have f ∈ Lp(µ), and
since ∥∥∥f −∑

n6N

fn

∥∥∥
p

=
∥∥∥∑
n>N

fn

∥∥∥
p
6
∑
n>N

‖fn‖p → 0,

the convergence is also valid in Lp. �

Remark 3.3.11. If (Ω,Σ, P ) is a probability space, and X a random variable on Ω,
then

σ2(X) = V (X) = E(|X − E(X)|2) = E(|X|2)− |E(X)|2

is called the variance of X. It is well-defined when X ∈ L2(Ω) (see below for the easy
check). Intuitively, it measures the average difference between X and its mean value; a
“small” variance (in a sense that may depend on context) will indicate that the random
variable is quite concentrated around its mean.

We now check the second formula for the variance given above: we have

E(|X−E(X)|2) = E(|X|2−XE(X̄)−X̄E(X)+|E(X)|2) = E(|X|2)−2|E(X)|2+|E(X)|2

since E(1) = 1 is a probability space. Notice also that V (aX) = |a|2V (X).

The square root σ(X) =
√
V (X) = ‖X − E(X)‖2 of the variance is called the stan-

dard deviation of X.(If, for a physical application, X corresponds to a quantity given in
some unit u (length, weight, speed, etc), the variance corresponds to units u2, and the
standard deviation has the same unit as X.)

The variance and standard deviation of X only depend on the probability law µ of
X, and one may speak of the variance or standard deviation of µ. Indeed, by (2.8), we
have

E(X) =

∫
C

xdµ(x) and V (X) =

∫
C

(x− E(X))2dµ(x).

In general, the variance of a sum X + Y of random variables can not be computed
directly in terms of the laws of X and Y . However, this is possible if X and Y are
independent :

Proposition 3.3.12. Let (Ω,Σ, P ) be a probability space, let X and Y be independent
L2 random variables on X. Then we have

(3.15) V (X + Y ) = V (X) + V (Y ).
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Proof. We have E(X +Y ) = E(X) +E(Y ) and therefore, using the second formula
for the variance, we obtain

V (X + Y ) = E(|X|2 + 2 Re(XY ) + |Y |2)− (|E(X)|2 + 2 Re(E(X)E(Y )) + |E(Y )|2)

= V (X) + V (Y ) + 2 Re(E(XY )− E(X)E(Y )) = V (X) + V (Y )

by (2.16). �

This property of additivity for independent summands is of course false for the stan-
dard deviation. It is also false in general for the seemingly more natural quantity

E(|X − E(X)|) =

∫
C

|x− E(X)|dµ(x),

and this is one of the main reason why the variance is more useful as a measure of spread
around the mean.

We now come to the last space in the Lp family, the one denoted L∞. This, although
rather different in some respects, plays an important role as a “limit” of Lp for p →
+∞. Roughly speaking, its elements are measurable bounded functions, but the correct
definition requires some care since one must (as usual) disregard values which are only
attained on a set of measure zero.

Definition 3.3.13 (Essentially bounded functions). A measurable function

f : X → C

is said to be essentially bounded by M > 0 if

(3.16) µ({x | |f(x)| > M}) = 0.

The numbers for which f is essentially bounded by M are used to define the “right”
space of bounded measurable functions.

Proposition 3.3.14 (L∞ space). Let f be a measurable function on X and let

‖f‖∞ = inf{M | f is essentially bounded by M} ∈ [0,+∞].

Then f is essentially bounded by ‖f‖∞, or in other words the infimum is attained.
Moreover, the quotient vector space

L∞(µ) = {f | ‖f‖∞ < +∞}/N,
where N is the subspace (3.6) of measurable functions vanishing almost everywhere, is a
normed vector space with norm ‖·‖∞.

If f ∈ L1(µ) and g ∈ L∞(µ), we have fg ∈ L1(µ) and

(3.17)

∫
X

|fg|dµ 6 ‖f‖1‖g‖∞.

The last inequality should be thought of as the analogue of Hölder’s inequality for the
case p = 1, q = +∞.

Note that the obvious inequality ‖f‖∞ 6 sup{f(x)} is not, in general, an equality,
even if the supremum is attained. For instance, if we consider ([0, 1],B, λ), and take
f(x) = xχQ(x), we find that ‖f‖∞ = 0, although the function f takes all rational values
in [0, 1], and in particular has maximum equal to 1 on [0, 1].

The definition of the L∞ norm is most commonly used as follows: we have

|f(x)| 6M
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µ-almost everywhere, if and only if

M > ‖f‖∞.

Proof of Proposition 3.3.14. We must check that M = ‖f‖∞ satisfies the con-
dition (3.16), when M < +∞ (the case M = +∞ being obvious). For this, we note that
there exists by definition a sequence (Mn) of real numbers such that

Mn+1 6Mn, Mn →M,

and Mn satisfies the condition (3.16). We then can write

µ({x | |f(x)| > M}) = µ
(⋃

n

{x | |f(x)| > Mn}
)

= 0,

as the measure of a countable union of sets of measure zero.
It is also immediate that ‖f‖∞ = 0 is equivalent with f being zero µ-almost every-

where, since the definition becomes

µ({x | f(x) 6= 0}) = µ({x | |f(x)| > 0}) = 0.

Since all the other axioms defining a normed vector space can be checked very easily,
there only remains to prove (3.17). However, this is clear by monotony by integrating
the upper bound

|fg| 6 ‖g‖∞f
which, by the above, is valid except on a set of measure zero. �

The space L∞ is still complete, but the proof of this analogue of the Riesz-Fisher
theorem is naturally somewhat different.

Proposition 3.3.15 (Completeness of L∞). (1) Let (X,M, µ) be a measure space
and (fn) a sequence of measurable functions on X with fn ∈ L∞(µ). If∑

‖fn‖∞ < +∞,

the series ∑
n>1

fn

converges µ-almost everywhere, and in L∞, to function g ∈ L∞(µ).
(2) The space L∞(µ) is a complete normed vector space. More precisely, for any

Cauchy sequence (fn) in L∞(µ), there exists f ∈ L∞(µ) such that fn → f in L∞(µ), and
the convergence also holds almost everywhere.

In the last part, note that (in contrast with the other Lp spaces) there is no need to
use a subsequence to obtain convergence almost everywhere.

Proof. (1) The method is the same as the one used before, so we will be brief. Let

h(x) =
∑
n>1

|fn(x)|, g(x) =
∑
n>1

fn(x)

so that the assumption quickly implies that both series converge almost everywhere. Since

|g(x)| 6 h(x) 6
∑
n>1

‖fn‖∞,

almost everywhere, it follows that g ∈ L∞(µ). Finally∑
fn = g
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with convergence in the space L∞, since∥∥∥g −∑
n6N

fn

∥∥∥
∞

=
∥∥∥∑
n>N

fn

∥∥∥
∞
6
∑
n>N

‖fn‖∞ → 0.

(2) The proof is in fact more elementary than the one for Lp, p <∞. Indeed, if (fn)
is a Cauchy sequence in L∞(µ), we obtain

|fn(x)− fm(x)| 6 ‖fn − fm‖∞
for any fixed n and m, and for almost all x ∈ X; say An,m is the exceptional set (of
measure zero) such that the inequality holds outside An,m; let A be the union over n, m
of the An,m. Since this is a countable union, we still have µ(A) = 0.

Now, for all x /∈ A, the sequence (fn(x)) is a Cauchy sequence in C, and hence it
converges, say to an element f(x) ∈ C. The resulting function f (extended to be zero on
A, for instance) is of course measurable. We now check that f is in L∞.

For this, note that (by the triangle inequality) the sequence (‖fn‖∞) of the norms of
fn is itself a Cauchy sequence in R. Let M > 0 be its limit, and let Bn be the set of
x for which |fn(x)| > ‖fn‖∞, which has measure zero, Again, the union B of all Bn has
measure zero, and so has A ∪B.

Now, for x /∈ A ∪B, we have

|fn(x)| 6 ‖fn‖∞
for all n > 1, and

fn(x)→ f(x).

For such x, it follows by letting n→ +∞ that |f(x)| 6M , and consequently we have
shown that |f(x)| 6M almost everywhere. This gives ‖f‖∞ 6M < +∞.

Finally, we show that (fn) converges to f in L∞ (convergence almost everywhere is
already established). Fix ε > 0, and then let N be such that

‖fn − fm‖∞ < ε

when n, m > N . We obtain |fn(x) − fm(x)| < ε for all x /∈ A ∪ B and all n, m > N .
Taking any m > N , and letting n→ +∞, we get

|f(x)− fm(x)| < ε for almost all x x,

and this means that ‖f − fm‖∞ < ε when m > N . Consequently, we have shown that
fn → f in L∞(µ). �

Remark 3.3.16. Usually, there is no obvious relation between the various spaces
Lp(µ), p > 1. For instance, consider X = R with the Lebesgue measure. The function
f(x) = inf(1, 1/|x|) is in L2, but not in L1, whereas g(x) = x−1/2χ[0,1] is in L1, but
not in L2. Other examples can be given for any choices of p1 and p2: we never have
Lp1(R) ⊂ Lp2(R).

However, it is true that if the measure µ is finite (i.e., if µ(X) < +∞, for instance if
µ is a probability measure), the spaces Lp(X) form a “decreasing” family: we have

Lp1(X) ⊂ Lp2(X)

whenever 1 6 p2 6 p1 6 +∞. In particular, a bounded functions is then in every
Lp-space.

More precisely, we have the following, which shows that the inclusion above is also
continuous, with respect to the respective norms:
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Proposition 3.3.17 (Comparison of Lp spaces for finite measure). Let (X,M, µ) be
a measured space with µ(X) < +∞. For any p1, p2 with

1 6 p2 6 p1 6 +∞,
there is a continuous inclusion map

Lp1(µ) ↪→ Lp2(µ),

and indeed
‖f‖p2 6 µ(X)1/p2−1/p1‖f‖p1 .

Proof. The last inequality is clearly stronger than the claimed continuity (since it
obviously implies that the inclusion maps convergent sequences to convergent sequences),
so we need only prove the inequality as stated for f > 0. We use Hölder’s inequality for
this purpose: for any p ∈ [1,+∞], with dual exponent q, we have∫

X

fp2dµ =

∫
X

fp2 · 1 dµ 6
(∫

X

fpp2dµ
)1/p(∫

X

dµ(x)
)1/q

and if we pick p = p1/p2 > 1, with q−1 = p2/p1 − 1, we obtain∫
X

fp2dµ 6 µ(X)p2/p1−1‖f‖p2p1 ,

and taking the 1/p2-th power, this gives

‖f‖p2 6 µ(X)1/p1−1/p2‖f‖p1 ,
as claimed. �

The next proposition is one of the justifications of the notation L∞.

Proposition 3.3.18. If (X,M, µ) is a measure space with µ(X) < +∞, we have

lim
p→+∞

‖f‖p = ‖f‖∞.

for any f ∈ L∞ ⊂ Lp.

Proof. This is obvious if f = 0 in some Lp (or equivalently in L∞). Otherwise, by
replacing f by f/‖f‖∞, we can assume that ‖f‖∞ = 1. Moreover, changing f on a set
of measure zero if needed, we may as well assume that we have a function

f : X → C

such that |f(x)| 6 1 for all x ∈ X.
The idea is that, although |f(x)|p → 0 as p → +∞ if 0 6 |f(x)| < 1, the function f

takes values very close to one quite often, and the power 1/p in the norm compensates
for the decay. Precisely, fix ε > 0 and let

Yε = {x | |f(x)| > 1− ε}.
By monotony, we have ∫

X

|f |pdµ > (1− ε)pµ(Yε)

for any ε > 0, and hence
‖f‖p > (1− ε)µ(Yε)

1/p.

Since ‖f‖∞ = 1, we know that µ(Yε) > 0 for any ε > 0, and therefore

lim
p→+∞

µ(Yε)
1/p = 1
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for fixed ε. It follows by taking the liminf that

lim inf
p→+∞

‖f‖p > 1− ε,

and if we now let ε→ 0, we obtain lim inf ‖f‖p > 1. But of course, under the assumption
‖f‖∞ 6 1, we have ‖f‖p 6 1 for all p, and hence this gives the desired limit. �

Exercise 3.3.19. Let µ be a finite measure and let f ∈ L∞(µ) be such that ‖f‖∞ 6 1.
Show that

lim
p→0

∫
X

|f |pdµ = µ({x | |f(x)| > 0}).

We conclude this section with the statement of a result which is one justification of
the importance of Lp spaces. This is a special case of much more general results, and we
will prove it later.

Proposition 3.3.20 (Continuous functions are dense in Lp spaces). Let X = R with
the Lebesgue measure, and let p be such that

1 6 p < +∞.
Then the space Cc(R) of continuous functions on R which are zero outside a finite

interval [−B,B], B > 0, is dense in Lp(R). In other words, for any f ∈ Lp(R), there
exists a sequence (fn) of continuous functions with compact support such that

lim
n→+∞

(∫
R

|fn(t)− f(t)|pdt
)1/p

= 0.

Remark 3.3.21. Note that this is definitely false if p = +∞; indeed, for bounded
continuous functions, the L∞ norm corresponds to the “uniform convergence” norm, and
hence a limit of continuous functions in L∞ is always a continuous function.

Remark 3.3.22. Note also that any continuous function with compact support is
automatically in Lp for any p > 1, because if f(x) = 0 for |x| > B, it follows that f is
bounded (say by M) on R, as a continuous function on [−B,B] is, and we have∫

R

|f |pdt =

∫
[−B,B]

|f |pdt 6 2B‖f‖p∞ < +∞.

3.4. Probabilistic examples: the Borel-Cantelli lemma and the law of large
numbers

In this section, we present some elementary purely probabilistic applications of inte-
gration theory. For this, we fix a probability space (Ω,Σ, P ).

The first result is the Borel-Cantelli Lemma. Its purpose is to answer the following
type of questions: suppose we have a sequence of events An, n > 1, which are independent.
How can we determine if there is a positive probability that infinity many An “happen”?

More precisely, the corresponding event

A = {ω ∈ Ω | ω is in infinitely many of the An}
can be expressed set-theoretically as the following combination of unions and intersec-
tions:

A =
⋂
N>1

⋃
n>N

An ∈ Σ,

and it follows in particular that A is measurable. (To check this formula, define

N(ω) = sup{n > 1 | ω ∈ An},
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for ω ∈ Ω, so that ω belongs to infinitely many An if and only if N(ω) = +∞; on the
other hand, ω belongs to the set on the right-hand side if and only if, for all N > 1, we
can find some n > N such that ω ∈ An, and this is also equivalent with N(ω) = +∞).

The Borel-Cantelli Lemma gives a quantitative expression of the intuitive idea that
the probability is big is, roughly, the An are “big enough”.

Proposition 3.4.1 (Borel-Cantelli Lemma). Let An, n > 1, be events, and let A be
defined as above. Let

(3.18) p =
∑
n>1

P (An) ∈ [0,+∞].

(1) If p < +∞, we have P (A) = 0, independently of any assumptions on An.
(2) If the An are independent, and p = +∞, then P (A) = 1.

Proof. The first part is very easy: by monotony, we have

P (A) 6 P
(⋃
n>N

An

)
6
∑
n>N

P (An),

for any N > 1, and the assumption p < +∞ shows that this quantity goes to 0 as
N → +∞, and therefore that P (A) = 0.

For (2), one must be more carefuly (because the assumption of independence, or
something similar, can not be dispensed with as the example An = A0 for all n shows if
P (A0) < 1). We notice that ω ∈ A if and only if

(3.19)
∑
n>1

χAn(ω) = +∞, if and only if exp
(
−
∑
n>1

χAn(ω)
)

= 0.

Consider now the integral∫
exp
(
−
∑
n6N

χAn

)
dP =

∫ ∏
n6N

exp(−χAn)dP

for some N > 1. Since the An, n 6 N , are independent, we have immediately the relation∫ ∏
n6N

exp(−χAn)dP =
∏
n6N

∫
exp(−χAn)dP =

∏
n6N

(e−1P (An) + 1− P (An)).

Let c = 1− e−1 ∈]0, 1[; we obtain now

log
∏
n6N

∫
exp(−χAn)dP =

∑
n6N

log(1− cP (An)),

and since log(1− x) 6 −x for x > 0, we derive

log
∏
n6N

∫
exp(−χAn)dP 6 −c

∑
n6N

P (An)→ −∞ as N → +∞,

according to the hypothesis p = +∞. Going backwards, this means (after applying the
dominated convergence theorem) that∫

exp
(
−
∑
n>1

χAn

)
dP = 0,

which implies that (3.19) holds almost surely. �
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Our second probabilistic result is a simple (non-trivial) version of the (strong) law of
large numbers. The situation here is the following: we have a sequence (Xn), n > 1, of
random variables which are independent and identically distributed, i.e., the laws Xn(P )
of the variables Xn are all the same, say µ. This implies in particular that, if Xn is
integrable (resp. square-integrable), we have

E(Xn) = E(X1) =

∫
xdµ and V (Xn) = V (X1) =

∫
(x− E(X1))2dµ for all n > 1,

so the expectation (and the variance) of the Xn, when it makes sense, is independent of
n.

A mathematical model of this situation is given by the example of the digits of the
base b expansion of a real number x ∈ [0, 1] = Ω (see Example 1.3.3, (2)). An intuitive
model is that of repeating some experimental measurement arbitrarily many times, in
such a way that each experiment behaves independently of the previous ones. A classical
example is that of throwing “infinitely many times” the same coin, and checking if it falls
on Heads or Tails. In the case, one would take Xn taking only two values Xn ∈ {h, t},
and in the (usual) case of a “fair” coin, one assumes that the law of Xn is unbiased:

(3.20) P (Xn = h) = P (Xn = t) =
1

2
.

Of course, the case of laws like

P (Xn = p) = p, P (Xn = f) = 1− p

for a fixed p ∈]0, 1[ (“biased” coins) is also very interesting.
One should note that, in the case of a fair coin, there is a strong resemblance with

the base 2 digits of a real number in [0, 1]; indeed, in some sense, they are identical
mathematically, as one can decide, e.g., that h corresponds to the digit 0, t to the digit 1,
and one can construct “random” real numbers by performing the infinite coin-throwing
experiment to decide which binary digits to use...

Now, in the general situation we have described, one expects intuitively that, when
a large number of identical and independent measurements are made, the “empirical
average”

X1 + · · ·+Xn

n
=
Sn
n

should be close to the “true” average, which is simply the common expectation

E(Xn) = E(X1) =

∫
xdµ

of the Xn (assuming integrability).
This is all the more convincing that, on the one hand, we have

E(Sn/n) = E(X1),

by linearity, and on the other hand, by independance (see (3.15)), the variance of Sn/n
is

(3.21) V
(Sn
n

)
=
V (Sn)

n2
=

1

n2
(V (X1) + · · ·+ V (Xn)) =

V (X1)

n

which therefore converges to 0, something which implies that Sn/n tends to be quite
narrowly concentrated around its mean when n is large.

67



This intuition, often called the “law of large numbers”, can be interpreted in various
rigorous mathematical senses. We start with the easiest one, the so-called “weak” law of
large numbers. This allows us to introduce the notion of convergence in probability.

Definition 3.4.2 (Convergence in probability). Let (Ω,Σ, P ) be a probability space,
let (Xn), n > 1, be a sequence of random variables on Ω, and X another random variable.
Then Xn converges to X in probability if, for any ε > 0, we have

lim
n→+∞

P (|Xn −X| > ε) = 0.

Remark 3.4.3. More generally, if (fn) is a sequence of measurable functions on a
measure space (X,M, µ), we say that (fn) converges in measure to f if

µ({x ∈ X | |fn(x)− f(x)| > ε})→ 0

as n→ +∞, for every fixed ε > 0.

Proposition 3.4.4 (Weak law of large numbers). Let (Ω,Σ, P ) be a probability space,
let (Xn), n > 1, be a sequence of independent, identically distributed, random variables,
such that Xn ∈ L2.

Then Sn/n converges in probability to the constant random variable E(X1), i.e., we
have

P
(∣∣∣X1 + · · ·+Xn

n
− E(X1)

∣∣∣ > ε
)
→ 0

as n→ +∞, for any fixed ε > 0.

The proof is very simple, but it uses a very useful tool, the Chebychev–Markov in-
equality, which is often used to bound from above the probability of some random variable
being “far from its average”.

Proposition 3.4.5 (Chebychev–Markov inequality). (1) Let (Ω,Σ, P ) be a probability
space, and let X be a random variable on Ω. If X ∈ Lp(Ω), where p > 1, we have

(3.22) P (|X| > ε) 6 ε−pE(|X|p)

for any ε > 0. In particular, if X ∈ L2(Ω), we have

(3.23) P (|X − E(X)| > ε) 6
V (X)

ε2
.

(2) Let (X,M, µ) be a measure space, p > 1 and f ∈ Lp(µ). Then we have

(3.24) µ({x | |f(x)| > ε}) 6 ε−p
∫
X

|f |pdµ = ε−p‖f‖pp

for all ε > 0

Proof. The second part is proved exactly like the first one; for the latter, consider
the set

A = {|X| > ε},
and note that by positivity and monotony, we have

E(|X|p) >
∫
A

|X|pdP > εp
∫
A

dP = εpP (A).

The special case (3.23) corresponds to replacing X by X − E(X), for which the
mean-square is the variance. �
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Remark 3.4.6. From this inequality, we see in particular that when fn → f in Lp,
for some p ∈ [1,+∞[, the sequence (fn) also converges to f in measure:

µ({x | |fn(x)− f(x)| > ε}) 6 ε−p‖fn − f‖pp → 0.

On the other hand, if (fn) converges to f almost everywhere, it is not always the case
that (fn) converges to f in measure. A counterexample is given by

fn = χ]n,n+1[,

a sequence of functions on R which converges to 0 pointwise, but also satisfies

λ({x | |fn(x)| > 1}) = 1

for all n.
However, if µ is a finite measure (in particular if it is a probability measure), conver-

gence almost everywhere does imply convergence in measure. To see this, fix ε > 0 and
consider the sets

An = {x | |fn(x)− f(x)| > ε}

Bk =
⋃
n>k

An B =
⋂
k>1

Bk.

We have Bk+1 ⊂ Bk and the assumption implies that µ(B) = 0 (compare with (1.9)).
Since µ(X) < +∞, we have

lim
k→+∞

µ(Bk) = 0

by Proposition 1.2.3, (4), and since µ(An) 6 µ(Bn) by monotony, it follows that µ(An)→
0, which means precisely that (fn) converges to f in measure.

Proof of Proposition 3.4.4. Since Xn ∈ L2, we have also Sn ∈ L2, and we can
apply (3.23): for any ε > 0, we get

P
(∣∣∣Sn

n
− E(X1)|

∣∣∣ > ε
)
6 ε−2E

(∣∣∣Sn
n
− E(X1)

∣∣∣2)
= ε−2E

(∣∣∣Sn
n
− E

(Sn
n

)∣∣∣2)
= ε−2V (Sn/n) = ε−2n−1V (X1)→ 0 as n→ +∞,

by (3.21). �

In general, convergence in probability is a much weaker statement that convergence
almost everywhere. For instance, the sequence (fn) of Exercise 3.3.6 converges in measure
to 0 (since P (|fn| > ε) 6 2−k for n > 2k), but it does not converge almost everywhere.
So it is natural to ask what happens in our setting of the law of large numbers. It turns
out that, in that case, Sn/n converges almost everywhere to the constant E(X1) under
the only condition that Xn is integrable (this is the “Strong” law of large numbers of
Kolmogorov). The proof of this result is somewhat technical, but one can give a much
simpler argument under slightly stronger assumptions.

Theorem 3.4.7 (Strong law of large numbers). Let (Xn) be a sequence of independent,
identically distributed random variables with common probability law µ. Assume that Xn

is almost surely bounded, or in other words that Xn ∈ L∞(Ω). Then we have

X1 + · · ·+Xn

n
→ E(X1) =

∫
C

xdµ

almost surely.
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Proof. In fact, we will prove this under the assumption that Xn ∈ L4 for all n. Of
course, if |Xn(ω)| 6 M for almost all ω, we have E(|Xn|4) 6 M4, so this is really a
weaker assumption. For simplicity, we also assume that (Xn) is real-valued; the general
case can be dealt with simply by considering the real and imaginary parts separately.

The idea for the proof is similar to that used in the “difficult” part of the Borel-Cantelli
Lemma. We consider the series∑

n>1

(X1 + · · ·+Xn

n
− E(X1)

)4

as a random variable with values in [0,+∞]. If we can show that this series converges
almost surely, the desired result will follow: indeed, in that case, we must have∣∣∣X1 + · · ·+Xn

n
− E(X1)

∣∣∣→ 0

almost surely. Similarly, to show the convergence almost everywhere, it is enough to show
that
(3.25)∫ ∑

n>1

(X1 + · · ·+Xn

n
− E(X1)

)4

dP =
∑
n>1

∫ (X1 + · · ·+Xn

n
− E(X1)

)4

dP < +∞.

We denote Yn = Xn − E(Xn) = Xn − E(X1), so that the (Yn) are independent and
have E(Yn) = 0. We have obviously

E
(X1 + · · ·+Xn

n
− E(X1)

)4

=
1

n4
E((Y1 + · · ·+ Yn)4),

and we proceed to expand the fourth power, getting

1

n4
E((Y1 + · · ·+ Yn)4) =

1

n4

∑
16p,q,r,s6n

E(YpYqYrYs).

The idea now is that, while each term is bounded (because of the assumption that
Xn ∈ L4(Ω), most of them are also, in fact, exactly equal to zero. This leads to an upper
bound which is good enough to obtain convergence of the series.

