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Abstract. We show that a continuous local semiflow of Ck-maps on a finite-

dimensional Ck-manifold M with boundary is in fact a local Ck-semiflow on M

and can be embedded into a local Ck-flow around interior points of M under
some weak assumption. This result is applied to an open regularity problem

for finite-dimensional realizations of stochastic interest rate models.

1. Introduction

Let k ≥ 1 be given. We consider a Banach space X and a continuous local
semiflow Fl of Ck-maps on an open subset V ⊂ X , i.e.

i) There is ε > 0 and V ⊂ X open with Fl : [0, ε[×V → X a continuous map.
ii) Fl(0, x) = x and Fl(s, F l(t, x)) = Fl(s + t, x) for s, t, s + t ∈ [0, ε[ and

x, F l(t, x) ∈ V .
iii) The map Flt : V → X is Ck for t ∈ [0, ε[.

To shorten terminology we say that “Fl” is a continuous local semiflow of Ck-
maps on X if for any x ∈ X there is an open neighborhood V ⊂ X of x and a
continuous local semiflow Fl = Fl(V ) of Ck-maps on V , such that Fl(V1) = Fl(V2) on
V1 ∩ V2. Continuous local semiflows of Ck-maps appear naturally as mild solutions
of nonlinear evolution equations (see Appendix A). The continuous local semiflow
Fl is called Ck or local Ck-semiflow if Fl : [0, ε[×V → X is Ck.

We assume that we are given a finite-dimensional Ck-submanifoldM with bound-
ary of X such that M is locally invariant for Fl, i.e. for every x ∈ M ∩ V there
is δx ∈]0, ε[ such that Fl(t, x) ∈ M for 0 ≤ t ≤ δx. In this case Fl restricts in a
small open neighborhood of any point x ∈ M ∩ V to a continuous local semiflow
of Ck-maps on M , see Lemma 1.3 below, where we make the restriction precise.
A continuous local semiflow of Ck-maps on M is defined as above, the same for
local Ck-semiflows: notice however that the manifold might have a boundary (for
the notions of analysis in this case see for example [6]). By TxM we denote the
(full) tangent space at x ∈ M , even at the boundary. By (TxM)≥0 we denote the
halfspace of inward pointing tangent vectors for x ∈ ∂M . The boundary subspace
of this halfspace is the tangent space of the Ck-submanifold (without boundary)
∂M , these are the tangent vectors parallel to the boundary.

We shall prove that the restriction of a continuous local semiflow of Ck-maps
Fl to a Ck-submanifold with boundary M is jointly Ck and can in particular be
embedded in a local Ck-flow around any interior point ofM . We shall apply classical

Date: November 2, 2001 (first draft); April 2, 2002 (this draft).
We thank K. David Elworthy for bringing this interesting problem to our attention. The

second author thanks the patient participants of the Vienna Seminar in Differential Geometry, in
particular Andreas Cap, Stefan Haller, Andreas Kriegl and Peter Michor.

1
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methods from [9] developed to solve the fifth Hilbert problem. Nevertheless we have
to face the difficulty that Fl is only a continuous local semiflow. We can prove the
result under a weak assumption, which will always be satisfied with respect to
our applications. This problem arises in several contexts, for example recently in
interest rate theory, see [2, 3].

We first cite the classical results from Dean Montgomery and Leo Zippin [9] and
draw a simple conclusion, which illustrates, what are going to do, namely proving
a non-linear version of Example 1.2.

Theorem 1.1. Let M be a finite-dimensional Ck-manifold and Fl : R×M →M
a continuous flow of Ck-maps on M , then Fl is a Ck-flow on M .

Example 1.2. Let S be a strongly continuous group on a Banach space X and
assume that M is a locally S-invariant finite-dimensional Ck-submanifold of X.
Then M ⊂ D(Ak), where A denotes the infinitesimal generator of S, and the
restriction of A to M is a Ck−1-vector field on M .

The paper is organized as follows. In Section 2 we prove the extension of The-
orem 1.1 for continuous local semiflows of Ck-maps. In Section 3 we apply this
result to a problem that arises in connection with stochastic interest rate models
as it has been announced in [2]: finite-dimensional realizations are highly regular
objects, namely given by submanifolds with boundary of D(A∞), where A is the
generator of a strongly continuous semigroup. The appendix contains a regularity
result for the dependence of solutions to evolution equations on the initial point.

