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Abstract. Some results of ergodic theory are generalized in the setting of Banach

lattices, namely Hopf’s maximal ergodic inequality and the so called Hopf decom-

position (see [6]). Then these results are applied to a recently analysed problem
concerning recurrent semigroups on L1-spaces (see [2],[3],[7]).

1. Introduction

The following stability result has been shown by W. Arendt, C. J. K. Batty, Ph.
Bénilan [2] (see also C. J. K. Batty [3]). Consider the Laplacian 4 on L1(Rn) and a
positive potential V ∈ L∞(Rn): If n = 1, 2, then the semigroup generated by4−V
converges strongly to 0 as t→∞ whenever V 6= 0; on the other hand, if n ≥ 3, then
there exist V 6= 0, such that the semigroup is not stable. In fact exp t(4− V ) leaves
invariant a strictly positive function in L∞(Rn). I. McGillivray and M. Ouhabaz
showed that the essential properties for this behaviour are recurrence (if n = 1, 2)
and transience (if n ≥ 3).

The purpose of this paper is to line out, that these phenomena can be observed
in a much more general context. In fact it seems, that positive operators on Banach
lattices form the right framework for the formulation of these results. A key role is
played by the Hopf decomposition theorem, which we prove in an abstract context
in section 3. This seems to be of independent interest. In section 4 we prove the
stability results as immediate consequences. For convenience of the reader we put
together the elementary properties of Banach lattices and positive operators needed
in the sequel.

2. Vector- and Banach lattices

In this chapter we are going to outline the main principles and to prove a genera-
lized version of Hopf’s maximal ergodic inequality (see e.g. [1],[8] for some further
informations).

Definition 1:
Let E be an ordered vector space. E is called vector lattice, if for two elements
x, y ∈ E there is a supremum, i.e. an element z ∈ E satisfying the following
property:

x ≤ z and y ≤ z and ∀z′ ∈ E : x ≤ z′ and y ≤ z′ ⇒ z ≤ z′

We write z = sup(x, y).

The next definition treats basic subspace-structures of vector lattices:

I would like to thank Wolfgang Arendt for the warm, pleasant and interesting days in Ulm and

Besançon.
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Definition 2: Let E be a vector lattice:
i.) For x ∈ E we define the following operations:

x+ := sup(x, 0) x− := − inf(x, 0) |x| := sup(x,−x)

ii.) A subspace F of E is called vector sublattice, if the following condition is satis-
fied:

∀x, y ∈ F : sup(x, y) ∈ F

iii.) A subspace I of E is called ideal, if

∀x ∈ E ∀y ∈ I : |x| ≤ |y| ⇒ x ∈ I

iv.) An ideal B of E is called a band, if

∀ ∅ 6= M ⊂ B : M has a supremum in E ⇒ supM ∈ B

v.) Let ∅ 6= M ⊂ E, then Md denotes the following band:

Md := {y ∈ E | ∀x ∈M : inf(|x|, |y|) = 0}

Sometimes we shall denote inf(|x|, |y|) = 0 by x⊥y.

Remarks 1:
i.) The class of vector sublattices, ideals and bands, respectively, is closed under

taking arbitrary intersections, so we can define a vector sublattice, an ideal and
a band, respectively, generated by a nonempty set M .

ii.) An ideal is a vector sublattice for | sup(x, y)| ≤ |x|+ |y| for all x, y ∈ E.
iii.) Two ideals I, J are called lattice disjoint, if their intersection is trivial. In this

case we obtain:
I ⊂ Jd and J ⊂ Id

If these two ideals are complemented to each other, i.e. I + J = E, then I = Jd

and J = Id, then I = Idd and consequently I is a band. The relation I = Idd

does not imply that I has a complement J . When I has a complement, I is
called a projection band, the projection belonging to I with kernel Id is called
band projection.

iv.) The following rules are valid in every vector lattice:

inf[(sup
i∈M

fi, h)] = sup
i∈M

[inf(fi, h)] sup[( inf
i∈M

fi, h)] = inf
i∈M

[sup(fi, h)]

for any order-bounded family {fi}i∈M and any h ∈ E. Furthermore we obtain
for x, y, z ∈ E:

x = x+ − x− |x| = x+ + x− |x+ y| ≤ |x|+ |y|

x+ y = sup(x, y) + inf(x, y) sup(x+ z, y + z) = sup(x, y) + z

v.) A vector lattice V is called order-complete, if every nonempty, order-bounded
subset M ⊂ V has a supremum.