Precisely, we use the property that, for independent integrable random variables X
and Y , we have

E(XY ) = E(X)E(Y )

(Exercise 2.3.5), and moreover we use the fact that Xa and Y b are also independent in
that case, for any a > 1, b > 1 (Proposition 1.2.12, (2)). Similarly, YpYq and ȲrȲs are
independent if {p, q} ∩ {r, s} = ∅ (Exercise 1.2.13).

So, for instance, we have

E(YpYqYrYs) = E(Yp)E(Yq)E(Yr)E(Ys) = 0,

if p, q, r and s are distinct. Similarly if {p, q, r, s} has three elements, say r = s and no
other equality, we have

E(YpYqYrYs) = E(Yp)E(Yq)E(Y 2
r ) = 0.

This means that, in the sum, there only remain the terms where {p, q, r, s} has two
elements, which are of the form

E(Y 2
p Y

2
q ) = E(Y 2

p )E(Y 2
q ),

and the “diagonal” ones
E(Y 4

p ).
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Each of these is bounded easily and uniformly, since the (Yn) are identically dis-
tributed; for instance

|E(Y 2
p Y

2
q )| 6

√
E(Y 4

p )E(Y 4
q ) 6 E(Y 4

1 ).

The number of non-zero terms is clearly

n+ 6
n(n− 1)

2
6 3n2

(the second term counts first the number of two-elements sets in {1, . . . , n}, then the
number of ways they can occur in the ordered family (p, q, r, s)). Hence we have

1

n4
E((Y1 + · · ·+ Yn)4) 6

3E(Y 4
1 )

n2
,

which implies that the series over n converges, as desired. �

Example 3.4.8. (1) We start with a somewhat artificial example of the Borel-Cantelli
Lemma. Consider the game of Heads or Tails described above, where we assume that the
corresponding sequence (Xn) of random variables has common probability distribution
given by (3.20) (such distributions are called Bernoulli laws). Now partition the sequence

X1, X2, . . . , Xn, . . . ,

of experiments (or throw of the coin) in successive blocks of length 2k, where k > 1
increases fixed. Thus the first block is

X1, X2,

the second is

X3, X4, X5, X6,

and so on.
Now consider the event

Ak = {There appear as many Heads as Tails during the k-th block of experiments}
These Ak are independent, because they are defined entirely based on data concerning

sets of indices n which are disjoint when k varies. We ask whether, almost surely, infinitely
many of these events will occur. Of course, we must apply the Borel-Cantelli Lemma.

What is the probability of Ak? Consider the sequence

(Y1, . . . , Y2k)

of random variables (taken from the original (Xn)) which are used to define the k-th
block; we have ω ∈ Ak if and only if

|{i 6 2k | Yk(ω) = h}| = k.

Since each sequence of 2k symbols taken from {h, t} occurs with the same probability
(by independence and the “fair coin” assumption), we have therefore

P (Ak) = 2−2k

(
2k

k

)
.

It is easy to bound this from below: since

22k = (1 + 1)2k =
2k∑
i=0

(
2k

i

)
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and
(

2k
i

)
6
(

2k
k

)
for 0 6 i 6 2k, we get

22k 6 2k

(
2k

k

)
so that

P (Ak) > (2k)−1.

We deduce from this that the series∑
k>1

P (Ak)

diverges. By the Borel-Cantelli Lemma, it follows that, almost surely, infinitely many
Ak’s do occur.

(2) Let b > 2 be a fixed integer, and consider the sequence (Xn) of random variables
on [0, 1] (with the Lebesgue measure) giving the base b digits of x. The Xn are of course
bounded, and hence the Strong Law of Large Numbers (Theorem 3.4.7) is applicable.
But consider first a fixed digit

d0 ∈ {0, 1, . . . , b− 1},
and let χ be the characteristic function of d0 ∈ R. The random variables

Yn = χ(Xn)

take values in {0, 1} and are still independent (Proposition 1.2.12), with common distri-
bution law given by

P (Yn = 1) =
1

b
, and P (Yn = 0) =

b− 1

b

(there are again Bernoulli laws).
In that situation, we have

Y1 + · · ·+ Yn = |{k 6 n | Xn = d0}|
and E(Yn) = b−1. Hence the strong law of large numbers implies that, for almost all
x ∈ [0, 1] (with respect to the Lebesgue measure), we have

lim
n→+∞

|{k 6 n | Xn = d0}|
n

=
1

b
.

In concrete terms, for almost all x ∈ [0, 1], the asymptotic proportion of digits of x in
base b equal to d0 always has a limit which is 1/b: “all digits occur equally often in almost
all x”. Of course, it is not hard to find examples where this is not true; for instance,

x = 0.111111 . . . ,

or indeed (if b > 3) any element of the Cantor-like set where all digits are among {0, b−1}.
Moreover, since the intersection of countable many events which are almost sure is

still almost sure (the complement being a countable union of sets of measure zero), we
can say that almost all x has the stated property with respect to every base b > 2. One
says that such an x ∈ [0, 1] is normal in every base b.

Here also, the complementary set is quite complicated and “big” in a certain intuitive
sense. For instance, now all rationals are exceptional! (In a suitable base of the type
b = 10m, m large enough, the base b expansion of a rational contains a single digit from
a certain point on).

It is in fact quite interesting that presenting a single explicit example of a normal
number is very difficult (indeed, none is known!), although we have proved rather easily
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that such numbers exist in overwhelming abundance. One may expect, for instance, that
π − 3 should work, but this is not known at the moment.

There are many questions arising naturally from the case of the Strong Law of Large
Numbers we have proved. As already mentioned, one can weaken the assumption on
(Xn) to ask only that Xn be integrable (which is a minimal hypothesis if one expects
that Sn/n→ E(X1) almost surely!)

Another very important question is the following: what is the speed of convergence
of the sums

Sn
n

=
X1 + · · ·+Xn

n
to their limit E(X1)? In other words, assuming E(Xn) = 0 (as one can do after replacing
Xn by Xn − E(Xn) as in the proof above), the question is: what is the “correct” order
of magnitude of Sn/n as n → +∞? We know that Sn/n → 0 almost surely; is this
convergence very fast? Very slow?

We see first from the proof of Theorem 3.4.7 that we have established something
stronger than what is stated, and which gives some information in that direction. Indeed,
if E(Xn) = 0, it follows from the proof that

Sn
nα
→ 0 almost surely

for any α > 1/2; indeed, it is only needed that 4α > 2 to obtain a convergent series∑
n>1

1

n4αE((Y1 + · · ·+ Yn)4)
.

Therefore, almost surely, Sn is of order of magnitude smaller than nα for any α > 1/2.
This result turns out to be close to the truth: the “correct” order of magnitude of Sn is√
n. The precise meaning of this is quite subtle: it is not the case that Sn/

√
n goes to

0, or to any other fixed value, but only that Sn/
√
n, as a real random variable, behaves

according to a well-defined distribution when n gets large.

Theorem 3.4.9 (Fundamental Limit Theorem). Let (Xn) be a sequence of real-valued,
independent, identically distributed random variables, such that Xn ∈ L2(Ω) for all n and
with E(Xn) = 0. Let σ2 = V (Xn), σ > 0, be the common variance of the (Xn).

Then, for any a ∈ R, we have

P
(X1 + · · ·+Xn√

n
6 a
)
→ 1√

2πσ2

∫
[−∞,a]

e−
t2

2σ2 dt

as n→ +∞.

We will give a proof of this result in the last Section of this book.

Remark 3.4.10. The classical terminology is “Central Limit Theorem”; this has led to
some misunderstanding, where “central” was taken to mean “centered” (average zero),
instead of “fundamental”, as was the intended meaning when G. Pólya, from Zürich,
coined the term (“Über den zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung
und das Momentenproblem”, Math. Zeitschrift VIII, 1920).

Remark 3.4.11. The probability measure µ0,σ2 on R given by

µ0,σ2 =
1√
2πσ

e−
t2

2σ dλ
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(for σ > 0) is called the centered normal distribution with variance σ2, or the centered
gaussian law with variance σ2. It is not obvious that

∫
dµ0,σ = 1, but we will prove this

in the next chapter.
The type of convergence given by this theorem is called convergence in law. This is a

weaker notion than convergence in probability, or convergence almost everywhere (in the
situation of the fundamental limit theorem, one can show, that (Sn−nE(X1))/

√
n never

converges in probability). We will come back to this notion of convergence in Section 5.7.
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CHAPTER 4

Measure and integration on product spaces

Among the problems of Riemann’s definition of integrals that we mentioned in the
introduction, we can now claim that three are satisfactorily solved: exchanging limits and
integrals can be handled very efficiently using the monotone and dominated convergence
theorems, integrating over bounded or unbounded intervals (with respect to Lebesgue
measure) is done using a unified process, and we have a robust notion of “probability”.
One important point still remains, however: integrating over subsets of Rm, and in
particular questions concerning iterated integrals of functions of more than one variable.
Since the theory is developed in full generality, this can be thought of as only a special
case of a problem concerning the definition of suitable integrals on a product space X×Y ,
when measures on X and Y are given.

In this chapter, we present the solution of this problem, which is quite elegant...

4.1. Product measures

Let (X,M, µ) and (Y,N, ν) be two measured spaces. The product space X × Y can
be equipped with the product σ-algebra M⊗N generated by the (measurable) rectangles
A×B where (A,B) ∈M×N (see Definition 1.1.6).

The motivating goal of this section is to find conditions that ensure that the formula
of “exchange of order of integration” is valid, or in other words, so that we have

(4.1)

∫
X

(∫
Y

f(x, y)dν(y)
)
dµ(x) =

∫
Y

(∫
X

f(x, y)dµ(x)
)
dν(y).

However, some assumptions on the measures µ and ν are required for this to be valid.

Example 4.1.1. Let X = [0, 1] with the Borel σ-algebra and the Lebesgue measure µ,
and let Y = [0, 1], but with the counting measure (on the maximal σ-algebra consisting
of all subsets of Y ).

Consider the set D = {(x, x) | x ∈ [0, 1]} ⊂ X × Y , i.e., the diagonal of the
square X × Y ⊂ R2. This set is measurable for the product σ-algebra (because it is
closed in the plane, hence measurable for the Borel σ-algebra of R2, and we have seen in
Remark 1.1.7, (3), that this is the same as the product σ-algebra of the Borel σ-algebra
on [0, 1] on each factor). Now take f to be the characteristic function of D; we claim
that (4.1) fails.

Indeed, on the left-hand side, the inner integral is ν({(x, x)}] = 1 for all x, hence this
side is equal to 1. On the right-hand side, however, the inner integral is µ({(y, y)}) = 0
for all y, so that side is 0...

The suitable assumptions will be that µ and ν be σ-finite measures; recall (see Defini-
tion 1.2.1) that a measure µ on X is σ-finite if there exists a sequence (Xn) of measurable
sets in X, each with finite measure µ(Xn) < +∞, and with union equal to X. For
instance, the Lebesgue measure is σ-finite (and so is any probability measure) but the
counting measure on an uncountable set is not (this is the problem in the example above).
Under this assumption, we will in fact define a measure (called the product measure) µ×ν
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on (X×Y,M⊗N) in such a way that, for f : X×Y → C integrable, each of the two ex-
pressions above are equal to the integral of the two-variable function f(x, y) with respect
to µ× ν: we have

(4.2)

∫
X

(∫
Y

f(x, y)dν(y)
)
dµ(x) =

∫
X×Y

f(x, y)d(µ× ν)(x, y)

=

∫
Y

(∫
X

f(x, y)dµ(x)
)
dν(y).

If we apply this expected formula to the characteristic function f of a measurable set
C ∈M⊗N, we see that we should have the formulas

(4.3) (µ⊗ ν)(C) =

∫
X

ν(tx(C))dµ(x) =

∫
Y

µ(ty(C))dν(y)

where

tx(C) = {y | (x, y) ∈ C} = C ∩ ({x} × Y ) ⊂ Y(4.4)

ty(C) = {x | (x, y) ∈ C} = C ∩ (X × {y}) ⊂ X(4.5)

are the horizontal and vertical “slices” of C; indeed, we have the expressions∫
Y

f(x, y)dν(y) = ν(tx(C)) for all x ∈ X∫
X

f(x, y)dµ(x) = µ(ty(C)) for all y ∈ Y ,

for the integrals of f = χC when x or y is fixed.
Thus (4.3) gives, a priori, two definitions of the desired measure. The main part of

the work is now to make sure that these actually make sense: it is not clear, a priori,
that the non-negative functions

x 7→ ν(tx(C)), y 7→ µ(ty(C)),

are measurable with respect to M and N, respectively. Even once this is known, it is not
obvious (of course) that the two definitions coincide!

The basic reason one may hope for this strategy to work is that the desired properties
can be easily checked directly in the special (initial) case where C = A×B is a rectangle,
and we know that, by definition, these rectangles generate the whole σ-algebra M ⊗ N.
Indeed we have∫

X

∫
Y

χC(x, y)dν(y)dµ(x) =

∫
Y

∫
X

χC(x, y)dµ(x)dν(y) = µ(A)ν(B)

for a rectangle, where the inner integrals are constant in each case, and therefore mea-
surable. However, constructing measures from generating sets is not a simple algebraic
process (as the counter-example above indicates), so one must be careful.

We first state some elementary properties of the “slicing” operations, which may be
checked directly, or by applying (1.3) after noticing that

tx(C) = i−1
x (C), ty(C) = j−1

y (C)

where ix : Y → X × Y is the map given by y 7→ (x, y) and jy : X → X × Y is given by
x 7→ (x, y).
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Lemma 4.1.2. For any fixed x ∈ X, we have

tx((X × Y )− C) = Y − tx(C)(4.6)

tx

(⋃
i∈I

Ci

)
=
⋃
i∈I

tx(Ci)(4.7)

tx

(⋂
i∈I

Ci

)
=
⋂
i∈I

tx(Ci).(4.8)

We can now state the first main result.

Proposition 4.1.3. Let (X,M, µ) and (Y,N, ν) be measured spaces.
(1) For any C ∈M⊗N, all the slices tx(C) ⊂ Y , x ∈ X, belong to the σ-algebra N.

In other words, for any fixed x, the map ix : Y → X × Y is mesurable, the same holds
true for jy.

(2) If we assume also that Y is σ-finite, the non-negative function

x 7→ ν(tx(C))

is M-measurable for all C ∈M⊗N.
(3) Again if Y is σ-finite, the map

(4.9) π

M⊗N→ [0,+∞]

C 7→
∫
X

ν(tx(C))dµ(x)

is a measure on M⊗N.

Proof. If we assume that (1) and (2) are proved, it is easy to check that (3) holds.
Indeed, (2) ensures first that the definition makes sense. Then, we have π(∅) = 0,
obviously, and if (Cn), n > 1, is a countable family of disjoint sets in M⊗N, with union
C, we obtain

ν(tx(C)) =
∑
n>1

ν(tx(Cn))

for all x (by the lemma above), and hence by the monotone convergence theorem, we
have

π(C) =

∫
X

∑
n>1

ν(tx(Cn))dµ(x) =
∑
n>1

∫
X

ν(tx(Cn))dµ(x) =
∑
n>1

π(Cn).

Part (1) is also easy: let x be fixed, so that we must show that ix is measurable, i.e.,
that i−1

x (C) ∈ N for all C ∈ M ⊗ N. From Lemma 1.1.9, it is enough to verify that
i−1
x (C) ∈ N if C = A×B is a measurable rectangle. But we have

(4.10) i−1
x (C) = tx(C) =

{
∅ if x /∈ A,
B if x ∈ A,

and all of these sets belong of course to N.
Part (2) requires a bit more work. The idea (compare with the proof of Lemma 1.1.9)

is to consider the collection of all subsets C ∈M⊗N which satisfy the required conclusion,
and to prove that it is a σ-algebra containing the rectangles, and hence also the generated
σ-algebra M⊗N. Therefore, let

O = {C ∈M⊗N | x 7→ ν(tx(C)) is M-measurable}.
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First of all, rectangles C = A×B are in O according to (4.10) since

ν(tx(C)) =

{
0 if x /∈ A
ν(B) if x ∈ A,

which shows that x 7→ ν(tx(A×B)) is even a step function in that case.
Now we first consider the case where ν is a finite measure; the reason is that, otherwise,

we can not even easily prove that O is stable under complement (because if C ∈ O and
D = X × Y − C is the complement, the measure of tx(D) = Y − tx(C) can possibly not
be computed if ν(Y ) = ν(tx(C)) = +∞.)

First step: Assume that ν(Y ) < +∞. We obtain therefore ν(tx(D)) = ν(Y ) −
ν(tx(C)), which is again measurable if ν(tx(C)) is, and we deduce that O is stable by
complement. However, the other properties of a σ-algebra are not so easy to derive.
What is fairly simple is to prove the following, where (1) and (2) are already known:

(1) O contains the rectangles;
(2) O is stable by complement;
(3) O is stable under countable disjoint union;
(4) O is stable under increasing (resp. decreasing) countable union (resp. intersec-

tion).
Indeed, (3) follows immediately from the formula

ν
(
tx

(⋃
n>1

Cn

))
=
∑
n>1

ν(tx(Cn)),

valid if the Cn are disjoint, and the measurability of a pointwise limit of measurable
functions. Similarly, (4) comes from

ν
(
tx

(⋃
n>1

Cn

))
= lim

n→+∞
ν(tx(Cn))

valid if
C1 ⊂ C2 ⊂ . . . ⊂ Cn . . . ,

the case of decreasing intersections being obtained from this by taking complements and
using the assumption ν(Y ) < +∞.

In particular, using the terminology of Lemma 4.1.5 below, we see that O is a monotone
class that contains the collection E of finite union of (measurable) rectangles – for this
last purpose, we use the fact that any finite union of rectangles may, using the various
formulas below, be expressed as a finite disjoint union of rectangles. This last collection
is an algebra of sets on X×Y , meaning that it contains ∅ and X×Y and is stable under
the operations of taking the complement, and of taking finite unions and intersections.
Indeed, C1 = A1 ×B1 and C2 = A2 ×B2 are rectangles, we have

C1 ∩ C2 = (A1 ∩ A2)× (B1 ∩B2) ∈ E(4.11)

X × Y − C1 = ((X − A1)× (Y −B1)) ∪ ((X − A1)×B1)(4.12)

∪ (A1 × (Y −B1)) ∈ E

C1 ∪ C2 = (X × Y )− {(X × Y − C1) ∩ (X × Y − C2)} ∈ E,(4.13)

(these are easier to understand after drawing pictures), and the monotone class lemma,
applied to O with A = E, shows that

O ⊃ σ(E) = M⊗N,

as expected.
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Second step: We now assume only that Y is a σ-finite measure space, and fix a se-
quence (Yn) of sets in N such that

Y =
⋃
n>1

Yn and ν(Yn) < +∞.

We may assume that the Yn are disjoint. Then, for any C ∈M⊗N and any x ∈ X,
we have a disjoint union

tx(C) =
⋃
n>1

tx(C ∩ Yn) hence ν(tx(C)) =
∑
n>1

ν(tx(C ∩ Yn)).

The first step, applied to the space X × Yn (with the measure on Yn induced by
ν, which is finite) instead of X × Y , shows that each function x 7→ ν(tx(C ∩ Yn)) is
measurable, and it follows therefore that the function x 7→ ν(tx(C)) is measurable. �

Corollary 4.1.4. With the same assumptions as in the proposition, let f : X×Y →
C be measurable with respect to the product σ-algebra. Then, for any fixed x ∈ X, the
map tx(f) : y 7→ f(x, y) is measurable with respect to N.

Proof. Indeed, we have tx(f) = f ◦ ix, hence it is measurable as a composite of
measurable functions. �

We now state and prove the technical lemma used in the previous proof.

Lemma 4.1.5 (Monotone class theorem). Let X be a set, O a collection of subsets of
X such that:

(1) If An ∈ O for all n and An ⊂ An+1 for all n, we have
⋃
An ∈ O, i.e., O is

stable under increasing countable union;
(2) If An ∈ O for all n and An ⊃ An+1 for all n, we have

⋂
An ∈ O, i.e., O is

stable under decreasing countable intersection.
Such a collection of sets is called a monotone class in X. If O ⊃ A, where A is an

algebra of sets, i.e., A is stable under complement and finite intersections and unions,
then we have

O ⊃ σ(A).

Proof. Let first O′ ⊂ O denote the intersection of all monotone classes that contain
A; it is immediate that this is also a monotone class. It suffices to show that O′ ⊃ σ(A),
and we observe that it is then enough to check that O′ is itself a set algebra. Indeed,
under this assumption, we can use the following trick⋃

n>1

Cn =
⋃
N>1

( ⋃
16n6N

Cn

)
∈ O′

to reduce an arbitrary countable union of sets Cn ∈ O′ into a countable increasing union,
and deduce from the algebra property and monotonicity that O′ is stable under countable
unions. As it is also stable under complements, it will be a σ-algebra containing A, hence
containing σ(A).

To check the three stability properties required of an algebra of sets is not very
difficult, but somewhat tedious. First of all, let

G = {A ⊂ X | X − A ∈ O′}

be the collection of complements of sets in O′. Because taking complements transforms
increasing unions into decreasing intersections, it is very easy to see that G is a monotone
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class, and it contains A since the latter is a set algebra. Hence, by definition, we have
G ⊃ O′, which means precisely that O′ is stable under complement.

Using induction, it only remains to show that for A, B ∈ O′, we have A ∪ B ∈ O′.
The trick is to conclude in two steps. First, let

G1 = {A ⊂ X | A ∪B ∈ O′ for all B ∈ A},
the collection of sets which can be “added” to any set in A to obtain a union in O′. We
note first that

G1 ⊃ A

(again because A itself is stable under finite unions). Using the formulas(⋃
n>1

An

)
∪B =

⋃
n>1

(An ∪B)(⋂
n>1

An

)
∪B =

⋂
n>1

(An ∪B),

we also see that G1 is a monotone class. Hence, once more, we have G1 ⊃ O′, and this
means that O′ is stable under union with a set in A.

Finally, let
G2 = {A ⊂ X | A ∪B ∈ O′ for all B ∈ O′}.

The preceeding step shows now that G2 ⊃ A; again, G2 is a monotone class (the same
formulas as above are ad-hoc); consequently, we get

G2 ⊃ O′,

which was the desired conclusion. �

Now, assuming that both µ and ν are σ-finite measures, we can also apply Proposi-
tion 4.1.3 after exchanging the role of X and Y . It follows that ty(C) ∈M for all y, that
the map y 7→ µ(ty(C)) is measurable and that

(4.14) C 7→
∫
Y

µ(ty(C))dν(y)

is a measure on X × Y . Not surprisingly, this is the same as the other one, since we can
recall the earlier remark that

(4.15)

∫
X

ν(tx(C))dµ(x) = µ(A)ν(B) =

∫
Y

µ(ty(C))dν(y)

holds for all rectangles C = A×B.

Proposition 4.1.6 (Existence of product measure). Let (X,M) and (Y,N) be σ-finite
measurables spaces. The measures on M⊗N defined by (4.9) and (4.14) are equal.

This common measure is called the product measure of µ and ν, denoted µ⊗ ν.

We use a simple lemma to deduce this from the equality on rectangles.

Lemma 4.1.7. Let (X,M) and (Y,N) be measurable spaces. If µ1 and µ2 are both
measures on (X × Y,M⊗N) such that

µ1(C) = µ2(C)

for any measurable rectangle C = A× B, and if there exists a sequence of disjoint mea-
surable rectangles Cn ×Dn with the property that

X × Y =
⋃
n>1

(Cn ×Dn) and µi(Cn ×Dn) < +∞,
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then µ1 = µ2.

Proof. This is similar to the argument used to prove Part (2) of the previous propo-
sition, and we also first consider the case where µ1(X × Y ) = µ2(X × Y ) < +∞.

Let then
O = {C ∈M⊗N | µ1(C) = µ2(C)},

a collection of subsets of C which contains the measurable rectangles by assumption.
By (4.11), (4.12) and (4.13), we see also that O contains the set algebra of finite unions of
measurable rectangles. We now check that it is a monotone class: if Cn is an increasing
sequence of elements of O, the continuity of measure leads to

µ1

(⋃
n>1

Cn

)
= lim

n→+∞
µ1(Cn) = lim

n→+∞
µ2(Cn) = µ2

(⋃
n>1

Cn

)
,

and similarly for decreasing intersections (note that this is where we use µi(C1) 6 µi(X×
Y ) < +∞.)

Thus O is a monotone class containing E, so that by Lemma 4.1.5, we have O ⊃M⊗N,
which gives the equality of µ1 and µ2 in the case at hand.

