
Abstract regularity structures
Definitions

Definition (Regularity structure)
A regularity structure T = (A,T ,G ) consists of the following elements:

I An index set A ⊂ R such that 0 ∈ A, A is bounded from below, and A is
locally finite.

I A model space T , which is a graded vector space T =
⊕

α∈A Tα, with each
(Tα, ‖ · ‖α) a Banach space. Furthermore, T0 ≈ R and its unit vector is
denoted by 1.

I A structure group G of linear operators acting on T such that, for every
Γ ∈ G , every α ∈ A, and every a ∈ Tα, one has

Γa − a ∈
⊕
β<α

Tβ .

Furthermore, Γ1 = 1 for every Γ ∈ G .

Definition (Model)
Given a regularity structure T and an integer d ≥ 1, a model for T on Rd

consists of maps

Π: Rd → L
(
T ,S ′(Rd)

)
Γ: Rd × Rd → G

x 7→ Πx (x , y) 7→ Γxy

such that ΓxyΓyz = Γxz and ΠxΓxy = Πy . Furthermore, given r > | inf A|, for
any compact set K ⊂ Rd and constant γ > 0, there exists a constant C such
that the bounds∣∣(Πxa

)
(ϕδx)

∣∣ ≤ Cδα‖a‖α , ‖Γxya‖β ≤ C |x − y |α−β‖a‖α ,

hold uniformly over all test functions ϕ : Rd → R with support on the unit ball
satisfying ‖ϕ‖Cr ≤ 1, (x , y) ∈ K, δ ∈ (0, 1], a ∈ Tα with α ≤ γ, and β < α.
Here, for any test function ϕ, ϕδx is a shorthand for the rescaled function
ϕδx(y) = δ−dϕ

(
δ−1(y − x)

)
.



Modelled distributions
Definitions

Fix T = (A,T ,G ) and (Π, Γ) model with scaling s.

Definition (Modelled distributions)
For any γ ∈ R, the space Dγ consists of all f : Rd → T−γ such that, for every

compact set K ⊂ Rd , one has

|||f |||γ;K = sup
x∈K

sup
β<γ
β∈A

‖f (x)‖β + sup
(x ,y)∈K
‖x−y‖s≤1

sup
β<γ
β∈A

‖f (x)− Γxy f (y)‖β
‖x − y‖γ−βs

<∞ .

Definition (Generalized Hölder spaces)
Let α < 0 and let r = −bαc. We say that ξ ∈ S ′ belongs to Cαs if it belongs
to the dual of Cr0 and, for every compact set K, there exists a constant C such
that the bound

〈ξ,Sδs,xη〉 ≤ Cδα,

holds for all η ∈ Cr with ‖η‖Cr ≤ 1 and supp η ⊂ Bs(0, 1), all δ ≤ 1, and all
x ∈ K.

For ξ ∈ Cαs and K a compact set, we denote by ‖ξ‖α;K the seminorm given by

‖ξ‖α;K := sup
x∈K

sup
η∈Brs,0

sup
δ≤1

δ−α|〈ξ,Sδs,xη〉| .

Theorem (Reconstruction theorem, Part 1)
Let α = minA, and let r > |α|. Then, for every γ ∈ R, there exists a
continuous linear map R : Dγ → Cαs with the property that, for every compact
set K ⊂ Rd , ∣∣(Rf − Πx f (x)

)
(Sδs,xη)

∣∣ . δγ‖Π‖γ;K̄|||f |||γ;K̄ , (1 )

uniformly over all test functions η ∈ Brs,0, all δ ∈ (0, 1], all f ∈ Dγ, and all
x ∈ K. If γ > 0, then the bound (1) defines Rf uniquely. Here, we denoted
by K̄ the 1-fattening of K.



Modelled distributions
Reconstruction theorem

Let T = (A,T ,G ) be a regularity structure with scaling s and two models
(Π, Γ) and (Π̄, Γ̄).
For f ∈ Dγ(Γ) and f̄ ∈ Dγ(Γ̄) we introduce

|||f ; f̄ |||γ;K :=‖f − f̄ ‖γ;K

+ sup
(x ,y)∈K
‖x−y‖s≤1

sup
β<γ
β∈A

‖f (x)− f̄ (x)− Γxy f (y) + Γ̄xy f̄ (y)‖β
‖x − y‖γ−βs

.

