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1 Infinite dimensional Problems

We shall present general methods for infinite dimen-

sional analysis. Infinite dimensional Spaces appear to

be important as

• Configuration spaces of many well-known prob-

lems from quantum mechanis (Schrödinger’s equa-

tion), hydromechanics (Euler and Navier-Stokes

equation), financial mathematics (Interest Rate

Theory),...

• independent objects of research in differential ge-

ometry (Klein’s Erlangen program performed for

symplectic geometry), analysis (variational prob-

lems),...



2 Three particular Problems

1. The structure of the group of diffeomorphisms
Diff(M) on a compact manifold M is described
by a smooth Lie group structure on the manifold
Diff(M), which is modeled on a particular Fréchet
space. Is it possible to describe these basic facts
in a reasonably simple way?

2. Given a Lie algebra g and a Fréchet space F such
that there is homomorphism φ :→ L(F ) and a
basis (ai)i=1,...,n of g such that Ai = φ(ai) gen-
erates nice one-parameter groups. Does there ex-
ist Φ : G→ GL(F ) integrating the homorphism,
where G is the simply connected Lie group asso-
ciated to g?

3. Does there exist a Frobenius Theorem on Fréchet
manifolds? In financial mathematics possible Frobe-
nius Theorems on Fréchet spaces lead to a classi-
fication of ”relevant” interest rate models (Björk,
Svensson, Filipovic, Teichmann).



3 Classical Analysis

• Fréchet calculus of approximations by a linear map,
the derivative. A map f : U ⊂ X → Y is called
differentiable at x0 ∈ U if

||f(x0 + h)− f(x0)−Ah|| = o(||h||)
as h → 0. This works well up to Banach spaces
but causes ambiguities on more general spaces,
since there is more than one seminorm.

• Gateaux calculus as calculus of directional deriva-
tives. A map f : U ⊂ X → Y is called Gateaux-
differentiable at x0 ∈ U if

dvf(x0) :=
d

dt
|t=0f(x0 + th)

exists for h ∈ X and is bounded linear in h.

For smooth mappings of lot of essentially different
calculi have been developed on locally convex vector
spaces, since there is a gap between smoothness and
continuity...



4 Smooth Curves

Convenient Analysis provides a satisfactory, natural

and unique solution of the question how to do analysis

on a large class of locally convex vector spaces.

• E, F, G denote locally convex vector spaces.

• The notion of smooth curves poses no problems,

we shall denote them by C∞(R, E).

• The continuous (bounded) linear functionals on

E are denoted by E′c (E′, respectively).

We have the following two fundamental assertions:

• B ⊂ E is bounded if and only if l(B) is bounded

for l ∈ E′c.



• If there exists a bounded neighborhood U ⊂ E,

then E is normable.

Theorem 4.1 (Mean Value Theorem) Let c : [a, b]→
E be continuous and differentiable at all points and

let h : [a, b] → R be continuous, monotone and dif-

ferentiable. Let A ⊂ E be convex and closed and

assume c′(t) ∈ h′(t)A for t ∈ [a, b], then

c(b)− c(a) ∈ (h(b)− h(a))A.

From this we conclude immediately for c ∈ C∞(R, E)

1

t
(
c(t)− c(0)

t
− c′(0)) ∈ B

for some bounded, convex, closed set B ⊂ E and t in

some compact set of real numbers.



5 Convenient Vector Spaces

For smooth curves the convergence of the difference

quotient to the derivative is ”better” than usual con-

vergence in locally convex vector spaces.

A sequence {xn}n≥0 is called Mackey-convergent to

x ∈ E (a Mackey-Cauchy sequence) if there is a

bounded, absolutely convex set B ⊂ E, a real se-

quence an ↓ 0 (a real double sequence anm ↓ 0) such

that

xn − x ∈ anB

for n ≥ 0 or

xn − xm ∈ anmB

as n, m→∞, respectively.

A locally convex vector space is called convenient if

every Mackey-Cauchy sequence converges. Difference

quotients of smooth curves converge Mackey to their

respective limits.



6 Fundamental Characterization

Theorem 6.1 Let E be a locally convex vector space,

then the following assertions are equivalent:

1. E is convenient.

2. If c : R → E is a curve such that l ◦ c is smooth for

all l ∈ E′c, then c ∈ C∞(R, E).

3. Any smooth curve is locally Riemann-integrable.

The second assertion states that the concept of weakly

smooth and smooth curves are equivalent, even more

is true.

For any c : R → E we have that l ◦ c is smooth for

all l ∈ E′ if and only if c ∈ C∞(R, E).



7 c∞-Topology

We introduce a topology naturally associated to ques-

tions of analysis: let E be a convenient locally convex

vector space, U ⊂ E is called c∞-open if c−1(U) is

open for all c ∈ C∞(R, E), i.e the final topology with

respect to all smooth curves.