We end this section by the announced lemma. Let M be a finite-dimensional
Ck-submanifold with boundary and let M be locally invariant for Fl, as defined
above. We denote by Rn

≥0 the halfspace {x ∈ Rn; xn ≥ 0}, consequently R≥0 is the
positive halfline including 0.

Lemma 1.3. For every x ∈M ∩V there exists an open neighborhood V ′ ⊂ X of x
and ε′ > 0, such that Fl(t, y) ∈M for all (t, y) ∈ [0, ε′[×(V ′ ∩M).

Proof. Take x ∈M and a Ck-submanifold chart u : U ⊂ X → X with u(U ∩M) =
{0} × W ⊂ {0} × Rn

≥0, where U ⊂ U ⊂ V is open and x ∈ U , W ⊂ Rn
≥0 is

open, convex. Here n denotes the dimension of M . We may assume that u has a
continuous extension on U with u(U ∩M) = u(U ∩M) = {0} ×W by restriction
of U . The closure of U ∩M is taken in M .

For y ∈ U define the lifetime in U ∩M
T (y) := sup{0 < t < ε | ∀0 ≤ s < t : Fl(s, y) ∈ U ∩M, }.

By continuity of Fl we have Fl(T (y), y) ∈ U ∩M \ (U ∩ M) if T (y) < ε. We
claim that there exists an open neighborhood V ′ ⊂ U of x in X and ε′ > 0 such
that T (y) ≥ ε′ for all y ∈ V ′. Indeed, otherwise we could find a sequence (xn) in
U ∩M with xn → x and ε > T (xn) → 0. But this means that u(Fl(T (xn), xn)) ∈
{0}×(W \W ) converges to u(Fl(0, x)) = u(x) ∈ {0}×W , a contradiction. Whence
the claim, and the lemma follows. �

2. The classical proof revisited

Since we are treating local questions as differentiability, we can – without any
restriction – assume that f : [0, ε[×V → Rn

≥0 is a given continuous local semiflow
of Ck-maps, where V is open, convex in Rn

≥0. For the notion of differentiability
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on manifolds with boundary see for example [6]. We do not make a difference in
notation between right derivatives and derivatives, even though on the boundary
points in space or time, respectively, we only calculate right derivatives. We shall
always assume in this section that f is continuous and f(t, .) is Ck for all t ∈ [0, ε[,
for some k ≥ 1. We shall write f(t, x) = (f1(t, x), ..., fn(t, x)) for (t, x) ∈ [0, ε[×V .

Assumption (crucial). We assume that for any x ∈ V there is εx > 0 such that
Dxf(t, x) is invertible for 0 ≤ t ≤ εx (Dxf denotes the derivative with respect to
x).

Lemma 2.1. The mapping (t, x) 7→ Dxf(t, x) is continuous.

Proof. For the proof we proceed from the Baire category Theorem and Lemma 2
of [9] on p. 198. We then have the following result:

Let Z be any compact interval, V the open set in Rn
≥0 and let F : Z × V → R

be a continuous real valued function, such that F (g, .) is C1 for any g ∈ Z. Given
a ∈ V and 1 ≤ i ≤ n, the set of points g0 ∈ Z such that ∂

∂xi
F is continuous at

(g0, a) is dense in Z, even more, the set where it is not continuous is of first category
in Z.

Let now a ∈ V be fixed, then the set of points t0 ∈ [0, ε[ such that fij := ∂
∂xi

fj

is continuous at (t0, a), for all 1 ≤ i, j ≤ n, is everywhere dense in [0, ε[. We shall
denote this set by Ia. In addition the determinant det(fij) is continuous at these
points, too. We want to show now that for fixed a ∈ V the mappings fij are
continuous at (0, a). Notice that the determinant at any point of continuity (t0, a),
with t0 ∈ Ia small enough, is bounded away from zero in a neighborhood.