Theorem (Reconstruction theorem, Part 2)
Let α = minA, and let r > |α|.
1. If R is the reconstruction operator associated to (Π, Γ) and R to (Π̄, Γ̄),

then one has the bound∣∣(Rf −Rf̄ − Πx f (x) + Π̄x f̄ (x)
)

(Sδs,xη)
∣∣

. δγ
(
‖Π̄‖γ;K̄|||f ; f̄ |||γ;K̄ + ‖Π− Π̄‖γ;K̄|||f |||γ;K̄

)
,

uniformly over x and η as before.

2. Finally, for 0 < κ < γ/(γ − α) and for every C > 0, one has the bound∣∣(Rf−Rf̄ − Πx f (x) + Π̄x f̄ (x)
)

(Sδs,xη)
∣∣

. δγ̄
(
‖f − f̄ ‖κγ;K̄ + ‖Π− Π̄‖κγ;K̄ + ‖Γ− Γ̄‖κγ;K̄

)
,

where we set γ̄ := γ − κ(γ − α), and where we assume that |||f |||γ;K̄,

‖Π‖γ;K̄ and ‖Γ‖γ;K̄ are bounded by C , and similarly for f̄ , Π̄ and Γ̄.



Modelled distributions
Elements of wavelet analysis

Theorem (Wavelet analysis)
One has 〈ψn

x , ψ
m
y 〉 = δn,mδx ,y for every n,m ∈ Z and every x ∈ Λn, y ∈ Λm.

Furthermore, 〈ϕn
x , ψ

m
y 〉 = 0 for every m ≥ n and every x ∈ Λn, y ∈ Λm.

Finally, for every n ∈ Z, the set

{ϕn
x : x ∈ Λn} ∪ {ψm

x : m ≥ n , x ∈ Λm} ,

forms an orthonormal basis of L2(R).

Extending the construction to Rd

For any given scaling s of Rd and any n ∈ Z, we thus define

Λs
n =

{
d∑

j=1

2−nsjkjej : kj ∈ Z

}
⊂ Rd ,

For every x ∈ Λs
n, we then set

ϕn,s
x (y) :=

d∏
j=1

ϕ
nsj
xj (yj),

with
ϕ
nsj
xj (yj) = 2nsj/2ϕ

(
2nsj(yj − xj)

)
, j = 1, ..., d .

Similarly, there exists a finite collection Ψ of orthonormal compactly supported
functions such that, if we define Vn similarly as before, V⊥n is given by

V⊥n = span{ψn,s
x : ψ ∈ Ψ x ∈ Λs

n} .

In this expression, given a function ψ ∈ Ψ, we have set

ψn,s
x = 2−n|s|/2S2−n

s,x ψ.

This collection forms an orthonormal basis of V⊥n .



Modelled distributions
A convergence criterion in Cαs

Fix T = (A,T ,G ) and (Π, Γ) model with scaling s.

Proposition (Characterising Cαs by wavelet coefficients)
Let α < 0 and ξ ∈ S ′(Rd). Consider a wavelet analysis with a compactly
supported scaling function ϕ ∈ Cr for some r > |α|.
Then, ξ ∈ Cαs iff ξ belongs to the dual of Cr0 and, for every compact set
K ⊂ Rd , the bounds

|〈ξ, ψn,s
x 〉| . 2−

n|s|
2 −nα , |〈ξ, ϕ0

y〉| . 1 ,

hold uniformly over n ≥ 0, every ψ ∈ Ψ, every x ∈ Λs
n ∩ K, and every

y ∈ Λs
0 ∩ K.

