
CHAPTER 1: FINITE DIMENSIONAL REALIZATIONS

A FROBENIUS THEOREM ON CONVENIENT MANIFOLDS

JOSEF TEICHMANN

Abstract. A Frobenius Theorem for finite dimensional, involutive subbundles

of the tangent bundle of a convenient manifold is proved. As first key applica-

tions Lie’s second fundamental theorem and Nelson’s theorem are treated in
the convenient case.

1. Introduction

Frobenius theorems are a necessary and sufficient conditions for n-dimensional
subbundles of the tangent bundle of a manifold to be the tangent bundle of a
foliation. We prove a Frobenius theorem for finite dimensional subbundles of the
tangent bundle of a convenient manifold. The difficulty was to navigate around
the lack of an inverse function theorem on convenient manifolds. We provide two
obvious applications of this theorem, Lie’s second fundamental theorem (see [Pal57])
and Nelson’s theorem in the theory of infinite dimensional representations (see
[War72]). A Frobenius theorem beyond Banach spaces has been proved recently
by Seppo Hiltunen in the case of co-Banach-bundles on convenient manifolds (see
[Hil00]).

The proof of the theorem is based on convenient calculus and might be much
more difficult without it. We resume the basic notions of convenient calculus (see
[KM97] for all necessary details): A convenient vector space E is a locally convex
vector space such that all Mackey-Cauchy sequences converge. In particular all
sequentially complete locally convex vector spaces are convenient. We denote by
E′ the space of bounded linear functionals on E. On convenient vector spaces
smooth curves, which are defined as usual, coincide with weakly smooth curves,
i.e. c : R → E is smooth if and only if l ◦ c ∈ C∞(R,R) for all l ∈ E′. We define
a new (in general finer) topology on E to overcome the difficulty that there are
obviously well behaved candidates for smooth mappings, which are not continuous:
The c∞-topology is the final topology with respect to all smooth curves, so U ⊂ E
is open if the inverse image under any smooth curve to E is open. A mapping
f : U ⊂ E → F is called smooth if for all c ∈ C∞(R, E) the composition f ◦ c is
a smooth curve to the convenient space F . This is the foundation of a consistent
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extension of classical analysis to the huge class of convenient vector spaces. Even on
R2 it is not obvious that this definition of smoothness coincides with the classical
one (see [Bom67] for the proof). The main results are collected in the following
theorem (for the proof see [KM97]).

Theorem 1. Let E,F,G be convenient vector spaces, U ⊂ E, V ⊂ F c∞-open,
then we obtain:

(1) Multilinear mappings are smooth if and only if they are bounded.
(2) If f : U → F is smooth, then d̂f : U × E → F and df : U → L(E,F ) are

smooth, where

df(x)(v) :=
d

dt
|t=0f(x+ tv).

(3) The chain rule holds.
(4) The vector space C∞(U,F ) of smooth mappings f : U → F is again a conve-

nient vector space (inheritance property) with the following initial topology:

C∞(U,F ) →
∏

c∈C∞(R,U)

C∞(R, F ) →
∏

c∈C∞(R,U), λ∈F ′
C∞(R,R).

(5) The exponential law holds, i.e.

i : C∞(U,C∞(V,G)) ∼= C∞(U × V,G)

is a linear diffeomorphism of convenient vector spaces. Usually we write
i(f) = f̂ and i−1(f) = f̌ .

(6) The smooth uniform boundedness principle is valid: A linear mapping f :
E → C∞(V,G) is smooth (bounded) if and only if evv◦f : E → G is smooth
for v ∈ V , where evv : C∞(V,G) → G denotes the evaluation at the point
v ∈ V .

(7) The smooth detection principle is valid: f : U → L(F,G) is smooth if and
only if evx ◦ f : U → G is smooth for x ∈ F (This is a reformulation of the
smooth uniform boundedness principle by cartesian closedness).

(8) Taylor’s formula is true, if one defines by applying cartesian closedness
and obvious isomorphisms the multilinear-mapping-valued higher deriva-
tives dnf : U → Ln(E,F ) of a smooth function f ∈ C∞(U,F ), more
precisely for x ∈ U, y ∈ E so that [x, x + y] = {x + sy|0 ≤ s ≤ 1} ⊂ U we
have the formula

f(y) =
n∑
i=0

1
i!
dif(x)y(i) +

∫ 1

0

(1− t)n

n!
dn+1f(x+ ty) (y(n+1))dt

for all n ∈ N.