We fix a ∈ V , then for t0 ∈ [0, ε[

f(t0 + h, a+ y) = f(t0, f1(h, a+ y), ..., fn(h, a+ y))

for h ≥ 0 and y ∈ Rn
≥0, both sufficiently small, hence

Dxf(t0 + h, a+ y) = Dxf(t0, f(h, a+ y)) ·Dxf(h, a+ y).

There is t0 ∈ Ia such that Dxf(t0, z) is invertible in a neighborhood of a, hence

Dxf(t0, f(h, a+ y))−1 ·Dxf(t0 + h, a+ y) = Dxf(h, a+ y)

and therefore

id = lim
h↓0,y→0

Dxf(t0, f(h, a+ y))−1 ·Dxf(t0 + h, a+ y) = lim
h↓0,y→0

Dxf(h, a+ y)

by continuity of Dxf at (t0, a), continuity of f in both variables and the continuity
of the inversion of matrices. So 0 ∈ Ia for all a ∈ V .

Now we can conclude for arbitrary t ∈]0, ε[ in the following way:

Dxf(t+ h, a+ y) = Dxf(t, f(h, a+ y)) ·Dxf(h, a+ y)

for h ≥ 0 and y ∈ Rn
≥0 sufficiently small, hence by continuity at (0, a)

lim
h↓0,y→0

Dxf(t+ h, a+ y) = lim
h↓0,y→0

Dxf(t, f(h, a+ y)) ·Dxf(h, a+ y) = Dxf(t, a).

For left continuity we apply

Dxf(t, a+ y) = Dxf(h, f(t− h, a+ y)) ·Dxf(t− h, a+ y)
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for h ≥ 0 and y ∈ Rn
≥0 sufficiently small, hence by continuity of Dxf at (0, a) and

(0, f(t, a)), the continuity of Dxf in the second variable and the existence of the
inverse for small h

lim
h↓0,y→0

Dxf(t−h, a+y) = lim
h↓0,y→0

Dxf(h, f(t−h, a+y))−1·Dxf(t, a+y) = Dxf(t, a).

Consequently the desired assertion holds. �

In the next step we shall show that there is a derivative at 0.

Lemma 2.2. The right-hand derivative d
dtf(t, x)|t=0 exists for x ∈ V , and for

small h ≥ 0 we have the formula

f(h, x)− x =
∫ h

0

Dxf(t, x)dt · ( d
dt
f(0, x)).

Moreover, d
dtf(t, .)|t=0 : V → Rn is continuous.

Proof. We may differentiate with respect to x under the integral sign by Lemma
2.1 und uniform convergence, so

T (h, x) :=
∫ h

0

f(t, x)dt

DxT (h, x) :=
∫ h

0

Dxf(t, x)dt.

By the mean value theorem we obtain

T (h, y)− T (h, x) = DxT (h, x̃)(y − x),

where x̃ ∈ [x, y]. Now we take y = f(p, x), then

T (h, y)− T (h, x) =
∫ h+p

p

f(t, x)dt−
∫ h

0

f(t, x)dt

=
∫ h+p

h

f(t, x)dt−
∫ p

0

f(t, x)dt,

which finally yields

1
p
(
∫ p

0

f(t+ h, x)dt−
∫ p

0

f(t, x)dt) = DxT (h, x̃)[
1
p
(f(p, x)− x)].

This equation can be solved by joint continuity of (h, z) 7→ 1
h

∫ h

0
Dxf(t, z)dt: we

obtain for small h and a compact set in x that the expression is in a small neigh-
borhood of the identity matrix. So inversion leads to the desired result and then
to the given formula.

The formula asserts again by inversion, that the derivative is continuous with
respect to x. �
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By the semigroup-property and the chain rule, the result of Lemma 2.2 can be
extended for 0 < t < ε, and the derivative of f(·, x) exists for all t ∈ [0, ε[. Indeed,

lim
p↓0

f(t+ p, x)− f(t, x)
p

= lim
p↓0

f(p, f(t, x))− f(t, x)
p

=
d

dt
f(0, f(t, x))

lim
p↓0

f(t, x)− f(t− p, x)
p

= lim
p↓0

f(p, f(t− p, x))− f(t− p, x)
p

= lim
p↓0

1
p
(
∫ p

0

Dxf(t, f(t− p, x))dt)
d

dt
f(0, f(t− p, x))

=
d

dt
f(0, f(t, x))

by Lemmas 2.1 and 2.2. Consequently for small h ≥ 0

d

dt
f(t, x) =

d

dt
f(0, f(t, x)) = (

∫ h

0

Dxf(s, f(t, x))ds)−1 · (f(h, x)− x). (2.1)

In particular (t, x) 7→ d
dtf(t, x) is continuous in both variables on the whole domain

of definition.