Every Mackey sequence is c∞-converging and the c∞-

topology is finer than any locally convex topology on

E with the same bounded sets,

c∞E ↪→ Eborn ↪→ E.

We expect good news for Fréchet spaces, namely

c∞E = Eborn = E,

since on Fréchet spaces every converging sequence

converges Mackey to its limit.



8 Smooth Maps

Now we are able to introduce smooth maps by the

following ”geometric” approach, which will be very

useful for a lot of applications:

Definition 8.1 Let E, F be convenient vector spaces

and U ⊂ E a c∞-open subset. A map f : U ⊂ E →
F is called smooth if

f ◦ c : R→ F

is a smooth curve for any smooth curve c ∈ C∞(R, U).

We shall denote smooth maps by C∞(U, F ) and in-

troduce the following initial locally convex topology

C∞(U, F )
c∗◦l∗→ C∞(R, R)

f 7→ l ◦ f ◦ c

for c ∈ C∞(R, U) and l ∈ F ′. We obtain again a

convenient vector space. Inheritance as it should be!



9 Main Structure Theorem

Theorem 9.1 Let E, F, G be convenient vector spaces

and U ⊂ E, V ⊂ F be c∞-open subsets.

1. Smooth maps are continuous with respect to the c∞-

topology.

2. Multilinear maps are smooth if and only if they are

bounded.

3. Let f : U ⊂ E → F be a smooth map, then

Df : U × E → F

is smooth, where

Df(x) · h :=
d

dt
|t=0f(x + th)

is the derivative along the affine line.



4. The chain rule holds.

5. Taylor’s formula holds, i.e.

f(x + h) =
n∑

i=0

1

i!
Dif(x) · h(i)+

+
∫ 1

0

(1− t)n

n!
Dn+1f(x + th) · h(n+1)dt.

6. The exponential law holds (cartesian closedness), i.e.

C∞(U × V, G) ' C∞(U, C∞(V, G)).

7. Evaluation and composition are smooth.

8. The map f : U ⊂ E → L(F, G) is smooth if and only

if evv(f) : U → G is smooth for all v ∈ F .



10 Problems

Analysis works well as far as basic notions are con-

cerned. Existence theorems in turn need a very careful

investigation, in general we have

• no existence theorem for differential equations,

• no inverse function theorems,

• no exponential series.

At hand one has ”hard” inverse function theorems

(which one should consult only for rare occasions) or

particular classes of vector fields where flows exist. In

addition to ”algebraic” conditions one has to solve an

analytic problem, too, to obtain results.



11 Applications

• Foundations of Global Analysis (Kriegl, Michor).

• Regularity of Lie groups (existence of exponential

maps).

• Trotter-type existence formulas for semigroups (an

existence theorem for abstract Cauchy problems).

• Kato-Rellich smoothness results (Alekseevsky, Kriegl,

Losik, Michor) for eigenvalues of curves of un-

bounded operators.



12 Vector fields I

A vector field X on a convenient manifold M is a

section of the tangent bundle TM → M . We can

associate a differential equation to X namely

c′(t) = X(c(t)),

c(0) = x.

If the problem is uniquely solvable on U ⊂ M up

to time ε and the dependence on initial values x is

smooth, we can define a local flow and vice versa.

The Lie bracket can be defined chartwise by the fol-

lowing local formula for smooth vector fields X, Y :

U ⊂ E → E

[X, Y ](x) = DX(x) · Y (x)−DY (x) ·X(x)

for x ∈ U . If a vector field X ∈ C∞(M ← TM)

admits a local flow FlX around any point, then

[X, Y ] =
d

dt
|t=0(FlX−t)

∗Y

for all Y ∈ C∞(M ← TM).



13 Vector fields II

Let M, N be convenient manifolds and f : M →
N a smooth map. We call two vector fields X ∈
C∞(M ← TM) and Y ∈ C∞(N ← TN) f -related

if

Txf ·Xx = Yf(x)

for x ∈ M . Given X1, X2 vector fields on M and

Y1, Y2 vector fields on N . If Xi f -related to Yi for

i = 1, 2, then

[X1, X2] is f -related to [Y1, Y2].

Frobenius Problem: Given vector fields X1, . . . , Xm

on a manifold M . Does there exist a finite dimensional

submanifold N ⊂ M such that Xi(x) ∈ TxN for

x ∈ N and how can the minimal dimension of the

manifold be calculated? Is it possible to find such N

for any ”initial” value?



14 Submanifolds

As the concept of convenient manifolds, the concept

of submanifolds (with boundary) can be carried over

with any changes. Surprinsingly even the parametriza-

tion results hold for finite-dimensional submanifolds.