More generally, the assumption states that we can write

X × Y =
⋃

(Cn ×Dn),

where the sets Cn×Dn ∈M⊗N are disjoint and have finite measure (under µ1 and µ2).
Let C ∈M⊗N; we have a disjoint union

C =
⋃
n>1

(C ∩ (Cn ×Dn))

and therefore, by additivity of measures, we derive

µ1(C) =
∑
n

µ1(C ∩ (Cn ×Dn)) =
∑
n

µ2(C ∩ (Cn ×Dn)) = µ2(C),

since the first case applies to µ1 and µ2 restricted to Cn ×Dn for all n. �

Proof of Proposition 4.1.6. This is an immediate application of the lemma: let

µ1(C) =

∫
X

ν(tx(C))dµ(x)

µ2(C) =

∫
Y

ν(ty(C))dν(y)

for C ∈M⊗N. According to Proposition 4.1.3, these are measures, and

µ1(A×B) = µ(A)ν(B) = µ2(A×B)

for measurable rectangles. The σ-finiteness assumption implies that one can write X×Y
as a disjoint union of rectangles with finite measure, and hence the lemma applies. �

Remark 4.1.8. It is useful to remark that the product measure µ⊗ ν is also σ-finite,
since we can write

X × Y =
⋃
n,m

(Xn × Ym)

with
(µ⊗ ν)(Xn × Ym) = µ(Xn)ν(Ym) < +∞

if Xn (resp. Ym) themselves form a decomposition of X (resp. Y ) into a union of sets
with finite measure.
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It is therefore possible to construct, by induction, product measures of the type

µ1 ⊗ · · · ⊗ µn,
where µi is a σ-finite measure on Xi for all i. Lemma 4.1.7 shows that this operation is
associative

µ1 ⊗ (µ2 ⊗ µ3) = (µ1 ⊗ µ2)⊗ µ3

(because both measures coincide on rectangles).
For any function f defined on X × Y , we write∫

X×Y
fd(µ⊗ ν) =

∫
X×Y

f(x, y)dµ(x)dν(y) =

∫ ∫
fdµdν

for the integral with respect to the product measure.

4.2. Application to random variables

Let (Ω,Σ, P ) be a probability space. Since the measure P is finite, the product
measures P⊗n = P ⊗ · · · ⊗ P on Ωn may be constructed, for all n, and these are all
probability measures again.

Consider now random variables X and Y on Ω; the vector Z = (X, Y ) is a measurable
map

(X, Y ) : Ω→ C2,

with respect to the σ-algebra B ⊗ B = BC2 . Now let µ = X(P ) denote the law of X,
ν = Y (P ) that of Y . By definition, the measure Z(P ) on C2 (called the joint law of X
and Y ) satisfies

Z(P )(C) = P (Z−1(C)) = P (X ∈ A and Y ∈ B)

when C = A × B is a measurable rectangle in C2. The product measure µ ⊗ ν, on the
other hand, satisfies

(µ⊗ ν)(C) = µ(A)ν(B) = P (X ∈ A)P (Y ∈ B).

Comparing these, according to Proposition 4.1.6, we deduce immediately the following
very useful characterization of independent random variables:

Lemma 4.2.1. Let (Ω,Σ, P ) be a probability space.
(1) Two random variables X and Y are independent if and only if

(X, Y )(P ) = X(P )⊗ Y (P ),

i.e., if their joint law is the product of the laws of the variables.
(2) More generally, a family (Xi)i∈I of random variables is independent if and only

if, for any n > 1, and any distinct indices i1, . . . , in, we have

(Xi1 , . . . , Xin)(P ) = Xi1(P )⊗ · · · ⊗Xin(P ).

This property is very handy. For instance, using it, one can quickly prove properties
like that of Proposition 1.2.12 and Exercise 1.2.13. As an example of the last case, consider
four random variables (Xi), 1 6 i 6 4, which are independent, and two measurable maps

ϕ1 : C2 → C, ϕ2 : C2 → C.

Let

Y = ϕ1(X1, X2), Z = ϕ2(X3, X4).
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We want to show that Y and Z are independent. For this, let ψ = (ϕ1, ϕ2) : C4 → C,
and denote by µi = Xi(P ) the laws of the Xi. By (1.11) and independence, we have

(Y, Z)(P ) = ψ(X1, X2, X3, X4)(P ) = ψ∗(µ1 ⊗ µ2 ⊗ µ3 ⊗ µ4).

Now we use the following lemma:

Lemma 4.2.2. (1) Let (Xi,Mi, µi), for i = 1, i = 2, be measured spaces with µi(Xi) <
+∞, let (Yi,Ni), i = 1, 2, be measurable spaces, and

ψ = (ψ1, ψ2) : X1 ×X2 → Y1 × Y2

a measurable map with respect to the relevant product σ-algebras. We then have

ψ∗(µ1 ⊗ µ2) = ψ1,∗(µ1)⊗ ψ2,∗(µ2)

on Y1 × Y2.
(2) Let (X,M, µ) and (Y,N, ν) be probability spaces and p : X × Y → X the first

projection (x, y) 7→ x. Then we have

p∗(µ⊗ ν) = µ.

Proof. (1) For any C = A×B ∈ N1 ⊗N2, we use the definitions to write

ψ∗(µ1 ⊗ µ2)(C) = (µ1 ⊗ µ2)(ψ−1(C))

= (µ1 ⊗ µ2)(ψ−1
1 (A)× ψ−1

2 (B))

= µ1(ψ−1
1 (A))µ2(ψ−1

2 (B))

= ψ1,∗(µ1)(A)ψ2,∗(µ2)(B)

= (ψ1,∗(µ1)⊗ ψ2,∗(µ2))(A×B),

and hence the result follows from Proposition 4.1.6 since

ψ∗(µ1 ⊗ µ2)(Y1 × Y2) = µ1(X1)µ2(X2) < +∞.

(2) Similarly, we have

p∗(µ⊗ ν)(C) = (µ⊗ ν)(p−1(C)) = (µ⊗ ν)(C × Y ) = µ(C)ν(Y ) = µ(C)

for all C ∈M. �

From the first part of this lemma, in the situation above, we obtain

(Y, Z)(P ) = ψ∗(µ1 ⊗ µ2 ⊗ µ3 ⊗ µ4) = ψ∗((µ1 ⊗ µ2)⊗ (µ3 ⊗ µ4))

= ϕ1,∗(µ1 ⊗ µ2)⊗ ϕ2,∗(µ3 ⊗ µ4)

= ϕ1,∗(X1, X2)(P )⊗ ϕ2,∗(X3, X4)(P )

= Y (P )⊗ Z(P ),

and hence Y and Z are independent by Lemma 4.2.1.
Another important use of product measures, in probability, is that they can be used

easily to produce independent random variables with laws arbitrarily specified.

Proposition 4.2.3 (Existence of independent random variables). Let n > 1 be an
integer, and let µi, 1 6 i 6 n, be probability measures on (C,B). There exists a probability
space (Ω,Σ, P ) and random variables X1,. . . , Xn on Ω such that the (Xi) are independent,
and the law of Xi is µi for all i.
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Proof. Let (Ωi,Σi, Pi) be any probability space together with a random variable Yi
such that Yi(Pi) = µi (for instance, one can take (Ωi,Σi, Pi) = (C,B, µi) with Yi(z) = z.)

We now take

Ω = Ω1 × · · · × Ωn,

with the product σ-algebra Σ, and with the product probability measure

P = P1 ⊗ · · · ⊗ Pn.

Define Xi = Yi(pi), where pi : Ω→ Ωi is the i-th projection map. Then the random
variables (Xi) have the required properties.

Indeed, by Lemma 4.2.2, (2), we have Xi(P ) = Yi(Pi) = µi, and by Lemma 4.2.2, (1),
we obtain

(X1, . . . , Xn)(P ) = (X1, . . . , Xn)(P1 ⊗ · · · ⊗ Pn) = X1(P )⊗ · · · ⊗Xn(P )

so that the (Xi) are independent. �

This can be applied in particular with µi = µ for all i, and hence can be used to
produce arbitrarily long vectors (X1, . . . , Xn) where the components are independent,
and have the same law.

The law(s) of large numbers of the previous chapter suggest that it would be also
interesting to prove a result of this type for an infinite family of measures. This is indeed
possible, but we will only prove this in a later chapter.

However, even the simplest examples can have interesting consequences, as we illus-
trate:

Theorem 4.2.4 (Bernstein polynomials). Let f : [0, 1] → R be a continuous func-
tion, and for n > 1, let Bn be the polynomial

Bn =
n∑
k=0

(
n

k

)
f
(k
n

)
Xk(1−X)n−k ∈ R[X].

Then (Bn) converges to f uniformly on [0, 1].

Proof. Our proof will be based on a probabilistic interpretation of Bn. Let x ∈ [0, 1]
be fixed, and let (X1, . . . , Xn) be a vector of random variables taking values in {0, 1},
which are independent and have the identical law Xi(P ) = µx defined by

µx({0}) = 1− x and µx({1}) = x.

(again a Bernoulli law). The existence of this random vector follows from the discussion
above, or one could be content with the finite probability space Ω = {0, 1}n with Xi(ε) =
εi for (εi) ∈ Ω, and

P ((εi)) = (1− x)|{i | εi=0}|x|{i | εi=1}|.

We denote that E(Xi) = E(X1) = x and V (Xi) = V (X1) = x(1 − x) for all i 6 n.
Now we claim that the following formula holds:

(4.16) Bn(x) = E
(
f
(X1 + · · ·+Xn

n

))
.

Indeed, the random variable

Sn = X1 + · · ·+Xn
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takes values in {0, . . . , n}, so that f(Sn/n) takes only the values f(k/n), 0 6 k 6 n;
precisely, by summing over the values of Sn, we find

(4.17) E
(
f
(X1 + · · ·+Xn

n

))
=

n∑
k=0

f
(k
n

)
P (Sn = k).

Now the event {Sn = k} corresponds to those ω such that exactly k among the values

Xi(ω), 1 6 i 6 n,

are equal to 1, the rest being 0. From the independence of the Xi’s, and the description
of their probability law, we have

P (Sn = k) =
∑
|I|=k

P (Xi1 = 1) · · ·P (Xik = 1)P (Xj1 = 0) · · ·P (Xjn−k = 0)

=

(
n

k

)
xk(1− x)n−k

(where

I = {i1, . . . , ik}
ranges over all subsets of {1, . . . , n} of order k, and

J = {j1, . . . , jn−k}

is the complement of I). Using this and (4.17), we obtain the formula (4.16).
Now note that we also have E(Sn/n) = E(X1) = x, and therefore the law of large

numbers suggests that, since Sn/n tends to be close to x, we should have

E(f(Sn/n))→ f(x).

This is the case, and this can in fact be proved without appealing directly to the
results of the previous chapter. For this, we write

|Bn(x)− f(x)| =
∣∣∣E(f(Sn

n

)
− f

(
E
(Sn
n

)))∣∣∣,
and use the following idea: if Sn/n is close to its expectation, the corresponding contri-
bution will be small because of the (uniform) continuity of f ; as for the remainder, where
Sn/n is “far” from the mean, it will have small probability because, in effect, of the weak
law of large numbers.

Now, for the details, fix any ε > 0. By uniform continuity, there exists δ > 0 such
that |x− y| < δ implies

|f(x)− f(y)| < ε.

Now denote A the event

A = {|Sn/n− E(Sn/n)| < δ}.

We have

(4.18)
∣∣∣∫
A

(
f
(Sn
n

)
− f(x)

)
dP
∣∣∣ 6 ∫

A

∣∣∣f(Sn
n

)
− f(x)

∣∣∣dP 6 εP (A) 6 ε,

and as for the complement B of A, we have

(4.19)
∣∣∣∫
B

(
f
(Sn
n

)
− f(x)

)
dP
∣∣∣ 6 2‖f‖∞P (B),
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so that, using the Chebychev inequality (3.23), we derive

P (B) = P (|Sn/n− E(Sn/n)| > δ) 6
V (Sn/n)

δ2
=
V (X1)

nδ2
6

1

nδ2

(same computation as for (3.21), using also V (X1) = x(1 − x) 6 1). To conclude, we
have shown that

|Bn(x)− f(x)| 6 ε+ 2
‖f‖∞
nδ2

.

For fixed ε, δ being therefore fixed, we find that

|Bn(x)− f(x)| < 2ε

for all

n >
2‖f‖∞
εδ2

,

and since this upper bound is independent of x, this gives the uniform convergence of
(Bn) towards f . �

Remark 4.2.5. This proof is quite enlightening. For instance, although the simple
finite probability space Ω = {0, 1}n suffices for the construction of the random variables,
it was not necessary to use this particular choice: only the structure (independence, and
law) of the random variables was needed. In more complicated constructions, this feature
of modern probability theory is particularly useful.

4.3. The Fubini–Tonelli theorems

The construction of the product measure in Section 4.1 means that the “change of
order” formula (4.1) is valid when f is the characteristic function of a set C ∈M⊗N. We
will deduce from this the general case, using linearity, positivity and limiting processes,
as usual.

Theorem 4.3.1 (Tonelli theorem and Fubini theorem). Let (X,M, µ) and (Y,N, ν)
be σ-finite measured spaces, and let µ× ν denote the product measure on X × Y .

(1) [Tonelli] If f : X × Y → [0,+∞] is measurable, then the non-negative functions

x 7→
∫
Y

f(x, y)dν(y)

y 7→
∫
X

f(x, y)dµ(x)

are measurable with respect to M and N, respectively, and we have∫
X×Y

fd(µ⊗ ν) =

∫
X

(∫
Y

f(x, y)dν(y)
)
dµ(x)(4.20)

=

∫
Y

(∫
X

f(x, y)dµ(x)
)
dν(y).

(2) [Fubini] If f : X × Y → C is in L1(µ ⊗ ν), then, for ν-almost all y ∈ Y , the
function

ty(f) : x 7→ f(x, y)

is measurable and µ-integrable on X, for µ-almost all x ∈ X, the function

tx(f) : y 7→ f(x, y)
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is measurable and ν-integrable, the functions

x 7→
∫
Y

f(x, y)dν(y)

y 7→
∫
X

f(x, y)dµ(x)

are respectively ν-integrable and µ-integrable, and we have∫
X×Y

fd(µ⊗ ν) =

∫
X

(∫
Y

f(x, y)dν(y)
)
dµ(x)(4.21)

=

∫
Y

(∫
X

f(x, y)dµ(x)
)
dν(y).

(3) If f : X × Y → C is such that

x 7→
∫
Y

|f(x, y)|dν(y)

is µ-integrable, then f ∈ L1(µ⊗ ν).

We first note that the operations f 7→ tx(f) (which associate a function of the variable
y ∈ Y to a function of two variables) satisfy the following obvious formal properties, where
x ∈ X is arbitrary:

tx(αf + βg) = αtx(f) + βtx(g)

tx(f)± = tx(f
±)

If f 6 g then tx(f) 6 tx(g)

If fn(x)→ f(x) for all x, then tx(fn)→ tx(f) everywhere,

(and similarly for f 7→ ty(f)).

Proof. (1) We have already noticed that this is valid, by definition of the product
measure, when f is the characteristic function of a measurable set C ∈ M ⊗ N. By
linearity, this remains true for any non-negative step function on X × Y .

Now let f > 0 be any measurable non-negative function on X × Y , and let (sn) be
any non-decreasing sequence of non-negative step functions on X × Y such that

sn(x, y)→ f(x, y)

for all (x, y) ∈ X × Y . The properties above show that, for any fixed x, the sequences
(tx(sn))n converge pointwise to tx(f), and the convergence is non-decreasing. Hence, first
of all, we find that tx(f) is measurable (this is also proved in Corollary 4.1.4), and then
the monotone convergence theorem on Y gives∫

Y

tx(f)dν = lim
n→+∞

∫
Y

tx(sn)dν

for all x. Furthermore, this limit, seen as pointwise limit of non-negative functions on X,
is also monotone, and by a second use of the monotone convergence theorem (on X), we

87



find ∫
X

∫
Y

tx(f)dν(y)dµ(x) = lim
n→+∞

∫
X

∫
Y

tx(sn)dν(y)dµ(x)

= lim
n→+∞

∫
X×Y

snd(µ⊗ ν) (case of step functions)

=

∫
X×Y

fd(µ⊗ ν),

where the last step was a third application of the monotone convergence theorem, this
type to the original sequence sn → f on X × Y . Thus we have proved the first formula
in (4.20), and the second is true simply by exchanging X and Y .

(2) Let f ∈ L1(µ⊗ ν). By Corollary 4.1.4, the functions tx(f) are measurable for all
x. Moreover, by (4.20) (that we just proved), we have∫

X×Y
|f |d(µ⊗ ν) =

∫
X

(∫
Y

|f(x, y)|dν(y)
)
dµ(x) < +∞,

and this means that the function of x which is integrated must be finite almost everywhere,
i.e., this means that tx(f) ∈ L1(ν) for µ-almost all x ∈ X.

Assume first that f is real-valued. Then, for any x for which tx(f) ∈ L1(ν), we have

(4.22)

∫
Y

f(x, y)dν(y) =

∫
Y

tx(f
+)dν(y)−

∫
Y

tx(f
−)dν(y),

and the first part again shows that x 7→
∫
f(x, y)dν(y) (which is defined almost every-

where, and extended for instance by zero elsewhere) is measurable. Since∫
X

∣∣∣∫
Y

f(x, y)dν(y)
∣∣∣dµ(x) 6

∫
X

∫
Y

|f(x, y)|dν(y)dµ(x) < +∞,

this function is even µ-integrable. And so, integrating (4.22) on X, we obtain∫
X

∫
Y

f(x, y)dν(y)dµ(x) =

∫
X

∫
Y

tx(f
+)dν(y)dµ(x)−

∫
X

∫
Y

tx(f
−)dν(y)dµ(x)

=

∫
X×Y

f+d(µ⊗ ν)−
∫
X×Y

f−d(µ⊗ ν)

=

∫
X×Y

fd(µ⊗ ν),

(using Tonelli’s theorem once more), which is (4.21). The case of f complex-valued is
exactly similar, using

f = Re(f) + i Im(f), tx(f) = tx(Re(f)) + itx(Im(f)),

and finally the usual exchange of X and Y gives the second formula.
(3) By Tonelli’s theorem, the assumption implies that∫

X×Y
|f |d(µ⊗ ν) =

∫
X

(∫
Y

|f(x, y)|dν(y)
)
dµ(x) < +∞

and hence that f ∈ L1(µ⊗ ν). �
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Remark 4.3.2. One should see (3) as a convenient criterion to apply (2); indeed, it
is not always clear that a given function f on X × Y is in f ∈ L1(µ ⊗ ν). In practice,
one often proves an estimate like∫

Y

|f(x, y)|dν(y) 6 g(x)

where g ∈ L1(µ), to apply (3).

Example 4.3.3. One of the common practical applications of Fubini’s theorem is
in the evaluation of certain definite integrals involving functions which are themselves
defined using integrals, as in Section 3.1. Thus, let h : X × Y → C be measurable and

f(x) =

∫
Y

h(x, y)dν(y),

assuming this is well-defined.
In many cases, one can evaluate∫

X

f(x)dµ(x) =

∫
Y

∫
X

h(x, y)dµ(x)dν(y)

by a direct application of Fubini’s theorem (which must, of course, be justified).
Here is one example among many. Consider the function1

J0(x) =
1

π

∫ π

0

cos(x sin θ)dθ

for x ∈ R. Since the integrand is continuous over R× [0, π], Proposition 3.1.1 shows that
it is continuous, and in particular, measurable. Moreover, we have

|J0(x)| 6 1

for all x, and hence the function x 7→ e−xJ0(x) on [0,+∞[ is integrable with respect to
Lebesgue measure.

This means, in particular, that Fubini’s theorem is applicable, and we derive∫ +∞

0

e−xJ0(x)dx =
1

π

∫ +∞

0

∫ π

0

e−x cos(x sin θ)dθdx

=
1

π

∫ π

0

∫ ∞
0

e−x cos(x sin θ)dxdθ.

Now the inner integral is elementary:∫ ∞
0

e−x cos(x sin θ)dx = Re
(∫ ∞

0

e−x(1−i sin θ)dx
)

= Re
([
− 1

1− i sin θ
e−x(1−i sin θ)

]+∞

0

)
= Re

( 1

1− i sin θ

)
=

1

1 + sin2 θ
,

and therefore we have ∫ +∞

0

e−xJ0(x)dx =
1

π

∫ π

0

dθ

1 + sin2 θ
=

1√
2

(the last computation follows from the standard change of variable u = tan θ on [0, π/2[,
the other contribution being easily shown to be equal to it).

1. The simplest type among the Bessel functions.
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Example 4.3.4. One can also apply Fubini’s theorem, together with Lemma 4.2.1,
to recover easily some properties of independent random variables already mentioned in
the previous chapter.

For instance, we recover the result of Exercise 2.3.5 as follows:

Proposition 4.3.5. Let (Ω,Σ, P ) be a probability space, X and Y two independent
integrable random variables. We then have XY ∈ L1(P ) and

E(XY ) = E(X)E(Y ).

Proof. According to Lemma 4.2.2, |X| and |Y | are non-negative random variables
which are still indepdendent. We first check the desired property in the case where X > 0,
Y > 0; once this is done, it will follow that XY ∈ L1(P ).

Let µ be the probability law of X, and ν that of Y . By Lemma 4.2.1, the joint law
of X and Y is given by

(X, Y )(P ) = µ⊗ ν.
Let m : C2 → C denote the multiplication map. By Proposition 2.3.3, (3), we have

E(XY ) =

∫
Ω

XY dP =

∫
Ω

m(X, Y )dP

=

∫
C2

md(X, Y )(P )

=

∫
C2

xyd(µ⊗ ν)(x, y).(4.23)

But since m is measurable (for instance because it is continuous), Tonelli’s theorem
gives∫

C2

md(µ⊗ ν) =

∫
C

∫
C

xydν(y)dµ(x) =
(∫

C

xdµ(x)
)(∫

C

ydν(y)
)

= E(X)E(Y ),

as desired.
Coming back to the general case, we have established that XY ∈ L1(P ). Then the

computation of E(XY ) proceeds like before, using (4.23), which are now valid for X and
Y integrable because of Fubini’s theorem. �

4.4. The Lebesgue integral on Rd

We now come to the particularly important example of the Lebesgue measure and
integral on Rd.

For d = 1, we have assumed the existence of the Lebesgue measure λ1. Now for d > 2,
we denote by λd (or sometimes only λ, when the value of d is clear from context) the
product measure

λd = λ1 × · · · × λ1,

on the product σ-algebra, which is also the Borel σ-algebra of Rd.
By definition, we have

λ(C) = (b1 − a1) · · · (bd − ad) for C = [a1, b1]× · · · × [ad, bd]

(a generalized cube). This measure is also called the Lebesgue measure in dimension d;
for d = 2, one may also speak of it as giving the area of a (measurable) subset of the
plane, and for d = 3, one may speak of volume.
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It is customary to write∫
Rd

f(x1, . . . , xd)dx1 · · · dxd =

∫
Rd

f(x)dx

for the integral of a function f of d variables x = (x1, . . . , xd) with respect to the Lebesgue
measure.

With the Lebesgue measure come the Lp spaces Lp(dλ) = Lp(Rd), 1 6 p 6 +∞. It
is convenient to have simple criteria for functions to be Lp, by comparison with known
functions. The following lemma generalizes Example 2.4.1.

Proposition 4.4.1. Let d > 1 be fixed, and let

(4.24) ‖t‖ =
(∑

16i6d

|ti|2
)1/2

For t ∈ Rd be the Euclidian norm on Rd, and

‖t‖∞ = max(|tj|).
Let f be a non-negative measurable function Rd and p ∈ [1,+∞[.
(1) If f is bounded, and if there exists a constant C > 0 and ε > 0 such that

|f(x)| 6 C‖x‖−d−ε, or |f(x)| 6 C‖x‖−d−ε∞ ,

for x ∈ Rd with ‖x‖ > 1, or with ‖x‖∞ > 1, then f ∈ L1(Rd).
(2) If f is bounded and there exist C > 0 and ε > 0 such that

|f(x)| 6 C‖x‖−d/p−ε, or |f(x)| 6 C‖x‖−d/p−ε∞ ,

pour x ∈ Rd with ‖x‖ > 1, then f ∈ Lp(Rd).
(3) If f is integrable on {x | ‖x‖ > 1}, or on {x | ‖x‖∞ > 1} and there exist C > 0

and ε > 0 such that

|f(x)| 6 C‖x‖−d+ε, or |f(x)| 6 C‖x‖−d+ε
∞ ,

for ‖x‖ 6 1 or ‖x‖∞ 6 1, then f ∈ L1(Rd).
(4) If f is integrable on {x | ‖x‖ > 1}, or on {x | ‖x‖∞ > 1} and there exist C > 0

and ε > 0 such that

|f(x)| 6 C‖x‖−d/p+ε, or |f(x)| 6 C‖x‖−d/p+ε∞ ,

for ‖x‖ 6 1 or ‖x‖∞ 6 1, then f ∈ Lp(Rd).

Proof. Obviously, (2) and (4) follow from (1) and (3) applied to fp instead of f .
Moreover, we have

1√
d
‖x‖∞ 6 ‖x‖ 6 ‖x‖∞,

for all x ∈ Rd, the right-hand inequality coming e.g. from Cauchy’s inequality, since

max(|xj|) 6
∑
j

|xj| 6
√
d‖x‖,

and this means we can work with either of ‖x‖ or ‖x‖∞. We choose the second possibility,
and prove only (1), leaving (2) as an exercise.

It is enough to consider f defined by

f(x) =

{
0 if ‖x‖∞ 6 1

‖x‖−α∞
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for some α > 0, and to determine for which values of α this belongs to L1(Rd). We
compute the integral of f by partitioning Rd according to the rough size of ‖x‖∞:∫

Rd

f(x)dλd(x) =
∑
n>1

∫
An

‖x‖−αdλd(x),

where
An = {x ∈ Rd | n 6 ‖x‖∞ < n+ 1}.

We get inequalities∑
n>1

(n+ 1)−αλd(An) 6
∫
Rd

f(x)dλd(x) 6
∑
n>1

n−αλd(An)

Now, since
An =]− n− 1, n+ 1[d−[−n, n]d,

we have
λd(An) = (2n+ 1)d − (2n)d ∼ d(2n)d−1 as n→ +∞,

by definition of the product measure. Hence the inequalities above show that f ∈ L1(Rd)
if and only if α− (d− 1) > 1, i.e., if α > d, which is exactly (1). �

We now anticipate a bit some of the discussion of the next chapter to discuss one of
the most important features of the Lebesgue integral in Rd, namely the change of variable
formula.