Lemma 2.3. The semiflow f is Ck in both variables.

Proof. If f(t, .) is Ck for t ∈ [0, ε[, then the r-jet

(f(t, x0), Dxf(t, x0) · x1, ..., D
r
xf(t, x0) · x1 · ... · xr)

for (t, x0, x1, ..., xr) ∈ [0, ε[×V ×Rn× ...×Rn is a local semiflow of Ck−r-maps, for
0 ≤ r ≤ k−1. For r = 1, the 1-jet is a continuous, local semiflow of Ck−1-maps, by
Lemma 2.1. Assume that for r < k the r-jet is a continuous, local semiflow then,
by Lemma 2.1 again, the (r + 1)-jet is continuous. By induction

(t, x) 7→ Dr
xf(t, x)

is continuous in both variables for 0 ≤ r ≤ k.
If we apply the above results to the r-jet for r < k, we conclude by equation (2.1)

that Dr
xf(t, x) can be (k−r) times differentiated with respect to the t-variable, and

these derivatives are continuous. Hence f is Ck in both variables. �

Theorem 2.4. Let k ≥ 1 be given and let Fl : [0, ε[×U → M be a local semiflow
on a finite-dimensional Ck-manifold M with boundary, which satisfies the following
conditions:

i) The semiflow Fl : [0, ε[×U →M is continuous with U ⊂M open.
ii) The mapping Fl(t, .) is Ck.
iii) For fixed x ∈ U there exists εx > 0 such that TxFl(t, .) is invertible for

0 ≤ t ≤ εx.
Then Fl is Ck and for any x0 ∈ U \∂M there is a local Ck-flow F̃ l :]−δ, δ[×V →M

with V ⊂ U \ ∂M open around x0 and δ ≤ ε such that Fl(y, t) = F̃ l(y, t) for y ∈ V
and 0 ≤ t ≤ δ. This also holds for the smooth case (k = ∞).

Proof. By the previous lemmas the map Fl : [0, ε[×U → M is a Ck-semiflow
on M . We fix x0 ∈ U \ ∂M , then there is 0 < δ < ε and W ⊂ U open in
M \ ∂M , such that (t, x) 7→ (t, F l(t, x)) is Ck-invertible on [0, δ[×W by the Ck-
inverse function theorem on manifolds with boundary (see [6]). We then choose an
open neighborhood V ⊂ ∩0≤t<δFl(t,W ) of x0 in M \∂M . Therefore we can define
F̃ l(−t, y) := {Fl(., .)}−1(t, y) for t ∈ [0, δ[ and y ∈ V . Since this is the unique
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solution in z of the Ck-equation Fl(t, z) = y, we obtain a Ck-map F̃ l. The flow
property holds by uniqueness, too. Notice that V can be chosen independent of
k. �

Remark 2.5. Remark that for evolutions (which correspond in the differentiable
case to time-dependent vector fields) we can pass to the extended phase space and
apply the results thereon.

3. Applications

The following application has been announced in [2] in connection with finite-
dimensional realizations for stochastic models of the interest rates. Let X be a
Banach space, S a strongly continuous semigroup on X with infinitesimal generator
A : D(A) → X, and let P : X → X be a locally Lipschitz map. For x ∈ D(A) we
write

µ(x) := Ax+ P (x).
Proposition A.2 yields the existence of a continuous, local semiflow Flµ of mild
solutions to the evolution equation

d

dt
x(t) = µ(x(t)). (3.1)

That is, for every x0 ∈ X there exists a neighborhood U of x0 in X and T > 0 such
that Flµ ∈ C([0, T ]× U,X) and