Crucial for our considerations is the following Riesz Decomposition Theorem.
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Theorem 1: (Riesz Decomposition)
Let E be an order-complete vector lattice, then every band B is a projection band.
We obtain in particular, for every subset M ⊂ E,

E = Md ⊕Mdd

Proof: Let B ⊂ E be a band, then B ∩ Bd is trivial, since |x| = inf(|x|, |x|) = 0
for any x ∈ B ∩Bd. Let z ∈ E+ = {x ∈ E | x ≥ 0} and define for all x ∈ B+

fx := inf(x, z).

0 ≤ fx ≤ x implies that fx is in B and 0 ≤ fx ≤ z that the family {fx}x∈B+
is order-

bounded. E is order-complete, so {fx}x∈B+
has a supremum, z1 := supx∈B+

fx.
B is a band, so we find that z1 is in B. For all x ∈ B we have the following

inequality after Rem.1.iv.):

0 ≤ inf(z − z1, |x|) = inf(z, |x|+ z1)− z1 ≤ 0

Consequently z − z1 ∈ Bd, i.e. every positive element of E can be decomposed
z = z1 + z2 with z1 ∈ B and z2 ∈ Bd. So we can conclude. �

Norm and order have to be compatible in normed vector lattices, therefore the
following definitions:

Definition 3: Let E,F be vector lattices:
i.) A seminorm p on E is called lattice seminorm, if

∀x, y ∈ E : |x| ≤ |y| ⇒ p(x) ≤ p(y) .

A vector lattice with a lattice norm is called normed vector lattice, a complete
normed vector lattice is called Banach lattice.

ii.) A linear map T : E → F is called positive, if T (E+) ⊂ F+. A positive linear
functional φ : E → R is called strictly positive, if

∀x ∈ E+ : x 6= 0⇒ φ(x) > 0 .

iii.) Let p be a lattice seminorm on E. Then p is called (σ)-order-continuous, if for
any monotone decreasing net (sequence) {xi}i∈I the following condition holds:

inf
i∈I

xi = 0⇒ inf
i∈I

p(xi) = 0

Remarks 2:
i.) The usual factorization and extension procedures of functional analysis can be

applied in the case of normed vector lattices. One striking property of linear
operators on Banach lattices is that positive operators are automatically contin-
uous.

ii.) A positive functional φ on a vector lattice induces a lattice seminorm p by p(x) :=
φ(|x|) for x ∈ E. Every strictly positive functional induces a norm.

iii.) Let E be a normed vector lattice, then every band B ⊂ E is closed. For every
nonempty subset M ⊂ E we obtain 〈M〉 = Mdd Here 〈M〉 denotes the band
generated by M .

Now we are going to prove a lattice-version of Hopf’s maximal ergodic inequality:
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Theorem 2: (maximal ergodic inequality of E. Hopf)
Let E be an order-complete vector lattice, T : E → E a positive operator and
φ : E → R a positive linear functional satisfying T ′φ ≤ φ. For x ∈ E we define
bands En with associated band projection pn : E → E for n ∈ N+ by

En := [Mn(x)−]
d

for n ∈ N+ .

Mn(x) := sup
1≤m≤n

Sm(x) and Sn(x) :=
n−1∑
i=0

T ix for n ∈ N+

We obtain: ∀x ∈ E ∀n ∈ N+ : φ(pn(x)) ≥ 0 .

Proof: We fix n ∈ N+, x ∈ E, so we have Mn(x)+ ≥ Sm(x) for 1 ≤ m ≤ n and
consequently because of the positivity of T

T (Mn(x)+) + x ≥ Sm+1(x) for 1 ≤ m ≤ n .