2. A convenient Frobenius Theorem

We prove first a simple lemma, an application of lemma 1.3. on p. 363 in [Lan93]:

Lemma 1. Let f : U × V ⊂ E × Rn → Rn be a smooth mapping, where E is a
convenient vector space, U ⊂ E and V ⊂ Rn c∞-open sets. Assume that f(x0, y0) =
z0 at some points (x0, y0) ∈ U × V , z0 ∈ Rn and D2f(x0, y0) is invertible. Then
there is a smooth mapping g : U ′×W → V , where U ′×W is a small neighborhood
of (x0, z0) and U ′ ⊂ U such that g(x0, z0) = y0 and f(x, g(x, z)) = z for all
(x, z) ∈ U ′×W . Furthermore for each x ∈ U ′ and z ∈W the solution of f(x, y) = z
is unique.
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Proof. We can assume by translation and a coordinate transform in Rn that x0 = 0
and y0 = 0 and D2f(x0, y0) = id. Since the derivative is a smooth mapping
D2f : U × V → L(Rn,Rn), so in particular continuous, we know that there is a
small open neighborhood U ′ ×Br(0) of (x0, y0) such that

||D2f(x1, y1)−D2f(x2, y2)|| ≤ s

for (x1, y1), (x2, y2) ∈ U ′ ×Br(0) and a given s < 1. Then we know by the general
theory of the inverse function theorem on Banach spaces that for any x ∈ U ′ and
z ∈ B(1−s)r(0) there is a unique y ∈ Br(0) with f(x, y) = z. We denote g(x, z) = y
and obtain by inserting smooth curves and by the classical implicit function theorem
that this is a smooth mapping since

f(c(t), y) = z

can be solved smoothly and the solution coincides with g(c(t), z). However, a
mapping g on a convenient space is smooth if the composition with smooth curves
is smooth by convenient theory. �

Remark 1. We can replace Rn by a Banach space F if c∞(E ×F ) = c∞E × c∞F
(see [KM97], chapter 1).

Theorem 2. Let M be a convenient manifold and S a n-dimensional subbundle
of TM . If the subbundle is involutive and for any point m ∈ M there is an open
neighborhood U and a local frame {Ai}i=1,...,n such that Ai admit a local flow FlAi

t

on U , then S is integrable, i.e. for any point m ∈ M there is a unique maximal
connected manifold i : Nm ↪→ M with immersion i and Txi(TxNm) = Si(x) for
x ∈ Nm. Furthermore we can construct the classical Frobenius chart.

Proof. Given a local basis A1, ..., An around x0, then [Aj , Ak] =
∑n
k=1 f

i
jkAi by

involutivity for an S-valued smooth vector field Y . Remark that f ijk are smooth
functions locally around x0: Given n linear independent functionals lm such that
lm(Aj(x0)) = δmj , then

lm([Y,Ak](x)) =
n∑
k=1

f ijk · lm(Ai(x))

Since the matrix M(x) := (lm(Ak(x))) is invertible at x0 and has smooth entries,
it is invertible by a matrix with smooth entries on an open neighborhood of x0.
The smooth inverse matrix applied to the left hand vector proves the smoothness
of f ijk. By this condition we can easily conclude that (FlAk

t )∗Y is S-valued for any
S-valued vector field Y given on the domain of definition of the local frame.

d

dt
(FlAk

t )∗Aj =
d

ds
(FlAk

s )∗(FlAk
t )∗Aj |s=0

= [Ak, (FlAk
t )∗Aj ]

= (FlAk
t )∗(

n∑
i=1

f ijkAi)

=
n∑
i=1

f ijk ◦ Fl
Ak
t · (FlAk

t )∗Ai
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Defining at a fixed point x ∈M for fixed 1 ≤ k ≤ n

gi(t) = (FlAk
t )∗Ai(x)

f ij(t) = f ijk(Fl
Ak
t (x))

we see that on the convenient vector space (TxM)n we are given the following linear
non-autonomous differential equation

d

dt
gj(t) =

n∑
i=1

f ij(t)gi(t)

with initial values in Snx ⊂ (TxM)n admitting a non-autonomous flow. If a non-
autonomous linear equation admits a (non-autonomous) flow, the solutions are
unique and depend smoothly and linearly on the initial values. Furthermore the
restriction of the vector field to the subspace Snx admits a flow, too, which is con-
sequently the restriction of the flow on TxM by uniqueness. So gi(t) ∈ Sx by
application of the linear flow to the initial values gi(0) = Ai(x) of this differential
equation for all times where it exists.