Theorem (Convergence criterion in Cαs )
Let s be a scaling of Rd , let α < 0 < γ, and fix a wavelet basis with regularity
r > |α|. For every n ≥ 0, let x 7→ An

x be a function on Rd satisfying the
bounds

|An
x | ≤ ‖A‖2−

ns
2 −αn , |δAn

x | . ‖A‖2−
ns
2 −γn ,

for some constant ‖A‖, uniformly over n ≥ 0 and x ∈ Rd .
Then, the sequence {fn}n≥0 given by fn =

∑
x∈Λs

n
An
x ϕ

n,s
x converges in Cᾱs for

every ᾱ < α and its limit f belongs to Cαs . Furthermore, the bounds

‖f − fn‖ᾱ . ‖A‖2−(α−ᾱ)n , ‖Pnf − fn‖α . ‖A‖2−γn ,

hold for ᾱ ∈ (α− γ, α), where Pn is given by

Pnf :=
∑
x∈Λn

〈f , ϕn
x〉ϕn

x .



Modelled distributions
Proof of the reconstruction theorem

Suppose there exists a family x 7→ ζx ∈ S ′(Rd) of distributions such that the
sequence fn is given by

fn =
∑
x∈Λs

n

An
xϕ

n,s
x ,

with An
x = 〈ϕn,s

x , ζx〉.
Proposition
In the above situation, assume that the family ζx is such that, for some
constants K1 and K2 and exponents α < 0 < γ, the bounds

|〈ϕn,s
x , ζx − ζy〉| ≤ K1‖x − y‖γ−αs 2−

n|s|
2 −αn,

|〈ϕn,s
x , ζx〉| ≤ K22−αn−

n|s|
2 ,

hold uniformly over all x , y such that 2−n ≤ ‖x − y‖s ≤ 1. Here, as before, ϕ
is the scaling function for a wavelet basis of regularity r > |α|.
Then, the limn→∞ fn = f exists and the limit distribution f ∈ Cαs satisfies the
bound

|(f − ζx)(Sδs,xη)| . K1δ
γ ,

uniformly over η ∈ Brs,0. Here, the proportionality constant only depends on
the choice of wavelet basis, but not on K2.



Multiplication
Overview

Classical multiplication

I Cα × Cβ → Cα∧β continuous for α + β > 0.

I Not continuous for α + β ≤ 0, α /∈ N.

Multiplication of modelled distributions

I Algebraic structure: need product on T .

I Get Dγ1α1
×Dγ2α2

→ D(γ1+α2)∧(γ2+α1)
α1+α2

continuous.

I Note: (Rf1)(Rf2) 6= R(f1f2) in general, even when this makes sense in the
classical way.

I However, the formalism is flexible enough for products that encode some
renormalisation procedure.

Constructing products on T

I Constructing products on Hopf algebras T .

I Example: Polynomial regularity structure.

I Example: Regularity structure of rough paths.

Composition of functions

I G ◦ f ∈ Dγ(V ) if G : Rn → Rn is smooth, f ∈ Dγ(V ), and V ⊆ T is
function-like.



Multiplication
Definitions of distributions and modelled distributions

Definition (Dγ)
Given a regularity structure T equipped with a model (Π, Γ) over Rd , the
space Dγ is given by the set of functions f : Rd →

⊕
α<γ Tα such that, for

every compact set K and every α < γ, the exists a constant C with

‖f (x)− Γxy f (y)‖α ≤ C |x − y |γ−α

uniformly over x , y ∈ K.

Definition (Dγ
α)

Dγ
α denotes those elements f ∈ Dγ such that

f (x) ∈ T+
α ≡

⊕
β≥α

Tβ, ∀x .

Definition (Cα)
Let (A,T ,G ) be the polynomial regularity structure. A function f : Rd → R is
of class Cα with α > 0 if and only if the Taylor expansion

F (x) =
∑
|k |s<α

X k

k!
Dk f (x) .

is of class Dα.

Definition (C−α)
For each α > 0, we denote by C−α the space of all Schwartz distributions η
such that η belongs to the dual of Cr with r = dαe and such that∣∣η(ϕλx )

∣∣ . λ−α ,

uniformly over all ϕ : Rd → R with ‖ϕ‖Cr ≤ 1 supported in the unit ball
around the origin, and λ ∈ (0, 1], and locally uniformly in x .