So we obtain x ≥ Mn(x) − T (Mn(x)+) for all n ∈ N. If we apply φ ◦ pn to this
equation, we can conclude

φ(pn(x)) ≥ φ{pn[Mn(x)− T (Mn(x)+)]} ≥ 0 for all n ∈ N,

because pn(Mn(x)) = Mn(x)+ ( inf(x+, x−) = 0 for all x ∈ E ) and T ′φ ≤ φ. �

Example 1: Let (Ω, F, µ) be a measured space, E = Lp(Ω) for 1 ≤ p < ∞ and
the linear functional φ be given by

φ(f) :=
∫

Ω

fgdµ for all f ∈ E ,

where g ∈ Lq(Ω) with 1
p + 1

q = 1 was chosen positive. Then for every positive
operator T satisfying T ′g ≤ g the above inequalities are valid. In the case p = 1
and g = 1Ω we obtain the classical version of Hopf’s inequality(see [6]).

Definition 4: Let E be a vector lattice:
i.) x ∈ E+ is called a (weak) order-unit of E, if the ideal (band) generated by x is

the whole space E.
ii.) Let E be a normed vector lattice and x ∈ E+, then x is called a

quasi-interior point of E, if the closed ideal generated by x is the whole space E.

Remarks 3: Let E be a Banach lattice:
i.) x ∈ E is an inner point of E+ if x ∈ E+ is an order-unit.

ii.) Let E be separable, then quasi-interior points exist.

Definition 5: Let E be a vector lattice:
i.) A functional φ : E → R is called order-bounded, if the following condition is

satisfied:
∀x, y ∈ E : x ≤ y ⇒ φ([x, y]) is bounded

ii.) The vector space of all order-bounded functionals is denoted by E].
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Remarks 4:
i.) Let E be a vector lattice, then all positive functionals are order-bounded. The

vector lattice E] (φ ≤ ψ ⇐⇒ ψ − φ is positive functional) is order-complete.
The following formula will be useful: For φ, ψ ∈ E]+

∀x ∈ E+ : [sup(φ, ψ)](x) = sup{φ(y) + ψ(x− y) | 0 ≤ y ≤ x} .

ii.) Let E be a Banach lattice, then the topological dual space E′ and the space of all
order-bounded linear functionals E] coincide, the norm on E′ is a lattice norm,
E′ is an order-complete Banach lattice.

In order to be able to handle a bigger class of linear functionals we introduce φ-
reachable functionals on a normed vector lattice, where the norm is induced by a
strictly positive linear functional φ:

Definition 6: Let E be a vector lattice:
Let φ : E → R be a strictly positive functional and ψ ∈ E]+, then ψ is called
φ-reachable, if the following condition is satisfied:

sup
α>0

[inf(αφ, ψ)] = ψ

In the second chapter we shall apply these notions in order to prove a generalized
version of Hopf’s decomposition-theorem.

3. Hopf’s decomposition of a positive contraction semigroup

Given a positive contraction semigroup on a vector lattice. Under certain assump-
tions one can decompose the vector lattice into two bands, where some regularity
conditions are satisfied. One is lead in a natural way to the ideas of recurrence and
transience, to so called Dirichlet spaces and to some minimality properties. At first
we are going to treat the case of discrete semigroups, the continuous case will be a
corollary.

Theorem 3: (Hopf’s decomposition I)
Let E be an order-complete vector lattice containing a weak order-unit, T : E → E
a positive operator and φ : E → R a strictly positive, order-continuous linear
functional so that T ′φ ≤ φ (we say, T is contractive with respect to φ or φ is a
subinvariant linear form of T ).

Then there exists a unique decomposition of E into two bands Bp, Bq with asso-
ciated band projections p, q given by the following defining property:

∀ψ ∈ E]+ : T ′ψ ≤ ψ and ψ φ-reachable⇒ q′(T ′ψ) = q′(ψ)

∃ η ∈ E]+ : T ′η ≤ η and η φ-reachable, q′η = 0, (η − T ′η) is strictly

positive on Bp and for all x ∈ Bp+ : lim
n→∞

〈Tnx, η〉 = 0

In addition, one can choose η smaller than φ.

Proof: We denote by P the set of band projections p : E → E. Then we can
define the following map λ : P→ R≥0, which reminds a measure:

λ(p) := φ(p(x)) for all p ∈ P
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This map is bounded by φ(x) and monotone with respect to the natural ordering
of P. Moreover, for all p ∈ P,

λ(p) = 0 ⇐⇒ p = 0 ,

since p(x) > 0 for all 0 6= p ∈ P. Now we are going to apply a variant of a principle
usually used in measure theory.