First, we recall some definitions of multi-variable calculus.

Definition 4.4.2 (Differentiable functions, diffeomorphisms). Let d > 1 be give, and
let U , V ⊂ Rd be non-empty open sets, and

ϕ : U → V

a map from U to V .
(1) For given x ∈ U , ϕ is differentiable at x if there exists a linear map

T : Rd → Rd

such that
ϕ(x+ h) = ϕ(x) + T (h) + o(‖h‖)

for all h ∈ Rd such that x + h ∈ U . The map T is then unique, and is called the
differential of ϕ at x, denoted T = Dx(ϕ).

(2) The map ϕ is differentiable on U if it is differentiable at all x ∈ U , and ϕ is of C1

class if the map {
U → L(Rd) ' Rn2

x 7→ Dx(ϕ)

is continuous on U , where L(Rd) is the vector space of all linear maps T : Rd → Rd.
(3) The map ϕ is a diffeomorphism (resp. a C1-diffomorphism) on U if ϕ is differen-

tiable on U (resp., is of C1-class on U), ϕ is bijective, and the inverse map

ψ = ϕ−1 : V → U

is also differentiable (resp., of C1-class) on V .
(4) If ϕ is differentiable on U , the jacobian of ϕ is the map

Jϕ

{
U → R

x 7→ det(Dx(ϕ))
,
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which is continuous on U if ϕ is C1.

In other words, the differential of ϕ at a point is the “best approximation” of f among
the simplest functions, namely the linear maps. When d = 1, a linear map T : R → R
is always of the type T (x) = αx for some α ∈ R; since α is canonically associated with
T (because α = T (1)), one can safely identify T with α ∈ R, and these numbers provide
the usual derivative of ϕ.

Using the implicit function theorem, the following criterion can be proved:

Proposition 4.4.3. Let U , V ⊂ Rd be non-empty open sets. A map ϕ : U → V is
a C1-diffeomorphism if and only if f is bijective, of C1-class, and the differential Dx(ϕ)
is an invertible linear map for all x ∈ U . We then have

Dy(ϕ
−1) = Dϕ−1(y)(ϕ)−1 = Dx(ϕ)−1

for all y ∈ V , y = ϕ(x) with x ∈ U . Moreover if ψ = ϕ−1, we have

(4.25) Jψ(y) = Jϕ(x)−1

for y = ϕ(x).

Remark 4.4.4. Concretely, if ϕ is given by “formulas”, i.e., if

ϕ(x) = (ϕ1(x1, . . . , xd), . . . , ϕd(x1, . . . , xd))

where ϕj : Rd → R, then ϕ is of C1-class if and only if all the partial derivatives of
the ϕj exist, are continuous functions on U . Then Dx(ϕ) is the linear map given by the
matrix of partial derivatives

Dx(ϕ) =
(∂ϕi
∂xj

)
i,j
,

the determinant of which gives Jϕ(x).
It is customary to think of ϕ as giving a “change of variable”

yi = ϕi(x1, . . . xd),

where the inverse of ϕ gives the formula that can be used to go back to the original
variables.

Example 4.4.5. (1) The simplest changes of variables are linear ones: if T : Rd → Rd

is linear and invertible, then of course it is a C1-diffeomorphism on Rd with Dx(f) = T
for all x ∈ Rd, and JT (x) = | det(T )| for all x.

(2) The translation maps defined by

τ : x 7→ x+ a

for some fixed a ∈ Rd are also diffeomorphisms, where Dx(τ) equal to the identity matrix
(and hence Jτ (x) = 1) for all x ∈ Rd.

(3) The “polar coordinates” in the plane given an important change of variable. Here
we have d = 2, and one starts by noticing that every (x, y) ∈ R2 can be written

(x, y) = (r cos θ, r sin θ) = ϕ(r, θ)

with r > 0 and θ ∈ [0, 2π[. This is “almost” a diffemorphism, but minor adjustements
are necessary to obtain one; first, since (x, y) = 0 is obtained from all (0, θ), to have an
injective map one must restrict ϕ to ] − 0,+∞[×[0, 2π[. This is however not an open
subset of R2, so we restrict further to obtain

ϕ : U → V
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where
U =]0,+∞[×]0, 2π[,

and to have a surjective map, the image is

V = R2 − {(x, 0) | x > 0}
(the plane minus the non-negative part of the real axis).

It is then easy to see that the polar coordinates, with this restriction, is a differentiable
bijection from U to V . Its jacobian matrix is

D(r,θ)(ϕ) =

(
cos θ −r sin θ
sin θ r cos θ

)
,

and the determinant is
Jϕ(r, θ) = r > 0,

which shows (using the proposition above) that ϕ is C1-diffeomorphism.
As we will see, from the point of view of integration theory, having removed part of

the plane will be irrelevant, since this is a set of Lebesgue measure zero.

Here is the change of variable formula, which will be proved in the next chapter.

Theorem 4.4.6 (Change of variable in Rd). Let d > 1 be fixed and let

ϕ : U → V

be a C1-diffeomorphism between two non-empty open subsets of Rd.
(1) If f is a measurable function on V which is either non-negative or integrable with

respect to the Lebesgue measure restricted to V , then we have∫
V

f(y)dλ(y) =

∫
U

f(ϕ(x))|Jϕ(x)|dλ(x),

which means, in the case where f is integrable, that if either of the two integrals exists,
then so does the other, and they are equal.

(2) If f is a measurable function on V which is either non-negative or such that f ◦ϕ
is integrable on U with respect to the Lebesgue measure, then we have∫

U

f(ϕ(x))dλ(x) =

∫
V

f(y)|Jϕ(ϕ−1(y))|−1dλ(y) =

∫
V

f(y)|Jϕ−1(y)|dλ(y).

(3) The image measure of the Lebesque measure on U by ϕ is given by

(4.26) ϕ∗(dλ(x)) = |Jϕ−1(y)|dλ(y).

We only explain quickly why those three statements are equivalent (assuming they
hold for all diffeomorphisms). First of all, assuming (1), we can apply it to

g(x) = f(x)|Jϕ(ϕ−1(x))|−1

instead of f . By (4.25), we have

g(x) = f(x)|Jϕ−1(x)|,
and this gives the first equality in (2). One may also apply (1) directly to ψ = ϕ−1, and
this symmetry shows that (2) implies (1) also. Finally, (3) is equivalent with (2) because
of the abstract formula ∫

V

f(y)ϕ∗(dλ)(y) =

∫
U

f(ϕ(x))dλ(x),

given by (2.8) and (2.12) for any function on V which is either integrable or non-negative.
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Remark 4.4.7. (1) The presence of the absolute value of the jacobian in the formula
is due to the fact that the Lebesgue integral is defined in a way which does not take into
account “orientation”. For instance, if d = 1 and ϕ(x) = −x, the differential is −1 and
the jacobian satisfies |Jϕ(x)| = 1; the change of variable formula becomes∫

[a,b]

f(x)dλ(x) =

∫
[−b,−a]

f(−y)dλ(y)

for a < b, which may be compared with the usual way of writing it∫ b

a

f(x)dx = −
∫ −b
−a

f(−y)dy =

∫ −a
−b

f(−y)dy

for a Riemann integral, where the correct sign is obtained from the orientation.
Since ϕ is a diffeomorphisms, the jacobian Jϕ does not vanish on U , and hence if U

is connected, the sign of Jϕ(x) will be the same for all x ∈ U , so that

|Jϕ(x)| = εJϕ(x),

in that case, with ε = ±1 independent of x.

(2) Intuitively, the jacobian factor has the following interpretation: for an invertible
linear map T , it is well-known that the absolute value | det(T )| of the determinant is the
“volume” (i.e., the d-dimensional Lebesgue measure) of the image of the unit cube under
T ; this is quite clear if T is diagonal or diagonalizable (each direction in the space is then
stretched by a certain factor, and the product of these is the determinant), and otherwise
is a consequence of the formula in any case: take U = [0, 1]d, V = T (U) and f = 1 to
derive

λd(T (U)) = Vol(T (U)) =

∫
T (U)

f(x)dλ(x) =

∫
U

| det(T )|dλ(y) = | det(T )|.

Thus, one should think of Jϕ(x) as the “dilation coefficient” around x, for “infinitesi-
mal” cubes centered at x. This may naturally suggest that the Lebesgue measure should
obey the rule (4.26), after doing a few drawings if needed...

(3) In practice, for many changes of variables of interest, the “natural” definition does
not lead immediately to a C1-diffeomorphism between open sets, as we saw in the case
of the polar coordinates. A more general statement, which follows immediately, is the
following: let ϕ : A→ B, where A, B ⊂ Rd are such that

A = U ∪ A0, B = V ∪B0,

where U and V are open and λ(A0) = λ(B0) = 0. If ϕ, restricted to U , is a C1-
diffeomorphism U → V , then we have∫

B

f(y)dλ(y) =

∫
A

f(ϕ(x))|Jϕ(x)|dλ(x),

for any measurable function f on B which is either integrable or non-negative, where
Jϕ(x) can be extended arbitrarily (e.g., to take the value 0) on A0.

Example 4.4.8. (1) If T is an invertible linear map, we have∫
Rd

f(T (x))dλ(x) =
1

det(T )

∫
Rd

f(x)dλ(x)
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for all f . In particular, if T is a rotation, or more generall T ∈ O(d,R), a euclidean
isometry, we have det(T ) = ±1 and∫

Rd

f(T (x))dλ(x) =

∫
Rd

f(x)dλ(x),

or in other words T∗(λ) = λ: one says that the Lebesgue measure on Rd is invariant
under rotation.

(2) Let f : R2 → C be an integrable function. It can be integrated in polar coordi-
nates (Example 4.4.5, (3)): since Z = {(a, 0) | a > 0} ⊂ R2 has measure zero, we can
write ∫

R2

f(x)dλ2(x) =

∫
R2−Z

f(x)dλ2(x)

and therefore (with notation as in Example 4.4.5, (3)) we get∫
R2

f(x)dλ2(x) =

∫
V1

f(r cos θ, r sin θ)rdrdθ

=

∫ 2π

0

∫ +∞

0

f(r cos θ, r sin θ)rdrdθ

(Fubini’s theorem justifies writing the integral in this manner, or indeed with the order
of the r and θ variables interchanged).

Suppose now that f is radial, which means that there exists a function

g : [0,+∞[→ C

such that

f(x, y) = g(
√
x2 + y2) = g(r)

for all x and y. In that case, one can integrate over θ first, and get∫
R2

f(x)dλ2(x) =

∫ π

−π

∫ +∞

0

g(r)rdrdθ = 2π

∫ +∞

0

g(r)rdr.

Here is an example of application of this:

Proposition 4.4.9 (Gaussians are probability measures). Let µ be the measure on
R given by

µ = e−πx
2

dx,

where dx denotes Lebesgue measure.
Then µ is a probability measure. Moreover, if X is any random variable with proba-

bility law X(P ) = µ, we have X ∈ L2 and

E(X) = 0, V (X) =
1

2π
.

Proof. Let f : R2 → [0,+∞[ be the function defined by

f(x, y) = e−π(x2+y2),

which is non-negative and radial. Thus the integral with respect to Lebesgue measure
exists and by the formula above, we have∫

R2

e−π(x2+y2)dλ2(x) = 2π

∫ +∞

0

e−πr
2

rdr =
[
−e−r2

]+∞

0
= 1.
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However, by means of Tonelli’s theorem, we also have∫
R2

e−π(x2+y2)dλ2(x) =

∫
R

e−πx
2
(∫

R

e−πy
2

dλ(y)
)
dλ(x) = I2

where

I =

∫
R

e−πx
2

dx =

∫
R

dµ(x).

Comparing, we obtain ∫
R

dµ(x) = 1,

(since the integral is clearly non-negative), showing that µ is a probability measure.
There remains to compute the expectation and variance of a random variable with

law µ. We have first

E(X) =

∫
R

xdµ(x) =

∫
R

xe−πx
2

dx = 0

since x 7→ xe−x
2

is clearly integrable and odd (substitute ϕ(x) = −x to get the result).
Then we get

V (x) =

∫
R

x2dµ(x) =

∫
R

x2e−πx
2

dx =
1

2π

∫
R

e−x
2

dx =
1

2π

by a simple integration by parts. �

More generally, the measure

µa,σ =
1√

2πσ2
e−

(x−a)2

2σ2 dλ(x)

for a ∈ R, σ > 0, is a probability measure with expectation a and variance σ2 (cf.
Remark 3.4.11). This follows from the case above by the change of variable

y =
(x− a)

σ
,

and is left as an exercise.
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CHAPTER 5

Integration and continuous functions

5.1. Introduction

When X is a topological space, we can consider the Borel σ-algebra generated by open
sets, and also a distinguished class of functions on X, namely those which are continous.
It is natural to consider the interaction between the two, in particular to consider special
properties of integration of continuous functions with respect to measures defined on the
Borel σ-algebra (those are called Borel measures). In this respect, we first note that by
Corollary 1.1.10, any continuous function

f : X → C

is measurable with respect to the Borel σ-algebras.
However, to be able to say something more interesting, one must make some assump-

tions on the topological space as well as on the measures involved. There are two obvious
obstacles: on the one hand, the vector space C(X) of continuous (complex-valued) func-
tions on X might be very small (it might contain only constant functions); on the other
hand, even when C(X) is “big”, it might be that no interesting continuous function is
µ-integrable, for a given Borel measure µ. (For instance, if X = R and ν is the counting
measure, it is certainly a Borel measure, but∫

R

fdν(x) = +∞

for any continuous function f > 0 which is not identically zero, because, by continuity,
such a function will be > c > 0, for some c, on some non-empty interval, containing
infinitely many points).

The following easy proposition takes care of finding very general situations where
compactly supported functions are integrable. We first recall for this purpose the definition
of the support of a continuous function.

Definition 5.1.1 (Support). Let X be a topological space, and

f : X → C

a continuous function on X. The support of f , denoted supp(f), is the closed subset

supp(f) = V̄ where V = {x | f(x) 6= 0} ⊂ X.

If supp(X) ⊂ X is compact, the function f is said to be compactly supported. We
denote by Cc(X) the C-vector space of compactly supported continuous functions on X.

One can therefore say that if x /∈ supp(f), we have f(x) = 0. However, the converse
does not hold; for instance, if f(x) = x for x ∈ R, we have

supp(f) = R, f(0) = 0.
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When X is itself compact,1 we have Cc(X) = C(X), but otherwise the spaces are
distinct (for instance, a non-zero constant function has compact support only if X is
compact).

To check that Cc(X) is a vector space, one uses the obvious relation

supp(αf + βg) ⊂ supp(f) ∪ supp(g).

Note also an important immediate property of compactly-supported functions: they
are bounded on X. Indeed, we have

|f(x)| 6 sup
x∈supp(f)

|f(x)|

for all x, and of course f is bounded on the compact supp(f). We denote

‖f‖∞ = sup{|f(x)| | x ∈ X},
for f ∈ Cc(X), which is a norm on Cc(X).

We have then the following simple-looking fact:

Proposition 5.1.2. Let X be a topological space and µ a Borel measure which is
finite on compact sets, i.e., such that

µ(K) < +∞,
for any compact subset K ⊂ X. Then the mapCc(X)→ C

f 7→
∫
X

fdµ(x)

is well-defined, it is linear, and moreover it is positive: for any f ∈ Cc(X) which is
non-negative on X, we have Λ(f) > 0.

Proof. The only point that needs proof is that Λ is well-defined. However, if f ∈
Cc(X), so is |f |, and since |f | is bounded by the remark before the statement, and is zero
outside the compact set K = supp(f), we have∫

X

|f(x)|dµ(x) =

∫
K

|f(x)|dµ(x) 6 µ(K)‖f‖∞ < +∞

since we assumed that µ is finite on compact sets. �

Remark 5.1.3. Although it is tempting to state that

Cc(X) ⊂ L1(µ),

under the situation of the proposition, one must be aware that this is really an absure
of notation, since L1(µ) is the space of equivalence classes of functions, up to functions
which are zero almost everywhere. Indeed, it is perfectly possible that the quotient map

Cc(X)→ L1(µ)

not be injective; a simple example is the Borel measure

µ = (1− χ[−1,1])dλ

on R, where λ is the Lebesgue measure. Of course, λ is finite on compact sets, and since

µ(]− 1/2, 1/2[) = 0,

1 By convention, we consider that the compactness condition implies that X is separated.
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we see that two continuous functions f1 and f2 which differ only on the interval ]−1/2, 1/2[
actually define the same element in L1(µ).

This proposition is extremely simple. It is therefore very striking that, for reasonable
topological spaces (such as compact spaces, or R) there is a converse: any linear map
Cc(X) → C which has the positivity property (that Λ(f) > 0 if f > 0) is obtained by
integrating f against a fixed Borel measure µ. This powerful result is a very good way
to construct measures; for instance, it may be applied to the Riemann integral, which is
a well-defined map

Λ : Cc(R)→ C,

and the resulting measure is the Lebesgue measure...

5.2. The Riesz representation theorem

Here is the converse to Proposition 5.1.2.

Theorem 5.2.1. Let X be locally compact topological space,2 and let

Λ : Cc(X)→ C

be a linear map such that Λ(f) > 0 if f > 0.
(1) There exists a σ-algebra M ⊃ BX , and a complete measure µ on M, such that µ

is finite on compact sets, and

Λ(f) =

∫
X

fdµ(x) for all f ∈ Cc(X).

(2) In fact, there exists such a unique measure µ for which the following additional
properties hold:

(1) For all E ∈M, we have

(5.1) µ(E) = inf{µ(U) | U ⊃ E is an open set containing E}
(2) For all E ∈M, if E is either open or has finite measure, we have

(5.2) µ(E) = sup{µ(K) | K ⊂ E is compact}.
(3) If X has the additional property that any open set in X is a countable union of

compact sets, in which case X is called σ-compact, then the measure µ is unique as a
measure on (X,BX), i.e., without requiring (5.1) and (5.2).

Before proving the theorem, here is its main application: the rigorous construction
(and proof of existence) of Lebesgue measure. This is, indeed, highly enlightening.

Example 5.2.2 (Construction of the Lebesgue measure). Let X = R and let Λ be
the linear map

f 7→
∫ ∞
−∞

f(x)dx =

∫ b

a

f(x)dx,

where the integral is a Riemann integral, and [a, b] ⊂ R is any interval such that
supp(f) ⊂ [a, b]. Applying Riesz’s theorem, we obtain a Borel measure µ such that

Λ(f) =

∫ +∞

−∞
f(x)dx =

∫
R

f(x)dµ(x)

for any f ∈ Cc(X). We claim that this measure is the Lebesgue measure, the existence of
which was previously admitted (Theorem 1.3.1).

2. I.e., one for which every point x has one compact neighbourhood.
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To check this, we remark first that µ is – by construction – a complete Borel measure,
and it is enough to check that

µ([a, b]) = b− a
for any real numbers a 6 b. The case a = b is obvious, and so we assume that a < b.
Then we construct the following sequences (fn), (gn) of continuous functions with compact
support (well-defined in fact for n > (2(b− a))−1):

fn(x) =


1 if a 6 x 6 b

0 if x 6 a− 1/n or x > b+ 1/n

nx− (na− 1) if a− 1/n 6 x 6 a

−nx+ (nb+ 1) if b 6 x 6 b+ 1/n

and

gn(x) =


1 if a+ 1/n 6 x 6 b− 1/n

0 if a 6 x or x > b

nx− na if a 6 x 6 a+ 1/n

−nx+ nb if b− 1/n 6 x 6 b

(a graph of these functions will convey much more information than these dry formulas).
The definition implies immediately that

gn 6 χ[a,b] 6 fn

for n > (2(b− a))−1 , and after integrating with respect to µ, we derive the inequalities

Λ(gn) =

∫
gndµ 6 µ([a, b]) 6

∫
fndµ = Λ(fn)

for all n, using on the right and left the fact that integration of continuous functions is
the same as applying Λ. In fact, the Riemann integrals of fn and gn can be computed
very easily, and we derive

Λ(fn) = (b− a) +
1

n
and Λ(gn) = (b− a)− 1

n
,

so that µ([a, b]) = b− a follows after letting n go to infinity.
Since it is easy to check that R is σ-compact (see below where the case of Rd is

explained), we derive in fact that the Lebesgue measure is the unique measure on (R,BR)
which extends the length of intervals. We will see later another characterization of the
Lebesgue measure which is related to this one.

The proof of this theorem is quite intricate; not only is it fairly technical, but there
is quite a subtle point in the proof of the last part (unicity for σ-compact spaces). To
understand the result, the first issue is to understand why an assumption like local com-
pacity is needed. The point is that this is a way to ensure that Cc(X) contains “many”
functions. Intuitively, one requires Cc(X) to contain (at least) sufficiently many functions
to approximate arbitrarily closely the characteristic functions of nice sets in X, and this
is not true for arbitrary topological spaces.

The precise existence results which are needed are the following:

Proposition 5.2.3 (Existence of continuous functions). Let X be a locally compact
topological space.
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(1) For any compact set K ⊂ X, and any open neighbourhood V of K, i.e., with
K ⊂ V ⊂ X, there exists f ∈ Cc(X) such that

(5.3) χK 6 f 4 χV

where the notation
f 4 χV

means that {
f 6 χV

supp(f) ⊂ V.

(2) Let K1 and K2 be disjoint compact subsets of X. There exists f ∈ Cc(X) such
that 0 6 f 6 1 and

f(x) =

{
0 if x ∈ K1

1 if x ∈ K2.

(3) Let K ⊂ X be a compact subset and let V1, . . . , Vn be open sets such that

K ⊂ V1 ∪ V2 ∪ · · · ∪ Vn.
For any function g ∈ Cc(X), there exist functions gi ∈ Cc(X) such that supp(gi) ⊂ Vi

for all i and
n∑
i=1

gi(x) = g(x) for all x ∈ K.

In addition, if g > 0, one can select gi so that gi > 0.

Remark 5.2.4. Note that it is possible that a function f ∈ Cc(X) satisfies f 6 χV ,
but without having supp(f) ⊂ V (for instance, take X = [−2, 2], V =]− 1, 1[ and

f(x) =

{
0 if |x| > 1,

1− x2 if |x| 6 1

for which f 6 χV but supp(f) = [−1, 1] is larger than V ).
This is the reason for the introduction of the relation f 4 χV . Indeed, it will be quite

important, at a technical point of the proof of the theorem, to ensure a condition of the
type supp(f) ⊂ V (see the proof of Step 1 in the proof below).

Proof. These results are standard facts of topology. For (1), we recall only that
one can give an easy construction of f when X is a metric space. Indeed, let W ⊂ V
be a relatively compact open neighbourhood of K, and let F = X −W be the (closed)
complement of W . We can then define

f(x) =
d(x, F )

d(x, F ) + d(x,K)
,

and check that it satisfies the required properties.
Part (2) can be deduced from (1) by applying the latter to K = K2 and V any open

neighbourhood of K2 which is disjoint of K1.
For (3), one shows first how to construct functions fi ∈ Cc(X) such that

0 6 fi 4 χVi ,

and
1 = f1(x) + · · ·+ fn(x)

for x ∈ K. The general statement follows by taking gi = gfi; we still have gi 4 Vi of
course, and also gi > 0 if g > 0. �
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Although the individual steps of the proof are all quite elementary and reasonable, the
complete proof is somewhat lengthy and intricate. For simplicity, we will only consider
the case where X is compact (so Cc(X) = C(X)), referring, e.g., to [R, Ch. 2] for the
general case.

The general strategy is the following:

• Using Λ and the properties (5.1) and (5.2) as guide (which is a somewhat unmo-
tivated way of proceeding), we will define a collection M of subsets of X, and a
map

µ : M→ [0,+∞]

though it will not be clear that either M is a σ-algebra, or that µ is a measure!
However, similar ideas will show that a measure µ, if it exists, is unique among
those which satisfy (5.1) and (5.2).
• We will show that M is a σ-algebra, that the open sets are in M, and that µ is

a measure on (X,M). The regularity properties (5.1) and (5.2) of this measure
µ will be valid essentially by construction.
• Next, we will show that

(5.4) Λ(f) =

∫
X

f(x)dµ(x)

for f ∈ C(X). (Here we recall that we work with X compact).
• Finally, using the results already proved, we will show that any Borel measure
µ on a σ-compact space which is finite on compact sets satisfies the regularity
properties (5.1) and (5.2). Thus, the unicity under these additional conditions,
which was already known, will imply the unicity without them...

As one can guess from this outline, it will be useful to introduce the following termi-
nology:

Definition 5.2.5 (Radon measures). Let X be a locally compact topological space.
A Radon measure on X is a measure µ, with respect to the Borel σ-algebra, which is
finite on compact sets, and satisfies (5.1) for any Borel set E ∈ B (one says that µ is
outer-regular), and (5.2) for any set E which is either open or has finite measure (one
says that µ is inner-regular).

Thus, one can paraphrase the theorem of Riesz by saying that (1) it establishes a
correspondance between non-negative linear forms on Cc(X) and Radon measures on X;
(2) if X is σ-compact, it says that any Borel measure finite on compact sets is a Radon
measure.

We now come to the details; in a first reading, the next section might be only lightly
skimmed...

5.3. Proof of the Riesz representation theorem

None of the steps in the outline above are obvious. But note that some hint on the
way to proceed for the last points are clearly visible in the proof above that, applied to Λ
coming from the Riemann integral, the measure that is obtained is precisely the Lebesgue
measure.