We fix a point m ∈ M , vector fields Ai with flows FlAi
t on the chart (u, u(U))

aroundm with u(m) = 0, then there are n linearly independent bounded functionals
lj on the model space E such that lj(u∗Ai(0)) = δij , so we get a splitting by
appropriate shrinking of the chart domain u(U) = U ′ × U ′′ with U ′ ⊂ Rn and
U ′′ ⊂ E′′. We define a smooth map on an appropriate open subset of U ′ × U ′′

denoted without loss of generality by U ′ × U ′′to Rn × E′′

φ(u, y) = u(FlA1
u1
◦ ... ◦ FlAn

un
)(u−1(0, y))

The inverse can be obtained by the following simple implicit function construction.
We define a smooth map from U ′ × U ′ × U ′′ to Rn

ψ(u,v, z) := u(FlAn
−un

◦ ... ◦ FlA1
−u1

)(u−1(v, z))

ψ1(u,v, z) := pr1 ◦ u(FlAn
−un

◦ ... ◦ FlA1
−u1

)(u−1(v, z))

The derivative in the first variable D1ψ1(u,v, z) is given by

(pr1u∗(FlAn
−un

)∗...(FlA1
−u1

)∗A1, ..., pr1u∗(FlAn
−un

)∗An)(ψ(u,v, z))

which is an invertible matrix and satisfies the condition of Lemma 1 on an appro-
priate neighborhood denoted again by U ′ × U ′ × U ′′. So we obtain an open subset
V around 0 and a smooth mapping η : U ′ × U ′′ × V → U ′ inverting ψ1 for fixed
second and third variable. u(v, z) := η((v, z), 0), so

ψ1(u(v, z),v, z) = 0

Consequently we get an inverse for the mapping φ on appropriate domains of defi-
nition given by

φ−1(v, z) = (u(v, z), pr2 ◦ ψ(u(v, z),v, z))
satisfying the desired relations by going into the definition of φ, φ−1 and ψ:

φ ◦ φ−1(v, z) = φ(u(v, z), pr2 ◦ ψ(u(v, z),v, z))
(0,pr2◦ψ(u(v,z),v,z))=ψ(u(v,z),v,z)

=

= u(FlA1
u1(v,z)

◦ ... ◦ FlAn

un(v,z))(u
−1(ψ(u(v, z),v, z))) =

= u ◦ u−1(v, z) = (v, z)

φ−1 ◦ φ(u, y) = φ−1(u(FlA1
u1
◦ ... ◦ FlAn

un
)(u−1(0, y))) = (u, y)
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So we can define a submanifold charts for the plaques u−1(φ(., y)) via φ−1 ◦u. The
given vector fields are tangent to these plaques, since

((FlA1
u1

)∗A1, ...., (FlA1
u1

)∗...(FlAn
un

)∗An)

form a local frame for S by the above formula at the point u−1(φ(., y)). The global
formulation of the Frobenius theorem follows by gluing together in the classical
way! �

We only have integrability for some directions, however, we obtain integrability
in all directions! Even the linear case is not trivial on convenient vector spaces E:
Given a1, ..., an ∈ L(E) in involution such that smooth groups exist for all of them,
then the nonlinear (sic!) differential equation

d

dt
g(t) =

n∑
i=1

ψi(g(t)) · ai[g(t)]

admits a maximal local flow for given smooth functions ψi ∈ C∞(E,R).

3. Lie’s second fundamental Theorem

Theorem 3. Given a finite dimensional Lie algebra and a left action on a conve-
nient manifold M , l : g → X(M) such that for one given linear basis A1, ..., An of
g the fundamental vector fields l(Ai) admit a local flow, then there is a unique local
left action L of the connected simply connected Lie group G with Lie algebra g on
M such that for m ∈M and X ∈ g

d

dt
|t=0L(exp(tX),m) = l(X)(m)

Proof. The subbundle of T (G×M) generated by the frame (g,m) 7→ (Ai(g), l(Ai)(m))
is involutive by definition, so there is a foliation of G ×M . We denote the leaf
through (g,m) by N(g,m). Given m0 ∈ M there are open neighborhoods U of e
in G, V of m0 in M and W of (e,m0) in N(e,m0) such that proj1|N(e,m0) : W ⊂
N(e,m0) → U ⊂ G is a local diffeomorphism with inverse (proj1|N(e,m))