We denote by P the following property on P, i.e. a map from P to {0, 1}.

∀0 6= p ∈ P : P (p) = 1 ⇐⇒ ∃ψ ∈ E]+ : ψ ≤ φ, T ′ψ ≤ ψ and

ψ − T ′ψ is strictly positive on Bp.

Let Bp be the band associated to a band projection p in E. We define P (0) = 1.
The so defined property P satisfies the following condition:

∀p, q ∈ P : P (p) = 1 and q ≤ p⇒ P (q) = 1 (B)

If a property on P satisfies condition (B), there exists a sequence {pn}n∈N in P, so
that

∀n,m ∈ N : n 6= m⇒ pnpm = 0 and

∀n ∈ N : P (pn) = 1 and λ(pn+1) ≥ αn
2

,

where αn := sup{λ(q) | P (q) = 1 , 0 ≤ q ≤ 1 − p0 − . . . − pn} for n ∈ N. We
can define a sequence {pn}n∈N recursively by choosing a band projection p0 with
P (p0) = 1 and applying the axiom of choice. Furthermore we have

∞∑
n=0

αn ≤ λ(1) <∞ ,

consequently the sequence {αn}n∈N converges to 0. Let p be the unique band
projection with

ker p =
⋂
n∈N

ker(pn) .

Then we state for q := 1− p :

∀0 ≤ r ≤ q : P (r) = 1⇒ r = 0 (∗)

In fact λ(r) ≤ αn is valid for all n ∈ N. In the next step we shall show that
P (p) = 1:

We denote by ψn the subinvariant linear form associated to T , which exists by
assumption on pn for n ∈ N:

ξN :=
N∑
n=0

1
2n+1

ψn ≤ φ for all N ∈ N

Then {ξn}N∈N is a sequence of subinvariant linear forms of T bounded by φ. E] is
order-complete, so we obtain:

ξ := sup
N∈N

ξN exists and ∀x ∈ E+ : lim
N→∞

〈x, ξN 〉 = 〈x, ξ〉
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Consequently we have the following inequality for x ∈ E+:

〈x, T ′ξ〉 = lim
N→∞

〈Tx, ξN 〉 ≤ lim
N→∞

〈x, ξN 〉 = 〈x, ξ〉 ,

so ξ is a subinvariant linear form. Let 0 6= x ∈ Bp+, now we are going to verify
that:

sup
N∈N

(
N∑
n=0

pn(x)) = x .

This sequence is clearly bounded by x, so we have a supremum in the order-complete
vector lattice E contained in the band Bp, since all elements of the sequence are
contained in Bp. On the other hand we have

∀N ∈ N : 0 ≤ x− sup
N∈N

(
N∑
n=0

pn(x)) ≤ x−
N∑
n=0

pn(x) ∈ ker pN .

So the claim is proved and there exists a number n ∈ N, so that pn(x) > 0. Now
we can estimate:

〈x, ξ − T ′ξ〉 = lim
N→∞

〈x− Tx, ξN 〉 ≥ 〈x,
1

2n+1
(ψn − T ′ψn)〉 ≥

≥ 〈pn(x),
1

2n+1
(ψn − T ′ψn)〉 > 0 ,

consequently ξ − T ′ξ is strictly positive on Bp and therefore P (p) = 1.
Since ξ is a subinvariant linear form of T , the following monotone limit exists for
x ∈ E+:

〈x, ξ0〉 := lim
n→∞

〈Tnx, ξ〉 .

ξ0 is a positive functional on E and

〈x, T ′ξ0〉 ≤ 〈x, T ′
n+1

ξ〉 and 〈x, ξ0〉 ≤ 〈Tx, T ′
n−1

ξ〉
is valid for all n ∈ N+. Passing to the limit we obtain:

T ′ξ0 = ξ0 and ξ0 ≤ ξ
Now define η := ξ − ξ0, then the condition (∗):

q′(η) = 0 and η − T ′η strictly positive on Bp

In particular we have by the above construction:

∀x ∈ Bp+ : lim
n→∞

〈Tnx, η〉 = 0

The rest of the proof is to show the following claim:

∀ψ ∈ E]+ : T ′ψ ≤ ψ and ψ φ-reachable⇒ q′(T ′ψ) = q′(ψ)

Let ψ be a φ-reachable subinvariant linear form of T . By Rem.2.i.) and condition
(∗) we can conclude, since for all α ∈ R+ the subinvariant linear form inf(αφ, ψ)
is bounded by the order-continuous linear functional αφ :

∀α ∈ R+ : q′(inf(αφ, ψ)) = q′T ′(inf(αφ, ψ)) ≤ q′T ′(ψ)

ψ is a φ-reachable subinvariant linear form, so

q′(ψ) = q′[sup
α>0

inf(αψ, φ)] ≤ q′T ′(ψ) .