Flµ(t, x) = Stx+
∫ t

0

St−sP (Flµ(s, x))ds, ∀(t, x) ∈ [0, T ]× U. (3.2)

Now let k ≥ 1, and M be a finite-dimensional Ck-submanifold with boundary in
X, which is locally invariant for Flµ. Hence, by Lemma 1.3, x0 ∈ M implies
Flµ(t, x) ∈ M for all (t, x) ∈ [0, T ] × (U ∩M), for some open neighborhood U of
x0 in X and T > 0. By the methods of [1] (see also Remark 3.3 below) we obtain
that necessarily M ⊂ D(A) and

∀x ∈M : µ(x) ∈ TxM and ∀x ∈ ∂M : µ(x) ∈ (TxM)≥0, (3.3)

since µ has to be additionally inward pointing. We now can strengthen this result.

Theorem 3.1. Suppose

P ∈
k⋂

r=0

Ck−r(X,D(Ar)) (3.4)

and Dk
xP is locally Lipschitz continuous. Then M ⊂ D(Ak) and µ|M is a Ck−1-

vector field on M .

Proof. Let x0 ∈ M , and U , T as above. Hence Flµ(t, x) ∈ M for all (t, x) ∈
[0, T ]× (U ∩M). By the assumptions we made, Theorem A.3 applies and we may
assume that Flµ(t, ·) is Ck on U for all t ∈ [0, T ]. Now let x ∈ U ∩M . We claim
that there exists εx > 0 such that

DxFl
µ(t, x) : TxM → TFlµ(t,x)M is invertible for 0 ≤ t ≤ εx. (3.5)

Indeed, let y ∈ X. The directional derivative DxFl
µ(t, x)y is continuous in t on

[0, T ], see (A.5). Hence (3.2) and dominated convergence imply that

DxFl
µ(t, x)y = Sty +

∫ t

0

St−sDP (Flµ(s, x))DxFl
µ(s, x)y ds.
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By the bound (A.6) we conclude that

sup
y∈TxM, ‖y‖≤1

‖DxFl
µ(t, x)y − y‖ ≤ sup

y∈TxM, ‖y‖≤1

‖Sty − y‖+O(t),

where O(t) → 0 for t→ 0. Since TxM is finite-dimensional, it is easy to see that

sup
y∈TxM, ‖y‖≤1

‖Sty − y‖ → 0 for t→ 0.

Hence there exists εx > 0 such that DxFl
µ(t, x) restricted to TxM is injective, and

hence invertible, for all t ∈ [0, εx]. This yields the claim (3.5).
Therefore Theorem 2.4 applies and Flµ : [0, T ] × (U ∩ M) → M is Ck. In

particular, since µ(x) = ∂tFl
µ(0, x), µ|M is a Ck−1-vector field onM , and Flµ(·, x0)

is Ck on [0, T ].
¿From (3.2) we have

Stx0 = Flµ(t, x0)−
∫ t

0

St−sP (Flµ(s, x0)) ds, t ∈ [0, T ].

By (3.4), the integral on the right is Ck in t ∈ [0, T ]. Indeed, we obtain inductively
by dominated convergence

∂r
t

∫ t

0

St−sP (Flµ(s, x0)) ds = ∂r−1
t P (Flµ(t, x0)) + ∂r−2

t AP (Flµ(t, x0))

+ · · ·+Ar−1P (Flµ(t, x0)) +
∫ t

0

St−sA
rP (Flµ(s, x0)) ds,

for r ≤ k. We conclude that Stx0 is Ck in t ∈ [0, T ]. But this means that
x0 ∈ D(Ak) and the theorem is proved. �

We now consider a setup that is given in [2]. Let W be a connected open set in
X, d ≥ 1 and σ = (σ1, . . . , σd) such that

(A1): P and σi are Banach maps from X into D(A∞), for 1 ≤ i ≤ d.
(A2): µ, σ1, . . . , σd are pointwise linearly independent on W ∩D(A∞).