Theorem 14.1 Let φ : U ⊂ Rn
≥0 → M be an immer-

sion, i.e. the tangent map Txφ is injective for x ∈ U .

Then for any x ∈ U there is an open neighborhood

V of x such that φ|V : V → M is an embedding, in

particular φ(V ) is a submanifold (with boundary).

Given N ⊂ M a submanifold and X, Y vector fields

on M such that Xx, Yx ∈ TxN for x ∈ N , then

[X, Y ](x) ∈ TxN . This leads immediately to the

Frobenius condition for distributions to be tangent to

a submanifold.



15 Distributions

We shall consider the Frobenius problem in full gen-
erality on convenient manifolds, which can be defined
straight forward with respect to convenient calculus:

• A distribution is a collection of subspaces Dx ⊂
TxM for x ∈M . If all Dx are finite dimensional,
we call the distribution finite dimensional.

• A finite dimensional distribution is called smooth
if for any point x0 ∈M there is an open neighbor-
hood V of x0 and pointwise linearly independent
vector fields X1, ..., Xn such that〈

X1(x), ..., Xn(x)
〉

R
= Dx

for x ∈ V . This is called a local frame at x0.

Given a finite dimensional distribution D on M : is it
possible to find for any x0 ∈ M a finite dimensional
submanifold (with boundary) N ⊂M such that x0 ∈
N and Dy ⊂ TyN for y ∈ N?



16 Fundamental Lemma

Let D be a finite-dimensional smooth distribution of

rank n on a convenient manifold M and assume that

D is involutive, i.e. that for vector fields X, Y ∈
C∞(M ← TM) with values in D the Lie bracket

takes values in D. Given X ∈ C∞(M ← D), which

admits a local flow FlX on U ⊂ M , and take Y ∈
C∞(M ← D) arbitrary, then

(FlXt )∗(Y )(x) ∈ Dx

for x ∈ U for small t.

The proof applies the generality of convenient calcu-

lus: one has to evaluate

d

dt
(FlXt )∗Xi =

n∑
i=1

(f i
j ◦ FlXt )(FlXt )∗Xj

for small t pointwise at x ∈ U .



17 Frobenius Theorem I

Let D be a finite-dimensional smooth distribution of

rank n on a convenient manifold M and assume that

D is involutive. Assume additionally that around each

point x0 ∈ M there is a local frame X1, . . . , Xn of

vector fields admitting local flows. Then we obtain a

foliation on M in the classical sense.

In the proof the power of convenient calculus gets

obvious again, since we have to navigate around an

inverse function theorem. This works nicely by pulling

back the problem to finitely many dimensions.



18 Frobenius Theorem II

Let D be a finite-dimensional smooth distribution of

rank n on a convenient manifold M and assume that

D is involutive. Assume additionally that around each

point x0 ∈M there is a local frame X1, . . . , Xn (de-

fined on Ux0) of vector fields such that X1, . . . , Xn−1

admit local flows and Xn admits a local semi-flow.

Then for any y ∈ Ux0 there is a submanifold N with

boundary such that

1. y ∈ N,

2. For all z ∈ N the equality Dz = TzN holds.

Here we loose the classical foliation structure due to

generically infinite dimensional gap phenomena.



19 Remarks

Convenient Calculus was developed by Andreas Kriegl

and Peter Michor, all the concepts can be found in

Andreas Kriegl, Peter Michor, The convenient Setting

of Global Analysis, Mathematical Surveys and Mono-

graphs 53 (1997).

The geometric approach to interest rate theory was

invented by Tomas Björk, Bent Jesper Christensen

and Lars Svenson! Frobenius theory on Hilbert spaces

was applied to the problem by Tomas Björk and Lars

Svenson in a series of articles.

The main contents of this talk can be found in articles:

Damir Filipovic, Josef Teichmann, Existence of invari-

ant manifolds for stochastic equations in infinite di-

mensions, Journal of Functional Analysis, to appear

(2002).



Damir Filipovic, Josef Teichmann, Regularity of finite

dimensional realizations for evolution equations, Jour-

nal of Functional Analysis, to appear (2002).

Damir Filipovic, Josef Teichmann, On the Geometry

of the Term structure of Interest Rates, Proceedings

of the London Mathematical Society, invited contri-

bution (2002).

Josef Teichmann, A Frobenius Theorem on convenient

manifolds, Monatshefte für Mathematik 134 (2001).



20

Josef Teichmann

Institute for Financial and Actuarial Mathematics,

Technical University of Vienna,

E 107/5, Wiedner Haupstraße 8-10,

A-1040 Vienna, Austria

josef.teichmann@fam.tuwien.ac.at

www.fam.tuwien.ac.at/˜jteichma