Multiplication
The main theorems and definitions

Theorem (Classical multiplication)
If β > α, then there is a continuous bilinear map B : C−α × Cβ → S ′(Rd)
such that B(f , g) = fg for any two continuous functions f and g .

Definition (Sector)
Given a regularity structure (T ,A,G ) we say that a subspace V ⊂ T is a
sector if it is invariant under the action of the structure group G and if it can
furthermore be written as V =

⊕
α∈A Vα with Vα ⊂ Tα.

Definition (Multiplication in T )
Given a regularity structure (T ,A,G ) and two sectors V , V̄ ⊂ T , a product
on (V , V̄ ) is a bilinear map ? : V × V̄ → T such that, for any τ ∈ Vα and
τ̄ ∈ V̄β, one has τ ? τ̄ ∈ Tα+β and such that, for any element Γ ∈ G , one has
Γ(τ ? τ̄ ) = Γτ ? Γτ̄ . Furthermore, ? : Vα × V̄β → Tα+β is continuous.

Theorem (Multiplication of modeled distributions)
Let f1 ∈ Dγ1

α1
(V ), f2 ∈ Dγ2

α2
(V̄ ), and let ? be a product on (V , V̄ ). Then, the

function f given by f (x) = f1(x) ? f2(x) belongs to Dγ
α with

α = α1 + α2 , γ = (γ1 + α2) ∧ (γ2 + α1) .

Remark
If Πxτ happens to be a continuous function for every τ ∈ T and the product
satisfies Πx(a ? b) = Πx(a)Πx(b) we also have

R(f1?f2)(x) = Πx

(
f1(x)?f2(x)

)
(x) = Πx

(
f1(x)

)
(x)Πx

(
f2(x)

)
(x) = Rf1(x)Rf2(x).

This holds for example if fi ∈ Dγ
0 (V ) with γ > 0. Note however, that even if

both Rf1 and Rf2 happen to be continuous functions, this does not in general
imply that R(f1 ? f2)(x) = (Rf1)(x) (Rf2)(x)!



Multiplication
Composition with smooth functions

Definition (Composition with smooth functions)
Let V be a function-like sector (i.e., Vα = 0 if α < 0 and V0 = R) endowed
with a product ? : V × V → V . For any smooth function G : R→ R and any
f ∈ Dγ(V ) with γ > 0, we can then define G (f ) to be the V -valued function
given by (

G ◦ f
)

(x) =
∑
k≥0

G (k)(f̄ (x))

k!
f̃ (x)?k ,

where we have set

f̄ (x) = 〈1, f (x)〉 , f̃ (x) = f (x)− f̄ (x)1 .

Here, G (k) denotes the kth derivative of G and τ ?k denotes the k-fold product
τ ? · · · ? τ . We also used the usual conventions G (0) = G and τ ?0 = 1.

Proposition (Regularity of composition with smooth function)
In the same setting as above, provided that G is of class Ck with k > γ/α0,
the map f 7→ G ◦ f is continuous from Dγ(V ) into itself. If k > γ/α0 + 1,
then it is locally Lipschitz continuous.



Multiplication
Hopf algebras

Definition
I Algebra (T ,∇, e) over R: unital, associative, commutative.

I Coalgebra (T ,∆, ε) over R: counital, coassociative.

I Compatibility: for all p, q ∈ T ,

∆(pq) = (∆p)(∆q), ∆e = e ⊗ e, ε(pq) = ε(p)ε(q), ε(e) = 1.

I Grading: T =
⊕

k∈Zd
+
Tk with dimTk <∞ such that

∇ : Tk × T` → Tk+`, ∆: Tk →
⊕
`+m=k

T` ⊗ Tm.

I Connectedness: T0 = spanR{e}.
I Antipode: linear mapping A : Tk → Tk such that

T ⊗ T A⊗id

id⊗A
//T ⊗ T
∇
��

T
∆

OO

ε //R e //T

Constructing a group acting on T

I Dual Hopf algebra (T ∗,∇∗, e∗,∆∗, ε∗,A∗).

