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Credit valuation problems, utility optimization problems,
super-hedging problems, American option problems lead to
non-linear PIDEs.
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Pricing of American Options

For instance the pricing of an American Option with payoff

g : D — R and time horizon T > 0 with respect to a Markovian
model X on state space D leads to a value function

v: D x [0, T] — R satisfying

(O + L)v(x, t) = Liv(xt) <)} (0 L) (x,6)>01 L8 (X)

with boundary condition v(x, T) = g(x) for x € D. Here L
denotes the generator of the Markov process X.

In other words: (v(Xt, t))g<;<7 is the minimal super-martingale
above g(Xt)o< ;<7



Linear PIDEs of the form
(8t + E) u(x,t) =0

with boundary condition u(x, T) = g(x) allow for (Q)MC
algorithms, i.e. for every x € D the value function has a stochastic
representation of the form

U(Xv t) = IE(><,t) [g(XT)] .



This expectation can be approximated by pseudo- or quasi-random
samples of the Markov process Xthrough

1 Y :
= e(x).
i=1

This is a robust, universal and almost dimension-free method to
approximate the solution u if the increments of the Markov process
X can be simulated with low complexity, even though slow,

i.e. with rate of convergence 1/+/N which bounds the error in a
probabilistic sense.
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Alternatives are finite difference or finite element methods with
higher convergence rates bounding the error in a deterministic way,
however, their complexity depends heavily on dimension.
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Non-linear PIDEs of the form
(0r + L)u(x, t) + F(u(t,x)) — u(t,x) =0

with boundary condition u(x, T) = g(x) allow for branching
Markov process representations for certain types of non-linearities
F.

Generically it holds true that
u(t, x) = E(x [ exp(—(T — t))g(X7)] +

7
+/t E(x,b) [exp(—(s — t))F(u(s,Xs))] ds

by the previous representation property. However, this is not a
stochastic representation but rather a fixed point equation.
Inserting the equation into itself leads towards a backwards
algorithm or — under certain assumptions on F — towards a
branching tree representation.



Assume that F is of the form
M
F(u) = Z pru”
k=0

with px > 0 and > px = 1, then the previous fixed point equation

u(t, x) = Ex,e) [ exp(—(T — t))g(X7)]+

-
4 / By [exp(—(s — 1) S pelu(s, X:))*] ds

leads to the short time asymptotics



u(t, x) = exp(—(T — ))E() [& (Xr)]+

+ (1 —exp(—(T — 1)) ZPkHE(xt (T X(J))] o((T 1))

where XU) denote independent copies of the Markov process X.
We can now concatenate the short time asymptotics, since the
expansion does not depend on u anymore.



This leads to a branching Markov process representation, i.e. a
Markov process whose state space at time t is an integer number k
of individuals in state (x!,...,xK) € D*. The particles move
independently subject to the Markov process X and they die at an
exponential time with parameter 1 each after giving birth to a /
individuals with probability p; (which is called branching).

The number of particles in a measurable subset A C D is an
integer-measure-valued, self-exciting affine process. Let us denote
the overall number of particles at time T by Nr.



Forward stochastic representation for semi-linear PIDEs

A similar consideration as before leads to the following stochastic
representation formula

Nt M .
. a. . #{branchings of type k}
u(x,t) = E(x,r)[Hg(X(Tj)) X H (=) ]
=1 k=0 Pk

for equations with generic non-linearity

M
F(u) = Zakuk —u
k=0

and auxiliary branching mechanism po,...,pp >0, > px =1
governing the underlying branching process.

This is a stochastic representation by a Markov process, infinite
dimensional though, which can be simulated forward such as in the
linear case. The result goes back to Henry-Labordere-Touzi-Wang,
but roots in works of Dynkin, McKean, LeJan, Sznithman, etc.
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At this point several questions arise:

e The distribution of individuals corresponds to an
integer-measure-valued affine process: how is it possible that
the branching measure can be replaced by a signed measure?

e Is the previous construction passing from measures to signed
measures generic for affine processes on general state spaces?

e What is the relation of the auxiliary process and the functional
solving the equation?
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An illustrative example

To demonstrate the essential structure let us assume for a moment
L =0, then we are dealing with a branching process with just
constant state.