This is the existence of the claimed decomposition, uniqueness is obvious. �
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Remarks 5:
i.) The existence of a strictly positive mapping λ on P is guaranteed by the existence

of a weak order-unit. Weak order-units exist in the case of not ”too big” vector
lattices.

ii.) On L1-spaces bands and equivalence classes (up to sets of measure zero) of mea-
surable sets are in one-to-one correspondence. This observation was the starting
point of our investigations.

For further applications we shall need another equivalent characterization of Hopf’s
decomposition, which will be useful in the case of continuous semigroups.

Theorem 4: (Hopf’s decomposition II)
Let E be an order-complete vector lattice containing a weak order-unit, T : E → E
a positive operator and φ : E → R a strictly positive, order-continuous linear
functional so that T ′φ ≤ φ.

Then there exists a unique decomposition of E into two bands Bp, Bq with asso-
ciated band projections p, q given by the following defining property:

∀ψ ∈ E]+ : ψ φ-reachable ⇒
∞∑
i=0

〈T ix, ψ〉 ∈ {0,∞} for all x ∈ Bq+

∃ ξ ∈ E]+ : ξ φ-reachable, q′ξ = 0, (ξ − T ′ξ) strictly positive on Bp

and for all x ∈ Bp :
∞∑
i=0

〈T ix, ξ〉 <∞

In particular, one can choose ξ, so that for all x ∈ E+

∞∑
i=0

〈T ix, ξ〉 ≤ 〈x, φ〉 .

This decomposition coincides with the one given in Theorem 3.

Proof: The above property defines a unique decomposition. We are going to show
existence by means of the results of Theorem 3:

Let η ≤ φ be a subinvariant linear form of T vanishing on Bq and being strictly
positive on Bp so that

∀x ∈ Bp+ : limn→∞〈Tnx, η〉 = 0 .

The existence is given by Theorem 3. We define ξ := η − T ′η. Let x ∈ Bp+, then
we obtain for n ∈ N:

n∑
i=0

〈T ix, ξ〉 = 〈x, η〉 − 〈x, T ′n+1
η〉 .

The linear functional ξ ≤ η ≤ φ satisfies the claimed property of Theorem 4. The
next step is devoted to the second part of the claim. Let ψ be a φ-reachable linear
functional on E and x ∈ E+ be fixed so that

0 ≤
∞∑
i=0

〈T ix, ψ〉 <∞ .
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For every fixed α > 0 we define a sequence {µN}N∈N by

µN = inf(αφ,
N∑
i=0

T ′
i
ψ) for N ∈ N

The sequence is increasing and we have:

T ′µN ≤ αφ and T ′µN ≤
N+1∑
i=0

T ′
i
ψ

Consequently we obtain T ′µN ≤ µN+1 for N ∈ N and therefore

µ := sup
N∈N

µN

is a subinvariant linear form of T , since

〈Ty, µ〉 = lim
N→∞

〈Ty, µN 〉 ≤ lim
N→∞

〈y, µN+1〉 = 〈y, µ〉 for y ∈ E+ .

By Theorem 3 we conclude that for all n ∈ N

∀x ∈ Bq+ : 〈x, µ〉 = 〈x, T ′nµ〉 .

Let n ∈ N be fixed, so

〈x, T ′nµ〉 = lim
N→∞

〈Tnx, µN 〉 ≤ lim
N→∞

[
N+n∑
i=n

〈T ix, ψ〉] ,

which allows us to draw the beautiful conclusion: 〈x, µ〉 = 0 Consequently for all
N ∈ N we obtain: 〈x, µN 〉 = 0. By φ-reachability we finish the proof, since

〈x, µ0〉 and ψ φ-reachable ⇒ ψ(x) = 0 .