For the definition of a Banach map see [2, 4]. The Banach map principle ([4,
Theorem 5.6.3]) yields that each σi generates a local flow Flσi on X with the
following property: for every x0 ∈ X there exists an open neighborhood V of x0 in
X and T > 0 such that

Flσi ∈ C∞(]− T, T [×V,X) and Flσi ∈ C∞(]− T, T [×V ′, D(A∞)),

where V ′ := V ∩D(A∞) is considered as an open set in D(A∞), and Flσi(·, x) is
the unique solution of

d

dt
x(t) = σi(x(t)), x(0) = x, (t, x) ∈]− T, T [×V.

Local invariance for Flσi is defined as for Flµ above.

Theorem 3.2. Let M ⊂W be a (d+1)-dimensional C∞-submanifold with bound-
ary of X. If M is locally invariant for Flµ, Flσ1 , . . . , F lσd , then M is a C∞-
submanifold with boundary of D(A∞).

Proof. Theorem 3.1 implies that M ⊂ D(A∞) and µ|M is a C∞-vector field on M
with respect to the given differentiable structure as submanifold with boundary of
X. Furthermore σ1, . . . , σd restrict to smooth vector fields on M and σi(x) ∈ Tx∂M
for x ∈ ∂M , since σi(x) and −σi(x) have to be inward pointing by local invariance.
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We do also have integral curves for µ and σ1, . . . , σd on D(A∞) which coincide with
the respective integral curves on X on the intersection of the domains of definition
if they start from the same point.

We have to construct submanifold charts for M , such that M is also a sub-
manifold with boundary of D(A∞). We shall do this by constructing smooth
parametrizations α : U → D(A∞) for any point x0 ∈M , then we apply [2, Lemma
3.1].

Let x0 ∈M \∂M . From [2, Section 2] we know that the vector field µ generates a
smooth local semiflow on D(A∞), which coincides locally by uniqueness of integral
curves with the local C∞-flow FlµM of µ|M on a neighborhood of x0. This means in
particular that t 7→ FlµM (t, x0) is smooth with respect to the topology of D(A∞).
As in the proof of [2, Theorem 3.9] it follows, by (A2), that

α(u, x0) := Flσ1
u1
◦ · · · ◦ Flσd

ud
◦ FlµM

ud+1
(x0) : U → D(A∞),

where U is an open, convex (sufficiently small) neighborhood of 0 in Rd+1, is a dif-
feomorphism (it has maximal rank) to an open submanifold N ⊂ M with respect
to the differentiable structure as submanifold with boundary of X. But α is addi-
tionally a smooth parametrization of a submanifold N ⊂ M ⊂ D(A∞), therefore
we constructed for the open subset N of M an appropriate chart as submanifold of
D(A∞) by [2, Lemma 3.1].

For the boundary points x0 ∈ ∂M the argument is simpler: first we observe that
σi(x) are parallel to the boundary for x ∈ ∂M . In this case it is sufficient to define α
on an open, convex subset U ⊂ Rd×R≥0. Again α is a smooth diffeomorphism to an
open submanifold with boundary N ⊂M with respect to the original differentiable
structure, but by [2, Lemma 3.1] this is also a smooth parametrization of a N as a
submanifold of D(A∞).

Whence we have constructed submanifold charts with respect to D(A∞), so
M ⊂ D(A∞) is also a submanifold with boundary of D(A∞). �

Remark 3.3. The Nagumo type consistency results in [1] have been derived for
submanifolds without boundary. These results can be extended to submanifolds with
boundary. There are two key points. First, any submanifold with boundary M
can be smoothly embedded in a submanifold without boundary, say M̃ , of the same
dimension. Then the main arguments in [1] carry over: to derive the Nagumo type
consistency conditions at a point x ∈ M it is enough to have local viability of the
process with initial point x ∈ M in M (and hence in M̃). Consequently we obtain
the Nagumo type conditions for the whole of M (including the boundary!). Second,
the coefficients of a diffusion process (i.e. the coordinate process) viable in a half
space have to satisfy the appropriate inward pointing conditions at the boundary.
We refer to [7] for the rigorous analysis.