We consider a Cole-Hopf transform together with time reversal
ur = exp(¢7r—¢), then

M
Orbr exp(Vr) = Z px exp(ki) — exp(1t)

k=0

with initial value 19 = log g. Let us denote by v the law which
takes the value k — 1 (one ancestor dies!) with probability py, for
k=1,...,m, then

e = R(¢Y)
with

R(F) == / (expl(F€) — 1) (de).



This is a generalized Riccati equation for a one-dimensional
self-exciting affine (actually linear) process, namely the number of
individuals at a certain point in time in the branching process
picture..
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What are affine processes?

e stochastically continuous, time homogenous Markov processes
N with state space M (usually a cone which is not necessarily
pointed).

e the Fourier-Laplace transform of the marginal distribution of
N is of exponential affine form

IE(n,O) [eXp(<Nt7 f>)] = exp (¢(t7 f) + <w(t7 f)? n>)

where the functions ¢ and ) satisfy so called generalized
Riccati equations

Ot = f(wt) and 01y = R(wt)
with ¢(0,f) =0 and ¢(0,f) = f.



The vector fields F and R are of Lévy-Khintchine form. The
classification of the specific form is fully understood on symmetric
cones, R™ x R", etc, leading to the so called admissibility
conditions, BUT the Lévy measures are of course never signed.
This can be found in the works of Cuchiero, Duffie, Filipovic,
Keller-Ressel, Mayerhofer, Schachermayer, etc.
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As often in mathematics it is fruitful to turn a point of view
around:

e affine processes gained importance since their marginal
distribution is known up to the solution of two ODEs, the
generalized Riccati equations. Often the solutions are
explicitly known.

e one can also apply affine processes to represent stochastically
the solution of non-linear ODEs, which means in particular
that one obtain (Q)MC algorithms for the solution of
non-linear ODEs of the generalized Riccati type.

The fact that in the Henry-Labordere-Touzi-Wang representation
signed Lévy measures appear must have a meaning in the world of
affine processes. The result of Henry-Labordere-Touzi-Wong
suggests that there are more ODE types than generalized Riccati
ones, which allow for representations.
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A general result on non-linear ODEs

Consider a state space M C R and four vectors of Lévy measures
vie, vre v, v!™ corresponding to the characteristic vector fields

Rri/'. Only V!¢ is a generic Lévy measure of finite variation, all the
others are assumed to be of finite activity. We assume the
constant part F to vanish here since it is not important for the
argument to come.

Assume furthermore that the sum over all measures
__ . re re im im
v=vy +vZ+vy +vo

satisfies the admissibility conditions and describes a self-exciting
pure jump affine (actually linear) process N taking values in M.
Then one can construct a second affine process N, actually a pure
jump linear process, with state space M x Z2? and corresponding
Lévy measures v again being decomposable in four measures, too.



v=v+V" +l/’m+y

Fix i =1,...,d: coordinate i of the measure v'® corresponds to
the push forward along M3 me (m,0,0) € M x 729 of
coordinate i of v//¢; coordinate /i of the measure "¢ corresponds to
the push forward along M3 mes (m,e,0) € M x 229 of
coordinate i/ of v'¢; coordinate i of the measure u+ corresponds to
the push forward along M>m— (m,0,¢e) e M x 729 of
coordinate i of ij’; whereas coordinate i of the measure '™
corresponds to the push forward along

M > m— (m, e, e) € M x Z*? of coordinate i of /™. All other
jump measures necessary to fully specify the affine process N
vanish.
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Theorem

The non-trivial components of the v function of N started at
(f,im, ... im,im/2,...,im/2) actually solve

e = RIE(Ve) = RE(ve) + IR () —IRM(ve) (1)
_ / (exp((te,€)) — 1)n(d€) = R(v). 2

im

where n = V!¢ — v’ + V" —iv!™ is a complex measure.

In other words loosely speaking we have stochastic representations
for non-linear ODEs with vector fields being Fourier-Laplace
transforms of finite complex-valued measures on a certain state
space.
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Notice that we can also add an additive noise W to the equation
diy = R(¢:) dt + dW,
which finally leads to the stochastic representation
exp (V'(t,f)) = (3)

= E(e,.0) [ exp((N, (f,im,i7/2))) exp(/0t<Ns, d Wa))|o(W),] .
(4)
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