We now start by the first point in the outline, before splitting the next two in a few
steps the next two. The last (Part (3) of the theorem) will be dealt with at the very end.

First, to motivate the construction, we consider the question of uniqueness:
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Uniqueness for µ among Radon measures. By (5.1), which holds for Radon
measures, it is enough to show that the linear map Λ given by

Λ(f) =

∫
X

f(x)dµ(x)

determines uniquely the measure µ(U) of any open subset U ⊂ X. The idea is that χU
can be written as the pointwise limit of continuous functions (with support in U). More
precisely, define

µ+(U) = sup{Λ(f) | 0 6 f 4 χU}.
We claim that µ+(U) = µ(U), which gives the required unicity. Indeed, we first have

Λ(f) 6 µ(U) for any f appearing in the set defining µ+(U), hence µ+(U) 6 µ(U). For
the converse, we appeal to the assumed property (5.2) for U : we have

µ(U) = sup{µ(K) | K ⊂ U compact}.
Then consider any such compact set K ⊂ U ; we must show that µ(K) 6 µ+(U), and

Urysohn’s Lemma is perfect for this purpose: it gives us a function f ∈ C(X) with

0 6 χK 6 f 4 χU ,

so that by integration we obtain

µ(K) 6 Λ(f) 6 µ(U),

as desired. �

This uniqueness result motivates (slightly) the general construction that we now at-
tempt, to prove the existence of µ for a given linear form Λ. First we define a map µ+

for all subsets of X (which is what is often called an outer measure), starting by writing
the definition above for an open set U :

(5.5) µ+(U) = sup{Λ(f) | f ∈ C(X) and 0 6 f 4 χU}.
The use of the relation f 4 χU instead of the more obvious f 6 χU is a subtle point

(since, once µ has been constructed, it will follow by monotonicity that in fact

µ(U) = sup{Λ(f) | f 6 χU}
for all open sets U); the usefulness of this is already suggested by the uniqueness argument.

We next define µ+(E) using our goal to construct µ for which (5.1) holds: for any
E ⊂ X, we let

µ+(E) = inf{µ+(U) | U ⊃ E is open}.
Note that it is clear that this definition coincides with the previous one when E is

open (since we can take U = E in the set defining the infimum).
This map is not a measure – it is defined for all sets, and usually there is no reasonable

measure with this property. But we now define a certain subcollection of subsets of X,
which are well-behaved in a way reminiscent of the definition of integrable functions in the
Riemann sense. The definition is motivated, again, by the attemps to ensure that (5.2)
holds: we first define

µ−(E) = sup{µ+(K) | K ⊂ E compact},
which corresponds to trying to approximate E by compact subsets, instead of using open
super-sets. Then we define

M = {E ⊂ X | µ+(E) = µ−(E)}.
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Thus, we obtain, by definition, a map

µ : M→ [0,+∞]

such that

µ(E) = µ+(E) = µ−(E) for all E ∈M.

Before proceeding, here are the few properties of this construction which are com-
pletely obvious;

• The map µ+ is monotone: if E ⊂ F , we have

µ+(E) 6 µ+(F ).

• Since X is compact, the constant function 1 is in C(X) and is the only function
appearing in the supremum defining µ+(X); thus µ+(X) = Λ(1), and by the
above we get

0 6 µ+(E) 6 µ+(X) = Λ(1)

for all E ⊂ X. In particular, µ is certainly finite on compact sets.
• Any compact set K is in M (because K is the largest compact subset inside K);

in particular ∅, X are in M, and obviously

µ(∅) = 0, µ(X) = Λ(1).

• A set E is in M if, for any ε > 0, there exist a compact set K and an open set
U , such that

K ⊂ E ⊂ U,

and

(5.6) µ+(K) > µ+(E)− ε, µ+(U) 6 µ+(E) + ε.

The next steps are the following five results:

(1) The “outer measure” µ+ satisfies the countable subadditivity property

µ+
(⋃
n>1

En

)
6
∑
n>1

µ+(En)

for all En ⊂ X.
(2) For K compact, we have the alternate formula

(5.7) µ(K) = inf{Λ(f) | χK 6 f}.
(3) Any open set is in M.
(4) The collection M is stable under countable disjoint union, and

µ
(⋃
n>1

En

)
=
∑
n>1

µ(En)

for a sequence of disjoint sets En ∈M.
(5) Finally, M is a σ-algebra (at which point we know that µ is a Borel measure on

(X,M) by the previous steps, and it is easy to check that it is a Radon measure
by construction).

(6) The linear map Λ is the same as integration against the measure µ.

Once this is done, only the last uniqueness statement (Part (3)) of Theorem 5.2.1
will remain to be proved. We now complete these steps in turn. None is very hard, but
the accumulation of small technical manipulations, which have to be done just right, is
somewhat overwhelming at first.
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Proof of Step 1. First of all, we show that if U1 and U2 are open subsets of X,
and U = U1 ∪ U2, we have

(5.8) µ+(U) 6 µ+(U1) + µ+(U2).

For this, we use the definition. Let g ∈ C(X) be such that 0 6 g 4 χU , and let
K = supp(g), a compact subset of X. By Proposition 5.2.3, (3), there exist g1, g2 ∈ C(X)
such that

0 6 gi 4 χUi ,

and g = g1 + g2. By linearity, we obtain

Λ(g) = Λ(g1) + Λ(g2) 6 µ+(U1) + µ+(U2),

and after taking the supremum over all g, we derive (5.8). Of course, an easy induction
extends this subadditivity property to any finite union of open sets.

Now, let En ⊂ X for n > 1. Fixing some ε > 0, we can, by definition, find open
subsets

Un ⊃ En
such that

µ+(Un) 6 µ+(En) +
ε

2n

for all n > 1. Let now U be the union of the Un, and f any function such that

0 6 f 4 χU .

Since the support of f is contained in U ,3 it follows by compactness that there is some
finite N such that

supp(f) ⊂ U1 ∪ · · · ∪ UN =: V.

We then have f 4 χV , and using the subadditivity for a finite union of open sets, we
derive

Λ(f) 6 µ+(V ) 6
N∑
n=1

µ+(Un) 6
∑
n>1

µ+(Un) 6
∑
n>1

µ+(En) + ε.

This inequality holds for all f with 0 6 f 4 χU , and hence

µ+(U) 6
∑
n>1

µ+(En) + ε,

and hence, using monotony of µ+, we get

µ+
(⋃
n>1

En

)
6 µ+(U) 6

∑
n>1

µ+(En) + ε,

from which the result follows by letting ε→ 0. �

Proof of Step 2. Let K be a compact set, and denote

ν(K) = inf{Λ(f) | f > χK}.
We must show µ(K) = ν(K), and we start by showing that µ(K) 6 ν(K), i.e., that

for any f > χK , we have
Λ(f) > µ(K) = µ+(K).

From the definition of µ+, we need to construct open sets “close” to K. For this, we
use the continuity of f . Indeed, for any α such that 0 < α < 1, we may consider

Vα = {x | f(x) > α} ⊂ X,

3 At this point it is crucial to have imposed that f 4 χU in the definition.
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which is an open set containing K. Hence we have

µ(K) 6 µ+(Vα).

We now compare µ+(Vα) with Λ(f). By definition, for any ε > 0, there exists g 4 χVα
such that

µ+(Vα) 6 Λ(g) + ε,

and since g 6 χVα implies
αg 6 αχVα 6 f,

we obtain by positivity that

µ(K) 6 µ+(Vα) 6 Λ(g) + ε 6 Λ(α−1f) + ε = α−1Λ(f) + ε.

We can now let α→ 1, ε→ 0, and obtain

µ(K) 6 Λ(f),

hence µ(K) 6 ν(K).
Now, for the converse inequality, we have, for any ε > 0, some open set V such that

V ⊃ K and
µ+(V ) 6 µ(K) + ε.

By Proposition 5.2.3, (1), we can find a function f ∈ C(X) such that

χK 6 f 4 χV ,

and it follows that
ν(K) 6 Λ(f) 6 µ+(V ) 6 µ(K) + ε,

from which the equality (5.7) finally follows by letting ε→ 0. �

Proof of Step 3. Let U be an open set. We must show that µ+(U) 6 µ−(U). For
this, let ε > 0 be given. By definition of µ+(U), we can find f such that f 4 χU , in
particular f 6 χU , and

Λ(f) > µ+(U)− ε.
We must approach µ+(U) from below by the measure of compact sets. The idea is

that if Λ(f) is very close to µ+(U), the measure of the support of f should also be close
to µ+(U). So we consider the compact set K = supp(f). For any open set W ⊃ K, we
have

f 4 χW ,

and therefore Λ(f) 6 µ+(W ) by definition. Taking the infimum over W , we obtain

Λ(f) 6 µ(K),

and then
µ+(U) 6 Λ(f) + ε 6 µ(K) + ε,

and letting ε→ 0, it follows that (5.2) holds fo U , which means that U ∈M. �

Proof of Step 4. We are now getting close. To prove the stability of M under
disjoint countable unions and the additivity of µ for such unions, we first note that by
Step 1, we have

µ+
(⋃
n>1

En

)
6
∑
n>1

µ+(En) =
∑
n>1

µ(En)

if En ∈M for all n. So we need only show that

µ−
(⋃
n>1

En

)
>
∑
n>1

µ−(En) =
∑
n>1

µ(En)
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to deduce both that the union E of the En is in M, and that its measure is

µ(E) =
∑
n>1

µ(En).

The proof of the last inequality is very similar to that of Step 1, with compact sets
replacing open sets, and lower bounds replacing upper-bounds. So we first consider the
union K = K1 ∪K2 of two disjoint compact sets; this is again a compact set in X, and
hence we know that K ∈M.

Fix ε > 0. By Step 2, we can find g ∈ C(X) such that χK 4 g and

Λ(g) 6 µ(K) + ε.

Now we try to “share” the function g between K1 and K2. By Proposition 5.2.3, (2),
there exists f ∈ C(X) such that 0 6 f 6 1, f is zero on K1 and f is 1 on K2. Then if
we define

f1 = (1− f)g, f2 = fg,

we have
χK1 6 f1, χK2 6 f2,

and hence by (5.7) and linearity, we get

µ(K1) + µ(K2) 6 Λ(f1) + Λ(f2) = Λ(f1 + f2) = Λ(g) 6 µ(K) + ε,

and the desired inequality
µ(K) > µ(K1) + µ(K2)

follows by letting ε→ 0.
Using induction, we also derive additivity of the measure for any finite union of disjoint

compact sets. Now, for the general case, let ε > 0 be given. By (5.6), we can find compact
sets Kn ⊂ En (which are disjoint, since the En are) such that

µ(Kn) > µ(En)− ε

2n

for n > 1. Then, for any finite N > 1, monotonicity and the case of compact sets gives

µ−(E) > µ
(⋃
n6N

Kn

)
>

N∑
n=1

µ(Kn) >
N∑
n=1

µ(En)− ε,

and yet another limit, with ε→ 0 and N → +∞, leads to

µ−(E) >
∑

µ(En),

which was our goal. �

Proof of Step 5. We already know that M contains the open sets (Step 3) and
is stable under countable disjoint unions (Step 4). Now assume that we can show that,
given E1 and E2 in M, the difference

E = E1 − E2 = {x ∈ E1, | x /∈ E2}
is also in M. Then we will first deduce that M is stable under complement. Moreover,
we will also get

E1 ∪ E2 = (E1 − E2) ∪ E2 ∈M,

which is a disjoint union, so that we get stability of M under finite unions (by induction
from this case). Then, for any (En) in M, we can write⋃

n>1

En =
⋃
n>1

Fn
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where

Fn = En −
⋃

16j6n−1

Ej ∈M,

and the Fn’s are disjoint, leading to stability of M under any countable union. Com-
plements give stability under intersection, and hence it will follow that M is a σ-algebra
containing the Borel sets.

So we proceed to show that E1 − E2 is in M if E1 and E2 are. This is not difficult,
because both the measure of E1 and E2 can be approximated both by compact or open
sets, and their complements just exchange compact and open.

First, however, we note that if E ∈ M is arbitrary and ε > 0, we know that we can
find U open and K compact, with

K ⊂ E ⊂ V,

and

µ(V )− ε/2 < µ(E) < µ(K) + ε/2.

The set V − K = V ∩ (X − K) is then open, hence belongs to M by Step 3, and
because of these inequalities it satisfies

µ(V −K) < ε

(in view of the disjoint union V = (V −K) ∪K which gives

µ(V ) = µ(V −K) + µ(K)

by the additivity of Step 4.)
Now, applying this to E1, E2 ∈ M, with difference E, we get (for any ε > 0) open

sets V1 and V2, and compact sets K1 and K2, such that

Ki ⊂ Ei ⊂ Vi and µ(Vi −Ki) < ε.

Then

E ⊂ (V1 −K2) ⊂ (K1 − V2) ∪ (V1 −K1) ∪ (V2 −K2),

so that by Step 1 again, we have

µ+(E) 6 µ(K1 − V2) + 2ε.

Since K1 − V2 ⊂ E is compact, we have

µ−(E) > µ(K1 − V2) > µ+(F )− 2ε,

and letting ε→ 0 gives E ∈M. �

At this point, we know that M is a σ-algebra, and that it contains the Borel σ-algebra
since it contains the open sets (Step 5 with Step 3), so that Step 4 shows that µ is a
Borel measure. The “obvious” property µ(X) = Λ(1) measure shows that µ is finite on
compact sets; the regularity property (5.1) is just the definition of µ+ (which coincides
with µ on M), and (5.2) is the definition of µ−. Hence µ is indeed a Radon measure.
Now the inner regularity also ensures that µ is complete: if E ∈ M satisfies µ(E) = 0
and F is any subset of E, then any compact subset K of F is also a compact subset of
E, hence satisfies

µ(K) 6 µ(E) = 0,

leading to µ−(F ) = 0 = µ+(F ).
Therefore, the proof of Parts (1) and (2) of the Riesz Representation Theorem will

be concluded after the last step.
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Proof of Step 6. Since µ is a finite Borel measure, we already know that any
f ∈ C(X) is integrable with respect to µ. Now, to prove that (5.4) holds for f ∈ C(X),
we can obviously assume that f is real valued, and in fact it suffices to prove the one-sided
inequality

(5.9) Λ(f) 6
∫
X

f(x)dµ(x),

since linearity of Λ we lead to the converse inequality by applying this to −f :

Λ(f) = −Λ(−f) > −
∫
X

−f(x)dµ(x) =

∫
X

f(x)dµ(x).

Moreover, since

Λ(1) = µ(X) =

∫
dµ,

we can assume f > 0 (replacing f , if needed, by f+‖f‖∞ > 0.) Writing then M = ‖f‖∞,
we have

f(x) ∈ [0,M ]

for all x ∈ X.
Trying to adapt roughly the argument used in the case of Riemann integration, we

want to bound f by (continuous versions of) step functions converging to f . For this,
denote K = supp(f) and consider n > 1; we define the sets

Ei = f−1
(] i
n
,
i+ 1

n

])
∩K

for −1 6 i 6Mn.
These sets are in BX since f is measurable, hence in M. They are also disjoint, and

of course they cover K. Now, for any ε > 0, we can find open sets

Vi ⊃ Ei

such that
µ(Vi) 6 µ(Ei) + ε,

by (5.1), and we may assume that

Vi ⊂ f−1
(] i
n
,
i+ 1

n
+ ε
[)
,

by replacing Vi, if needed, by the open set

Vi ∩ f−1
(] i
n
,
i+ 1

n
+ ε
[)
.

Now we use Proposition 5.2.3, (3) to construct functions gi 4 χVi such that∑
gi(x) = 1

for all x ∈ K. Consequently, since supp(f) = K, we get

Λ(f) = Λ
(∑

i

fgi

)
=
∑
i

Λ(fgi) 6
∑
i

(i+ 1

n
+ ε
)

Λ(gi)

since
0 6 fgi 6 ((i+ 1)/n+ ε)gi,

and thus

Λ(f) 6
∑
i

(i+ 1

n
+ ε
)

(µ(Ei) + ε)
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since Λ(gi) 6 µ(Vi) 6 µ(Ei) + ε. Letting, ε→ 0, we find

Λ(f) 6
∑
i

i+ 1

n
µ(Ei) =

∫
X

sn(x)dµ(x) +
1

n

∑
i

µ(Ei)

6
∫
X

sn(x)dµ(x) +
µ(K)

n
,

where sn is the step function

sn =
∑
i

i

n
χEi .

Obviously, we have sn 6 f , and finally we derive

Λ(f) 6
∫
X

f(x)dµ(x) +
µ(K)

n
,

for all n > 1, which leads to (5.9) once n tends to infinity... �

Remark 5.3.1. In the case of constructing the Lebesgue measure on [0, 1], this last
Step 6 may be omitted, since we have already checked in that special case that the
measure obtained from the Riemann integral satisfies

µ([a, b]) = b− a
for a < b.

We now come to the proof of Part (3). The subtle point is that it will depend on an
application of what has already been proved...

Proposition 5.3.2 (Radon measures on σ-compact spaces). Let X be a σ-compact
topological space, and µ any Borel measure on X finite on compact sets. Then µ is a
Radon measure. Additionally, the inner regularity (5.2) holds for any E ∈ B, not only
for those E which are open or have finite measure.

Proof. Since µ is finite on compact sets, we can consider the linear map

Λ : f 7→
∫
X

f(x)dµ(x)

on Cc(X).
As we observed in great generality in Proposition 5.1.2, this is a well-defined non-

negative linear map. Hence, according to Part (2) of the Riesz Representation Theorem
– which we already proved –, there exists a Radon measure ν on X such that∫

X

f(x)dµ(x) = Λ(f) =

∫
X

f(x)dν(x)

for any f ∈ Cc(X). Now we will simply show that µ = ν, which will give the result.
For this, we start by the proof that inner regularity for ν holds for all Borel subsets

(because X is σ-compact; note that if X is compact, this step is not needed as there are
no Borel set with infinite measure). Indeed, we can then write

X =
⋃
n>1

Kn with Kn compact,

and we can assume Kn ⊂ Kn+1 (replacing Kn, if needed, with the compact set Kn ∪
Kn−1 ∪ · · · ∪K1). Then if E ∈ B has infinite measure, we have

lim
n→+∞

ν(E ∩Kn) = ν(E) = +∞.
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Given any N > 0, we can find n such that ν(E ∩Kn) > N . Then (5.2), applied to
E ∩Kn, shows that there exists a compact set K ⊂ E ∩Kn ⊂ E with

ν(K) > ν(E ∩Kn)− 1 > N − 1,

and hence
sup{ν(K) | K ⊂ E} = +∞,

which is (5.2) for E.
Once this is out of the way, we have the property

(5.10)

∫
X

fdµ(x) =

∫
X

fdν(x) for all f ∈ Cc(X).

We will first show that

(5.11) µ(V ) = ν(V )

if V ⊂ X is open.
For this, we use the σ-compactness of X to write

V =
⋃
n>1

Kn

where Kn is compact for all n and Kn ⊂ Kn+1. Using Proposition 5.2.3, (1), we can find
functions fn ∈ Cc(X) such that

χKn 6 fn 6 χKn+1

for all n, and
0 6 fn 6 fn+1

for all n, and moreover
lim

n→+∞
fn(x) = χV (x)

for all x ∈ X: indeed, all these quantities are 0 for x /∈ V , and otherwise we have x ∈ Kn

for all n large enough, so that fn(x) = 1 for all n large enough. We now apply the
monotone convergence theorem for both µ and for ν, and we obtain

µ(V ) = lim
n→+∞

∫
X

fn(x)dµ(x) = lim
n→+∞

∫
X

fn(x)dν(x) = ν(V ),

which gives (5.11).
Now we extend this to all Borel subsets. First, if E ⊂ X is a Borel set such that

ν(E) < +∞, and ε > 0, we can apply the regularity of ν to find K and V with

K ⊂ E ⊂ V,

and K is compact, V is open, and ν(V −K) < ε.
However, since V −K ⊂ X is also open, it follows that we also have

µ(V −K) = ν(V −K) < ε,

and hence – using monotonicity and (5.11), – we get the inequalities

µ(E) 6 µ(V ) = ν(V ) 6 ν(E) + ε

and4

ν(E) 6 ν(V ) = µ(V ) 6 µ(E) + ε.

Since ε > 0 was arbitrary, this gives µ(E) = ν(E).

4 Write the disjoint union V = (V − E) ∪ E to get µ(V ) = µ(V − E) + µ(E) and µ(V − E) 6
µ(V −K) < ε since K ⊂ E.
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Finally, when E ∈ M has infinite measure, we just observe that regularity for ν and
E shows that, for any N > 1, we can find a compact subset K ⊂ E with ν(K) > N ; since
µ(K) = ν(K) by the previous case, we get µ(E) = +∞ = ν(E) by letting N → +∞. �

Note that this proof has shown the following useful fact:

Corollary 5.3.3 (Integration determines measures). Let X be a σ-compact topolog-
ical space, and let µ1 and µ2 be Borel measures on X finite on compact sets, i.e., Radon
measures on X. If we have∫

X

f(x)dµ1(x) =

∫
X

f(x)dµ2(x) for all f ∈ Cc(X),

then µ1 = µ2.

Proof. This is contained in the previous proof (with µ and ν instead of µ1 and µ2,
starting from (5.10)). �

The following is also useful:

Corollary 5.3.4. Let X be a σ-compact topological space, µ1 and µ2 two Borel
measures on X finite on compact sets. Let

K = {E ∈ B | µ1(E) = µ2(E)}.

(1) If K contains all compact sets in X, then µ1 = µ2.
(2) If K contains all open subsets in X, then µ1 = µ2.

Proof. Since µ1 and µ2 are Radon measures and (5.2) holds for all E ∈ B by the
lemma above, we can use (5.2) in case (1), or (5.1) in case (2). �

In Section 5.6, we will derive more consequences of the uniqueness statement in the
Riesz Representation Theorem, but before this we derive some important consequences
of the first two parts.

5.4. Approximation theorems

Consider a Borel measure µ on X, finite on compact sets. Then the compactly-
supported functions are not only integrable and bounded, their p-th power is also in-
tegrable for all p > 1. Thus, continuous functions provide a subset of the Lp-spaces
Lp(X,µ), for any p > 1 (including p = +∞). As one can imagine, the continuity of these
functions makes them fairly well-behaved compared with arbitrary measurable functions,
and it is natural to ask “how large” is the space they generate in the Lp spaces. It is very
convenient that this space is dense for the Lp-norm, if p < +∞.

Theorem 5.4.1 (Density of continuous functions in Lp). Let X be a locally compact
space, µ a Radon measure on X.

(1) For any p ∈ [1,+∞[, the image of Cc(X) in Lp(µ) is dense in Lp(µ) for the
Lp-norm, i.e., for any f ∈ Lp(X,µ) and any ε > 0, there exists g ∈ Cc(X) such that(∫

X

|f(x)− g(x)|pdµ(x)
)1/p

< ε.

(2) For p = +∞, the closure of Cc(X) in L∞(X), with respect to the L∞-norm, is
contained in the image of the space Cb(X) of bounded continuous functions.
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Remark 5.4.2. Most often, the closure of Cc(X) in L∞ is not equal Cb(X). For in-
stance, when X = Rd, the closure of Cc(R

d) in L∞(Rd) is the space C0(Rd) of continuous
functions such that

lim
‖x‖→+∞

f(x) = 0

(functions going to 0 at infinity). Indeed, consider a sequence (fn) of functions in Cc(R
d),

converging uniformly to f . We know that f is continous. Moreover, we can write

|f(x)| 6 |f(x)− fn(x)|+ |fn(x)|
for any x and any n > 1, and given an arbitrariy ε > 0, we find first n0 such that

‖f − fn0‖∞ < ε

from which it follows that
|f(x)| 6 ε+ |fn0(x)|

for all x, and then, since fn0(x) = 0 if x /∈ supp(fn), we find that |f(x)| < ε for all x such
that ‖x‖ is large enough; hence the limit f is in C0(Rd).

Conversely, given f ∈ C0(Rd), we can approach it arbitrarily closely by a sequence of
functions in Cc(R

d) of the type
fn = fgn

where gn ∈ Cc(Rd) satisfies

χ[−n,n]d 6 gn 6 χ[−2n,2n]d ,

Indeed, we have

‖f − fn‖∞ 6 sup{|f(x)| | ‖x‖ 6 n} → 0.

Proof of Theorem 5.4.1. Part (2) is simply the expression of the fact that a
uniformly convergent sequence of continuous functions has a limit which is continuous
(and that any convergent sequence in a normed vector space is bounded).

To prove (1), the idea is to reduce the problem to the approximation of characteristic
functions of measurable sets, and for the latter to appeal to the regularity conditions (5.1)
and (5.2).

More precisely, let us denote by V the C-vector space which is the closure of the
image of Cc(X) in Lp(µ). By Lemma 5.4.3 below, it follows that V contains all functions
of the type f = χE, where E ⊂ X is a measurable set of finite measure (these functions
are obviously in Lp(µ) for p < +∞).

Now by linearity, we deduce that V contains all non-negative step functions which
are in Lp(µ). Consider now f > 0 such that f ∈ Lp(µ), and let (sn) be, as usual, a
non-decreasing sequence of non-negative step functions such that

sn(x)→ f(x)

for all x ∈ X (as given by Proposition 2.2.4). Since sn 6 f , we have also sn ∈ Lp(µ), and
we now prove that the convergence sn → f holds also in Lp(µ). From this, using linearity
again, it follows finally that V = Lp(µ), which is the conclusion we want.