Appendix A. Regular Dependence on the Initial Point

Let X be a Banach space, S a strongly continuous semigroup on X with infini-
tesimal generator A, and P : R≥0 ×X → X a continuous map. In this section we
shall provide the basic existence, uniqueness and regularity results for the evolution
equation

d

dt
x(t) = Ax(t) + P (t, x(t)). (A.1)
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We first recall a classical existence and uniqueness result (see [8, Theorem 1.2,
Chapter 6]).

Theorem A.1. Let T > 0. Suppose P : [0, T ] × X → X is uniformly Lipschitz
continuous (with constant C) on X. Then for every x ∈ X there exists a unique
mild solution x(t), t ∈ [0, T ], to (A.1) with x(0) = x. If x(t) and y(t) are two mild
solutions of (A.1) with x(0) = x and y(0) = y then

sup
t∈[0,T ]

‖x(t)− y(t)‖ ≤MeMCT ‖x− y‖, (A.2)

where
M := sup

t∈[0,T ]

‖St‖. (A.3)

There is an immediate local version of Theorem A.1. We say that P : R≥0×X →
X is locally Lipschitz continuous on X if for every T ≥ 0 and K ≥ 0 there exists
C = C(T,K) such that

‖P (t, x)− P (t, y)‖ ≤ C‖x− y‖

for all t ∈ [0, T ], and x, y ∈ X with ‖x‖ ≤ k and ‖y‖ ≤ k.

Proposition A.2. Suppose P : R≥0 ×X → X is locally Lipschitz continuous on
X. Let x0 ∈ X. Then there exist a neighborhood U of x0 and T > 0 such that,
for every x ∈ U , equation (A.1) has a unique mild solution x(t), t ∈ [0, T ], with
x(0) = x. If x(t) and y(t) are two mild solutions of (A.1) with x(0) = x ∈ U and
y(0) = y ∈ U then (A.2) holds, for M as in (A.3) and some C = C(T,U).

Proof. Set K := 2‖x0‖ and fix T ′ > 0. Define

P̃ (t, x) :=

{
P (t, x), if ‖x‖ ≤ K,
P (t,Kx/‖x‖), if ‖x‖ > K.

Then P̃ : [0, T ′]×X → X is uniformly Lipschitz continuous onX with constant C =
C(T ′,K). Hence Theorem A.1 yields existence and uniqueness of mild solutions for
equation (A.1) where P is replace by P̃ . By (A.2) there exists 0 < T ≤ T ′ and a
neighborhood U of x0 such that supt∈[0,T ] ‖x(t)‖ ≤ K for every mild solution x(t)
with x(0) ∈ U . It is now easy to see that T and U satisfy the assertions of the
proposition. �

Here is the announced regularity result.

Theorem A.3. Let k ≥ 1. Suppose P : R≥0 × X → X is Ck in x, and Dk
xP

is continuous on R≥0 × X and locally Lipschitz continuous on X. Let x0 ∈ X.
Then there exists an open neighborhood U of x0 and T > 0, and a map F ∈
C([0, T ] × U,H) such that, for every x ∈ U , F (·, x) is the unique mild solution of
(A.1) with F (0, x) = x. Moreover F (t, ·) ∈ Ck(U,X) for all t ∈ [0, T ].

Proof. By assumption, Dr
xP is continuous on R≥0 ×X and locally Lipschitz con-

tinuous on X, for all r ≤ k. Hence Proposition A.2 yields the existence of U , T and
F ∈ C([0, T ]×U,H) such that F (·, x) ∈ C([0, T ],H) is the unique mild solution of
(A.1) with F (0, x) = x, for all x ∈ U . It remains to show regularity of F (t, ·).



10 DAMIR FILIPOVIĆ AND JOSEF TEICHMANN

Let x ∈ U and y ∈ X. The candidate, say ψ(t, x, y), for the Gateaux directional
derivative DxF (t, x)y is given by the linear evolution equation

d

dt
ψ(t, x, y) = Aψ(t, x, y) +DxP (t, F (t, x))ψ(t, x, y)

ψ(0, x, y) = y.
(A.4)

Since C1 = C1(x) := supt∈[0,T ] ‖DxP (t, F (t, x))‖ < ∞, Theorem A.1 yields the
existence of a unique mild solution

ψ(·, x, y) ∈ C([0, T ], X) (A.5)

to (A.4), and by (A.2)

sup
t∈[0,T ]

