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Why non-linear PIDEs?

Credit valuation problems, utility optimization problems,
super-hedging problems, American option problems lead to
non-linear PIDEs.

2 / 21



Pricing of American Options

For instance the pricing of an American Option with payoff
g : D → R and time horizon T > 0 with respect to a Markovian
model X on state space D leads to a value function
v : D × [0,T ]→ R satisfying(

∂t + L
)
v(x , t) = 1{v(x ,t)<g(x)}1{(∂t+L)v(x ,t)>0}Lg(x)

with boundary condition v(x ,T ) = g(x) for x ∈ D. Here L
denotes the generator of the Markov process X .

In other words: (v(Xt , t))0≤t≤T is the minimal super-martingale
above g(Xt)0≤t≤T .
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Linear PIDEs of the form(
∂t + L

)
u(x , t) = 0

with boundary condition u(x ,T ) = g(x) allow for (Q)MC
algorithms, i.e. for every x ∈ D the value function has a stochastic
representation of the form

u(x , t) = E(x ,t)

[
g(XT )

]
.
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This expectation can be approximated by pseudo- or quasi-random
samples of the Markov process X through

1

N

N∑
i=1

g(X
(i)
T ) .

This is a robust, universal and almost dimension-free method to
approximate the solution u if the increments of the Markov process
X can be simulated with low complexity, even though slow,
i.e. with rate of convergence 1/

√
N which bounds the error in a

probabilistic sense.
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Alternatives are finite difference or finite element methods with
higher convergence rates bounding the error in a deterministic way,
however, their complexity depends heavily on dimension.
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Non-linear PIDEs of the form(
∂t + L

)
u(x , t) + F (u(t, x))− u(t, x) = 0

with boundary condition u(x ,T ) = g(x) allow for branching
Markov process representations for certain types of non-linearities
F .

Generically it holds true that

u(t, x) = E(x ,t)

[
exp(−(T − t))g(XT )

]
+

+

∫ T

t
E(x ,t)

[
exp(−(s − t))F (u(s,Xs))

]
ds

by the previous representation property. However, this is not a
stochastic representation but rather a fixed point equation.
Inserting the equation into itself leads towards a backwards
algorithm or – under certain assumptions on F – towards a
branching tree representation.
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Assume that F is of the form

F (u) =
M∑
k=0

pku
k

with pk ≥ 0 and
∑

pk = 1, then the previous fixed point equation

u(t, x) = E(x ,t)

[
exp(−(T − t))g(XT )

]
+

+

∫ T

t
E(x ,t)

[
exp(−(s − t))

M∑
k=0

pk(u(s,Xs))k
]
ds

leads to the short time asymptotics
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u(t, x) = exp(−(T − t))E(x ,t)

[
g(XT )

]
+

+ (1− exp(−(T − t)))
M∑
k=0

pk

k∏
j=1

E(x ,t)

[
u(T ,X

(j)
T )
]

+ o
(
(T − t)

)
where X (j) denote independent copies of the Markov process X .
We can now concatenate the short time asymptotics, since the
expansion does not depend on u anymore.
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This leads to a branching Markov process representation, i.e. a
Markov process whose state space at time t is an integer number k
of individuals in state (x1, . . . , xk) ∈ Dk . The particles move
independently subject to the Markov process X and they die at an
exponential time with parameter 1 each after giving birth to a l
individuals with probability pl (which is called branching).

The number of particles in a measurable subset A ⊂ D is an
integer-measure-valued, self-exciting affine process. Let us denote
the overall number of particles at time T by NT .
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Forward stochastic representation for semi-linear PIDEs

A similar consideration as before leads to the following stochastic
representation formula

u(x , t) = E(x ,t)

[ NT∏
j=1

g(X
(j)
T )×

M∏
k=0

(ak
pk

)#{branchings of type k}]
.

for equations with generic non-linearity

F (u) =
M∑
k=0

aku
k − u

and auxiliary branching mechanism p0, . . . , pM > 0,
∑

pk = 1
governing the underlying branching process.

This is a stochastic representation by a Markov process, infinite
dimensional though, which can be simulated forward such as in the
linear case. The result goes back to Henry-Labordere-Touzi-Wang,
but roots in works of Dynkin, McKean, LeJan, Sznithman, etc.
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At this point several questions arise:

• The distribution of individuals corresponds to an
integer-measure-valued affine process: how is it possible that
the branching measure can be replaced by a signed measure?

• Is the previous construction passing from measures to signed
measures generic for affine processes on general state spaces?

• What is the relation of the auxiliary process and the functional
solving the equation?

12 / 21



An illustrative example

To demonstrate the essential structure let us assume for a moment
L = 0, then we are dealing with a branching process with just
constant state.