−1 : U ×V ⊂
G ×M → N(e,m) ⊂ G ×M depending smoothly in m. We define for m ∈ V and
g ∈ U

L(g,m) := proj2[(proj1|N(e,m0))
−1(g)]

By uniqueness of the leafs we obtain that L(g, L(h,m)) = L(gh,m) if all of them
are defined. The rest is given by standard constructions as in [Pal57]. �

4. Representation Theory

Given a real finite dimensional Lie group G with Lie algebra g. Then we get the
following result, which shall be applied to strongly continuous representations on
Fréchet spaces: Let E be a convenient vector space and ρ : G→ GL(E) a smooth
representation, then there is a smooth representation ρ′ : g → L(E).

ρ′(A)x =
d

dt
|t=0ρ(exp(tA))x

for all x ∈ E. Theory in the direction of smooth and strongly continuous semigroups
on locally convex spaces was developed in [LS93], [Ouc73], [Tei01a] and [Tei01b] .



6 JOSEF TEICHMANN

Theorem 4. Let ρ′ : g → L(E) be a smooth Lie algebra representation, such that
for a given basis of g denoted by {Ak}k=1,...,n there are smooth groups Sρ

′(Ak) of
bounded linear operators on E with generator Ak. If G is connected and simply
connected, then there is unique smooth representation ρ : G → GL(E) integrating
ρ′.

Proof. Apply Lie’s second fundamental theorem and extend the local action to a
global one by linearity of the flows. �

The situation is getting more involved if we investigate strongly continuous rep-
resentations on Fréchet spaces. Given a representation ρ : G → GL(E), such that
g 7→ ρ(g)x is a continuous function from G to E for all x ∈ E, then we get by
classical theory that the G̊arding-domain E∞ is a dense subspace of E, where the
universal enveloping algebra U(g) acts on. The G̊arding-domain E∞ is defined to
be the set of all x ∈ E such that g 7→ ρ(g)x is smooth. With respect to the initial
topology induced by operators from U(g) via ρ′ the vector space E∞ becomes a
Fréchet space:

E∞ ρ′(A)→ E∞ ↪→ E

for A ∈ U(g) (see [War72] and [KM97] for details).

Theorem 5. Given a Fréchet space E, a connected, simply connected Lie group G
with Lie algebra g and a dense subspace F of E, where the universal enveloping al-
gebra acts on by a representation ρ′, such that F with respect to the initial structure
induced by operators from U(g) is a Fréchet space. If there is a basis {Ak}k=1,...,n

in g, such that there are strongly continuous groups Sρ
′(Ak) on E with infinitesimal

generator ρ′(Ak) and such that the restriction of Sρ
′(Ak) to F is a smooth group,

then there is a unique representation ρ : G→ L(E) integrating ρ′ : g → L(F ).

Proof. First we look at the Fréchet space F , where we get immediately a solution
of the problem by the previous theorem: There is smooth representation ρ̃ : G →
L(F ) integrating ρ′ : g → L(F ). Since locally this representation is given by
S
ρ′(A1)
u1 ...S

ρ′(Am)
um with Ai ∈ g and Sρ

′(Ai) can be extended to strongly continuous
groups on E, hence the whole expression can be extended to E. The extension to
E is strongly continuous. �

Remark 2. The assumption that F is a Fréchet space with respect to the initial
topology induced by U(g) can be weakened to the following smoothness assumptions:

(1) There is a dense subspace D of E, a representation of algebras ρ′ : U(g) →
Lin(D) and a linear basis {Ak}k=1,...,n of g such that ρ′(Ak) are generators
of strongly continuous groups on E.

(2) D is a Sρ
′(Ak)-invariant for k = 1, ..., n and for any element x ∈ D the

mapping (u1, ..., un) 7→ S
ρ′(A1)
u1 ...S

ρ′(An)
un x is smooth in E.