‖ψ(t, x, y)‖ ≤MeMC1T ‖y‖. (A.6)

Now let t ∈ [0, T ] and (xn) be a sequence in U converging to x. We claim that

sup
y∈X, ‖y‖≤1

‖ψ(t, xn, y)− ψ(t, x, y)‖ → 0, for n→∞. (A.7)

Indeed, ∆n(t) := ψ(t, xn, y)− ψ(t, x, y) satisfies

∆n(t) =
∫ t

0

St−s (DxP (s, F (s, xn))ψ(s, xn, y)−DxP (s, F (s, x))ψ(s, x, y)) ds.

Hence

‖∆n(t)‖ ≤MC2

∫ t

0

‖∆n(s)‖ ds+M2C3e
M(C0+C1)T ‖y‖‖xn − x‖,

where C0 and C3 are local Lipschitz constants of P and DxP , respectively, and
C2 := supn sups∈[0,T ] ‖DxP (s, F (s, xn))‖. By Gronwall’s inequality

‖∆n(t)‖ ≤M2C3e
M(C0+C1+C2)T ‖y‖‖xn − x‖,

whence (A.7).
Next, we claim that

DxF (t, x)y = ψ(t, x, y). (A.8)

Let ε0 > 0 be such that x + εy ∈ U for all ε ∈ [0, ε0]. For such ε we write
δ(t, ε) := F (t, x+ εy)− F (t, x)− εψ(t, x, y), and obtain

δ(t, ε) =
∫ t

0

St−s(P (s, F (s, x+ εy))− P (s, F (s, x))) ds

− ε

∫ t

0

St−sDxP (s, F (s, x))ψ(s, x, y) ds

=
∫ t

0

St−s (DxP (s, F (s, x))δ(s, ε) + ∆(s, ε)) ds,

where

∆(s, ε) := P (s, F (s, x+εy))−P (s, F (s, x))−DxP (s, F (s, x))(F (s, x+εy)−F (s, x)).

By regularity of P and in view of (A.2) there exists C4 = C4(T,U) such that

sup
t∈[0,T ]

‖∆(t, ε)‖ ≤ C4ε.
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Hence, writing C5 := supt∈[0,T ] ‖DxP (t, F (t, x))‖,

‖δ(t, ε)‖ ≤ C5MT

∫ t

0

‖δ(s, ε)‖ ds+ C4MTε,

and by Gronwall’s inequality limε→0 ‖δ(t, ε)‖ = 0, whence (A.8).
By (A.8) it follows that DxF (t, x)y is well defined for all x ∈ U and y ∈ X, and

by (A.7) the mappingDxF (t, ·) : U 7→ L(X) is continuous, hence F (t, ·) ∈ C1(U,X)
for all t ∈ [0, T ].

Higher order regularity is shown by induction of the above argument. We only
sketch the case C2. Let x ∈ U and y1, y2 ∈ X, and write ψ2(x, y1, y2) for the
candidate of D2

xF (t, x)(y1, y2), which solves the inhomogeneous linear evolution
equation

d

dt
ψ2(t, x, y1, y2) = Aψ2(t, x, y1, y2) +DxP (t, F (t, x))ψ2(t, x, y1, y2)

+D2
xP (t, F (t, x))(DxF (t, x)y1, DxF (t, x)y2)

ψ2(0, x, y1, y2) = 0.

(A.9)

Notice that the inhomogeneous part, D2
xP (t, F (t, x))(DxF (t, x)y1, DxF (t, x)y2), is

continuous in t ∈ [0, T ] by induction. Hence ψ2(·, x, y1, y2) ∈ C([0, T ], X) is the
unique mild solution of (A.9) by Theorem A.1. Now let t ∈ [0, T ]. One shows first
that ψ2(t, ·, y1, y2) : U → X is continuous, uniformly in y1, y2 ∈ X with ‖y1‖ ≤ 1,
‖y2‖ ≤ 1 (see (A.7)). Then the identity D2

xF (t, x)(y1, y2) = ψ2(t, x, y1, y2) is proved
(see (A.8)), whence F (t, ·) ∈ C2(U,X). �
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