We consider a Cole-Hopf transform together with time reversal
ut = exp(ψT−t), then

∂tψt exp(ψt) =
M∑
k=0

pk exp(kψt)− exp(ψt)

with initial value ψ0 = log g . Let us denote by ν the law which
takes the value k − 1 (one ancestor dies!) with probability pk , for
k = 1, . . . ,m, then

∂ψt = R(ψt)

with

R(f ) :=

∫
(exp(f ξ)− 1) ν(dξ) .
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This is a generalized Riccati equation for a one-dimensional
self-exciting affine (actually linear) process, namely the number of
individuals at a certain point in time in the branching process
picture..
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What are affine processes?

• stochastically continuous, time homogenous Markov processes
N with state space M (usually a cone which is not necessarily
pointed).

• the Fourier-Laplace transform of the marginal distribution of
N is of exponential affine form

E(n,0)

[
exp(〈Nt , f 〉)

]
= exp

(
φ(t, f ) + 〈ψ(t, f ), n〉

)
where the functions φ and ψ satisfy so called generalized
Riccati equations

∂tφt = F(ψt) and ∂tψt = R(ψt)

with φ(0, f ) = 0 and ψ(0, f ) = f .
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The vector fields F and R are of Lévy-Khintchine form. The
classification of the specific form is fully understood on symmetric
cones, Rm × Rn, etc, leading to the so called admissibility
conditions, BUT the Lévy measures are of course never signed.
This can be found in the works of Cuchiero, Duffie, Filipovic,
Keller-Ressel, Mayerhofer, Schachermayer, etc.
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As often in mathematics it is fruitful to turn a point of view
around:

• affine processes gained importance since their marginal
distribution is known up to the solution of two ODEs, the
generalized Riccati equations. Often the solutions are
explicitly known.

• one can also apply affine processes to represent stochastically
the solution of non-linear ODEs, which means in particular
that one obtain (Q)MC algorithms for the solution of
non-linear ODEs of the generalized Riccati type.

The fact that in the Henry-Labordere-Touzi-Wang representation
signed Lévy measures appear must have a meaning in the world of
affine processes. The result of Henry-Labordere-Touzi-Wong
suggests that there are more ODE types than generalized Riccati
ones, which allow for representations.
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A general result on non-linear ODEs

Consider a state space M⊂ Rd and four vectors of Lévy measures
νre+ , ν

re
− , ν

im
+ , ν im− corresponding to the characteristic vector fields

Rr/i
± . Only νre+ is a generic Lévy measure of finite variation, all the

others are assumed to be of finite activity. We assume the
constant part F to vanish here since it is not important for the
argument to come.

Assume furthermore that the sum over all measures

ν = νre+ + νre− + ν im+ + ν im−

satisfies the admissibility conditions and describes a self-exciting
pure jump affine (actually linear) process N taking values in M.
Then one can construct a second affine process Ñ, actually a pure
jump linear process, with state space M× Z2d and corresponding
Lévy measures ν̃ again being decomposable in four measures, too.
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ν̃ = ν̃re+ + ν̃re− + ν̃ im+ + ν̃ im−

Fix i = 1, . . . , d : coordinate i of the measure ν̃re+ corresponds to
the push forward along M3 m 7→ (m, 0, 0) ∈M× Z2d of
coordinate i of νre+ ; coordinate i of the measure ν̃re− corresponds to
the push forward along M3 m 7→ (m, ei , 0) ∈M× Z2d of
coordinate i of νre− ; coordinate i of the measure ν̃ im+ corresponds to
the push forward along M3 m 7→ (m, 0, ei ) ∈M× Z2d of
coordinate i of ν im+ ; whereas coordinate i of the measure ν̃ im−
corresponds to the push forward along
M3 m 7→ (m, ei , ei ) ∈M× Z2d of coordinate i of ν im− . All other

jump measures necessary to fully specify the affine process Ñ
vanish.
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Theorem

The non-trivial components of the ψ function of Ñ started at
(f , iπ, . . . , iπ, iπ/2, . . . , iπ/2) actually solve

∂ψt = Rre
+(ψt)−Rre

i (ψt) + iRim
+ (ψt)− iRim

− (ψt) (1)

=

∫ (
exp(〈ψt , ξ〉)− 1)η(dξ) = R(ψt) , (2)

where η = νre+ − νre− + iν im+ − iν im− is a complex measure.

In other words loosely speaking we have stochastic representations
for non-linear ODEs with vector fields being Fourier-Laplace
transforms of finite complex-valued measures on a certain state
space.
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Notice that we can also add an additive noise W to the equation

dψt = R(ψt) dt + dWt ,

which finally leads to the stochastic representation

exp
(
ψi (t, f )

)
= (3)

= E(ei ,0)

[
exp(〈Ñt , (f , iπ, iπ/2)〉) exp(

∫ t

0
〈Ns , d Ws〉)|σ(W )t

]
.

(4)
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