One obtains by the same argument 〈Tnx, ψ〉 = 0 for all n ∈ N, so

∞∑
i=0

〈Tnx, ψ〉 = 0

This is the claim. �

We reformulate the theorems above for continuous semigroups, the proofs are slight
modifications.

Definition 7: Let E be a vector lattice and T := {Tt}t>0 a semigroup of positive
operators. Let φ be a strictly positive functional on E, then the semigroup is called
weakly measurable with respect to φ, if the maps{

R+ → R≥0

t 7→ 〈Ttx, ψ〉

}
are measurable for x ∈ E+ and 0 ≤ ψ ≤ φ in E].

The reformulations are the following:
9



Theorem 5: Let E be an order-complete vector lattice containing a weak order-
unit, T a semigroup of positive operators and φ : E → R a strictly positive, order-
continuous linear functional so that Tt′φ ≤ φ for all t > 0 (we say, T is contractive
with respect to φ or φ is a subinvariant linear form of T ). Furthermore let T be
weakly measurable with respect to φ.

Then there exists a unique decomposition of E into two bands Bp, Bq with asso-
ciated band projections p, q given by the following defining property:

∀ψ ∈ E]+ : ψ subinvariant linear form of T and ψ φ-reachable, then

q′(Tt′ψ) = q′(ψ) for all t > 0

∃ η ∈ E]+ : η subinvariant linear form of T and η φ-reachable, q′η = 0,

(η − Tt′η) is strictly positive on Bp for t > 0

and for all x ∈ Bp+ : lim
t→∞
〈Ttx, η〉 = 0

In addition, η can be chosen smaller than φ.

In the next theorem we shall use explicitly the rather weak measureability con-
ditions on T :

Theorem 6: Let E be an order-complete vector lattice containing a weak order-
unit, T a semigroup of positive operators and φ : E → R a strictly positive, order-
continuous linear functional so that Tt′φ ≤ φ for all t > 0. Furthermore let T be
weakly measurable with respect to φ.

Then there exists a unique decomposition of E into two bands Bp, Bq with asso-
ciated band projections p, q given by the following defining property:

∀ψ ∈ E]+ : ψ φ-reachable⇒
∫ ∞

0

〈Ttx, ψ〉dt ∈ {0,∞} for all x ∈ Bq+

∃ ξ ∈ E]+ : ξ φ-reachable, q′ξ = 0, (ξ − T ′tξ) strictly positive on Bp for t > 0

and for all x ∈ Bp :
∫ ∞

0

〈Ttx, ξ〉dt <∞

In particular, one can choose ξ so that for all x ∈ E+∫ ∞
0

〈Ttx, ξ〉dt ≤ 〈x, φ〉 .

This decomposition coincides with the one given in Theorem 5.

Remarks 6:
i.) One should observe that in the proof of Theorem 4 only the conclusions of The-

orem 3 are used, but not order-continuity of φ.
ii.) In fact the theorems on continuous semigroups can be shown directly from the re-

sults of Theorem 3 and 4 without reformulating the given demonstration. Work-
ing out this idea one observes that under our assumptions on the semigroup,
Hopf’s decomposition is already given by one single operator of the semigroup.
Consequently they all coincide, all information up to this level is contained in
one operator.
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4. Recurrent semigroups of positive operators

The theorems of chapter 2 will be used in the sequel to justify the definitions of
transience and recurrence (see [4] or any book on probability theory, i.g. [5]). From
now on we shall make use of a calculus, which enables us to formulate discrete and
continuous versions together, because there is no structural difference in theory.
Let G be either R+ or N+ and µ the restriction of the associated canonical Haar-
measure.

Definition 8: Let E be a vector lattice and φ a strictly positive functional.
i.) A semigroup T = {Tg}g∈G, weakly measurable with respect to φ and having φ as

subinvariant linear form, is called recurrent, if

∀x ∈ E+∀ψ ∈ E]+ : ψ φ-reachable⇒
∫
G

〈Tgx, ψ〉dµ(g) ∈ {0,∞}

ii.) A semigroup T = {Tg}g∈G, weakly measurable with respect to φ and having φ as
subinvariant linear form, is called transient, if

∃ η ∈ E]+ : η strictly positive and η φ-reachable :∫
G

〈Tgx, η〉dµ(g) <∞ for x ∈ E+

iii.) Let T be a semigroup and I ⊂ E an ideal, I is called T -invariant, if for all g ∈ G

Tg(I) ⊂ I .

iv.) A semigroup T is called irreducible, if for every x > 0 and for every ψ > 0 there
exists a g ∈ G so that 〈Tgx, ψ〉 > 0. In the case of C0-semigroups of positive
contractions on a Banach lattice, this is equivalent to saying that there is no
non-trivial closed T -invariant ideal.