Let gn = |f − sn|p. We have gn(x)→ 0 for all x, and we want to apply the dominated
convergence theorem. Using the inequality

(a+ b)p 6 2p/q(|a|p + |b|p)
(where p−1 + q−1 = 1, this being a “trivial” version of the Hölder inequality), we get

|gn| 6 2p/q(|f |p + |sn|p) 6 21+p/q|f |p ∈ L1(µ),
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so that we can indeed apply the dominated convergence theorem, which gives

‖f − sn‖pp =

∫
X

|gn|dµ→ 0

as desired. �

Here is the technical lemma we used:

Lemma 5.4.3. Let X be locally compact, µ a Radon measure on X and p ∈ [1,+∞[.
For any E ⊂ X with finite measure, and any ε > 0, there exists f ∈ Cc(X) such that

‖f − χE‖p < ε.

Proof. Given ε > 0, the regularity of Radon measures (5.2) and (5.1) shows that
there exist K ⊂ E compact, U ⊃ E open, such that

µ(U −K) < ε.

Furthermore, by Urysohn’s lemma, there exists f continuous on X such that

χK 6 f 6 χU

and supp(f) ⊂ U (what we denoted f 4 χU in the proof of Riesz’s Theorem). In
particular, f is compactly supported. We then have∫

X

|f − χE|pdµ 6
∫
U−K
|f − χE|pdµ 6 µ(U −K) < ε

since |f − χE| 6 1 on X and f coincides with χE both U and inside K. Thus we get

‖f − χE‖p < ε1/p,

and the result follows (changing ε into εp). �

Remark 5.4.4. If X = R, or an open subset of Rd more generally, one can also ask
about more regularity than continuity for the Lp space. For instance, the following is
easy to show:

Proposition 5.4.5. Let µ be a Radon measure on R, and let p ∈ [1,+∞[. For any
k > 1, the image of the space Ck

c (Rd) of Ck functions with compact support is dense in
Lp(µ).

Proof. Using the previous theorem, it is enough to approximate continuous functions
with compact support using Ck functions. Let f ∈ Cc(R) be given, and let K = supp(f).
Using the Weierstrass approximate theorem, the function f is uniform limit, on K, of
polynomials fn (see Theorem 4.2.4). In Lp(K,µ), we then have also fn → f . However,
this does not extend to Lp(R, µ) because the polynomials typically are not integrable
“at infinity”, nor compactly supported. To work around this, let N > 0 be such that
K ⊂ [−N,N ], and consider

gn = fnϕ

where ϕ is a function in Ck
c (R) which satisfies

χ[−N,N ] 6 ϕ 6 χ[−2N,2N ],

We still have gn → f uniformly, but also gn → f in Lp(R, µ).

115



The explicit construction of ϕ is not particularly difficult (one must connect the “top”
on [−N,N ] where it should be equal to 1 to the “bottom” outside [−2N, 2N ] where it
vanishes, with Ck connections); here is one possible solution:

ϕ(x) =



1 if −N 6 x 6 N(
1−

( x
N
− 1
)k)k

if N 6 x 6 2N(
1− (−1)k

( x
N

+ 1
)k)k

if − 2N 6 x 6 −N
0 if |x| > 2N.

�

In the next chapter (in particular Corollary 6.4.7), even stronger versions will be
proved, at least when µ is the Lebesgue measure.

5.5. Simple applications

We now present two simple but important applications of the approximation theorem
(Theorem 5.4.1. The idea is the same in both cases: given a property to check for all
f ∈ Lp, it suffices to do so when f is continuous and compactly supported, provided the
property in question is “continuous” with respect to the Lp-norm.

Proposition 5.5.1 (Continuity of translation operators). Let d > 1 be an integer
and let p ∈ [1,+∞[. For any f ∈ Lp(Rd), we have

(5.12) lim
h→0

∫
Rd

|f(x+ h)− f(x)|pdλn(x) = 0.

Here Lp(Rd) refers, of course, to the Lebesgue measure on Rd.

Remark 5.5.2. (1) This statement is not obvious at all, because the function which
is being integrated, namely

x 7→ f(x+ h)− f(x)

if p = 1, has no reason to be small when h 6= 0, since f is not continuous but merely
integrable. Indeed, the fact that the statement fails for p = +∞ shows that this result
is only an average statement for the differences f(x + h) − f(x). For instance, consider
f = χ[0,1] ∈ L∞(R). Then, for any h 6= 0, we have

sup{|f(x+ h)− f(x)|} = 1,

(e.g., because f(0)− f(−h) = 1 if h > 0).

(2) Here is an abstract formulation (for readers familiar with the basic facts of func-
tional analysis) which gives some insight into the meaning of the result. For any h ∈ R,
one can consider the translation operator defined by

Th

{
Lp(Rd)→ Lp(Rd)

f 7→ (x 7→ f(x+ h)).

It follows from the invariance of Lebesgue measure under translation (that we will
prove below in Theorem 5.6.1) that

‖Th(f)‖p = ‖f‖p
for f ∈ Lp(µ), so that Th is an isometry (and in particular, it is continuous). Moreover
Th+j = Th ◦ Tj.
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Now the proposition may be translated to the assertion that the map

ρ : h 7→ Th

is itself continous at 0, with respect to the operator norm on the space of linear maps.
Indeed, we have T0 = Id, and one may write (5.12) in the form

lim
h→0
‖f − Th(f)‖p = 0,

for any f ∈ Lp(Rd). The implication limTh = T0 is then a consequence of the Banach-
Steinhaus theorem of functional analysis.

Proof. Notice first that, given f ∈ Lp(Rd) and a fixed real number h, the function

g(x) = f(x+ h)

is well-defined in Lp (changing f on a set of measure zero also changes g on a set of
measure zero). Also, we have g ∈ Lp(Rd) (and indeed ‖g‖p = ‖f‖p, e.g., by the change
of variable formula). Thus the integrals in (5.12) exist for all h ∈ R.

Now we start by proving the result when f ∈ Cc(Rd). Let

ψ(h) =

∫
Rd

|f(x+ h)− f(x)|pdλn(x) =

∫
Rd

ϕ(x, h)dλn(x)

where

ϕ(x, h) = |f(x+ h)− f(x)|p

for (x, h) ∈ Rd×] − 1, 1[d. When f is continuous, the function ϕ is continuous at h = 0
for any fixed x. Moreover, we have

0 6 ϕ(x, h) 6 2p/q(|f(x+ h)|p + |f(x)|p) 6 2p/q‖f‖p∞χQ(x)

where χQ is the characteristic function of a compact set Q large enough so that

−h+ supp(f) ⊂ Q

for h ∈]− 1, 1[d (if supp(h) ⊂ [−A,A]d, one may take for instance Q = [−A− 1, A+ 1]d).
Since Q is compact, the function χQ is integrable. We can therefore apply Proposi-

tion 3.1.1 and deduce that ψ is continuous at h = 0. Since ψ(0) = 0, this leads exactly
to the result.

Now we apply the approximation theorem. Let f ∈ Lp(µ) be any function, and let
ε > 0 be arbitrary. By approximation, there exists g ∈ Cc(X) such that

‖f − g‖p < ε,

and we then have

|f(x+ h)− f(x)|p 6 3p/q(|f(x+ h)− g(x+ h)|p + |g(x+ h)− g(x)|p + |g(x)− f(x)|p),

so that∫
Rd

|f(x+ h)− f(x)|pdλn(x) 6 3p/q
(

2‖f − g‖pp +

∫
Rd

|g(x+ h)− g(x)|pdλn(x)
)
.

Since g is continuous with compact support, we get from the previous case that

0 6 lim sup
h→0

∫
Rd

|f(x+ h)− f(x)|pdλn(x) 6 31+p/qεp,

and since ε > 0 is arbitrary, the result follows. �
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The next application concerns the Fourier transform. Recall (see Section 3.2) that,

for f ∈ L1(R), we have defined the Fourier transform f̂ : R→ C by the formula

f̂(t) =

∫
R

f(y)e(−yt)dy

where e(z) = e2iπz for z ∈ C. We showed that f̂ is a bounded continuous function
(Proposition 3.2.3). In fact, more is true:

Theorem 5.5.3 (Riemann-Lebesgue lemma). Let f ∈ L1(R). Then the Fourier
transform of f goes to zero at infinity, i.e., we have

lim
t→±∞

f̂(t) = 0.

We give three different (but related...) proofs of this fact, to illustrate various tech-
niques. The common feature is that the approximation theorem is used (implicitly or
explicitly).

First proof of the Riemann-Lebesgue lemma. We write

f̂(t) =

∫
R

f(x)e(−xt)dx = −
∫
R

f(x)e
(
−t
(
x+

1

2t

))
dx = −

∫
R

f
(
y − 1

2t

)
e(−yt)dy

(because e(1/2) = eiπ = −1, by the change of variable x = y − (2t)−1). Hence we have
also

f̂(t) =
1

2

∫
R

(
f(x)− f

(
x− 1

2t

))
e(−xt)dx,

from which we get

|f̂(t)| 6
∫
R

∣∣∣f(x)− f
(
x+

1

2t

)∣∣∣dx.
As t→ ±∞, we have 1/(2t)→ 0, and hence, applying (5.12) with p = 1, we get

lim
t→±∞

f̂(t) = 0.

�

Second proof. We reduce more directly to regular functions. Precisely, assume
first that f ∈ L1(R) is compactly support and of C1 class. By Proposition 3.2.3, (3), we
get

−2iπtf̂(t) = f̂ ′(t)

for t ∈ R, and this shows that the continuous function

g(t) = |t|f̂(t)

is bounded on R, which of course implies the conclusion

lim
t→±∞

f̂(t) = 0

in that case – indeed, in a rather stronger quantitative form.
Now, we know that C1

c (R) is dense in L1(R) for the L1-norm (by Proposition 5.4.5),
and we proceed as before: given any function f ∈ L1(R) and any ε > 0, there exists
g ∈ C1

c (R) such that
‖f − g‖1 < ε,

and it follows that

|f̂(t)| 6 |ĝ(t)|+
∫
R

|f(y)− g(y)|dy 6 |ĝ(t)|+ ε
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for any t ∈ R. Letting t→ ±∞, this gives

lim sup
t→±∞

|f̂(t)| 6 ε,

and again the result is obtained by letting ε → 0. Or one can conclude by noting that
the Fourier transform map is continuous from L1 to the space of bounded continuous
functions, and since the image of the dense subspace of C1 functions with compact support
lies in the closed (for the uniform convergence norm) subspace C0(R) of Cb(R), the image
of the whole of L1 must be in this subspace. �

Third proof. This time, we start by looking at f = χ[a,b], the characteristic function
of a compact interval. In that case, the Fourier transform is easy to compute: for t 6= 0,
we have

f̂(t) =

∫ b

a

e(−xt)dx = − 1

2iπt
(e(−bt)− e(−at)),

and therefore
|f̂(t)| 6 (πt)−1 → 0

as |t| → +∞. Using linearity, we deduce the same property for finite linear combinations
of such characteristic functions.

Now let f ∈ Cc(R) be given, and let K = supp(f) ⊂ [−A,A] for some A > 0.
Since f is uniformly continuous on [−A,A], one can write it as a uniform limit (on
[−A,A] first, then on R) of such finite combinations of characteristic functions of compact
intervals. The same argument as the one used in the second proof then proves that the
Riemann-Lebesgue lemma holds for f , and the general case is obtained as before using
the approximation theorem. �

5.6. Application of uniqueness properties of Borel measures

In this section, we will use the unicity properties of Radon measures in the case of
X = Rn to give a very useful characterization of Lebesgue measure in terms of invariant
properties. In turn, this will lead to a fairly direct proof of the change of variable formula
in Rn that was stated in the previous chapter.

Theorem 5.6.1 (Invariance of Lebesgue measure under translation). Let n > 1 be an
integer.

(1) The Lebesgue measure λn on Rn is invariant under translations, i.e., for any Borel
set E ⊂ Rn and any t ∈ Rn, we have

λn({y ∈ Rn | y = x+ t for some x ∈ E}) = λn(E).

Equivalently, if
τt : x 7→ x+ t

denotes the translation by t map on Rn, we have

τt,∗(λn) = λn

for all t ∈ Rn.
(2) Conversely, let µ be a Borel measure on Rn such that µ is finite on compact sets

and µ is invariant under translation. Then we have

µ(E) = cλn(E)

for all E ⊂ Rn measurable, where c > 0 is a constant, namely c = µ([0, 1]n).

As a preliminary, we recall the following important fact:
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Lemma 5.6.2 (σ-compacity in Rn). For n > 1, the space Rn with the usual topology
is σ-compact.

Proof. Indeed, given an open set U ⊂ Rn, let K be the collection of all closed balls
contained in U which have finite rational radius r > 0 and rational center x0 ∈ Qn; this
is a countable collection of compact sets, and we have the countable union

U =
⋃
K∈K

K

since U is open: for any x ∈ U , we can find an open ball V = B(x, r) with center x and
radius r > 0 such that x ∈ V ; then given a positive rational radius r0 < r/2 and a point
x0 ∈ Qn ∩ B(x, r0), the closed ball B̄(x0, r0) is included in B(x, r), hence in U , by the
triangle inequality, and therefore it is an element of K such that x ∈ B̄(x0, r0). �

Proof. (1) Let t ∈ Rn be given, and let µ = τt,∗(λ) be the image measure. This is a
Borel measure on Rn, and since τt is a homeomorphism, it is finite on compact sets (the
inverse image of a compact being still compact). Thus (by Proposition 5.3.4), we need
only check that µ(U) = λ(U) when U ⊂ Rn is open.

For this purpose, we first consider the case n = 1. Then, we know that U is the union
of (at most) countably many open intervals, which are its connected components:

U =
⋃
n>1

]an, bn[

with an < bn for all n > 1. Since translating an interval gives another interval of the
same length, the property λ(τt,∗(U)) is clear in that case by additivity of the measures.

Now, for n > 2, we proceed by induction on n using Fubini’s Theorem. We first
observe that the translation τt can be written as a composition of n translations in each
of the n independent coordinate directions successively; since composition of measures
behaves as expected (i.e., (f ◦ g)∗ = f∗ ◦ g∗), we can assume that t has a single non-zero
component, and because of the symmetry, we may as well suppose that

t = (t1, 0, . . . , 0)

for some t1 ∈ R. We then have

µ(U) =

∫
Rn−1

(∫
R

f(u+ t1, x)dλ1(u)
)
dλn−1(x)

for any U ⊂ Rn, where f(x, u) is the characteristic function of U . When x ∈ Rn−1 is
fixed, this is the characteristic function of a “slice” tx(U), which is an open subset of R.
Applying the case n = 1, we find that∫

R

f(u+ t1, x)dλ1(u) =

∫
R

f(u, x)dλ1(u),

and therefore

µ(U) =

∫
Rn

f(u, x)dλ1 ⊗ dλn−1 = λn(U),

as claimed.
(2) For the converse (which is the main point of this theorem), we first denote Q =

[0, 1]n (the compact unit cube in Rn), and we write c = µ(Q) < +∞; we want to show
that µ = cλn. Let then

K = {E ∈ B | µ(E) = cλn(E)},
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be the collection of sets where µ and cλ coincide; this is not empty since it contains Q.
By Proposition 5.3.4, it is enough to prove that K contains all open sets in Rn. Before
going to the proof of this, we notice that K is obviously stable under disjoint countable
unions.

The main idea is that K has also the following additional “divisibility” property: if a
set E ∈ K can be expressed as a finite disjoint union of translates of a fixed set F ⊂ Rn

(measurable of course), then this set must also be in K. Indeed, the expression

E =
⋃

16i6n

(ti + F )

(for some n > 1) implies

ncλn(F ) = cλn(E) = µ(E) =
∑

µ(ti + F ) = nµ(F )

and therefore µ(F ) = cλn(F ).
We want to apply this, e.g., to claim that R = [0, 1/2]n ∈ K because Q is a union of

2n translates of R; however, we must first deal with the technical issue of showing that
the boundary parts (which prevent us from writing a really disjoint union) have measure
zero.

But more generally, if H ⊂ Rn is an affine hyperplane parallel to one of the coordinate
axes, i.e., a set of the type

H = {x ∈ Rn | xi = a}
(for some fixed a ∈ R and i 6 n), we have µ(H) = 0. Indeed, by invariance under
translation we can assume a = 0, and then we can write

H =
⋃
m∈Zn

(m+Q′)

where

Q′ = {x ∈ [0, 1]n | xi = 0}.
But since we have a disjoint union⋃

j>1

(eij
−1 +Q′) ⊂ Q,

the invariance under translation gives∑
i>1

µ(Q′) 6 c < +∞,

which is only possible if µ(Q′) = 0. Here ei denotes the i-th canonical basis vector. It
follows therefore that µ(H) = 0 as claimed. In particular, we see that [0, 1[n is in K.

Now, applying the previous idea to cubes of the type

Kx,k =
n∏
i=1

[
xi, xi +

1

2k

]
where k > 0, x ∈ Rn, we see that all of these lie in K: indeed – up to various sets
which are subsets of finitely many hyperplanes – a disjoint union of translates of Kx,k is
a translate of

Q′′ =
[
0,

1

2k

]n
,

while [0, 1]n ∈ K is itself the disjoint union of 2k translates of Q′′.
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Now, any open set U can be written as a countable union of closed cubes of the type
above (this is the same proof as the one used in Lemma 5.6.2), and hence we the result
that K contains all open sets, as desired. �

We now use this property to derive an easy proof of the change of variable. The reader
is encouraged to read to proof of the change of variable formula first when n = 1; in that
case, certain obvious simplifications will arise, and the argument will probably be more
transparent. In particular, the next lemma, which is the case of a linear substitution, it
not necessary for n = 1.

Lemma 5.6.3 (Linear change of variable). Let T ∈ GL(Rn) be an invertible linear
map. We then have

T∗(λn) = | det(T )|−1λn.

Proof. Since the right-hand side is a (positive) multiple of the Lebesgue measure, the
previous theorem shows that it is natural to try to prove that the measure on the left-hand
side is invariant under translation (which will imply the result, up to the identification
of the proportionality constant).

But the invariance of µ = T∗(λn) is easy. First, it is certainly a Borel measure finite
on compact sets (since T is a homeomorphism, again). Now, for any t ∈ R, let τt denote
the corresponding translation map

τt(x) = x+ t.

We then have
τt,∗(µ) = (τt ◦ T )∗(λn),

(since composition and direct images work well together), and then we note that, by
linearity, we have

(τt ◦ T )(x) = T (x) + t = T (x+ T−1(t)) for all x ∈ Rn,

i.e., we have τt ◦T = T ◦τT−1(t). But since λn is invariant under all translations, it follows
that

τt,∗(µ) = (τt ◦ T )∗(λn) = T∗(τT−1(t),∗(λn)) = T∗(λn) = µ.

By Theorem 5.6.1, (2), we deduce that there exists a constant c > 0 such that

T∗(λn) = cλn,

and in fact that
c = T∗(λn)(Q) = λn(T−1(Q)) = | det(T )|−1

where Q = [0, 1]n, where the last step results from the geometric interpretation of the
determinant (Remark 4.4.7). �

We will now proceed to the proof of the general change of variable formula. Let U
and V ⊂ Rn be open sets, and let

ϕ : U → V

be a C1-diffeomorphism. In order to prove Theorem 4.4.6, we use the interpretation in
terms of image measures: we must show that

(5.13) ϕ∗(dλ(x)) = |Jϕ−1(y)|dλ(y),

where both sides are Borel measures on the set V .
In order to simplify the notation, we write J(y) = |Jϕ−1(y)|, and we denote

µ1 = ϕ∗(dλ(x)), µ2 = J(y)dλ(y).
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We must show that these measures are identical. First of all, they are certainly
finite on compact sets (in the case of µ1, this is because, ϕ being a homeomorphism,
the inverse image of a compact set is compact; in the case of µ2, this is simply because
the function J is continuous, hence bounded on compact sets). Thus each is a Radon
measure, and it is sufficient to prove that they coincide on open sets (Proposition 5.3.4).
However, the argument will be simplified by first observing that it is enough to show that
µ1 6 µ2. (Compare with the proof of (5.4), which was Step 6 in our proof of the Riesz
Representation Theorem).

Lemma 5.6.4 (Comparison of measures). With notation as above, we have

µ1(E) 6 µ2(E)

for any Borel set E ⊂ Rn.

Proof. Since µ1 and µ2 are Radon measures (because Rn is σ-compact), we have

µ1(E) = inf{µ1(U) : U ⊃ E open },
µ2(E) = inf{µ2(U) : U ⊃ E open },

and therefore this will follow for all E if we can show that the inequality µ1(W ) 6 µ2(W )
is valid when W ⊂ V is open. In turn, if W is open, we can write it as a countable union
of cubes

Qj = [aj,1, bj,1]× · · · × [aj,n, bj,n], j > 1

where the intersections of two of these cubes are either empty or contained in affine
hyperplanes parallel to some coordinate axes. Thus if µ1(Qj) 6 µ2(Qj) for all j, we get

µ1(W ) 6
∑
j

µ1(Qj) 6
∑
j

µ2(Qj) = µ2(W ),

where it is important to note that in the last equality we use the fact that if Z ⊂ Rn has
Lebesgue-measure zero, it also satisfies µ2(Z) = 0, by definition of measures of the type
fdµ. This property is not obvious at all concerning µ1, and hence we have to be quite
careful at this point.

Now we proceed to show that µ1(Q) 6 µ2(Q) when Q is any cube. We bootstrap
this from a weaker, but simpler inequality: we claim that, for any invertible linear map
T ∈ GL(n,R), we have

(5.14) µ1(Q) 6 | det(T )|−1Mnλ(Q),

where

M = sup{‖T ◦Dyϕ
−1‖ | y ∈ Q}.

For this, we first deal with the case T = 1; then, according to the mean-valued theorem
in multi-variable calculus, we know that

ϕ−1(Q) = {ϕ−1(x) | x ∈ Q}

is contained in another cube which has diameter at most M times the diameter of Q (the
diameter of a cube is defined as maxi |bi − ai| if the sides are [ai, bi]). In that case, the
inequality is clear from the formula for the measure of a cube.
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Now, given any T ∈ GL(n,R), we will reduce to this simple case by replacing ϕ with
ψ = ϕ ◦ T−1 and applying Lemma 5.6.3: we have

µ1(Q) = λ(ϕ−1(Q)) = λ(T−1(T ◦ ϕ−1(Q))

= T∗((ϕ ◦ T−1)−1(Q))

= | det(T )|−1λ(ψ−1(Q)) 6 | det(T )|−1Mnλ(Q),

since (in the computation of M for ψ) we have Dy(ψ
−1)) = T ◦Dy(ϕ

−1).
This being done, we finally proceed to the main idea: the inequality (5.14) is not

sufficient because M can be too large; but since ϕ−1 is C1, we can decompose Q into
smaller cubes where the continuous function y 7→ Dy(ϕ

−1) is almost constant; on each of
these, applying the inequality is very close to what we want.

Thus let ε > 0 be any real number; using the uniform continuity of y 7→ Dy(ϕ
−1) on

Q, we can find finitely many closed cubes Q1, . . . , Qm, with disjoint interior, and points
yj ∈ Qj, such that, first of all

J(yj) = min
y∈Qj
|J(y)|,

and also, for Tj = (Dyjϕ
−1)−1, we have

Mj = sup
y∈Qj
{‖Tj ◦Dyϕ

−1‖} 6 1 + ε.

Then, using monotony and additivity of measures (and, again, being careful that µ2

vanishes for Lebesgue-negligible sets, but not necessarily µ1), we apply (5.14) on each Qj

separely, and obtain

µ1(Q) 6
m∑
j=1

µ1(Qj) 6
m∑
i=1

(1 + ε)n| det(Tj)|−1λ(Qj).

Now we have
| det(Tj)|−1 = J(yj)

by definition, and we can express
m∑
i=1

J(yj)λ(Qj) =

∫
Q

s(y)dλn(y)

where the function s is a step function taking value J(yj) on Qj. By construction of the
yj, we have s 6 J , and therefore we derive

µ1(Q) 6 (1 + ε)n
∫
Q

J(y)dλn(y) = (1 + ε)nµ2(Q).

Now letting ε → 0, we obtain the inequality µ1(Q) 6 µ2(Q) that we were aiming
at. �

Finally, to conclude the proof of (5.13), we first easily obtain from the lemma the
inequality ∫

U

f(ϕ(x))dλn(x) 6
∫
V

f(y)J(y)dλn(y),

valid for any measurable f : V → [0,+∞]. We apply this to ϕ−1 now: for any g : U →
[0,+∞], the computation of the revelant Jacobian using the chain rule leads to∫

V

g(ϕ−1(y))dλn(y) 6
∫
U

g(x)J(ϕ(x))−1dλn(x),
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and if we select g so that

g(ϕ−1(y)) = f(y)J(y),

for a given f : V → [0,+∞], i.e.,

g(x) = f(ϕ(x))J(ϕ(x)),

we obtain the converse inequality∫
U

f(ϕ(x))dλn(x) >
∫
V

f(y)J(y)dλn(y).

5.7. Probabilistic applications of Riesz’s Theorem

In Section 3.4, we stated the Central Limit Theorem of probability (Theorem 3.4.9).
The statement is easier to understand in terms of the important notion of “convergence
in law” and its characterization in terms of distribution functions. We now define these
terms...

Definition 5.7.1 (Convergence in law and distribution function). Let (Ω,Σ, P ) be
a probability space.