I Primitive elements P(T ∗) = {f ∈ T ∗ : ∆∗f = e∗ ⊗ f + f ⊗ e∗} form a Lie
algebra with universal enveloping algebra T ∗ (Milnor-Moore Theorem).

I Define G = exp(P(T ∗)) ⊂ T ∗. Then ∆∗g = g ⊗ g holds, for all g ∈ G .

I Group action 1: 〈f , Γgp〉 = 〈fg , p〉, for all f ∈ T ∗, g ∈ G , p ∈ T .

I Group action 2: 〈f , Γgp〉 = 〈(A∗g)f , p〉, for all f ∈ T ∗, g ∈ G , p ∈ T .

Properties of the group action

I If p ∈ Tγ, then Γgp − p ∈ T−γ .

I Multiplication on T is regular:

Γg(pq) = Γg(p)Γg(q), ∀g ∈ G ,

as a consequence of ∆∗g = g ⊗ g .



Multiplication
Polynomial regularity structure as a Hopf algebra

Definition
I A = N0,T = R[X1, . . . ,Xd ],G = Rd .

I Group action (Γgp)(X ) = p(X + g).

Hopf algebra structure on T

I Multiplication ∇ as usual; unit e = 1.

I Comultiplication ∆ is the unique homomorphism satisfying
∆Xi = 1⊗ Xi + Xi ⊗ 1 (“divided powers”); counit ε is evaluation at zero.

I Antipode A is the unique antihomomorphism satisfying AXi = −Xi .

Dual structure on T ∗

I T ∗ identified with formal differential operators
∑

n≥0 ai1,...,in
∂

∂X i1 ...∂X in with
constant coefficients.

I Pairing with T given by differentiation and evaluation at zero.

I Multiplication ∇∗ is composition of differential operators.

I Comultiplication ∆∗ is the unique homomorphism satisfying
∆∗ ∂

∂X i = ∂
∂X i ⊗ id + id⊗ ∂

∂X i .

Group and group action

I Primitive elements P(T ∗) are first order differential operators because
∆∗f = e∗ ⊗ f + f ⊗ e∗ ⇔ 〈f , pq〉 = p(0)〈f , q〉 + 〈f , p〉q(0).

I G = exp(P(T ∗)) are translations.

I This is group action 1: 〈f , Γgp〉 = 〈fg , p〉.

Standard model
I (ΠxXk)(y) = (y − x)k

I Γxy = x − y ∈ G



Multiplication
Regularity structure of rough paths as a Hopf algebra

Definition
I γ > 0,E = Rd .

I A = γN0,T =
⊕∞

k=0 Tγk with Tγk = (E ∗)⊗k ,G = exp(Lie(E )).

I Group action 〈f , Γgp〉 = 〈g−1f , p〉, for all f ∈
∏∞

k=0 E
⊗k , g ∈ G , p ∈ T .

Hopf algebra structure on T

I Multiplication ∇ = � is the shuffle product; unit e = 1 ∈ R.

I Comultiplication ∆ obtained by duality from multiplication on T ∗, i.e.,
〈f ⊗ g ,∆p〉 = 〈fg , p〉; counit ε extracts the R-component.

I Antipode A is the unique antihomomorphism satisfying Ax = −x ,∀x ∈ E ∗.

Dual structure on T ∗

I T ∗ =
∏∞

k=0 E
⊗k is the (pre-)dual of T .

I Multiplication ∇∗ is concatenation (alias tensorisation); unit e∗ = 1 ∈ R.

I Comultiplication ∆∗ obtained by duality from multiplication on T , i.e.,
〈∆∗f , p ⊗ q〉 = 〈f , p� q〉; counit ε∗ extracts the R-component.

Group and group action

I Primitive elements P(T ∗) = Lie(E ) ⊂ T ∗.

I G = exp(P(T ∗)) ⊂ T ∗ has the property Ag = g−1,∀g ∈ G .

I This is group action 2: 〈f , Γgp〉 = 〈(Ag)f , p〉 = 〈g−1f , p〉.

Standard model
I (Πsa)(t) = 〈X st, a〉
I Γst = X st ∈ G