Theorem 7: Let E be an order-complete vector-lattice with a weak order-unit, φ
a strictly positive, order-continuous linear functional and T a semigroup of positive
operators, for which φ is subinvariant linear form and which is measurable with
respect to φ. Then we obtain:

T irreducible⇒ T transient or recurrent

Proof: By Theorem 3 and Theorem 5, respectively, there is a band Bp and a
subinvariant linear form η of T , which is strictly positive on Bp. For x ∈ Bq we
obtain:

〈Tgx, η〉 ≤ 〈x, η〉 = 0

Consequently one can conclude, that either p = 0 or q = 0. �

In general, under the above assumptions Bq is T -invariant. The following definition
leads to the notion of dominance of semigroups which can be investigated together
with recurrence.
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Definition 9: Let E be a vector lattice:
We shall say that a semigroup S of positive operators is dominated by a semigroup
T if

∀g ∈ G, x ∈ E+ : Sgx ≤ Tgx

Theorem 8: Let E be an order-complete vector lattice with a weak order-unit,
φ a strictly positive linear functional and T an irreducible semigroup of positive
operators, for which φ is subinvariant linear form and which is measurable with
respect to φ. If T is recurrent, then for any semigroup S 6= T of positive operators
dominated by T we obtain:

lim
g→∞

〈Sgx, φ〉 = 0 for all x ∈ E+ and T ′gφ = φ for all g ∈ G.

Proof: By Rem. 6.i.) we arrive immediately at the following result:

∀ψ ∈ E]+ : T ′gψ ≤ ψ for all g ∈ G and ψ φ-reachable⇒ T ′gψ = ψ for all g ∈ G

So the second part of the statement is already proved. Now let S 6= T be a
semigroup of positive operators dominated by T . The positive linear functional h
is defined in the following way:

h(x) := lim
g→∞

〈Sgx, φ〉 for x ∈ E+

The limit is monotone, so there are no existence-problems, furthermore S′gh = h
for all g ∈ G. Consequently

∀g ∈ G : h ≤ T ′gh
Now we apply the integral criterion for recurrence. Let 0 < g̃ ≤ g be elements in
G:

0 ≤
∫ g

0

〈Tsx, T ′g̃h− h〉dµ(s) =
∫ g+g̃

g̃

〈Tsx, h〉dµ(s)−
∫ g

0

〈Tsx, h〉dµ(s) =

=
∫ g+g̃

g

〈Tsx, h〉dµ(s)−
∫ g̃

0

〈Tsx, h〉dµ(s) ≤ g̃φ(x)

for x ∈ E+. Recurrence and irreducibility allow us to conclude that Tg ′h = h for all
g ∈ G. Again by irreducibility we obtain that either h is strictly positive or h = 0.
If h was strictly positive, we would obtain

∀g ∈ G ∀x ∈ E+ : h(Tgx− Sgx) = 0 ,

being a contradiction to S 6= T . Consequently h = 0, as claimed. �

Remarks 7:
i.) In the proof of Theorem 8 we have also shown that a recurrent, irreducible semi-

group possesses neither subinvariant nor superinvariant non-zero linear forms:

∀ψ ∈ E]+ : ψ ≤ φ and Tgψ ≥ ψ for a g ∈ G⇒ Tgψ = ψ

∀ψ ∈ E]+ : ψ ≤ φ and ψ ≥ Tgψ for a g ∈ G⇒ Tgψ = ψ

Theorem 8 can be applied to find simple proofs of Frobenius-Perron-like theorems.
ii.) One could name the above property ”minimal non-stability” of semigroups. In

[7] the authors proved that submarkovian, irreducible, recurrent semigroups (e.g.
the Gaussian semigroup in dimension n = 1, 2) are minimally non-stable. The
proof given in our paper generalizes and simplifies the setting.
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