(1) Let (Xn) be a sequence of random variables, with laws µn, and let X (resp. µ)
be a random variable (resp. a Borel probability measure on C). Then (Xn) converges in
law to X (resp. to µ) if and only if

lim
n→+∞

E(f(Xn)) = lim
n→+∞

∫
C

f(x)dµn(x) =

∫
X

f(x)dµ(x) = E(f(X))

for any continuous compactly-supported function f ∈ Cc(C). We denote this

Xn
law

=⇒ X, or Xn
law

=⇒ µ.

(2) Let X be a real-valued random variable (resp. µ a Borel probability measure on
R). The distribution function of X (resp. of µ) is the function, denoted FX or Fµ, defined
on R by

F (x) = P (X 6 x) = µ(]−∞, x]).

Remark 5.7.2. (1) Note that, in defining convergence in law, nothing requires in fact
that the random variables be defined on the same probability space, since the condition
to check only depend on the laws of the (Xn), which are measures on C. This means
that this notion of convergence is quite different than what is usually encountered; in
particular, it does not make sense to ask if convergence in law has any relation with
almost sure convergence.

(2) It is often useful to visualize a probability measure on R by looking at the graph
of its distribution function. This gives often very useful intuitive understanding of the
behavior of random variables which have this measure as probability law.

(3) From Corollary 5.3.3, we see – since C is σ-compact – that the measure µ such

that Xn
law

=⇒ µ, if it exists (of course, it may not...), is unique (as a Borel probability
measure on C).

In the next proposition, which seems merely technical but turns out to be rather
crucial, the space of compactly supported continuous functions, which is used to “test”
for convergence in law, is replaced by the larger one of bounded continuous functions.
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Proposition 5.7.3. Let (Xn) be a sequence of random variables on a fixed probability
space, with laws µn, and let µ be a Borel probability measure on C. Then we have

Xn
law

=⇒ µ if and only if, for any bounded continuous function f ∈ C(C) ∩ L∞(C), we
have

(5.15) lim
n→+∞

E(Xn) =

∫
C

f(x)dµ(x).

Proof. The condition indicated is stronger than the definition, since compactly-
supported functions are bounded, and hence we must only show that convergence in law
implies (5.15). Considering separately the real and imaginary parts of a complex-valued
bounded function f , we see that we may assume that f is real-valued, and after writing
f = f+ − f−, we may also assume that f > 0 (this is all because the condition to be
checked is linear).

The main point of the proof is the following deceptively simple point: in addition to the
supply of compactly-supported test functions that we have by definition, our assumption
that each µn and µ are all probability measures implies that (5.15) holds for the constant
function f = 1, which is bounded and continuous, but not compactly supported : indeed,
we have

µn(R) =

∫
R

dµn(x)→ 1 = µ(R).

Now fix f > 0 continuous and bounded. We need to truncate it appropriately to enter
the realm of compactly-supported functions. For instance, for any integer N > 0, let hN
denote the compactly supported continuous function such that

hN(x) =

{
1 if |x| 6 N,

0 if |x| > 2N,

and hN is affine-linear on [−2N,−N ] and [N, 2N ]. Thus we have in particular 0 6 hN 6 1.
We now write the inequalities

(5.16)

∫
R

fhNdµn 6
∫
R

fdµn =

∫
R

fhNdµn +

∫
R

f(1− hN)dµn,

valid for all n > 1. Since fhN ∈ Cc(R), we know that

lim
n→+∞

∫
R

fhNdµn =

∫
R

fhNdµ

because Xn
law

=⇒ µ. Moreover, since 1− hN > 0, we get∫
R

f(1− hN)dµn 6 ‖f‖∞
∫
R

(1− hN)dµn

and ∫
R

(1− hN)dµn = 1−
∫
R

hNdµn → 1−
∫
R

hNdµ =

∫
R

(1− hN)dµ

where we have used the crucial observation above and hN ∈ Cc(R).
Now let n→ +∞ in (5.16) for fixed N ; we obtain∫
R

fhNdµ 6 lim inf
n→+∞

∫
R

fdµn 6 lim sup
n→+∞

∫
R

fdµn 6
∫
R

fhNdµ+ ‖f‖∞
∫
R

(1− hN)dµ.
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We now finally let N → +∞ to make the truncation “vanish away”: since hN(x)→ 1
for all x ∈ R, we have

f(x)hN(x)→ f(x) and 0 6 f(x)hN(x) 6 f(x),

1− hN(x)→ 0 and 0 6 1− hN(x) 6 1,

so that we may apply twice the dominated convergence theorem and get∫
R

fhNdµ→
∫
R

fdµ and

∫
R

(1− hN)dµ→ 0,

which then give ∫
R

fdµ 6 lim inf
n→+∞

∫
R

fdµn 6 lim sup
n→+∞

∫
R

fdµn 6
∫
R

fdµ.

This means precisely that we have

lim
n→+∞

∫
R

f(x)dµn(x) =

∫
R

f(x)dµ(x),

as claimed. �

Here are the basic properties of the distribution function, which explain how to use
it to visualize a probability measure.

Proposition 5.7.4. (1) Let µ be a Borel probability measure on R. The distribution
function F of µ is non-negative, non-decreasing, and satisfies

lim
x→−∞

F (x) = 0, lim
x→+∞

F (x) = 1, and µ(]a, b]) = F (b)− F (a)

for any real numbers a < b.
(2) In addition, for any x ∈ R, the limits of F at x exist on the left and on the

right, and F is continuous at all x ∈ R, except possibly on a set D, at most countable,
characterized by

D = {x ∈ R | µ({x}) > 0.

(3) The distribution function characterizes µ uniquely, i.e., if µ and ν are Borel
probability measures with Fµ = Fν, then we have µ = ν.

Proof. (1) is elementary using basic properties of measures (in particular the fact
that µ(R) = 1 < +∞).

(2) The existence of limits on the left and on the right is a general property of any
monotonic function. Then the continuity outside of at most countably many points
is a consequence (note that if F (x−) < F (x+), there exists a rational y(x) such that
F (x−) < y(x) < F (x+), and distinct x must least to distinct y(x) by monotony).

Finally, for any x ∈ R, we find that

µ({x}) = lim
n→+∞

µ(]x− n−1, x+ n−1])

= lim
n→+∞

F (x+ n−1)− F (x− n−1) = F (x+)− F (x−)

which gives the characterization of the points where F is not continuous.
In a similar way, we see that for any open interval I =]a, b[, we have

µ(I) = lim
n→+∞

µ(]a, b− n−1]) = lim
n→+∞

(F (b− n−1)− F (a))

= F (b−)− F (a)
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if −∞ < a < b < +∞, and we get in the same manner

µ(]−∞, a[) = F (a−),

µ(]a,+∞[) = 1− F (a),

µ(R) = 1,

which shows that µ(I) only depends on F for open intervals. Countable additivity shows
that the same is true for any open set (written as usual as the union of its countably
many connected components). Now, since a Borel probability measure on R is a Radon
measure, we derive from Proposition 5.3.4, (2) that F determines µ. �

This proposition leads to two natural questions: first, given a function F on R which
satisfies the conditions in (1), does there exist a Borel probability measure µ on R for
which the distribution function is F? And, secondly, given the distribution function Fµ,
can we use it directly to express an integral like∫

R

f(x)dµ(x)

for suitable functions f?
The next formula gives a partial answer:

Proposition 5.7.5 (Integration by parts using distribution function). Let µ be a
Borel probability measure on R with distribution function F . For any f ∈ C1

c (R), i.e., a
C1 function compactly supported, we have∫

R

f(x)dµ(x) = −
∫
R

f ′(x)F (x)dx.

In particular, if X is a random variable with law µ, we have

E(f(X)) = −
∫
R

f ′(x)F (x)dx.

Proof. Formally, this is an “integration by parts” formula, where F plays the role
of “indefinite integral” of µ. To give a proof, we start from the right-hand side∫

R

f ′(x)F (x)dx,

which is certainly well-defined since the function x 7→ f ′(x)F (x) is bounded and com-
pactly supported. Now we write F itself as an integral:

F (x) = µ(]−∞, x]) =

∫
R

χ(x, y)dµ(y),

where χ : R2 → R is the characteristic function of the closed subset

D = {(x, y) | y 6 x} ⊂ R2

of the plane. Having expressed the integral as a double integral, namely∫
R

f ′(x)F (x)dx =

∫
R

∫
R

f ′(x)χ(x, y)dµ(y)dx,

we proceed to apply Fubini’s theorem, which is certainly permitted here since

|f ′(x)χ(x, y)| 6 ‖f ′‖∞χK(x)

128



for all x and y, where K = supp(f), and we have∫
R

∫
R

χK(x)dµ(y)dx 6 λ(K) < +∞.

Fubini’s Theorem then leads to∫
R

f ′(x)F (x)dx =

∫
R

∫
R

f ′(x)χ(x, y)dxdµ(y)

=

∫
R

∫
[y,+∞]

f ′(x)dxdµ(y)

= −
∫
R

f(y)dµ(y).

�

Because of this expression, we may expect that one can give a definition of convergence
in law which uses only the distribution function. This is indeed possible, and indeed the
resulting equivalent definition is often taken as starting point for the theory.

Proposition 5.7.6. Let (Xn), n > 1, be a sequence of real-valued random variables,
with law µn and distribution functions Fn, respectively. Let µ be a Borel probability

measure on R with distribution function F . Then we have Xn
law

=⇒ X if and only if

lim
n→+∞

Fn(x0) = F (x0)

for all x0 such that F is continuous at x0.

Proof. First, assume that Fn(x)→ F (x) at all x where F is continuous. If we start
with f ∈ C1

c (R), then Proposition 5.7.5, gives

E(f(Xn)) =

∫
R

f(x)dµn(x) = −
∫
R

f ′(x)Fn(x)dλ(x),

and since the set of discontinuities of F is at most countable, hence has measure zero, we
have

f ′(x)Fn(x)→ f ′(x)F (x)

for almost all x ∈ R. Moreover, we have

|f ′(x)Fn(x)| 6 ‖f ′‖∞χK(x) ∈ L1(R),

(where K = supp(f ′) which is compact) and the Dominated Convergence Theorem is
applicable and leads to

−
∫
R

f ′(x)Fn(x)dλ(x)→ −
∫
R

f ′(x)F (x)dλ(x) =

∫
R

f(x)dµ(x),

by Propostion 5.7.5 again.
We now extend this to f ∈ Cc(R), not necessarily differentiable. For any ε > 0, we

know that there exists g ∈ C1
c (R) such that

‖f − g‖∞ < ε

(see the proof of Proposition 5.4.5), and we then write∣∣∣∫
R

fdµn −
∫
R

fdµ
∣∣∣ 6 ∣∣∣∫

R

(f − g)dµn

∣∣∣+
∣∣∣∫

R

gdµn −
∫
R

gdµ
∣∣∣+
∣∣∣∫

R

(g − f)dµ
∣∣∣

6 2ε+
∣∣∣∫

R

gdµn −
∫
R

gdµ
∣∣∣.
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Letting n→ +∞, we find first that

lim sup
n→+∞

(∫
R

fdµn −
∫
R

fdµ
)
6 2ε,

and then that the limit exists and is zero since ε was arbitrarily small. This proves the
first half of the result.

Now for the converse; since, formally, we must prove (5.15) with

f(x) = χ]−∞,x0](x),

where x0 is arbitrary, we will use Proposition 5.7.3 (note that f is not compactly sup-
ported; it is also not continuous, of course, and this explains the coming restriction on
x0). Now, for any ε > 0, we consider the function f given by

f(x) =

{
1 if x 6 x0

0 if x > x0 + ε

and extended by linearity on [x0, x0 + ε]. We therefore have

χ]−∞,x0] 6 f 6 χ]−∞,x0+ε],

and by integration we obtain

Fn(x0) = µn(]−∞, x0]) 6
∫
R

fdµn →
∫
R

fdµ

as n→ +∞, by Proposition 5.7.3, as well as∫
R

fdµ = lim
n→+∞

∫
R

fdµn 6 µ(]−∞, x0 + ε]) = F (x0 + ε).

This, and an analogue argument with x0+ε replaced by x0−ε, leads to the inequalities

F (x0 − ε) 6 lim inf
n→+∞

Fn(x0) 6 lim sup
n→+∞

Fn(x0) 6 F (x0 + ε).

Now ε > 0 was arbitarily small; if we let ε→ 0, we see that we can conclude provided
F is continuous at x0, so that the extreme lower and upper bounds both converge to
F (x0), which proves that for any such x0, we have

Fn(x0)→ F (x0)

as n→ +∞. �

Remark 5.7.7. The restriction on the set of x which is allowed is necessary to obtain a
“good” notion. For instance, consider a sequence (xn) of positive real numbers converging
to (say) 0 (e.g., xn = 1/n), and let µn be the Dirac measure at xn, µ the Dirac measure
at 0. For any continuous (compactly-supported) function f on R, we have∫

R

f(x)dµn(x) = f(xn),

and continuity implies that this converges to

f(0) =

∫
R

f(x)dµ(x).

Thus, µn converges in law to µ, and this certainly seems very reasonable. However,
the distribution functions are given by

Fn(x) =

{
0 if x < xn,

1 if x > xn,
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and

F (x) =

{
0 if x < 0,

1 if x > 0,

Now for x = 0, we have Fn(0) = 0 for all n, since xn > 0 by assumption, and this of
course does not converge to F (0) = 1.

We see now that we may formulate the Central Limite Theorem as follows:

Theorem 5.7.8 (Central Limit Theorem). Let (Xn) be a sequence of real-valued ran-
dom variables on some probability space (Ω,Σ, P ). If the (Xn) are independent and iden-
tically distributed, and if Xn ∈ L2(Ω), and E(Xn) = 0, then

Sn√
n

law
=⇒ µ0,σ2 ,

where σ2 = E(X2
n) is the common variance of the Xn’s and µ0,σ2 is the Gaussian measure

with expectation 0 and variance σ2.
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CHAPTER 6

The convolution product

6.1. Definition

The goal of this chapter is to study a very important construction, called the convo-
lution product (or simply convolution) of two functions on Euclidean space Rd. Formally,
this operation is defined as follows: given complex-valued functions f and g definde on
Rd, we define (or wish to define) the convolution f ? g as a function on Rd given by

(6.1) f ? g(x) =

∫
Rd

f(x− t)g(t)dt

for x ∈ Rd, where dt denotes integration with respect to the Lebesgue measure on Rd.
Obviously, some conditions will be required for this integral to make sense, and there are
various conditions that ensure that it is well defined, as we will see.

To present things rigorously and conveniently, we make the following (temporary, and
not standard) definition:

Definition 6.1.1 (Convolution domain). Let f and g be measurable complex-valued
functions on Rd. The convolution domain of f and g, denoted C(f, g), is the set of all
x ∈ Rd such that the integral above makes sense, i.e., such that

t 7→ f(x− t)g(t)

is in L1(Rd). For all x ∈ C(f, g), we let

f ? g(x) =

∫
Rd

f(x− t)g(t)dt.

Lemma 6.1.2. (1) Let x ∈ C(f, g). Then x ∈ C(g, f) and we have f ? g(x) = g ? f(x).
(2) Let x ∈ C(f, g) ∩ C(f, h), and let α, β ∈ C be constants. Then x ∈ C(f, αg + βh)

and
f ? (αg + βh)(x) = αf ? g(x) + βf ? h(x).

(3) If x /∈ supp(f) + supp(g), then we have x ∈ C(f, g) and f ? g(x) = 0, where the
“sumset” is defined by

A+B = {z ∈ Rd | z = x+ y for some x ∈ A and y ∈ B}
for any subsets A, B ⊂ Rd. In other words, we have

(6.2) supp(f ? g) ⊂ supp(f) + supp(g)

if C(f, g) = Rd.
(4) We have

C(f, g) = C(|f |, |g|),
and moreover

(6.3) |f ? g(x)| 6 |f | ? |g|(x)

for x ∈ C(f, g).
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Proof. All these properties are very elementary. First, (1) is a direct consequence
of the invariance of Lebesgue measure under translations, since

f ? g(x) =

∫
Rd

f(x− t)g(t)dt =

∫
Rd

f(y)g(x− y)dy = g ? f(x).

Then (2) is quite obvious by linearity, and for (3), it is enough to notice that if
x /∈ supp(f) + supp(g), it must be the case that for any t ∈∈ supp(g), the element x− t
is not in supp(f); this implies that f(x − t)g(t) = 0, and since this holds for all t, we
have trivially f ? g = 0. Finally, (4) is also immediate since

|f(x− t)g(t)| = |f(x− t)||g(t)|
and ∣∣∣∫

Rd

f(x− t)g(t)dt
∣∣∣ 6 ∫

Rd

|f(x− t)||g(t)|dt.

�

6.2. Existence of the convolution product

We start by considering the properties of the convolution for non-negative functions,
in which case it is of course defined everywhere (but may take the value +∞).

Proposition 6.2.1. Let f and g be non-negative measurable functions on Rd, and
let f ? g denote the convolution of f and g, taking values in [0,+∞]. We then have

(6.4)

∫
Rd

f ? g(x)dx =
(∫

Rd

f(x)dx
)(∫

Rd

g(x)dx
)
.

Proof. This is a simple application of Tonelli’s theorem and of the invariance of the
Lebesgue measure under translations; indeed, these results give∫

Rd

f ? g(x)dx =

∫
Rd

∫
Rd

f(x− t)g(t)dtdx

=

∫
Rd

g(t)
(∫

Rd

f(x− t)dx
)
dt

=
(∫

Rd

f(x)dx
)(∫

Rd

g(t)dt
)
.

�

This result quickly leads to the first important case of existence of the convolution
product, namely when one function is integrable, and the other in some Lp space.

Theorem 6.2.2 (Convolution L1 ? Lp). Let f ∈ Lp(Rd) and g ∈ L1(Rd) where
1 6 p 6 +∞. Then C(f, g) contains almost all x ∈ Rd, and the function f ? g which is
thus defined almost everywhere is in Lp(Rd) and satisfies

(6.5) ‖f ? g‖p 6 ‖f‖p‖g‖1,

Moreover, if we also have p = 1, then

(6.6)

∫
Rd

f ? g(x)dx =
(∫

Rd

f(x)dx
)(∫

Rd

g(x)dx
)
,

and if we have three functions f , g, h ∈ L1(Rd), we have

(6.7) (f ? g) ? h = f ? (g ? h).
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Proof. Assume first that p = 1. By applying the previous proposition to the non-
negative measurable functions |f | and |g|, we see that∫

Rd

|f | ? |g|dλ = ‖f‖1‖g‖1 < +∞.

By Proposition 2.2.2, (1), this implies that |f | ? |g| is finite almost everywhere, and
therefore, according to Lemma 6.1.2, (4), the set C(f, g) = C(|f |, |g|) does contain almost
all x ∈ Rd.

This being established, we integrate (6.3) over x ∈ Rd, and obtain

‖f ? g‖1 6
∫
Rd

|f | ? |g|dλ = ‖f‖1‖g‖1 < +∞

by (6.4).
From this, we see that f ?g ∈ L1(Rd), and now we can repeat the computation leading

to (6.4) and see that it is now possible to apply Fubini’s Theorem instead of Tonelli’s
Theorem, and obtain from this the identity (6.6).

Similarly, another easy application of Fubini’s Theorem gives the associativity of the
convolution product for three functions in L1: we have

(f ? g) ? h(x) = (g ? f) ? h(x)

=

∫
Rd

(g ? f)(x− t)h(t)dt

=

∫
Rd

∫
Rd

g(x− t− v)f(v)dvh(t)dt

=

∫
Rd

f(v)(g ? h)(x− v)dv

= f ? (g ? h)(x).

Now we must still prove the existence of f ? g when f ∈ Lp(Rd) and g ∈ L1(Rd).
First of all, the case p = ∞ is immediate. Next, if p < +∞, we may assume that g 6= 0
(i.e., is not zero almost everywhere). Then we consider the probability measure on Rd

given by

µ =
|g|
‖g‖1

dλ.

Applying Hölder’s inequality, we obtain∫
Rd

|f(x− t)||g(t)|dt = ‖g‖1

∫
Rd

|f(x− t)|dµ(t) 6 ‖g‖1

(∫
Rd

|f(x− t)|pdµ(t)
)1/p

,

and hence∫
Rd

(∫
Rd

|f(x− t)||g(t)|dt
)p
dx 6 ‖g‖p1

∫
Rd

∫
Rd

|f(x− t)|pdxdµ(t)

= ‖g‖p1
(∫

Rd

dµ(t)
)(∫

Rd

|f(x)|pdx
)

= ‖f‖pp‖g‖
p
1 < +∞,

using once more the invariance under translation of the Lebesuge measure, and the defi-
nition of µ. Hence, as before, we see that (|f | ? |g|)p is finite almost everywhere, and thus
C(f, g) contains almost all x ∈ Rd, and finally we also get the inequality

‖f ? g‖p 6 ‖f‖p‖g‖1.

�
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Remark 6.2.3. (1) From this result, we see that we have defined an operation{
L1(Rd)× L1(Rd)→ L1(Rd)

(f, g) 7→ f ? g

which is commutative, associative, and associative with respect to addition of functions.
This is why this is called the “convolution product”. It should already be mentioned
that, in sharp constrast with the “usual” product, the convolution product does not have
a unit : there is no function δ ∈ L1(Rd) such that f ? δ = f = δ ? f for all f . However, a
crucial property of convolution will turn out to be the existence of “approximate units”,
which have very important applications (see Section 6.4).

(2) The inequality (6.5) is quite important, as it shows that the convolution product,
seen as a bilinear map, is continuous on L1 × L1. In particular, it follows that whenever
we have convergent sequences (fn) and (gn) in L1, with

lim
n→+∞

fn = f ∈ L1(Rd), lim
n→+∞

gn = g ∈ L1(Rd),

the sequence (fn ? gn) also converges (in L1(Rd)) to f ? g. We recall the easy argument:
we have

‖fn ? gn − f ? g‖1 6 ‖fn ? (gn − g)‖1 + ‖(fn − f) ? g‖1

6 ‖fn‖1‖gn − g‖p + ‖g‖p‖fn − f‖1 → 0

as n→ +∞ (since the sequence (‖fn‖1) is bounded).
Similarly, if g ∈ L1(Rd), and if 1 6 p 6 +∞, the operation of convolution with the

fixed function g defines a continuous linear map{
Lp(Rd)→ Lp(Rd)

f 7→ f ? g

(the continuity comes from (6.5)).

Before we go on to another example of existence of convolution products, here is a first
concrete probabilistic interpretation of this operation. (Another important motivation is

given by the link with the Fourier transform, which is formally the identity f̂ ? g = f̂ ĝ).

Proposition 6.2.4 (Density of sums of independent variables). Let (Ω,Σ, P ) be a
probability space, and let X and Y be real-valued independent random variables. Assume
that the laws of X and Y are given by

X(P ) = f(x)dx, and Y (P ) = g(x)dx

where f and g are non-negative functions on R. Then the law of X + Y is given by the
probability measure

(X + Y )(P ) = (f ? g)(x)dx.

Proof. We must show that, for any Borel subset B ⊂ R, we have

P (X + Y ∈ B) =

∫
B

f ? g(x)dx.

Now, by definition, we have∫
B

f ? g(x)dx =

∫
B

∫
R

f(x− t)g(t)dtdx

=

∫
E

f(u)g(v)dudv
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where
E = {(u, v) ∈ R2 | u+ v ∈ B}.

But since the joint law (X, Y )(P ) of X and Y is given by

(X, Y )(P ) = X(P )⊗ Y (P )

(because they are independent, see Lemma 4.2.1), we have∫
E

d(X, Y )P = P ((X, Y ) ∈ E) = P (X + Y ∈ B),

as claimed. �

Remark 6.2.5. More generally, if µ and ν are arbitrary probability measures on R,
we can define a convolution measure by

µ ? ν = s∗(µ⊗ ν)

where s : C2 → C is the addition map

s : (x, y) 7→ x+ y.

(so that (µ ? ν)(B) = (µ⊗ ν)(s−1(B))).
From the above, we see that

(f(x)dx) ? (g(x)dx) = (f ? g)(x)dx,

for f and g non-negative with integral 1. We also see by the same method that

(X + Y )(P ) = X(P ) ? Y (P )

for any pair of independent random variables (X, Y ).
It is interesting to see that, in this more general framework, there is a “unit” for the

convolution of measures: denoting by δ the Diract measure at the point 0 (see Exam-
ple 1.2.7, (2)), we have

µ ? δ = δ ? µ = µ

for any probability measure µ.

Now we come to the second importance case of existence of convolutions.

Proposition 6.2.6 (Convolution Lp ? Lq for 1/p + 1/q = 1). Let p ∈ [1,+∞] and
let q be the complementary exponent, so that 1/p + 1/q = 1. For any f ∈ Lp(Rd) and
g ∈ Lq(Rd), we have C(f, g) = Rd and f ? g ∈ L∞. Indeed, we have

(6.8) ‖f ? g‖∞ 6 ‖f‖p‖g‖q.

Proof. We apply Hölder’s inequality (3.12): if f and g are non-negative first, we
have

f ? g(x) =

∫
Rd

f(x− t)g(t)dt

6 ‖g‖q
(∫

Rd

f(x− t)pdt
)1/p

= ‖g‖q‖f‖p < +∞
for all x, having used (once more) the invariance property of the Lebesgue measure. Now
come back to any f ∈ Lp and g ∈ Lq; by Lemma 6.1.2, (4) we see that C(f, g) ∈ L∞(Rd)
and then that

|f ? g(x)| 6 ‖f‖p‖g‖q
for all x ∈ Rd, leading to (6.8). �
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Remark 6.2.7. As in the previous case, the inequality (6.8) implies that this product
is continuous: if fn → f in Lp and gn → g in Lq, then fn ? gn → f ? g in L∞ (which
means uniformly over Rd).