Then the closure of D under the initial topology induced by U(g) is a Fréchet
space F embedded in E and the strongly continuous groups Sρ

′(Ak) restrict to smooth
groups on this closure: First we shall look at the partial derivatives of the above
mapping generating the elements of the universal enveloping algebra under ρ′. Given
an element A ∈ U(g), we know that ρ′(A)x should be defined by derivation for any
x ∈ D. For A = Am1

1 ...Amn
n we obtain

∂m1+...+mn

∂m1u1∂m2u2...∂mnun
Sρ

′(A1)
u1

...Sρ
′(An)
un

x|u=0 =: ρ′(A)x
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which provides a linear basis and a grading of U(g) by the Poincaré-Birkhoff-Witt
theorem. Furthermore we can repeat the argument from the proof of the Frobenius
theorem, which is possible by invariance of D under ρ′(A) and Sρ

′(Ak):
d

du
Sρ

′(Ak)
u ρ′(Ai)S

ρ′(Ak)
−u (x) = [ρ′(Ak), Sρ

′(Ak)
u ρ′(Ai)S

ρ′(Ak)
−u ](x)

= Sρ
′(Ak)
u [ρ′(Ak), ρ′(Ai)]S

ρ′(Ak)
−u (x)

=
n∑
j=1

cjkiS
ρ′(Ak)
u ρ′(Aj)S

ρ′(Ak)
−u (x).

This is an autonomous system of linear differential equation producing the following
commutation relation for x ∈ D:

S
ρ′(Ak)
u ρ′(A1)

...
S
ρ′(Ak)
u ρ′(An)

 (x) = exp((cjki)i,j=1,...,nu)


ρ′(A1)S

ρ′(Ak)
u

...
ρ′(An)S

ρ′(Ak)
u

 (x)

Calculating the derivative at an arbitrary point (u1, ..., un) we obtain:

∂m1+...+mn

∂m1u1∂m2u2...∂mnun
Sρ

′(A1)
u1

...Sρ
′(An)
un

x =

= Sρ
′(A1)
u1

ρ′(Am1
1 )Sρ

′(A1)
−u1

· ... · Sρ
′(A1)
u1

...Sρ
′(An)
un

ρ′(Amn
n )Sρ

′(An)
−un

...S
ρ′(A1)
−u1

·

·Sρ
′(A1)
u1

...Sρ
′(An)
un

x

which leads to the following expressions with m = (m1, ...,mn)

∂m1+...+mn

∂m1u1∂m2u2...∂mnun
Sρ

′(A1)
u1

...Sρ
′(An)
un

x = ρ′(Am(u1, ..., un)) · Sρ
′(A1)
u1

...Sρ
′(An)
un

x

∂m1+...+mn

∂m1u1∂m2u2...∂mnun
Sρ

′(A1)
u1

...Sρ
′(An)
un

x = Sρ
′(A1)
u1

...Sρ
′(An)
un

· ρ′(Bm(u1, ..., un))

with the obvious meaning that Am(.) and Bm(.) are linear combination of elements
in ρ′(g) of order less or equal k := m1 + ... + mn = |m| with smooth coefficients
defined on Rn. Integration yields

∂m1+...+(mi−1)+mn

∂m1u1∂m2u2...∂mnun
Sρ

′(A1)
u1

...Sρ
′(An)
un

x− ρ′(Am1
1 ...Ami−1

i ...An)x =

=
∫ ui

0

Sρ
′(A1)
u1

...Sρ
′(Ai)
vi

...Sρ
′(An)
un

· ρ′(Bm(u1, ..., vi, ..., un))xdvi

Given a sequence xn → 0 in D with ρ′(C)xn → 0 for C ∈ U(g) with degree strictly
smaller than k and ρ′(A)xn → yA for all A ∈ U(g) of degree k, then we obtain:

0 =
∫ ui

0

Sρ
′(A1)
u1

...Sρ
′(Ai)
vi

...Sρ
′(An)
un

· yBm(u1,...,un)dvi

and hence yA = 0 by derivation. We consequently observe that the closure of D
under the initial topology induced by U(g) via ρ′ is a Fréchet space F and that the
operators ρ′(A) are well defined continuous operators there by extension, since the
values are uniquely given and they are continuous by definition of the topology. On
F the well-defined groups Sρ

′(Ak) are smooth groups of bounded operators by the
above fundamental commutation relation. So we are back to the assumptions of the
last theorem.
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Remark 3. Given the situation treated by Nelson of a connected and simply con-
nected Lie group G and a dense subspace D of a Hilbert space H, with a represen-
tation of U(g). The fact that the Casimir element A =

∑n
i=1A

2
i is essentially self

adjoint means in particular, that this operator is closeable and that all ρ′(Ai) are

essentially self-adjoint. So there is a Sρ
′(Ak)
t -invariant Fréchet space F , where the

semigroups are smooth: It is given by looking at the initial topology with respect to
A
n

for n ≥ 0 on D and completing this space (see [War72] for details).
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