Our last case is a bit more technical, but it is also very useful in some situations where
the previous ones do not apply.

Definition 6.2.8 (Local Lp spaces, Lp functions with compact support). Let X be
any topological space and µ a Borel measure on X, finite on compact sets. For any
1 6 p 6 +∞, we denote

Lpc(X) = {f ∈ Lp(X) | supp(f) = K ∪ Z where K is compact and µ(Z) = 0}
Lploc(X) = {f | f ∈ Lp(K) for any compact subset K ⊂ X}.

The vector space Lpc is the space of Lp functions with compact support, and Lploc is the
space of functions which are locally in Lp.

Proposition 6.2.9 (Convolution L1
loc ? L

∞
c ). Let f ∈ L1

loc(R
d) and g ∈ L∞c (Rd).

Then C(f, g) = Rd, hence the convolution f ? g is defined for all x ∈ Rd.

Proof. We reduce, as usual, to the case where f > 0 and g > 0. We can write∫
Rd

f(x− t)g(t)dt =

∫
K

f(x− t)g(t)dt

where K is a compact subset such that g(x) = 0 outside K ∪ Z, where λ(Z) = 0. Then
we find

f ? g(x) 6 ‖g‖∞
∫
K

f(x− t)dt = ‖g‖∞
∫
x−K

f(u)du < +∞

since the translated set x−K = {x− k | k ∈ K} is still compact and f ∈ L1
loc. �

Example 6.2.10. Any continuous function is automatically in dans L1
loc(R

d), but not
in L1 in general (for instance f = 1). Correspondingly, it is easy to see that f ? g is not
bounded in general.

One should note that the three cases of existence of the convolution f ? g that we
have seen (L1 ? Lp, Lp ? Lq, L1

loc ? L
∞
c ) are not exclusive of each other: it may well be the

case that two (or three) of them apply for the same pair of functions (f, g).

6.3. Regularization properties of the convolution operation

If we view f ? g as a function defined by an integral depending on a parameter x, the
function that we integrate is

h(x, t) = f(x− t)g(t),

which is extremely simple from the point of view of the results of Section 3.1: for a gixed
t ∈ Rd, it is a “translate” of f , multiplied by a constant g(t). One may expect from this
that f ? g will inherit the regularity properties of f . And since f ? g = g ? f , it will also
get the corresponding properties coming from g.

Here are some examples of this principle. We start by showing that, under suitable
conditions, the convolution is differentiable. First of all, we recall a convenient notation
for partial derivatives of a function. Given a multi-index α = (α1, . . . , αd), where αi > 0
are integers, we denote

(6.9) |α| = α1 + · · ·+ αd
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and

(6.10) ∂α =
∂|α|

∂xα
=

∂α1

∂xα1
1

· · · ∂
αd

∂xαdd
,

which we view as an operator acting on functions defined on open subsets of Rd which
are of class C |α|, so that the partial derivative in question is well-defined.

Proposition 6.3.1 (Derivatives of convolution). Let k > 1, f ∈ L1(Rd) and let
ϕ ∈ Ck(Rd) be such that

∂αϕ ∈ L∞

for all multi-indices α such that |α| 6 k, or in other words, such that all partial derivatives
of order at most k are bounded. Then we have

f ? ϕ ∈ Ck(Rd),

and, for all |α| 6 k, the partial derivative corresponding to α is given by

∂α(f ? ϕ) = f ? (∂αϕ).

Proof. First of all, note that all the convolutions which are written down in this
statement are of the type

f ? ∂αϕ

with |α| 6 k. Hence, they are well-defined because of the assumption on the derivatives
of ϕ (this is the case L1 ? L∞ of Proposition 6.2.6), and they are functions in L∞(Rd).

Using an easy induction and the definition of partial derivatives, we can assume that
d = 1 and k = 1 (note a small subtlety: if f ∈ L1(Rd), it is not necessarily the case that
all partial functions of the type

g(x) = f(x, x2, . . . , xd)

are in L1(R) for fixed xi, i > 2; however, an easy argument involving Fubini’s theorem
shows that this is true for almost all x2, . . . , xnd, which is enough to conclude).

Now, in that special case, we have

f ? ϕ(x) = ϕ ? f(x) =

∫
R

f(t)ϕ(x− t)dt,

and we can apply the criterion of differentiability under the integral sign (Proposi-
tion 3.1.4) with derivative given for each fixed t by

∂

∂x
f(t)ϕ(x− t) = f(t)ϕ′(x− t).

The domination estimate

|f(t)ϕ′(x− t)| 6 ‖ϕ′‖∞|f(t)|
with f ∈ L1(R) shows that Proposition 3.1.4 is indeed applicable, and gives the desired
result. �

Example 6.3.2. Consider for instance f ∈ Ck
c (R) and g ∈ Cm

c (R). Then we may
apply the proposition first with f and g, and deduce that f ? g is of class Cm on R. But
then we may exchange the two arguments, and conclude that f ? g ∈ Ck+m

c (R) (see (6.2)
to check the support condition) with

(f ? g)(k+m) = f (k) ? g(m),

for instance. For the first derivative, one may write either of the two formulas:

(f ? g)′ = f ′ ? g = f ? g′.
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Here is a further regularity property, which is a bit deeper, since the functions involved
in the convolution do not have any obvious regularity by themselves.

Proposition 6.3.3 (Average regularization effect). Let 1 6 p 6 +∞ and let q be
the complementary exponent of p. For any f ∈ Lp(Rd) and g ∈ Lq(Rd), the convolution
f ? g ∈ L∞ is uniformly continuous on Rd. Moreover, if 1 < p, q < +∞, we have

lim
‖x‖→+∞

f ? g(x) = 0.

Proof. For the first part, we can assume by symmetry that p < +∞ (exchanging f
and g in the case p = +∞). For x ∈ Rd and h ∈ Rd, we obtain the obvious upper bound

|f ? g(x+ h)− f ? g(x)| 6
∫
Rd

|f(x+ h− t)− f(x− t)||g(t)|dt

6 ‖g‖q
(∫

Rd

|f(x+ h− t)− f(x− t)|pdt
)1/p

by Hölder’s inequality. Using the linear change of variable x − t = u, the integral with
respect to t becomes∫

Rd

|f(x+ h− t)− f(x− t)|pdt =

∫
Rd

|f(u+ h)− f(u)|pdu.

Now the last integral, say ε(h), is independent of x, and by Proposition 5.5.1, we have
ε(h)→ 0 as h→ 0. Thus the upper bound

|f ? g(x+ h)− f ? g(x)| 6 ε(h)1/p‖g‖q
shows that f ? g is uniformly continuous, as claimed.

Now assume that both p and q are < ∞. Then, according to the approximation
theorem (Theorem 5.4.1), there are sequences (fn) and (gn) of continuous functions with
compact support such that fn → f in Lp and gn → g in Lq. By continuity of the
convolution (Remark 6.2.7), we see that

fn ? gn → f ? g

in L∞, i.e., uniformly on Rd. Since fn ? gn ∈ Cc(Rd) by (6.2), we get

lim
‖x‖→+∞

f ? g(x) = 0

by Remark 5.4.2. �

Example 6.3.4. Here is a very nice classical application of the first part of this last
result. Consider two measurable sets A, B ⊂ Rd, such that

λ(A) > 0, λ(B) > 0.

Then we claim that the set

C = A+B = {c ∈ Rd | c = a+ b for some a ∈ A, b ∈ B}

has non-empty interior, or in other words, there exists c = a + b ∈ C and r > 0 such
that the open ball centered at c with radius r is entirely contained in C. In particular,
when d = 1, this means that the “sum” of any two sets with positive measure contains a
non-empty interval! (Of course, it may well be that neither A nor B has this property,
e.g., if A = B = R−Q is the set of irrational numbers).
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The proof of this striking property is very simple when using the convolution. Indeed,
by first replacing A and B (if needed) by A ∩ DR and B ∩ DR, where DR is the ball
centered at 0 with radius R large enough, we can clearly assume that

0 < λ(A), λ(B) < +∞.

In that case, the functions f = χA, g = χB are both in L2(Rd) (this is why the
truncation was needed). By Proposition 6.3.3, the convolution h = f ? g > 0 is a
uniformly continuous function. Moreover, since f and g are non-negative, we have also
h > 0 and ∫

hdx =

∫
fdx

∫
gdx = λ(A)λ(B) > 0,

which implies that h > 0 is not identically zero. Consider now any c such that h(c) > 0.
By continuity of h, there exists an open ball centered at c, with radius r > 0, such that
h(x) > 0 for all x ∈ U . Then, since (as in the proof of Lemma 6.1.2, (3)) we have h(x) = 0
when x /∈ A+B, it must be the case that U ⊂ A+B.

6.4. Approximation by convolution

Part of the significance of the regularity properties of convolutions lies in the fact that
it is possible to approach a given function f (in some suitable sense) using convolution
products f ? ϕ, where ϕ is an “approximate unit” for convolution. These approximate
units can be constructed with almost arbitrary regularity properties, and the approxima-
tions f ? ϕ inherit them.

Before starting, we explain quickly why there is no exact unit for the convolution
product on L1(R) (the case of Rd is of course similar).

Lemma 6.4.1 (Properties of a convolution unit). Let δ ∈ L1(R) be a unit for convo-
lution, i.e., such that f ? δ = f for any f ∈ L1(R). Then

(1) The support of δ is {0}.
(2) We have

∫
R
δ(x)dx = 1.

These two properties are of course incompatible for functions. However, if one weak-
ens the first condition by asking that the support of δ be contained in a small interval
[−ε, ε] with ε > 0, then there is no difficulty in constructing functions in L1(R) with the
corresponding properties (e.g., 1/(2ε)χ[−ε,ε]). It is then natural to expect that f ? ϕ will
be, if not equal to, at least close to f , because of the continuity properties of convolution.

Remark 6.4.2. (1) The quickest argument to see that δ does not exist uses the Fourier
transform which implies by an easy computation that

f̂ ? δ = f̂ δ̂

for any f ∈ L1(R). For any t ∈ R, we can find a function f with f̂(t) > 0; then since

both sides are continuous functions, comparison gives δ̂(t) = 1, or in other words, the
Fourier transform of δ needs to be the unit 1 for the usual multiplication of functions.
However, from the Riemann-Lebesgue Lemma (Theorem 5.5.3), we see that this is not
possible.

(2) In the land of measures, there is an object which has the properties of a unit for
convolution, namely the Dirac measure at 0, which is supported on {0} and for which
the function 1 has integral 1. One can indeed construct, in some generality, a theory of
convolution of measures, for which this Dirac measure δ is a unit.
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Proof. Property (2) is immediate by taking the integral of f ? δ for any function f
with non-zero integral.

For Property (1), take f to be the characteristic function of any set N not containing
0, and x = 0; then we find that

0 =

∫
N

δ(−t)dt

(since this result is only for illustration, we assumed that the point x = 0 is in the set
where the functions f ? δ and f coincide). It is easy to see that this implies that δ is zero
almost everywhere on any such set, which is the desired conclusion. �

These properties suggest the following definition.

Definition 6.4.3 (Dirac sequence). A Dirac sequence in Rd is a sequence (ϕn) of
non-negative measurable functions such that∫

Rd

ϕn(t)dt = 1 for all n > 1(6.11)

lim
n→+∞

∫
‖t‖>η

ϕn(t)dt = 0 for all η > 0,(6.12)

where ‖t‖ is the euclidean norm (4.24) on Rd.

Remark 6.4.4. On may replace the euclidean norm by any equivalent one, for in-
stance, by

‖t‖∞ = max
16i6d

|ti|, or ‖t‖1 =
∑

16i6d

|ti|.

We start with some examples of such sequences.

Example 6.4.5. (1) Let ϕn = (2n)dχ[−n−1,n−1]d . This is a Dirac sequence since (6.11)
is clear and we have ∫

‖t‖>η
ϕn(t)dt = 0

for all n > η−1, which obviously gives (6.12).
(2) More generally, let (ϕn) be any sequence of non-negative functions in L1 for

which (6.11) holds, and for which

supp(ϕn) ⊂ {‖x‖ < εn}
for some εn > 0 such that εn → 0 as n → +∞. Then the same argument shows that
(ϕn) is a Dirac sequence.

(3) Condition (6.12) means that, for any η > 0, the sequence (ϕn) restricted to

Uη = {t | ‖t‖ > η}
tends to zero in L1(Uη). The intuitive meaning is that most of that “mass” of the function
(which is always 1) is concentrated very close to 0.

For instance, let ψ > 0 be any function in L1 such that

I =

∫
Rd

ψ(t)dt > 0.

Define then ϕ = ψ/I and

ϕn(t) = ndvarphi(nt)

for n > 1. Then (ϕn) is also a Dirac sequence.
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Indeed, the linear substitution u = nt (with Jacobian given by det(nId) = nd) gives
first ∫

Rd

ϕn(t)dt = nd
∫
Rd

ϕ(nt)dt =

∫
Rd

ϕ(u)du = 1

for all n, and then, for any η > 0, we get∫
‖t‖>η

ϕn(t)dt =

∫
‖t‖>nη

ϕ(t)dt,

and since ϕ is integrable and the sets {‖t‖ > bη} are decreasing with empty intersection,
we obtain

lim
n→+∞

∫
‖t‖>nη

ϕ(t)dt = 0

(Lemma 2.3.11).
An typical example is given by

ϕ(t) = e−π‖t‖
2

,

since Fubini’s Theorem and Proposition 4.4.9 imply that∫
Rd

e−π‖t‖
2

dt =

∫
Rd

exp
(
−π

∑
16i6d

t2i

)
dt1 · · · dtd =

(∫
R

e−πt
2

dt
)d

= 1.

Now comes the important approximation theorem.

Theorem 6.4.6 (Approximation by convolution). Let d > 1 be an integer and let
(ϕn) be a fixed Dirac sequence on Rd.

(1) For any p such that 1 6 p <∞, and any f ∈ Lp(Rd), we have

f ? ϕn → f in Lp(Rd),

i.e.,

lim
n→+∞

∫
Rd

|f ? ϕn(x)− f(x)|pdx = 0.

(2) If f ∈ L∞ is continuous at a point x ∈ Rd, then

(f ? ϕn)(x)→ f(x),

and if f ∈ L∞ is uniformly continuous on Rd, then

f ? ϕn → f uniformly on Rd.

Proof. We first check quickly that all convolutions in this statement are among
which exist according to the earlier results; for (1) since ϕn ∈ L1 by definition, this is a
case of Lp ? L1 (Theorem 6.2.2), so that f ? ϕn ∈ Lp(Rd) – which also shows that the
convergence in Lp makes sense. For (2), this is the case L1 ? L∞ with convolution in
L∞ (Proposition 6.2.6 with p = 1, q =∞); moreover, by Proposition 6.3.3, the function
f ? ϕn is itself uniformly continuous on Rd, and it makes sense to speak of its value at
the given point x.

To begin the proofs, we use (6.11) cleverly to write

(6.13) f ? ϕn(x)− f(x) =

∫
Rd

(f(x− t)− f(x))ϕn(t)dt

for n > 1 (and only almost x in the first case). We must now show that (in suitable
sense) this quantity is small. The idea is that this will come from two reasons: first,
f(x − t) − f(x) will be small (maybe on average only) if t is close to 0; then we expect
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that the contribution of those t which are not small is negligible because of the second
property of Dirac sequences (6.12).

It is therefore natural to split the integration in two parts, where ‖t‖ 6 η and where
‖t‖ > η, for some parameter η > 0 that will be chosen at the end.

We first implement this in the first case with p < +∞. By Hölder’s inequality applied
to the constant function 1 and to

t 7→ |f(x− t)− f(x)|,
integrated with respect to the probability measure ϕn(t)dt (here we use the fact that
ϕn > 0), we obtain

|f ? ϕn(x)− f(x)|p 6
∫
Rd

|f(x− t)− f(x)|pϕn(t)dt,

for almost all x, hence after integrating over x ∈ Rd, we get

‖f ? ϕn − f‖pp 6 Sη + Tη

where η > 0 is a parameter and

Sη =

∫
Rd

∫
‖t‖6η

|f(x− t)− f(x)|pϕn(t)dtdx,

Tη =

∫
Rd

∫
‖t‖>η

|f(x− t)− f(x)|pϕn(t)dtdx.

We deal first with the small values of t. Fix some ε > 0. By Tonelli’s Theorem, we
have

Sη =

∫
‖t‖6η

(∫
Rd

|f(x− t)− f(x)|pdx
)
ϕn(t)dt,

and by Proposition 5.5.1, we know that we can select η > 0 so that∫
Rd

|f(x− t)− f(x)|pdx < ε,

whenever ‖t‖ < η. For such a value of η (which we fix), we have therefore

Sη 6 ε

∫
‖t‖6η

ϕn(t)dt 6 ε

for all n (using (6.11) and monotony).
Now we come to Tη; here we write the easy upper bound

|f(x− t)− f(x)|p 6 2p/q{|f(x− t)|p + |f(x)|p},
and by Tonelli’s Theorem again and the invariance under translation of the Lebesgue
measure, we get

Tη 6 2p‖f‖pp
∫
‖t‖>η

ϕn(t)dt.

Now we can use (6.12): this last quantity goes to 0 as n → +∞, and therefore, for
all n large enough, we have

Tη 6 ε.

Finally, we have found that

‖f ? ϕn − f‖pp 6 2ε,

for all n large enough, and this is the desired conclusion.
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We come to case (2) for a fixed value of x first. Starting from (6.13), we have now

|f ? ϕn(x)− f(x)| 6 Sη + Tη

for any fixed η > 0, with

Sη =

∫
‖t‖6η

|f(x− t)− f(x)|ϕn(t)dt,

Tη =

∫
‖t‖>η

(|f(x− t)|+ |f(x)|)ϕn(t)dt.

Since f is continuous at x by assimption, for any ε > 0 we can find some η > 0 such
that

|f(x− t)− f(x)| < ε

whenever ‖t‖ < η. Fixing η in this manner, we get

Sη 6 ε

for all n and

Tη 6 2‖f‖∞
∫
‖t‖>η

ϕn(t)dt,

from which we conclude as before. Finally, if f is uniformly continuous on Rd, we can
select η in such a way that the above upper bound is valid for x ∈ Rd uniformly. �

This theorem will allow us to deduce an important corollary.

Corollary 6.4.7. For any d > 1 and p such that 1 6 p < +∞, the vector space
C∞c (Rd) of compactly supported C∞ functions is dense in Lp(Rd).

The idea of the proof is to construct a Dirac sequence in C∞c (Rd). Because of the
examples, above, it is enough to find a single suitable function ψ ∈ C∞c (Rd).

Lemma 6.4.8. (1) For d > 1, there exists ψ ∈ C∞c (Rd) such that ψ 6= 0 and ψ > 0.
(2) For d > 1, there exists a Dirac sequence (ϕn) with ϕn ∈ C∞c (Rd) for all n > 1.

Proof. (1) This is a well-known fact from multi-variable calculus; we recall on con-
struction. First, let

f : R→ [0, 1]

be defined by

f(x) =

{
e−1/x for x > 0

0 for x < 0.

We see immediately that f is C∞ on R − {0}. Now, an easy induction argument
shows that for k > 1 and x > 0, we have

f (k)(x) = Pk(x
−1)f(x)

for some polynomial Pk of degree k. From this, we deduce that

lim
x→0

f (k)(x) = 0

for all k > 1. By induction again, this shows that f est C∞ on R with f (k)(0) = 0. Of
course, we have f > 0 and f 6= 0.

Now we can simply define
ψ(t) = f(1− ‖t‖2),

for t ∈ Rd. This is a smooth function, non-negative and non-zero, and its support is the
unit ball in Rd.
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(2) Let ψ be as in (1). Since ‖ψ‖1 > 0 (because ψ 6= 0 and ψ > 0 and ψ is continuous),
we can construct ϕn as in Example 6.4.5, (3), namely

ϕn(t) =
nd

‖ψ‖1

ψ(nt) ∈ C∞c (Rd).

�

Proof of the Theorem. Let p with 1 6 p < +∞ be given and f ∈ Lp(Rd). Fix
ε > 0; we first note that by (Théorème 5.4.1), we can find a function

g ∈ Cc(Rd) ⊂ L1(Rd) ∩ Lp(Rd)

such that
‖f − g‖p < ε.

Now fix a Dirac sequence (ϕn) in C∞c (Rd). By Theorem 6.4.6, (1), we have

g ? ϕn → g

in Lp(Rd). But by Proposition 6.3.1, we see immediately that g ? ϕn ∈ C∞(Rd) for all n.
Moreover (this is why we replaced f by g) we have

supp(g ? ϕn) ⊂ supp(g) + supp(ϕn)

which is compact. Thus the sequence (g ? ϕn) is in C∞c (Rd) and converges to g ? ϕn → g
in Lp. In particular, for all n large enough, we find that

‖f − g ? ϕn‖p 6 2ε,

and since f and ε > 0 were arbitrary, this implies the density of Cc(R
d) in Lp(Rd). �
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CHAPTER 7

Questions for the oral examination

Every oral exams consists of answering as good as possible two randomly chosen
questions from the following list of questions within 15 minutes. Wrong statements are
counted, but it is not counted whether all the answers can be given during 15 min-
utes, i.e. understanding and correct formulation are more important than speed. Af-
ter posing the two questions three minutes of preparation time are granted. A Defini-
tion/Theorem/Remark/Example being stated means that the question is on (some of)
the assertions (including proofs). Please try to work out answers in groups or alone as
preparation of the exam.

Independent of the chosen question there might be one or two additional small ques-
tions on historical personalities, on which you should be prepared via, e.g., wikipedia:
Cantor, Fubini, Kolmogorov, Lebesgue, Lévy, Riesz, Tonelli, Vitali.

(1) Definition 1.1.1. and Lemma 1.1.3. with proof.
(2) Example 1.1.4.
(3) Definition 1.1.6 with Remark 1.1.7. (1) and Remark 1.1.7. (2).
(4) Corollary 1.1.10 with proof and Remark 1.1.7. (3).
(5) Lemma 1.1.9. with proof.
(6) Lemma 1.1.12. with proof.
(7) Remark 1.1.13.
(8) Definition 1.2.1 and Proposition 1.2.3 with proof.
(9) Definition 1.2.4 and Remark 1.2.5.

(10) Proposition 1.2.6. with proof.
(11) Example 1.2.7.
(12) Proposition 1.2.8. with proof.
(13) Example 1.3.3 (2).
(14) Proposition 2.1.4. with proof.
(15) Proposition 2.2.2. with proof.
(16) Theorem 2.2.3. with proof.
(17) Proposition 2.2.4. with proof.
(18) Corollary 2.2.5. (1) and (2) with proof.
(19) Corollary 2.2.5. (3) and (4) with proof.
(20) Proposition 2.3.3. with proof.
(21) Fatou’s Lemma (Lemma 2.3.8.) with proof.
(22) Dominated convergence (Theorem 2.3.6) with proof.
(23) Lemma 2.3.11. with proof.
(24) Example 2.4.2.
(25) Example 2.4.3.
(26) Proposition 3.1.1. with proof.
(27) Proposition 3.1.4. with proof.
(28) Proposition 3.2.3. with proof.
(29) Proposition 3.3.3. with proof.

146



(30) Proposition 3.3.4. with proof.
(31) Exercise 3.3.6. with proof.
(32) Proposition 3.3.8. (1) with proof.
(33) Proposition 3.3.8. (2) with proof.
(34) Proposition 3.3.8. (3) with proof.
(35) Proposition 3.3.14. with proof.
(36) Proposition 3.3.17. with proof.
(37) Proposition 3.3.18. with proof.
(38) Proposition 3.4.5. with proof.
(39) Proposition 3.4.4. with proof.
(40) Lemma 4.1.5. with proof.
(41) Proposition 4.1.6. with proof.
(42) Lemma 4.2.1. with proof.
(43) Theorem 4.2.4. with proof.
(44) Theorem 4.3.1. (1) with proof.
(45) Theorem 4.3.1. (2) with proof.
(46) Proposition 4.3.5. with proof.
(47) State and explain Theorem 4.4.6. and Remark 4.4.7. (2).
(48) Proposition 5.1.2. with proof.
(49) State and explain Theorem 5.2.1.
(50) Example 5.2.2.
(51) Uniqueness proof of Theorem 5.2.1.
(52) Proposition 5.3.2. with proof.
(53) Theorem 5.4.1. with proof.
(54) Lemma 5.4.3. with proof.
(55) Proposition 5.5.1. with proof.
(56) A proof of the Riemann Lebesgue Lemma (Theorem 5.5.3.)
(57) Theorem 5.6.1. (1) with proof.
(58) Theorem 5.6.1. (2) with proof.
(59) Lemma 5.6.3. with proof.
(60) Lemma 5.6.4. with proof.
(61) Proof of (5.13) (page 124–125).
(62) Lemma 6.1.2. and proof.
(63) Proposition 6.2.1 and proof.
(64) Theorem 6.2.2. and proof.
(65) Proposition 6.2.4. and proof.
(66) Serie 4, exercise 2.
(67) Serie 6, exercise 1.
(68) Serie 9, exercise 2.
(69) Serie 11, exercise 4.
(70) Serie 11, exercise 5.
(71) Serie 12, exercise 1 – explain the main idea of this counterexample to uniqueness

of the Riesz representation theorem.
(72) Serie 13, exercise 3.
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